test-backend-ops.cpp 230 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208
  1. // This file defines tests for various GGML ops and backends.
  2. // For the forward pass it asserts that the results of multiple backends computing the same GGML ops are consistent.
  3. // For the backward pass it asserts that the gradients from backpropagation are consistent
  4. // with the gradients obtained via the method of finite differences ("grad" mode, this is optional).
  5. // It is also possible to check the performance ("perf" mode).
  6. //
  7. // this file has three sections: Section 1 does general setup, section 2 defines the GGML ops to be tested,
  8. // and section 3 defines which tests to run.
  9. // Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case,
  10. // then go to section 3 and add an instantiation of your struct.
  11. // ##############################
  12. // ## Section 1: General Setup ##
  13. // ##############################
  14. #include <ggml.h>
  15. #include <ggml-alloc.h>
  16. #include <ggml-backend.h>
  17. #include <ggml-cpp.h>
  18. #include <algorithm>
  19. #include <array>
  20. #include <cfloat>
  21. #include <cinttypes>
  22. #include <cstdarg>
  23. #include <cstdint>
  24. #include <cstdio>
  25. #include <cstdlib>
  26. #include <cstring>
  27. #include <ctime>
  28. #include <future>
  29. #include <memory>
  30. #include <random>
  31. #include <regex>
  32. #include <string>
  33. #include <string_view>
  34. #include <thread>
  35. #include <vector>
  36. static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  37. size_t nels = ggml_nelements(tensor);
  38. std::vector<float> data(nels);
  39. {
  40. // parallel initialization
  41. static const size_t n_threads = std::thread::hardware_concurrency();
  42. // static RNG initialization (revisit if n_threads stops being constant)
  43. static std::vector<std::default_random_engine> generators = []() {
  44. std::random_device rd;
  45. std::vector<std::default_random_engine> vec;
  46. vec.reserve(n_threads);
  47. //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
  48. for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
  49. return vec;
  50. }();
  51. auto init_thread = [&](size_t ith, size_t start, size_t end) {
  52. std::uniform_real_distribution<float> distribution(min, max);
  53. auto & gen = generators[ith];
  54. for (size_t i = start; i < end; i++) {
  55. data[i] = distribution(gen);
  56. }
  57. };
  58. std::vector<std::future<void>> tasks;
  59. tasks.reserve(n_threads);
  60. for (size_t i = 0; i < n_threads; i++) {
  61. size_t start = i*nels/n_threads;
  62. size_t end = (i+1)*nels/n_threads;
  63. tasks.push_back(std::async(std::launch::async, init_thread, i, start, end));
  64. }
  65. for (auto & t : tasks) {
  66. t.get();
  67. }
  68. }
  69. if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
  70. ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float));
  71. } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
  72. GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0);
  73. // dummy importance matrix
  74. std::vector<float> imatrix(tensor->ne[0], 1.0f);
  75. const float * im = imatrix.data();
  76. if (!ggml_quantize_requires_imatrix(tensor->type)) {
  77. // when the imatrix is optional, we want to test both quantization with and without imatrix
  78. // use one of the random numbers to decide
  79. if (data[0] > 0.5f*(min + max)) {
  80. im = nullptr;
  81. }
  82. }
  83. std::vector<uint8_t> dataq(ggml_row_size(tensor->type, nels));
  84. {
  85. // parallel quantization by block
  86. size_t blck_size = ggml_blck_size(tensor->type);
  87. size_t n_blocks = nels / blck_size;
  88. auto quantize_thread = [&](size_t start, size_t end) {
  89. ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
  90. start * blck_size, end - start, blck_size, im);
  91. };
  92. const size_t min_blocks_per_thread = 1;
  93. const size_t n_threads = std::min<size_t>(std::thread::hardware_concurrency()/2,
  94. std::max<size_t>(1, n_blocks / min_blocks_per_thread));
  95. std::vector<std::future<void>> tasks;
  96. tasks.reserve(n_threads);
  97. for (size_t i = 0; i < n_threads; i++) {
  98. size_t start = i*n_blocks/n_threads;
  99. size_t end = (i+1)*n_blocks/n_threads;
  100. tasks.push_back(std::async(std::launch::async, quantize_thread, start, end));
  101. }
  102. for (auto & t : tasks) {
  103. t.get();
  104. }
  105. }
  106. ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
  107. } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
  108. // This is going to create some weird integers though.
  109. ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
  110. } else if (tensor->type == GGML_TYPE_I64) {
  111. // Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful.
  112. const size_t nbytes_half = ggml_nbytes(tensor)/2;
  113. ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half);
  114. ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half);
  115. } else {
  116. GGML_ABORT("fatal error");
  117. }
  118. }
  119. static std::vector<float> tensor_to_float(const ggml_tensor * t) {
  120. std::vector<float> tv;
  121. tv.reserve(ggml_nelements(t));
  122. std::vector<uint8_t> buf(ggml_nbytes(t));
  123. ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
  124. const auto * tt = ggml_get_type_traits(t->type);
  125. size_t bs = ggml_blck_size(t->type);
  126. std::vector<float> vq(ggml_blck_size(t->type));
  127. bool quantized = ggml_is_quantized(t->type);
  128. // access elements by index to avoid gaps in views
  129. for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
  130. for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
  131. for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
  132. for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
  133. size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
  134. if (t->type == GGML_TYPE_F16) {
  135. tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
  136. } else if (t->type == GGML_TYPE_BF16) {
  137. tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
  138. } else if (t->type == GGML_TYPE_F32) {
  139. tv.push_back(*(float *) &buf[i]);
  140. } else if (t->type == GGML_TYPE_I64) {
  141. tv.push_back((float)*(int64_t *) &buf[i]);
  142. } else if (t->type == GGML_TYPE_I32) {
  143. tv.push_back((float)*(int32_t *) &buf[i]);
  144. } else if (t->type == GGML_TYPE_I16) {
  145. tv.push_back((float)*(int16_t *) &buf[i]);
  146. } else if (t->type == GGML_TYPE_I8) {
  147. tv.push_back((float)*(int8_t *) &buf[i]);
  148. } else if (quantized) {
  149. tt->to_float(&buf[i], vq.data(), bs);
  150. tv.insert(tv.end(), vq.begin(), vq.end());
  151. } else {
  152. GGML_ABORT("fatal error");
  153. }
  154. }
  155. }
  156. }
  157. }
  158. return tv;
  159. }
  160. // normalized mean squared error = mse(a, b) / mse(a, 0)
  161. static double nmse(const float * a, const float * b, size_t n) {
  162. double mse_a_b = 0.0;
  163. double mse_a_0 = 0.0;
  164. for (size_t i = 0; i < n; i++) {
  165. float a_i = a[i];
  166. float b_i = b[i];
  167. mse_a_b += (a_i - b_i) * (a_i - b_i);
  168. mse_a_0 += a_i * a_i;
  169. }
  170. return mse_a_b / mse_a_0;
  171. }
  172. // maximum absolute asymmetry between a and b
  173. // asymmetry: (a - b) / (a + b)
  174. // This is more stable than relative error if one of the values fluctuates towards zero.
  175. // n: number of values to compare.
  176. // expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where
  177. // a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail.
  178. static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) {
  179. double sum = 0.0f;
  180. size_t nvalid = 0;
  181. for (size_t i = 0; i < n; i++) {
  182. if (!expected_vals.empty()) {
  183. bool matches_any = false;
  184. for (const float & ev : expected_vals) {
  185. if (fabsf(a[i] - ev) < 1e-3f) {
  186. matches_any = true;
  187. break;
  188. }
  189. }
  190. if (!matches_any) {
  191. continue;
  192. }
  193. }
  194. const float asymm = (a[i] - b[i]) / (a[i] + b[i]);
  195. sum += fabsf(asymm);
  196. nvalid++;
  197. }
  198. return sum/nvalid;
  199. }
  200. // utils for printing the variables of the test cases
  201. template<typename T>
  202. static std::string var_to_str(const T & x) {
  203. return std::to_string(x);
  204. }
  205. template<typename T, size_t N>
  206. static std::string var_to_str(const T (&x)[N]) {
  207. std::string s = "[";
  208. for (size_t i = 0; i < N; i++) {
  209. if (i > 0) {
  210. s += ",";
  211. }
  212. s += var_to_str(x[i]);
  213. }
  214. s += "]";
  215. return s;
  216. }
  217. template<typename T, size_t N>
  218. static std::string var_to_str(const std::array<T, N> & x) {
  219. std::string s = "[";
  220. for (size_t i = 0; i < N; i++) {
  221. if (i > 0) {
  222. s += ",";
  223. }
  224. s += var_to_str(x[i]);
  225. }
  226. s += "]";
  227. return s;
  228. }
  229. static std::string var_to_str(ggml_type type) {
  230. return ggml_type_name(type);
  231. }
  232. static std::string var_to_str(ggml_prec prec) {
  233. return prec == GGML_PREC_F32 ? "f32" : "def";
  234. }
  235. static std::string var_to_str(ggml_op_pool pool) {
  236. switch (pool) {
  237. case GGML_OP_POOL_AVG: return "avg";
  238. case GGML_OP_POOL_MAX: return "max";
  239. default: return std::to_string(pool);
  240. }
  241. }
  242. static std::string var_to_str(ggml_scale_mode mode) {
  243. switch (mode) {
  244. case GGML_SCALE_MODE_NEAREST: return "nearest";
  245. case GGML_SCALE_MODE_BILINEAR: return "bilinear";
  246. default: return std::to_string(mode);
  247. }
  248. }
  249. #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
  250. #define VARS_TO_STR1(a) VAR_TO_STR(a)
  251. #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
  252. #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
  253. #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
  254. #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
  255. #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
  256. #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
  257. #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
  258. #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
  259. #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
  260. #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
  261. #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
  262. #ifdef GGML_USE_SYCL
  263. static bool inline _isinf(float f) {
  264. return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
  265. }
  266. #else
  267. static bool inline _isinf(float f) { return std::isinf(f); }
  268. #endif
  269. // accept FLT_MAX as infinity
  270. static bool isinf_or_max(float f) {
  271. return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
  272. }
  273. static bool ggml_is_view_op(enum ggml_op op) {
  274. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  275. }
  276. enum test_mode {
  277. MODE_TEST,
  278. MODE_PERF,
  279. MODE_GRAD,
  280. MODE_SUPPORT,
  281. };
  282. // Output format support similar to llama-bench
  283. enum output_formats { CONSOLE, SQL, CSV };
  284. static const char * output_format_str(output_formats format) {
  285. switch (format) {
  286. case CONSOLE:
  287. return "console";
  288. case SQL:
  289. return "sql";
  290. case CSV:
  291. return "csv";
  292. default:
  293. GGML_ABORT("invalid output format");
  294. }
  295. }
  296. static bool output_format_from_str(const std::string & s, output_formats & format) {
  297. if (s == "console") {
  298. format = CONSOLE;
  299. } else if (s == "sql") {
  300. format = SQL;
  301. } else if (s == "csv") {
  302. format = CSV;
  303. } else {
  304. return false;
  305. }
  306. return true;
  307. }
  308. // Test result structure for SQL output
  309. struct test_result {
  310. std::string test_time;
  311. std::string build_commit;
  312. std::string backend_name;
  313. std::string op_name;
  314. std::string op_params;
  315. std::string test_mode;
  316. bool supported;
  317. bool passed;
  318. std::string error_message;
  319. double time_us;
  320. double flops;
  321. double bandwidth_gb_s;
  322. size_t memory_kb;
  323. int n_runs;
  324. std::string device_description;
  325. std::string backend_reg_name;
  326. test_result() {
  327. // Initialize with default values
  328. time_us = 0.0;
  329. flops = 0.0;
  330. bandwidth_gb_s = 0.0;
  331. memory_kb = 0;
  332. n_runs = 0;
  333. supported = false;
  334. passed = false;
  335. // Set test time
  336. time_t t = time(NULL);
  337. char buf[32];
  338. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  339. test_time = buf;
  340. // Set build info
  341. build_commit = ggml_commit();
  342. }
  343. test_result(const std::string & backend_name, const std::string & op_name, const std::string & op_params,
  344. const std::string & test_mode, bool supported, bool passed, const std::string & error_message = "",
  345. double time_us = 0.0, double flops = 0.0, double bandwidth_gb_s = 0.0, size_t memory_kb = 0,
  346. int n_runs = 0, const std::string & device_description = "", const std::string & backend_reg_name = "") :
  347. backend_name(backend_name),
  348. op_name(op_name),
  349. op_params(op_params),
  350. test_mode(test_mode),
  351. supported(supported),
  352. passed(passed),
  353. error_message(error_message),
  354. time_us(time_us),
  355. flops(flops),
  356. bandwidth_gb_s(bandwidth_gb_s),
  357. memory_kb(memory_kb),
  358. n_runs(n_runs),
  359. device_description(device_description),
  360. backend_reg_name(backend_reg_name) {
  361. // Set test time
  362. time_t t = time(NULL);
  363. char buf[32];
  364. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  365. test_time = buf;
  366. // Set build info
  367. build_commit = ggml_commit();
  368. }
  369. static const std::vector<std::string> & get_fields() {
  370. static const std::vector<std::string> fields = {
  371. "test_time", "build_commit", "backend_name", "op_name", "op_params", "test_mode", "supported",
  372. "passed", "error_message", "time_us", "flops", "bandwidth_gb_s", "memory_kb", "n_runs",
  373. "device_description", "backend_reg_name"
  374. };
  375. return fields;
  376. }
  377. enum field_type { STRING, BOOL, INT, FLOAT };
  378. static field_type get_field_type(const std::string & field) {
  379. if (field == "supported" || field == "passed") {
  380. return BOOL;
  381. }
  382. if (field == "memory_kb" || field == "n_runs") {
  383. return INT;
  384. }
  385. if (field == "time_us" || field == "flops" || field == "bandwidth_gb_s") {
  386. return FLOAT;
  387. }
  388. return STRING;
  389. }
  390. std::vector<std::string> get_values() const {
  391. return { test_time,
  392. build_commit,
  393. backend_name,
  394. op_name,
  395. op_params,
  396. test_mode,
  397. std::to_string(supported),
  398. std::to_string(passed),
  399. error_message,
  400. std::to_string(time_us),
  401. std::to_string(flops),
  402. std::to_string(bandwidth_gb_s),
  403. std::to_string(memory_kb),
  404. std::to_string(n_runs),
  405. device_description,
  406. backend_reg_name };
  407. }
  408. };
  409. // Printer classes for different output formats
  410. enum class test_status_t { NOT_SUPPORTED, OK, FAIL };
  411. struct test_operation_info {
  412. std::string op_name;
  413. std::string op_params;
  414. std::string backend_name;
  415. test_status_t status = test_status_t::OK;
  416. std::string failure_reason;
  417. // Additional information fields that were previously in separate structs
  418. std::string error_component;
  419. std::string error_details;
  420. // Gradient info
  421. int64_t gradient_index = -1;
  422. std::string gradient_param_name;
  423. float gradient_value = 0.0f;
  424. // MAA error info
  425. double maa_error = 0.0;
  426. double maa_threshold = 0.0;
  427. // Flags for different types of information
  428. bool has_error = false;
  429. bool has_gradient_info = false;
  430. bool has_maa_error = false;
  431. bool is_compare_failure = false;
  432. bool is_large_tensor_skip = false;
  433. test_operation_info() = default;
  434. test_operation_info(const std::string & op_name, const std::string & op_params, const std::string & backend_name,
  435. test_status_t status = test_status_t::OK, const std::string & failure_reason = "") :
  436. op_name(op_name),
  437. op_params(op_params),
  438. backend_name(backend_name),
  439. status(status),
  440. failure_reason(failure_reason) {}
  441. // Set error information
  442. void set_error(const std::string & component, const std::string & details) {
  443. has_error = true;
  444. error_component = component;
  445. error_details = details;
  446. if (status == test_status_t::OK) {
  447. status = test_status_t::FAIL;
  448. }
  449. }
  450. // Set gradient information
  451. void set_gradient_info(int64_t index, const std::string & param_name, float value) {
  452. has_gradient_info = true;
  453. gradient_index = index;
  454. gradient_param_name = param_name;
  455. gradient_value = value;
  456. if (status == test_status_t::OK) {
  457. status = test_status_t::FAIL;
  458. }
  459. }
  460. // Set MAA error information
  461. void set_maa_error(double error, double threshold) {
  462. has_maa_error = true;
  463. maa_error = error;
  464. maa_threshold = threshold;
  465. if (status == test_status_t::OK) {
  466. status = test_status_t::FAIL;
  467. }
  468. }
  469. // Set compare failure
  470. void set_compare_failure() {
  471. is_compare_failure = true;
  472. if (status == test_status_t::OK) {
  473. status = test_status_t::FAIL;
  474. }
  475. }
  476. // Set large tensor skip
  477. void set_large_tensor_skip() { is_large_tensor_skip = true; }
  478. };
  479. struct test_summary_info {
  480. size_t tests_passed;
  481. size_t tests_total;
  482. bool is_backend_summary = false; // true for backend summary, false for test summary
  483. test_summary_info() = default;
  484. test_summary_info(size_t tests_passed, size_t tests_total, bool is_backend_summary = false) :
  485. tests_passed(tests_passed),
  486. tests_total(tests_total),
  487. is_backend_summary(is_backend_summary) {}
  488. };
  489. struct testing_start_info {
  490. size_t device_count;
  491. testing_start_info() = default;
  492. testing_start_info(size_t device_count) : device_count(device_count) {}
  493. };
  494. struct backend_init_info {
  495. size_t device_index;
  496. size_t total_devices;
  497. std::string device_name;
  498. bool skipped = false;
  499. std::string skip_reason;
  500. std::string description;
  501. size_t memory_total_mb = 0;
  502. size_t memory_free_mb = 0;
  503. bool has_memory_info = false;
  504. backend_init_info() = default;
  505. backend_init_info(size_t device_index, size_t total_devices, const std::string & device_name, bool skipped = false,
  506. const std::string & skip_reason = "", const std::string & description = "",
  507. size_t memory_total_mb = 0, size_t memory_free_mb = 0, bool has_memory_info = false) :
  508. device_index(device_index),
  509. total_devices(total_devices),
  510. device_name(device_name),
  511. skipped(skipped),
  512. skip_reason(skip_reason),
  513. description(description),
  514. memory_total_mb(memory_total_mb),
  515. memory_free_mb(memory_free_mb),
  516. has_memory_info(has_memory_info) {}
  517. };
  518. struct backend_status_info {
  519. std::string backend_name;
  520. test_status_t status;
  521. backend_status_info() = default;
  522. backend_status_info(const std::string & backend_name, test_status_t status) :
  523. backend_name(backend_name),
  524. status(status) {}
  525. };
  526. struct overall_summary_info {
  527. size_t backends_passed;
  528. size_t backends_total;
  529. bool all_passed;
  530. overall_summary_info() = default;
  531. overall_summary_info(size_t backends_passed, size_t backends_total, bool all_passed) :
  532. backends_passed(backends_passed),
  533. backends_total(backends_total),
  534. all_passed(all_passed) {}
  535. };
  536. struct printer {
  537. virtual ~printer() {}
  538. FILE * fout = stdout;
  539. virtual void print_header() {}
  540. virtual void print_test_result(const test_result & result) = 0;
  541. virtual void print_footer() {}
  542. virtual void print_operation(const test_operation_info & info) { (void) info; }
  543. virtual void print_summary(const test_summary_info & info) { (void) info; }
  544. virtual void print_testing_start(const testing_start_info & info) { (void) info; }
  545. virtual void print_backend_init(const backend_init_info & info) { (void) info; }
  546. virtual void print_backend_status(const backend_status_info & info) { (void) info; }
  547. virtual void print_overall_summary(const overall_summary_info & info) { (void) info; }
  548. };
  549. struct console_printer : public printer {
  550. void print_test_result(const test_result & result) override {
  551. if (result.test_mode == "test") {
  552. print_test_console(result);
  553. } else if (result.test_mode == "perf") {
  554. print_perf_console(result);
  555. } else if (result.test_mode == "support") {
  556. print_support_console(result);
  557. }
  558. }
  559. void print_operation(const test_operation_info & info) override {
  560. printf(" %s(%s): ", info.op_name.c_str(), info.op_params.c_str());
  561. fflush(stdout);
  562. // Handle large tensor skip first
  563. if (info.is_large_tensor_skip) {
  564. printf("skipping large tensors for speed \n");
  565. return;
  566. }
  567. // Handle not supported status
  568. if (info.status == test_status_t::NOT_SUPPORTED) {
  569. if (!info.failure_reason.empty()) {
  570. printf("not supported [%s]\n", info.failure_reason.c_str());
  571. } else {
  572. printf("not supported [%s]\n", info.backend_name.c_str());
  573. }
  574. return;
  575. }
  576. // Handle errors and additional information
  577. if (info.has_error) {
  578. if (info.error_component == "allocation") {
  579. fprintf(stderr, "failed to allocate tensors [%s] ", info.backend_name.c_str());
  580. } else if (info.error_component == "backend") {
  581. fprintf(stderr, " Failed to initialize %s backend\n", info.backend_name.c_str());
  582. } else {
  583. fprintf(stderr, "Error in %s: %s\n", info.error_component.c_str(), info.error_details.c_str());
  584. }
  585. }
  586. // Handle gradient info
  587. if (info.has_gradient_info) {
  588. printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", info.op_name.c_str(), info.gradient_index,
  589. info.gradient_param_name.c_str(), info.gradient_value);
  590. }
  591. // Handle MAA error
  592. if (info.has_maa_error) {
  593. printf("[%s] MAA = %.9f > %.9f ", info.op_name.c_str(), info.maa_error, info.maa_threshold);
  594. }
  595. // Handle compare failure
  596. if (info.is_compare_failure) {
  597. printf("compare failed ");
  598. }
  599. // Print final status
  600. if (info.status == test_status_t::OK) {
  601. printf("\033[1;32mOK\033[0m\n");
  602. } else {
  603. printf("\033[1;31mFAIL\033[0m\n");
  604. }
  605. }
  606. void print_summary(const test_summary_info & info) override {
  607. if (info.is_backend_summary) {
  608. printf("%zu/%zu backends passed\n", info.tests_passed, info.tests_total);
  609. } else {
  610. printf(" %zu/%zu tests passed\n", info.tests_passed, info.tests_total);
  611. }
  612. }
  613. void print_backend_status(const backend_status_info & info) override {
  614. printf(" Backend %s: ", info.backend_name.c_str());
  615. if (info.status == test_status_t::OK) {
  616. printf("\033[1;32mOK\033[0m\n");
  617. } else {
  618. printf("\033[1;31mFAIL\033[0m\n");
  619. }
  620. }
  621. void print_testing_start(const testing_start_info & info) override {
  622. printf("Testing %zu devices\n\n", info.device_count);
  623. }
  624. void print_backend_init(const backend_init_info & info) override {
  625. printf("Backend %zu/%zu: %s\n", info.device_index + 1, info.total_devices, info.device_name.c_str());
  626. if (info.skipped) {
  627. printf(" %s\n", info.skip_reason.c_str());
  628. return;
  629. }
  630. if (!info.description.empty()) {
  631. printf(" Device description: %s\n", info.description.c_str());
  632. }
  633. if (info.has_memory_info) {
  634. printf(" Device memory: %zu MB (%zu MB free)\n", info.memory_total_mb, info.memory_free_mb);
  635. }
  636. printf("\n");
  637. }
  638. void print_overall_summary(const overall_summary_info & info) override {
  639. printf("%zu/%zu backends passed\n", info.backends_passed, info.backends_total);
  640. if (info.all_passed) {
  641. printf("\033[1;32mOK\033[0m\n");
  642. } else {
  643. printf("\033[1;31mFAIL\033[0m\n");
  644. }
  645. }
  646. private:
  647. void print_test_console(const test_result & result) {
  648. printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  649. fflush(stdout);
  650. if (!result.supported) {
  651. printf("not supported [%s] ", result.backend_name.c_str());
  652. printf("\n");
  653. return;
  654. }
  655. if (result.passed) {
  656. printf("\033[1;32mOK\033[0m\n");
  657. } else {
  658. printf("\033[1;31mFAIL\033[0m\n");
  659. }
  660. }
  661. void print_perf_console(const test_result & result) {
  662. int len = printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  663. fflush(stdout);
  664. if (!result.supported) {
  665. printf("not supported\n");
  666. return;
  667. }
  668. // align while also leaving some margin for variations in parameters
  669. int align = 8;
  670. int last = (len + align - 1) / align * align;
  671. if (last - len < 5) {
  672. last += align;
  673. }
  674. printf("%*s", last - len, "");
  675. printf(" %8d runs - %8.2f us/run - ", result.n_runs, result.time_us);
  676. if (result.flops > 0) {
  677. auto format_flops = [](double flops) -> std::string {
  678. char buf[256];
  679. if (flops >= 1e12) {
  680. snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12);
  681. } else if (flops >= 1e9) {
  682. snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9);
  683. } else if (flops >= 1e6) {
  684. snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6);
  685. } else {
  686. snprintf(buf, sizeof(buf), "%6.2f kFLOP", flops / 1e3);
  687. }
  688. return buf;
  689. };
  690. uint64_t op_flops_per_run = result.flops * result.time_us / 1e6;
  691. printf("%s/run - \033[1;34m%sS\033[0m", format_flops(op_flops_per_run).c_str(),
  692. format_flops(result.flops).c_str());
  693. } else {
  694. printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m", result.memory_kb, result.bandwidth_gb_s);
  695. }
  696. printf("\n");
  697. }
  698. void print_support_console(const test_result & result) {
  699. printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  700. fflush(stdout);
  701. if (result.supported) {
  702. printf("\033[1;32mSUPPORTED\033[0m\n");
  703. } else {
  704. printf("\033[1;31mNOT SUPPORTED\033[0m\n");
  705. }
  706. }
  707. };
  708. struct sql_printer : public printer {
  709. static std::string get_sql_field_type(const std::string & field) {
  710. switch (test_result::get_field_type(field)) {
  711. case test_result::STRING:
  712. return "TEXT";
  713. case test_result::BOOL:
  714. case test_result::INT:
  715. return "INTEGER";
  716. case test_result::FLOAT:
  717. return "REAL";
  718. default:
  719. GGML_ABORT("invalid field type");
  720. }
  721. }
  722. void print_header() override {
  723. std::vector<std::string> fields = test_result::get_fields();
  724. fprintf(fout, "CREATE TABLE IF NOT EXISTS test_backend_ops (\n");
  725. for (size_t i = 0; i < fields.size(); i++) {
  726. fprintf(fout, " %s %s%s\n", fields[i].c_str(), get_sql_field_type(fields[i]).c_str(),
  727. i < fields.size() - 1 ? "," : "");
  728. }
  729. fprintf(fout, ");\n\n");
  730. }
  731. void print_test_result(const test_result & result) override {
  732. fprintf(fout, "INSERT INTO test_backend_ops (");
  733. std::vector<std::string> fields = test_result::get_fields();
  734. for (size_t i = 0; i < fields.size(); i++) {
  735. fprintf(fout, "%s%s", fields[i].c_str(), i < fields.size() - 1 ? ", " : "");
  736. }
  737. fprintf(fout, ") VALUES (");
  738. std::vector<std::string> values = result.get_values();
  739. for (size_t i = 0; i < values.size(); i++) {
  740. fprintf(fout, "'%s'%s", values[i].c_str(), i < values.size() - 1 ? ", " : "");
  741. }
  742. fprintf(fout, ");\n");
  743. }
  744. };
  745. struct csv_printer : public printer {
  746. void print_header() override {
  747. std::vector<std::string> fields = test_result::get_fields();
  748. std::vector<std::string> fields_csv = get_fields_csv();
  749. for (size_t i = 0; i < fields.size(); i++) {
  750. if (std::find(std::begin(fields_csv), std::end(fields_csv), fields[i]) == std::end(fields_csv)) {
  751. continue;
  752. }
  753. printf("\"%s\"%s", fields[i].c_str(), i < fields.size() - 1 ? "," : "");
  754. }
  755. printf("\n");
  756. }
  757. void print_test_result(const test_result & result) override {
  758. std::vector<std::string> values = result.get_values();
  759. std::vector<std::string> fields = test_result::get_fields();
  760. std::vector<std::string> fields_csv = get_fields_csv();
  761. for (size_t i = 0; i < values.size(); i++) {
  762. if (std::find(std::begin(fields_csv), std::end(fields_csv), fields[i]) == std::end(fields_csv)) {
  763. continue;
  764. }
  765. // Escape quotes and wrap in quotes for CSV
  766. std::string escaped_value = values[i];
  767. size_t pos = 0;
  768. while ((pos = escaped_value.find("\"", pos)) != std::string::npos) {
  769. escaped_value.replace(pos, 1, "\"\"");
  770. pos += 2;
  771. }
  772. printf("\"%s\"%s", escaped_value.c_str(), i < values.size() - 1 ? "," : "");
  773. }
  774. printf("\n");
  775. }
  776. static std::vector<std::string> get_fields_csv() {
  777. return {
  778. "op_name",
  779. "op_params",
  780. "supported",
  781. "error_message",
  782. "test_mode",
  783. "backend_reg_name",
  784. "backend_name",
  785. };
  786. }
  787. };
  788. static std::unique_ptr<printer> create_printer(output_formats format) {
  789. switch (format) {
  790. case CONSOLE:
  791. return std::make_unique<console_printer>();
  792. case SQL:
  793. return std::make_unique<sql_printer>();
  794. case CSV:
  795. return std::make_unique<csv_printer>();
  796. }
  797. GGML_ABORT("invalid output format");
  798. }
  799. struct test_case {
  800. virtual ~test_case() {}
  801. virtual std::string op_desc(ggml_tensor * t) {
  802. return ggml_op_desc(t);
  803. }
  804. virtual std::string vars() {
  805. return "";
  806. }
  807. virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
  808. virtual double max_nmse_err() {
  809. return 1e-7;
  810. }
  811. virtual double max_maa_err() {
  812. return 1e-4;
  813. }
  814. virtual float grad_eps() {
  815. return 1e-1f;
  816. }
  817. // If false, estimate gradient with 2 points, neglects 3rd order derivative and higher.
  818. // If true, estimate gradient with 4 points, neglects 5th order derivative and higher.
  819. virtual bool grad_precise() {
  820. return false;
  821. }
  822. // Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests).
  823. virtual int64_t grad_nmax() {
  824. return 10000;
  825. }
  826. // No effect if empty.
  827. // If not empty, skip all gradient checks where the numerical result does not match any of the values.
  828. // Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable.
  829. virtual std::vector<float> grad_expect() {
  830. return {};
  831. }
  832. virtual void initialize_tensors(ggml_context * ctx) {
  833. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  834. init_tensor_uniform(t);
  835. }
  836. }
  837. virtual size_t op_size(ggml_tensor * t) {
  838. size_t size = ggml_nbytes(t);
  839. // add source tensors
  840. for (int i = 0; i < GGML_MAX_SRC; i++) {
  841. if (t->src[i] != NULL) {
  842. size += ggml_nbytes(t->src[i]);
  843. }
  844. }
  845. return size;
  846. }
  847. virtual uint64_t op_flops(ggml_tensor * t) {
  848. GGML_UNUSED(t);
  849. return 0;
  850. }
  851. virtual bool run_whole_graph() { return false; }
  852. ggml_cgraph * gf = nullptr;
  853. ggml_cgraph * gb = nullptr;
  854. static const int sentinel_size = 1024;
  855. test_mode mode;
  856. std::vector<ggml_tensor *> sentinels;
  857. void add_sentinel(ggml_context * ctx) {
  858. if (mode == MODE_PERF || mode == MODE_GRAD || mode == MODE_SUPPORT) {
  859. return;
  860. }
  861. ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
  862. ggml_format_name(sentinel, "sent_%zu", sentinels.size());
  863. sentinels.push_back(sentinel);
  864. }
  865. // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
  866. ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
  867. ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
  868. add_sentinel(ctx);
  869. return t;
  870. }
  871. ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
  872. ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
  873. add_sentinel(ctx);
  874. return t;
  875. }
  876. ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
  877. ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
  878. add_sentinel(ctx);
  879. return t;
  880. }
  881. ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
  882. ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
  883. add_sentinel(ctx);
  884. return t;
  885. }
  886. ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
  887. ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
  888. add_sentinel(ctx);
  889. return t;
  890. }
  891. // Checks an op against the test filter, which is a comma separated list of OP names or specific variations
  892. bool matches_filter(ggml_tensor * op, const char * op_names_filter) {
  893. if (op_names_filter) {
  894. const auto op_name = op_desc(op);
  895. const auto op_full_name = op_name + "(" + vars() + ")";
  896. std::string_view filter(op_names_filter);
  897. while (!filter.empty()) {
  898. auto comma_pos = filter.find_first_of(',');
  899. const auto lparen_pos = filter.find_first_of('(');
  900. if (lparen_pos < comma_pos) {
  901. auto rparen_pos = filter.find_first_of(')');
  902. comma_pos = filter.find_first_of(',', rparen_pos);
  903. const auto op_filter = filter.substr(0, comma_pos);
  904. if (op_filter == op_full_name) {
  905. return true;
  906. }
  907. } else {
  908. const auto op_filter = filter.substr(0, comma_pos);
  909. if (op_filter == op_name) {
  910. return true;
  911. }
  912. }
  913. filter = comma_pos != std::string_view::npos ? filter.substr(comma_pos + 1) : "";
  914. }
  915. return false;
  916. } else {
  917. return true;
  918. }
  919. }
  920. bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_names_filter, printer * output_printer) {
  921. mode = MODE_TEST;
  922. ggml_init_params params = {
  923. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  924. /* .mem_base = */ NULL,
  925. /* .no_alloc = */ true,
  926. };
  927. ggml_context * ctx = ggml_init(params);
  928. GGML_ASSERT(ctx);
  929. gf = ggml_new_graph(ctx);
  930. // pre-graph sentinel
  931. add_sentinel(ctx);
  932. ggml_tensor * out = build_graph(ctx);
  933. std::string current_op_name = op_desc(out);
  934. if (!matches_filter(out, op_names_filter)) {
  935. //printf(" %s: skipping\n", op_desc(out).c_str());
  936. ggml_free(ctx);
  937. return true;
  938. }
  939. // check if the backends support the ops
  940. bool supported = true;
  941. for (ggml_backend_t backend : {backend1, backend2}) {
  942. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  943. if (!ggml_backend_supports_op(backend, t)) {
  944. supported = false;
  945. break;
  946. }
  947. }
  948. }
  949. if (!supported) {
  950. // Create test result for unsupported operation
  951. test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test",
  952. false, false, "not supported");
  953. if (output_printer) {
  954. output_printer->print_test_result(result);
  955. }
  956. ggml_free(ctx);
  957. return true;
  958. }
  959. // post-graph sentinel
  960. add_sentinel(ctx);
  961. // allocate
  962. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
  963. if (buf == NULL) {
  964. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
  965. ggml_free(ctx);
  966. return false;
  967. }
  968. // build graph
  969. ggml_build_forward_expand(gf, out);
  970. // add sentinels as graph nodes so that they are checked in the callback
  971. for (ggml_tensor * sentinel : sentinels) {
  972. ggml_graph_add_node(gf, sentinel);
  973. }
  974. // randomize tensors
  975. initialize_tensors(ctx);
  976. // compare
  977. struct callback_userdata {
  978. bool ok;
  979. double max_err;
  980. ggml_backend_t backend1;
  981. ggml_backend_t backend2;
  982. };
  983. callback_userdata ud {
  984. true,
  985. max_nmse_err(),
  986. backend1,
  987. backend2
  988. };
  989. auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
  990. callback_userdata * ud = (callback_userdata *) user_data;
  991. const char * bn1 = ggml_backend_name(ud->backend1);
  992. const char * bn2 = ggml_backend_name(ud->backend2);
  993. if (t1->op == GGML_OP_NONE) {
  994. // sentinels must be unchanged
  995. std::vector<uint8_t> t1_data(ggml_nbytes(t1));
  996. std::vector<uint8_t> t2_data(ggml_nbytes(t2));
  997. ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
  998. ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
  999. if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
  1000. printf("sentinel mismatch: %s ", t1->name);
  1001. ud->ok = false;
  1002. return true;
  1003. }
  1004. }
  1005. std::vector<float> f1 = tensor_to_float(t1);
  1006. std::vector<float> f2 = tensor_to_float(t2);
  1007. for (size_t i = 0; i < f1.size(); i++) {
  1008. // check for nans
  1009. if (std::isnan(f1[i]) || std::isnan(f2[i])) {
  1010. printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
  1011. ud->ok = false;
  1012. return true;
  1013. }
  1014. // check for infs: both must be inf of the same sign, or both must be finite
  1015. if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
  1016. if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
  1017. if (std::signbit(f1[i]) != std::signbit(f2[i])) {
  1018. printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  1019. ud->ok = false;
  1020. return true;
  1021. }
  1022. } else {
  1023. printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  1024. ud->ok = false;
  1025. return true;
  1026. }
  1027. }
  1028. }
  1029. double err = nmse(f1.data(), f2.data(), f1.size());
  1030. if (err > ud->max_err) {
  1031. printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
  1032. //for (int i = 0; i < (int) f1.size(); i++) {
  1033. // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
  1034. //}
  1035. //printf("\n");
  1036. //exit(1);
  1037. ud->ok = false;
  1038. }
  1039. return true;
  1040. GGML_UNUSED(index);
  1041. };
  1042. const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud, run_whole_graph() ? out : nullptr);
  1043. ggml_backend_buffer_free(buf);
  1044. ggml_free(ctx);
  1045. // Create test result
  1046. bool test_passed = ud.ok && cmp_ok;
  1047. std::string error_msg = test_passed ? "" : (!cmp_ok ? "compare failed" : "test failed");
  1048. test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test", supported, test_passed,
  1049. error_msg);
  1050. if (output_printer) {
  1051. output_printer->print_test_result(result);
  1052. }
  1053. return test_passed;
  1054. }
  1055. bool eval_perf(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1056. mode = MODE_PERF;
  1057. static const size_t graph_nodes = 8192;
  1058. ggml_init_params params = {
  1059. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  1060. /* .mem_base = */ NULL,
  1061. /* .no_alloc = */ true,
  1062. };
  1063. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1064. GGML_ASSERT(ctx);
  1065. ggml_tensor * out = build_graph(ctx.get());
  1066. std::string current_op_name = op_desc(out);
  1067. if (!matches_filter(out, op_names_filter)) {
  1068. //printf(" %s: skipping\n", op_desc(out).c_str());
  1069. return true;
  1070. }
  1071. if (!ggml_backend_supports_op(backend, out)) {
  1072. // Create test result for unsupported performance test
  1073. test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", false, false,
  1074. "not supported");
  1075. output_printer->print_test_result(result);
  1076. return true;
  1077. }
  1078. // allocate
  1079. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  1080. if (buf == NULL) {
  1081. printf("failed to allocate tensors\n");
  1082. return false;
  1083. }
  1084. // randomize tensors
  1085. initialize_tensors(ctx.get());
  1086. // build graph
  1087. ggml_cgraph * gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
  1088. ggml_build_forward_expand(gf, out);
  1089. // warmup run
  1090. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1091. if (status != GGML_STATUS_SUCCESS) {
  1092. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1093. return false;
  1094. }
  1095. // determine number of runs
  1096. int n_runs;
  1097. bool is_cpu = ggml_backend_dev_type(ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU;
  1098. if (op_flops(out) > 0) {
  1099. // based on flops
  1100. const uint64_t GFLOP = 1000 * 1000 * 1000;
  1101. const uint64_t target_flops_cpu = 8ULL * GFLOP;
  1102. const uint64_t target_flops_gpu = 100ULL * GFLOP;
  1103. uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu;
  1104. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1;
  1105. } else {
  1106. // based on memory size
  1107. const size_t GB = 1ULL << 30;
  1108. const size_t target_size_cpu = 8 * GB;
  1109. const size_t target_size_gpu = 32 * GB;
  1110. size_t target_size = is_cpu ? target_size_cpu : target_size_gpu;
  1111. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
  1112. }
  1113. // duplicate the op
  1114. for (int i = 1; i < n_runs; i++) {
  1115. ggml_graph_add_node(gf, out);
  1116. }
  1117. // calculate memory
  1118. size_t mem = n_runs * op_size(out);
  1119. auto tensor_op_size = [](ggml_tensor * t) {
  1120. size_t size = ggml_nbytes(t);
  1121. // add source tensors
  1122. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1123. if (t->src[i] != NULL) {
  1124. size += ggml_nbytes(t->src[i]);
  1125. }
  1126. }
  1127. return size;
  1128. };
  1129. for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
  1130. if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) {
  1131. continue;
  1132. }
  1133. mem += tensor_op_size(ggml_graph_node(gf, i));
  1134. }
  1135. // run
  1136. int64_t total_time_us = 0;
  1137. int64_t total_mem = 0;
  1138. int total_runs = 0;
  1139. do {
  1140. int64_t start_time = ggml_time_us();
  1141. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1142. if (status != GGML_STATUS_SUCCESS) {
  1143. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1144. return false;
  1145. }
  1146. int64_t end_time = ggml_time_us();
  1147. total_time_us += end_time - start_time;
  1148. total_mem += mem;
  1149. total_runs += n_runs;
  1150. } while (total_time_us < 1000*1000); // run for at least 1 second
  1151. // Create test result
  1152. double avg_time_us = (double) total_time_us / total_runs;
  1153. double calculated_flops = (op_flops(out) > 0) ? (op_flops(out) * total_runs) / (total_time_us / 1e6) : 0.0;
  1154. double calculated_bandwidth =
  1155. (op_flops(out) == 0) ? total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0 : 0.0;
  1156. size_t calculated_memory_kb = op_size(out) / 1024;
  1157. test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", true, true, "", avg_time_us,
  1158. calculated_flops, calculated_bandwidth, calculated_memory_kb, total_runs);
  1159. if (output_printer) {
  1160. output_printer->print_test_result(result);
  1161. }
  1162. return true;
  1163. }
  1164. bool eval_support(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1165. mode = MODE_SUPPORT;
  1166. static const size_t graph_nodes = 8192;
  1167. ggml_init_params params = {
  1168. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  1169. /* .mem_base = */ NULL,
  1170. /* .no_alloc = */ true,
  1171. };
  1172. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1173. GGML_ASSERT(ctx);
  1174. ggml_tensor * out = build_graph(ctx.get());
  1175. std::string current_op_name = op_desc(out);
  1176. if (!matches_filter(out, op_names_filter)) {
  1177. return true;
  1178. }
  1179. bool supported = ggml_backend_supports_op(backend, out);
  1180. std::string device_desc = ggml_backend_dev_description(ggml_backend_get_device(backend));
  1181. std::string backend_reg_name = ggml_backend_reg_name(ggml_backend_dev_backend_reg(ggml_backend_get_device(backend)));
  1182. test_result result(ggml_backend_name(backend), current_op_name, vars(), "support", supported, supported,
  1183. supported ? "yes" : "no", 0.0, 0.0, 0.0, 0, 0, device_desc, backend_reg_name);
  1184. output_printer->print_test_result(result);
  1185. return true;
  1186. }
  1187. bool eval_grad(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1188. mode = MODE_GRAD;
  1189. const std::vector<float> expect = grad_expect();
  1190. ggml_init_params params = {
  1191. /* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true),
  1192. /* .mem_base = */ NULL,
  1193. /* .no_alloc = */ true,
  1194. };
  1195. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1196. GGML_ASSERT(ctx);
  1197. gf = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  1198. gb = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  1199. ggml_tensor * out = build_graph(ctx.get());
  1200. if (!matches_filter(out, op_names_filter) || out->op == GGML_OP_OPT_STEP_ADAMW) {
  1201. return true;
  1202. }
  1203. if (out->type != GGML_TYPE_F32) {
  1204. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1205. test_status_t::NOT_SUPPORTED,
  1206. out->name + std::string("->type != FP32")));
  1207. return true;
  1208. }
  1209. // Print operation info first
  1210. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend)));
  1211. // check if the backend supports the ops
  1212. bool supported = true;
  1213. bool any_params = false;
  1214. std::string failure_reason;
  1215. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1216. if (!ggml_backend_supports_op(backend, t)) {
  1217. supported = false;
  1218. failure_reason = ggml_backend_name(backend);
  1219. break;
  1220. }
  1221. if ((t->flags & GGML_TENSOR_FLAG_PARAM)) {
  1222. any_params = true;
  1223. if (t->type != GGML_TYPE_F32) {
  1224. supported = false;
  1225. failure_reason = std::string(t->name) + "->type != FP32";
  1226. break;
  1227. }
  1228. }
  1229. }
  1230. if (!any_params) {
  1231. supported = false;
  1232. failure_reason = op_desc(out);
  1233. }
  1234. if (!supported) {
  1235. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1236. test_status_t::NOT_SUPPORTED, failure_reason));
  1237. return true;
  1238. }
  1239. int64_t ngrads = 0;
  1240. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1241. if (t->flags & GGML_TENSOR_FLAG_PARAM) {
  1242. ngrads += ggml_nelements(t);
  1243. }
  1244. }
  1245. if (ngrads > grad_nmax()) {
  1246. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1247. info.set_large_tensor_skip();
  1248. output_printer->print_operation(info);
  1249. return true;
  1250. }
  1251. if (!ggml_is_scalar(out)) {
  1252. out = ggml_sum(ctx.get(), out);
  1253. ggml_set_name(out, "sum_of_out");
  1254. }
  1255. ggml_set_loss(out);
  1256. ggml_build_forward_expand(gf, out);
  1257. ggml_graph_cpy(gf, gb);
  1258. ggml_build_backward_expand(ctx.get(), gb, nullptr);
  1259. if (expect.size() != 1 || expect[0] != 0.0f) {
  1260. GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
  1261. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1262. GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE);
  1263. }
  1264. }
  1265. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1266. if (!ggml_backend_supports_op(backend, t)) {
  1267. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1268. test_status_t::NOT_SUPPORTED,
  1269. ggml_backend_name(backend)));
  1270. supported = false;
  1271. break;
  1272. }
  1273. if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) {
  1274. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1275. test_status_t::NOT_SUPPORTED,
  1276. std::string(t->name) + "->type != FP32"));
  1277. supported = false;
  1278. break;
  1279. }
  1280. }
  1281. if (!supported) {
  1282. return true;
  1283. }
  1284. // allocate
  1285. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  1286. if (buf == NULL) {
  1287. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1288. info.set_error("allocation", "");
  1289. output_printer->print_operation(info);
  1290. return false;
  1291. }
  1292. initialize_tensors(ctx.get()); // Randomizes all tensors (including gradients).
  1293. ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise.
  1294. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1295. if (status != GGML_STATUS_SUCCESS) {
  1296. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1297. return false;
  1298. }
  1299. status = ggml_backend_graph_compute(backend, gb);
  1300. if (status != GGML_STATUS_SUCCESS) {
  1301. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1302. return false;
  1303. }
  1304. bool ok = true;
  1305. for (struct ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != nullptr; t = ggml_get_next_tensor(ctx.get(), t)) {
  1306. if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) {
  1307. continue;
  1308. }
  1309. const char * bn = ggml_backend_name(backend);
  1310. const int64_t ne = ggml_nelements(t);
  1311. std::vector<float> ga;
  1312. struct ggml_tensor * grad = ggml_graph_get_grad(gb, t);
  1313. if (grad) {
  1314. ga = tensor_to_float(grad);
  1315. } else {
  1316. ga.resize(ne); // default value is 0.0f
  1317. }
  1318. for (int64_t i = 0; i < ne; ++i) { // gradient algebraic
  1319. // check for nans
  1320. if (!std::isfinite(ga[i])) {
  1321. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1322. info.set_gradient_info(i, bn, ga[i]);
  1323. output_printer->print_operation(info);
  1324. ok = false;
  1325. break;
  1326. }
  1327. }
  1328. if (!ok) {
  1329. break;
  1330. }
  1331. std::vector<float> gn(ne); // gradient numeric
  1332. GGML_ASSERT(ga.size() == gn.size());
  1333. std::vector<float> x0 = tensor_to_float(t); // original t data
  1334. GGML_ASSERT(ggml_is_scalar(out));
  1335. GGML_ASSERT(out->type == GGML_TYPE_F32);
  1336. const float eps = grad_eps();
  1337. for (int64_t i = 0; i < ne; ++i) {
  1338. const float xiu = x0[i] + 1.0f*eps; // x, index i, up
  1339. const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half
  1340. const float xidh = x0[i] - 0.5f*eps; // x, index i, down half
  1341. const float xid = x0[i] - 1.0f*eps; // x, index i, down
  1342. float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
  1343. ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float));
  1344. status = ggml_backend_graph_compute(backend, gf);
  1345. if (status != GGML_STATUS_SUCCESS) {
  1346. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1347. return false;
  1348. }
  1349. ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out));
  1350. ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float));
  1351. status = ggml_backend_graph_compute(backend, gf);
  1352. if (status != GGML_STATUS_SUCCESS) {
  1353. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1354. return false;
  1355. }
  1356. ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out));
  1357. if (grad_precise()) {
  1358. ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float));
  1359. status = ggml_backend_graph_compute(backend, gf);
  1360. if (status != GGML_STATUS_SUCCESS) {
  1361. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1362. return false;
  1363. }
  1364. ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out));
  1365. ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float));
  1366. status = ggml_backend_graph_compute(backend, gf);
  1367. if (status != GGML_STATUS_SUCCESS) {
  1368. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1369. return false;
  1370. }
  1371. ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out));
  1372. gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps);
  1373. } else {
  1374. gn[i] = (fu - fd) / (2.0f*eps);
  1375. }
  1376. ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t));
  1377. }
  1378. const double err = mean_abs_asymm(gn.data(), ga.data(), gn.size(), expect);
  1379. if (err > max_maa_err()) {
  1380. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1381. info.set_maa_error(err, max_maa_err());
  1382. output_printer->print_operation(info);
  1383. ok = false;
  1384. break;
  1385. }
  1386. if (!ok) {
  1387. break;
  1388. }
  1389. }
  1390. // Create final test result
  1391. test_operation_info final_info(op_desc(out), vars(), ggml_backend_name(backend));
  1392. if (!ok) {
  1393. final_info.set_compare_failure();
  1394. }
  1395. final_info.status = ok ? test_status_t::OK : test_status_t::FAIL;
  1396. output_printer->print_operation(final_info);
  1397. if (ok) {
  1398. return true;
  1399. }
  1400. return false;
  1401. }
  1402. };
  1403. // ###################################
  1404. // ## Section 2: GGML Op Defintions ##
  1405. // ###################################
  1406. // The following is an example showing the bare minimum for creating a test for a GGML op.
  1407. // GGML_OP_EXAMPLE
  1408. struct test_example : public test_case {
  1409. // Always define these 2 or variants thereof:
  1410. const ggml_type type; // The type of the input tensors.
  1411. const std::array<int64_t, 4> ne; // The shape of the input tensors.
  1412. // For some ops it's necessary to define multiple types or shapes for the inputs.
  1413. // Or they may need additional parameters.
  1414. // Put all parameters needed to fully define the test into one of the VARS_TO_STR macros.
  1415. // In most cases these are just the properties of the struct that you defined above.
  1416. // This is needed for info prints.
  1417. std::string vars() override {
  1418. return VARS_TO_STR2(type, ne);
  1419. }
  1420. // Define a constructor for the struct.
  1421. // In most cases it will be sufficient to have the same arguments as the struct has properties
  1422. // and just use initializer lists.
  1423. test_example(ggml_type type = GGML_TYPE_F32,
  1424. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1425. : type(type), ne(ne) {}
  1426. // Define how a simple GGML compute graph can be constructed for the new GGML op.
  1427. ggml_tensor * build_graph(ggml_context * ctx) override {
  1428. // Step 1: create input tensors that don't depend on any other tensors:
  1429. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1430. ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging.
  1431. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1432. ggml_set_name(b, "b");
  1433. // Step 2: use the op that you want to test in the GGML compute graph.
  1434. ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition.
  1435. ggml_set_name(out, "out");
  1436. // Step 3: return the output tensor.
  1437. return out;
  1438. }
  1439. // In order to also check the gradients for your op, add calls like ggml_set_param(a)
  1440. // immediately after you create the tensors.
  1441. // This is optional and only makes sense if a backward pass has actually been implemented for the new op.
  1442. };
  1443. // GGML_OP_UNARY
  1444. struct test_unary : public test_case {
  1445. const ggml_unary_op op;
  1446. const ggml_type type;
  1447. const std::array<int64_t, 4> ne_a;
  1448. int v; // view (1 : non-contiguous a)
  1449. std::string vars() override {
  1450. return VARS_TO_STR3(type, ne_a, v);
  1451. }
  1452. test_unary(ggml_unary_op op,
  1453. ggml_type type = GGML_TYPE_F32,
  1454. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1455. int v = 0)
  1456. : op(op), type(type), ne_a(ne_a), v(v) {}
  1457. ggml_tensor * build_graph(ggml_context * ctx) override {
  1458. const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG ||
  1459. op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU;
  1460. ggml_tensor * a;
  1461. if (v & 1) {
  1462. auto ne = ne_a; ne[0] *= 3;
  1463. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1464. if (grad_supported) {
  1465. ggml_set_param(a);
  1466. }
  1467. ggml_set_name(a, "a");
  1468. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1469. ggml_set_name(a, "view_of_a");
  1470. } else {
  1471. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1472. if (grad_supported) {
  1473. ggml_set_param(a);
  1474. }
  1475. ggml_set_name(a, "a");
  1476. }
  1477. ggml_tensor * out = ggml_unary(ctx, a, op);
  1478. ggml_set_name(out, "out");
  1479. return out;
  1480. }
  1481. void initialize_tensors(ggml_context * ctx) override {
  1482. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1483. // test extended range of values to check for NaNs in GELU
  1484. init_tensor_uniform(t, -150.f, 150.f);
  1485. }
  1486. }
  1487. float grad_eps() override {
  1488. return 15.0f;
  1489. }
  1490. std::vector<float> grad_expect() override {
  1491. if (op == GGML_UNARY_OP_ABS) {
  1492. return {-1.0f, 1.0f};
  1493. }
  1494. if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) {
  1495. return {0.0f};
  1496. }
  1497. if (op == GGML_UNARY_OP_RELU) {
  1498. return {0.0f, 1.0f};
  1499. }
  1500. return {};
  1501. }
  1502. };
  1503. // GGML_OP_GLU
  1504. struct test_glu : public test_case {
  1505. const ggml_glu_op op;
  1506. const ggml_type type;
  1507. const std::array<int64_t, 4> ne_a;
  1508. int v; // view (1 : non-contiguous a)
  1509. bool swapped;
  1510. std::string vars() override {
  1511. return VARS_TO_STR4(type, ne_a, v, swapped);
  1512. }
  1513. test_glu(ggml_glu_op op,
  1514. ggml_type type = GGML_TYPE_F32,
  1515. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1516. int v = 0,
  1517. bool swapped = false)
  1518. : op(op), type(type), ne_a(ne_a), v(v), swapped(swapped) {}
  1519. ggml_tensor * build_graph(ggml_context * ctx) override {
  1520. ggml_tensor * a;
  1521. if (v & 1) {
  1522. auto ne = ne_a; ne[0] *= 3;
  1523. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1524. ggml_set_name(a, "a");
  1525. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1526. ggml_set_name(a, "view_of_a");
  1527. } else {
  1528. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1529. ggml_set_name(a, "a");
  1530. }
  1531. ggml_tensor * out = ggml_glu(ctx, a, op, swapped);
  1532. ggml_set_name(out, "out");
  1533. return out;
  1534. }
  1535. void initialize_tensors(ggml_context * ctx) override {
  1536. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1537. // test extended range of values to check for NaNs in GELU
  1538. init_tensor_uniform(t, -150.f, 150.f);
  1539. }
  1540. }
  1541. };
  1542. struct test_glu_split : public test_case {
  1543. const ggml_glu_op op;
  1544. const ggml_type type;
  1545. const std::array<int64_t, 4> ne_a;
  1546. int v; // view (1 : non-contiguous a)
  1547. std::string vars() override {
  1548. return VARS_TO_STR3(type, ne_a, v) + ",split";
  1549. }
  1550. test_glu_split(ggml_glu_op op,
  1551. ggml_type type = GGML_TYPE_F32,
  1552. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1553. int v = 0)
  1554. : op(op), type(type), ne_a(ne_a), v(v) {}
  1555. ggml_tensor * build_graph(ggml_context * ctx) override {
  1556. ggml_tensor * a;
  1557. ggml_tensor * b;
  1558. if (v & 1) {
  1559. auto ne = ne_a; ne[0] *= 3;
  1560. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1561. ggml_set_param(a);
  1562. ggml_set_name(a, "a");
  1563. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1564. ggml_set_name(a, "view_of_a");
  1565. b = ggml_new_tensor(ctx, type, 4, ne.data());
  1566. ggml_set_param(b);
  1567. ggml_set_name(b, "b");
  1568. b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
  1569. ggml_set_name(a, "view_of_b");
  1570. } else {
  1571. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1572. ggml_set_param(a);
  1573. ggml_set_name(a, "a");
  1574. b = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1575. ggml_set_param(b);
  1576. ggml_set_name(b, "b");
  1577. }
  1578. ggml_tensor * out = ggml_glu_split(ctx, a, b, op);
  1579. ggml_set_name(out, "out");
  1580. return out;
  1581. }
  1582. void initialize_tensors(ggml_context * ctx) override {
  1583. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1584. // test extended range of values to check for NaNs in GELU
  1585. init_tensor_uniform(t, -150.f, 150.f);
  1586. }
  1587. }
  1588. };
  1589. // GGML_OP_GET_ROWS
  1590. struct test_get_rows : public test_case {
  1591. const ggml_type type;
  1592. const int n; // cols
  1593. const int m; // rows
  1594. const int r; // rows to get
  1595. const int b; // batch size
  1596. const bool v; // view (non-contiguous src1)
  1597. std::string vars() override {
  1598. return VARS_TO_STR6(type, n, m, r, b, v);
  1599. }
  1600. test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  1601. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  1602. ggml_tensor * build_graph(ggml_context * ctx) override {
  1603. ggml_tensor * in = ggml_new_tensor_3d(ctx, type, n, m, b);
  1604. ggml_set_name(in, "in");
  1605. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  1606. ggml_set_name(rows, "rows");
  1607. if (v) {
  1608. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  1609. ggml_set_name(rows, "view_of_rows");
  1610. }
  1611. const bool grad_supported = ggml_is_matrix(in) && ggml_is_vector(rows);
  1612. if (grad_supported) {
  1613. ggml_set_param(in);
  1614. // rows is a constant input -> no gradients
  1615. }
  1616. ggml_tensor * out = ggml_get_rows(ctx, in, rows);
  1617. ggml_set_name(out, "out");
  1618. return out;
  1619. }
  1620. void initialize_tensors(ggml_context * ctx) override {
  1621. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1622. if (t->type == GGML_TYPE_I32) {
  1623. if (ggml_is_view_op(t->op)) { continue; }
  1624. // rows
  1625. std::vector<int> data(r*b);
  1626. for (int i = 0; i < r*b; i++) {
  1627. data[i] = rand() % m;
  1628. }
  1629. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  1630. } else {
  1631. init_tensor_uniform(t);
  1632. }
  1633. }
  1634. }
  1635. };
  1636. // GGML_OP_GET_ROWS_BACK
  1637. struct test_get_rows_back : public test_case {
  1638. const ggml_type type;
  1639. const int n; // cols
  1640. const int m; // rows
  1641. const int r; // rows to get
  1642. const int b; // batch size
  1643. const bool v; // view (non-contiguous src1)
  1644. std::string vars() override {
  1645. return VARS_TO_STR6(type, n, m, r, b, v);
  1646. }
  1647. test_get_rows_back(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  1648. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  1649. ggml_tensor * build_graph(ggml_context * ctx) override {
  1650. ggml_tensor * in_forward = ggml_new_tensor_3d(ctx, type, n, m, b);
  1651. ggml_set_name(in_forward, "in_forward");
  1652. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  1653. ggml_set_name(rows, "rows");
  1654. if (v) {
  1655. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  1656. ggml_set_name(rows, "view_of_rows");
  1657. }
  1658. ggml_tensor * grad = ggml_new_tensor_3d(ctx, type, n, r, b);
  1659. ggml_set_name(grad, "grad");
  1660. ggml_tensor * out = ggml_get_rows_back(ctx, grad, rows, in_forward);
  1661. ggml_set_name(out, "out");
  1662. return out;
  1663. }
  1664. void initialize_tensors(ggml_context * ctx) override {
  1665. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1666. if (t->type == GGML_TYPE_I32) {
  1667. if (ggml_is_view_op(t->op)) { continue; }
  1668. // rows
  1669. std::vector<int> data(r*b);
  1670. for (int i = 0; i < r*b; i++) {
  1671. data[i] = rand() % m;
  1672. }
  1673. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  1674. } else {
  1675. init_tensor_uniform(t);
  1676. }
  1677. }
  1678. }
  1679. };
  1680. // GGML_OP_SET_ROWS
  1681. struct test_set_rows : public test_case {
  1682. const ggml_type type;
  1683. const std::array<int64_t, 4> ne;
  1684. const std::array<int, 2> nr23; // broadcast only dims 2 and 3
  1685. const int r; // rows to set
  1686. const bool v; // view (non-contiguous src1)
  1687. std::string vars() override {
  1688. return VARS_TO_STR5(type, ne, nr23, r, v);
  1689. }
  1690. test_set_rows(ggml_type type,
  1691. std::array<int64_t, 4> ne,
  1692. std::array<int, 2> nr23,
  1693. int r, bool v = false)
  1694. : type(type), ne(ne), nr23(nr23), r(r), v(v) {}
  1695. ggml_tensor * build_graph(ggml_context * ctx) override {
  1696. ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  1697. ggml_set_name(dst, "dst");
  1698. ggml_tensor * src = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], r, ne[2]*nr23[0], ne[3]*nr23[1]);
  1699. ggml_set_name(src, "src");
  1700. ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, GGML_TYPE_I64, r, ne[2], ne[3]);
  1701. ggml_set_name(row_idxs, "row_idxs");
  1702. if (v) {
  1703. src = ggml_view_4d(ctx, src, ne[0], r/2, ne[2]*nr23[0], ne[3]*nr23[1], src->nb[1], src->nb[2], src->nb[3], 0);
  1704. row_idxs = ggml_view_3d(ctx, row_idxs, r/2, ne[2], ne[3], row_idxs->nb[1], row_idxs->nb[2], 0);
  1705. ggml_set_name(row_idxs, "view_of_rows");
  1706. }
  1707. ggml_tensor * out = ggml_set_rows(ctx, dst, src, row_idxs);
  1708. ggml_set_name(out, "out");
  1709. return out;
  1710. }
  1711. void initialize_tensors(ggml_context * ctx) override {
  1712. std::random_device rd;
  1713. std::default_random_engine rng(rd());
  1714. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1715. if (t->type == GGML_TYPE_I64) {
  1716. if (ggml_is_view_op(t->op)) {
  1717. continue;
  1718. }
  1719. for (int i2 = 0; i2 < t->ne[2]; i2++) {
  1720. for (int i1 = 0; i1 < t->ne[1]; i1++) {
  1721. // generate a shuffled subset of row indices
  1722. std::vector<int64_t> data(ne[1]);
  1723. for (int i = 0; i < ne[1]; i++) {
  1724. data[i] = i;
  1725. }
  1726. std::shuffle(data.begin(), data.end(), rng);
  1727. data.resize(t->ne[0]);
  1728. const size_t offs = i1*t->nb[1] + i2*t->nb[2];
  1729. ggml_backend_tensor_set(t, data.data(), offs, t->ne[0]*sizeof(int64_t));
  1730. }
  1731. }
  1732. } else {
  1733. init_tensor_uniform(t);
  1734. }
  1735. }
  1736. }
  1737. };
  1738. // GGML_OP_ARGMAX
  1739. struct test_argmax : public test_case {
  1740. const ggml_type type;
  1741. const std::array<int64_t, 4> ne;
  1742. std::string vars() override {
  1743. return VARS_TO_STR2(type, ne);
  1744. }
  1745. test_argmax(ggml_type type = GGML_TYPE_F32,
  1746. std::array<int64_t, 4> ne = {10, 100, 1, 1})
  1747. : type(type), ne(ne) {}
  1748. ggml_tensor * build_graph(ggml_context * ctx) override {
  1749. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1750. ggml_set_name(a, "a");
  1751. ggml_tensor * out = ggml_argmax(ctx, a);
  1752. ggml_set_name(out, "out");
  1753. return out;
  1754. }
  1755. void initialize_tensors(ggml_context * ctx) override {
  1756. std::random_device rd;
  1757. std::default_random_engine rng(rd());
  1758. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1759. if (t->type == GGML_TYPE_F32) {
  1760. // initialize with unique values to avoid ties
  1761. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1762. std::vector<float> data(t->ne[0]);
  1763. for (int i = 0; i < t->ne[0]; i++) {
  1764. data[i] = i;
  1765. }
  1766. std::shuffle(data.begin(), data.end(), rng);
  1767. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  1768. }
  1769. } else {
  1770. init_tensor_uniform(t);
  1771. }
  1772. }
  1773. }
  1774. double max_nmse_err() override {
  1775. return 0.0;
  1776. }
  1777. };
  1778. // GGML_OP_COUNT_EQUAL
  1779. struct test_count_equal : public test_case {
  1780. const ggml_type type;
  1781. const std::array<int64_t, 4> ne;
  1782. std::string vars() override {
  1783. return VARS_TO_STR2(type, ne);
  1784. }
  1785. test_count_equal(ggml_type type = GGML_TYPE_F32,
  1786. std::array<int64_t, 4> ne = {4, 500, 1, 1})
  1787. : type(type), ne(ne) {}
  1788. ggml_tensor * build_graph(ggml_context * ctx) override {
  1789. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1790. ggml_set_name(a, "a");
  1791. ggml_tensor * a_argmax = ggml_argmax(ctx, a);
  1792. ggml_set_name(a_argmax, "a_argmax");
  1793. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1794. ggml_set_name(b, "b");
  1795. ggml_tensor * b_argmax = ggml_argmax(ctx, b);
  1796. ggml_set_name(b_argmax, "b_argmax");
  1797. ggml_tensor * out = ggml_count_equal(ctx, a_argmax, b_argmax);
  1798. ggml_set_name(out, "out");
  1799. return out;
  1800. }
  1801. double max_nmse_err() override {
  1802. return 0.0;
  1803. }
  1804. };
  1805. // GGML_OP_REPEAT
  1806. struct test_repeat : public test_case {
  1807. const ggml_type type;
  1808. const std::array<int64_t, 4> ne;
  1809. const std::array<int, 4> nr;
  1810. std::string vars() override {
  1811. return VARS_TO_STR3(type, ne, nr);
  1812. }
  1813. size_t op_size(ggml_tensor * t) override {
  1814. return ggml_nbytes(t) * 2;
  1815. }
  1816. test_repeat(ggml_type type = GGML_TYPE_F32,
  1817. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  1818. std::array<int, 4> nr = {2, 2, 2, 2})
  1819. : type(type), ne(ne), nr(nr) {}
  1820. ggml_tensor * build_graph(ggml_context * ctx) override {
  1821. ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1822. ggml_set_name(target, "target");
  1823. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1824. ggml_set_param(src);
  1825. ggml_set_name(src, "src");
  1826. ggml_tensor * out = ggml_repeat(ctx, src, target);
  1827. ggml_set_name(out, "out");
  1828. return out;
  1829. }
  1830. };
  1831. // GGML_OP_REPEAT_BACK
  1832. struct test_repeat_back : public test_case {
  1833. const ggml_type type;
  1834. const std::array<int64_t, 4> ne;
  1835. const std::array<int, 4> nr;
  1836. const bool v; // whether src is a noncontiguous view
  1837. std::string vars() override {
  1838. return VARS_TO_STR4(type, ne, nr, v);
  1839. }
  1840. size_t op_size(ggml_tensor * t) override {
  1841. return ggml_nbytes(t) * 2;
  1842. }
  1843. test_repeat_back(ggml_type type = GGML_TYPE_F32,
  1844. std::array<int64_t, 4> ne = {8, 6, 4, 2},
  1845. std::array<int, 4> nr = {2, 2, 2, 2},
  1846. bool v = false)
  1847. : type(type), ne(ne), nr(nr), v(v) {}
  1848. ggml_tensor * build_graph(ggml_context * ctx) override {
  1849. ggml_tensor * src = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1850. ggml_set_name(src, "src");
  1851. if (v) {
  1852. GGML_ASSERT(ne[0] % 2 == 0);
  1853. GGML_ASSERT(ne[1] % 2 == 0);
  1854. GGML_ASSERT(ne[2] % 2 == 0);
  1855. GGML_ASSERT(ne[3] % 2 == 0);
  1856. GGML_ASSERT(nr[0] % 2 == 0 || nr[0] == 1);
  1857. GGML_ASSERT(nr[1] % 2 == 0 || nr[1] == 1);
  1858. GGML_ASSERT(nr[2] % 2 == 0 || nr[2] == 1);
  1859. GGML_ASSERT(nr[3] % 2 == 0 || nr[3] == 1);
  1860. const int64_t ne00 = nr[0] == 1 ? src->ne[0] : src->ne[0] / 2;
  1861. const int64_t ne01 = nr[1] == 1 ? src->ne[1] : src->ne[1] / 2;
  1862. const int64_t ne02 = nr[2] == 1 ? src->ne[2] : src->ne[2] / 2;
  1863. const int64_t ne03 = nr[3] == 1 ? src->ne[3] : src->ne[3] / 2;
  1864. src = ggml_view_4d(ctx, src, ne00, ne01, ne02, ne03, src->nb[1], src->nb[2], src->nb[3], 0);
  1865. }
  1866. ggml_tensor * target = ggml_new_tensor(ctx, type, 4, ne.data());
  1867. ggml_set_name(target, "target");
  1868. ggml_tensor * out = ggml_repeat_back(ctx, src, target);
  1869. ggml_set_name(out, "out");
  1870. return out;
  1871. }
  1872. };
  1873. // GGML_OP_DUP
  1874. struct test_dup : public test_case {
  1875. const ggml_type type;
  1876. const std::array<int64_t, 4> ne;
  1877. const std::array<int64_t, 4> permute;
  1878. bool _use_permute;
  1879. std::string vars() override {
  1880. std::string v = VARS_TO_STR2(type, ne);
  1881. if (_use_permute) v += "," + VAR_TO_STR(permute);
  1882. return v;
  1883. }
  1884. test_dup(ggml_type type = GGML_TYPE_F32,
  1885. std::array<int64_t, 4> ne = {10, 10, 20, 1},
  1886. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  1887. : type(type), ne(ne), permute(permute),
  1888. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  1889. ggml_tensor * build_graph(ggml_context * ctx) override {
  1890. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1891. ggml_set_param(src);
  1892. ggml_set_name(src, "src");
  1893. if (_use_permute) {
  1894. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  1895. ggml_set_name(src, "src_permuted");
  1896. }
  1897. ggml_tensor * out = ggml_dup(ctx, src);
  1898. ggml_set_name(out, "out");
  1899. return out;
  1900. }
  1901. };
  1902. // GGML_OP_SET
  1903. struct test_set : public test_case {
  1904. const ggml_type type_src;
  1905. const ggml_type type_dst;
  1906. const std::array<int64_t, 4> ne;
  1907. const int dim;
  1908. std::string vars() override {
  1909. return VARS_TO_STR4(type_src, type_dst, ne, dim);
  1910. }
  1911. size_t op_size(ggml_tensor * t) override {
  1912. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  1913. }
  1914. test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  1915. std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
  1916. : type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
  1917. ggml_tensor * build_graph(ggml_context * ctx) override {
  1918. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  1919. ggml_set_param(src);
  1920. ggml_set_name(src, "src");
  1921. auto ne_dst = ne;
  1922. for (int i = 0; i < dim; ++i) {
  1923. ne_dst[i] *= 2;
  1924. }
  1925. ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
  1926. ggml_set_param(dst);
  1927. ggml_set_name(dst, "dst");
  1928. size_t offset = 0;
  1929. for (int i = 0; i < dim; ++i) {
  1930. offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
  1931. }
  1932. ggml_tensor * out = ggml_set(ctx, dst, src,
  1933. // The backward pass requires setting a contiguous region:
  1934. src->nb[1], src->nb[2], src->nb[3], offset);
  1935. ggml_set_name(out, "out");
  1936. return out;
  1937. }
  1938. };
  1939. // GGML_OP_CPY
  1940. struct test_cpy : public test_case {
  1941. const ggml_type type_src;
  1942. const ggml_type type_dst;
  1943. const std::array<int64_t, 4> ne;
  1944. const std::array<int64_t, 4> permute_src;
  1945. const std::array<int64_t, 4> permute_dst;
  1946. bool _src_use_permute;
  1947. bool _dst_use_permute;
  1948. std::string vars() override {
  1949. return VARS_TO_STR5(type_src, type_dst, ne, permute_src, permute_dst);
  1950. }
  1951. double max_nmse_err() override {
  1952. return 1e-6;
  1953. }
  1954. size_t op_size(ggml_tensor * t) override {
  1955. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  1956. }
  1957. test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  1958. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  1959. std::array<int64_t, 4> permute_src = {0, 0, 0, 0},
  1960. std::array<int64_t, 4> permute_dst = {0, 0, 0, 0})
  1961. : type_src(type_src), type_dst(type_dst), ne(ne), permute_src(permute_src), permute_dst(permute_dst),
  1962. _src_use_permute(permute_src[0] + permute_src[1] + permute_src[2] + permute_src[3] > 0),
  1963. _dst_use_permute(permute_dst[0] + permute_dst[1] + permute_dst[2] + permute_dst[3] > 0) {}
  1964. ggml_tensor * build_graph(ggml_context * ctx) override {
  1965. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  1966. ggml_set_param(src);
  1967. ggml_set_name(src, "src");
  1968. if (_src_use_permute) {
  1969. src = ggml_permute(ctx, src, permute_src[0], permute_src[1], permute_src[2], permute_src[3]);
  1970. ggml_set_name(src, "src_permuted");
  1971. }
  1972. ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
  1973. ggml_set_name(dst, "dst");
  1974. if (_dst_use_permute) {
  1975. dst = ggml_permute(ctx, dst, permute_dst[0], permute_dst[1], permute_dst[2], permute_dst[3]);
  1976. ggml_set_name(dst, "dst_permuted");
  1977. }
  1978. ggml_tensor * out = ggml_cpy(ctx, src, dst);
  1979. ggml_set_name(out, "out");
  1980. return out;
  1981. }
  1982. };
  1983. // GGML_OP_CONT
  1984. struct test_cont : public test_case {
  1985. const ggml_type type;
  1986. const std::array<int64_t, 4> ne;
  1987. std::string vars() override {
  1988. return VARS_TO_STR2(type, ne);
  1989. }
  1990. test_cont(ggml_type type = GGML_TYPE_F32,
  1991. std::array<int64_t, 4> ne = {10, 10, 10, 1})
  1992. : type(type), ne(ne) {}
  1993. ggml_tensor * build_graph(ggml_context * ctx) override {
  1994. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1995. ggml_set_param(src);
  1996. ggml_set_name(src, "src");
  1997. src = ggml_transpose(ctx, src);
  1998. ggml_set_name(src, "src_transposed");
  1999. ggml_tensor * out = ggml_cont(ctx, src);
  2000. ggml_set_name(out, "out");
  2001. return out;
  2002. }
  2003. };
  2004. // GGML_OP_ADD
  2005. // GGML_OP_SUB
  2006. // GGML_OP_MUL
  2007. // GGML_OP_DIV
  2008. struct test_bin_bcast : public test_case {
  2009. using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
  2010. op_t op;
  2011. const ggml_type type;
  2012. const std::array<int64_t, 4> ne;
  2013. const std::array<int, 4> nr;
  2014. int nf; // number of fused ops, nf == 1 -> single op (no fusion)
  2015. bool run_whole_graph() override { return true; }
  2016. std::string vars() override {
  2017. return VARS_TO_STR4(type, ne, nr, nf);
  2018. }
  2019. size_t op_size(ggml_tensor * t) override {
  2020. return ggml_nbytes(t) * 3;
  2021. }
  2022. test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
  2023. std::array<int64_t, 4> ne = {10, 10, 1, 1},
  2024. std::array<int, 4> nr = {1, 2, 1, 1},
  2025. int nf = 1)
  2026. : op(op), type(type), ne(ne), nr(nr), nf(nf) {}
  2027. ggml_tensor * build_graph(ggml_context * ctx) override {
  2028. GGML_ASSERT(nf <= 8);
  2029. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  2030. ggml_set_name(a, "a");
  2031. ggml_tensor * b[8];
  2032. for (int i = 0; i < nf; ++i) {
  2033. b[i] = ggml_new_tensor(ctx, type, 4, ne.data());
  2034. ggml_set_name(b[i], (std::string("b") + std::to_string(i)).c_str());
  2035. }
  2036. // The backward pass supports broadcasting only for GGML_ADD:
  2037. const bool grad_supported = op == ggml_add && ggml_are_same_shape(a, b[0]) && nf == 1;
  2038. if (grad_supported) {
  2039. ggml_set_param(a);
  2040. ggml_set_param(b[0]);
  2041. }
  2042. ggml_tensor * out = a;
  2043. for (int i = 0; i < nf; ++i) {
  2044. out = op(ctx, out, b[i]);
  2045. }
  2046. ggml_set_name(out, "out");
  2047. return out;
  2048. }
  2049. void initialize_tensors(ggml_context * ctx) override {
  2050. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2051. if (op == ggml_mul || op == ggml_div) {
  2052. // MUL and DIV have numerical issues around zero:
  2053. init_tensor_uniform(t, 0.9f, 1.1f);
  2054. } else {
  2055. init_tensor_uniform(t);
  2056. }
  2057. }
  2058. }
  2059. float grad_eps() override {
  2060. return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1);
  2061. }
  2062. bool grad_precise() override {
  2063. return op == ggml_div;
  2064. }
  2065. double max_maa_err() override {
  2066. return op == ggml_add ? 1e-4 : 1e-3;
  2067. }
  2068. };
  2069. // GGML_OP_ADD1
  2070. struct test_add1 : public test_case {
  2071. const ggml_type type;
  2072. const std::array<int64_t, 4> ne;
  2073. std::string vars() override {
  2074. return VARS_TO_STR2(type, ne);
  2075. }
  2076. test_add1(ggml_type type = GGML_TYPE_F32,
  2077. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2078. : type(type), ne(ne) {}
  2079. ggml_tensor * build_graph(ggml_context * ctx) override {
  2080. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2081. ggml_set_param(a);
  2082. ggml_set_name(a, "a");
  2083. ggml_tensor * b = ggml_new_tensor_1d(ctx, type, 1);
  2084. // ggml_set_param(b); // TODO: implement
  2085. ggml_set_name(b, "b");
  2086. ggml_tensor * out = ggml_add1(ctx, a, b);
  2087. ggml_set_name(out, "out");
  2088. return out;
  2089. }
  2090. float grad_eps() override {
  2091. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  2092. }
  2093. };
  2094. // GGML_OP_SCALE
  2095. struct test_scale : public test_case {
  2096. const ggml_type type;
  2097. const std::array<int64_t, 4> ne;
  2098. float scale;
  2099. float bias;
  2100. std::string vars() override {
  2101. return VARS_TO_STR4(type, ne, scale, bias);
  2102. }
  2103. test_scale(ggml_type type = GGML_TYPE_F32,
  2104. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  2105. float scale = 2.0f,
  2106. float bias = 0.0f)
  2107. : type(type), ne(ne), scale(scale), bias(bias) {}
  2108. ggml_tensor * build_graph(ggml_context * ctx) override {
  2109. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2110. ggml_set_param(a);
  2111. ggml_set_name(a, "a");
  2112. ggml_tensor * out = ggml_scale_bias(ctx, a, scale, bias);
  2113. ggml_set_name(out, "out");
  2114. return out;
  2115. }
  2116. };
  2117. // GGML_OP_SCALE + GGML_UNARY_OP_TANH + GGML_OP_SCALE
  2118. struct test_softcap : public test_case {
  2119. const ggml_type type;
  2120. const std::array<int64_t, 4> ne;
  2121. float softcap;
  2122. std::string op_desc(ggml_tensor * t) override {
  2123. GGML_UNUSED(t);
  2124. return "SOFTCAP";
  2125. }
  2126. bool run_whole_graph() override { return true; }
  2127. std::string vars() override {
  2128. return VARS_TO_STR3(type, ne, softcap);
  2129. }
  2130. test_softcap(ggml_type type = GGML_TYPE_F32,
  2131. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  2132. float softcap = 30.0f)
  2133. : type(type), ne(ne), softcap(softcap) {}
  2134. ggml_tensor * build_graph(ggml_context * ctx) override {
  2135. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2136. ggml_set_param(a);
  2137. ggml_set_name(a, "a");
  2138. ggml_tensor * out = ggml_scale(ctx, ggml_tanh(ctx, ggml_scale(ctx, a, 1.0f / softcap)), softcap);
  2139. ggml_set_name(out, "out");
  2140. return out;
  2141. }
  2142. };
  2143. // GGML_OP_SILU_BACK
  2144. struct test_silu_back : public test_case {
  2145. const ggml_type type;
  2146. const std::array<int64_t, 4> ne;
  2147. float eps;
  2148. std::string vars() override {
  2149. return VARS_TO_STR3(type, ne, eps);
  2150. }
  2151. test_silu_back(ggml_type type = GGML_TYPE_F32,
  2152. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2153. float eps = 1e-6f)
  2154. : type(type), ne(ne), eps(eps) {}
  2155. ggml_tensor * build_graph(ggml_context * ctx) override {
  2156. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2157. ggml_set_name(a, "a");
  2158. ggml_tensor * grad = ggml_new_tensor(ctx, type, 4, ne.data());
  2159. ggml_set_name(grad, "grad");
  2160. ggml_tensor * out = ggml_silu_back(ctx, a, grad);
  2161. ggml_set_name(out, "out");
  2162. return out;
  2163. }
  2164. bool grad_precise() override {
  2165. return true;
  2166. }
  2167. };
  2168. // GGML_OP_NORM
  2169. struct test_norm : public test_case {
  2170. const ggml_type type;
  2171. const std::array<int64_t, 4> ne;
  2172. const bool v; // whether a is a non-contiguous view
  2173. const float eps;
  2174. std::string vars() override {
  2175. return VARS_TO_STR4(type, ne, v, eps);
  2176. }
  2177. test_norm(ggml_type type = GGML_TYPE_F32,
  2178. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2179. bool v = false,
  2180. float eps = 1e-6f)
  2181. : type(type), ne(ne), v(v), eps(eps) {}
  2182. ggml_tensor * build_graph(ggml_context * ctx) override {
  2183. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2184. ggml_set_name(a, "a");
  2185. if (v) {
  2186. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  2187. ggml_set_name(a, "view of a");
  2188. }
  2189. ggml_tensor * out = ggml_norm(ctx, a, eps);
  2190. ggml_set_name(out, "out");
  2191. return out;
  2192. }
  2193. };
  2194. // GGML_OP_RMS_NORM
  2195. struct test_rms_norm : public test_case {
  2196. const ggml_type type;
  2197. const std::array<int64_t, 4> ne;
  2198. const bool v; // whether a is a non-contiguous view
  2199. const float eps;
  2200. std::string vars() override {
  2201. return VARS_TO_STR4(type, ne, v, eps);
  2202. }
  2203. test_rms_norm(ggml_type type = GGML_TYPE_F32,
  2204. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2205. bool v = false,
  2206. float eps = 1e-6f)
  2207. : type(type), ne(ne), v(v), eps(eps) {}
  2208. ggml_tensor * build_graph(ggml_context * ctx) override {
  2209. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2210. ggml_set_param(a);
  2211. ggml_set_name(a, "a");
  2212. if (v) {
  2213. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  2214. ggml_set_name(a, "view of a");
  2215. }
  2216. ggml_tensor * out = ggml_rms_norm(ctx, a, eps);
  2217. ggml_set_name(out, "out");
  2218. return out;
  2219. }
  2220. void initialize_tensors(ggml_context * ctx) override {
  2221. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2222. init_tensor_uniform(t, -10.f, 10.f);
  2223. }
  2224. }
  2225. float grad_eps() override {
  2226. return 1.0f;
  2227. }
  2228. bool grad_precise() override {
  2229. return true;
  2230. }
  2231. };
  2232. // GGML_OP_RMS_NORM_BACK
  2233. struct test_rms_norm_back : public test_case {
  2234. const ggml_type type;
  2235. const std::array<int64_t, 4> ne;
  2236. const float eps;
  2237. std::string vars() override {
  2238. return VARS_TO_STR3(type, ne, eps);
  2239. }
  2240. test_rms_norm_back(ggml_type type = GGML_TYPE_F32,
  2241. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2242. float eps = 1e-6f)
  2243. : type(type), ne(ne), eps(eps) {}
  2244. ggml_tensor * build_graph(ggml_context * ctx) override {
  2245. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2246. ggml_set_name(a, "a");
  2247. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2248. ggml_set_name(b, "b");
  2249. ggml_tensor * out = ggml_rms_norm_back(ctx, a, b, eps);
  2250. ggml_set_name(out, "out");
  2251. return out;
  2252. }
  2253. void initialize_tensors(ggml_context * ctx) override {
  2254. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2255. init_tensor_uniform(t, -10.f, 10.f);
  2256. }
  2257. }
  2258. };
  2259. // GGML_OP_RMS_NORM + GGML_OP_MUL + GGML_OP_ADD
  2260. struct test_rms_norm_mul_add : public test_case {
  2261. const ggml_type type;
  2262. const std::array<int64_t, 4> ne;
  2263. const float eps;
  2264. const bool broadcast;
  2265. std::string op_desc(ggml_tensor * t) override {
  2266. GGML_UNUSED(t);
  2267. return "RMS_NORM_MUL_ADD";
  2268. }
  2269. bool run_whole_graph() override { return true; }
  2270. std::string vars() override {
  2271. return VARS_TO_STR4(type, ne, eps, broadcast);
  2272. }
  2273. test_rms_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  2274. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2275. float eps = 1e-6f, bool broadcast = false)
  2276. : type(type), ne(ne), eps(eps), broadcast(broadcast) {}
  2277. ggml_tensor * build_graph(ggml_context * ctx) override {
  2278. std::array<int64_t, 4> broadcast_dims = {ne[0]*2, ne[1]*3, ne[2]*3, ne[3]*4};
  2279. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data());
  2280. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2281. ggml_tensor * c = ggml_new_tensor(ctx, type, 4, ne.data());
  2282. ggml_set_param(a);
  2283. ggml_set_name(a, "a");
  2284. ggml_set_param(b);
  2285. ggml_set_name(b, "b");
  2286. ggml_set_param(c);
  2287. ggml_set_name(c, "c");
  2288. // Use a, b and c early, so we don't end up with an OP_NONE between rms_norm and mul
  2289. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  2290. ggml_tensor * out = ggml_add(ctx, ggml_mul(ctx, ggml_rms_norm(ctx, a, eps), b), c);
  2291. ggml_set_name(out, "out");
  2292. return out;
  2293. }
  2294. void initialize_tensors(ggml_context * ctx) override {
  2295. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2296. init_tensor_uniform(t, -10.f, 10.f);
  2297. }
  2298. }
  2299. float grad_eps() override {
  2300. return 1.0f;
  2301. }
  2302. bool grad_precise() override {
  2303. return true;
  2304. }
  2305. };
  2306. // GGML_OP_SSM_CONV
  2307. struct test_ssm_conv : public test_case {
  2308. const ggml_type type;
  2309. const std::array<int64_t, 4> ne_a;
  2310. const std::array<int64_t, 4> ne_b;
  2311. std::string vars() override {
  2312. return VARS_TO_STR3(type, ne_a, ne_b);
  2313. }
  2314. test_ssm_conv(ggml_type type = GGML_TYPE_F32,
  2315. std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
  2316. std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
  2317. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  2318. ggml_tensor * build_graph(ggml_context * ctx) override {
  2319. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2320. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2321. ggml_tensor * out = ggml_ssm_conv(ctx, a, b);
  2322. return out;
  2323. }
  2324. };
  2325. // GGML_OP_SSM_SCAN
  2326. struct test_ssm_scan : public test_case {
  2327. const ggml_type type;
  2328. const int64_t d_state;
  2329. const int64_t head_dim;
  2330. const int64_t n_head;
  2331. const int64_t n_group;
  2332. const int64_t n_seq_tokens;
  2333. const int64_t n_seqs;
  2334. std::string vars() override {
  2335. return VARS_TO_STR7(type, d_state, head_dim, n_head, n_group, n_seq_tokens, n_seqs);
  2336. }
  2337. test_ssm_scan(ggml_type type = GGML_TYPE_F32,
  2338. int64_t d_state = 32,
  2339. int64_t head_dim = 1, // non-zero for Mamba-2
  2340. int64_t n_head = 32,
  2341. int64_t n_group = 1,
  2342. int64_t n_seq_tokens = 32,
  2343. int64_t n_seqs = 32)
  2344. : type(type), d_state(d_state), head_dim(head_dim), n_head(n_head), n_group(n_group), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2345. ggml_tensor * build_graph(ggml_context * ctx) override {
  2346. ggml_tensor * s = ggml_new_tensor_4d(ctx, type, d_state, head_dim, n_head, n_seqs);
  2347. ggml_tensor * x = ggml_new_tensor_4d(ctx, type, head_dim, n_head, n_seq_tokens, n_seqs);
  2348. ggml_tensor * dt = ggml_new_tensor_3d(ctx, type, n_head, n_seq_tokens, n_seqs);
  2349. ggml_tensor * A = ggml_new_tensor_2d(ctx, type, (head_dim > 1) ? 1 : d_state, n_head);
  2350. ggml_tensor * B = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  2351. ggml_tensor * C = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  2352. ggml_tensor * ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_seqs);
  2353. ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C, ids);
  2354. return out;
  2355. }
  2356. // similar to test_mul_mat_id
  2357. void initialize_tensors(ggml_context * ctx) override {
  2358. std::random_device rd;
  2359. std::default_random_engine rng(rd());
  2360. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2361. if (t->type == GGML_TYPE_I32) {
  2362. if (ggml_is_view_op(t->op)) { continue; }
  2363. // ids
  2364. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2365. std::vector<int32_t> data(t->ne[0]);
  2366. for (int i = 0; i < t->ne[0]; i++) {
  2367. data[i] = i;
  2368. }
  2369. std::shuffle(data.begin(), data.end(), rng);
  2370. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2371. }
  2372. } else {
  2373. init_tensor_uniform(t);
  2374. }
  2375. }
  2376. }
  2377. };
  2378. // GGML_OP_RWKV_WKV6
  2379. struct test_rwkv_wkv6 : public test_case {
  2380. const ggml_type type;
  2381. const int64_t head_count;
  2382. const int64_t head_size;
  2383. const int64_t n_seq_tokens;
  2384. const int64_t n_seqs;
  2385. std::string vars() override {
  2386. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2387. }
  2388. test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32,
  2389. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2390. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2391. ggml_tensor * build_graph(ggml_context * ctx) override {
  2392. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2393. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2394. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2395. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2396. ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
  2397. ggml_tensor * td = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2398. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2399. ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s);
  2400. return out;
  2401. }
  2402. };
  2403. // GGML_OP_GATED_LINEAR_ATTN
  2404. struct test_gla : public test_case {
  2405. const ggml_type type;
  2406. const int64_t head_count;
  2407. const int64_t head_size;
  2408. const int64_t n_seq_tokens;
  2409. const int64_t n_seqs;
  2410. std::string vars() override {
  2411. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2412. }
  2413. test_gla(ggml_type type = GGML_TYPE_F32,
  2414. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2415. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2416. ggml_tensor * build_graph(ggml_context * ctx) override {
  2417. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2418. ggml_tensor * q = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2419. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2420. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2421. ggml_tensor * g = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2422. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2423. ggml_tensor * out = ggml_gated_linear_attn(ctx, k, v, q, g, s, pow(head_size, -0.5));
  2424. return out;
  2425. }
  2426. };
  2427. // GGML_OP_RWKV_WKV7
  2428. struct test_rwkv_wkv7 : public test_case {
  2429. const ggml_type type;
  2430. const int64_t head_count;
  2431. const int64_t head_size;
  2432. const int64_t n_seq_tokens;
  2433. const int64_t n_seqs;
  2434. std::string vars() override {
  2435. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2436. }
  2437. test_rwkv_wkv7(ggml_type type = GGML_TYPE_F32,
  2438. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2439. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2440. ggml_tensor * build_graph(ggml_context * ctx) override {
  2441. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2442. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2443. ggml_tensor * w = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2444. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2445. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2446. ggml_tensor * a = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2447. ggml_tensor * b = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2448. // Outputs may become NaN with long seqlen without these normalization
  2449. a = ggml_l2_norm(ctx, a, 1e-7F);
  2450. b = ggml_l2_norm(ctx, b, 1e-7F);
  2451. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2452. ggml_tensor * out = ggml_rwkv_wkv7(ctx, r, w, k, v, a, b, s);
  2453. return out;
  2454. }
  2455. };
  2456. // GGML_OP_MUL_MAT
  2457. struct test_mul_mat : public test_case {
  2458. const ggml_type type_a;
  2459. const ggml_type type_b;
  2460. const int64_t m;
  2461. const int64_t n;
  2462. const int64_t k;
  2463. const std::array<int64_t, 2> bs; // dims 3 and 4
  2464. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  2465. const std::array<int64_t, 4> per; // permutation of dimensions
  2466. const bool v; // whether a and b are non-contiguous views
  2467. std::string vars() override {
  2468. return VARS_TO_STR9(type_a, type_b, m, n, k, bs, nr, per, v);
  2469. }
  2470. double max_nmse_err() override {
  2471. return 5e-4;
  2472. }
  2473. int64_t grad_nmax() override {
  2474. return 20000;
  2475. }
  2476. uint64_t op_flops(ggml_tensor * t) override {
  2477. GGML_UNUSED(t);
  2478. return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
  2479. }
  2480. test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2481. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  2482. std::array<int64_t, 2> bs = {10, 10},
  2483. std::array<int64_t, 2> nr = {2, 2},
  2484. std::array<int64_t, 4> per = {0, 1, 2, 3},
  2485. bool v = false)
  2486. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per), v(v) {}
  2487. ggml_tensor * build_graph(ggml_context * ctx) override {
  2488. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  2489. ggml_tensor * a;
  2490. ggml_tensor * b;
  2491. const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
  2492. if (npermuted > 0) {
  2493. GGML_ASSERT(npermuted == 2);
  2494. GGML_ASSERT(!v); // not handled
  2495. GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
  2496. GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
  2497. // Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k.
  2498. const int64_t ne_a[4] = {k, m, bs[0], bs[1]};
  2499. const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]};
  2500. a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
  2501. b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
  2502. if (!ggml_is_quantized(type_a)) {
  2503. if (bs[1] == 1 && nr[1] == 1) {
  2504. ggml_set_param(a);
  2505. }
  2506. ggml_set_param(b);
  2507. }
  2508. ggml_set_name(a, "a");
  2509. ggml_set_name(b, "b");
  2510. a = ggml_permute(ctx, a, per[0], per[1], per[2], per[3]);
  2511. b = ggml_permute(ctx, b, per[0], per[1], per[2], per[3]);
  2512. ggml_set_name(a, "a_permuted");
  2513. ggml_set_name(b, "b_permuted");
  2514. } else {
  2515. if (v) {
  2516. a = ggml_new_tensor_4d(ctx, type_a, k*2, m, bs[0], bs[1]);
  2517. b = ggml_new_tensor_4d(ctx, type_b, k*2, n, bs[0]*nr[0], bs[1]*nr[1]);
  2518. if (!ggml_is_quantized(type_a)) {
  2519. if (bs[1] == 1 && nr[1] == 1) {
  2520. ggml_set_param(a);
  2521. }
  2522. ggml_set_param(b);
  2523. }
  2524. a = ggml_view_4d(ctx, a, k, m, bs[0], bs[1], a->nb[1], a->nb[2], a->nb[3], 0);
  2525. b = ggml_view_4d(ctx, b, k, n, bs[0]*nr[0], bs[1]*nr[1], b->nb[1], b->nb[2], b->nb[3], 0);
  2526. } else {
  2527. a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]);
  2528. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  2529. if (!ggml_is_quantized(type_a)) {
  2530. if (bs[1] == 1 && nr[1] == 1) {
  2531. ggml_set_param(a);
  2532. }
  2533. ggml_set_param(b);
  2534. }
  2535. }
  2536. ggml_set_name(a, "a");
  2537. ggml_set_name(b, "b");
  2538. }
  2539. ggml_tensor * out = ggml_mul_mat(ctx, a, b);
  2540. ggml_set_name(out, "out");
  2541. return out;
  2542. }
  2543. };
  2544. // GGML_OP_MUL_MAT_ID
  2545. struct test_mul_mat_id : public test_case {
  2546. const ggml_type type_a;
  2547. const ggml_type type_b;
  2548. const int n_mats;
  2549. const int n_used;
  2550. const bool b; // broadcast b matrix
  2551. const int64_t m;
  2552. const int64_t n;
  2553. const int64_t k;
  2554. std::string vars() override {
  2555. return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k);
  2556. }
  2557. double max_nmse_err() override {
  2558. return 5e-4;
  2559. }
  2560. uint64_t op_flops(ggml_tensor * t) override {
  2561. GGML_UNUSED(t);
  2562. return 2 * m * k * n * n_used;
  2563. }
  2564. test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2565. int n_mats = 8, int n_used = 2, bool b = false,
  2566. int64_t m = 32, int64_t n = 32, int64_t k = 32)
  2567. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  2568. m(m), n(n), k(k) {
  2569. GGML_ASSERT(n_used <= n_mats);
  2570. }
  2571. ggml_tensor * build_graph(ggml_context * ctx) override {
  2572. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  2573. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  2574. ggml_set_name(as, "as");
  2575. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  2576. ggml_set_name(ids, "ids");
  2577. if (n_used != n_mats) {
  2578. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  2579. ggml_set_name(ids, "view_of_ids");
  2580. }
  2581. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  2582. ggml_set_name(b, "b");
  2583. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  2584. ggml_set_name(out, "out");
  2585. return out;
  2586. }
  2587. void initialize_tensors(ggml_context * ctx) override {
  2588. std::random_device rd;
  2589. std::default_random_engine rng(rd());
  2590. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2591. if (t->type == GGML_TYPE_I32) {
  2592. if (ggml_is_view_op(t->op)) { continue; }
  2593. // ids
  2594. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2595. std::vector<int32_t> data(t->ne[0]);
  2596. for (int i = 0; i < t->ne[0]; i++) {
  2597. data[i] = i % n_mats;
  2598. }
  2599. std::shuffle(data.begin(), data.end(), rng);
  2600. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2601. }
  2602. } else {
  2603. init_tensor_uniform(t);
  2604. }
  2605. }
  2606. }
  2607. };
  2608. // GGML_OP_OUT_PROD
  2609. struct test_out_prod : public test_case {
  2610. const ggml_type type_a;
  2611. const ggml_type type_b;
  2612. const int64_t m;
  2613. const int64_t n;
  2614. const int64_t k;
  2615. const std::array<int64_t, 2> bs; // dims 3 and 4
  2616. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  2617. const bool trans_b;
  2618. std::string vars() override {
  2619. return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, trans_b);
  2620. }
  2621. double max_nmse_err() override {
  2622. return 5e-4;
  2623. }
  2624. test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2625. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  2626. std::array<int64_t, 2> bs = {10, 10},
  2627. std::array<int64_t, 2> nr = {2, 2},
  2628. bool trans_b = false)
  2629. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), trans_b(trans_b) {}
  2630. ggml_tensor * build_graph(ggml_context * ctx) override {
  2631. ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]);
  2632. ggml_set_name(a, "a");
  2633. ggml_tensor * b;
  2634. if (trans_b) {
  2635. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  2636. b = ggml_transpose(ctx, b);
  2637. } else {
  2638. b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0]*nr[0], bs[1]*nr[1]);
  2639. }
  2640. ggml_set_name(b, "b");
  2641. ggml_tensor * out = ggml_out_prod(ctx, a, b);
  2642. ggml_set_name(out, "out");
  2643. return out;
  2644. }
  2645. };
  2646. // GGML_OP_SQR
  2647. struct test_sqr : public test_case {
  2648. const ggml_type type;
  2649. const std::array<int64_t, 4> ne;
  2650. std::string vars() override {
  2651. return VARS_TO_STR2(type, ne);
  2652. }
  2653. test_sqr(ggml_type type = GGML_TYPE_F32,
  2654. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2655. : type(type), ne(ne) {}
  2656. ggml_tensor * build_graph(ggml_context * ctx) override {
  2657. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2658. ggml_set_param(a);
  2659. ggml_set_name(a, "a");
  2660. ggml_tensor * out = ggml_sqr(ctx, a);
  2661. ggml_set_name(out, "out");
  2662. return out;
  2663. }
  2664. float grad_eps() override {
  2665. return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum.
  2666. }
  2667. };
  2668. // GGML_OP_SQRT
  2669. struct test_sqrt : public test_case {
  2670. const ggml_type type;
  2671. const std::array<int64_t, 4> ne;
  2672. std::string vars() override {
  2673. return VARS_TO_STR2(type, ne);
  2674. }
  2675. test_sqrt(ggml_type type = GGML_TYPE_F32,
  2676. std::array<int64_t, 4> ne = {10, 3, 3, 2})
  2677. : type(type), ne(ne) {}
  2678. ggml_tensor * build_graph(ggml_context * ctx) override {
  2679. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2680. ggml_set_param(a);
  2681. ggml_set_name(a, "a");
  2682. ggml_tensor * out = ggml_sqrt(ctx, a);
  2683. ggml_set_name(out, "out");
  2684. return out;
  2685. }
  2686. void initialize_tensors(ggml_context * ctx) override {
  2687. // fill with positive values
  2688. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2689. init_tensor_uniform(t, 50.0f, 100.0f);
  2690. }
  2691. }
  2692. float grad_eps() override {
  2693. return 20.0f;
  2694. }
  2695. bool grad_precise() override {
  2696. return true;
  2697. }
  2698. };
  2699. // GGML_OP_LOG
  2700. struct test_log : public test_case {
  2701. const ggml_type type;
  2702. const std::array<int64_t, 4> ne;
  2703. std::string vars() override {
  2704. return VARS_TO_STR2(type, ne);
  2705. }
  2706. test_log(ggml_type type = GGML_TYPE_F32,
  2707. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2708. : type(type), ne(ne) {}
  2709. ggml_tensor * build_graph(ggml_context * ctx) override {
  2710. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2711. ggml_set_param(a);
  2712. ggml_set_name(a, "a");
  2713. ggml_tensor * out = ggml_log(ctx, a);
  2714. ggml_set_name(out, "out");
  2715. return out;
  2716. }
  2717. void initialize_tensors(ggml_context * ctx) override {
  2718. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2719. // log(1) == 0, cluster values there to keep the sum low for better precision in the backward pass:
  2720. init_tensor_uniform(t, 0.9f, 1.1f);
  2721. }
  2722. }
  2723. bool grad_precise() override {
  2724. return true;
  2725. }
  2726. };
  2727. // GGML_OP_SIN
  2728. struct test_sin : public test_case {
  2729. const ggml_type type;
  2730. const std::array<int64_t, 4> ne;
  2731. std::string vars() override {
  2732. return VARS_TO_STR2(type, ne);
  2733. }
  2734. test_sin(ggml_type type = GGML_TYPE_F32,
  2735. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  2736. : type(type), ne(ne) {}
  2737. ggml_tensor * build_graph(ggml_context * ctx) override {
  2738. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2739. ggml_set_param(a);
  2740. ggml_set_name(a, "a");
  2741. ggml_tensor * out = ggml_sin(ctx, a);
  2742. ggml_set_name(out, "out");
  2743. return out;
  2744. }
  2745. void initialize_tensors(ggml_context * ctx) override {
  2746. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2747. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  2748. }
  2749. }
  2750. double max_maa_err() override {
  2751. return 1e-3;
  2752. }
  2753. float grad_eps() override {
  2754. return 0.2f;
  2755. }
  2756. bool grad_precise() override {
  2757. return true;
  2758. }
  2759. };
  2760. // GGML_OP_COS
  2761. struct test_cos : public test_case {
  2762. const ggml_type type;
  2763. const std::array<int64_t, 4> ne;
  2764. std::string vars() override {
  2765. return VARS_TO_STR2(type, ne);
  2766. }
  2767. test_cos(ggml_type type = GGML_TYPE_F32,
  2768. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  2769. : type(type), ne(ne) {}
  2770. ggml_tensor * build_graph(ggml_context * ctx) override {
  2771. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2772. ggml_set_param(a);
  2773. ggml_set_name(a, "a");
  2774. ggml_tensor * out = ggml_cos(ctx, a);
  2775. ggml_set_name(out, "out");
  2776. return out;
  2777. }
  2778. void initialize_tensors(ggml_context * ctx) override {
  2779. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2780. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  2781. }
  2782. }
  2783. double max_maa_err() override {
  2784. return 1e-3;
  2785. }
  2786. float grad_eps() override {
  2787. return 0.2f;
  2788. }
  2789. bool grad_precise() override {
  2790. return true;
  2791. }
  2792. };
  2793. // GGML_OP_CLAMP
  2794. struct test_clamp : public test_case {
  2795. const ggml_type type;
  2796. const std::array<int64_t, 4> ne;
  2797. float min;
  2798. float max;
  2799. std::string vars() override {
  2800. return VARS_TO_STR4(type, ne, min, max);
  2801. }
  2802. test_clamp(ggml_type type = GGML_TYPE_F32,
  2803. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  2804. float min = -0.5f, float max = 0.5f)
  2805. : type(type), ne(ne), min(min), max(max) {}
  2806. ggml_tensor * build_graph(ggml_context * ctx) override {
  2807. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2808. ggml_set_name(a, "a");
  2809. ggml_tensor * out = ggml_clamp(ctx, a, min, max);
  2810. ggml_set_name(out, "out");
  2811. return out;
  2812. }
  2813. float grad_eps() override {
  2814. return 1e-2f;
  2815. }
  2816. std::vector<float> grad_expect() override {
  2817. return {0.0f, 1.0f};
  2818. }
  2819. };
  2820. // GGML_OP_DIAG_MASK_INF
  2821. struct test_diag_mask_inf : public test_case {
  2822. const ggml_type type;
  2823. const std::array<int64_t, 4> ne;
  2824. const int n_past;
  2825. std::string vars() override {
  2826. return VARS_TO_STR3(type, ne, n_past);
  2827. }
  2828. test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
  2829. std::array<int64_t, 4> ne = {10, 10, 3, 2},
  2830. int n_past = 5)
  2831. : type(type), ne(ne), n_past(n_past) {}
  2832. ggml_tensor * build_graph(ggml_context * ctx) override {
  2833. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2834. ggml_set_param(a);
  2835. ggml_set_name(a, "a");
  2836. ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
  2837. ggml_set_name(out, "out");
  2838. return out;
  2839. }
  2840. };
  2841. // GGML_OP_SOFT_MAX
  2842. struct test_soft_max : public test_case {
  2843. const ggml_type type;
  2844. const std::array<int64_t, 4> ne;
  2845. const bool mask;
  2846. const ggml_type m_prec;
  2847. const std::array<int64_t, 2> nr23; // broadcast only dims 2 and 3
  2848. const float scale;
  2849. const float max_bias;
  2850. std::string vars() override {
  2851. return VARS_TO_STR7(type, ne, mask, m_prec, nr23, scale, max_bias);
  2852. }
  2853. // the 1024 test with bias occasionally fails:
  2854. // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
  2855. virtual double max_nmse_err() override {
  2856. return 1e-6;
  2857. }
  2858. test_soft_max(ggml_type type = GGML_TYPE_F32,
  2859. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  2860. bool mask = false,
  2861. ggml_type m_prec = GGML_TYPE_F32,
  2862. std::array<int64_t, 2> nr23 = {1, 1},
  2863. float scale = 1.0f,
  2864. float max_bias = 0.0f)
  2865. : type(type), ne(ne), mask(mask), m_prec(m_prec), nr23(nr23), scale(scale), max_bias(max_bias) {}
  2866. ggml_tensor * build_graph(ggml_context * ctx) override {
  2867. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  2868. ggml_set_param(a);
  2869. ggml_set_name(a, "a");
  2870. ggml_tensor * mask = nullptr;
  2871. if (this->mask) {
  2872. mask = ggml_new_tensor_4d(ctx, m_prec, ne[0], ne[1], ne[2], ne[3]);
  2873. ggml_set_name(mask, "mask");
  2874. }
  2875. ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
  2876. ggml_set_name(out, "out");
  2877. return out;
  2878. }
  2879. bool grad_precise() override {
  2880. return true;
  2881. }
  2882. };
  2883. // GGML_OP_SOFT_MAX_BACK
  2884. struct test_soft_max_back : public test_case {
  2885. const ggml_type type;
  2886. const std::array<int64_t, 4> ne;
  2887. const float scale;
  2888. const float max_bias;
  2889. std::string vars() override {
  2890. return VARS_TO_STR4(type, ne, scale, max_bias);
  2891. }
  2892. test_soft_max_back(ggml_type type = GGML_TYPE_F32,
  2893. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  2894. float scale = 1.0f,
  2895. float max_bias = 0.0f)
  2896. : type(type), ne(ne), scale(scale), max_bias(max_bias) {}
  2897. ggml_tensor * build_graph(ggml_context * ctx) override {
  2898. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2899. ggml_set_name(a, "a");
  2900. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2901. ggml_set_name(a, "a");
  2902. ggml_tensor * out = ggml_soft_max_ext_back(ctx, a, b, scale, max_bias);
  2903. ggml_set_name(out, "out");
  2904. return out;
  2905. }
  2906. };
  2907. // GGML_OP_ROPE + GGML_OP_ROPE_BACK
  2908. struct test_rope : public test_case {
  2909. const ggml_type type;
  2910. const std::array<int64_t, 4> ne_a;
  2911. int n_dims;
  2912. int mode;
  2913. int n_ctx; // used to generate positions
  2914. float fs; // freq_scale
  2915. float ef; // ext_factor
  2916. float af; // attn_factor
  2917. bool ff;
  2918. int v; // view (1 : non-contiguous a)
  2919. bool forward;
  2920. std::string vars() override {
  2921. // forward can be inferred from the op, does not need to be printed
  2922. return VARS_TO_STR10(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v);
  2923. }
  2924. test_rope(ggml_type type = GGML_TYPE_F32,
  2925. std::array<int64_t, 4> ne_a = {10, 5, 3, 1},
  2926. int n_dims = 10, int mode = 0, int n_ctx = 512, float fs = 1.0f,
  2927. float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0, bool forward = true)
  2928. : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v), forward(forward) {}
  2929. ggml_tensor * build_graph(ggml_context * ctx) override {
  2930. ggml_tensor * a;
  2931. if (v & 1) {
  2932. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  2933. a = ggml_new_tensor(ctx, type, 4, ne.data());
  2934. if (forward) {
  2935. ggml_set_param(a);
  2936. }
  2937. ggml_set_name(a, "a");
  2938. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  2939. ggml_set_name(a, "view_of_a");
  2940. } else {
  2941. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2942. if (forward) {
  2943. ggml_set_param(a);
  2944. }
  2945. ggml_set_name(a, "a");
  2946. }
  2947. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  2948. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  2949. ggml_tensor * pos;
  2950. if (is_mrope || is_vision) {
  2951. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2] * 4);
  2952. } else {
  2953. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
  2954. }
  2955. ggml_set_name(pos, "pos");
  2956. ggml_tensor * freq = nullptr;
  2957. if (ff) {
  2958. freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2);
  2959. ggml_set_name(freq, "freq");
  2960. }
  2961. ggml_tensor * out;
  2962. if (is_mrope) {
  2963. if (is_vision) {
  2964. GGML_ASSERT(n_dims/4 > 0);
  2965. int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate
  2966. if (forward) {
  2967. out = ggml_rope_multi (ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2968. } else {
  2969. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2970. }
  2971. } else {
  2972. GGML_ASSERT(n_dims/3 > 0);
  2973. int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0};
  2974. if (forward) {
  2975. out = ggml_rope_multi (ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2976. } else {
  2977. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2978. }
  2979. }
  2980. } else {
  2981. if (forward) {
  2982. out = ggml_rope_ext (ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2983. } else {
  2984. out = ggml_rope_ext_back(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2985. }
  2986. // TODO: add test with a non-contiguous view as input ; this case is needed for build_rope_2d in clip.cpp
  2987. }
  2988. ggml_set_name(out, "out");
  2989. return out;
  2990. }
  2991. void initialize_tensors(ggml_context * ctx) override {
  2992. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2993. if (t->type == GGML_TYPE_I32) {
  2994. // pos
  2995. const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
  2996. std::vector<int> data(num_pos_ids);
  2997. for (int i = 0; i < num_pos_ids; i++) {
  2998. data[i] = rand() % n_ctx;
  2999. }
  3000. ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int));
  3001. } else {
  3002. if (t->ne[0] == n_dims/2) {
  3003. // frequency factors in the range [0.9f, 1.1f]
  3004. init_tensor_uniform(t, 0.9f, 1.1f);
  3005. } else {
  3006. init_tensor_uniform(t);
  3007. }
  3008. }
  3009. }
  3010. }
  3011. double max_maa_err() override {
  3012. return 1e-3;
  3013. }
  3014. bool grad_precise() override {
  3015. return true;
  3016. }
  3017. };
  3018. // GGML_OP_POOL2D
  3019. struct test_pool2d : public test_case {
  3020. enum ggml_op_pool pool_type;
  3021. const ggml_type type_input;
  3022. const std::array<int64_t, 4> ne_input;
  3023. // kernel size
  3024. const int k0;
  3025. const int k1;
  3026. // stride
  3027. const int s0;
  3028. const int s1;
  3029. // padding
  3030. const int p0;
  3031. const int p1;
  3032. std::string vars() override {
  3033. return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
  3034. }
  3035. test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
  3036. ggml_type type_input = GGML_TYPE_F32,
  3037. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3038. int k0 = 3, int k1 = 3,
  3039. int s0 = 1, int s1 = 1,
  3040. int p0 = 1, int p1 = 1)
  3041. : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
  3042. ggml_tensor * build_graph(ggml_context * ctx) override {
  3043. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3044. ggml_set_param(input);
  3045. ggml_set_name(input, "input");
  3046. ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
  3047. ggml_set_name(out, "out");
  3048. return out;
  3049. }
  3050. };
  3051. // GGML_OP_CONV_TRANSPOSE_1D
  3052. struct test_conv_transpose_1d : public test_case {
  3053. const std::array<int64_t, 4> ne_input;
  3054. const std::array<int64_t, 4> ne_kernel;
  3055. const int s0; // stride
  3056. const int p0; // padding
  3057. const int d0; // dilation
  3058. std::string vars() override {
  3059. return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
  3060. }
  3061. test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_channels, 1 /* assert in cpu kernel*/, 1 (should be batch)]
  3062. std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, output_channels, input_channels, 1 (should be batch)]
  3063. int s0 = 1, int p0 = 0, int d0 = 1)
  3064. : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
  3065. ggml_tensor * build_graph(ggml_context * ctx) override {
  3066. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3067. ggml_set_name(input, "input");
  3068. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  3069. ggml_set_name(kernel, "kernel");
  3070. ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
  3071. ggml_set_name(out, "out");
  3072. return out;
  3073. }
  3074. };
  3075. // GGML_OP_CONV_TRANSPOSE_2D
  3076. struct test_conv_transpose_2d : public test_case {
  3077. const std::array<int64_t, 4> ne_input;
  3078. const std::array<int64_t, 4> ne_kernel;
  3079. const int stride;
  3080. std::string vars() override {
  3081. return VARS_TO_STR3(ne_input, ne_kernel, stride);
  3082. }
  3083. test_conv_transpose_2d(std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3084. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  3085. int stride = 1)
  3086. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride){}
  3087. ggml_tensor * build_graph(ggml_context * ctx) override {
  3088. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3089. ggml_set_name(input, "input");
  3090. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne_kernel.data());
  3091. ggml_set_name(kernel, "kernel");
  3092. ggml_tensor * out = ggml_conv_transpose_2d_p0(ctx, kernel, input, stride);
  3093. ggml_set_name(out, "out");
  3094. return out;
  3095. }
  3096. };
  3097. // GGML_OP_IM2COL
  3098. struct test_im2col : public test_case {
  3099. const ggml_type type_input;
  3100. const ggml_type type_kernel;
  3101. const ggml_type dst_type;
  3102. const std::array<int64_t, 4> ne_input;
  3103. const std::array<int64_t, 4> ne_kernel;
  3104. // stride
  3105. const int s0;
  3106. const int s1;
  3107. // padding
  3108. const int p0;
  3109. const int p1;
  3110. // dilation
  3111. const int d0;
  3112. const int d1;
  3113. // mode
  3114. const bool is_2D;
  3115. std::string vars() override {
  3116. return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
  3117. }
  3118. test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  3119. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3120. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  3121. int s0 = 1, int s1 = 1,
  3122. int p0 = 1, int p1 = 1,
  3123. int d0 = 1, int d1 = 1,
  3124. bool is_2D = true)
  3125. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
  3126. ggml_tensor * build_graph(ggml_context * ctx) override {
  3127. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3128. ggml_set_param(input);
  3129. ggml_set_name(input, "input");
  3130. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3131. ggml_set_name(kernel, "kernel");
  3132. ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
  3133. ggml_set_name(out, "out");
  3134. return out;
  3135. }
  3136. };
  3137. // CONV_2D
  3138. struct test_conv_2d : public test_case {
  3139. const std::array<int64_t, 4> ne_input;
  3140. const std::array<int64_t, 4> ne_kernel;
  3141. const ggml_type type_kernel;
  3142. const int stride0;
  3143. const int stride1;
  3144. const int padding0;
  3145. const int padding1;
  3146. const int dilation0;
  3147. const int dilation1;
  3148. // Whether the inputs are contiguous in the channel dim or the width dim
  3149. const bool cwhn;
  3150. // If true, the direct CONV_2D will be used in the graph, otherwise it
  3151. // uses ggml_conv_2d:
  3152. // * if the program is called with -o CONV_2D_DIRECT_IMPL, the
  3153. // CONV_2D graph will be built, while
  3154. // * if the program is called with -o CONV_2D_INDIRECT_IMPL, the
  3155. // IM2COL -> MUL_MM graph will be built.
  3156. std::string vars() override {
  3157. return VARS_TO_STR10(ne_input, ne_kernel, type_kernel, stride0, stride1, padding0, padding1, dilation0, dilation1, cwhn);
  3158. }
  3159. double max_nmse_err() override {
  3160. return 5e-4;
  3161. }
  3162. uint64_t op_flops(ggml_tensor * t) override {
  3163. GGML_UNUSED(t);
  3164. // Just counting matmul costs:
  3165. // KxCRS @ CRSxNPQ = KxNPQ --> KxNPQx(CRS+CRS-1) flops
  3166. // Copied from ggml.c: int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d)
  3167. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  3168. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  3169. };
  3170. int64_t W = ne_input[0];
  3171. int64_t H = ne_input[1];
  3172. int64_t KW = ne_kernel[0];
  3173. int64_t KH = ne_kernel[1];
  3174. int64_t Cin = ne_kernel[2];
  3175. int64_t Cout = ne_kernel[3];
  3176. int64_t N = ne_input[3];
  3177. int64_t OH = calc_conv_output_size(H, KH, stride0, padding0, dilation0);
  3178. int64_t OW = calc_conv_output_size(W, KW, stride0, padding0, dilation0);
  3179. int64_t K = Cout;
  3180. int64_t CRS = Cin * KH * KW;
  3181. int64_t NPQ = N * OH * OW;
  3182. return K * NPQ * (2 * CRS - 1);
  3183. }
  3184. test_conv_2d(std::array<int64_t, 4> ne_input = { 64, 64, 16, 1 },
  3185. std::array<int64_t, 4> ne_kernel = { 3, 3, 1, 16 }, ggml_type type_kernel = GGML_TYPE_F32, int stride0 = 1,
  3186. int stride1 = 1, int padding0 = 0, int padding1 = 0, int dilation0 = 1, int dilation1 = 1, bool cwhn = false) :
  3187. ne_input(ne_input),
  3188. ne_kernel(ne_kernel),
  3189. type_kernel(type_kernel),
  3190. stride0(stride0),
  3191. stride1(stride1),
  3192. padding0(padding0),
  3193. padding1(padding1),
  3194. dilation0(dilation0),
  3195. dilation1(dilation1),
  3196. cwhn(cwhn) {}
  3197. ggml_tensor * build_graph(ggml_context * ctx) override {
  3198. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3199. ggml_set_name(input, "input");
  3200. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3201. ggml_set_name(kernel, "kernel");
  3202. if (cwhn) {
  3203. // change memory layout to channel-most-contiguous (CWHN),
  3204. // then permute it back so NE matches the original input
  3205. input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
  3206. input = ggml_permute(ctx, input, 2, 0, 1, 3);
  3207. kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
  3208. kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
  3209. }
  3210. ggml_tensor * out =
  3211. ggml_conv_2d_direct(ctx, kernel, input, stride0, stride1, padding0, padding1, dilation0, dilation1);
  3212. ggml_set_name(out, "out");
  3213. return out;
  3214. }
  3215. };
  3216. // GGML_OP_CONV_2D_DW
  3217. struct test_conv_2d_dw : public test_case {
  3218. const std::array<int64_t, 4> ne_input;
  3219. const std::array<int64_t, 4> ne_kernel;
  3220. const int stride;
  3221. const int padding;
  3222. const int dilation;
  3223. const bool cwhn;
  3224. std::string vars() override {
  3225. return VARS_TO_STR6(ne_input, ne_kernel, stride, padding, dilation, cwhn);
  3226. }
  3227. test_conv_2d_dw(std::array<int64_t, 4> ne_input = {64, 64, 16, 1},
  3228. std::array<int64_t, 4> ne_kernel = {3, 3, 1, 16},
  3229. int stride = 1, int padding = 0, int dilation = 1, bool cwhn = false)
  3230. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride), padding(padding), dilation(dilation), cwhn(cwhn) {}
  3231. ggml_tensor * build_graph(ggml_context * ctx) override {
  3232. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3233. ggml_set_name(input, "input");
  3234. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  3235. ggml_set_name(kernel, "kernel");
  3236. if (cwhn) {
  3237. // change memory layout to channel-most-contiguous (CWHN),
  3238. // then permute it back so NE matches the original input
  3239. input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
  3240. input = ggml_permute(ctx, input, 2, 0, 1, 3);
  3241. kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
  3242. kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
  3243. }
  3244. ggml_tensor * out = ggml_conv_2d_dw_direct(
  3245. ctx, kernel, input,
  3246. stride, stride, padding, padding, dilation, dilation);
  3247. ggml_set_name(out, "out");
  3248. return out;
  3249. }
  3250. };
  3251. // GGML_OP_CONCAT
  3252. struct test_concat : public test_case {
  3253. const ggml_type type;
  3254. const std::array<int64_t, 4> ne_a;
  3255. const int64_t ne_b_d;
  3256. const int dim;
  3257. const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
  3258. std::string vars() override {
  3259. return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
  3260. }
  3261. test_concat(ggml_type type = GGML_TYPE_F32,
  3262. std::array<int64_t, 4> ne_a = {10, 5, 5, 5},
  3263. int64_t ne_b_d = 5,
  3264. int dim = 2, int v = 0)
  3265. : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
  3266. ggml_tensor * build_graph(ggml_context * ctx) override {
  3267. auto ne_b = ne_a;
  3268. ne_b[dim] = ne_b_d;
  3269. ggml_tensor * a;
  3270. if (v & 1) {
  3271. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  3272. a = ggml_new_tensor(ctx, type, 4, ne.data());
  3273. ggml_set_name(a, "a");
  3274. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  3275. ggml_set_name(a, "view_of_a");
  3276. } else {
  3277. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3278. ggml_set_name(a, "a");
  3279. }
  3280. ggml_tensor * b;
  3281. if (v & 2) {
  3282. auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
  3283. b = ggml_new_tensor(ctx, type, 4, ne.data());
  3284. ggml_set_name(b, "b");
  3285. b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
  3286. ggml_set_name(b, "view_of_b");
  3287. } else {
  3288. b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  3289. ggml_set_name(b, "b");
  3290. }
  3291. ggml_tensor * out = ggml_concat(ctx, a, b, dim);
  3292. ggml_set_name(out, "out");
  3293. return out;
  3294. }
  3295. };
  3296. // GGML_OP_ARGSORT
  3297. struct test_argsort : public test_case {
  3298. const ggml_type type;
  3299. const std::array<int64_t, 4> ne;
  3300. ggml_sort_order order;
  3301. std::string vars() override {
  3302. return VARS_TO_STR3(type, ne, order);
  3303. }
  3304. test_argsort(ggml_type type = GGML_TYPE_F32,
  3305. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  3306. ggml_sort_order order = GGML_SORT_ORDER_ASC)
  3307. : type(type), ne(ne), order(order) {}
  3308. ggml_tensor * build_graph(ggml_context * ctx) override {
  3309. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3310. ggml_set_name(a, "a");
  3311. ggml_tensor * out = ggml_argsort(ctx, a, order);
  3312. ggml_set_name(out, "out");
  3313. return out;
  3314. }
  3315. void initialize_tensors(ggml_context * ctx) override {
  3316. std::random_device rd;
  3317. std::default_random_engine rng(rd());
  3318. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3319. if (t->type == GGML_TYPE_I32) {
  3320. // indices
  3321. std::vector<int> data(ggml_nelements(t));
  3322. for (int i = 0; i < ggml_nelements(t); i++) {
  3323. data[i] = rand();
  3324. }
  3325. std::shuffle(data.begin(), data.end(), rng);
  3326. ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
  3327. } else if (t->type == GGML_TYPE_F32) {
  3328. // initialize with unique values to avoid ties
  3329. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  3330. std::vector<float> data(t->ne[0]);
  3331. for (int i = 0; i < t->ne[0]; i++) {
  3332. data[i] = i;
  3333. }
  3334. std::shuffle(data.begin(), data.end(), rng);
  3335. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  3336. }
  3337. } else {
  3338. GGML_ABORT("fatal error");
  3339. }
  3340. }
  3341. }
  3342. };
  3343. // GGML_OP_SUM
  3344. struct test_sum : public test_case {
  3345. const ggml_type type;
  3346. const std::array<int64_t, 4> ne;
  3347. std::string vars() override {
  3348. return VARS_TO_STR2(type, ne);
  3349. }
  3350. test_sum(ggml_type type = GGML_TYPE_F32,
  3351. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3352. : type(type), ne(ne) {}
  3353. ggml_tensor * build_graph(ggml_context * ctx) override {
  3354. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3355. ggml_set_param(a);
  3356. ggml_set_name(a, "a");
  3357. ggml_tensor * out = ggml_sum(ctx, a);
  3358. ggml_set_name(out, "out");
  3359. return out;
  3360. }
  3361. float grad_eps() override {
  3362. return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]);
  3363. }
  3364. };
  3365. // GGML_OP_SUM_ROWS
  3366. struct test_sum_rows : public test_case {
  3367. const ggml_type type;
  3368. const std::array<int64_t, 4> ne;
  3369. std::string vars() override {
  3370. return VARS_TO_STR2(type, ne);
  3371. }
  3372. test_sum_rows(ggml_type type = GGML_TYPE_F32,
  3373. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3374. : type(type), ne(ne) {}
  3375. ggml_tensor * build_graph(ggml_context * ctx) override {
  3376. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3377. ggml_set_param(a);
  3378. ggml_set_name(a, "a");
  3379. ggml_tensor * out = ggml_sum_rows(ctx, a);
  3380. ggml_set_name(out, "out");
  3381. return out;
  3382. }
  3383. };
  3384. // GGML_OP_MEAN
  3385. struct test_mean : public test_case {
  3386. const ggml_type type;
  3387. const std::array<int64_t, 4> ne;
  3388. std::string vars() override {
  3389. return VARS_TO_STR2(type, ne);
  3390. }
  3391. test_mean(ggml_type type = GGML_TYPE_F32,
  3392. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3393. : type(type), ne(ne) {}
  3394. ggml_tensor * build_graph(ggml_context * ctx) override {
  3395. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3396. ggml_set_param(a);
  3397. ggml_set_name(a, "a");
  3398. ggml_tensor * out = ggml_mean(ctx, a);
  3399. ggml_set_name(out, "out");
  3400. return out;
  3401. }
  3402. float grad_eps() override {
  3403. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  3404. }
  3405. };
  3406. // GGML_OP_UPSCALE
  3407. struct test_upscale : public test_case {
  3408. const ggml_type type;
  3409. const std::array<int64_t, 4> ne;
  3410. const int32_t scale_factor;
  3411. const bool transpose;
  3412. const ggml_scale_mode mode;
  3413. std::string vars() override {
  3414. return VARS_TO_STR5(type, ne, scale_factor, mode, transpose);
  3415. }
  3416. test_upscale(ggml_type type = GGML_TYPE_F32,
  3417. std::array<int64_t, 4> ne = {512, 512, 3, 1},
  3418. int32_t scale_factor = 2, ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST, bool transpose = false)
  3419. : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose), mode(mode) {}
  3420. ggml_tensor * build_graph(ggml_context * ctx) override {
  3421. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3422. ggml_set_name(a, "a");
  3423. if (transpose) {
  3424. a = ggml_transpose(ctx, a);
  3425. ggml_set_name(a, "a_transposed");
  3426. }
  3427. ggml_tensor * out = ggml_upscale(ctx, a, scale_factor, mode);
  3428. ggml_set_name(out, "out");
  3429. return out;
  3430. }
  3431. };
  3432. // GGML_OP_UPSCALE (via ggml_interpolate)
  3433. struct test_interpolate : public test_case {
  3434. const ggml_type type;
  3435. const std::array<int64_t, 4> ne;
  3436. const std::array<int64_t, 4> ne_tgt;
  3437. const uint32_t mode = GGML_SCALE_MODE_NEAREST;
  3438. std::string vars() override {
  3439. return VARS_TO_STR4(type, ne, ne_tgt, mode);
  3440. }
  3441. test_interpolate(ggml_type type = GGML_TYPE_F32,
  3442. std::array<int64_t, 4> ne = {2, 5, 7, 11},
  3443. std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13},
  3444. uint32_t mode = GGML_SCALE_MODE_NEAREST)
  3445. : type(type), ne(ne), ne_tgt(ne_tgt), mode(mode) {}
  3446. ggml_tensor * build_graph(ggml_context * ctx) override {
  3447. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3448. ggml_set_name(a, "a");
  3449. ggml_tensor * out = ggml_interpolate(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3], mode);
  3450. ggml_set_name(out, "out");
  3451. return out;
  3452. }
  3453. };
  3454. // GGML_OP_GROUP_NORM
  3455. struct test_group_norm : public test_case {
  3456. const ggml_type type;
  3457. const std::array<int64_t, 4> ne;
  3458. const int32_t num_groups;
  3459. const float eps;
  3460. std::string vars() override {
  3461. return VARS_TO_STR4(type, ne, num_groups, eps);
  3462. }
  3463. test_group_norm(ggml_type type = GGML_TYPE_F32,
  3464. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  3465. int32_t num_groups = 32,
  3466. float eps = 1e-6f)
  3467. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  3468. ggml_tensor * build_graph(ggml_context * ctx) override {
  3469. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3470. ggml_set_name(a, "a");
  3471. ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
  3472. ggml_set_name(out, "out");
  3473. return out;
  3474. }
  3475. };
  3476. // GGML_OP_L2_NORM
  3477. struct test_l2_norm : public test_case {
  3478. const ggml_type type;
  3479. const std::array<int64_t, 4> ne;
  3480. const float eps;
  3481. std::string vars() override {
  3482. return VARS_TO_STR2(type, ne);
  3483. }
  3484. test_l2_norm(ggml_type type = GGML_TYPE_F32,
  3485. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  3486. float eps = 1e-12f)
  3487. : type(type), ne(ne), eps(eps) {}
  3488. ggml_tensor * build_graph(ggml_context * ctx) override {
  3489. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3490. ggml_set_name(a, "a");
  3491. ggml_tensor * out = ggml_l2_norm(ctx, a, eps);
  3492. ggml_set_name(out, "out");
  3493. return out;
  3494. }
  3495. };
  3496. // GGML_OP_ACC
  3497. struct test_acc : public test_case {
  3498. const ggml_type type;
  3499. const std::array<int64_t, 4> ne_a;
  3500. const std::array<int64_t, 4> ne_b;
  3501. std::string vars() override {
  3502. return VARS_TO_STR3(type, ne_a, ne_b);
  3503. }
  3504. test_acc(ggml_type type = GGML_TYPE_F32,
  3505. std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
  3506. std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
  3507. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  3508. ggml_tensor * build_graph(ggml_context * ctx) override {
  3509. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3510. ggml_set_param(a);
  3511. ggml_set_name(a, "a");
  3512. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  3513. ggml_set_param(b);
  3514. ggml_set_name(b, "b");
  3515. ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
  3516. ggml_set_name(out, "out");
  3517. return out;
  3518. }
  3519. };
  3520. // GGML_OP_PAD
  3521. struct test_pad : public test_case {
  3522. const ggml_type type;
  3523. const std::array<int64_t, 4> ne_a;
  3524. const int pad_0;
  3525. const int pad_1;
  3526. std::string vars() override {
  3527. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  3528. }
  3529. test_pad(ggml_type type = GGML_TYPE_F32,
  3530. std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
  3531. int pad_0 = 1, int pad_1 = 1)
  3532. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  3533. ggml_tensor * build_graph(ggml_context * ctx) override {
  3534. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3535. ggml_set_name(a, "a");
  3536. ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
  3537. ggml_set_name(out, "out");
  3538. return out;
  3539. }
  3540. };
  3541. // GGML_OP_PAD_REFLECT_1D
  3542. struct test_pad_reflect_1d : public test_case {
  3543. const ggml_type type;
  3544. const std::array<int64_t, 4> ne_a;
  3545. const int pad_0;
  3546. const int pad_1;
  3547. std::string vars() override {
  3548. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  3549. }
  3550. test_pad_reflect_1d(ggml_type type = GGML_TYPE_F32,
  3551. std::array<int64_t, 4> ne_a = {512, 34, 2, 1},
  3552. int pad_0 = 10, int pad_1 = 9)
  3553. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  3554. ggml_tensor * build_graph(ggml_context * ctx) override {
  3555. ggml_tensor * a = ggml_new_tensor(ctx, type, 2, ne_a.data());
  3556. ggml_set_name(a, "a");
  3557. ggml_tensor * out = ggml_pad_reflect_1d(ctx, a, pad_0, pad_1);
  3558. ggml_set_name(out, "out");
  3559. return out;
  3560. }
  3561. };
  3562. // GGML_OP_ROLL
  3563. struct test_roll : public test_case {
  3564. const int shift0;
  3565. const int shift1;
  3566. const int shift3;
  3567. const int shift4;
  3568. std::string vars() override {
  3569. return VARS_TO_STR4(shift0, shift1, shift3, shift4);
  3570. }
  3571. test_roll(int shift0 = 3, int shift1 = -2, int shift3 = 1, int shift4 = -1)
  3572. : shift0(shift0), shift1(shift1), shift3(shift3), shift4(shift4) {}
  3573. ggml_tensor * build_graph(ggml_context * ctx) override {
  3574. int64_t ne[4] = {10, 5, 4, 3};
  3575. ggml_tensor * a = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3576. ggml_set_name(a, "a");
  3577. ggml_tensor * out = ggml_roll(ctx, a, shift0, shift1, shift3, shift4);
  3578. ggml_set_name(out, "out");
  3579. return out;
  3580. }
  3581. };
  3582. // GGML_OP_ARANGE
  3583. struct test_arange : public test_case {
  3584. const ggml_type type;
  3585. const float start;
  3586. const float stop;
  3587. const float step;
  3588. std::string vars() override {
  3589. return VARS_TO_STR4(type, start, stop, step);
  3590. }
  3591. test_arange(ggml_type type = GGML_TYPE_F32,
  3592. float start = 0.f, float stop = 10.f, float step = 1.f)
  3593. : type(type), start(start), stop(stop), step(step) {}
  3594. ggml_tensor * build_graph(ggml_context * ctx) override {
  3595. ggml_tensor * out = ggml_arange(ctx, start, stop, step);
  3596. ggml_set_name(out, "out");
  3597. return out;
  3598. }
  3599. };
  3600. // GGML_OP_TIMESTEP_EMBEDDING
  3601. struct test_timestep_embedding : public test_case {
  3602. const ggml_type type;
  3603. const std::array<int64_t, 4> ne_a;
  3604. const int dim;
  3605. const int max_period;
  3606. std::string vars() override {
  3607. return VARS_TO_STR4(type, ne_a, dim, max_period);
  3608. }
  3609. test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
  3610. std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
  3611. int dim = 320, int max_period=10000)
  3612. : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
  3613. ggml_tensor * build_graph(ggml_context * ctx) override {
  3614. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3615. ggml_set_name(a, "a");
  3616. ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
  3617. ggml_set_name(out, "out");
  3618. return out;
  3619. }
  3620. };
  3621. // GGML_OP_LEAKY_RELU
  3622. struct test_leaky_relu : public test_case {
  3623. const ggml_type type;
  3624. const std::array<int64_t, 4> ne_a;
  3625. const float negative_slope;
  3626. std::string vars() override {
  3627. return VARS_TO_STR3(type, ne_a, negative_slope);
  3628. }
  3629. test_leaky_relu(ggml_type type = GGML_TYPE_F32,
  3630. std::array<int64_t, 4> ne_a = {10, 5, 4, 3},
  3631. float negative_slope = 0.1f)
  3632. : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
  3633. ggml_tensor * build_graph(ggml_context * ctx) override {
  3634. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3635. ggml_set_name(a, "a");
  3636. ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
  3637. ggml_set_name(out, "out");
  3638. return out;
  3639. }
  3640. };
  3641. // GGML_OP_FLASH_ATTN_EXT
  3642. struct test_flash_attn_ext : public test_case {
  3643. const int64_t hsk; // K head size
  3644. const int64_t hsv; // V head size
  3645. const int64_t nh; // num heads
  3646. const std::array<int64_t, 2> nr23; // repeat in dim 2 and 3, tests for grouped-query attention
  3647. const int64_t kv; // kv size
  3648. const int64_t nb; // batch size
  3649. const bool mask; // use mask
  3650. const float max_bias; // ALiBi
  3651. const float logit_softcap; // Gemma 2
  3652. const ggml_prec prec;
  3653. const ggml_type type_KV;
  3654. std::array<int32_t, 4> permute;
  3655. std::string vars() override {
  3656. return VARS_TO_STR12(hsk, hsv, nh, nr23, kv, nb, mask, max_bias, logit_softcap, prec, type_KV, permute);
  3657. }
  3658. double max_nmse_err() override {
  3659. return 5e-4;
  3660. }
  3661. uint64_t op_flops(ggml_tensor * t) override {
  3662. GGML_UNUSED(t);
  3663. // Just counting matmul costs:
  3664. // Q*K^T is nb x hsk x kv, P*V is nb x kv x hsv, per head
  3665. return (2 * nh*nr23[0] * nb * (hsk + hsv) * kv)*nr23[1];
  3666. }
  3667. test_flash_attn_ext(int64_t hsk = 128, int64_t hsv = 128, int64_t nh = 32, std::array<int64_t, 2> nr23 = {1, 1}, int64_t kv = 96, int64_t nb = 8,
  3668. bool mask = true, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_prec prec = GGML_PREC_F32,
  3669. ggml_type type_KV = GGML_TYPE_F16, std::array<int32_t, 4> permute = {0, 1, 2, 3})
  3670. : hsk(hsk), hsv(hsv), nh(nh), nr23(nr23), kv(kv), nb(nb), mask(mask), max_bias(max_bias), logit_softcap(logit_softcap), prec(prec), type_KV(type_KV), permute(permute) {}
  3671. ggml_tensor * build_graph(ggml_context * ctx) override {
  3672. const int64_t hsk_padded = GGML_PAD(hsk, ggml_blck_size(type_KV));
  3673. const int64_t hsv_padded = GGML_PAD(hsv, ggml_blck_size(type_KV));
  3674. auto const &create_permuted = [&](ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3, bool is_view) -> ggml_tensor * {
  3675. int64_t ne[4] = {ne0, ne1, ne2, ne3};
  3676. int64_t ne_perm[4];
  3677. for (int i = 0; i < 4; ++i) {
  3678. ne_perm[permute[i]] = ne[i];
  3679. }
  3680. ggml_tensor * t;
  3681. if (is_view) {
  3682. ggml_tensor * t0 = ggml_new_tensor_4d(ctx, type, ne_perm[0], 2*ne_perm[1], ne_perm[2], ne_perm[3]);
  3683. t = ggml_view_4d(ctx, t0, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3], t0->nb[1], t0->nb[2], t0->nb[3], 0);
  3684. } else {
  3685. t = ggml_new_tensor_4d(ctx, type, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3]);
  3686. }
  3687. if (permute != std::array<int32_t, 4>{0, 1, 2, 3}) {
  3688. t = ggml_permute(ctx, t, permute[0], permute[1], permute[2], permute[3]);
  3689. }
  3690. return t;
  3691. };
  3692. ggml_tensor * q = create_permuted(GGML_TYPE_F32, hsk_padded, nb, nh*nr23[0], nr23[1], false);
  3693. ggml_set_name(q, "q");
  3694. ggml_tensor * k = create_permuted(type_KV, hsk_padded, kv, nh, nr23[1], true); // the K tensor is usually a view of the K cache
  3695. ggml_set_name(k, "k");
  3696. ggml_tensor * v = create_permuted(type_KV, hsv_padded, kv, nh, nr23[1], true); // the V tensor is usually a view of the V cache
  3697. ggml_set_name(v, "v");
  3698. ggml_tensor * m = nullptr;
  3699. if (mask) {
  3700. m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, nr23[1]);
  3701. ggml_set_name(m, "m");
  3702. }
  3703. ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hsk), max_bias, logit_softcap);
  3704. ggml_flash_attn_ext_set_prec(out, prec);
  3705. ggml_set_name(out, "out");
  3706. return out;
  3707. }
  3708. bool grad_precise() override {
  3709. return true;
  3710. }
  3711. };
  3712. // GGML_OP_CROSS_ENTROPY_LOSS
  3713. struct test_cross_entropy_loss : public test_case {
  3714. const ggml_type type;
  3715. const std::array<int64_t, 4> ne;
  3716. std::string vars() override {
  3717. return VARS_TO_STR2(type, ne);
  3718. }
  3719. test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32,
  3720. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3721. : type(type), ne(ne) {}
  3722. ggml_tensor * build_graph(ggml_context * ctx) override {
  3723. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  3724. ggml_set_param(logits);
  3725. ggml_set_name(logits, "logits");
  3726. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  3727. // The labels are assumed to be constant -> no gradients.
  3728. ggml_set_name(labels, "labels");
  3729. // Ensure labels add up to 1:
  3730. labels = ggml_soft_max(ctx, labels);
  3731. ggml_set_name(labels, "labels_normalized");
  3732. ggml_tensor * out = ggml_cross_entropy_loss(ctx, logits, labels);
  3733. ggml_set_name(out, "out");
  3734. return out;
  3735. }
  3736. void initialize_tensors(ggml_context * ctx) override {
  3737. // For larger abs. diffs between logits softmax is more linear, therefore more precise num. gradients.
  3738. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3739. init_tensor_uniform(t, -100.0f, 100.0f);
  3740. }
  3741. }
  3742. float grad_eps() override {
  3743. return 1.0f;
  3744. }
  3745. bool grad_precise() override {
  3746. return true;
  3747. }
  3748. };
  3749. // GGML_OP_CROSS_ENTROPY_LOSS_BACK
  3750. struct test_cross_entropy_loss_back : public test_case {
  3751. const ggml_type type;
  3752. const std::array<int64_t, 4> ne;
  3753. std::string vars() override {
  3754. return VARS_TO_STR2(type, ne);
  3755. }
  3756. test_cross_entropy_loss_back(ggml_type type = GGML_TYPE_F32,
  3757. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3758. : type(type), ne(ne) {}
  3759. ggml_tensor * build_graph(ggml_context * ctx) override {
  3760. ggml_tensor * grad = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3761. ggml_set_name(grad, "grad");
  3762. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  3763. ggml_set_name(logits, "logits");
  3764. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  3765. ggml_set_name(labels, "labels");
  3766. // Ensure labels add up to 1:
  3767. labels = ggml_soft_max(ctx, labels);
  3768. ggml_set_name(labels, "labels_normalized");
  3769. ggml_tensor * out = ggml_cross_entropy_loss_back(ctx, grad, logits, labels);
  3770. ggml_set_name(out, "out");
  3771. return out;
  3772. }
  3773. };
  3774. // GGML_OP_OPT_STEP_ADAMW
  3775. struct test_opt_step_adamw : public test_case {
  3776. const ggml_type type;
  3777. const std::array<int64_t, 4> ne;
  3778. std::string vars() override {
  3779. return VARS_TO_STR2(type, ne);
  3780. }
  3781. test_opt_step_adamw(ggml_type type = GGML_TYPE_F32,
  3782. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3783. : type(type), ne(ne) {}
  3784. ggml_tensor * build_graph(ggml_context * ctx) override {
  3785. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  3786. ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
  3787. ggml_set_name(a, "a");
  3788. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  3789. ggml_set_name(grad, "grad");
  3790. ggml_tensor * grad_m = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  3791. ggml_set_name(grad_m, "grad_m");
  3792. ggml_tensor * grad_v = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  3793. ggml_set_name(grad_v, "grad_v");
  3794. ggml_tensor * adamw_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7);
  3795. ggml_set_name(adamw_params, "adamw_params");
  3796. ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, grad_m, grad_v, adamw_params);
  3797. ggml_set_name(out, "out");
  3798. return out;
  3799. }
  3800. void initialize_tensors(ggml_context * ctx) override {
  3801. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3802. init_tensor_uniform(t, 0.0f, 1.0f); // grad_v and adamw_params need non-negative values.
  3803. }
  3804. }
  3805. bool grad_precise() override {
  3806. return true;
  3807. }
  3808. };
  3809. enum llm_norm_type {
  3810. LLM_NORM,
  3811. LLM_NORM_RMS,
  3812. };
  3813. struct llama_hparams {
  3814. uint32_t n_vocab;
  3815. uint32_t n_embd;
  3816. uint32_t n_head;
  3817. uint32_t n_head_kv;
  3818. static constexpr uint32_t n_layer = 1;
  3819. uint32_t n_rot;
  3820. uint32_t n_embd_head; // dimension of values (d_v)
  3821. uint32_t n_ff;
  3822. float f_norm_eps;
  3823. float f_norm_rms_eps;
  3824. // cparams
  3825. static constexpr uint32_t n_ctx = 512; // user-specified context size
  3826. static constexpr uint32_t n_ctx_orig = n_ctx;
  3827. // batch
  3828. int32_t n_tokens;
  3829. // llm_build_context
  3830. static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
  3831. static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
  3832. uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
  3833. return n_embd_head * n_head_kv;
  3834. }
  3835. };
  3836. // LLM base class
  3837. struct test_llm : public test_case {
  3838. llama_hparams hp;
  3839. protected:
  3840. test_llm(llama_hparams hp)
  3841. : hp(std::move(hp)) {
  3842. }
  3843. public:
  3844. struct ggml_tensor * llm_build_norm(
  3845. struct ggml_context * ctx,
  3846. struct ggml_tensor * cur,
  3847. struct ggml_tensor * mw,
  3848. struct ggml_tensor * mb,
  3849. llm_norm_type type) {
  3850. switch (type) {
  3851. case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
  3852. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
  3853. }
  3854. cur = ggml_mul(ctx, cur, mw);
  3855. if (mb) {
  3856. cur = ggml_add(ctx, cur, mb);
  3857. }
  3858. return cur;
  3859. }
  3860. void llm_build_kv_store(
  3861. struct ggml_context * ctx,
  3862. struct ggml_tensor * k_l,
  3863. struct ggml_tensor * v_l,
  3864. struct ggml_tensor * k_cur,
  3865. struct ggml_tensor * v_cur) {
  3866. // compute the transposed [n_tokens, n_embd] V matrix
  3867. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
  3868. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
  3869. (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
  3870. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
  3871. ( hp.n_ctx)*ggml_element_size(v_l),
  3872. (hp.kv_head)*ggml_element_size(v_l));
  3873. // important: storing RoPE-ed version of K in the KV cache!
  3874. ggml_cpy(ctx, k_cur, k_cache_view);
  3875. ggml_cpy(ctx, v_cur_t, v_cache_view);
  3876. }
  3877. struct ggml_tensor * llm_build_kqv(
  3878. struct ggml_context * ctx,
  3879. struct ggml_tensor * k_l,
  3880. struct ggml_tensor * v_l,
  3881. struct ggml_tensor * q_cur,
  3882. struct ggml_tensor * kq_mask,
  3883. float kq_scale) {
  3884. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  3885. struct ggml_tensor * k =
  3886. ggml_view_3d(ctx, k_l,
  3887. hp.n_embd_head, hp.n_kv, hp.n_head_kv,
  3888. ggml_row_size(k_l->type, hp.n_embd_gqa()),
  3889. ggml_row_size(k_l->type, hp.n_embd_head),
  3890. 0);
  3891. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  3892. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
  3893. // split cached v into n_head heads
  3894. struct ggml_tensor * v =
  3895. ggml_view_3d(ctx, v_l,
  3896. hp.n_kv, hp.n_embd_head, hp.n_head_kv,
  3897. ggml_element_size(v_l)*hp.n_ctx,
  3898. ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
  3899. 0);
  3900. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  3901. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  3902. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
  3903. struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  3904. cur = ggml_mul_mat(ctx, wo, cur);
  3905. return cur;
  3906. }
  3907. void initialize_tensors(ggml_context * ctx) override {
  3908. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3909. if (t->type == GGML_TYPE_I32) {
  3910. // pos
  3911. std::vector<int> data(hp.n_tokens);
  3912. for (int i = 0; i < hp.n_tokens; i++) {
  3913. data[i] = rand() % hp.n_ctx;
  3914. }
  3915. ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
  3916. } else {
  3917. init_tensor_uniform(t);
  3918. }
  3919. }
  3920. }
  3921. };
  3922. // Llama
  3923. struct test_llama : public test_llm {
  3924. static constexpr float freq_base = 10000.0f;
  3925. static constexpr float freq_scale = 1.0f;
  3926. static constexpr float ext_factor = 0.0f;
  3927. static constexpr float attn_factor = 1.0f;
  3928. static constexpr float beta_fast = 32.0f;
  3929. static constexpr float beta_slow = 1.0f;
  3930. bool fused;
  3931. std::string op_desc(ggml_tensor * t) override {
  3932. GGML_UNUSED(t);
  3933. return "LLAMA";
  3934. }
  3935. std::string vars() override {
  3936. auto n_tokens = hp.n_tokens;
  3937. return VARS_TO_STR1(n_tokens);
  3938. }
  3939. double max_nmse_err() override {
  3940. return 2e-3;
  3941. }
  3942. bool run_whole_graph() override { return fused; }
  3943. test_llama(int n_tokens = 1, bool fused = false)
  3944. : test_llm({
  3945. /*n_vocab =*/ 32000,
  3946. /*n_embd =*/ 3200,
  3947. /*n_head =*/ 32,
  3948. /*n_head_kv =*/ 32,
  3949. /*n_rot =*/ 100,
  3950. /*n_embd_head =*/ 100,
  3951. /*n_ff =*/ 8640,
  3952. /*f_norm_eps =*/ 0.f,
  3953. /*f_norm_rms_eps =*/ 1e-5f,
  3954. /*n_tokens =*/ n_tokens,
  3955. })
  3956. , fused(fused)
  3957. {
  3958. }
  3959. ggml_tensor * build_graph(ggml_context * ctx) override {
  3960. struct ggml_tensor * cur;
  3961. struct ggml_tensor * inpL;
  3962. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  3963. // inp_pos - contains the positions
  3964. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  3965. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3966. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  3967. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  3968. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  3969. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  3970. struct ggml_tensor * inpSA = inpL;
  3971. // norm
  3972. ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3973. cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
  3974. // self-attention
  3975. {
  3976. ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  3977. ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  3978. ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  3979. // compute Q and K and RoPE them
  3980. struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
  3981. struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
  3982. struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
  3983. Qcur = ggml_rope_ext(
  3984. ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr,
  3985. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  3986. ext_factor, attn_factor, beta_fast, beta_slow
  3987. );
  3988. Kcur = ggml_rope_ext(
  3989. ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
  3990. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  3991. ext_factor, attn_factor, beta_fast, beta_slow
  3992. );
  3993. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  3994. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  3995. }
  3996. struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
  3997. // feed-forward network
  3998. ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3999. cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
  4000. ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  4001. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  4002. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  4003. struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
  4004. cur = ggml_mul_mat(ctx, ffn_gate, cur);
  4005. cur = ggml_silu(ctx, cur);
  4006. cur = ggml_mul(ctx, cur, tmp);
  4007. cur = ggml_mul_mat(ctx, ffn_down, cur);
  4008. cur = ggml_add(ctx, cur, ffn_inp);
  4009. // input for next layer
  4010. inpL = cur;
  4011. }
  4012. cur = inpL;
  4013. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4014. cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
  4015. // lm_head
  4016. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
  4017. cur = ggml_mul_mat(ctx, output, cur);
  4018. return cur;
  4019. }
  4020. };
  4021. // Falcon
  4022. struct test_falcon : public test_llm {
  4023. static constexpr float freq_base = 10000.0f;
  4024. static constexpr float freq_scale = 1.0f;
  4025. static constexpr float ext_factor = 0.0f;
  4026. static constexpr float attn_factor = 1.0f;
  4027. static constexpr float beta_fast = 32.0f;
  4028. static constexpr float beta_slow = 1.0f;
  4029. std::string op_desc(ggml_tensor * t) override {
  4030. GGML_UNUSED(t);
  4031. return "FALCON";
  4032. }
  4033. std::string vars() override {
  4034. auto n_tokens = hp.n_tokens;
  4035. return VARS_TO_STR1(n_tokens);
  4036. }
  4037. double max_nmse_err() override {
  4038. return 2e-3;
  4039. }
  4040. test_falcon(int n_tokens = 1)
  4041. : test_llm({
  4042. /*n_vocab =*/ 32000,
  4043. /*n_embd =*/ 3200,
  4044. /*n_head =*/ 50,
  4045. /*n_head_kv =*/ 1,
  4046. /*n_rot =*/ 64,
  4047. /*n_embd_head =*/ 64,
  4048. /*n_ff =*/ 8640,
  4049. /*f_norm_eps =*/ 1e-5f,
  4050. /*f_norm_rms_eps =*/ 0.f,
  4051. /*n_tokens =*/ n_tokens,
  4052. }) {
  4053. }
  4054. ggml_tensor * build_graph(ggml_context * ctx) override {
  4055. struct ggml_tensor * cur;
  4056. struct ggml_tensor * inpL;
  4057. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  4058. // inp_pos - contains the positions
  4059. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  4060. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  4061. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  4062. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  4063. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  4064. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  4065. // norm
  4066. ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4067. ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4068. ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
  4069. // self-attention
  4070. {
  4071. cur = attn_norm;
  4072. ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
  4073. cur = ggml_mul_mat(ctx, wqkv, cur);
  4074. struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
  4075. struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
  4076. struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
  4077. Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
  4078. Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
  4079. // using mode = 2 for neox mode
  4080. Qcur = ggml_rope_ext(
  4081. ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  4082. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  4083. );
  4084. Kcur = ggml_rope_ext(
  4085. ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  4086. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  4087. );
  4088. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  4089. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  4090. }
  4091. struct ggml_tensor * ffn_inp = cur;
  4092. // feed forward
  4093. {
  4094. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  4095. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  4096. cur = attn_norm;
  4097. cur = ggml_mul_mat(ctx, ffn_up, cur);
  4098. cur = ggml_gelu(ctx, cur);
  4099. cur = ggml_mul_mat(ctx, ffn_down, cur);
  4100. }
  4101. cur = ggml_add(ctx, cur, ffn_inp);
  4102. cur = ggml_add(ctx, cur, inpL);
  4103. // input for next layer
  4104. inpL = cur;
  4105. }
  4106. cur = inpL;
  4107. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4108. ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4109. cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
  4110. // lm_head
  4111. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
  4112. cur = ggml_mul_mat(ctx, output, cur);
  4113. return cur;
  4114. }
  4115. };
  4116. // ###########################################
  4117. // ## Section 3: GGML Op Test Instantiation ##
  4118. // ###########################################
  4119. static const ggml_type all_types[] = {
  4120. GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
  4121. GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
  4122. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  4123. GGML_TYPE_Q8_0,
  4124. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  4125. GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
  4126. GGML_TYPE_Q6_K,
  4127. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  4128. GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  4129. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  4130. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  4131. };
  4132. static const ggml_type base_types[] = {
  4133. GGML_TYPE_F32, GGML_TYPE_F16,
  4134. GGML_TYPE_Q8_0, // for I8MM tests
  4135. GGML_TYPE_Q4_0,
  4136. GGML_TYPE_Q4_1, // for I8MM tests
  4137. GGML_TYPE_Q4_K,
  4138. GGML_TYPE_IQ2_XXS
  4139. };
  4140. static const ggml_type other_types[] = {
  4141. GGML_TYPE_Q4_1,
  4142. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  4143. GGML_TYPE_Q8_0,
  4144. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  4145. GGML_TYPE_Q5_K,
  4146. GGML_TYPE_Q6_K,
  4147. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  4148. GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  4149. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  4150. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  4151. GGML_TYPE_BF16,
  4152. };
  4153. // Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low
  4154. static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
  4155. std::vector<std::unique_ptr<test_case>> test_cases;
  4156. std::default_random_engine rng(0);
  4157. // unary ops
  4158. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  4159. for (int v : {0, 1}) {
  4160. for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
  4161. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 128, 2, 2, 2 }, v));
  4162. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 5, 7, 11, 13 }, v));
  4163. }
  4164. }
  4165. }
  4166. // glu ops
  4167. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  4168. for (int v : {0, 1}) {
  4169. for (int op = 0; op < GGML_GLU_OP_COUNT; op++) {
  4170. for (bool swapped : {false, true}) {
  4171. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v, swapped));
  4172. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v, swapped));
  4173. }
  4174. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v));
  4175. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v));
  4176. }
  4177. }
  4178. }
  4179. test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));
  4180. for (ggml_type type : all_types) {
  4181. for (int b : {1, 7}) {
  4182. for (bool v : {false, true}) {
  4183. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, v));
  4184. }
  4185. }
  4186. }
  4187. for (int b : {1, 7}) {
  4188. for (bool v : {false, true}) {
  4189. test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, v));
  4190. }
  4191. }
  4192. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_F32, 1, 8, 2, 1, false));
  4193. for (ggml_type type : all_types) {
  4194. for (bool v : {false, true}) {
  4195. test_cases.emplace_back(new test_get_rows_back(type, 256, 5, 4, 1, v));
  4196. }
  4197. }
  4198. for (bool v : {false, true}) {
  4199. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_I32, 256, 5, 4, 1, v));
  4200. }
  4201. test_cases.emplace_back(new test_set_rows(GGML_TYPE_F32, { 1, 8, 1, 3 }, { 1, 1 }, 2, false));
  4202. for (ggml_type type : all_types) {
  4203. for (int b : {1, 7}) {
  4204. for (bool v : {false, true}) {
  4205. test_cases.emplace_back(new test_set_rows(type, { 256, 5, b, 3 }, { 1, 1, }, 1, v));
  4206. test_cases.emplace_back(new test_set_rows(type, { 256, 11, 1, b }, { 2, 3, }, 7, v));
  4207. test_cases.emplace_back(new test_set_rows(type, { 3*ggml_blck_size(type), 3, b, 1 }, { 2, 3, }, 2, v));
  4208. if (ggml_blck_size(type) == 1) {
  4209. test_cases.emplace_back(new test_set_rows(type, { 31, 3, b, 1 }, { 2, 3, }, 2, v));
  4210. test_cases.emplace_back(new test_set_rows(type, { 33, 5, 1, b }, { 2, 3, }, 1, v));
  4211. }
  4212. }
  4213. }
  4214. }
  4215. for (ggml_type type_input : {GGML_TYPE_F32}) {
  4216. for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
  4217. for (int k0 : {1, 3}) {
  4218. for (int k1 : {1, 3}) {
  4219. for (int s0 : {1, 2}) {
  4220. for (int s1 : {1, 2}) {
  4221. for (int p0 : {0, 1}) {
  4222. for (int p1 : {0, 1}) {
  4223. test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
  4224. }
  4225. }
  4226. }
  4227. }
  4228. }
  4229. }
  4230. }
  4231. }
  4232. // im2col 1D
  4233. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  4234. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  4235. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  4236. for (int s0 : {1, 3}) {
  4237. for (int p0 : {0, 3}) {
  4238. for (int d0 : {1, 3}) {
  4239. test_cases.emplace_back(new test_im2col(
  4240. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1},
  4241. s0, 0, p0, 0, d0, 0, false));
  4242. }
  4243. }
  4244. }
  4245. // im2col 2D
  4246. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  4247. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  4248. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  4249. for (int s0 : {1, 3}) {
  4250. for (int s1 : {1, 3}) {
  4251. for (int p0 : {0, 3}) {
  4252. for (int p1 : {0, 3}) {
  4253. for (int d0 : {1, 3}) {
  4254. for (int d1 : {1, 3}) {
  4255. test_cases.emplace_back(new test_im2col(
  4256. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2},
  4257. s0, s1, p0, p1, d0, d1, true));
  4258. }
  4259. }
  4260. }
  4261. }
  4262. }
  4263. }
  4264. // extra tests for im2col 2D
  4265. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true));
  4266. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true));
  4267. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true));
  4268. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true));
  4269. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true));
  4270. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true));
  4271. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true));
  4272. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true));
  4273. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {5, 5, 1, 32}, {3, 4, 1, 32}, 1, 1, 0, 0, 1, 1, true));
  4274. // Conv_2D test cases
  4275. #ifdef DETAILED_TESTS
  4276. // Probably we do not have enough time to execute these in the pipeline.
  4277. uint32_t iwh_idx = 0;
  4278. uint32_t kwh_idx = 1;
  4279. uint32_t Cout_idx = 2;
  4280. uint32_t Cin_idx = 3;
  4281. uint32_t B_idx = 4;
  4282. std::vector<std::array<int, 5>> cases = {
  4283. //{IWH, KWH, Cout, Cin, B}
  4284. // K=CRS=NPQ=4096 conv_2d matmul performance
  4285. {19, 4, 4096, 256, 16},
  4286. // K=128, CRS=128, NPQ=4096
  4287. { 19, 4, 128, 8, 16},
  4288. // K=130, CRS=128, NPQ=4096
  4289. { 19, 4, 130, 8, 16},
  4290. // Edge case: K x CRS is small
  4291. { 19, 2, 4, 4, 16},
  4292. // A ConvNet's first layer
  4293. { 224, 3, 8, 3, 1 },
  4294. // A ConvNet's first layer with 2x2 convolution, and 1 channel
  4295. { 224, 2, 8, 1, 1 },
  4296. // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch
  4297. { 224, 2, 8, 1, 8 },
  4298. // A middle layer of a ConvNet
  4299. { 58, 3, 64, 32, 1 },
  4300. // A middle layer of a ConvNet, several images in the batch
  4301. { 58, 3, 64, 32, 8 },
  4302. // A deep layer of a ConvNet, several images in the batch
  4303. { 16, 3, 256, 128, 8 }
  4304. };
  4305. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  4306. for (auto act_case : cases) {
  4307. test_cases.emplace_back(new test_conv_2d(
  4308. { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] },
  4309. { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] },
  4310. kernel_type, 1, 1, 0, 0, 1, 1, false));
  4311. }
  4312. }
  4313. #endif
  4314. // CONV_2D:
  4315. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  4316. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4317. };
  4318. //uint32_t s0 = 3;
  4319. uint32_t s1 = 5;
  4320. uint32_t p0 = 5;
  4321. //uint32_t p1 = 2;
  4322. uint32_t d0 = 2;
  4323. uint32_t d1 = 4;
  4324. for (uint32_t s0 : { 1, 3 }) {
  4325. for (uint32_t p1 : { 2, 5 }) {
  4326. for (uint32_t Cin : { 1, 25 }) {
  4327. for (uint32_t Cout : { 1, 12 }) {
  4328. for (uint32_t KH : { 1, 2, 3, 11 }) {
  4329. for (uint32_t KW : { 1, 2, 3, 11 }) {
  4330. for (uint32_t H : { 1, 133 }) {
  4331. for (uint32_t W : { 1, 141 }) {
  4332. if (calc_conv_output_size(W, KW, s0, p0, d0) > 0 &&
  4333. calc_conv_output_size(H, KH, s1, p1, d1) > 0) {
  4334. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  4335. test_cases.emplace_back(new test_conv_2d(
  4336. { W, H, Cin, 2 }, { KW, KH, Cin, Cout }, kernel_type, s0, s1, p0, p1, d0, d1, false));
  4337. }
  4338. }
  4339. }
  4340. }
  4341. }
  4342. }
  4343. }
  4344. }
  4345. }
  4346. }
  4347. // sycl backend will limit task global_range < MAX_INT
  4348. // test cases for 2D im2col with large input W and H (occurs in stable-diffusion)
  4349. // however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  4350. // these cases are verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  4351. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  4352. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  4353. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, false));
  4354. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, true));
  4355. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, false));
  4356. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, true));
  4357. for(uint32_t Cout : {1, 9}){
  4358. for(uint32_t Cin : {1, 7}){
  4359. for(uint32_t K : {1, 3, 1337}){
  4360. for(uint32_t L : {1, 2, 13}){
  4361. for(uint32_t s0: {1, 2, 3}){
  4362. test_cases.emplace_back(new test_conv_transpose_1d({L,Cin,1,1}, {K,Cout,Cin,1}, s0, 0, 1));
  4363. }
  4364. }
  4365. }
  4366. }
  4367. }
  4368. test_cases.emplace_back(new test_conv_transpose_1d());
  4369. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
  4370. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
  4371. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
  4372. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
  4373. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
  4374. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
  4375. test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
  4376. test_cases.emplace_back(new test_conv_transpose_2d({3, 2, 3, 1}, {2, 2, 1, 3}, 1));
  4377. test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
  4378. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 500, 1, 1}));
  4379. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 5000, 1, 1}));
  4380. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1}));
  4381. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1}));
  4382. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  4383. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 12, 1, 1}));
  4384. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));
  4385. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {5438, 3, 1, 1}));
  4386. for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
  4387. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1}));
  4388. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  4389. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1}));
  4390. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1}));
  4391. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  4392. test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  4393. test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  4394. }
  4395. for (bool view : {false, true}) {
  4396. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 1}, view));
  4397. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {2, 1, 1, 1}, view));
  4398. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 2, 1, 1}, view));
  4399. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 2, 1}, view));
  4400. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 2}, view));
  4401. }
  4402. test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
  4403. test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
  4404. test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
  4405. test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
  4406. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
  4407. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
  4408. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
  4409. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
  4410. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
  4411. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
  4412. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  4413. test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
  4414. }
  4415. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  4416. test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
  4417. }
  4418. // same-type copy
  4419. for (ggml_type type : all_types) {
  4420. const auto nk = ggml_blck_size(type);
  4421. for (int k = 1; k < 4; ++k) {
  4422. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}));
  4423. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 2, 1, 3}));
  4424. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 3, 1, 2}, {0, 2, 1, 3}));
  4425. }
  4426. }
  4427. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  4428. for (ggml_type type_dst : all_types) {
  4429. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  4430. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  4431. }
  4432. }
  4433. for (ggml_type type_src : all_types) {
  4434. for (ggml_type type_dst : {GGML_TYPE_F32}) {
  4435. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  4436. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  4437. }
  4438. }
  4439. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  4440. for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  4441. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
  4442. }
  4443. }
  4444. test_cases.emplace_back(new test_cont());
  4445. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 1 ,1}));
  4446. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 3 ,5}));
  4447. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 3, 5 ,7}));
  4448. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 1 ,1}));
  4449. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 3 ,5}));
  4450. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 3, 5 ,7}));
  4451. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 1 ,1}));
  4452. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 3 ,5}));
  4453. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 3, 5 ,7}));
  4454. auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
  4455. for (auto op : {ggml_add, ggml_sub, ggml_mul, ggml_div}) {
  4456. test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
  4457. }
  4458. };
  4459. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  4460. add_test_bin_bcast(type, {1, 1, 8, 1}, {1, 1, 1, 1});
  4461. add_test_bin_bcast(type, {1, 1, 1, 1}, {32, 1, 1, 1});
  4462. add_test_bin_bcast(type, {1, 1, 320, 320}, {1, 1, 1, 1});
  4463. add_test_bin_bcast(type, {10, 5, 1, 1}, {1, 1, 1, 1});
  4464. add_test_bin_bcast(type, {10, 5, 4, 1}, {1, 1, 1, 1});
  4465. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 1});
  4466. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 1, 1, 1});
  4467. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 1, 1});
  4468. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 1});
  4469. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 2});
  4470. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 2});
  4471. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 2, 2});
  4472. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 2, 2, 2});
  4473. // stable diffusion
  4474. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 1, 1, 1});
  4475. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 16, 16, 1});
  4476. add_test_bin_bcast(type, {1280, 16, 16, 1}, {1, 1, 1, 1});
  4477. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 256, 1, 1});
  4478. add_test_bin_bcast(type, {1, 1, 1280, 1}, {16, 16, 1, 1});
  4479. add_test_bin_bcast(type, {16, 16, 1280, 1}, {1, 1, 1, 1});
  4480. add_test_bin_bcast(type, {1, 1, 1920, 1}, {16, 16, 1, 1});
  4481. add_test_bin_bcast(type, {1, 1, 2560, 1}, {16, 16, 1, 1});
  4482. add_test_bin_bcast(type, {1, 1, 1280, 1}, {32, 32, 1, 1});
  4483. add_test_bin_bcast(type, {1, 1, 1920, 1}, {32, 32, 1, 1});
  4484. add_test_bin_bcast(type, {1, 1, 640, 1}, {32, 32, 1, 1});
  4485. add_test_bin_bcast(type, {5120, 1, 1, 1}, {1, 256, 1, 1});
  4486. add_test_bin_bcast(type, {640, 1, 1, 1}, {1, 1, 1, 1});
  4487. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {1, 1, 1, 1});
  4488. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {2, 1, 1, 1});
  4489. }
  4490. // fusion
  4491. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {2, 1, 1, 1}, 2));
  4492. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 2, 1, 1}, 3));
  4493. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 1}, 4));
  4494. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 2}, 5));
  4495. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 2}, 6));
  4496. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 2, 2}, 7));
  4497. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {2, 2, 2, 2}, 8));
  4498. test_cases.emplace_back(new test_add1());
  4499. test_cases.emplace_back(new test_scale());
  4500. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f));
  4501. test_cases.emplace_back(new test_softcap(GGML_TYPE_F32, {10, 10, 10, 10}, 50.0f));
  4502. test_cases.emplace_back(new test_silu_back());
  4503. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {
  4504. for (bool v : {false, true}) {
  4505. test_cases.emplace_back(new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  4506. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  4507. }
  4508. test_cases.emplace_back(new test_rms_norm_back(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  4509. test_cases.emplace_back(new test_l2_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  4510. }
  4511. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f, 1.0f}) {
  4512. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  4513. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true));
  4514. }
  4515. test_cases.emplace_back(new test_l2_norm(GGML_TYPE_F32, {64, 5, 4, 3}, 1e-12f));
  4516. for (int64_t d_conv : {3, 4}) {
  4517. for (int64_t d_inner: {1024, 1536, 2048}) {
  4518. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, d_inner, 1, 1}, {d_conv, d_inner, 1, 1}));
  4519. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, d_inner, 1, 1}, {d_conv, d_inner, 1, 1}));
  4520. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, d_inner, 4, 1}, {d_conv, d_inner, 1, 1}));
  4521. }
  4522. }
  4523. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1, 1024, 1, 32, 4)); // Mamba-1
  4524. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 128, 64, 16, 2, 32, 4)); // Mamba-2
  4525. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 256, 64, 8, 2, 32, 4)); // Falcon-H1
  4526. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1));
  4527. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1));
  4528. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4));
  4529. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4));
  4530. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 1, 1));
  4531. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 1));
  4532. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 4));
  4533. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 128, 4));
  4534. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 1, 1));
  4535. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 1));
  4536. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 4));
  4537. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 128, 4));
  4538. for (ggml_type type_a : all_types) {
  4539. for (int i = 1; i < 10; ++i) {
  4540. test_cases.emplace_back(new test_mul_mat(type_a, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  4541. }
  4542. }
  4543. #if 1
  4544. for (ggml_type type_a : base_types) {
  4545. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  4546. std::vector<int> ks = { 256 };
  4547. if (ggml_blck_size(type_a) == 1) {
  4548. ks.push_back(4);
  4549. }
  4550. for (auto k : ks) {
  4551. // test cases without permutation
  4552. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 1}));
  4553. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {2, 1}));
  4554. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 2}));
  4555. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {1, 1}));
  4556. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {2, 1}));
  4557. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 1}));
  4558. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 1}));
  4559. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 2}));
  4560. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 2}));
  4561. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 1}));
  4562. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {2, 1}));
  4563. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 2}));
  4564. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {1, 1}));
  4565. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {2, 1}));
  4566. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 1}));
  4567. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 1}));
  4568. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 2}));
  4569. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 2}));
  4570. // test cases with permutation
  4571. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  4572. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  4573. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  4574. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  4575. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  4576. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  4577. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  4578. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  4579. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  4580. }
  4581. // test cases with large ne00/ne10 to cover stream-k fixup
  4582. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 1024, {3, 2}, {1, 1}));
  4583. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 1024, {3, 2}, {1, 1}));
  4584. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 1024, {3, 2}, {1, 1}));
  4585. }
  4586. }
  4587. for (ggml_type type_a : other_types) {
  4588. for (ggml_type type_b : {GGML_TYPE_F32}) {
  4589. if (ggml_blck_size(type_a) != 256) {
  4590. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
  4591. }
  4592. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
  4593. }
  4594. }
  4595. #else
  4596. // m = a rows
  4597. // n = b rows
  4598. // k = cols
  4599. std::uniform_int_distribution<> dist_m(1, 128);
  4600. std::uniform_int_distribution<> dist_n(16, 128);
  4601. std::uniform_int_distribution<> dist_k(1, 16);
  4602. for (int i = 0; i < 1000; i++) {
  4603. for (ggml_type type_a : all_types) {
  4604. for (ggml_type type_b : {GGML_TYPE_F32}) {
  4605. int m = dist_m(rng);
  4606. int n = dist_n(rng);
  4607. int k = dist_k(rng) * ggml_blck_size(type_a);
  4608. test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1}));
  4609. }
  4610. }
  4611. }
  4612. #endif
  4613. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
  4614. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
  4615. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
  4616. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
  4617. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
  4618. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
  4619. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 193, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  4620. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 67, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  4621. for (auto bs2 : {1,3}) {
  4622. for (auto bs : {1,2,4,8}) {
  4623. for (auto nr : {1,4}) {
  4624. for (uint32_t m = 0; m < 2; ++m) {
  4625. for (uint32_t k = 0; k < 2; ++k) {
  4626. for (ggml_type type: {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  4627. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 1056 + m, 1, 128 + k, {bs, bs2}, {nr, 1}, {0, 2, 1, 3}));
  4628. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 128 + m, 1, 1056 + k, {bs, bs2}, {nr, 1}, {0, 1, 2, 3}, true));
  4629. }
  4630. }
  4631. }
  4632. }
  4633. }
  4634. }
  4635. // sycl backend will limit task global_range < MAX_INT
  4636. // test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion)
  4637. // however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  4638. // this case is verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  4639. // test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1}));
  4640. // test large experts*tokens
  4641. for (bool b : {false, true}) {
  4642. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 32, 1024, 16));
  4643. }
  4644. for (ggml_type type_a : base_types) {
  4645. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  4646. for (int n_mats : {4, 8}) {
  4647. for (int n_used : {1, 2, 4}) {
  4648. for (bool b : {false, true}) {
  4649. for (int n : {1, 32, 129}) {
  4650. int m = 512;
  4651. int k = 256;
  4652. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  4653. }
  4654. }
  4655. }
  4656. }
  4657. }
  4658. }
  4659. for (ggml_type type_a : other_types) {
  4660. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  4661. for (int n_mats : {4}) {
  4662. for (int n_used : {2}) {
  4663. for (bool b : {false}) {
  4664. for (int n : {1, 32}) {
  4665. int m = 512;
  4666. int k = 256;
  4667. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  4668. }
  4669. }
  4670. }
  4671. }
  4672. }
  4673. }
  4674. for (ggml_type type_a : base_types) {
  4675. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  4676. for (int n : {1, 16}) {
  4677. for (int k : {1, 16}) {
  4678. for (int bs2 : {1, 3}) {
  4679. for (int bs3 : {1, 3}) {
  4680. for (int nr2 : {1, 2}) {
  4681. for (int nr3 : {1, 2}) {
  4682. test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, n, k, {bs2, bs3}, {nr2, nr3}));
  4683. }
  4684. }
  4685. }
  4686. }
  4687. }
  4688. }
  4689. }
  4690. }
  4691. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  4692. test_cases.emplace_back(new test_sqr(type));
  4693. test_cases.emplace_back(new test_sqrt(type));
  4694. test_cases.emplace_back(new test_log(type));
  4695. test_cases.emplace_back(new test_sin(type));
  4696. test_cases.emplace_back(new test_cos(type));
  4697. test_cases.emplace_back(new test_clamp(type));
  4698. }
  4699. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
  4700. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5));
  4701. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5));
  4702. #if 0
  4703. std::uniform_int_distribution<> dist_ne1(1, 50);
  4704. int exponent = 1;
  4705. while (exponent < (1 << 17)) {
  4706. std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
  4707. for (int n = 0; n < 10; ++n) {
  4708. int64_t ne0 = dist_ne0(rng);
  4709. int64_t ne1 = dist_ne1(rng);
  4710. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
  4711. }
  4712. exponent <<= 1;
  4713. }
  4714. #endif
  4715. for (bool mask : {false, true}) {
  4716. for (float max_bias : {0.0f, 8.0f}) {
  4717. if (!mask && max_bias > 0.0f) continue;
  4718. for (float scale : {1.0f, 0.1f}) {
  4719. for (int64_t ne0 : {16, 1024}) {
  4720. for (int64_t ne1 : {16, 1024}) {
  4721. if (mask) {
  4722. for (ggml_type m_prec : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  4723. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, m_prec, {1, 1}, scale, max_bias));
  4724. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, m_prec, {1, 1}, scale, max_bias));
  4725. if (ne0 <= 32 && ne1 <= 32) {
  4726. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 3}, mask, m_prec, {3, 1}, scale, max_bias));
  4727. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, m_prec, {2, 3}, scale, max_bias));
  4728. }
  4729. }
  4730. } else {
  4731. /* The precision of mask here doesn't matter as boolean mask is false */
  4732. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  4733. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  4734. }
  4735. }
  4736. }
  4737. }
  4738. }
  4739. }
  4740. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  4741. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  4742. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  4743. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  4744. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  4745. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, {1, 1}, 0.1f, 8.0f));
  4746. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, {1, 1}, 0.1f, 8.0f));
  4747. for (float max_bias : {0.0f, 8.0f}) {
  4748. for (float scale : {1.0f, 0.1f}) {
  4749. for (int64_t ne0 : {16, 1024}) {
  4750. for (int64_t ne1 : {16, 1024}) {
  4751. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 1, 1}, scale, max_bias));
  4752. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, scale, max_bias));
  4753. }
  4754. }
  4755. }
  4756. }
  4757. for (bool fw : {true, false}) { // fw == forward
  4758. bool all = true;
  4759. for (float fs : { 1.0f, 1.4245f }) {
  4760. for (float ef : { 0.0f, 0.7465f }) {
  4761. for (float af : { 1.0f, 1.4245f }) {
  4762. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  4763. for (bool ff : {false, true}) { // freq_factors
  4764. for (float v : { 0, 1 }) {
  4765. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 7B
  4766. if (all) {
  4767. test_cases.emplace_back(new test_rope(type, {128, 40, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 13B
  4768. test_cases.emplace_back(new test_rope(type, {128, 52, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 30B
  4769. test_cases.emplace_back(new test_rope(type, {128, 64, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 65B
  4770. }
  4771. if (all) {
  4772. test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  4773. test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  4774. test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  4775. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, 0, 512, fs, ef, af, ff, v, fw));
  4776. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, 0, 512, fs, ef, af, ff, v, fw));
  4777. test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, 0, 512, fs, ef, af, ff, v, fw));
  4778. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, 2, 512, fs, ef, af, ff, v, fw)); // neox (stablelm)
  4779. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, 2, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  4780. test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, 2, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  4781. }
  4782. if (all) {
  4783. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
  4784. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 7B)
  4785. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 20, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
  4786. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 32, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
  4787. test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
  4788. }
  4789. test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  4790. }
  4791. }
  4792. all = false;
  4793. }
  4794. }
  4795. }
  4796. }
  4797. }
  4798. for (int v : { 0, 1, 2, 3 }) {
  4799. for (int dim : { 0, 1, 2, 3, }) {
  4800. test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
  4801. test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
  4802. }
  4803. }
  4804. for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
  4805. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
  4806. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
  4807. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
  4808. }
  4809. for (ggml_scale_mode mode : {GGML_SCALE_MODE_NEAREST, GGML_SCALE_MODE_BILINEAR}) {
  4810. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode));
  4811. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode, true));
  4812. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, mode));
  4813. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {5, 7, 11, 13}, {2, 5, 7, 11}, mode));
  4814. }
  4815. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ALIGN_CORNERS));
  4816. test_cases.emplace_back(new test_sum());
  4817. test_cases.emplace_back(new test_sum_rows());
  4818. test_cases.emplace_back(new test_mean());
  4819. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1}));
  4820. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
  4821. test_cases.emplace_back(new test_acc());
  4822. test_cases.emplace_back(new test_pad());
  4823. test_cases.emplace_back(new test_pad_reflect_1d());
  4824. test_cases.emplace_back(new test_roll());
  4825. test_cases.emplace_back(new test_arange());
  4826. test_cases.emplace_back(new test_timestep_embedding());
  4827. test_cases.emplace_back(new test_leaky_relu());
  4828. for (int hsk : { 64, 80, 128, 192, 256, 576 }) {
  4829. for (int hsv : { 64, 80, 128, 192, 256, 512 }) {
  4830. if (hsk != 192 && hsk != 576 && hsk != hsv) continue;
  4831. if (hsk == 192 && (hsv != 128 && hsv != 192)) continue;
  4832. if (hsk == 576 && hsv != 512) continue; // DeepSeek MLA
  4833. for (bool mask : { true, false } ) {
  4834. for (float max_bias : { 0.0f, 8.0f }) {
  4835. if (!mask && max_bias > 0.0f) continue;
  4836. for (float logit_softcap : {0.0f, 10.0f}) {
  4837. if (hsk != 128 && logit_softcap != 0.0f) continue;
  4838. for (int nh : { 4, }) {
  4839. for (int nr3 : { 1, 3, }) {
  4840. if (hsk > 64 && nr3 > 1) continue; // skip broadcast for large head sizes
  4841. for (int nr2 : { 1, 4, 16 }) {
  4842. if (nr2 == 16 && hsk != 128) continue;
  4843. for (int kv : { 512, 1024, }) {
  4844. if (nr2 != 1 && kv != 512) continue;
  4845. for (int nb : { 1, 3, 32, 35, }) {
  4846. for (ggml_prec prec : {GGML_PREC_F32, GGML_PREC_DEFAULT}) {
  4847. if (hsk != 128 && prec == GGML_PREC_DEFAULT) continue;
  4848. for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
  4849. test_cases.emplace_back(new test_flash_attn_ext(
  4850. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, max_bias, logit_softcap, prec, type_KV));
  4851. // run fewer test cases permuted
  4852. if (mask == true && max_bias == 0.0f && logit_softcap == 0 && kv == 512) {
  4853. test_cases.emplace_back(new test_flash_attn_ext(
  4854. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, max_bias, logit_softcap, prec, type_KV, {0, 2, 1, 3}));
  4855. }
  4856. }
  4857. }
  4858. }
  4859. }
  4860. }
  4861. }
  4862. }
  4863. }
  4864. }
  4865. }
  4866. }
  4867. }
  4868. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, { 10, 5, 4, 3}));
  4869. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, {30000, 1, 1, 1}));
  4870. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, { 10, 5, 4, 3}));
  4871. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, {30000, 1, 1, 1}));
  4872. test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
  4873. #if 0
  4874. // these tests are disabled to save execution time, sbut they can be handy for debugging
  4875. test_cases.emplace_back(new test_llama(2, true));
  4876. test_cases.emplace_back(new test_llama(1));
  4877. test_cases.emplace_back(new test_llama(2));
  4878. test_cases.emplace_back(new test_falcon(1));
  4879. test_cases.emplace_back(new test_falcon(2));
  4880. #endif
  4881. return test_cases;
  4882. }
  4883. // Test cases for performance evaluation: should be representative of real-world use cases
  4884. static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
  4885. std::vector<std::unique_ptr<test_case>> test_cases;
  4886. // Conv2d: K=CRS=NPQ=4096 matmul performance
  4887. uint32_t iwh_idx = 0;
  4888. uint32_t kwh_idx = 1;
  4889. uint32_t Cout_idx = 2;
  4890. uint32_t Cin_idx = 3;
  4891. uint32_t B_idx = 4;
  4892. std::vector<std::array<int, 5>> cases = {
  4893. //{IWH, KWH, Cout, Cin, B}
  4894. // K=CRS=NPQ=4096 conv2d matmul performance
  4895. {19, 4, 4096, 256, 16},
  4896. // K=128, CRS=128, NPQ=4096
  4897. { 19, 4, 128, 8, 16},
  4898. // K=130, CRS=128, NPQ=4096
  4899. { 19, 4, 130, 8, 16},
  4900. // Edge case: K x CRS is small
  4901. { 19, 2, 4, 4, 16},
  4902. // A ConvNet's first layer
  4903. { 224, 3, 8, 3, 1 },
  4904. // A ConvNet's first layer with 2x2 convolution, and 1 channel
  4905. { 224, 2, 8, 1, 1 },
  4906. // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch
  4907. { 224, 2, 8, 1, 8 },
  4908. // A middle layer of a ConvNet
  4909. { 58, 3, 64, 32, 1 },
  4910. // A middle layer of a ConvNet, several images in the batch
  4911. { 58, 3, 64, 32, 8 },
  4912. // A deep layer of a ConvNet, several images in the batch
  4913. { 16, 3, 512, 128, 8 },
  4914. };
  4915. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  4916. for (auto act_case : cases) {
  4917. // Direct CONV_2D
  4918. test_cases.emplace_back(new test_conv_2d(
  4919. { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] },
  4920. { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] },
  4921. kernel_type, 1, 1, 0, 0, 1, 1, false));
  4922. }
  4923. }
  4924. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1}));
  4925. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));
  4926. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
  4927. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
  4928. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
  4929. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  4930. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {12888, 256, 5, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  4931. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  4932. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  4933. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  4934. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  4935. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  4936. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  4937. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
  4938. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  4939. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
  4940. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 16416, 1, 128, {8, 1}, {4, 1}, {0, 2, 1, 3}));
  4941. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 1, 16416, {8, 1}, {4, 1}, {0, 1, 2, 3}, true));
  4942. for (int bs : {1, 2, 3, 4, 5, 8, 512}) {
  4943. for (ggml_type type_a : all_types) {
  4944. for (ggml_type type_b : {GGML_TYPE_F32}) {
  4945. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1}));
  4946. }
  4947. }
  4948. }
  4949. for (int K : {3, 5}) {
  4950. for (int IC : {256, 2560}) {
  4951. for (int IW_IH : {32, 64, 256}) {
  4952. if (IC == 2560 && IW_IH == 256) {
  4953. // too big
  4954. continue;
  4955. }
  4956. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {IW_IH, IW_IH, IC, 1}, {K, K, IC, 1}, 1, 1, 1, 1, 1, 1, true));
  4957. }
  4958. }
  4959. }
  4960. for (int kv : { 4096, 8192, 16384, }) {
  4961. for (int hs : { 64, 128, }) {
  4962. for (int nr : { 1, 4, }) {
  4963. test_cases.emplace_back(new test_flash_attn_ext(hs, hs, 8, {nr, 1}, kv, 1, true, 0, 0, GGML_PREC_F32, GGML_TYPE_F16));
  4964. }
  4965. }
  4966. }
  4967. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, false));
  4968. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, true));
  4969. test_cases.emplace_back(new test_conv_transpose_2d({256, 256, 256, 1}, {3, 3, 16, 256}, 1));
  4970. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, {256, 256, 3, 1}));
  4971. return test_cases;
  4972. }
  4973. static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_names_filter, const char * params_filter,
  4974. printer * output_printer) {
  4975. auto filter_test_cases = [](std::vector<std::unique_ptr<test_case>> & test_cases, const char * params_filter) {
  4976. if (params_filter == nullptr) {
  4977. return;
  4978. }
  4979. std::regex params_filter_regex(params_filter);
  4980. for (auto it = test_cases.begin(); it != test_cases.end();) {
  4981. if (!std::regex_search((*it)->vars(), params_filter_regex)) {
  4982. it = test_cases.erase(it);
  4983. continue;
  4984. }
  4985. it++;
  4986. }
  4987. };
  4988. if (mode == MODE_TEST) {
  4989. auto test_cases = make_test_cases_eval();
  4990. filter_test_cases(test_cases, params_filter);
  4991. ggml_backend_t backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, NULL);
  4992. if (backend_cpu == NULL) {
  4993. test_operation_info info("", "", "CPU");
  4994. info.set_error("backend", "Failed to initialize CPU backend");
  4995. output_printer->print_operation(info);
  4996. return false;
  4997. }
  4998. size_t n_ok = 0;
  4999. for (auto & test : test_cases) {
  5000. if (test->eval(backend, backend_cpu, op_names_filter, output_printer)) {
  5001. n_ok++;
  5002. }
  5003. }
  5004. output_printer->print_summary(test_summary_info(n_ok, test_cases.size(), false));
  5005. ggml_backend_free(backend_cpu);
  5006. return n_ok == test_cases.size();
  5007. }
  5008. if (mode == MODE_GRAD) {
  5009. auto test_cases = make_test_cases_eval();
  5010. filter_test_cases(test_cases, params_filter);
  5011. size_t n_ok = 0;
  5012. for (auto & test : test_cases) {
  5013. if (test->eval_grad(backend, op_names_filter, output_printer)) {
  5014. n_ok++;
  5015. }
  5016. }
  5017. output_printer->print_summary(test_summary_info(n_ok, test_cases.size(), false));
  5018. return n_ok == test_cases.size();
  5019. }
  5020. if (mode == MODE_PERF) {
  5021. auto test_cases = make_test_cases_perf();
  5022. filter_test_cases(test_cases, params_filter);
  5023. for (auto & test : test_cases) {
  5024. test->eval_perf(backend, op_names_filter, output_printer);
  5025. }
  5026. return true;
  5027. }
  5028. if (mode == MODE_SUPPORT) {
  5029. auto test_cases = make_test_cases_eval();
  5030. filter_test_cases(test_cases, params_filter);
  5031. for (auto & test : test_cases) {
  5032. test->eval_support(backend, op_names_filter, output_printer);
  5033. }
  5034. return true;
  5035. }
  5036. GGML_ABORT("fatal error");
  5037. }
  5038. static void usage(char ** argv) {
  5039. printf("Usage: %s [mode] [-o <op,..>] [-b <backend>] [-p <params regex>] [--output <console|sql|csv>]\n", argv[0]);
  5040. printf(" valid modes:\n");
  5041. printf(" - test (default, compare with CPU backend for correctness)\n");
  5042. printf(" - grad (compare gradients from backpropagation with method of finite differences)\n");
  5043. printf(" - perf (performance evaluation)\n");
  5044. printf(" - support (probe backend operation support)\n");
  5045. printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc),\n");
  5046. printf(" optionally including the full test case string (e.g. \"ADD(type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1)\")\n");
  5047. printf(" --output specifies output format (default: console, options: console, sql, csv)\n");
  5048. }
  5049. int main(int argc, char ** argv) {
  5050. test_mode mode = MODE_TEST;
  5051. output_formats output_format = CONSOLE;
  5052. const char * op_names_filter = nullptr;
  5053. const char * backend_filter = nullptr;
  5054. const char * params_filter = nullptr;
  5055. for (int i = 1; i < argc; i++) {
  5056. if (strcmp(argv[i], "test") == 0) {
  5057. mode = MODE_TEST;
  5058. } else if (strcmp(argv[i], "perf") == 0) {
  5059. mode = MODE_PERF;
  5060. } else if (strcmp(argv[i], "grad") == 0) {
  5061. mode = MODE_GRAD;
  5062. } else if (strcmp(argv[i], "support") == 0) {
  5063. mode = MODE_SUPPORT;
  5064. } else if (strcmp(argv[i], "-o") == 0) {
  5065. if (i + 1 < argc) {
  5066. op_names_filter = argv[++i];
  5067. } else {
  5068. usage(argv);
  5069. return 1;
  5070. }
  5071. } else if (strcmp(argv[i], "-b") == 0) {
  5072. if (i + 1 < argc) {
  5073. backend_filter = argv[++i];
  5074. } else {
  5075. usage(argv);
  5076. return 1;
  5077. }
  5078. } else if (strcmp(argv[i], "-p") == 0) {
  5079. if (i + 1 < argc) {
  5080. params_filter = argv[++i];
  5081. } else {
  5082. usage(argv);
  5083. return 1;
  5084. }
  5085. } else if (strcmp(argv[i], "--output") == 0) {
  5086. if (i + 1 < argc) {
  5087. if (!output_format_from_str(argv[++i], output_format)) {
  5088. usage(argv);
  5089. return 1;
  5090. }
  5091. } else {
  5092. usage(argv);
  5093. return 1;
  5094. }
  5095. } else {
  5096. usage(argv);
  5097. return 1;
  5098. }
  5099. }
  5100. // load and enumerate backends
  5101. ggml_backend_load_all();
  5102. // Create printer for output format
  5103. std::unique_ptr<printer> output_printer = create_printer(output_format);
  5104. if (output_printer) {
  5105. output_printer->print_header();
  5106. }
  5107. output_printer->print_testing_start(testing_start_info(ggml_backend_dev_count()));
  5108. size_t n_ok = 0;
  5109. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  5110. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  5111. if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
  5112. output_printer->print_backend_init(
  5113. backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping"));
  5114. n_ok++;
  5115. continue;
  5116. }
  5117. if (backend_filter == NULL && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU && mode != MODE_GRAD) {
  5118. output_printer->print_backend_init(backend_init_info(
  5119. i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping CPU backend"));
  5120. n_ok++;
  5121. continue;
  5122. }
  5123. ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
  5124. GGML_ASSERT(backend != NULL);
  5125. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  5126. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  5127. if (ggml_backend_set_n_threads_fn) {
  5128. // TODO: better value for n_threads
  5129. ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency());
  5130. }
  5131. size_t free, total; // NOLINT
  5132. ggml_backend_dev_memory(dev, &free, &total);
  5133. output_printer->print_backend_init(backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev),
  5134. false, "", ggml_backend_dev_description(dev),
  5135. total / 1024 / 1024, free / 1024 / 1024, true));
  5136. bool ok = test_backend(backend, mode, op_names_filter, params_filter, output_printer.get());
  5137. if (ok) {
  5138. n_ok++;
  5139. }
  5140. output_printer->print_backend_status(
  5141. backend_status_info(ggml_backend_name(backend), ok ? test_status_t::OK : test_status_t::FAIL));
  5142. ggml_backend_free(backend);
  5143. }
  5144. ggml_quantize_free();
  5145. if (output_printer) {
  5146. output_printer->print_footer();
  5147. }
  5148. output_printer->print_overall_summary(
  5149. overall_summary_info(n_ok, ggml_backend_dev_count(), n_ok == ggml_backend_dev_count()));
  5150. if (n_ok != ggml_backend_dev_count()) {
  5151. return 1;
  5152. }
  5153. return 0;
  5154. }