ggml.c 327 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744
  1. // Defines CLOCK_MONOTONIC and asprintf on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. // if C99 - static_assert is noop
  20. // ref: https://stackoverflow.com/a/53923785/4039976
  21. #ifndef static_assert
  22. #define static_assert(cond, msg) struct global_scope_noop_trick
  23. #endif
  24. #if defined _MSC_VER || defined(__MINGW32__)
  25. #if !defined(__MINGW32__)
  26. #include <Windows.h>
  27. #else
  28. // ref: https://github.com/ggerganov/whisper.cpp/issues/168
  29. #include <windows.h>
  30. #endif
  31. typedef volatile LONG atomic_int;
  32. typedef atomic_int atomic_bool;
  33. static void atomic_store(atomic_int* ptr, LONG val) {
  34. InterlockedExchange(ptr, val);
  35. }
  36. static LONG atomic_load(atomic_int* ptr) {
  37. return InterlockedCompareExchange(ptr, 0, 0);
  38. }
  39. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  40. return InterlockedExchangeAdd(ptr, inc);
  41. }
  42. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  43. return atomic_fetch_add(ptr, -(dec));
  44. }
  45. typedef HANDLE pthread_t;
  46. typedef DWORD thread_ret_t;
  47. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  48. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  49. if (handle == NULL)
  50. {
  51. return EAGAIN;
  52. }
  53. *out = handle;
  54. return 0;
  55. }
  56. static int pthread_join(pthread_t thread, void* unused) {
  57. return (int) WaitForSingleObject(thread, INFINITE);
  58. }
  59. static int sched_yield (void) {
  60. Sleep (0);
  61. return 0;
  62. }
  63. #else
  64. #include <pthread.h>
  65. #include <stdatomic.h>
  66. typedef void* thread_ret_t;
  67. #endif
  68. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  69. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  70. #ifndef __FMA__
  71. #define __FMA__
  72. #endif
  73. #ifndef __F16C__
  74. #define __F16C__
  75. #endif
  76. #ifndef __SSE3__
  77. #define __SSE3__
  78. #endif
  79. #endif
  80. #ifdef __HAIKU__
  81. #define static_assert(cond, msg) _Static_assert(cond, msg)
  82. #endif
  83. #define GGML_MLOCK_SUPPORT 0
  84. #ifdef __has_include
  85. #if __has_include(<sys/mman.h>)
  86. #undef GGML_MLOCK_SUPPORT
  87. #define GGML_MLOCK_SUPPORT 1
  88. #include <sys/mman.h>
  89. #endif
  90. #endif
  91. /*#define GGML_PERF*/
  92. #define GGML_DEBUG 0
  93. #define GGML_GELU_FP16
  94. #define GGML_SILU_FP16
  95. #define GGML_SOFT_MAX_UNROLL 4
  96. #define GGML_VEC_DOT_UNROLL 2
  97. #ifdef GGML_USE_ACCELERATE
  98. // uncomment to use vDSP for soft max computation
  99. // note: not sure if it is actually faster
  100. //#define GGML_SOFT_MAX_ACCELERATE
  101. #endif
  102. #if UINTPTR_MAX == 0xFFFFFFFF
  103. #define GGML_MEM_ALIGN 4
  104. #else
  105. #define GGML_MEM_ALIGN 16
  106. #endif
  107. #define UNUSED(x) (void)(x)
  108. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  109. #define GGML_ASSERT(x) \
  110. do { \
  111. if (!(x)) { \
  112. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  113. abort(); \
  114. } \
  115. } while (0)
  116. #ifdef GGML_USE_ACCELERATE
  117. #include <Accelerate/Accelerate.h>
  118. #elif GGML_USE_OPENBLAS
  119. #include <cblas.h>
  120. #endif
  121. #undef MIN
  122. #undef MAX
  123. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  124. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  125. // floating point type used to accumulate sums
  126. typedef double ggml_float;
  127. // 16-bit float
  128. // on Arm, we use __fp16
  129. // on x86, we use uint16_t
  130. #ifdef __ARM_NEON
  131. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  132. //
  133. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  134. //
  135. #include <arm_neon.h>
  136. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  137. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  138. #define GGML_FP16_TO_FP32(x) ((float) (x))
  139. #define GGML_FP32_TO_FP16(x) (x)
  140. #else
  141. #ifdef __wasm_simd128__
  142. #include <wasm_simd128.h>
  143. #else
  144. #ifdef __POWER9_VECTOR__
  145. #include <altivec.h>
  146. #undef bool
  147. #define bool _Bool
  148. #else
  149. #include <immintrin.h>
  150. #endif
  151. #endif
  152. #ifdef __F16C__
  153. #ifdef _MSC_VER
  154. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  155. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  156. #else
  157. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  158. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  159. #endif
  160. #elif defined(__POWER9_VECTOR__)
  161. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  162. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  163. /* the inline asm below is about 12% faster than the lookup method */
  164. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  165. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  166. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  167. register float f;
  168. register double d;
  169. __asm__(
  170. "mtfprd %0,%2\n"
  171. "xscvhpdp %0,%0\n"
  172. "frsp %1,%0\n" :
  173. /* temp */ "=d"(d),
  174. /* out */ "=f"(f):
  175. /* in */ "r"(h));
  176. return f;
  177. }
  178. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  179. register double d;
  180. register ggml_fp16_t r;
  181. __asm__( /* xscvdphp can work on double or single precision */
  182. "xscvdphp %0,%2\n"
  183. "mffprd %1,%0\n" :
  184. /* temp */ "=d"(d),
  185. /* out */ "=r"(r):
  186. /* in */ "f"(f));
  187. return r;
  188. }
  189. #else
  190. // FP16 <-> FP32
  191. // ref: https://github.com/Maratyszcza/FP16
  192. static inline float fp32_from_bits(uint32_t w) {
  193. union {
  194. uint32_t as_bits;
  195. float as_value;
  196. } fp32;
  197. fp32.as_bits = w;
  198. return fp32.as_value;
  199. }
  200. static inline uint32_t fp32_to_bits(float f) {
  201. union {
  202. float as_value;
  203. uint32_t as_bits;
  204. } fp32;
  205. fp32.as_value = f;
  206. return fp32.as_bits;
  207. }
  208. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  209. const uint32_t w = (uint32_t) h << 16;
  210. const uint32_t sign = w & UINT32_C(0x80000000);
  211. const uint32_t two_w = w + w;
  212. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  213. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  214. const float exp_scale = 0x1.0p-112f;
  215. #else
  216. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  217. #endif
  218. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  219. const uint32_t magic_mask = UINT32_C(126) << 23;
  220. const float magic_bias = 0.5f;
  221. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  222. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  223. const uint32_t result = sign |
  224. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  225. return fp32_from_bits(result);
  226. }
  227. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  228. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  229. const float scale_to_inf = 0x1.0p+112f;
  230. const float scale_to_zero = 0x1.0p-110f;
  231. #else
  232. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  233. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  234. #endif
  235. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  236. const uint32_t w = fp32_to_bits(f);
  237. const uint32_t shl1_w = w + w;
  238. const uint32_t sign = w & UINT32_C(0x80000000);
  239. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  240. if (bias < UINT32_C(0x71000000)) {
  241. bias = UINT32_C(0x71000000);
  242. }
  243. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  244. const uint32_t bits = fp32_to_bits(base);
  245. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  246. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  247. const uint32_t nonsign = exp_bits + mantissa_bits;
  248. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  249. }
  250. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  251. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  252. #endif // __F16C__
  253. #endif // __ARM_NEON
  254. //
  255. // global data
  256. //
  257. // precomputed gelu table for f16 (128 KB)
  258. static ggml_fp16_t table_gelu_f16[1 << 16];
  259. // precomputed silu table for f16 (128 KB)
  260. static ggml_fp16_t table_silu_f16[1 << 16];
  261. // precomputed exp table for f16 (128 KB)
  262. static ggml_fp16_t table_exp_f16[1 << 16];
  263. // precomputed f32 table for f16 (256 KB)
  264. static float table_f32_f16[1 << 16];
  265. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  266. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  267. // This is also true for POWER9.
  268. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  269. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  270. uint16_t s;
  271. memcpy(&s, &f, sizeof(uint16_t));
  272. return table_f32_f16[s];
  273. }
  274. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  275. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  276. #endif
  277. // note: do not use these inside ggml.c
  278. // these are meant to be used via the ggml.h API
  279. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  280. return (float) GGML_FP16_TO_FP32(x);
  281. }
  282. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  283. return GGML_FP32_TO_FP16(x);
  284. }
  285. //
  286. // timing
  287. //
  288. #if defined(_MSC_VER) || defined(__MINGW32__)
  289. static int64_t timer_freq;
  290. void ggml_time_init(void) {
  291. LARGE_INTEGER frequency;
  292. QueryPerformanceFrequency(&frequency);
  293. timer_freq = frequency.QuadPart;
  294. }
  295. int64_t ggml_time_ms(void) {
  296. LARGE_INTEGER t;
  297. QueryPerformanceCounter(&t);
  298. return (t.QuadPart * 1000) / timer_freq;
  299. }
  300. int64_t ggml_time_us(void) {
  301. LARGE_INTEGER t;
  302. QueryPerformanceCounter(&t);
  303. return (t.QuadPart * 1000000) / timer_freq;
  304. }
  305. #else
  306. void ggml_time_init(void) {}
  307. int64_t ggml_time_ms(void) {
  308. struct timespec ts;
  309. clock_gettime(CLOCK_MONOTONIC, &ts);
  310. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  311. }
  312. int64_t ggml_time_us(void) {
  313. struct timespec ts;
  314. clock_gettime(CLOCK_MONOTONIC, &ts);
  315. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  316. }
  317. #endif
  318. int64_t ggml_cycles(void) {
  319. return clock();
  320. }
  321. int64_t ggml_cycles_per_ms(void) {
  322. return CLOCKS_PER_SEC/1000;
  323. }
  324. #ifdef GGML_PERF
  325. #define ggml_perf_time_ms() ggml_time_ms()
  326. #define ggml_perf_time_us() ggml_time_us()
  327. #define ggml_perf_cycles() ggml_cycles()
  328. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  329. #else
  330. #define ggml_perf_time_ms() 0
  331. #define ggml_perf_time_us() 0
  332. #define ggml_perf_cycles() 0
  333. #define ggml_perf_cycles_per_ms() 0
  334. #endif
  335. //
  336. // cache line
  337. //
  338. #if defined(__cpp_lib_hardware_interference_size)
  339. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  340. #else
  341. #if defined(__POWER9_VECTOR__)
  342. #define CACHE_LINE_SIZE 128
  343. #else
  344. #define CACHE_LINE_SIZE 64
  345. #endif
  346. #endif
  347. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  348. //
  349. // quantization
  350. //
  351. #define QK 32
  352. // AVX routines provided by GH user Const-me
  353. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  354. #if __AVX2__ || __AVX512F__
  355. // Unpack 32 4-bit fields into 32 bytes
  356. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  357. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  358. {
  359. // Load 16 bytes from memory
  360. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  361. // Expand bytes into uint16_t values
  362. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  363. // Unpack values into individual bytes
  364. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  365. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  366. __m256i low = _mm256_and_si256( lowMask, bytes );
  367. high = _mm256_slli_epi16( high, 4 );
  368. bytes = _mm256_or_si256( low, high );
  369. return bytes;
  370. }
  371. static inline __m128i packNibbles( __m256i bytes )
  372. {
  373. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  374. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  375. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  376. __m256i low = _mm256_and_si256( lowByte, bytes );
  377. high = _mm256_srli_epi16( high, 4 );
  378. bytes = _mm256_or_si256( low, high );
  379. // Compress uint16_t lanes into bytes
  380. __m128i r0 = _mm256_castsi256_si128( bytes );
  381. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  382. return _mm_packus_epi16( r0, r1 );
  383. }
  384. #elif __AVX__
  385. static inline __m128i bytesFromNibbles( const uint8_t* rsi )
  386. {
  387. // Load 8 bytes from memory
  388. __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
  389. // Expand bytes into uint16_t values
  390. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  391. // Unpack values into individual bytes
  392. const __m128i lowMask = _mm_set1_epi8( 0xF );
  393. __m128i high = _mm_andnot_si128( lowMask, bytes );
  394. __m128i low = _mm_and_si128( lowMask, bytes );
  395. high = _mm_slli_epi16( high, 4 );
  396. bytes = _mm_or_si128( low, high );
  397. return bytes;
  398. }
  399. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  400. {
  401. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  402. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  403. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  404. __m128i low = _mm_and_si128( lowByte, bytes1 );
  405. high = _mm_srli_epi16( high, 4 );
  406. bytes1 = _mm_or_si128( low, high );
  407. high = _mm_andnot_si128( lowByte, bytes2 );
  408. low = _mm_and_si128( lowByte, bytes2 );
  409. high = _mm_srli_epi16( high, 4 );
  410. bytes2 = _mm_or_si128( low, high );
  411. return _mm_packus_epi16( bytes1, bytes2);
  412. }
  413. #endif
  414. // method 5
  415. // blocks of QK elements
  416. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  417. typedef struct {
  418. float d; // delta
  419. uint8_t qs[QK / 2]; // nibbles / quants
  420. } block_q4_0;
  421. static_assert(sizeof(block_q4_0) == sizeof(float) + QK / 2, "wrong q4_0 block size/padding");
  422. // method 4
  423. // blocks of QK elements
  424. // represented with 2 floats (delta + min) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  425. typedef struct {
  426. float d;
  427. float m;
  428. uint8_t qs[QK / 2]; // nibbles / quants
  429. } block_q4_1;
  430. static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK / 2, "wrong q4_1 block size/padding");
  431. // reference implementation for deterministic creation of model files
  432. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  433. assert(k % QK == 0);
  434. const int nb = k / QK;
  435. uint8_t pp[QK/2];
  436. for (int i = 0; i < nb; i++) {
  437. float amax = 0.0f; // absolute max
  438. for (int l = 0; l < QK; l++) {
  439. const float v = x[i*QK + l];
  440. amax = MAX(amax, fabsf(v));
  441. }
  442. const float d = amax / ((1 << 3) - 1);
  443. const float id = d ? 1.0f/d : 0.0f;
  444. y[i].d = d;
  445. for (int l = 0; l < QK; l += 2) {
  446. const float v0 = x[i*QK + l + 0]*id;
  447. const float v1 = x[i*QK + l + 1]*id;
  448. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  449. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  450. assert(vi0 < 16);
  451. assert(vi1 < 16);
  452. pp[l/2] = vi0 | (vi1 << 4);
  453. }
  454. memcpy(y[i].qs, pp, sizeof(pp));
  455. }
  456. }
  457. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  458. assert(k % QK == 0);
  459. const int nb = k / QK;
  460. block_q4_0 * restrict y = vy;
  461. #if defined(__POWER9_VECTOR__)
  462. const vector float v85 = vec_splats(8.5f);
  463. for (int i = 0; i < nb; i++) {
  464. float amax = 0.0f; // absolute max
  465. vector float srcv [8];
  466. vector float asrcv[8];
  467. vector float amaxv[8];
  468. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  469. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  470. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  471. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  472. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  473. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  474. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  475. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  476. amax = MAX(
  477. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  478. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  479. const float d = amax / ((1 << 3) - 1);
  480. const float id = d ? 1.0/d : 0.0;
  481. y[i].d = d;
  482. const vector float vid = vec_splats(id);
  483. uint8_t * restrict pb = y[i].qs;
  484. for (int l = 0; l < 8; l++) {
  485. const vector float vf = vec_madd(srcv[l], vid, v85);
  486. const vector signed int vi = vec_signed(vf);
  487. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  488. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  489. }
  490. }
  491. #elif __ARM_NEON
  492. for (int i = 0; i < nb; i++) {
  493. float32x4_t srcv [8];
  494. float32x4_t asrcv[8];
  495. float32x4_t amaxv[8];
  496. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  497. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  498. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  499. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  500. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  501. // absolute max
  502. const float amax = MAX(
  503. MAX(vgetq_lane_f32(amaxv[0], 0), vgetq_lane_f32(amaxv[0], 1)),
  504. MAX(vgetq_lane_f32(amaxv[0], 2), vgetq_lane_f32(amaxv[0], 3)));
  505. const float d = amax / ((1 << 3) - 1);
  506. const float id = d ? 1.0f/d : 0.0f;
  507. y[i].d = d;
  508. for (int l = 0; l < 8; l++) {
  509. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  510. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  511. const int32x4_t vi = vcvtq_s32_f32(vf);
  512. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  513. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  514. }
  515. }
  516. #elif defined(__AVX2__)
  517. for (int i = 0; i < nb; i++) {
  518. // Load elements into 4 AVX vectors
  519. __m256 v0 = _mm256_loadu_ps( x );
  520. __m256 v1 = _mm256_loadu_ps( x + 8 );
  521. __m256 v2 = _mm256_loadu_ps( x + 16 );
  522. __m256 v3 = _mm256_loadu_ps( x + 24 );
  523. x += 32;
  524. // Compute max(abs(e)) for the block
  525. const __m256 signBit = _mm256_set1_ps( -0.0f );
  526. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  527. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  528. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  529. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  530. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  531. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  532. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  533. const float maxScalar = _mm_cvtss_f32( max4 );
  534. // Quantize these floats
  535. const float d = maxScalar / 7.0f;
  536. y[i].d = d;
  537. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  538. const __m256 mul = _mm256_set1_ps( id );
  539. // Apply the multiplier
  540. v0 = _mm256_mul_ps( v0, mul );
  541. v1 = _mm256_mul_ps( v1, mul );
  542. v2 = _mm256_mul_ps( v2, mul );
  543. v3 = _mm256_mul_ps( v3, mul );
  544. // Round to nearest integer
  545. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  546. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  547. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  548. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  549. // Convert floats to integers
  550. __m256i i0 = _mm256_cvtps_epi32( v0 );
  551. __m256i i1 = _mm256_cvtps_epi32( v1 );
  552. __m256i i2 = _mm256_cvtps_epi32( v2 );
  553. __m256i i3 = _mm256_cvtps_epi32( v3 );
  554. // Convert int32 to int16
  555. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  556. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  557. // Convert int16 to int8
  558. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  559. // We got our precious signed bytes, but the order is now wrong
  560. // These AVX2 pack instructions process 16-byte pieces independently
  561. // The following instruction is fixing the order
  562. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  563. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  564. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  565. const __m256i off = _mm256_set1_epi8( 8 );
  566. i0 = _mm256_add_epi8( i0, off );
  567. // Compress the vector into 4 bit/value, and store
  568. __m128i res = packNibbles( i0 );
  569. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  570. }
  571. #elif defined(__AVX__)
  572. for (int i = 0; i < nb; i++) {
  573. // Load elements into 4 AVX vectors
  574. __m256 v0 = _mm256_loadu_ps( x );
  575. __m256 v1 = _mm256_loadu_ps( x + 8 );
  576. __m256 v2 = _mm256_loadu_ps( x + 16 );
  577. __m256 v3 = _mm256_loadu_ps( x + 24 );
  578. x += 32;
  579. // Compute max(abs(e)) for the block
  580. const __m256 signBit = _mm256_set1_ps( -0.0f );
  581. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  582. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  583. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  584. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  585. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  586. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  587. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  588. const float maxScalar = _mm_cvtss_f32( max4 );
  589. // Quantize these floats
  590. const float d = maxScalar / 7.0f;
  591. y[i].d = d;
  592. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  593. const __m256 mul = _mm256_set1_ps( id );
  594. // Apply the multiplier
  595. v0 = _mm256_mul_ps( v0, mul );
  596. v1 = _mm256_mul_ps( v1, mul );
  597. v2 = _mm256_mul_ps( v2, mul );
  598. v3 = _mm256_mul_ps( v3, mul );
  599. // Round to nearest integer
  600. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  601. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  602. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  603. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  604. // Convert floats to integers
  605. __m256i i0 = _mm256_cvtps_epi32( v0 );
  606. __m256i i1 = _mm256_cvtps_epi32( v1 );
  607. __m256i i2 = _mm256_cvtps_epi32( v2 );
  608. __m256i i3 = _mm256_cvtps_epi32( v3 );
  609. // Since we don't have in AVX some necessary functions,
  610. // we split the registers in half and call AVX2 analogs from SSE
  611. __m128i ni0 = _mm256_castsi256_si128( i0 );
  612. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  613. __m128i ni2 = _mm256_castsi256_si128( i1 );
  614. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  615. __m128i ni4 = _mm256_castsi256_si128( i2 );
  616. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  617. __m128i ni6 = _mm256_castsi256_si128( i3 );
  618. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  619. // Convert int32 to int16
  620. ni0 = _mm_packs_epi32( ni0, ni1 );
  621. ni2 = _mm_packs_epi32( ni2, ni3 );
  622. ni4 = _mm_packs_epi32( ni4, ni5 );
  623. ni6 = _mm_packs_epi32( ni6, ni7 );
  624. // Convert int16 to int8
  625. ni0 = _mm_packs_epi16( ni0, ni2 );
  626. ni4 = _mm_packs_epi16( ni4, ni6 );
  627. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  628. const __m128i off = _mm_set1_epi8( 8);
  629. ni0 = _mm_add_epi8( ni0, off );
  630. ni4 = _mm_add_epi8( ni4, off );
  631. // Compress the vector into 4 bit/value, and store
  632. __m128i res = packNibbles( ni0, ni4 );
  633. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  634. }
  635. #elif defined(__wasm_simd128__)
  636. for (int i = 0; i < nb; i++) {
  637. float amax = 0.0f; // absolute max
  638. v128_t srcv [8];
  639. v128_t asrcv[8];
  640. v128_t amaxv[8];
  641. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  642. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  643. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  644. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  645. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  646. amax = MAX(
  647. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  648. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  649. const float d = amax / ((1 << 3) - 1);
  650. const float id = d ? 1.0/d : 0.0;
  651. y[i].d = d;
  652. for (int l = 0; l < 8; l++) {
  653. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  654. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  655. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  656. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  657. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  658. }
  659. }
  660. #else
  661. // scalar
  662. quantize_row_q4_0_reference(x, y, k);
  663. #endif
  664. }
  665. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  666. assert(k % QK == 0);
  667. const int nb = k / QK;
  668. block_q4_1 * restrict y = vy;
  669. uint8_t pp[QK/2];
  670. for (int i = 0; i < nb; i++) {
  671. float min = FLT_MAX;
  672. float max = -FLT_MAX;
  673. for (int l = 0; l < QK; l++) {
  674. const float v = x[i*QK + l];
  675. if (v < min) min = v;
  676. if (v > max) max = v;
  677. }
  678. const float d = (max - min) / ((1 << 4) - 1);
  679. const float id = d ? 1.0f/d : 0.0f;
  680. y[i].d = d;
  681. y[i].m = min;
  682. for (int l = 0; l < QK; l += 2) {
  683. const float v0 = (x[i*QK + l + 0] - min)*id;
  684. const float v1 = (x[i*QK + l + 1] - min)*id;
  685. const uint8_t vi0 = roundf(v0);
  686. const uint8_t vi1 = roundf(v1);
  687. assert(vi0 < 16);
  688. assert(vi1 < 16);
  689. pp[l/2] = vi0 | (vi1 << 4);
  690. }
  691. memcpy(y[i].qs, pp, sizeof(pp));
  692. }
  693. }
  694. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  695. assert(k % QK == 0);
  696. const int nb = k / QK;
  697. block_q4_1 * restrict y = vy;
  698. #if defined(__AVX2__)
  699. for (int i = 0; i < nb; i++) {
  700. // Load elements into 4 AVX vectors
  701. __m256 v0 = _mm256_loadu_ps( x );
  702. __m256 v1 = _mm256_loadu_ps( x + 8 );
  703. __m256 v2 = _mm256_loadu_ps( x + 16 );
  704. __m256 v3 = _mm256_loadu_ps( x + 24 );
  705. x += 32;
  706. // Compute max for the block
  707. __m256 vmax;
  708. vmax = _mm256_max_ps( v0, v1 );
  709. vmax = _mm256_max_ps( vmax, v2 );
  710. vmax = _mm256_max_ps( vmax, v3 );
  711. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  712. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  713. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  714. const float maxScalar = _mm_cvtss_f32( max4 );
  715. // Compute min for the block
  716. __m256 vmin;
  717. vmin = _mm256_min_ps( v0, v1 );
  718. vmin = _mm256_min_ps( vmin, v2 );
  719. vmin = _mm256_min_ps( vmin, v3 );
  720. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  721. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  722. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  723. const float minScalar = _mm_cvtss_f32( min4 );
  724. // Quantize these floats
  725. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  726. const float id = d ? 1.0f/d : 0.0f;
  727. y[i].m = minScalar;
  728. y[i].d = d;
  729. // x = (x-min)*id
  730. const __m256 mul = _mm256_set1_ps( id );
  731. const __m256 off = _mm256_set1_ps( minScalar );
  732. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  733. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  734. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  735. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  736. // Round to nearest integer
  737. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  738. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  739. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  740. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  741. // Convert floats to integers
  742. __m256i i0 = _mm256_cvtps_epi32( v0 );
  743. __m256i i1 = _mm256_cvtps_epi32( v1 );
  744. __m256i i2 = _mm256_cvtps_epi32( v2 );
  745. __m256i i3 = _mm256_cvtps_epi32( v3 );
  746. // Convert int32 to int16
  747. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  748. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  749. // Convert int16 to int8
  750. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  751. // We got our precious signed bytes, but the order is now wrong
  752. // These AVX2 pack instructions process 16-byte pieces independently
  753. // The following instruction is fixing the order
  754. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  755. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  756. // Compress the vector into 4 bit/value, and store
  757. __m128i res = packNibbles( i0 );
  758. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  759. }
  760. #elif __ARM_NEON
  761. for (int i = 0; i < nb; i++) {
  762. float32x4_t srcv[8];
  763. float32x4_t minv[8];
  764. float32x4_t maxv[8];
  765. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  766. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  767. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  768. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  769. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  770. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  771. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  772. const float min = vminvq_f32(minv[0]);
  773. const float max = vmaxvq_f32(maxv[0]);
  774. const float d = (max - min) / ((1 << 4) - 1);
  775. const float id = d ? 1.0f/d : 0.0f;
  776. y[i].d = d;
  777. y[i].m = min;
  778. const float32x4_t minv0 = vdupq_n_f32(min);
  779. for (int l = 0; l < 8; l++) {
  780. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  781. const int32x4_t vi = vcvtq_s32_f32(v);
  782. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  783. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  784. }
  785. }
  786. #else
  787. // scalar
  788. quantize_row_q4_1_reference(x, vy, k);
  789. #endif
  790. }
  791. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  792. assert(k % QK == 0);
  793. const int nb = k / QK;
  794. const block_q4_0 * restrict x = vx;
  795. #if defined(__AVX2__)
  796. for (int i = 0; i < nb; i++) {
  797. // scale factor
  798. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  799. const uint8_t * restrict pp = x[i].qs;
  800. for (int l = 0; l < QK; l += 32) {
  801. // Load 32x4-bit integers into 32x8-bit integers
  802. __m256i vx8 = bytesFromNibbles(pp+l/2);
  803. // Subtract 8 from the integers
  804. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  805. // Convert to 16-bit int
  806. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  807. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  808. // Convert to 32-bit int -> float 32
  809. const __m256 vf[4] = {
  810. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  811. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  812. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  813. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  814. };
  815. // Scale and store
  816. for (int j = 0; j < 4; j++) {
  817. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  818. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  819. }
  820. }
  821. }
  822. #elif defined(__ARM_NEON)
  823. for (int i = 0; i < nb; i++) {
  824. const float32x4_t vd = vdupq_n_f32(x[i].d);
  825. const uint8_t * restrict pp = x[i].qs;
  826. for (int l = 0; l < QK; l += 16) {
  827. // Load 16x4-bit integers into 8x8-bit integers
  828. const uint8x8_t v8 = vld1_u8(pp + l/2);
  829. // Expand 4-bit qs to 8-bit bytes
  830. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  831. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  832. // Convert to signed 8-bit integers
  833. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  834. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  835. // Subtract 8 from each byte
  836. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  837. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  838. // Interleave and combine
  839. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  840. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  841. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  842. // convert to 2x int16x8_t
  843. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  844. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  845. // convert to 4x float32x4_t
  846. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  847. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  848. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  849. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  850. // Multiply by d
  851. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  852. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  853. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  854. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  855. // Store
  856. vst1q_f32(y + i*QK + l + 0, r0);
  857. vst1q_f32(y + i*QK + l + 4, r1);
  858. vst1q_f32(y + i*QK + l + 8, r2);
  859. vst1q_f32(y + i*QK + l + 12, r3);
  860. }
  861. }
  862. #else
  863. // scalar
  864. for (int i = 0; i < nb; i++) {
  865. const float d = x[i].d;
  866. const uint8_t * restrict pp = x[i].qs;
  867. for (int l = 0; l < QK; l += 2) {
  868. const uint8_t vi = pp[l/2];
  869. const int8_t vi0 = vi & 0xf;
  870. const int8_t vi1 = vi >> 4;
  871. const float v0 = (vi0 - 8)*d;
  872. const float v1 = (vi1 - 8)*d;
  873. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  874. y[i*QK + l + 0] = v0;
  875. y[i*QK + l + 1] = v1;
  876. assert(!isnan(y[i*QK + l + 0]));
  877. assert(!isnan(y[i*QK + l + 1]));
  878. }
  879. }
  880. #endif
  881. }
  882. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  883. assert(k % QK == 0);
  884. const int nb = k / QK;
  885. const block_q4_1 * restrict x = vx;
  886. #if defined(__AVX2__)
  887. for (int i = 0; i < nb; i++) {
  888. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  889. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  890. const uint8_t * restrict pp = x[i].qs;
  891. for (int l = 0; l < QK; l += 32) {
  892. // Load 32x4-bit integers into 32x8-bit integers
  893. __m256i vx8 = bytesFromNibbles(pp+l/2);
  894. // Convert to 16-bit int
  895. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  896. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  897. // Convert to 32-bit int -> float 32
  898. const __m256 vf[4] = {
  899. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  900. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  901. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  902. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  903. };
  904. // Scale, add m and store
  905. for (int j = 0; j < 4; j++) {
  906. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  907. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  908. }
  909. }
  910. }
  911. #elif defined(__ARM_NEON)
  912. for (int i = 0; i < nb; i++) {
  913. const float32x4_t vd = vdupq_n_f32(x[i].d);
  914. const float32x4_t vm = vdupq_n_f32(x[i].m);
  915. const uint8_t * restrict pp = x[i].qs;
  916. for (int l = 0; l < QK; l += 16) {
  917. // Load 16x4-bit integers into 8x8-bit integers
  918. const uint8x8_t v8 = vld1_u8(pp + l/2);
  919. // Expand 4-bit qs to 8-bit bytes
  920. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  921. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  922. // Interleave and combine
  923. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  924. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  925. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  926. // convert to 2x uint16x8_t
  927. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  928. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  929. // convert to 4x float32x4_t
  930. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  931. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  932. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  933. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  934. // multiply by d and add m
  935. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  936. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  937. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  938. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  939. // Store
  940. vst1q_f32(y + i*QK + l + 0, r0);
  941. vst1q_f32(y + i*QK + l + 4, r1);
  942. vst1q_f32(y + i*QK + l + 8, r2);
  943. vst1q_f32(y + i*QK + l + 12, r3);
  944. }
  945. }
  946. #else
  947. for (int i = 0; i < nb; i++) {
  948. const float d = x[i].d;
  949. const float m = x[i].m;
  950. const uint8_t * restrict pp = x[i].qs;
  951. for (int l = 0; l < QK; l += 2) {
  952. const uint8_t vi = pp[l/2];
  953. const int8_t vi0 = vi & 0xf;
  954. const int8_t vi1 = vi >> 4;
  955. const float v0 = vi0*d + m;
  956. const float v1 = vi1*d + m;
  957. y[i*QK + l + 0] = v0;
  958. y[i*QK + l + 1] = v1;
  959. assert(!isnan(y[i*QK + l + 0]));
  960. assert(!isnan(y[i*QK + l + 1]));
  961. }
  962. }
  963. #endif
  964. }
  965. //
  966. // simd mappings
  967. //
  968. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  969. // we then implement the fundamental computation operations below using only these macros
  970. // adding support for new architectures requires to define the corresponding SIMD macros
  971. //
  972. // GGML_F32_STEP / GGML_F16_STEP
  973. // number of elements to process in a single step
  974. //
  975. // GGML_F32_EPR / GGML_F16_EPR
  976. // number of elements to fit in a single register
  977. //
  978. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  979. #define GGML_SIMD
  980. // F32 NEON
  981. #define GGML_F32_STEP 16
  982. #define GGML_F32_EPR 4
  983. #define GGML_F32x4 float32x4_t
  984. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  985. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  986. #define GGML_F32x4_LOAD vld1q_f32
  987. #define GGML_F32x4_STORE vst1q_f32
  988. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  989. #define GGML_F32x4_ADD vaddq_f32
  990. #define GGML_F32x4_MUL vmulq_f32
  991. #if defined(__ARM_FEATURE_QRDMX)
  992. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  993. #else
  994. #define GGML_F32x4_REDUCE_ONE(x) \
  995. (vgetq_lane_f32(x, 0) + \
  996. vgetq_lane_f32(x, 1) + \
  997. vgetq_lane_f32(x, 2) + \
  998. vgetq_lane_f32(x, 3))
  999. #endif
  1000. #define GGML_F32x4_REDUCE(res, x) \
  1001. { \
  1002. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1003. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1004. } \
  1005. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1006. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1007. } \
  1008. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1009. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1010. } \
  1011. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1012. }
  1013. #define GGML_F32_VEC GGML_F32x4
  1014. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1015. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1016. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1017. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1018. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1019. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1020. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1021. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1022. // F16 NEON
  1023. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1024. #define GGML_F16_STEP 32
  1025. #define GGML_F16_EPR 8
  1026. #define GGML_F16x8 float16x8_t
  1027. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1028. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1029. #define GGML_F16x8_LOAD vld1q_f16
  1030. #define GGML_F16x8_STORE vst1q_f16
  1031. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1032. #define GGML_F16x8_ADD vaddq_f16
  1033. #define GGML_F16x8_MUL vmulq_f16
  1034. #define GGML_F16x8_REDUCE(res, x) \
  1035. { \
  1036. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1037. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1038. } \
  1039. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1040. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1041. } \
  1042. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1043. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1044. } \
  1045. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1046. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1047. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1048. }
  1049. #define GGML_F16_VEC GGML_F16x8
  1050. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1051. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1052. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1053. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1054. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1055. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1056. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1057. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1058. #else
  1059. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1060. // and take advantage of the vcvt_ functions to convert to/from FP16
  1061. #define GGML_F16_STEP 16
  1062. #define GGML_F16_EPR 4
  1063. #define GGML_F32Cx4 float32x4_t
  1064. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1065. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1066. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1067. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1068. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1069. #define GGML_F32Cx4_ADD vaddq_f32
  1070. #define GGML_F32Cx4_MUL vmulq_f32
  1071. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1072. #define GGML_F16_VEC GGML_F32Cx4
  1073. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1074. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1075. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1076. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1077. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1078. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1079. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1080. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1081. #endif
  1082. #elif defined(__AVX__)
  1083. #define GGML_SIMD
  1084. // F32 AVX
  1085. #define GGML_F32_STEP 32
  1086. #define GGML_F32_EPR 8
  1087. #define GGML_F32x8 __m256
  1088. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1089. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1090. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1091. #define GGML_F32x8_STORE _mm256_storeu_ps
  1092. #if defined(__FMA__)
  1093. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1094. #else
  1095. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1096. #endif
  1097. #define GGML_F32x8_ADD _mm256_add_ps
  1098. #define GGML_F32x8_MUL _mm256_mul_ps
  1099. #define GGML_F32x8_REDUCE(res, x) \
  1100. { \
  1101. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1102. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1103. } \
  1104. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1105. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1106. } \
  1107. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1108. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1109. } \
  1110. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1111. _mm256_extractf128_ps(x[0], 1)); \
  1112. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1113. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1114. }
  1115. // TODO: is this optimal ?
  1116. #define GGML_F32_VEC GGML_F32x8
  1117. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1118. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1119. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1120. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1121. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1122. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1123. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1124. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1125. // F16 AVX
  1126. #define GGML_F16_STEP 32
  1127. #define GGML_F16_EPR 8
  1128. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1129. #define GGML_F32Cx8 __m256
  1130. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1131. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1132. #if defined(__F16C__)
  1133. // the _mm256_cvt intrinsics require F16C
  1134. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1135. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1136. #else
  1137. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1138. float tmp[8];
  1139. for (int i = 0; i < 8; i++)
  1140. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1141. return _mm256_loadu_ps(tmp);
  1142. }
  1143. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1144. float arr[8];
  1145. _mm256_storeu_ps(arr, y);
  1146. for (int i = 0; i < 8; i++)
  1147. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1148. }
  1149. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1150. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1151. #endif
  1152. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1153. #define GGML_F32Cx8_ADD _mm256_add_ps
  1154. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1155. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1156. #define GGML_F16_VEC GGML_F32Cx8
  1157. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1158. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1159. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1160. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1161. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1162. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1163. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1164. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1165. #elif defined(__POWER9_VECTOR__)
  1166. #define GGML_SIMD
  1167. // F32 POWER9
  1168. #define GGML_F32_STEP 32
  1169. #define GGML_F32_EPR 4
  1170. #define GGML_F32x4 vector float
  1171. #define GGML_F32x4_ZERO 0.0f
  1172. #define GGML_F32x4_SET1 vec_splats
  1173. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1174. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1175. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1176. #define GGML_F32x4_ADD vec_add
  1177. #define GGML_F32x4_MUL vec_mul
  1178. #define GGML_F32x4_REDUCE(res, x) \
  1179. { \
  1180. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1181. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1182. } \
  1183. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1184. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1185. } \
  1186. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1187. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1188. } \
  1189. res = vec_extract(x[0], 0) + \
  1190. vec_extract(x[0], 1) + \
  1191. vec_extract(x[0], 2) + \
  1192. vec_extract(x[0], 3); \
  1193. }
  1194. #define GGML_F32_VEC GGML_F32x4
  1195. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1196. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1197. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1198. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1199. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1200. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1201. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1202. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1203. // F16 POWER9
  1204. #define GGML_F16_STEP GGML_F32_STEP
  1205. #define GGML_F16_EPR GGML_F32_EPR
  1206. #define GGML_F16_VEC GGML_F32x4
  1207. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1208. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1209. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1210. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1211. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1212. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1213. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1214. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1215. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1216. #define GGML_F16_VEC_STORE(p, r, i) \
  1217. if (i & 0x1) \
  1218. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1219. r[i - GGML_ENDIAN_BYTE(0)]), \
  1220. 0, p - GGML_F16_EPR)
  1221. #elif defined(__wasm_simd128__)
  1222. #define GGML_SIMD
  1223. // F32 WASM
  1224. #define GGML_F32_STEP 16
  1225. #define GGML_F32_EPR 4
  1226. #define GGML_F32x4 v128_t
  1227. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1228. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1229. #define GGML_F32x4_LOAD wasm_v128_load
  1230. #define GGML_F32x4_STORE wasm_v128_store
  1231. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1232. #define GGML_F32x4_ADD wasm_f32x4_add
  1233. #define GGML_F32x4_MUL wasm_f32x4_mul
  1234. #define GGML_F32x4_REDUCE(res, x) \
  1235. { \
  1236. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1237. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1238. } \
  1239. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1240. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1241. } \
  1242. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1243. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1244. } \
  1245. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1246. wasm_f32x4_extract_lane(x[0], 1) + \
  1247. wasm_f32x4_extract_lane(x[0], 2) + \
  1248. wasm_f32x4_extract_lane(x[0], 3); \
  1249. }
  1250. #define GGML_F32_VEC GGML_F32x4
  1251. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1252. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1253. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1254. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1255. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1256. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1257. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1258. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1259. // F16 WASM
  1260. #define GGML_F16_STEP 16
  1261. #define GGML_F16_EPR 4
  1262. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1263. float tmp[4];
  1264. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1265. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1266. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1267. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1268. return wasm_v128_load(tmp);
  1269. }
  1270. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1271. float tmp[4];
  1272. wasm_v128_store(tmp, x);
  1273. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1274. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1275. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1276. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1277. }
  1278. #define GGML_F16x4 v128_t
  1279. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1280. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1281. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1282. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1283. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1284. #define GGML_F16x4_ADD wasm_f32x4_add
  1285. #define GGML_F16x4_MUL wasm_f32x4_mul
  1286. #define GGML_F16x4_REDUCE(res, x) \
  1287. { \
  1288. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1289. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1290. } \
  1291. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1292. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1293. } \
  1294. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1295. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1296. } \
  1297. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1298. wasm_f32x4_extract_lane(x[0], 1) + \
  1299. wasm_f32x4_extract_lane(x[0], 2) + \
  1300. wasm_f32x4_extract_lane(x[0], 3); \
  1301. }
  1302. #define GGML_F16_VEC GGML_F16x4
  1303. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1304. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1305. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1306. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1307. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1308. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1309. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1310. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1311. #elif defined(__SSE3__)
  1312. #define GGML_SIMD
  1313. // F32 SSE
  1314. #define GGML_F32_STEP 32
  1315. #define GGML_F32_EPR 4
  1316. #define GGML_F32x4 __m128
  1317. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1318. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1319. #define GGML_F32x4_LOAD _mm_loadu_ps
  1320. #define GGML_F32x4_STORE _mm_storeu_ps
  1321. #if defined(__FMA__)
  1322. // TODO: Does this work?
  1323. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1324. #else
  1325. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1326. #endif
  1327. #define GGML_F32x4_ADD _mm_add_ps
  1328. #define GGML_F32x4_MUL _mm_mul_ps
  1329. #define GGML_F32x4_REDUCE(res, x) \
  1330. { \
  1331. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1332. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1333. } \
  1334. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1335. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1336. } \
  1337. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1338. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1339. } \
  1340. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1341. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1342. }
  1343. // TODO: is this optimal ?
  1344. #define GGML_F32_VEC GGML_F32x4
  1345. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1346. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1347. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1348. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1349. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1350. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1351. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1352. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1353. // F16 SSE
  1354. #define GGML_F16_STEP 32
  1355. #define GGML_F16_EPR 4
  1356. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1357. float tmp[4];
  1358. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1359. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1360. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1361. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1362. return _mm_loadu_ps(tmp);
  1363. }
  1364. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1365. float arr[4];
  1366. _mm_storeu_ps(arr, y);
  1367. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1368. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1369. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1370. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1371. }
  1372. #define GGML_F32Cx4 __m128
  1373. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1374. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1375. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1376. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1377. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1378. #define GGML_F32Cx4_ADD _mm_add_ps
  1379. #define GGML_F32Cx4_MUL _mm_mul_ps
  1380. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1381. #define GGML_F16_VEC GGML_F32Cx4
  1382. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1383. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1384. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1385. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1386. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1387. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1388. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1389. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1390. #endif
  1391. // GGML_F32_ARR / GGML_F16_ARR
  1392. // number of registers to use per step
  1393. #ifdef GGML_SIMD
  1394. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1395. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1396. #endif
  1397. //
  1398. // fundamental operations
  1399. //
  1400. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1401. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1402. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1403. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1404. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1405. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1406. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1407. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1408. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1409. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1410. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1411. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1412. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1413. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1414. #ifdef GGML_SIMD
  1415. float sumf = 0.0f;
  1416. const int np = (n & ~(GGML_F32_STEP - 1));
  1417. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1418. GGML_F32_VEC ax[GGML_F32_ARR];
  1419. GGML_F32_VEC ay[GGML_F32_ARR];
  1420. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1421. for (int j = 0; j < GGML_F32_ARR; j++) {
  1422. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1423. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1424. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1425. }
  1426. }
  1427. // reduce sum0..sum3 to sum0
  1428. GGML_F32_VEC_REDUCE(sumf, sum);
  1429. // leftovers
  1430. for (int i = np; i < n; ++i) {
  1431. sumf += x[i]*y[i];
  1432. }
  1433. #else
  1434. // scalar
  1435. ggml_float sumf = 0.0;
  1436. for (int i = 0; i < n; ++i) {
  1437. sumf += (ggml_float)(x[i]*y[i]);
  1438. }
  1439. #endif
  1440. *s = sumf;
  1441. }
  1442. #if __AVX512F__ && QK == 32
  1443. static inline __m512 dot_q4_0_oneblock_avx512(
  1444. __m512 acc,
  1445. const block_q4_0 * restrict x,
  1446. const block_q4_0 * restrict y,
  1447. int i
  1448. ) {
  1449. // Compute combined scale for the block
  1450. __m512 d = _mm512_set1_ps( x[i].d * y[i].d );
  1451. __m256i bx = bytesFromNibbles( x[i].qs );
  1452. __m256i by = bytesFromNibbles( y[i].qs );
  1453. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1454. const __m256i off = _mm256_set1_epi8( 8 );
  1455. bx = _mm256_sub_epi8( bx, off );
  1456. by = _mm256_sub_epi8( by, off );
  1457. // Sign-extend 16 signed bytes into int16_t
  1458. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1459. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1460. // Compute products of int16_t integers, add pairwise
  1461. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1462. // Convert int32_t to float
  1463. __m512 p = _mm512_cvtepi32_ps( i64 );
  1464. // Apply the scale, and accumulate
  1465. return _mm512_fmadd_ps( d, p, acc );
  1466. }
  1467. #endif
  1468. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1469. ggml_float sumf = 0.0;
  1470. #if defined(GGML_SIMD)
  1471. const int np = (n & ~(GGML_F16_STEP - 1));
  1472. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1473. GGML_F16_VEC ax[GGML_F16_ARR];
  1474. GGML_F16_VEC ay[GGML_F16_ARR];
  1475. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1476. for (int j = 0; j < GGML_F16_ARR; j++) {
  1477. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1478. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1479. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1480. }
  1481. }
  1482. // reduce sum0..sum3 to sum0
  1483. GGML_F16_VEC_REDUCE(sumf, sum);
  1484. // leftovers
  1485. for (int i = np; i < n; ++i) {
  1486. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1487. }
  1488. #else
  1489. for (int i = 0; i < n; ++i) {
  1490. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1491. }
  1492. #endif
  1493. *s = sumf;
  1494. }
  1495. static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1496. const int nb = n / QK;
  1497. assert(n % QK == 0);
  1498. assert(nb % 2 == 0);
  1499. const block_q4_0 * restrict x = vx;
  1500. const block_q4_0 * restrict y = vy;
  1501. float sumf = 0.0;
  1502. #if defined(__ARM_NEON)
  1503. float sum0 = 0.0f;
  1504. float sum1 = 0.0f;
  1505. for (int i = 0; i < nb; i += 2) {
  1506. const block_q4_0 * restrict x0 = &x[i + 0];
  1507. const block_q4_0 * restrict y0 = &y[i + 0];
  1508. const block_q4_0 * restrict x1 = &x[i + 1];
  1509. const block_q4_0 * restrict y1 = &y[i + 1];
  1510. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1511. const int8x16_t s8b = vdupq_n_s8(0x8);
  1512. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1513. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1514. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1515. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  1516. // 4-bit -> 8-bit
  1517. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1518. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1519. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1520. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1521. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1522. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1523. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1524. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1525. // sub 8
  1526. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1527. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1528. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1529. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1530. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1531. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1532. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1533. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1534. #if defined(__ARM_FEATURE_DOTPROD)
  1535. // dot product into int16x8_t
  1536. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1537. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1538. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1539. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1540. // scalar
  1541. #if defined(__ARM_FEATURE_QRDMX)
  1542. sum0 += x0->d * y0->d * vaddvq_s32(p_0);
  1543. sum1 += x1->d * y1->d * vaddvq_s32(p_1);
  1544. #else
  1545. sum0 += x0->d * y0->d * (vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3));
  1546. sum1 += x1->d * y1->d * (vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3));
  1547. #endif
  1548. #else
  1549. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1550. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1551. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1552. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1553. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1554. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1555. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1556. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1557. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1558. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1559. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1560. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1561. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1562. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1563. // scalar
  1564. #if defined(__ARM_FEATURE_QRDMX)
  1565. sum0 += x0->d * y0->d * vaddvq_s16(p_0);
  1566. sum1 += x1->d * y1->d * vaddvq_s16(p_1);
  1567. #else
  1568. sum0 += x0->d * y0->d * (vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7));
  1569. sum1 += x1->d * y1->d * (vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7));
  1570. #endif
  1571. #endif
  1572. }
  1573. sumf = sum0 + sum1;
  1574. #elif defined(__AVX512F__)
  1575. // Initialize accumulator with zeros
  1576. __m512 acc0 = _mm512_setzero_ps();
  1577. __m512 acc1 = _mm512_setzero_ps();
  1578. const int superblock_size = 8;
  1579. const int superblock_count = nb / superblock_size;
  1580. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1581. int i = superblock_ix * superblock_size;
  1582. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+0 );
  1583. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+1 );
  1584. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+2 );
  1585. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+3 );
  1586. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+4 );
  1587. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+5 );
  1588. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+6 );
  1589. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+7 );
  1590. }
  1591. // Remainders
  1592. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1593. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i );
  1594. }
  1595. // Horizontal sum of all lanes of the accumulator
  1596. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1597. #elif defined(__AVX2__)
  1598. // Initialize accumulator with zeros
  1599. __m256 acc = _mm256_setzero_ps();
  1600. /* Prepare the constants we will need during execution */
  1601. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  1602. const __m256i offset_8 = _mm256_set1_epi16( 8 );
  1603. #define UNROLL_COUNT 8
  1604. // make sure we only unroll multiples of the block count
  1605. assert(nb % UNROLL_COUNT == 0);
  1606. // Main loop
  1607. for (int i = 0; i < nb; i+=UNROLL_COUNT) {
  1608. // This loop will be unrolled by the compiler
  1609. for (int u=0;u<UNROLL_COUNT;u++) {
  1610. /* Compute combined scale for the block */
  1611. const __m256 scale = _mm256_mul_ps(
  1612. _mm256_broadcast_ss( &x[i+u].d ),
  1613. _mm256_broadcast_ss( &y[i+u].d ) );
  1614. /* get input from x
  1615. Input: 32 Nibbles (16 bytes) at *x[i+u]
  1616. Output: 2 vectors with 16 values of type int16_t (x_high_q, x_low_q) */
  1617. /* Load 16 bytes from memory */
  1618. const __m128i tmp_x = _mm_loadu_si128( ( const __m128i* ) x[i+u].qs);
  1619. /* Expand bytes into uint16_t values */
  1620. const __m256i bytes_x = _mm256_cvtepu8_epi16(tmp_x);
  1621. /* Unpack values into individual bytes */
  1622. __m256i x_low_q = _mm256_and_si256( lowMask, bytes_x );
  1623. const __m256i pre_shift_x_high_q = _mm256_andnot_si256( lowMask, bytes_x );
  1624. __m256i x_high_q = _mm256_srli_epi16( pre_shift_x_high_q, 4 );
  1625. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  1626. x_high_q = _mm256_sub_epi16( x_high_q, offset_8 );
  1627. x_low_q = _mm256_sub_epi16( x_low_q, offset_8 );
  1628. /* get input from y
  1629. Input: 32 Nibbles (16 bytes) at *y[i+u]
  1630. Output: 2 vectors with 16 values of type int16_t (y_high_q, y_low_q) */
  1631. /* Load 16 bytes from memory */
  1632. const __m128i tmp_y = _mm_loadu_si128( (const __m128i* ) y[i+u].qs);
  1633. /* Expand bytes into uint16_t values */
  1634. const __m256i bytes_y = _mm256_cvtepu8_epi16(tmp_y);
  1635. /* Unpack values into individual bytes */
  1636. const __m256i pre_shift_y_high_q = _mm256_andnot_si256( lowMask, bytes_y );
  1637. __m256i y_high_q = _mm256_srli_epi16( pre_shift_y_high_q, 4 );
  1638. __m256i y_low_q = _mm256_and_si256( lowMask, bytes_y );
  1639. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  1640. y_high_q = _mm256_sub_epi16( y_high_q, offset_8 );
  1641. y_low_q = _mm256_sub_epi16( y_low_q, offset_8 );
  1642. /* Compute products of int16_t integers, add pairwise, store as int32_t */
  1643. __m256i xy_high_q = _mm256_madd_epi16( x_high_q, y_high_q );
  1644. __m256i xy_low_q = _mm256_madd_epi16( x_low_q, y_low_q );
  1645. /* Accumulate the products of int32_t integers -> we now have a vector of 8 int_32t */
  1646. __m256i xy_q = _mm256_add_epi32( xy_high_q, xy_low_q );
  1647. /* Convert to vectore of 8 int32_t to 8 floats */
  1648. __m256 q = _mm256_cvtepi32_ps( xy_q );
  1649. /* Multiply q with scale and accumulate */
  1650. acc = _mm256_fmadd_ps( scale, q, acc );
  1651. }
  1652. }
  1653. // Return horizontal sum of the acc vector
  1654. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1655. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1656. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1657. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1658. sumf = _mm_cvtss_f32( res );
  1659. #elif defined(__AVX__)
  1660. // Initialize accumulator with zeros
  1661. __m256 acc = _mm256_setzero_ps();
  1662. // Main loop
  1663. for (int i = 0; i < nb; ++i) {
  1664. // Compute combined scale for the block
  1665. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1666. __m128i i32[2];
  1667. for (int j = 0; j < 2; ++j) {
  1668. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  1669. __m128i bx = bytesFromNibbles( x[i].qs + 8*j );
  1670. __m128i by = bytesFromNibbles( y[i].qs + 8*j );
  1671. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1672. const __m128i off = _mm_set1_epi8( 8 );
  1673. bx = _mm_sub_epi8( bx, off );
  1674. by = _mm_sub_epi8( by, off );
  1675. // Get absolute values of x vectors
  1676. const __m128i ax = _mm_sign_epi8(bx, bx);
  1677. // Sign the values of the y vectors
  1678. const __m128i sy = _mm_sign_epi8(by, bx);
  1679. // Perform multiplication and create 16-bit values
  1680. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  1681. const __m128i ones = _mm_set1_epi16(1);
  1682. i32[j] = _mm_madd_epi16(ones, dot);
  1683. }
  1684. // Convert int32_t to float
  1685. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  1686. // Apply the scale, and accumulate
  1687. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1688. }
  1689. // Return horizontal sum of the acc vector
  1690. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1691. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1692. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1693. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1694. sumf = _mm_cvtss_f32( res );
  1695. #elif defined(__wasm_simd128__)
  1696. // wasm simd
  1697. float sum0 = 0.0f;
  1698. float sum1 = 0.0f;
  1699. for (int i = 0; i < nb; i += 2) {
  1700. const block_q4_0 * restrict x0 = &px[i + 0];
  1701. const block_q4_0 * restrict y0 = &py[i + 0];
  1702. const block_q4_0 * restrict x1 = &px[i + 1];
  1703. const block_q4_0 * restrict y1 = &py[i + 1];
  1704. const v128_t m4b = wasm_u8x16_splat(0xf);
  1705. const v128_t s8b = wasm_i8x16_splat(0x8);
  1706. const v128_t v0_0 = wasm_v128_load(x0.qs);
  1707. const v128_t v0_1 = wasm_v128_load(y0.qs);
  1708. const v128_t v1_0 = wasm_v128_load(x1.qs);
  1709. const v128_t v1_1 = wasm_v128_load(y1.qs);
  1710. // 4-bit -> 8-bit
  1711. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1712. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1713. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1714. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1715. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1716. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1717. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1718. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1719. // sub 8
  1720. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1721. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1722. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1723. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1724. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1725. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1726. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1727. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1728. // dot product into int16x8_t
  1729. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1730. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1731. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1732. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1733. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1734. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1735. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1736. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1737. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1738. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1739. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1740. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1741. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1742. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1743. sum0 += x0->d * y0->d * (
  1744. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1745. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1746. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1747. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1748. sum1 += x1->d * y1->d * (
  1749. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1750. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1751. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1752. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1753. }
  1754. sumf = sum0 + sum1;
  1755. #else
  1756. // scalar
  1757. for (int i = 0; i < nb; i++) {
  1758. const float d0 = x[i].d;
  1759. const float d1 = y[i].d;
  1760. const uint8_t * restrict p0 = x[i].qs;
  1761. const uint8_t * restrict p1 = y[i].qs;
  1762. for (int j = 0; j < QK/2; j++) {
  1763. const uint8_t v0 = p0[j];
  1764. const uint8_t v1 = p1[j];
  1765. const float f0 = d0*((int8_t) (v0 & 0xf) - 8);
  1766. const float f1 = d0*((int8_t) (v0 >> 4) - 8);
  1767. const float f2 = d1*((int8_t) (v1 & 0xf) - 8);
  1768. const float f3 = d1*((int8_t) (v1 >> 4) - 8);
  1769. sumf += f0*f2 + f1*f3;
  1770. }
  1771. }
  1772. #endif
  1773. *s = sumf;
  1774. }
  1775. static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1776. const int nb = n / QK;
  1777. const block_q4_1 * restrict x = vx;
  1778. const block_q4_1 * restrict y = vy;
  1779. float sumf = 0.0;
  1780. #if defined(__AVX2__)
  1781. // Initialize accumulator with zeros
  1782. __m256 acc = _mm256_setzero_ps();
  1783. // Accumulator for constant offsets
  1784. float acc_offset = 0.0f;
  1785. // Main loop
  1786. for (int i = 0; i < nb; ++i) {
  1787. const float * d0 = &x[i].d;
  1788. const float * d1 = &y[i].d;
  1789. const float * m0 = &x[i].m;
  1790. const float * m1 = &y[i].m;
  1791. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1792. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1793. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1794. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1795. // Compute combined scale for the block
  1796. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1797. // Compute cross scales for the block
  1798. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1799. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1800. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0xAA /* 0b10101010 */ );
  1801. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1802. __m256i bx = bytesFromNibbles( x[i].qs );
  1803. __m256i by = bytesFromNibbles( y[i].qs );
  1804. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1805. // Sign-extend first 16 signed bytes into int16_t
  1806. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1807. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1808. // Compute products of int16_t integers, add pairwise
  1809. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1810. // Sign-extend last 16 signed bytes into int16_t vectors
  1811. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1812. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1813. // Accumulate products of int16_t integers
  1814. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1815. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1816. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1817. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1818. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1819. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1820. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1821. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1822. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1823. // Convert int32_t to float
  1824. __m256 p = _mm256_cvtepi32_ps( i32 );
  1825. // Apply the scale, and accumulate
  1826. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1827. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1828. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1829. // acc_offset += m0*m1 (for each entry in the block)
  1830. acc_offset += (*m0)*(*m1);
  1831. }
  1832. // Return horizontal sum of the acc vector
  1833. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1834. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1835. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1836. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1837. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  1838. #elif defined(__ARM_NEON)
  1839. float sum00 = 0.0f;
  1840. float sum01 = 0.0f;
  1841. float sum10 = 0.0f;
  1842. float sum11 = 0.0f;
  1843. for (int i = 0; i < nb; ++i) {
  1844. const block_q4_1 * restrict x0 = &x[i + 0];
  1845. const block_q4_1 * restrict y0 = &y[i + 0];
  1846. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1847. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1848. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1849. // and with 0xf
  1850. const uint8x16_t v0_0l = vandq_u8(v0_0, m4b);
  1851. const uint8x16_t v1_0l = vandq_u8(v1_0, m4b);
  1852. const uint8x16_t v0_0h = vshrq_n_u8(v0_0, 4);
  1853. const uint8x16_t v1_0h = vshrq_n_u8(v1_0, 4);
  1854. // dot product into uint16x8_t
  1855. const uint16x8_t pl0l = vmull_u8(vget_low_u8 (v0_0l), vget_low_u8 (v1_0l));
  1856. const uint16x8_t pl0h = vmull_u8(vget_high_u8(v0_0l), vget_high_u8(v1_0l));
  1857. const uint16x8_t ph0l = vmull_u8(vget_low_u8 (v0_0h), vget_low_u8 (v1_0h));
  1858. const uint16x8_t ph0h = vmull_u8(vget_high_u8(v0_0h), vget_high_u8(v1_0h));
  1859. const uint16x8_t pl0 = vaddq_u16(pl0l, pl0h);
  1860. const uint16x8_t ph0 = vaddq_u16(ph0l, ph0h);
  1861. sum00 += x0->m*y0->m;
  1862. sum01 += y0->m*x0->d*(vaddvq_u8(v0_0l) + vaddvq_u8(v0_0h));
  1863. sum10 += x0->m*y0->d*(vaddvq_u8(v1_0l) + vaddvq_u8(v1_0h));
  1864. sum11 += x0->d*y0->d*vaddvq_u16(vaddq_u16(pl0, ph0));
  1865. }
  1866. sumf = QK*sum00 + sum01 + sum10 + sum11;
  1867. #else
  1868. // scalar
  1869. for (int i = 0; i < nb; i++) {
  1870. const float d0 = x[i].d;
  1871. const float d1 = y[i].d;
  1872. const float m0 = x[i].m;
  1873. const float m1 = y[i].m;
  1874. const uint8_t * restrict p0 = x[i].qs;
  1875. const uint8_t * restrict p1 = y[i].qs;
  1876. for (int j = 0; j < QK/2; j++) {
  1877. const uint8_t v0 = p0[j];
  1878. const uint8_t v1 = p1[j];
  1879. const float f0 = d0*(v0 & 0xf) + m0;
  1880. const float f1 = d0*(v0 >> 4) + m0;
  1881. const float f2 = d1*(v1 & 0xf) + m1;
  1882. const float f3 = d1*(v1 >> 4) + m1;
  1883. sumf += f0*f2 + f1*f3;
  1884. }
  1885. }
  1886. #endif
  1887. *s = sumf;
  1888. }
  1889. // compute GGML_VEC_DOT_UNROLL dot products at once
  1890. // xs - x row stride in bytes
  1891. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1892. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1893. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1894. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1895. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1896. }
  1897. #if defined(GGML_SIMD)
  1898. const int np = (n & ~(GGML_F16_STEP - 1));
  1899. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1900. GGML_F16_VEC ax[GGML_F16_ARR];
  1901. GGML_F16_VEC ay[GGML_F16_ARR];
  1902. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1903. for (int j = 0; j < GGML_F16_ARR; j++) {
  1904. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1905. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1906. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1907. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1908. }
  1909. }
  1910. }
  1911. // reduce sum0..sum3 to sum0
  1912. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1913. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1914. }
  1915. // leftovers
  1916. for (int i = np; i < n; ++i) {
  1917. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1918. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1919. }
  1920. }
  1921. #else
  1922. for (int i = 0; i < n; ++i) {
  1923. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1924. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1925. }
  1926. }
  1927. #endif
  1928. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1929. s[i] = sumf[i];
  1930. }
  1931. }
  1932. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1933. #if defined(GGML_SIMD)
  1934. const int np = (n & ~(GGML_F32_STEP - 1));
  1935. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1936. GGML_F32_VEC ax[GGML_F32_ARR];
  1937. GGML_F32_VEC ay[GGML_F32_ARR];
  1938. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1939. for (int j = 0; j < GGML_F32_ARR; j++) {
  1940. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1941. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1942. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1943. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1944. }
  1945. }
  1946. // leftovers
  1947. for (int i = np; i < n; ++i) {
  1948. y[i] += x[i]*v;
  1949. }
  1950. #else
  1951. // scalar
  1952. for (int i = 0; i < n; ++i) {
  1953. y[i] += x[i]*v;
  1954. }
  1955. #endif
  1956. }
  1957. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1958. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1959. #if defined(GGML_SIMD)
  1960. const int np = (n & ~(GGML_F32_STEP - 1));
  1961. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1962. GGML_F32_VEC ay[GGML_F32_ARR];
  1963. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1964. for (int j = 0; j < GGML_F32_ARR; j++) {
  1965. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1966. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1967. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1968. }
  1969. }
  1970. // leftovers
  1971. for (int i = np; i < n; ++i) {
  1972. y[i] *= v;
  1973. }
  1974. #else
  1975. // scalar
  1976. for (int i = 0; i < n; ++i) {
  1977. y[i] *= v;
  1978. }
  1979. #endif
  1980. }
  1981. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1982. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1983. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1984. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1985. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1986. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1987. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1988. static const float GELU_COEF_A = 0.044715f;
  1989. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1990. inline static float ggml_gelu_f32(float x) {
  1991. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1992. }
  1993. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1994. const uint16_t * i16 = (const uint16_t *) x;
  1995. for (int i = 0; i < n; ++i) {
  1996. y[i] = table_gelu_f16[i16[i]];
  1997. }
  1998. }
  1999. #ifdef GGML_GELU_FP16
  2000. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2001. uint16_t t;
  2002. for (int i = 0; i < n; ++i) {
  2003. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2004. memcpy(&t, &fp16, sizeof(uint16_t));
  2005. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2006. }
  2007. }
  2008. #else
  2009. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2010. for (int i = 0; i < n; ++i) {
  2011. y[i] = ggml_gelu_f32(x[i]);
  2012. }
  2013. }
  2014. #endif
  2015. // Sigmoid Linear Unit (SiLU) function
  2016. inline static float ggml_silu_f32(float x) {
  2017. return x/(1.0f + expf(-x));
  2018. }
  2019. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2020. const uint16_t * i16 = (const uint16_t *) x;
  2021. for (int i = 0; i < n; ++i) {
  2022. y[i] = table_silu_f16[i16[i]];
  2023. }
  2024. }
  2025. #ifdef GGML_SILU_FP16
  2026. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2027. uint16_t t;
  2028. for (int i = 0; i < n; ++i) {
  2029. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2030. memcpy(&t, &fp16, sizeof(uint16_t));
  2031. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2032. }
  2033. }
  2034. #else
  2035. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2036. for (int i = 0; i < n; ++i) {
  2037. y[i] = ggml_silu_f32(x[i]);
  2038. }
  2039. }
  2040. #endif
  2041. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2042. #ifndef GGML_USE_ACCELERATE
  2043. ggml_float sum = 0.0;
  2044. for (int i = 0; i < n; ++i) {
  2045. sum += (ggml_float)x[i];
  2046. }
  2047. *s = sum;
  2048. #else
  2049. vDSP_sve(x, 1, s, n);
  2050. #endif
  2051. }
  2052. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2053. #ifndef GGML_USE_ACCELERATE
  2054. float max = -INFINITY;
  2055. for (int i = 0; i < n; ++i) {
  2056. max = MAX(max, x[i]);
  2057. }
  2058. *s = max;
  2059. #else
  2060. vDSP_maxv(x, 1, s, n);
  2061. #endif
  2062. }
  2063. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2064. ggml_vec_norm_f32(n, s, x);
  2065. *s = 1.f/(*s);
  2066. }
  2067. //
  2068. // logging
  2069. //
  2070. #if (GGML_DEBUG >= 1)
  2071. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2072. #else
  2073. #define GGML_PRINT_DEBUG(...)
  2074. #endif
  2075. #if (GGML_DEBUG >= 5)
  2076. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2077. #else
  2078. #define GGML_PRINT_DEBUG_5(...)
  2079. #endif
  2080. #if (GGML_DEBUG >= 10)
  2081. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2082. #else
  2083. #define GGML_PRINT_DEBUG_10(...)
  2084. #endif
  2085. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2086. //
  2087. // data types
  2088. //
  2089. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2090. QK,
  2091. QK,
  2092. 1,
  2093. 1,
  2094. 1,
  2095. 1,
  2096. 1,
  2097. };
  2098. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  2099. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2100. sizeof(block_q4_0),
  2101. sizeof(block_q4_1),
  2102. sizeof(int8_t ),
  2103. sizeof(int16_t),
  2104. sizeof(int32_t),
  2105. sizeof(ggml_fp16_t),
  2106. sizeof(float ),
  2107. };
  2108. // don't forget to update the array above when adding new types
  2109. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  2110. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2111. "NONE",
  2112. "DUP",
  2113. "ADD",
  2114. "SUB",
  2115. "MUL",
  2116. "DIV",
  2117. "SQR",
  2118. "SQRT",
  2119. "SUM",
  2120. "MEAN",
  2121. "REPEAT",
  2122. "ABS",
  2123. "SGN",
  2124. "NEG",
  2125. "STEP",
  2126. "RELU",
  2127. "GELU",
  2128. "SILU",
  2129. "NORM",
  2130. "RMS_NORM",
  2131. "MUL_MAT",
  2132. "SCALE",
  2133. "CPY",
  2134. "RESHAPE",
  2135. "VIEW",
  2136. "PERMUTE",
  2137. "TRANSPOSE",
  2138. "GET_ROWS",
  2139. "DIAG_MASK_INF",
  2140. "SOFT_MAX",
  2141. "ROPE",
  2142. "CONV_1D_1S",
  2143. "CONV_1D_2S",
  2144. "FLASH_ATTN",
  2145. "FLASH_FF",
  2146. };
  2147. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  2148. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2149. "none",
  2150. "x",
  2151. "x+y",
  2152. "x-y",
  2153. "x*y",
  2154. "x/y",
  2155. "x^2",
  2156. "√x",
  2157. "Σx",
  2158. "Σx/n",
  2159. "repeat(x)",
  2160. "abs(x)",
  2161. "sgn(x)",
  2162. "-x",
  2163. "step(x)",
  2164. "relu(x)",
  2165. "gelu(x)",
  2166. "silu(x)",
  2167. "norm(x)",
  2168. "rms_norm(x)",
  2169. "X*Y",
  2170. "x*v",
  2171. "x-\\>y",
  2172. "reshape(x)",
  2173. "view(x)",
  2174. "permute(x)",
  2175. "transpose(x)",
  2176. "get_rows(x)",
  2177. "diag_mask_inf(x)",
  2178. "soft_max(x)",
  2179. "rope(x)",
  2180. "conv_1d_1s(x)",
  2181. "conv_1d_2s(x)",
  2182. "flash_attn(x)",
  2183. "flash_ff(x)",
  2184. };
  2185. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  2186. //
  2187. // ggml object
  2188. //
  2189. struct ggml_object {
  2190. size_t offs;
  2191. size_t size;
  2192. struct ggml_object * next;
  2193. char padding[8];
  2194. };
  2195. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  2196. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2197. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2198. //
  2199. // ggml context
  2200. //
  2201. struct ggml_context {
  2202. size_t mem_size;
  2203. void * mem_buffer;
  2204. bool mem_buffer_owned;
  2205. bool mem_buffer_mlocked;
  2206. bool no_alloc;
  2207. int n_objects;
  2208. struct ggml_object * objects_begin;
  2209. struct ggml_object * objects_end;
  2210. struct ggml_scratch scratch;
  2211. struct ggml_scratch scratch_save;
  2212. };
  2213. struct ggml_context_container {
  2214. bool used;
  2215. struct ggml_context context;
  2216. };
  2217. //
  2218. // compute types
  2219. //
  2220. enum ggml_task_type {
  2221. GGML_TASK_INIT = 0,
  2222. GGML_TASK_COMPUTE,
  2223. GGML_TASK_FINALIZE,
  2224. };
  2225. struct ggml_compute_params {
  2226. enum ggml_task_type type;
  2227. int ith, nth;
  2228. // work buffer for all threads
  2229. size_t wsize;
  2230. void * wdata;
  2231. };
  2232. //
  2233. // ggml state
  2234. //
  2235. struct ggml_state {
  2236. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2237. };
  2238. // global state
  2239. static struct ggml_state g_state;
  2240. static atomic_int g_state_barrier = 0;
  2241. // barrier via spin lock
  2242. inline static void ggml_critical_section_start(void) {
  2243. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2244. while (processing > 0) {
  2245. // wait for other threads to finish
  2246. atomic_fetch_sub(&g_state_barrier, 1);
  2247. sched_yield(); // TODO: reconsider this
  2248. processing = atomic_fetch_add(&g_state_barrier, 1);
  2249. }
  2250. }
  2251. // TODO: make this somehow automatically executed
  2252. // some sort of "sentry" mechanism
  2253. inline static void ggml_critical_section_end(void) {
  2254. atomic_fetch_sub(&g_state_barrier, 1);
  2255. }
  2256. ////////////////////////////////////////////////////////////////////////////////
  2257. void ggml_print_object(const struct ggml_object * obj) {
  2258. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2259. obj->offs, obj->size, (const void *) obj->next);
  2260. }
  2261. void ggml_print_objects(const struct ggml_context * ctx) {
  2262. struct ggml_object * obj = ctx->objects_begin;
  2263. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2264. while (obj != NULL) {
  2265. ggml_print_object(obj);
  2266. obj = obj->next;
  2267. }
  2268. GGML_PRINT("%s: --- end ---\n", __func__);
  2269. }
  2270. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2271. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2272. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2273. }
  2274. int ggml_nrows(const struct ggml_tensor * tensor) {
  2275. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2276. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2277. }
  2278. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2279. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2280. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2281. }
  2282. int ggml_blck_size(enum ggml_type type) {
  2283. return GGML_BLCK_SIZE[type];
  2284. }
  2285. size_t ggml_type_size(enum ggml_type type) {
  2286. return GGML_TYPE_SIZE[type];
  2287. }
  2288. float ggml_type_sizef(enum ggml_type type) {
  2289. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2290. }
  2291. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2292. return GGML_TYPE_SIZE[tensor->type];
  2293. }
  2294. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2295. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2296. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2297. }
  2298. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2299. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2300. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2301. }
  2302. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2303. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2304. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2305. }
  2306. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2307. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2308. return
  2309. (t0->ne[0] == t1->ne[0]) &&
  2310. (t0->ne[2] == t1->ne[2]) &&
  2311. (t0->ne[3] == t1->ne[3]);
  2312. }
  2313. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2314. return tensor->nb[0] > tensor->nb[1];
  2315. }
  2316. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2317. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2318. return
  2319. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2320. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2321. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2322. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2323. }
  2324. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2325. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2326. return
  2327. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2328. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2329. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2330. }
  2331. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2332. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2333. return
  2334. (t0->ne[0] == t1->ne[0] ) &&
  2335. (t0->ne[1] == t1->ne[1] ) &&
  2336. (t0->ne[2] == t1->ne[2] ) &&
  2337. (t0->ne[3] == t1->ne[3] );
  2338. }
  2339. // check if t1 can be represented as a repeatition of t0
  2340. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2341. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2342. return
  2343. (t1->ne[0]%t0->ne[0] == 0) &&
  2344. (t1->ne[1]%t0->ne[1] == 0) &&
  2345. (t1->ne[2]%t0->ne[2] == 0) &&
  2346. (t1->ne[3]%t0->ne[3] == 0);
  2347. }
  2348. static inline int ggml_up32(int n) {
  2349. return (n + 31) & ~31;
  2350. }
  2351. static inline int ggml_up64(int n) {
  2352. return (n + 63) & ~63;
  2353. }
  2354. static inline int ggml_up(int n, int m) {
  2355. // assert m is a power of 2
  2356. GGML_ASSERT((m & (m - 1)) == 0);
  2357. return (n + m - 1) & ~(m - 1);
  2358. }
  2359. // assert that pointer is aligned to GGML_MEM_ALIGN
  2360. #define ggml_assert_aligned(ptr) \
  2361. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2362. ////////////////////////////////////////////////////////////////////////////////
  2363. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2364. // make this function thread safe
  2365. ggml_critical_section_start();
  2366. static bool is_first_call = true;
  2367. if (is_first_call) {
  2368. // initialize time system (required on Windows)
  2369. ggml_time_init();
  2370. // initialize GELU, SILU and EXP F32 tables
  2371. {
  2372. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2373. ggml_fp16_t ii;
  2374. for (int i = 0; i < (1 << 16); ++i) {
  2375. uint16_t ui = i;
  2376. memcpy(&ii, &ui, sizeof(ii));
  2377. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2378. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2379. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2380. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2381. }
  2382. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2383. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2384. }
  2385. // initialize g_state
  2386. {
  2387. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2388. g_state = (struct ggml_state) {
  2389. /*.contexts =*/ { { 0 } },
  2390. };
  2391. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2392. g_state.contexts[i].used = false;
  2393. }
  2394. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2395. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2396. }
  2397. is_first_call = false;
  2398. }
  2399. // find non-used context in g_state
  2400. struct ggml_context * ctx = NULL;
  2401. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2402. if (!g_state.contexts[i].used) {
  2403. g_state.contexts[i].used = true;
  2404. ctx = &g_state.contexts[i].context;
  2405. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2406. break;
  2407. }
  2408. }
  2409. if (ctx == NULL) {
  2410. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2411. ggml_critical_section_end();
  2412. return NULL;
  2413. }
  2414. *ctx = (struct ggml_context) {
  2415. /*.mem_size =*/ params.mem_size,
  2416. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
  2417. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2418. /*.mem_buffer_mlocked =*/ false,
  2419. /*.no_alloc =*/ params.no_alloc,
  2420. /*.n_objects =*/ 0,
  2421. /*.objects_begin =*/ NULL,
  2422. /*.objects_end =*/ NULL,
  2423. /*.scratch =*/ { 0, 0, NULL, },
  2424. /*.scratch_save =*/ { 0, 0, NULL, },
  2425. };
  2426. GGML_ASSERT(ctx->mem_buffer != NULL); // check for allocation failure
  2427. ggml_assert_aligned(ctx->mem_buffer);
  2428. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2429. ggml_critical_section_end();
  2430. return ctx;
  2431. }
  2432. void ggml_free(struct ggml_context * ctx) {
  2433. // make this function thread safe
  2434. ggml_critical_section_start();
  2435. bool found = false;
  2436. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2437. if (&g_state.contexts[i].context == ctx) {
  2438. g_state.contexts[i].used = false;
  2439. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2440. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2441. #if GGML_MLOCK_SUPPORT
  2442. if (ctx->mem_buffer_mlocked) {
  2443. if (munlock(ctx->mem_buffer, ctx->mem_size)) {
  2444. fprintf(stderr, "%s: failed to munlock buffer: %s\n", __func__, strerror(errno));
  2445. }
  2446. }
  2447. #endif
  2448. if (ctx->mem_buffer_owned) {
  2449. free(ctx->mem_buffer);
  2450. }
  2451. found = true;
  2452. break;
  2453. }
  2454. }
  2455. if (!found) {
  2456. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2457. }
  2458. ggml_critical_section_end();
  2459. }
  2460. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2461. return ctx->objects_end->offs + ctx->objects_end->size;
  2462. }
  2463. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2464. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2465. ctx->scratch = scratch;
  2466. return result;
  2467. }
  2468. #ifdef __APPLE__
  2469. #define MLOCK_SUGGESTION \
  2470. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  2471. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l).\n"
  2472. #else
  2473. #define MLOCK_SUGGESTION \
  2474. "Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n"
  2475. #endif
  2476. bool ggml_mlock_supported(void) {
  2477. return GGML_MLOCK_SUPPORT;
  2478. }
  2479. bool ggml_mlock(
  2480. struct ggml_context * ctx,
  2481. const void *opt_extra_addr,
  2482. size_t opt_extra_len,
  2483. char **err_p) {
  2484. // TODO: Use SetProcessWorkingSetSize() + VirtualLock() on WIN32
  2485. #if GGML_MLOCK_SUPPORT
  2486. if (ctx->mem_buffer_mlocked) {
  2487. return true;
  2488. }
  2489. if (mlock(ctx->mem_buffer, ctx->mem_size) ||
  2490. (opt_extra_len &&
  2491. mlock(opt_extra_addr, opt_extra_len))) {
  2492. if ((*err_p = malloc(1024))) {
  2493. snprintf(*err_p, 1024,
  2494. "failed to mlock %zu-byte buffer: %s\n" MLOCK_SUGGESTION,
  2495. ctx->mem_size + opt_extra_len,
  2496. strerror(errno));
  2497. }
  2498. return false;
  2499. }
  2500. ctx->mem_buffer_mlocked = true;
  2501. return true;
  2502. #else // GGML_MLOCK_SUPPORT
  2503. *err_p = strdup("can't mlock because it's not supported on this system");
  2504. return false;
  2505. #endif // GGML_MLOCK_SUPPORT
  2506. }
  2507. ////////////////////////////////////////////////////////////////////////////////
  2508. struct ggml_tensor * ggml_new_tensor_impl(
  2509. struct ggml_context * ctx,
  2510. enum ggml_type type,
  2511. int n_dims,
  2512. const int64_t* ne,
  2513. void* data) {
  2514. // always insert objects at the end of the context's memory pool
  2515. struct ggml_object * obj_cur = ctx->objects_end;
  2516. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2517. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2518. const size_t cur_end = cur_offs + cur_size;
  2519. size_t size_needed = 0;
  2520. if (data == NULL && !ctx->no_alloc) {
  2521. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2522. for (int i = 1; i < n_dims; i++) {
  2523. size_needed *= ne[i];
  2524. }
  2525. // align to GGML_MEM_ALIGN
  2526. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2527. }
  2528. char * const mem_buffer = ctx->mem_buffer;
  2529. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2530. if (ctx->scratch.data == NULL || data != NULL) {
  2531. size_needed += sizeof(struct ggml_tensor);
  2532. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2533. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2534. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2535. assert(false);
  2536. return NULL;
  2537. }
  2538. *obj_new = (struct ggml_object) {
  2539. .offs = cur_end + GGML_OBJECT_SIZE,
  2540. .size = size_needed,
  2541. .next = NULL,
  2542. };
  2543. } else {
  2544. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2545. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2546. assert(false);
  2547. return NULL;
  2548. }
  2549. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2550. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2551. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2552. assert(false);
  2553. return NULL;
  2554. }
  2555. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2556. *obj_new = (struct ggml_object) {
  2557. .offs = cur_end + GGML_OBJECT_SIZE,
  2558. .size = sizeof(struct ggml_tensor),
  2559. .next = NULL,
  2560. };
  2561. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2562. ctx->scratch.offs += size_needed;
  2563. }
  2564. if (obj_cur != NULL) {
  2565. obj_cur->next = obj_new;
  2566. } else {
  2567. // this is the first object in this context
  2568. ctx->objects_begin = obj_new;
  2569. }
  2570. ctx->objects_end = obj_new;
  2571. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2572. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2573. ggml_assert_aligned(result);
  2574. *result = (struct ggml_tensor) {
  2575. /*.type =*/ type,
  2576. /*.n_dims =*/ n_dims,
  2577. /*.ne =*/ { 1, 1, 1, 1 },
  2578. /*.nb =*/ { 0, 0, 0, 0 },
  2579. /*.op =*/ GGML_OP_NONE,
  2580. /*.is_param =*/ false,
  2581. /*.grad =*/ NULL,
  2582. /*.src0 =*/ NULL,
  2583. /*.src1 =*/ NULL,
  2584. /*.opt =*/ { NULL },
  2585. /*.n_tasks =*/ 0,
  2586. /*.perf_runs =*/ 0,
  2587. /*.perf_cycles =*/ 0,
  2588. /*.perf_time_us =*/ 0,
  2589. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  2590. /*.pad =*/ { 0 },
  2591. };
  2592. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2593. //ggml_assert_aligned(result->data);
  2594. for (int i = 0; i < n_dims; i++) {
  2595. result->ne[i] = ne[i];
  2596. }
  2597. result->nb[0] = GGML_TYPE_SIZE[type];
  2598. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2599. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2600. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2601. }
  2602. ctx->n_objects++;
  2603. return result;
  2604. }
  2605. struct ggml_tensor * ggml_new_tensor(
  2606. struct ggml_context * ctx,
  2607. enum ggml_type type,
  2608. int n_dims,
  2609. const int64_t * ne) {
  2610. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2611. }
  2612. struct ggml_tensor * ggml_new_tensor_1d(
  2613. struct ggml_context * ctx,
  2614. enum ggml_type type,
  2615. int64_t ne0) {
  2616. return ggml_new_tensor(ctx, type, 1, &ne0);
  2617. }
  2618. struct ggml_tensor * ggml_new_tensor_2d(
  2619. struct ggml_context * ctx,
  2620. enum ggml_type type,
  2621. int64_t ne0,
  2622. int64_t ne1) {
  2623. const int64_t ne[2] = { ne0, ne1 };
  2624. return ggml_new_tensor(ctx, type, 2, ne);
  2625. }
  2626. struct ggml_tensor * ggml_new_tensor_3d(
  2627. struct ggml_context * ctx,
  2628. enum ggml_type type,
  2629. int64_t ne0,
  2630. int64_t ne1,
  2631. int64_t ne2) {
  2632. const int64_t ne[3] = { ne0, ne1, ne2 };
  2633. return ggml_new_tensor(ctx, type, 3, ne);
  2634. }
  2635. struct ggml_tensor * ggml_new_tensor_4d(
  2636. struct ggml_context * ctx,
  2637. enum ggml_type type,
  2638. int64_t ne0,
  2639. int64_t ne1,
  2640. int64_t ne2,
  2641. int64_t ne3) {
  2642. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2643. return ggml_new_tensor(ctx, type, 4, ne);
  2644. }
  2645. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2646. ctx->scratch_save = ctx->scratch;
  2647. ctx->scratch.data = NULL;
  2648. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2649. ctx->scratch = ctx->scratch_save;
  2650. ggml_set_i32(result, value);
  2651. return result;
  2652. }
  2653. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2654. ctx->scratch_save = ctx->scratch;
  2655. ctx->scratch.data = NULL;
  2656. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2657. ctx->scratch = ctx->scratch_save;
  2658. ggml_set_f32(result, value);
  2659. return result;
  2660. }
  2661. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2662. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2663. }
  2664. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2665. memset(tensor->data, 0, ggml_nbytes(tensor));
  2666. return tensor;
  2667. }
  2668. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2669. const int n = ggml_nrows(tensor);
  2670. const int nc = tensor->ne[0];
  2671. const size_t n1 = tensor->nb[1];
  2672. char * const data = tensor->data;
  2673. switch (tensor->type) {
  2674. case GGML_TYPE_Q4_0:
  2675. {
  2676. GGML_ASSERT(false);
  2677. } break;
  2678. case GGML_TYPE_Q4_1:
  2679. {
  2680. GGML_ASSERT(false);
  2681. } break;
  2682. case GGML_TYPE_I8:
  2683. {
  2684. assert(tensor->nb[0] == sizeof(int8_t));
  2685. for (int i = 0; i < n; i++) {
  2686. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2687. }
  2688. } break;
  2689. case GGML_TYPE_I16:
  2690. {
  2691. assert(tensor->nb[0] == sizeof(int16_t));
  2692. for (int i = 0; i < n; i++) {
  2693. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2694. }
  2695. } break;
  2696. case GGML_TYPE_I32:
  2697. {
  2698. assert(tensor->nb[0] == sizeof(int32_t));
  2699. for (int i = 0; i < n; i++) {
  2700. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2701. }
  2702. } break;
  2703. case GGML_TYPE_F16:
  2704. {
  2705. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2706. for (int i = 0; i < n; i++) {
  2707. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2708. }
  2709. } break;
  2710. case GGML_TYPE_F32:
  2711. {
  2712. assert(tensor->nb[0] == sizeof(float));
  2713. for (int i = 0; i < n; i++) {
  2714. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2715. }
  2716. } break;
  2717. case GGML_TYPE_COUNT:
  2718. {
  2719. GGML_ASSERT(false);
  2720. } break;
  2721. }
  2722. return tensor;
  2723. }
  2724. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2725. const int n = ggml_nrows(tensor);
  2726. const int nc = tensor->ne[0];
  2727. const size_t n1 = tensor->nb[1];
  2728. char * const data = tensor->data;
  2729. switch (tensor->type) {
  2730. case GGML_TYPE_Q4_0:
  2731. {
  2732. GGML_ASSERT(false);
  2733. } break;
  2734. case GGML_TYPE_Q4_1:
  2735. {
  2736. GGML_ASSERT(false);
  2737. } break;
  2738. case GGML_TYPE_I8:
  2739. {
  2740. assert(tensor->nb[0] == sizeof(int8_t));
  2741. for (int i = 0; i < n; i++) {
  2742. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2743. }
  2744. } break;
  2745. case GGML_TYPE_I16:
  2746. {
  2747. assert(tensor->nb[0] == sizeof(int16_t));
  2748. for (int i = 0; i < n; i++) {
  2749. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2750. }
  2751. } break;
  2752. case GGML_TYPE_I32:
  2753. {
  2754. assert(tensor->nb[0] == sizeof(int32_t));
  2755. for (int i = 0; i < n; i++) {
  2756. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2757. }
  2758. } break;
  2759. case GGML_TYPE_F16:
  2760. {
  2761. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2762. for (int i = 0; i < n; i++) {
  2763. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2764. }
  2765. } break;
  2766. case GGML_TYPE_F32:
  2767. {
  2768. assert(tensor->nb[0] == sizeof(float));
  2769. for (int i = 0; i < n; i++) {
  2770. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2771. }
  2772. } break;
  2773. case GGML_TYPE_COUNT:
  2774. {
  2775. GGML_ASSERT(false);
  2776. } break;
  2777. }
  2778. return tensor;
  2779. }
  2780. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2781. switch (tensor->type) {
  2782. case GGML_TYPE_Q4_0:
  2783. {
  2784. GGML_ASSERT(false);
  2785. } break;
  2786. case GGML_TYPE_Q4_1:
  2787. {
  2788. GGML_ASSERT(false);
  2789. } break;
  2790. case GGML_TYPE_I8:
  2791. {
  2792. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2793. return ((int8_t *)(tensor->data))[i];
  2794. } break;
  2795. case GGML_TYPE_I16:
  2796. {
  2797. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2798. return ((int16_t *)(tensor->data))[i];
  2799. } break;
  2800. case GGML_TYPE_I32:
  2801. {
  2802. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2803. return ((int32_t *)(tensor->data))[i];
  2804. } break;
  2805. case GGML_TYPE_F16:
  2806. {
  2807. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2808. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2809. } break;
  2810. case GGML_TYPE_F32:
  2811. {
  2812. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2813. return ((float *)(tensor->data))[i];
  2814. } break;
  2815. case GGML_TYPE_COUNT:
  2816. {
  2817. GGML_ASSERT(false);
  2818. } break;
  2819. }
  2820. return 0.0f;
  2821. }
  2822. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2823. switch (tensor->type) {
  2824. case GGML_TYPE_Q4_0:
  2825. {
  2826. GGML_ASSERT(false);
  2827. } break;
  2828. case GGML_TYPE_Q4_1:
  2829. {
  2830. GGML_ASSERT(false);
  2831. } break;
  2832. case GGML_TYPE_I8:
  2833. {
  2834. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2835. ((int8_t *)(tensor->data))[i] = value;
  2836. } break;
  2837. case GGML_TYPE_I16:
  2838. {
  2839. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2840. ((int16_t *)(tensor->data))[i] = value;
  2841. } break;
  2842. case GGML_TYPE_I32:
  2843. {
  2844. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2845. ((int32_t *)(tensor->data))[i] = value;
  2846. } break;
  2847. case GGML_TYPE_F16:
  2848. {
  2849. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2850. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2851. } break;
  2852. case GGML_TYPE_F32:
  2853. {
  2854. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2855. ((float *)(tensor->data))[i] = value;
  2856. } break;
  2857. case GGML_TYPE_COUNT:
  2858. {
  2859. GGML_ASSERT(false);
  2860. } break;
  2861. }
  2862. }
  2863. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2864. switch (tensor->type) {
  2865. case GGML_TYPE_Q4_0:
  2866. {
  2867. GGML_ASSERT(false);
  2868. } break;
  2869. case GGML_TYPE_Q4_1:
  2870. {
  2871. GGML_ASSERT(false);
  2872. } break;
  2873. case GGML_TYPE_I8:
  2874. {
  2875. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2876. return ((int8_t *)(tensor->data))[i];
  2877. } break;
  2878. case GGML_TYPE_I16:
  2879. {
  2880. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2881. return ((int16_t *)(tensor->data))[i];
  2882. } break;
  2883. case GGML_TYPE_I32:
  2884. {
  2885. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2886. return ((int32_t *)(tensor->data))[i];
  2887. } break;
  2888. case GGML_TYPE_F16:
  2889. {
  2890. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2891. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2892. } break;
  2893. case GGML_TYPE_F32:
  2894. {
  2895. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2896. return ((float *)(tensor->data))[i];
  2897. } break;
  2898. case GGML_TYPE_COUNT:
  2899. {
  2900. GGML_ASSERT(false);
  2901. } break;
  2902. }
  2903. return 0.0f;
  2904. }
  2905. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2906. switch (tensor->type) {
  2907. case GGML_TYPE_Q4_0:
  2908. {
  2909. GGML_ASSERT(false);
  2910. } break;
  2911. case GGML_TYPE_Q4_1:
  2912. {
  2913. GGML_ASSERT(false);
  2914. } break;
  2915. case GGML_TYPE_I8:
  2916. {
  2917. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2918. ((int8_t *)(tensor->data))[i] = value;
  2919. } break;
  2920. case GGML_TYPE_I16:
  2921. {
  2922. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2923. ((int16_t *)(tensor->data))[i] = value;
  2924. } break;
  2925. case GGML_TYPE_I32:
  2926. {
  2927. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2928. ((int32_t *)(tensor->data))[i] = value;
  2929. } break;
  2930. case GGML_TYPE_F16:
  2931. {
  2932. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2933. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2934. } break;
  2935. case GGML_TYPE_F32:
  2936. {
  2937. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2938. ((float *)(tensor->data))[i] = value;
  2939. } break;
  2940. case GGML_TYPE_COUNT:
  2941. {
  2942. GGML_ASSERT(false);
  2943. } break;
  2944. }
  2945. }
  2946. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2947. return tensor->data;
  2948. }
  2949. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2950. assert(tensor->type == GGML_TYPE_F32);
  2951. return (float *)(tensor->data);
  2952. }
  2953. struct ggml_tensor * ggml_view_tensor(
  2954. struct ggml_context * ctx,
  2955. const struct ggml_tensor * src) {
  2956. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  2957. result->nb[0] = src->nb[0];
  2958. result->nb[1] = src->nb[1];
  2959. result->nb[2] = src->nb[2];
  2960. result->nb[3] = src->nb[3];
  2961. return result;
  2962. }
  2963. ////////////////////////////////////////////////////////////////////////////////
  2964. // ggml_dup
  2965. struct ggml_tensor * ggml_dup_impl(
  2966. struct ggml_context * ctx,
  2967. struct ggml_tensor * a,
  2968. bool inplace) {
  2969. bool is_node = false;
  2970. if (!inplace && (a->grad)) {
  2971. is_node = true;
  2972. }
  2973. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2974. result->op = GGML_OP_DUP;
  2975. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2976. result->src0 = a;
  2977. result->src1 = NULL;
  2978. return result;
  2979. }
  2980. struct ggml_tensor * ggml_dup(
  2981. struct ggml_context * ctx,
  2982. struct ggml_tensor * a) {
  2983. return ggml_dup_impl(ctx, a, false);
  2984. }
  2985. struct ggml_tensor * ggml_dup_inplace(
  2986. struct ggml_context * ctx,
  2987. struct ggml_tensor * a) {
  2988. return ggml_dup_impl(ctx, a, true);
  2989. }
  2990. // ggml_add
  2991. struct ggml_tensor * ggml_add_impl(
  2992. struct ggml_context * ctx,
  2993. struct ggml_tensor * a,
  2994. struct ggml_tensor * b,
  2995. bool inplace) {
  2996. GGML_ASSERT(ggml_are_same_shape(a, b));
  2997. bool is_node = false;
  2998. if (!inplace && (a->grad || b->grad)) {
  2999. is_node = true;
  3000. }
  3001. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3002. result->op = GGML_OP_ADD;
  3003. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3004. result->src0 = a;
  3005. result->src1 = b;
  3006. return result;
  3007. }
  3008. struct ggml_tensor * ggml_add(
  3009. struct ggml_context * ctx,
  3010. struct ggml_tensor * a,
  3011. struct ggml_tensor * b) {
  3012. return ggml_add_impl(ctx, a, b, false);
  3013. }
  3014. struct ggml_tensor * ggml_add_inplace(
  3015. struct ggml_context * ctx,
  3016. struct ggml_tensor * a,
  3017. struct ggml_tensor * b) {
  3018. return ggml_add_impl(ctx, a, b, true);
  3019. }
  3020. // ggml_sub
  3021. struct ggml_tensor * ggml_sub_impl(
  3022. struct ggml_context * ctx,
  3023. struct ggml_tensor * a,
  3024. struct ggml_tensor * b,
  3025. bool inplace) {
  3026. GGML_ASSERT(ggml_are_same_shape(a, b));
  3027. bool is_node = false;
  3028. if (!inplace && (a->grad || b->grad)) {
  3029. is_node = true;
  3030. }
  3031. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3032. result->op = GGML_OP_SUB;
  3033. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3034. result->src0 = a;
  3035. result->src1 = b;
  3036. return result;
  3037. }
  3038. struct ggml_tensor * ggml_sub(
  3039. struct ggml_context * ctx,
  3040. struct ggml_tensor * a,
  3041. struct ggml_tensor * b) {
  3042. return ggml_sub_impl(ctx, a, b, false);
  3043. }
  3044. struct ggml_tensor * ggml_sub_inplace(
  3045. struct ggml_context * ctx,
  3046. struct ggml_tensor * a,
  3047. struct ggml_tensor * b) {
  3048. return ggml_sub_impl(ctx, a, b, true);
  3049. }
  3050. // ggml_mul
  3051. struct ggml_tensor * ggml_mul_impl(
  3052. struct ggml_context * ctx,
  3053. struct ggml_tensor * a,
  3054. struct ggml_tensor * b,
  3055. bool inplace) {
  3056. GGML_ASSERT(ggml_are_same_shape(a, b));
  3057. bool is_node = false;
  3058. if (!inplace && (a->grad || b->grad)) {
  3059. is_node = true;
  3060. }
  3061. if (inplace) {
  3062. GGML_ASSERT(is_node == false);
  3063. }
  3064. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3065. result->op = GGML_OP_MUL;
  3066. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3067. result->src0 = a;
  3068. result->src1 = b;
  3069. return result;
  3070. }
  3071. struct ggml_tensor * ggml_mul(
  3072. struct ggml_context * ctx,
  3073. struct ggml_tensor * a,
  3074. struct ggml_tensor * b) {
  3075. return ggml_mul_impl(ctx, a, b, false);
  3076. }
  3077. struct ggml_tensor * ggml_mul_inplace(
  3078. struct ggml_context * ctx,
  3079. struct ggml_tensor * a,
  3080. struct ggml_tensor * b) {
  3081. return ggml_mul_impl(ctx, a, b, true);
  3082. }
  3083. // ggml_div
  3084. struct ggml_tensor * ggml_div_impl(
  3085. struct ggml_context * ctx,
  3086. struct ggml_tensor * a,
  3087. struct ggml_tensor * b,
  3088. bool inplace) {
  3089. GGML_ASSERT(ggml_are_same_shape(a, b));
  3090. bool is_node = false;
  3091. if (!inplace && (a->grad || b->grad)) {
  3092. is_node = true;
  3093. }
  3094. if (inplace) {
  3095. GGML_ASSERT(is_node == false);
  3096. }
  3097. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3098. result->op = GGML_OP_DIV;
  3099. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3100. result->src0 = a;
  3101. result->src1 = b;
  3102. return result;
  3103. }
  3104. struct ggml_tensor * ggml_div(
  3105. struct ggml_context * ctx,
  3106. struct ggml_tensor * a,
  3107. struct ggml_tensor * b) {
  3108. return ggml_div_impl(ctx, a, b, false);
  3109. }
  3110. struct ggml_tensor * ggml_div_inplace(
  3111. struct ggml_context * ctx,
  3112. struct ggml_tensor * a,
  3113. struct ggml_tensor * b) {
  3114. return ggml_div_impl(ctx, a, b, true);
  3115. }
  3116. // ggml_sqr
  3117. struct ggml_tensor * ggml_sqr_impl(
  3118. struct ggml_context * ctx,
  3119. struct ggml_tensor * a,
  3120. bool inplace) {
  3121. bool is_node = false;
  3122. if (!inplace && (a->grad)) {
  3123. is_node = true;
  3124. }
  3125. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3126. result->op = GGML_OP_SQR;
  3127. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3128. result->src0 = a;
  3129. result->src1 = NULL;
  3130. return result;
  3131. }
  3132. struct ggml_tensor * ggml_sqr(
  3133. struct ggml_context * ctx,
  3134. struct ggml_tensor * a) {
  3135. return ggml_sqr_impl(ctx, a, false);
  3136. }
  3137. struct ggml_tensor * ggml_sqr_inplace(
  3138. struct ggml_context * ctx,
  3139. struct ggml_tensor * a) {
  3140. return ggml_sqr_impl(ctx, a, true);
  3141. }
  3142. // ggml_sqrt
  3143. struct ggml_tensor * ggml_sqrt_impl(
  3144. struct ggml_context * ctx,
  3145. struct ggml_tensor * a,
  3146. bool inplace) {
  3147. bool is_node = false;
  3148. if (!inplace && (a->grad)) {
  3149. is_node = true;
  3150. }
  3151. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3152. result->op = GGML_OP_SQRT;
  3153. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3154. result->src0 = a;
  3155. result->src1 = NULL;
  3156. return result;
  3157. }
  3158. struct ggml_tensor * ggml_sqrt(
  3159. struct ggml_context * ctx,
  3160. struct ggml_tensor * a) {
  3161. return ggml_sqrt_impl(ctx, a, false);
  3162. }
  3163. struct ggml_tensor * ggml_sqrt_inplace(
  3164. struct ggml_context * ctx,
  3165. struct ggml_tensor * a) {
  3166. return ggml_sqrt_impl(ctx, a, true);
  3167. }
  3168. // ggml_sum
  3169. struct ggml_tensor * ggml_sum(
  3170. struct ggml_context * ctx,
  3171. struct ggml_tensor * a) {
  3172. bool is_node = false;
  3173. if (a->grad) {
  3174. is_node = true;
  3175. }
  3176. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3177. result->op = GGML_OP_SUM;
  3178. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3179. result->src0 = a;
  3180. result->src1 = NULL;
  3181. return result;
  3182. }
  3183. // ggml_mean
  3184. struct ggml_tensor * ggml_mean(
  3185. struct ggml_context * ctx,
  3186. struct ggml_tensor * a) {
  3187. bool is_node = false;
  3188. if (a->grad) {
  3189. GGML_ASSERT(false); // TODO: implement
  3190. is_node = true;
  3191. }
  3192. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3193. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3194. result->op = GGML_OP_MEAN;
  3195. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3196. result->src0 = a;
  3197. result->src1 = NULL;
  3198. return result;
  3199. }
  3200. // ggml_repeat
  3201. struct ggml_tensor * ggml_repeat(
  3202. struct ggml_context * ctx,
  3203. struct ggml_tensor * a,
  3204. struct ggml_tensor * b) {
  3205. GGML_ASSERT(ggml_can_repeat(a, b));
  3206. bool is_node = false;
  3207. if (a->grad) {
  3208. is_node = true;
  3209. }
  3210. if (ggml_are_same_shape(a, b) && !is_node) {
  3211. return a;
  3212. }
  3213. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3214. result->op = GGML_OP_REPEAT;
  3215. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3216. result->src0 = a;
  3217. result->src1 = b;
  3218. return result;
  3219. }
  3220. // ggml_abs
  3221. struct ggml_tensor * ggml_abs_impl(
  3222. struct ggml_context * ctx,
  3223. struct ggml_tensor * a,
  3224. bool inplace) {
  3225. bool is_node = false;
  3226. if (!inplace && (a->grad)) {
  3227. is_node = true;
  3228. }
  3229. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3230. result->op = GGML_OP_ABS;
  3231. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3232. result->src0 = a;
  3233. result->src1 = NULL;
  3234. return result;
  3235. }
  3236. struct ggml_tensor * ggml_abs(
  3237. struct ggml_context * ctx,
  3238. struct ggml_tensor * a) {
  3239. return ggml_abs_impl(ctx, a, false);
  3240. }
  3241. struct ggml_tensor * ggml_abs_inplace(
  3242. struct ggml_context * ctx,
  3243. struct ggml_tensor * a) {
  3244. return ggml_abs_impl(ctx, a, true);
  3245. }
  3246. // ggml_sgn
  3247. struct ggml_tensor * ggml_sgn_impl(
  3248. struct ggml_context * ctx,
  3249. struct ggml_tensor * a,
  3250. bool inplace) {
  3251. bool is_node = false;
  3252. if (!inplace && (a->grad)) {
  3253. is_node = true;
  3254. }
  3255. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3256. result->op = GGML_OP_SGN;
  3257. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3258. result->src0 = a;
  3259. result->src1 = NULL;
  3260. return result;
  3261. }
  3262. struct ggml_tensor * ggml_sgn(
  3263. struct ggml_context * ctx,
  3264. struct ggml_tensor * a) {
  3265. return ggml_sgn_impl(ctx, a, false);
  3266. }
  3267. struct ggml_tensor * ggml_sgn_inplace(
  3268. struct ggml_context * ctx,
  3269. struct ggml_tensor * a) {
  3270. return ggml_sgn_impl(ctx, a, true);
  3271. }
  3272. // ggml_neg
  3273. struct ggml_tensor * ggml_neg_impl(
  3274. struct ggml_context * ctx,
  3275. struct ggml_tensor * a,
  3276. bool inplace) {
  3277. bool is_node = false;
  3278. if (!inplace && (a->grad)) {
  3279. is_node = true;
  3280. }
  3281. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3282. result->op = GGML_OP_NEG;
  3283. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3284. result->src0 = a;
  3285. result->src1 = NULL;
  3286. return result;
  3287. }
  3288. struct ggml_tensor * ggml_neg(
  3289. struct ggml_context * ctx,
  3290. struct ggml_tensor * a) {
  3291. return ggml_neg_impl(ctx, a, false);
  3292. }
  3293. struct ggml_tensor * ggml_neg_inplace(
  3294. struct ggml_context * ctx,
  3295. struct ggml_tensor * a) {
  3296. return ggml_neg_impl(ctx, a, true);
  3297. }
  3298. // ggml_step
  3299. struct ggml_tensor * ggml_step_impl(
  3300. struct ggml_context * ctx,
  3301. struct ggml_tensor * a,
  3302. bool inplace) {
  3303. bool is_node = false;
  3304. if (!inplace && (a->grad)) {
  3305. is_node = true;
  3306. }
  3307. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3308. result->op = GGML_OP_STEP;
  3309. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3310. result->src0 = a;
  3311. result->src1 = NULL;
  3312. return result;
  3313. }
  3314. struct ggml_tensor * ggml_step(
  3315. struct ggml_context * ctx,
  3316. struct ggml_tensor * a) {
  3317. return ggml_step_impl(ctx, a, false);
  3318. }
  3319. struct ggml_tensor * ggml_step_inplace(
  3320. struct ggml_context * ctx,
  3321. struct ggml_tensor * a) {
  3322. return ggml_step_impl(ctx, a, true);
  3323. }
  3324. // ggml_relu
  3325. struct ggml_tensor * ggml_relu_impl(
  3326. struct ggml_context * ctx,
  3327. struct ggml_tensor * a,
  3328. bool inplace) {
  3329. bool is_node = false;
  3330. if (!inplace && (a->grad)) {
  3331. is_node = true;
  3332. }
  3333. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3334. result->op = GGML_OP_RELU;
  3335. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3336. result->src0 = a;
  3337. result->src1 = NULL;
  3338. return result;
  3339. }
  3340. struct ggml_tensor * ggml_relu(
  3341. struct ggml_context * ctx,
  3342. struct ggml_tensor * a) {
  3343. return ggml_relu_impl(ctx, a, false);
  3344. }
  3345. struct ggml_tensor * ggml_relu_inplace(
  3346. struct ggml_context * ctx,
  3347. struct ggml_tensor * a) {
  3348. return ggml_relu_impl(ctx, a, true);
  3349. }
  3350. // ggml_gelu
  3351. struct ggml_tensor * ggml_gelu_impl(
  3352. struct ggml_context * ctx,
  3353. struct ggml_tensor * a,
  3354. bool inplace) {
  3355. bool is_node = false;
  3356. if (!inplace && (a->grad)) {
  3357. is_node = true;
  3358. }
  3359. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3360. result->op = GGML_OP_GELU;
  3361. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3362. result->src0 = a;
  3363. result->src1 = NULL;
  3364. return result;
  3365. }
  3366. struct ggml_tensor * ggml_gelu(
  3367. struct ggml_context * ctx,
  3368. struct ggml_tensor * a) {
  3369. return ggml_gelu_impl(ctx, a, false);
  3370. }
  3371. struct ggml_tensor * ggml_gelu_inplace(
  3372. struct ggml_context * ctx,
  3373. struct ggml_tensor * a) {
  3374. return ggml_gelu_impl(ctx, a, true);
  3375. }
  3376. // ggml_silu
  3377. struct ggml_tensor * ggml_silu_impl(
  3378. struct ggml_context * ctx,
  3379. struct ggml_tensor * a,
  3380. bool inplace) {
  3381. bool is_node = false;
  3382. if (!inplace && (a->grad)) {
  3383. is_node = true;
  3384. }
  3385. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3386. result->op = GGML_OP_SILU;
  3387. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3388. result->src0 = a;
  3389. result->src1 = NULL;
  3390. return result;
  3391. }
  3392. struct ggml_tensor * ggml_silu(
  3393. struct ggml_context * ctx,
  3394. struct ggml_tensor * a) {
  3395. return ggml_silu_impl(ctx, a, false);
  3396. }
  3397. struct ggml_tensor * ggml_silu_inplace(
  3398. struct ggml_context * ctx,
  3399. struct ggml_tensor * a) {
  3400. return ggml_silu_impl(ctx, a, true);
  3401. }
  3402. // ggml_norm
  3403. struct ggml_tensor * ggml_norm_impl(
  3404. struct ggml_context * ctx,
  3405. struct ggml_tensor * a,
  3406. bool inplace) {
  3407. bool is_node = false;
  3408. if (!inplace && (a->grad)) {
  3409. GGML_ASSERT(false); // TODO: implement backward
  3410. is_node = true;
  3411. }
  3412. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3413. result->op = GGML_OP_NORM;
  3414. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3415. result->src0 = a;
  3416. result->src1 = NULL; // TODO: maybe store epsilon here?
  3417. return result;
  3418. }
  3419. struct ggml_tensor * ggml_norm(
  3420. struct ggml_context * ctx,
  3421. struct ggml_tensor * a) {
  3422. return ggml_norm_impl(ctx, a, false);
  3423. }
  3424. struct ggml_tensor * ggml_norm_inplace(
  3425. struct ggml_context * ctx,
  3426. struct ggml_tensor * a) {
  3427. return ggml_norm_impl(ctx, a, true);
  3428. }
  3429. struct ggml_tensor * ggml_rms_norm_impl(
  3430. struct ggml_context * ctx,
  3431. struct ggml_tensor * a,
  3432. bool inplace) {
  3433. bool is_node = false;
  3434. if (!inplace && (a->grad)) {
  3435. GGML_ASSERT(false); // TODO: implement backward
  3436. is_node = true;
  3437. }
  3438. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3439. result->op = GGML_OP_RMS_NORM;
  3440. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3441. result->src0 = a;
  3442. result->src1 = NULL; // TODO: maybe store epsilon here?
  3443. return result;
  3444. }
  3445. struct ggml_tensor * ggml_rms_norm(
  3446. struct ggml_context * ctx,
  3447. struct ggml_tensor * a) {
  3448. return ggml_rms_norm_impl(ctx, a, false);
  3449. }
  3450. struct ggml_tensor * ggml_rms_norm_inplace(
  3451. struct ggml_context * ctx,
  3452. struct ggml_tensor * a) {
  3453. return ggml_rms_norm_impl(ctx, a, true);
  3454. }
  3455. // ggml_mul_mat
  3456. struct ggml_tensor * ggml_mul_mat(
  3457. struct ggml_context * ctx,
  3458. struct ggml_tensor * a,
  3459. struct ggml_tensor * b) {
  3460. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3461. GGML_ASSERT(!ggml_is_transposed(a));
  3462. bool is_node = false;
  3463. if (a->grad || b->grad) {
  3464. is_node = true;
  3465. }
  3466. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3467. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3468. result->op = GGML_OP_MUL_MAT;
  3469. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3470. result->src0 = a;
  3471. result->src1 = b;
  3472. return result;
  3473. }
  3474. // ggml_scale
  3475. struct ggml_tensor * ggml_scale_impl(
  3476. struct ggml_context * ctx,
  3477. struct ggml_tensor * a,
  3478. struct ggml_tensor * b,
  3479. bool inplace) {
  3480. GGML_ASSERT(ggml_is_scalar(b));
  3481. GGML_ASSERT(ggml_is_padded_1d(a));
  3482. bool is_node = false;
  3483. if (!inplace && (a->grad || b->grad)) {
  3484. GGML_ASSERT(false); // TODO: implement backward
  3485. is_node = true;
  3486. }
  3487. // TODO: when implement backward, fix this:
  3488. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3489. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3490. result->op = GGML_OP_SCALE;
  3491. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3492. result->src0 = a;
  3493. result->src1 = b;
  3494. return result;
  3495. }
  3496. struct ggml_tensor * ggml_scale(
  3497. struct ggml_context * ctx,
  3498. struct ggml_tensor * a,
  3499. struct ggml_tensor * b) {
  3500. return ggml_scale_impl(ctx, a, b, false);
  3501. }
  3502. struct ggml_tensor * ggml_scale_inplace(
  3503. struct ggml_context * ctx,
  3504. struct ggml_tensor * a,
  3505. struct ggml_tensor * b) {
  3506. return ggml_scale_impl(ctx, a, b, true);
  3507. }
  3508. // ggml_cpy
  3509. struct ggml_tensor * ggml_cpy_impl(
  3510. struct ggml_context * ctx,
  3511. struct ggml_tensor * a,
  3512. struct ggml_tensor * b,
  3513. bool inplace) {
  3514. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3515. bool is_node = false;
  3516. if (!inplace && (a->grad || b->grad)) {
  3517. GGML_ASSERT(false); // TODO: implement backward
  3518. is_node = true;
  3519. }
  3520. // make a view of the destination
  3521. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3522. result->op = GGML_OP_CPY;
  3523. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3524. result->src0 = a;
  3525. result->src1 = b;
  3526. return result;
  3527. }
  3528. struct ggml_tensor * ggml_cpy(
  3529. struct ggml_context * ctx,
  3530. struct ggml_tensor * a,
  3531. struct ggml_tensor * b) {
  3532. return ggml_cpy_impl(ctx, a, b, false);
  3533. }
  3534. struct ggml_tensor * ggml_cpy_inplace(
  3535. struct ggml_context * ctx,
  3536. struct ggml_tensor * a,
  3537. struct ggml_tensor * b) {
  3538. return ggml_cpy_impl(ctx, a, b, true);
  3539. }
  3540. // ggml_reshape
  3541. struct ggml_tensor * ggml_reshape(
  3542. struct ggml_context * ctx,
  3543. struct ggml_tensor * a,
  3544. struct ggml_tensor * b) {
  3545. GGML_ASSERT(ggml_is_contiguous(a));
  3546. GGML_ASSERT(ggml_is_contiguous(b));
  3547. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3548. bool is_node = false;
  3549. if (a->grad || b->grad) {
  3550. GGML_ASSERT(false); // TODO: implement backward
  3551. is_node = true;
  3552. }
  3553. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3554. result->op = GGML_OP_RESHAPE;
  3555. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3556. result->src0 = a;
  3557. result->src1 = NULL;
  3558. return result;
  3559. }
  3560. struct ggml_tensor * ggml_reshape_2d(
  3561. struct ggml_context * ctx,
  3562. struct ggml_tensor * a,
  3563. int64_t ne0,
  3564. int64_t ne1) {
  3565. GGML_ASSERT(ggml_is_contiguous(a));
  3566. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3567. bool is_node = false;
  3568. if (a->grad) {
  3569. GGML_ASSERT(false); // TODO: implement backward
  3570. is_node = true;
  3571. }
  3572. const int64_t ne[2] = { ne0, ne1 };
  3573. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3574. result->op = GGML_OP_RESHAPE;
  3575. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3576. result->src0 = a;
  3577. result->src1 = NULL;
  3578. return result;
  3579. }
  3580. struct ggml_tensor * ggml_reshape_3d(
  3581. struct ggml_context * ctx,
  3582. struct ggml_tensor * a,
  3583. int64_t ne0,
  3584. int64_t ne1,
  3585. int64_t ne2) {
  3586. GGML_ASSERT(ggml_is_contiguous(a));
  3587. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3588. bool is_node = false;
  3589. if (a->grad) {
  3590. GGML_ASSERT(false); // TODO: implement backward
  3591. is_node = true;
  3592. }
  3593. const int64_t ne[3] = { ne0, ne1, ne2 };
  3594. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3595. result->op = GGML_OP_RESHAPE;
  3596. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3597. result->src0 = a;
  3598. result->src1 = NULL;
  3599. return result;
  3600. }
  3601. // ggml_view_1d
  3602. struct ggml_tensor * ggml_view_1d(
  3603. struct ggml_context * ctx,
  3604. struct ggml_tensor * a,
  3605. int64_t ne0,
  3606. size_t offset) {
  3607. if (a->grad) {
  3608. GGML_ASSERT(false); // gradient propagation is not supported
  3609. }
  3610. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3611. result->op = GGML_OP_VIEW;
  3612. result->grad = NULL;
  3613. result->src0 = a;
  3614. result->src1 = NULL; // TODO: maybe store the offset here?
  3615. return result;
  3616. }
  3617. // ggml_view_2d
  3618. struct ggml_tensor * ggml_view_2d(
  3619. struct ggml_context * ctx,
  3620. struct ggml_tensor * a,
  3621. int64_t ne0,
  3622. int64_t ne1,
  3623. size_t nb1,
  3624. size_t offset) {
  3625. if (a->grad) {
  3626. GGML_ASSERT(false); // gradient propagation is not supported
  3627. }
  3628. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3629. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3630. result->nb[1] = nb1;
  3631. result->nb[2] = result->nb[1]*ne1;
  3632. result->nb[3] = result->nb[2];
  3633. result->op = GGML_OP_VIEW;
  3634. result->grad = NULL;
  3635. result->src0 = a;
  3636. result->src1 = NULL; // TODO: maybe store the offset here?
  3637. return result;
  3638. }
  3639. // ggml_view_3d
  3640. struct ggml_tensor * ggml_view_3d(
  3641. struct ggml_context * ctx,
  3642. struct ggml_tensor * a,
  3643. int64_t ne0,
  3644. int64_t ne1,
  3645. int64_t ne2,
  3646. size_t nb1,
  3647. size_t nb2,
  3648. size_t offset) {
  3649. if (a->grad) {
  3650. GGML_ASSERT(false); // gradient propagation is not supported
  3651. }
  3652. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  3653. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  3654. result->nb[1] = nb1;
  3655. result->nb[2] = nb2;
  3656. result->nb[3] = result->nb[2]*ne2;
  3657. result->op = GGML_OP_VIEW;
  3658. result->grad = NULL;
  3659. result->src0 = a;
  3660. result->src1 = NULL; // TODO: maybe store the offset here?
  3661. return result;
  3662. }
  3663. // ggml_permute
  3664. struct ggml_tensor * ggml_permute(
  3665. struct ggml_context * ctx,
  3666. struct ggml_tensor * a,
  3667. int axis0,
  3668. int axis1,
  3669. int axis2,
  3670. int axis3) {
  3671. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3672. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3673. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3674. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3675. GGML_ASSERT(axis0 != axis1);
  3676. GGML_ASSERT(axis0 != axis2);
  3677. GGML_ASSERT(axis0 != axis3);
  3678. GGML_ASSERT(axis1 != axis2);
  3679. GGML_ASSERT(axis1 != axis3);
  3680. GGML_ASSERT(axis2 != axis3);
  3681. bool is_node = false;
  3682. if (a->grad) {
  3683. GGML_ASSERT(false); // TODO: implement backward
  3684. is_node = true;
  3685. }
  3686. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3687. int ne[GGML_MAX_DIMS];
  3688. int nb[GGML_MAX_DIMS];
  3689. ne[axis0] = a->ne[0];
  3690. ne[axis1] = a->ne[1];
  3691. ne[axis2] = a->ne[2];
  3692. ne[axis3] = a->ne[3];
  3693. nb[axis0] = a->nb[0];
  3694. nb[axis1] = a->nb[1];
  3695. nb[axis2] = a->nb[2];
  3696. nb[axis3] = a->nb[3];
  3697. result->ne[0] = ne[0];
  3698. result->ne[1] = ne[1];
  3699. result->ne[2] = ne[2];
  3700. result->ne[3] = ne[3];
  3701. result->nb[0] = nb[0];
  3702. result->nb[1] = nb[1];
  3703. result->nb[2] = nb[2];
  3704. result->nb[3] = nb[3];
  3705. result->op = GGML_OP_PERMUTE;
  3706. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3707. result->src0 = a;
  3708. result->src1 = NULL; // TODO: maybe store the permutation here?
  3709. return result;
  3710. }
  3711. // ggml_transpose
  3712. struct ggml_tensor * ggml_transpose(
  3713. struct ggml_context * ctx,
  3714. struct ggml_tensor * a) {
  3715. bool is_node = false;
  3716. if (a->grad) {
  3717. GGML_ASSERT(false); // TODO: implement backward
  3718. is_node = true;
  3719. }
  3720. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3721. result->ne[0] = a->ne[1];
  3722. result->ne[1] = a->ne[0];
  3723. result->nb[0] = a->nb[1];
  3724. result->nb[1] = a->nb[0];
  3725. result->op = GGML_OP_TRANSPOSE;
  3726. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3727. result->src0 = a;
  3728. result->src1 = NULL;
  3729. return result;
  3730. }
  3731. // ggml_get_rows
  3732. struct ggml_tensor * ggml_get_rows(
  3733. struct ggml_context * ctx,
  3734. struct ggml_tensor * a,
  3735. struct ggml_tensor * b) {
  3736. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3737. bool is_node = false;
  3738. if (a->grad || b->grad) {
  3739. GGML_ASSERT(false); // TODO: implement backward
  3740. is_node = true;
  3741. }
  3742. // TODO: implement non F32 return
  3743. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3744. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3745. result->op = GGML_OP_GET_ROWS;
  3746. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3747. result->src0 = a;
  3748. result->src1 = b;
  3749. return result;
  3750. }
  3751. // ggml_diag_mask_inf
  3752. struct ggml_tensor * ggml_diag_mask_inf(
  3753. struct ggml_context * ctx,
  3754. struct ggml_tensor * a,
  3755. int n_past) {
  3756. bool is_node = false;
  3757. if (a->grad) {
  3758. GGML_ASSERT(false); // TODO: implement backward
  3759. is_node = true;
  3760. }
  3761. // TODO: when implement backward, fix this:
  3762. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3763. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3764. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  3765. result->op = GGML_OP_DIAG_MASK_INF;
  3766. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3767. result->src0 = a;
  3768. result->src1 = b;
  3769. return result;
  3770. }
  3771. // ggml_soft_max
  3772. struct ggml_tensor * ggml_soft_max(
  3773. struct ggml_context * ctx,
  3774. struct ggml_tensor * a) {
  3775. bool is_node = false;
  3776. if (a->grad) {
  3777. GGML_ASSERT(false); // TODO: implement backward
  3778. is_node = true;
  3779. }
  3780. // TODO: when implement backward, fix this:
  3781. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3782. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3783. result->op = GGML_OP_SOFT_MAX;
  3784. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3785. result->src0 = a;
  3786. result->src1 = NULL;
  3787. return result;
  3788. }
  3789. // ggml_rope
  3790. struct ggml_tensor * ggml_rope(
  3791. struct ggml_context * ctx,
  3792. struct ggml_tensor * a,
  3793. int n_past,
  3794. int n_dims,
  3795. int mode) {
  3796. GGML_ASSERT(n_past >= 0);
  3797. bool is_node = false;
  3798. if (a->grad) {
  3799. GGML_ASSERT(false); // TODO: implement backward
  3800. is_node = true;
  3801. }
  3802. // TODO: when implement backward, fix this:
  3803. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3804. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3805. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  3806. ((int32_t *) b->data)[0] = n_past;
  3807. ((int32_t *) b->data)[1] = n_dims;
  3808. ((int32_t *) b->data)[2] = mode;
  3809. result->op = GGML_OP_ROPE;
  3810. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3811. result->src0 = a;
  3812. result->src1 = b;
  3813. return result;
  3814. }
  3815. // ggml_conv_1d_1s
  3816. struct ggml_tensor * ggml_conv_1d_1s(
  3817. struct ggml_context * ctx,
  3818. struct ggml_tensor * a,
  3819. struct ggml_tensor * b) {
  3820. GGML_ASSERT(ggml_is_matrix(b));
  3821. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3822. GGML_ASSERT(a->ne[3] == 1);
  3823. bool is_node = false;
  3824. if (a->grad || b->grad) {
  3825. GGML_ASSERT(false); // TODO: implement backward
  3826. is_node = true;
  3827. }
  3828. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  3829. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3830. result->op = GGML_OP_CONV_1D_1S;
  3831. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3832. result->src0 = a;
  3833. result->src1 = b;
  3834. return result;
  3835. }
  3836. // ggml_conv_1d_2s
  3837. struct ggml_tensor * ggml_conv_1d_2s(
  3838. struct ggml_context * ctx,
  3839. struct ggml_tensor * a,
  3840. struct ggml_tensor * b) {
  3841. GGML_ASSERT(ggml_is_matrix(b));
  3842. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3843. GGML_ASSERT(a->ne[3] == 1);
  3844. bool is_node = false;
  3845. if (a->grad || b->grad) {
  3846. GGML_ASSERT(false); // TODO: implement backward
  3847. is_node = true;
  3848. }
  3849. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  3850. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3851. result->op = GGML_OP_CONV_1D_2S;
  3852. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3853. result->src0 = a;
  3854. result->src1 = b;
  3855. return result;
  3856. }
  3857. // ggml_flash_attn
  3858. struct ggml_tensor * ggml_flash_attn(
  3859. struct ggml_context * ctx,
  3860. struct ggml_tensor * q,
  3861. struct ggml_tensor * k,
  3862. struct ggml_tensor * v,
  3863. bool masked) {
  3864. GGML_ASSERT(ggml_can_mul_mat(k, q));
  3865. // TODO: check if vT can be multiplied by (k*qT)
  3866. bool is_node = false;
  3867. if (q->grad || k->grad || v->grad) {
  3868. GGML_ASSERT(false); // TODO: implement backward
  3869. is_node = true;
  3870. }
  3871. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  3872. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  3873. result->op = GGML_OP_FLASH_ATTN;
  3874. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3875. result->src0 = q;
  3876. result->src1 = k;
  3877. result->opt[0] = v;
  3878. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  3879. return result;
  3880. }
  3881. // ggml_flash_ff
  3882. struct ggml_tensor * ggml_flash_ff(
  3883. struct ggml_context * ctx,
  3884. struct ggml_tensor * a,
  3885. struct ggml_tensor * b0,
  3886. struct ggml_tensor * b1,
  3887. struct ggml_tensor * c0,
  3888. struct ggml_tensor * c1) {
  3889. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  3890. // TODO: more checks
  3891. bool is_node = false;
  3892. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  3893. GGML_ASSERT(false); // TODO: implement backward
  3894. is_node = true;
  3895. }
  3896. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3897. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  3898. result->op = GGML_OP_FLASH_FF;
  3899. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3900. result->src0 = a;
  3901. result->src1 = b0;
  3902. result->opt[0] = b1;
  3903. result->opt[1] = c0;
  3904. result->opt[2] = c1;
  3905. return result;
  3906. }
  3907. ////////////////////////////////////////////////////////////////////////////////
  3908. void ggml_set_param(
  3909. struct ggml_context * ctx,
  3910. struct ggml_tensor * tensor) {
  3911. tensor->is_param = true;
  3912. GGML_ASSERT(tensor->grad == NULL);
  3913. tensor->grad = ggml_dup_tensor(ctx, tensor);
  3914. }
  3915. // ggml_compute_forward_dup
  3916. static void ggml_compute_forward_dup_f16(
  3917. const struct ggml_compute_params * params,
  3918. const struct ggml_tensor * src0,
  3919. struct ggml_tensor * dst) {
  3920. GGML_ASSERT(params->ith == 0);
  3921. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3922. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3923. return;
  3924. }
  3925. const int64_t ne00 = src0->ne[0];
  3926. const int64_t ne01 = src0->ne[1];
  3927. const int64_t ne02 = src0->ne[2];
  3928. const int64_t ne03 = src0->ne[3];
  3929. const size_t nb00 = src0->nb[0];
  3930. const size_t nb01 = src0->nb[1];
  3931. const size_t nb02 = src0->nb[2];
  3932. const size_t nb03 = src0->nb[3];
  3933. const size_t nb0 = dst->nb[0];
  3934. const size_t nb1 = dst->nb[1];
  3935. const size_t nb2 = dst->nb[2];
  3936. const size_t nb3 = dst->nb[3];
  3937. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  3938. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3939. return;
  3940. }
  3941. if (src0->type == dst->type &&
  3942. src0->ne[0] == dst->ne[0] &&
  3943. src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) {
  3944. // copy by rows
  3945. const size_t rs = ne00*nb00;
  3946. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3947. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3948. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3949. memcpy(
  3950. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  3951. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  3952. rs);
  3953. }
  3954. }
  3955. }
  3956. return;
  3957. }
  3958. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  3959. // dst counters
  3960. int64_t i10 = 0;
  3961. int64_t i11 = 0;
  3962. int64_t i12 = 0;
  3963. int64_t i13 = 0;
  3964. if (dst->type == GGML_TYPE_F16) {
  3965. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3966. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3967. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3968. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3969. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3970. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  3971. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  3972. if (++i10 == ne00) {
  3973. i10 = 0;
  3974. if (++i11 == ne01) {
  3975. i11 = 0;
  3976. if (++i12 == ne02) {
  3977. i12 = 0;
  3978. if (++i13 == ne03) {
  3979. i13 = 0;
  3980. }
  3981. }
  3982. }
  3983. }
  3984. }
  3985. }
  3986. }
  3987. }
  3988. } else if (dst->type == GGML_TYPE_F32) {
  3989. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3990. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3991. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3992. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3993. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3994. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  3995. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  3996. if (++i10 == ne00) {
  3997. i10 = 0;
  3998. if (++i11 == ne01) {
  3999. i11 = 0;
  4000. if (++i12 == ne02) {
  4001. i12 = 0;
  4002. if (++i13 == ne03) {
  4003. i13 = 0;
  4004. }
  4005. }
  4006. }
  4007. }
  4008. }
  4009. }
  4010. }
  4011. }
  4012. } else {
  4013. GGML_ASSERT(false); // TODO: implement
  4014. }
  4015. }
  4016. static void ggml_compute_forward_dup_f32(
  4017. const struct ggml_compute_params * params,
  4018. const struct ggml_tensor * src0,
  4019. struct ggml_tensor * dst) {
  4020. GGML_ASSERT(params->ith == 0);
  4021. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4022. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4023. return;
  4024. }
  4025. const int64_t ne00 = src0->ne[0];
  4026. const int64_t ne01 = src0->ne[1];
  4027. const int64_t ne02 = src0->ne[2];
  4028. const int64_t ne03 = src0->ne[3];
  4029. const size_t nb00 = src0->nb[0];
  4030. const size_t nb01 = src0->nb[1];
  4031. const size_t nb02 = src0->nb[2];
  4032. const size_t nb03 = src0->nb[3];
  4033. const size_t nb0 = dst->nb[0];
  4034. const size_t nb1 = dst->nb[1];
  4035. const size_t nb2 = dst->nb[2];
  4036. const size_t nb3 = dst->nb[3];
  4037. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4038. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  4039. return;
  4040. }
  4041. // dst counters
  4042. int64_t i10 = 0;
  4043. int64_t i11 = 0;
  4044. int64_t i12 = 0;
  4045. int64_t i13 = 0;
  4046. if (dst->type == GGML_TYPE_F32) {
  4047. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4048. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4049. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4050. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4051. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4052. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4053. memcpy(dst_ptr, src0_ptr, sizeof(float));
  4054. if (++i10 == dst->ne[0]) {
  4055. i10 = 0;
  4056. if (++i11 == dst->ne[1]) {
  4057. i11 = 0;
  4058. if (++i12 == dst->ne[2]) {
  4059. i12 = 0;
  4060. if (++i13 == dst->ne[3]) {
  4061. i13 = 0;
  4062. }
  4063. }
  4064. }
  4065. }
  4066. }
  4067. }
  4068. }
  4069. }
  4070. } else if (dst->type == GGML_TYPE_F16) {
  4071. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4072. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4073. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4074. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4075. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4076. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4077. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  4078. if (++i10 == dst->ne[0]) {
  4079. i10 = 0;
  4080. if (++i11 == dst->ne[1]) {
  4081. i11 = 0;
  4082. if (++i12 == dst->ne[2]) {
  4083. i12 = 0;
  4084. if (++i13 == dst->ne[3]) {
  4085. i13 = 0;
  4086. }
  4087. }
  4088. }
  4089. }
  4090. }
  4091. }
  4092. }
  4093. }
  4094. } else {
  4095. GGML_ASSERT(false); // TODO: implement
  4096. }
  4097. }
  4098. static void ggml_compute_forward_dup(
  4099. const struct ggml_compute_params * params,
  4100. const struct ggml_tensor * src0,
  4101. struct ggml_tensor * dst) {
  4102. switch (src0->type) {
  4103. case GGML_TYPE_F16:
  4104. {
  4105. ggml_compute_forward_dup_f16(params, src0, dst);
  4106. } break;
  4107. case GGML_TYPE_F32:
  4108. {
  4109. ggml_compute_forward_dup_f32(params, src0, dst);
  4110. } break;
  4111. case GGML_TYPE_Q4_0:
  4112. case GGML_TYPE_Q4_1:
  4113. case GGML_TYPE_I8:
  4114. case GGML_TYPE_I16:
  4115. case GGML_TYPE_I32:
  4116. case GGML_TYPE_COUNT:
  4117. {
  4118. GGML_ASSERT(false);
  4119. } break;
  4120. }
  4121. }
  4122. // ggml_compute_forward_add
  4123. static void ggml_compute_forward_add_f32(
  4124. const struct ggml_compute_params * params,
  4125. const struct ggml_tensor * src0,
  4126. const struct ggml_tensor * src1,
  4127. struct ggml_tensor * dst) {
  4128. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4129. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4130. return;
  4131. }
  4132. const int ith = params->ith;
  4133. const int nth = params->nth;
  4134. const int n = ggml_nrows(src0);
  4135. const int nc = src0->ne[0];
  4136. const size_t nb00 = src0->nb[0];
  4137. const size_t nb01 = src0->nb[1];
  4138. const size_t nb10 = src1->nb[0];
  4139. const size_t nb11 = src1->nb[1];
  4140. const size_t nb0 = dst->nb[0];
  4141. const size_t nb1 = dst->nb[1];
  4142. GGML_ASSERT( nb0 == sizeof(float));
  4143. GGML_ASSERT(nb00 == sizeof(float));
  4144. if (nb10 == sizeof(float)) {
  4145. const int j0 = (n/nth)*ith;
  4146. const int j1 = ith == nth - 1 ? n : (n/nth)*(ith + 1);
  4147. for (int j = j0; j < j1; j++) {
  4148. ggml_vec_add_f32(nc,
  4149. (float *) ((char *) dst->data + j*nb1),
  4150. (float *) ((char *) src0->data + j*nb01),
  4151. (float *) ((char *) src1->data + j*nb11));
  4152. }
  4153. } else {
  4154. // src1 is not contiguous
  4155. for (int j = ith; j < n; j += nth) {
  4156. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  4157. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  4158. for (int i = 0; i < nc; i++) {
  4159. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  4160. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  4161. }
  4162. }
  4163. }
  4164. }
  4165. static void ggml_compute_forward_add(
  4166. const struct ggml_compute_params * params,
  4167. const struct ggml_tensor * src0,
  4168. const struct ggml_tensor * src1,
  4169. struct ggml_tensor * dst) {
  4170. switch (src0->type) {
  4171. case GGML_TYPE_F32:
  4172. {
  4173. ggml_compute_forward_add_f32(params, src0, src1, dst);
  4174. } break;
  4175. case GGML_TYPE_Q4_0:
  4176. case GGML_TYPE_Q4_1:
  4177. case GGML_TYPE_I8:
  4178. case GGML_TYPE_I16:
  4179. case GGML_TYPE_I32:
  4180. case GGML_TYPE_F16:
  4181. case GGML_TYPE_COUNT:
  4182. {
  4183. GGML_ASSERT(false);
  4184. } break;
  4185. }
  4186. }
  4187. // ggml_compute_forward_sub
  4188. static void ggml_compute_forward_sub_f32(
  4189. const struct ggml_compute_params * params,
  4190. const struct ggml_tensor * src0,
  4191. const struct ggml_tensor * src1,
  4192. struct ggml_tensor * dst) {
  4193. assert(params->ith == 0);
  4194. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4195. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4196. return;
  4197. }
  4198. const int n = ggml_nrows(src0);
  4199. const int nc = src0->ne[0];
  4200. assert( dst->nb[0] == sizeof(float));
  4201. assert(src0->nb[0] == sizeof(float));
  4202. assert(src1->nb[0] == sizeof(float));
  4203. for (int i = 0; i < n; i++) {
  4204. ggml_vec_sub_f32(nc,
  4205. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4206. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4207. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4208. }
  4209. }
  4210. static void ggml_compute_forward_sub(
  4211. const struct ggml_compute_params * params,
  4212. const struct ggml_tensor * src0,
  4213. const struct ggml_tensor * src1,
  4214. struct ggml_tensor * dst) {
  4215. switch (src0->type) {
  4216. case GGML_TYPE_F32:
  4217. {
  4218. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  4219. } break;
  4220. case GGML_TYPE_Q4_0:
  4221. case GGML_TYPE_Q4_1:
  4222. case GGML_TYPE_I8:
  4223. case GGML_TYPE_I16:
  4224. case GGML_TYPE_I32:
  4225. case GGML_TYPE_F16:
  4226. case GGML_TYPE_COUNT:
  4227. {
  4228. GGML_ASSERT(false);
  4229. } break;
  4230. }
  4231. }
  4232. // ggml_compute_forward_mul
  4233. static void ggml_compute_forward_mul_f32(
  4234. const struct ggml_compute_params * params,
  4235. const struct ggml_tensor * src0,
  4236. const struct ggml_tensor * src1,
  4237. struct ggml_tensor * dst) {
  4238. assert(params->ith == 0);
  4239. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4240. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4241. return;
  4242. }
  4243. const int n = ggml_nrows(src0);
  4244. const int nc = src0->ne[0];
  4245. assert( dst->nb[0] == sizeof(float));
  4246. assert(src0->nb[0] == sizeof(float));
  4247. assert(src1->nb[0] == sizeof(float));
  4248. for (int i = 0; i < n; i++) {
  4249. ggml_vec_mul_f32(nc,
  4250. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4251. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4252. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4253. }
  4254. }
  4255. static void ggml_compute_forward_mul(
  4256. const struct ggml_compute_params * params,
  4257. const struct ggml_tensor * src0,
  4258. const struct ggml_tensor * src1,
  4259. struct ggml_tensor * dst) {
  4260. switch (src0->type) {
  4261. case GGML_TYPE_F32:
  4262. {
  4263. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  4264. } break;
  4265. case GGML_TYPE_Q4_0:
  4266. case GGML_TYPE_Q4_1:
  4267. case GGML_TYPE_I8:
  4268. case GGML_TYPE_I16:
  4269. case GGML_TYPE_I32:
  4270. case GGML_TYPE_F16:
  4271. case GGML_TYPE_COUNT:
  4272. {
  4273. GGML_ASSERT(false);
  4274. } break;
  4275. }
  4276. }
  4277. // ggml_compute_forward_div
  4278. static void ggml_compute_forward_div_f32(
  4279. const struct ggml_compute_params * params,
  4280. const struct ggml_tensor * src0,
  4281. const struct ggml_tensor * src1,
  4282. struct ggml_tensor * dst) {
  4283. assert(params->ith == 0);
  4284. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4285. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4286. return;
  4287. }
  4288. const int n = ggml_nrows(src0);
  4289. const int nc = src0->ne[0];
  4290. assert( dst->nb[0] == sizeof(float));
  4291. assert(src0->nb[0] == sizeof(float));
  4292. assert(src1->nb[0] == sizeof(float));
  4293. for (int i = 0; i < n; i++) {
  4294. ggml_vec_div_f32(nc,
  4295. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4296. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4297. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4298. }
  4299. }
  4300. static void ggml_compute_forward_div(
  4301. const struct ggml_compute_params * params,
  4302. const struct ggml_tensor * src0,
  4303. const struct ggml_tensor * src1,
  4304. struct ggml_tensor * dst) {
  4305. switch (src0->type) {
  4306. case GGML_TYPE_F32:
  4307. {
  4308. ggml_compute_forward_div_f32(params, src0, src1, dst);
  4309. } break;
  4310. case GGML_TYPE_Q4_0:
  4311. case GGML_TYPE_Q4_1:
  4312. case GGML_TYPE_I8:
  4313. case GGML_TYPE_I16:
  4314. case GGML_TYPE_I32:
  4315. case GGML_TYPE_F16:
  4316. case GGML_TYPE_COUNT:
  4317. {
  4318. GGML_ASSERT(false);
  4319. } break;
  4320. }
  4321. }
  4322. // ggml_compute_forward_sqr
  4323. static void ggml_compute_forward_sqr_f32(
  4324. const struct ggml_compute_params * params,
  4325. const struct ggml_tensor * src0,
  4326. struct ggml_tensor * dst) {
  4327. assert(params->ith == 0);
  4328. assert(ggml_are_same_shape(src0, dst));
  4329. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4330. return;
  4331. }
  4332. const int n = ggml_nrows(src0);
  4333. const int nc = src0->ne[0];
  4334. assert( dst->nb[0] == sizeof(float));
  4335. assert(src0->nb[0] == sizeof(float));
  4336. for (int i = 0; i < n; i++) {
  4337. ggml_vec_sqr_f32(nc,
  4338. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4339. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4340. }
  4341. }
  4342. static void ggml_compute_forward_sqr(
  4343. const struct ggml_compute_params * params,
  4344. const struct ggml_tensor * src0,
  4345. struct ggml_tensor * dst) {
  4346. switch (src0->type) {
  4347. case GGML_TYPE_F32:
  4348. {
  4349. ggml_compute_forward_sqr_f32(params, src0, dst);
  4350. } break;
  4351. case GGML_TYPE_Q4_0:
  4352. case GGML_TYPE_Q4_1:
  4353. case GGML_TYPE_I8:
  4354. case GGML_TYPE_I16:
  4355. case GGML_TYPE_I32:
  4356. case GGML_TYPE_F16:
  4357. case GGML_TYPE_COUNT:
  4358. {
  4359. GGML_ASSERT(false);
  4360. } break;
  4361. }
  4362. }
  4363. // ggml_compute_forward_sqrt
  4364. static void ggml_compute_forward_sqrt_f32(
  4365. const struct ggml_compute_params * params,
  4366. const struct ggml_tensor * src0,
  4367. struct ggml_tensor * dst) {
  4368. assert(params->ith == 0);
  4369. assert(ggml_are_same_shape(src0, dst));
  4370. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4371. return;
  4372. }
  4373. const int n = ggml_nrows(src0);
  4374. const int nc = src0->ne[0];
  4375. assert( dst->nb[0] == sizeof(float));
  4376. assert(src0->nb[0] == sizeof(float));
  4377. for (int i = 0; i < n; i++) {
  4378. ggml_vec_sqrt_f32(nc,
  4379. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4380. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4381. }
  4382. }
  4383. static void ggml_compute_forward_sqrt(
  4384. const struct ggml_compute_params * params,
  4385. const struct ggml_tensor * src0,
  4386. struct ggml_tensor * dst) {
  4387. switch (src0->type) {
  4388. case GGML_TYPE_F32:
  4389. {
  4390. ggml_compute_forward_sqrt_f32(params, src0, dst);
  4391. } break;
  4392. case GGML_TYPE_Q4_0:
  4393. case GGML_TYPE_Q4_1:
  4394. case GGML_TYPE_I8:
  4395. case GGML_TYPE_I16:
  4396. case GGML_TYPE_I32:
  4397. case GGML_TYPE_F16:
  4398. case GGML_TYPE_COUNT:
  4399. {
  4400. GGML_ASSERT(false);
  4401. } break;
  4402. }
  4403. }
  4404. // ggml_compute_forward_sum
  4405. static void ggml_compute_forward_sum_f32(
  4406. const struct ggml_compute_params * params,
  4407. const struct ggml_tensor * src0,
  4408. struct ggml_tensor * dst) {
  4409. assert(params->ith == 0);
  4410. assert(ggml_is_scalar(dst));
  4411. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4412. return;
  4413. }
  4414. assert(ggml_is_scalar(dst));
  4415. assert(src0->nb[0] == sizeof(float));
  4416. const int64_t ne00 = src0->ne[0];
  4417. const int64_t ne01 = src0->ne[1];
  4418. const int64_t ne02 = src0->ne[2];
  4419. const int64_t ne03 = src0->ne[3];
  4420. const size_t nb01 = src0->nb[1];
  4421. const size_t nb02 = src0->nb[2];
  4422. const size_t nb03 = src0->nb[3];
  4423. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4424. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4425. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4426. ggml_vec_sum_f32(ne00,
  4427. (float *) (dst->data),
  4428. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4429. }
  4430. }
  4431. }
  4432. }
  4433. static void ggml_compute_forward_sum(
  4434. const struct ggml_compute_params * params,
  4435. const struct ggml_tensor * src0,
  4436. struct ggml_tensor * dst) {
  4437. switch (src0->type) {
  4438. case GGML_TYPE_F32:
  4439. {
  4440. ggml_compute_forward_sum_f32(params, src0, dst);
  4441. } break;
  4442. case GGML_TYPE_Q4_0:
  4443. case GGML_TYPE_Q4_1:
  4444. case GGML_TYPE_I8:
  4445. case GGML_TYPE_I16:
  4446. case GGML_TYPE_I32:
  4447. case GGML_TYPE_F16:
  4448. case GGML_TYPE_COUNT:
  4449. {
  4450. GGML_ASSERT(false);
  4451. } break;
  4452. }
  4453. }
  4454. // ggml_compute_forward_mean
  4455. static void ggml_compute_forward_mean_f32(
  4456. const struct ggml_compute_params * params,
  4457. const struct ggml_tensor * src0,
  4458. struct ggml_tensor * dst) {
  4459. assert(params->ith == 0);
  4460. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4461. return;
  4462. }
  4463. assert(src0->nb[0] == sizeof(float));
  4464. const int64_t ne00 = src0->ne[0];
  4465. const int64_t ne01 = src0->ne[1];
  4466. const int64_t ne02 = src0->ne[2];
  4467. const int64_t ne03 = src0->ne[3];
  4468. const size_t nb01 = src0->nb[1];
  4469. const size_t nb02 = src0->nb[2];
  4470. const size_t nb03 = src0->nb[3];
  4471. const int64_t ne0 = dst->ne[0];
  4472. const int64_t ne1 = dst->ne[1];
  4473. const int64_t ne2 = dst->ne[2];
  4474. const int64_t ne3 = dst->ne[3];
  4475. assert(ne0 == 1);
  4476. assert(ne1 == ne01);
  4477. assert(ne2 == ne02);
  4478. assert(ne3 == ne03);
  4479. UNUSED(ne0);
  4480. UNUSED(ne1);
  4481. UNUSED(ne2);
  4482. UNUSED(ne3);
  4483. const size_t nb1 = dst->nb[1];
  4484. const size_t nb2 = dst->nb[2];
  4485. const size_t nb3 = dst->nb[3];
  4486. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4487. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4488. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4489. ggml_vec_sum_f32(ne00,
  4490. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4491. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4492. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4493. }
  4494. }
  4495. }
  4496. }
  4497. static void ggml_compute_forward_mean(
  4498. const struct ggml_compute_params * params,
  4499. const struct ggml_tensor * src0,
  4500. struct ggml_tensor * dst) {
  4501. switch (src0->type) {
  4502. case GGML_TYPE_F32:
  4503. {
  4504. ggml_compute_forward_mean_f32(params, src0, dst);
  4505. } break;
  4506. case GGML_TYPE_Q4_0:
  4507. case GGML_TYPE_Q4_1:
  4508. case GGML_TYPE_I8:
  4509. case GGML_TYPE_I16:
  4510. case GGML_TYPE_I32:
  4511. case GGML_TYPE_F16:
  4512. case GGML_TYPE_COUNT:
  4513. {
  4514. GGML_ASSERT(false);
  4515. } break;
  4516. }
  4517. }
  4518. // ggml_compute_forward_repeat
  4519. static void ggml_compute_forward_repeat_f32(
  4520. const struct ggml_compute_params * params,
  4521. const struct ggml_tensor * src0,
  4522. struct ggml_tensor * dst) {
  4523. assert(params->ith == 0);
  4524. assert(ggml_can_repeat(src0, dst));
  4525. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4526. return;
  4527. }
  4528. // TODO: implement support for rank > 2 tensors
  4529. assert(src0->ne[2] == 1);
  4530. assert(src0->ne[3] == 1);
  4531. assert( dst->ne[2] == 1);
  4532. assert( dst->ne[3] == 1);
  4533. const int nc = dst->ne[0];
  4534. const int nr = dst->ne[1];
  4535. const int nc0 = src0->ne[0];
  4536. const int nr0 = src0->ne[1];
  4537. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4538. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4539. // TODO: support for transposed / permuted tensors
  4540. assert( dst->nb[0] == sizeof(float));
  4541. assert(src0->nb[0] == sizeof(float));
  4542. // TODO: maybe this is not optimal?
  4543. for (int i = 0; i < nrr; i++) {
  4544. for (int j = 0; j < ncr; j++) {
  4545. for (int k = 0; k < nr0; k++) {
  4546. ggml_vec_cpy_f32(nc0,
  4547. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  4548. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  4549. }
  4550. }
  4551. }
  4552. }
  4553. static void ggml_compute_forward_repeat(
  4554. const struct ggml_compute_params * params,
  4555. const struct ggml_tensor * src0,
  4556. struct ggml_tensor * dst) {
  4557. switch (src0->type) {
  4558. case GGML_TYPE_F32:
  4559. {
  4560. ggml_compute_forward_repeat_f32(params, src0, dst);
  4561. } break;
  4562. case GGML_TYPE_Q4_0:
  4563. case GGML_TYPE_Q4_1:
  4564. case GGML_TYPE_I8:
  4565. case GGML_TYPE_I16:
  4566. case GGML_TYPE_I32:
  4567. case GGML_TYPE_F16:
  4568. case GGML_TYPE_COUNT:
  4569. {
  4570. GGML_ASSERT(false);
  4571. } break;
  4572. }
  4573. }
  4574. // ggml_compute_forward_abs
  4575. static void ggml_compute_forward_abs_f32(
  4576. const struct ggml_compute_params * params,
  4577. const struct ggml_tensor * src0,
  4578. struct ggml_tensor * dst) {
  4579. assert(params->ith == 0);
  4580. assert(ggml_are_same_shape(src0, dst));
  4581. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4582. return;
  4583. }
  4584. const int n = ggml_nrows(src0);
  4585. const int nc = src0->ne[0];
  4586. assert(dst->nb[0] == sizeof(float));
  4587. assert(src0->nb[0] == sizeof(float));
  4588. for (int i = 0; i < n; i++) {
  4589. ggml_vec_abs_f32(nc,
  4590. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4591. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4592. }
  4593. }
  4594. static void ggml_compute_forward_abs(
  4595. const struct ggml_compute_params * params,
  4596. const struct ggml_tensor * src0,
  4597. struct ggml_tensor * dst) {
  4598. switch (src0->type) {
  4599. case GGML_TYPE_F32:
  4600. {
  4601. ggml_compute_forward_abs_f32(params, src0, dst);
  4602. } break;
  4603. case GGML_TYPE_Q4_0:
  4604. case GGML_TYPE_Q4_1:
  4605. case GGML_TYPE_I8:
  4606. case GGML_TYPE_I16:
  4607. case GGML_TYPE_I32:
  4608. case GGML_TYPE_F16:
  4609. case GGML_TYPE_COUNT:
  4610. {
  4611. GGML_ASSERT(false);
  4612. } break;
  4613. }
  4614. }
  4615. // ggml_compute_forward_sgn
  4616. static void ggml_compute_forward_sgn_f32(
  4617. const struct ggml_compute_params * params,
  4618. const struct ggml_tensor * src0,
  4619. struct ggml_tensor * dst) {
  4620. assert(params->ith == 0);
  4621. assert(ggml_are_same_shape(src0, dst));
  4622. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4623. return;
  4624. }
  4625. const int n = ggml_nrows(src0);
  4626. const int nc = src0->ne[0];
  4627. assert(dst->nb[0] == sizeof(float));
  4628. assert(src0->nb[0] == sizeof(float));
  4629. for (int i = 0; i < n; i++) {
  4630. ggml_vec_sgn_f32(nc,
  4631. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4632. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4633. }
  4634. }
  4635. static void ggml_compute_forward_sgn(
  4636. const struct ggml_compute_params * params,
  4637. const struct ggml_tensor * src0,
  4638. struct ggml_tensor * dst) {
  4639. switch (src0->type) {
  4640. case GGML_TYPE_F32:
  4641. {
  4642. ggml_compute_forward_sgn_f32(params, src0, dst);
  4643. } break;
  4644. case GGML_TYPE_Q4_0:
  4645. case GGML_TYPE_Q4_1:
  4646. case GGML_TYPE_I8:
  4647. case GGML_TYPE_I16:
  4648. case GGML_TYPE_I32:
  4649. case GGML_TYPE_F16:
  4650. case GGML_TYPE_COUNT:
  4651. {
  4652. GGML_ASSERT(false);
  4653. } break;
  4654. }
  4655. }
  4656. // ggml_compute_forward_neg
  4657. static void ggml_compute_forward_neg_f32(
  4658. const struct ggml_compute_params * params,
  4659. const struct ggml_tensor * src0,
  4660. struct ggml_tensor * dst) {
  4661. assert(params->ith == 0);
  4662. assert(ggml_are_same_shape(src0, dst));
  4663. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4664. return;
  4665. }
  4666. const int n = ggml_nrows(src0);
  4667. const int nc = src0->ne[0];
  4668. assert(dst->nb[0] == sizeof(float));
  4669. assert(src0->nb[0] == sizeof(float));
  4670. for (int i = 0; i < n; i++) {
  4671. ggml_vec_neg_f32(nc,
  4672. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4673. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4674. }
  4675. }
  4676. static void ggml_compute_forward_neg(
  4677. const struct ggml_compute_params * params,
  4678. const struct ggml_tensor * src0,
  4679. struct ggml_tensor * dst) {
  4680. switch (src0->type) {
  4681. case GGML_TYPE_F32:
  4682. {
  4683. ggml_compute_forward_neg_f32(params, src0, dst);
  4684. } break;
  4685. case GGML_TYPE_Q4_0:
  4686. case GGML_TYPE_Q4_1:
  4687. case GGML_TYPE_I8:
  4688. case GGML_TYPE_I16:
  4689. case GGML_TYPE_I32:
  4690. case GGML_TYPE_F16:
  4691. case GGML_TYPE_COUNT:
  4692. {
  4693. GGML_ASSERT(false);
  4694. } break;
  4695. }
  4696. }
  4697. // ggml_compute_forward_step
  4698. static void ggml_compute_forward_step_f32(
  4699. const struct ggml_compute_params * params,
  4700. const struct ggml_tensor * src0,
  4701. struct ggml_tensor * dst) {
  4702. assert(params->ith == 0);
  4703. assert(ggml_are_same_shape(src0, dst));
  4704. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4705. return;
  4706. }
  4707. const int n = ggml_nrows(src0);
  4708. const int nc = src0->ne[0];
  4709. assert(dst->nb[0] == sizeof(float));
  4710. assert(src0->nb[0] == sizeof(float));
  4711. for (int i = 0; i < n; i++) {
  4712. ggml_vec_step_f32(nc,
  4713. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4714. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4715. }
  4716. }
  4717. static void ggml_compute_forward_step(
  4718. const struct ggml_compute_params * params,
  4719. const struct ggml_tensor * src0,
  4720. struct ggml_tensor * dst) {
  4721. switch (src0->type) {
  4722. case GGML_TYPE_F32:
  4723. {
  4724. ggml_compute_forward_step_f32(params, src0, dst);
  4725. } break;
  4726. case GGML_TYPE_Q4_0:
  4727. case GGML_TYPE_Q4_1:
  4728. case GGML_TYPE_I8:
  4729. case GGML_TYPE_I16:
  4730. case GGML_TYPE_I32:
  4731. case GGML_TYPE_F16:
  4732. case GGML_TYPE_COUNT:
  4733. {
  4734. GGML_ASSERT(false);
  4735. } break;
  4736. }
  4737. }
  4738. // ggml_compute_forward_relu
  4739. static void ggml_compute_forward_relu_f32(
  4740. const struct ggml_compute_params * params,
  4741. const struct ggml_tensor * src0,
  4742. struct ggml_tensor * dst) {
  4743. assert(params->ith == 0);
  4744. assert(ggml_are_same_shape(src0, dst));
  4745. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4746. return;
  4747. }
  4748. const int n = ggml_nrows(src0);
  4749. const int nc = src0->ne[0];
  4750. assert(dst->nb[0] == sizeof(float));
  4751. assert(src0->nb[0] == sizeof(float));
  4752. for (int i = 0; i < n; i++) {
  4753. ggml_vec_relu_f32(nc,
  4754. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4755. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4756. }
  4757. }
  4758. static void ggml_compute_forward_relu(
  4759. const struct ggml_compute_params * params,
  4760. const struct ggml_tensor * src0,
  4761. struct ggml_tensor * dst) {
  4762. switch (src0->type) {
  4763. case GGML_TYPE_F32:
  4764. {
  4765. ggml_compute_forward_relu_f32(params, src0, dst);
  4766. } break;
  4767. case GGML_TYPE_Q4_0:
  4768. case GGML_TYPE_Q4_1:
  4769. case GGML_TYPE_I8:
  4770. case GGML_TYPE_I16:
  4771. case GGML_TYPE_I32:
  4772. case GGML_TYPE_F16:
  4773. case GGML_TYPE_COUNT:
  4774. {
  4775. GGML_ASSERT(false);
  4776. } break;
  4777. }
  4778. }
  4779. // ggml_compute_forward_gelu
  4780. static void ggml_compute_forward_gelu_f32(
  4781. const struct ggml_compute_params * params,
  4782. const struct ggml_tensor * src0,
  4783. struct ggml_tensor * dst) {
  4784. GGML_ASSERT(ggml_is_contiguous(src0));
  4785. GGML_ASSERT(ggml_is_contiguous(dst));
  4786. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4787. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4788. return;
  4789. }
  4790. const int ith = params->ith;
  4791. const int nth = params->nth;
  4792. const int nc = src0->ne[0];
  4793. const int nr = ggml_nrows(src0);
  4794. // rows per thread
  4795. const int dr = (nr + nth - 1)/nth;
  4796. // row range for this thread
  4797. const int ir0 = dr*ith;
  4798. const int ir1 = MIN(ir0 + dr, nr);
  4799. for (int i1 = ir0; i1 < ir1; i1++) {
  4800. ggml_vec_gelu_f32(nc,
  4801. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4802. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4803. #ifndef NDEBUG
  4804. for (int k = 0; k < nc; k++) {
  4805. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4806. UNUSED(x);
  4807. assert(!isnan(x));
  4808. assert(!isinf(x));
  4809. }
  4810. #endif
  4811. }
  4812. }
  4813. static void ggml_compute_forward_gelu(
  4814. const struct ggml_compute_params * params,
  4815. const struct ggml_tensor * src0,
  4816. struct ggml_tensor * dst) {
  4817. switch (src0->type) {
  4818. case GGML_TYPE_F32:
  4819. {
  4820. ggml_compute_forward_gelu_f32(params, src0, dst);
  4821. } break;
  4822. case GGML_TYPE_Q4_0:
  4823. case GGML_TYPE_Q4_1:
  4824. case GGML_TYPE_I8:
  4825. case GGML_TYPE_I16:
  4826. case GGML_TYPE_I32:
  4827. case GGML_TYPE_F16:
  4828. case GGML_TYPE_COUNT:
  4829. {
  4830. GGML_ASSERT(false);
  4831. } break;
  4832. }
  4833. //printf("XXXXXXXX gelu\n");
  4834. }
  4835. // ggml_compute_forward_silu
  4836. static void ggml_compute_forward_silu_f32(
  4837. const struct ggml_compute_params * params,
  4838. const struct ggml_tensor * src0,
  4839. struct ggml_tensor * dst) {
  4840. GGML_ASSERT(ggml_is_contiguous(src0));
  4841. GGML_ASSERT(ggml_is_contiguous(dst));
  4842. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4843. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4844. return;
  4845. }
  4846. const int ith = params->ith;
  4847. const int nth = params->nth;
  4848. const int nc = src0->ne[0];
  4849. const int nr = ggml_nrows(src0);
  4850. // rows per thread
  4851. const int dr = (nr + nth - 1)/nth;
  4852. // row range for this thread
  4853. const int ir0 = dr*ith;
  4854. const int ir1 = MIN(ir0 + dr, nr);
  4855. for (int i1 = ir0; i1 < ir1; i1++) {
  4856. ggml_vec_silu_f32(nc,
  4857. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4858. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4859. #ifndef NDEBUG
  4860. for (int k = 0; k < nc; k++) {
  4861. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4862. UNUSED(x);
  4863. assert(!isnan(x));
  4864. assert(!isinf(x));
  4865. }
  4866. #endif
  4867. }
  4868. }
  4869. static void ggml_compute_forward_silu(
  4870. const struct ggml_compute_params * params,
  4871. const struct ggml_tensor * src0,
  4872. struct ggml_tensor * dst) {
  4873. switch (src0->type) {
  4874. case GGML_TYPE_F32:
  4875. {
  4876. ggml_compute_forward_silu_f32(params, src0, dst);
  4877. } break;
  4878. case GGML_TYPE_Q4_0:
  4879. case GGML_TYPE_Q4_1:
  4880. case GGML_TYPE_I8:
  4881. case GGML_TYPE_I16:
  4882. case GGML_TYPE_I32:
  4883. case GGML_TYPE_F16:
  4884. case GGML_TYPE_COUNT:
  4885. {
  4886. GGML_ASSERT(false);
  4887. } break;
  4888. }
  4889. }
  4890. // ggml_compute_forward_norm
  4891. static void ggml_compute_forward_norm_f32(
  4892. const struct ggml_compute_params * params,
  4893. const struct ggml_tensor * src0,
  4894. struct ggml_tensor * dst) {
  4895. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4896. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4897. return;
  4898. }
  4899. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4900. const int ith = params->ith;
  4901. const int nth = params->nth;
  4902. const int64_t ne00 = src0->ne[0];
  4903. const int64_t ne01 = src0->ne[1];
  4904. const int64_t ne02 = src0->ne[2];
  4905. const int64_t ne03 = src0->ne[3];
  4906. const size_t nb01 = src0->nb[1];
  4907. const size_t nb02 = src0->nb[2];
  4908. const size_t nb03 = src0->nb[3];
  4909. const size_t nb1 = dst->nb[1];
  4910. const size_t nb2 = dst->nb[2];
  4911. const size_t nb3 = dst->nb[3];
  4912. const float eps = 1e-5f; // TODO: make this a parameter
  4913. // TODO: optimize
  4914. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4915. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4916. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  4917. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4918. ggml_float sum = 0.0;
  4919. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4920. sum += (ggml_float)x[i00];
  4921. }
  4922. float mean = sum/ne00;
  4923. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4924. ggml_float sum2 = 0.0;
  4925. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4926. float v = x[i00] - mean;
  4927. y[i00] = v;
  4928. sum2 += (ggml_float)(v*v);
  4929. }
  4930. float variance = sum2/ne00;
  4931. const float scale = 1.0f/sqrtf(variance + eps);
  4932. ggml_vec_scale_f32(ne00, y, scale);
  4933. }
  4934. }
  4935. }
  4936. }
  4937. static void ggml_compute_forward_norm(
  4938. const struct ggml_compute_params * params,
  4939. const struct ggml_tensor * src0,
  4940. struct ggml_tensor * dst) {
  4941. switch (src0->type) {
  4942. case GGML_TYPE_F32:
  4943. {
  4944. ggml_compute_forward_norm_f32(params, src0, dst);
  4945. } break;
  4946. case GGML_TYPE_Q4_0:
  4947. case GGML_TYPE_Q4_1:
  4948. case GGML_TYPE_I8:
  4949. case GGML_TYPE_I16:
  4950. case GGML_TYPE_I32:
  4951. case GGML_TYPE_F16:
  4952. case GGML_TYPE_COUNT:
  4953. {
  4954. GGML_ASSERT(false);
  4955. } break;
  4956. }
  4957. }
  4958. static void ggml_compute_forward_rms_norm_f32(
  4959. const struct ggml_compute_params * params,
  4960. const struct ggml_tensor * src0,
  4961. struct ggml_tensor * dst) {
  4962. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4963. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4964. return;
  4965. }
  4966. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4967. const int ith = params->ith;
  4968. const int nth = params->nth;
  4969. const int64_t ne00 = src0->ne[0];
  4970. const int64_t ne01 = src0->ne[1];
  4971. const int64_t ne02 = src0->ne[2];
  4972. const int64_t ne03 = src0->ne[3];
  4973. const size_t nb01 = src0->nb[1];
  4974. const size_t nb02 = src0->nb[2];
  4975. const size_t nb03 = src0->nb[3];
  4976. const size_t nb1 = dst->nb[1];
  4977. const size_t nb2 = dst->nb[2];
  4978. const size_t nb3 = dst->nb[3];
  4979. const float eps = 1e-6f; // TODO: make this a parameter
  4980. // TODO: optimize
  4981. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4982. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4983. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  4984. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4985. ggml_float sum = 0.0;
  4986. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4987. sum += (ggml_float)(x[i00] * x[i00]);
  4988. }
  4989. float mean = sum/ne00;
  4990. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4991. memcpy(y, x, ne00 * sizeof(float));
  4992. // for (int i00 = 0; i00 < ne00; i00++) {
  4993. // y[i00] = x[i00];
  4994. // }
  4995. const float scale = 1.0f/sqrtf(mean + eps);
  4996. ggml_vec_scale_f32(ne00, y, scale);
  4997. }
  4998. }
  4999. }
  5000. }
  5001. static void ggml_compute_forward_rms_norm(
  5002. const struct ggml_compute_params * params,
  5003. const struct ggml_tensor * src0,
  5004. struct ggml_tensor * dst) {
  5005. switch (src0->type) {
  5006. case GGML_TYPE_F32:
  5007. {
  5008. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  5009. } break;
  5010. case GGML_TYPE_Q4_0:
  5011. case GGML_TYPE_Q4_1:
  5012. case GGML_TYPE_I8:
  5013. case GGML_TYPE_I16:
  5014. case GGML_TYPE_I32:
  5015. case GGML_TYPE_F16:
  5016. case GGML_TYPE_COUNT:
  5017. {
  5018. GGML_ASSERT(false);
  5019. } break;
  5020. }
  5021. }
  5022. // ggml_compute_forward_mul_mat
  5023. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5024. // helper function to determine if it is better to use BLAS or not
  5025. // for large matrices, BLAS is faster
  5026. static bool ggml_compute_forward_mul_mat_use_blas(
  5027. const struct ggml_tensor * src0,
  5028. const struct ggml_tensor * src1,
  5029. struct ggml_tensor * dst) {
  5030. //const int64_t ne00 = src0->ne[0];
  5031. //const int64_t ne01 = src0->ne[1];
  5032. const int64_t ne10 = src1->ne[0];
  5033. const int64_t ne0 = dst->ne[0];
  5034. const int64_t ne1 = dst->ne[1];
  5035. // TODO: find the optimal values for these
  5036. if (ggml_is_contiguous(src0) &&
  5037. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  5038. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  5039. return true;
  5040. }
  5041. return false;
  5042. }
  5043. #endif
  5044. static void ggml_compute_forward_mul_mat_f32(
  5045. const struct ggml_compute_params * params,
  5046. const struct ggml_tensor * src0,
  5047. const struct ggml_tensor * src1,
  5048. struct ggml_tensor * dst) {
  5049. int64_t t0 = ggml_perf_time_us();
  5050. UNUSED(t0);
  5051. const int64_t ne00 = src0->ne[0];
  5052. const int64_t ne01 = src0->ne[1];
  5053. const int64_t ne02 = src0->ne[2];
  5054. const int64_t ne03 = src0->ne[3];
  5055. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5056. const int64_t ne10 = src1->ne[0];
  5057. #endif
  5058. const int64_t ne11 = src1->ne[1];
  5059. #ifndef NDEBUG
  5060. const int64_t ne12 = src1->ne[2];
  5061. const int64_t ne13 = src1->ne[3];
  5062. const int64_t ne0 = dst->ne[0];
  5063. const int64_t ne1 = dst->ne[1];
  5064. const int64_t ne2 = dst->ne[2];
  5065. const int64_t ne3 = dst->ne[3];
  5066. const int nb00 = src0->nb[0];
  5067. #endif
  5068. const int nb01 = src0->nb[1];
  5069. const int nb02 = src0->nb[2];
  5070. const int nb03 = src0->nb[3];
  5071. #ifndef NDEBUG
  5072. const int nb10 = src1->nb[0];
  5073. #endif
  5074. const int nb11 = src1->nb[1];
  5075. const int nb12 = src1->nb[2];
  5076. const int nb13 = src1->nb[3];
  5077. const int nb0 = dst->nb[0];
  5078. const int nb1 = dst->nb[1];
  5079. const int nb2 = dst->nb[2];
  5080. const int nb3 = dst->nb[3];
  5081. const int ith = params->ith;
  5082. const int nth = params->nth;
  5083. assert(ne02 == ne12);
  5084. assert(ne03 == ne13);
  5085. assert(ne2 == ne12);
  5086. assert(ne3 == ne13);
  5087. // we don't support permuted src0 or src1
  5088. assert(nb00 == sizeof(float));
  5089. assert(nb10 == sizeof(float));
  5090. // dst cannot be transposed or permuted
  5091. assert(nb0 == sizeof(float));
  5092. assert(nb0 <= nb1);
  5093. assert(nb1 <= nb2);
  5094. assert(nb2 <= nb3);
  5095. assert(ne0 == ne01);
  5096. assert(ne1 == ne11);
  5097. assert(ne2 == ne02);
  5098. assert(ne3 == ne03);
  5099. // nb01 >= nb00 - src0 is not transposed
  5100. // compute by src0 rows
  5101. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5102. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5103. if (params->ith != 0) {
  5104. return;
  5105. }
  5106. if (params->type == GGML_TASK_INIT) {
  5107. return;
  5108. }
  5109. if (params->type == GGML_TASK_FINALIZE) {
  5110. return;
  5111. }
  5112. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5113. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5114. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  5115. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5116. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5117. // zT = y * xT
  5118. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5119. ne11, ne01, ne10,
  5120. 1.0f, y, ne10,
  5121. x, ne10,
  5122. 0.0f, d, ne01);
  5123. }
  5124. }
  5125. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5126. return;
  5127. }
  5128. #endif
  5129. if (params->type == GGML_TASK_INIT) {
  5130. return;
  5131. }
  5132. if (params->type == GGML_TASK_FINALIZE) {
  5133. return;
  5134. }
  5135. // parallelize by src0 rows using ggml_vec_dot_f32
  5136. // total rows in src0
  5137. const int nr = ne01*ne02*ne03;
  5138. // rows per thread
  5139. const int dr = (nr + nth - 1)/nth;
  5140. // row range for this thread
  5141. const int ir0 = dr*ith;
  5142. const int ir1 = MIN(ir0 + dr, nr);
  5143. for (int ir = ir0; ir < ir1; ++ir) {
  5144. // src0 indices
  5145. const int i03 = ir/(ne02*ne01);
  5146. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5147. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5148. for (int64_t ic = 0; ic < ne11; ++ic) {
  5149. // src1 indices
  5150. const int i13 = i03;
  5151. const int i12 = i02;
  5152. const int i11 = ic;
  5153. // dst indices
  5154. const int i0 = i01;
  5155. const int i1 = i11;
  5156. const int i2 = i02;
  5157. const int i3 = i03;
  5158. ggml_vec_dot_f32(ne00,
  5159. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  5160. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  5161. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  5162. }
  5163. }
  5164. //int64_t t1 = ggml_perf_time_us();
  5165. //static int64_t acc = 0;
  5166. //acc += t1 - t0;
  5167. //if (t1 - t0 > 10) {
  5168. // printf("\n");
  5169. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5170. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5171. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5172. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  5173. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5174. //}
  5175. }
  5176. static void ggml_compute_forward_mul_mat_f16_f32(
  5177. const struct ggml_compute_params * params,
  5178. const struct ggml_tensor * src0,
  5179. const struct ggml_tensor * src1,
  5180. struct ggml_tensor * dst) {
  5181. int64_t t0 = ggml_perf_time_us();
  5182. UNUSED(t0);
  5183. const int64_t ne00 = src0->ne[0];
  5184. const int64_t ne01 = src0->ne[1];
  5185. const int64_t ne02 = src0->ne[2];
  5186. const int64_t ne03 = src0->ne[3];
  5187. const int64_t ne10 = src1->ne[0];
  5188. const int64_t ne11 = src1->ne[1];
  5189. const int64_t ne12 = src1->ne[2];
  5190. const int64_t ne13 = src1->ne[3];
  5191. const int64_t ne0 = dst->ne[0];
  5192. const int64_t ne1 = dst->ne[1];
  5193. const int64_t ne2 = dst->ne[2];
  5194. const int64_t ne3 = dst->ne[3];
  5195. //const int64_t ne = ne0*ne1*ne2*ne3;
  5196. const int nb00 = src0->nb[0];
  5197. const int nb01 = src0->nb[1];
  5198. const int nb02 = src0->nb[2];
  5199. const int nb03 = src0->nb[3];
  5200. const int nb10 = src1->nb[0];
  5201. const int nb11 = src1->nb[1];
  5202. const int nb12 = src1->nb[2];
  5203. const int nb13 = src1->nb[3];
  5204. const int nb0 = dst->nb[0];
  5205. const int nb1 = dst->nb[1];
  5206. const int nb2 = dst->nb[2];
  5207. const int nb3 = dst->nb[3];
  5208. const int ith = params->ith;
  5209. const int nth = params->nth;
  5210. GGML_ASSERT(ne02 == ne12);
  5211. GGML_ASSERT(ne03 == ne13);
  5212. GGML_ASSERT(ne2 == ne12);
  5213. GGML_ASSERT(ne3 == ne13);
  5214. // TODO: we don't support permuted src0
  5215. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5216. // dst cannot be transposed or permuted
  5217. GGML_ASSERT(nb0 == sizeof(float));
  5218. GGML_ASSERT(nb0 <= nb1);
  5219. GGML_ASSERT(nb1 <= nb2);
  5220. GGML_ASSERT(nb2 <= nb3);
  5221. GGML_ASSERT(ne0 == ne01);
  5222. GGML_ASSERT(ne1 == ne11);
  5223. GGML_ASSERT(ne2 == ne02);
  5224. GGML_ASSERT(ne3 == ne03);
  5225. // nb01 >= nb00 - src0 is not transposed
  5226. // compute by src0 rows
  5227. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5228. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5229. GGML_ASSERT(nb10 == sizeof(float));
  5230. if (params->ith != 0) {
  5231. return;
  5232. }
  5233. if (params->type == GGML_TASK_INIT) {
  5234. return;
  5235. }
  5236. if (params->type == GGML_TASK_FINALIZE) {
  5237. return;
  5238. }
  5239. float * const wdata = params->wdata;
  5240. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5241. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5242. {
  5243. size_t id = 0;
  5244. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  5245. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  5246. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5247. }
  5248. }
  5249. }
  5250. const float * x = wdata;
  5251. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5252. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5253. // zT = y * xT
  5254. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5255. ne11, ne01, ne10,
  5256. 1.0f, y, ne10,
  5257. x, ne10,
  5258. 0.0f, d, ne01);
  5259. }
  5260. }
  5261. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5262. return;
  5263. }
  5264. #endif
  5265. if (params->type == GGML_TASK_INIT) {
  5266. ggml_fp16_t * const wdata = params->wdata;
  5267. size_t id = 0;
  5268. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  5269. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  5270. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  5271. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  5272. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5273. }
  5274. }
  5275. }
  5276. }
  5277. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  5278. return;
  5279. }
  5280. if (params->type == GGML_TASK_FINALIZE) {
  5281. return;
  5282. }
  5283. // fp16 -> half the size, so divide by 2
  5284. // TODO: do not support transposed src1
  5285. assert(nb10/2 == sizeof(ggml_fp16_t));
  5286. // parallelize by src0 rows using ggml_vec_dot_f16
  5287. // total rows in src0
  5288. const int nr = ne01*ne02*ne03;
  5289. // rows per thread
  5290. const int dr = (nr + nth - 1)/nth;
  5291. // row range for this thread
  5292. const int ir0 = dr*ith;
  5293. const int ir1 = MIN(ir0 + dr, nr);
  5294. ggml_fp16_t * wdata = params->wdata;
  5295. for (int ir = ir0; ir < ir1; ++ir) {
  5296. // src0 indices
  5297. const int i03 = ir/(ne02*ne01);
  5298. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5299. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5300. const int i13 = i03;
  5301. const int i12 = i02;
  5302. const int i0 = i01;
  5303. const int i2 = i02;
  5304. const int i3 = i03;
  5305. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5306. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  5307. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5308. for (int64_t ic = 0; ic < ne11; ++ic) {
  5309. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  5310. }
  5311. }
  5312. //int64_t t1 = ggml_time_us();
  5313. //static int64_t acc = 0;
  5314. //acc += t1 - t0;
  5315. //if (t1 - t0 > 10) {
  5316. // printf("\n");
  5317. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5318. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5319. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5320. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5321. //}
  5322. }
  5323. typedef void (*dequantize_row_q_t)(const void * restrict x, float * restrict y, int k);
  5324. typedef void (*quantize_row_q_t)(const float * restrict x, void * restrict y, int k);
  5325. typedef void (*vec_dot_q_t)(const int n, float * restrict s, const void * restrict x, const void * restrict y);
  5326. typedef struct {
  5327. dequantize_row_q_t dequantize_row_q;
  5328. quantize_row_q_t quantize_row_q;
  5329. vec_dot_q_t vec_dot_q;
  5330. } quantize_fns_t;
  5331. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  5332. [GGML_TYPE_Q4_0] = {
  5333. .dequantize_row_q = dequantize_row_q4_0,
  5334. .quantize_row_q = quantize_row_q4_0,
  5335. .vec_dot_q = ggml_vec_dot_q4_0,
  5336. },
  5337. [GGML_TYPE_Q4_1] = {
  5338. .dequantize_row_q = dequantize_row_q4_1,
  5339. .quantize_row_q = quantize_row_q4_1,
  5340. .vec_dot_q = ggml_vec_dot_q4_1,
  5341. },
  5342. };
  5343. static void ggml_compute_forward_mul_mat_q_f32(
  5344. const struct ggml_compute_params * params,
  5345. const struct ggml_tensor * src0,
  5346. const struct ggml_tensor * src1,
  5347. struct ggml_tensor * dst) {
  5348. int64_t t0 = ggml_perf_time_us();
  5349. UNUSED(t0);
  5350. const int64_t ne00 = src0->ne[0];
  5351. const int64_t ne01 = src0->ne[1];
  5352. const int64_t ne02 = src0->ne[2];
  5353. const int64_t ne03 = src0->ne[3];
  5354. const int64_t ne10 = src1->ne[0];
  5355. const int64_t ne11 = src1->ne[1];
  5356. const int64_t ne12 = src1->ne[2];
  5357. const int64_t ne13 = src1->ne[3];
  5358. const int64_t ne0 = dst->ne[0];
  5359. const int64_t ne1 = dst->ne[1];
  5360. const int64_t ne2 = dst->ne[2];
  5361. const int64_t ne3 = dst->ne[3];
  5362. const int nb00 = src0->nb[0];
  5363. const int nb01 = src0->nb[1];
  5364. const int nb02 = src0->nb[2];
  5365. const int nb03 = src0->nb[3];
  5366. const int nb10 = src1->nb[0];
  5367. const int nb11 = src1->nb[1];
  5368. const int nb12 = src1->nb[2];
  5369. const int nb13 = src1->nb[3];
  5370. const int nb0 = dst->nb[0];
  5371. const int nb1 = dst->nb[1];
  5372. const int nb2 = dst->nb[2];
  5373. const int nb3 = dst->nb[3];
  5374. const int ith = params->ith;
  5375. const int nth = params->nth;
  5376. GGML_ASSERT(ne02 == ne12);
  5377. GGML_ASSERT(ne03 == ne13);
  5378. GGML_ASSERT(ne2 == ne12);
  5379. GGML_ASSERT(ne3 == ne13);
  5380. const enum ggml_type type = src0->type;
  5381. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5382. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  5383. // we don't support permuted src0 or src1
  5384. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5385. GGML_ASSERT(nb10 == sizeof(float));
  5386. // dst cannot be transposed or permuted
  5387. GGML_ASSERT(nb0 == sizeof(float));
  5388. GGML_ASSERT(nb0 <= nb1);
  5389. GGML_ASSERT(nb1 <= nb2);
  5390. GGML_ASSERT(nb2 <= nb3);
  5391. GGML_ASSERT(ne0 == ne01);
  5392. GGML_ASSERT(ne1 == ne11);
  5393. GGML_ASSERT(ne2 == ne02);
  5394. GGML_ASSERT(ne3 == ne03);
  5395. // nb01 >= nb00 - src0 is not transposed
  5396. // compute by src0 rows
  5397. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5398. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5399. if (params->ith != 0) {
  5400. return;
  5401. }
  5402. if (params->type == GGML_TASK_INIT) {
  5403. return;
  5404. }
  5405. if (params->type == GGML_TASK_FINALIZE) {
  5406. return;
  5407. }
  5408. float * const wdata = params->wdata;
  5409. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5410. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5411. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5412. {
  5413. size_t id = 0;
  5414. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  5415. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5416. id += ne00;
  5417. }
  5418. }
  5419. const float * x = wdata;
  5420. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5421. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5422. // zT = y * xT
  5423. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5424. ne11, ne01, ne10,
  5425. 1.0f, y, ne10,
  5426. x, ne10,
  5427. 0.0f, d, ne01);
  5428. }
  5429. }
  5430. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5431. return;
  5432. }
  5433. #endif
  5434. if (params->type == GGML_TASK_INIT) {
  5435. char * wdata = params->wdata;
  5436. const size_t row_size = ne10*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5437. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  5438. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  5439. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  5440. quantize_row_q((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5441. wdata += row_size;
  5442. }
  5443. }
  5444. }
  5445. return;
  5446. }
  5447. if (params->type == GGML_TASK_FINALIZE) {
  5448. return;
  5449. }
  5450. // parallelize by src0 rows using ggml_vec_dot_q
  5451. // total rows in src0
  5452. const int nr = ne01*ne02*ne03;
  5453. // rows per thread
  5454. const int dr = (nr + nth - 1)/nth;
  5455. // row range for this thread
  5456. const int ir0 = dr*ith;
  5457. const int ir1 = MIN(ir0 + dr, nr);
  5458. void * wdata = params->wdata;
  5459. const size_t row_size = ne00*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5460. for (int ir = ir0; ir < ir1; ++ir) {
  5461. // src0 indices
  5462. const int i03 = ir/(ne02*ne01);
  5463. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5464. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5465. const int i13 = i03;
  5466. const int i12 = i02;
  5467. const int i0 = i01;
  5468. const int i2 = i02;
  5469. const int i3 = i03;
  5470. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5471. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  5472. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5473. assert(ne00 % 32 == 0);
  5474. for (int64_t ic = 0; ic < ne11; ++ic) {
  5475. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  5476. }
  5477. }
  5478. //int64_t t1 = ggml_time_us();
  5479. //static int64_t acc = 0;
  5480. //acc += t1 - t0;
  5481. //if (t1 - t0 > 10) {
  5482. // printf("\n");
  5483. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5484. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5485. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5486. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5487. //}
  5488. }
  5489. static void ggml_compute_forward_mul_mat(
  5490. const struct ggml_compute_params * params,
  5491. const struct ggml_tensor * src0,
  5492. const struct ggml_tensor * src1,
  5493. struct ggml_tensor * dst) {
  5494. switch (src0->type) {
  5495. case GGML_TYPE_Q4_0:
  5496. case GGML_TYPE_Q4_1:
  5497. {
  5498. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  5499. } break;
  5500. case GGML_TYPE_F16:
  5501. {
  5502. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5503. } break;
  5504. case GGML_TYPE_F32:
  5505. {
  5506. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5507. } break;
  5508. case GGML_TYPE_I8:
  5509. case GGML_TYPE_I16:
  5510. case GGML_TYPE_I32:
  5511. case GGML_TYPE_COUNT:
  5512. {
  5513. GGML_ASSERT(false);
  5514. } break;
  5515. }
  5516. #if 0
  5517. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5518. static int first = 8;
  5519. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5520. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5521. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5522. if (first) {
  5523. --first;
  5524. } else {
  5525. for (int k = 0; k < dst->ne[1]; ++k) {
  5526. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5527. for (int i = 0; i < 16; ++i) {
  5528. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5529. }
  5530. printf("\n");
  5531. }
  5532. printf("\n");
  5533. }
  5534. printf("\n");
  5535. exit(0);
  5536. }
  5537. } else {
  5538. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5539. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5540. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5541. }
  5542. #endif
  5543. }
  5544. // ggml_compute_forward_scale
  5545. static void ggml_compute_forward_scale_f32(
  5546. const struct ggml_compute_params * params,
  5547. const struct ggml_tensor * src0,
  5548. const struct ggml_tensor * src1,
  5549. struct ggml_tensor * dst) {
  5550. GGML_ASSERT(ggml_is_contiguous(src0));
  5551. GGML_ASSERT(ggml_is_contiguous(dst));
  5552. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5553. GGML_ASSERT(ggml_is_scalar(src1));
  5554. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5555. return;
  5556. }
  5557. // scale factor
  5558. const float v = *(float *) src1->data;
  5559. const int ith = params->ith;
  5560. const int nth = params->nth;
  5561. const int nc = src0->ne[0];
  5562. const int nr = ggml_nrows(src0);
  5563. // rows per thread
  5564. const int dr = (nr + nth - 1)/nth;
  5565. // row range for this thread
  5566. const int ir0 = dr*ith;
  5567. const int ir1 = MIN(ir0 + dr, nr);
  5568. for (int i1 = ir0; i1 < ir1; i1++) {
  5569. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5570. }
  5571. }
  5572. static void ggml_compute_forward_scale(
  5573. const struct ggml_compute_params * params,
  5574. const struct ggml_tensor * src0,
  5575. const struct ggml_tensor * src1,
  5576. struct ggml_tensor * dst) {
  5577. switch (src0->type) {
  5578. case GGML_TYPE_F32:
  5579. {
  5580. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5581. } break;
  5582. case GGML_TYPE_Q4_0:
  5583. case GGML_TYPE_Q4_1:
  5584. case GGML_TYPE_I8:
  5585. case GGML_TYPE_I16:
  5586. case GGML_TYPE_I32:
  5587. case GGML_TYPE_F16:
  5588. case GGML_TYPE_COUNT:
  5589. {
  5590. GGML_ASSERT(false);
  5591. } break;
  5592. }
  5593. }
  5594. // ggml_compute_forward_cpy
  5595. static void ggml_compute_forward_cpy(
  5596. const struct ggml_compute_params * params,
  5597. const struct ggml_tensor * src0,
  5598. struct ggml_tensor * dst) {
  5599. ggml_compute_forward_dup(params, src0, dst);
  5600. }
  5601. // ggml_compute_forward_reshape
  5602. static void ggml_compute_forward_reshape(
  5603. const struct ggml_compute_params * params,
  5604. const struct ggml_tensor * src0,
  5605. struct ggml_tensor * dst) {
  5606. // NOP
  5607. UNUSED(params);
  5608. UNUSED(src0);
  5609. UNUSED(dst);
  5610. }
  5611. // ggml_compute_forward_view
  5612. static void ggml_compute_forward_view(
  5613. const struct ggml_compute_params * params,
  5614. const struct ggml_tensor * src0) {
  5615. // NOP
  5616. UNUSED(params);
  5617. UNUSED(src0);
  5618. }
  5619. // ggml_compute_forward_permute
  5620. static void ggml_compute_forward_permute(
  5621. const struct ggml_compute_params * params,
  5622. const struct ggml_tensor * src0) {
  5623. // NOP
  5624. UNUSED(params);
  5625. UNUSED(src0);
  5626. }
  5627. // ggml_compute_forward_transpose
  5628. static void ggml_compute_forward_transpose(
  5629. const struct ggml_compute_params * params,
  5630. const struct ggml_tensor * src0) {
  5631. // NOP
  5632. UNUSED(params);
  5633. UNUSED(src0);
  5634. }
  5635. // ggml_compute_forward_get_rows
  5636. static void ggml_compute_forward_get_rows_q(
  5637. const struct ggml_compute_params * params,
  5638. const struct ggml_tensor * src0,
  5639. const struct ggml_tensor * src1,
  5640. struct ggml_tensor * dst) {
  5641. assert(params->ith == 0);
  5642. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5643. return;
  5644. }
  5645. const int nc = src0->ne[0];
  5646. const int nr = ggml_nelements(src1);
  5647. const enum ggml_type type = src0->type;
  5648. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5649. assert( dst->ne[0] == nc);
  5650. assert( dst->ne[1] == nr);
  5651. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  5652. for (int i = 0; i < nr; ++i) {
  5653. const int r = ((int32_t *) src1->data)[i];
  5654. dequantize_row_q(
  5655. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5656. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5657. }
  5658. }
  5659. static void ggml_compute_forward_get_rows_f16(
  5660. const struct ggml_compute_params * params,
  5661. const struct ggml_tensor * src0,
  5662. const struct ggml_tensor * src1,
  5663. struct ggml_tensor * dst) {
  5664. assert(params->ith == 0);
  5665. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5666. return;
  5667. }
  5668. const int nc = src0->ne[0];
  5669. const int nr = ggml_nelements(src1);
  5670. assert( dst->ne[0] == nc);
  5671. assert( dst->ne[1] == nr);
  5672. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  5673. for (int i = 0; i < nr; ++i) {
  5674. const int r = ((int32_t *) src1->data)[i];
  5675. for (int j = 0; j < nc; ++j) {
  5676. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  5677. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  5678. }
  5679. }
  5680. }
  5681. static void ggml_compute_forward_get_rows_f32(
  5682. const struct ggml_compute_params * params,
  5683. const struct ggml_tensor * src0,
  5684. const struct ggml_tensor * src1,
  5685. struct ggml_tensor * dst) {
  5686. assert(params->ith == 0);
  5687. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5688. return;
  5689. }
  5690. const int nc = src0->ne[0];
  5691. const int nr = ggml_nelements(src1);
  5692. assert( dst->ne[0] == nc);
  5693. assert( dst->ne[1] == nr);
  5694. assert(src0->nb[0] == sizeof(float));
  5695. for (int i = 0; i < nr; ++i) {
  5696. const int r = ((int32_t *) src1->data)[i];
  5697. ggml_vec_cpy_f32(nc,
  5698. (float *) ((char *) dst->data + i*dst->nb[1]),
  5699. (float *) ((char *) src0->data + r*src0->nb[1]));
  5700. }
  5701. }
  5702. static void ggml_compute_forward_get_rows(
  5703. const struct ggml_compute_params * params,
  5704. const struct ggml_tensor * src0,
  5705. const struct ggml_tensor * src1,
  5706. struct ggml_tensor * dst) {
  5707. switch (src0->type) {
  5708. case GGML_TYPE_Q4_0:
  5709. case GGML_TYPE_Q4_1:
  5710. {
  5711. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  5712. } break;
  5713. case GGML_TYPE_F16:
  5714. {
  5715. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  5716. } break;
  5717. case GGML_TYPE_F32:
  5718. {
  5719. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  5720. } break;
  5721. case GGML_TYPE_I8:
  5722. case GGML_TYPE_I16:
  5723. case GGML_TYPE_I32:
  5724. case GGML_TYPE_COUNT:
  5725. {
  5726. GGML_ASSERT(false);
  5727. } break;
  5728. }
  5729. //static bool first = true;
  5730. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5731. //if (first) {
  5732. // first = false;
  5733. //} else {
  5734. // for (int k = 0; k < dst->ne[1]; ++k) {
  5735. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  5736. // for (int i = 0; i < 16; ++i) {
  5737. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5738. // }
  5739. // printf("\n");
  5740. // }
  5741. // printf("\n");
  5742. // }
  5743. // printf("\n");
  5744. // exit(0);
  5745. //}
  5746. }
  5747. // ggml_compute_forward_diag_mask_inf
  5748. static void ggml_compute_forward_diag_mask_inf_f32(
  5749. const struct ggml_compute_params * params,
  5750. const struct ggml_tensor * src0,
  5751. const struct ggml_tensor * src1,
  5752. struct ggml_tensor * dst) {
  5753. assert(params->ith == 0);
  5754. assert(src1->type == GGML_TYPE_I32);
  5755. assert(ggml_nelements(src1) == 1);
  5756. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5757. return;
  5758. }
  5759. const int n_past = ((int32_t *) src1->data)[0];
  5760. // TODO: handle transposed/permuted matrices
  5761. const int n = ggml_nrows(src0);
  5762. const int nc = src0->ne[0];
  5763. const int nr = src0->ne[1];
  5764. const int nz = n/nr;
  5765. assert( dst->nb[0] == sizeof(float));
  5766. assert(src0->nb[0] == sizeof(float));
  5767. for (int k = 0; k < nz; k++) {
  5768. for (int j = 0; j < nr; j++) {
  5769. for (int i = n_past; i < nc; i++) {
  5770. if (i > n_past + j) {
  5771. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  5772. }
  5773. }
  5774. }
  5775. }
  5776. }
  5777. static void ggml_compute_forward_diag_mask_inf(
  5778. const struct ggml_compute_params * params,
  5779. const struct ggml_tensor * src0,
  5780. const struct ggml_tensor * src1,
  5781. struct ggml_tensor * dst) {
  5782. switch (src0->type) {
  5783. case GGML_TYPE_F32:
  5784. {
  5785. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  5786. } break;
  5787. case GGML_TYPE_Q4_0:
  5788. case GGML_TYPE_Q4_1:
  5789. case GGML_TYPE_I8:
  5790. case GGML_TYPE_I16:
  5791. case GGML_TYPE_I32:
  5792. case GGML_TYPE_F16:
  5793. case GGML_TYPE_COUNT:
  5794. {
  5795. GGML_ASSERT(false);
  5796. } break;
  5797. }
  5798. }
  5799. // ggml_compute_forward_soft_max
  5800. static void ggml_compute_forward_soft_max_f32(
  5801. const struct ggml_compute_params * params,
  5802. const struct ggml_tensor * src0,
  5803. struct ggml_tensor * dst) {
  5804. GGML_ASSERT(ggml_is_contiguous(src0));
  5805. GGML_ASSERT(ggml_is_contiguous(dst));
  5806. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5807. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5808. return;
  5809. }
  5810. // TODO: handle transposed/permuted matrices
  5811. const int ith = params->ith;
  5812. const int nth = params->nth;
  5813. const int nc = src0->ne[0];
  5814. const int nr = ggml_nrows(src0);
  5815. // rows per thread
  5816. const int dr = (nr + nth - 1)/nth;
  5817. // row range for this thread
  5818. const int ir0 = dr*ith;
  5819. const int ir1 = MIN(ir0 + dr, nr);
  5820. for (int i1 = ir0; i1 < ir1; i1++) {
  5821. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  5822. #ifndef NDEBUG
  5823. for (int i = 0; i < nc; ++i) {
  5824. //printf("p[%d] = %f\n", i, p[i]);
  5825. assert(!isnan(p[i]));
  5826. }
  5827. #endif
  5828. float max = -INFINITY;
  5829. ggml_vec_max_f32(nc, &max, p);
  5830. ggml_float sum = 0.0;
  5831. uint16_t scvt;
  5832. for (int i = 0; i < nc; i++) {
  5833. if (p[i] == -INFINITY) {
  5834. p[i] = 0.0f;
  5835. } else {
  5836. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  5837. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  5838. memcpy(&scvt, &s, sizeof(scvt));
  5839. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  5840. sum += (ggml_float)val;
  5841. p[i] = val;
  5842. }
  5843. }
  5844. assert(sum > 0.0);
  5845. sum = 1.0/sum;
  5846. ggml_vec_scale_f32(nc, p, sum);
  5847. #ifndef NDEBUG
  5848. for (int i = 0; i < nc; ++i) {
  5849. assert(!isnan(p[i]));
  5850. assert(!isinf(p[i]));
  5851. }
  5852. #endif
  5853. }
  5854. }
  5855. static void ggml_compute_forward_soft_max(
  5856. const struct ggml_compute_params * params,
  5857. const struct ggml_tensor * src0,
  5858. struct ggml_tensor * dst) {
  5859. switch (src0->type) {
  5860. case GGML_TYPE_F32:
  5861. {
  5862. ggml_compute_forward_soft_max_f32(params, src0, dst);
  5863. } break;
  5864. case GGML_TYPE_Q4_0:
  5865. case GGML_TYPE_Q4_1:
  5866. case GGML_TYPE_I8:
  5867. case GGML_TYPE_I16:
  5868. case GGML_TYPE_I32:
  5869. case GGML_TYPE_F16:
  5870. case GGML_TYPE_COUNT:
  5871. {
  5872. GGML_ASSERT(false);
  5873. } break;
  5874. }
  5875. }
  5876. // ggml_compute_forward_rope
  5877. static void ggml_compute_forward_rope_f32(
  5878. const struct ggml_compute_params * params,
  5879. const struct ggml_tensor * src0,
  5880. const struct ggml_tensor * src1,
  5881. struct ggml_tensor * dst) {
  5882. assert(src1->type == GGML_TYPE_I32);
  5883. assert(ggml_nelements(src1) == 3);
  5884. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5885. return;
  5886. }
  5887. const int n_past = ((int32_t *) src1->data)[0];
  5888. const int n_dims = ((int32_t *) src1->data)[1];
  5889. const int mode = ((int32_t *) src1->data)[2];
  5890. //const int64_t ne0 = src0->ne[0];
  5891. const int64_t ne1 = src0->ne[1];
  5892. const int64_t ne2 = src0->ne[2];
  5893. const int64_t ne3 = src0->ne[3];
  5894. const int nb0 = src0->nb[0];
  5895. const int nb1 = src0->nb[1];
  5896. const int nb2 = src0->nb[2];
  5897. const int nb3 = src0->nb[3];
  5898. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5899. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5900. assert(nb0 == sizeof(float));
  5901. const int ith = params->ith;
  5902. const int nth = params->nth;
  5903. const int nr = ggml_nrows(src0);
  5904. // rows per thread
  5905. const int dr = (nr + nth - 1)/nth;
  5906. // row range for this thread
  5907. const int ir0 = dr*ith;
  5908. const int ir1 = MIN(ir0 + dr, nr);
  5909. // row index used to determine which thread to use
  5910. int ir = 0;
  5911. for (int64_t i3 = 0; i3 < ne3; i3++) {
  5912. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5913. const int p = (mode == 0 ? n_past + i2 : i2);
  5914. for (int64_t i1 = 0; i1 < ne1; i1++) {
  5915. if (ir++ < ir0) continue;
  5916. if (ir > ir1) break;
  5917. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5918. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  5919. const float cos_theta = cosf(p*theta);
  5920. const float sin_theta = sinf(p*theta);
  5921. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5922. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5923. const float x0 = src[0];
  5924. const float x1 = src[1];
  5925. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5926. dst_data[1] = x0*sin_theta + x1*cos_theta;
  5927. }
  5928. }
  5929. }
  5930. }
  5931. }
  5932. static void ggml_compute_forward_rope_f16(
  5933. const struct ggml_compute_params * params,
  5934. const struct ggml_tensor * src0,
  5935. const struct ggml_tensor * src1,
  5936. struct ggml_tensor * dst) {
  5937. assert(src1->type == GGML_TYPE_I32);
  5938. assert(ggml_nelements(src1) == 3);
  5939. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5940. return;
  5941. }
  5942. const int n_past = ((int32_t *) src1->data)[0];
  5943. const int n_dims = ((int32_t *) src1->data)[1];
  5944. const int mode = ((int32_t *) src1->data)[2];
  5945. //const int64_t ne0 = src0->ne[0];
  5946. const int64_t ne1 = src0->ne[1];
  5947. const int64_t ne2 = src0->ne[2];
  5948. const int64_t ne3 = src0->ne[3];
  5949. const int nb0 = src0->nb[0];
  5950. const int nb1 = src0->nb[1];
  5951. const int nb2 = src0->nb[2];
  5952. const int nb3 = src0->nb[3];
  5953. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5954. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5955. assert(nb0 == sizeof(ggml_fp16_t));
  5956. const int ith = params->ith;
  5957. const int nth = params->nth;
  5958. const int nr = ggml_nrows(src0);
  5959. // rows per thread
  5960. const int dr = (nr + nth - 1)/nth;
  5961. // row range for this thread
  5962. const int ir0 = dr*ith;
  5963. const int ir1 = MIN(ir0 + dr, nr);
  5964. // row index used to determine which thread to use
  5965. int ir = 0;
  5966. for (int64_t i3 = 0; i3 < ne3; i3++) {
  5967. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5968. const int p = (mode == 0 ? n_past + i2 : i2);
  5969. for (int64_t i1 = 0; i1 < ne1; i1++) {
  5970. if (ir++ < ir0) continue;
  5971. if (ir > ir1) break;
  5972. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5973. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  5974. const float cos_theta = cosf(p*theta);
  5975. const float sin_theta = sinf(p*theta);
  5976. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5977. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5978. const float x0 = ggml_fp16_to_fp32(src[0]);
  5979. const float x1 = ggml_fp16_to_fp32(src[1]);
  5980. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  5981. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  5982. }
  5983. }
  5984. }
  5985. }
  5986. }
  5987. static void ggml_compute_forward_rope(
  5988. const struct ggml_compute_params * params,
  5989. const struct ggml_tensor * src0,
  5990. const struct ggml_tensor * src1,
  5991. struct ggml_tensor * dst) {
  5992. switch (src0->type) {
  5993. case GGML_TYPE_F16:
  5994. {
  5995. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  5996. } break;
  5997. case GGML_TYPE_F32:
  5998. {
  5999. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  6000. } break;
  6001. case GGML_TYPE_Q4_0:
  6002. case GGML_TYPE_Q4_1:
  6003. case GGML_TYPE_I8:
  6004. case GGML_TYPE_I16:
  6005. case GGML_TYPE_I32:
  6006. case GGML_TYPE_COUNT:
  6007. {
  6008. GGML_ASSERT(false);
  6009. } break;
  6010. }
  6011. }
  6012. // ggml_compute_forward_conv_1d_1s
  6013. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  6014. const struct ggml_compute_params * params,
  6015. const struct ggml_tensor * src0,
  6016. const struct ggml_tensor * src1,
  6017. struct ggml_tensor * dst) {
  6018. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6019. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6020. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6021. int64_t t0 = ggml_perf_time_us();
  6022. UNUSED(t0);
  6023. const int64_t ne00 = src0->ne[0];
  6024. const int64_t ne01 = src0->ne[1];
  6025. const int64_t ne02 = src0->ne[2];
  6026. //const int64_t ne03 = src0->ne[3];
  6027. const int64_t ne10 = src1->ne[0];
  6028. const int64_t ne11 = src1->ne[1];
  6029. //const int64_t ne12 = src1->ne[2];
  6030. //const int64_t ne13 = src1->ne[3];
  6031. //const int64_t ne0 = dst->ne[0];
  6032. //const int64_t ne1 = dst->ne[1];
  6033. //const int64_t ne2 = dst->ne[2];
  6034. //const int64_t ne3 = dst->ne[3];
  6035. //const int64_t ne = ne0*ne1*ne2*ne3;
  6036. const int nb00 = src0->nb[0];
  6037. const int nb01 = src0->nb[1];
  6038. const int nb02 = src0->nb[2];
  6039. //const int nb03 = src0->nb[3];
  6040. const int nb10 = src1->nb[0];
  6041. const int nb11 = src1->nb[1];
  6042. //const int nb12 = src1->nb[2];
  6043. //const int nb13 = src1->nb[3];
  6044. //const int nb0 = dst->nb[0];
  6045. const int nb1 = dst->nb[1];
  6046. //const int nb2 = dst->nb[2];
  6047. //const int nb3 = dst->nb[3];
  6048. const int ith = params->ith;
  6049. const int nth = params->nth;
  6050. const int nk = ne00;
  6051. const int nh = nk/2;
  6052. const int ew0 = ggml_up32(ne01);
  6053. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6054. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6055. GGML_ASSERT(nb10 == sizeof(float));
  6056. if (params->type == GGML_TASK_INIT) {
  6057. // TODO: fix this memset (wsize is overestimated)
  6058. memset(params->wdata, 0, params->wsize);
  6059. // prepare kernel data (src0)
  6060. {
  6061. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6062. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6063. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6064. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6065. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6066. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6067. dst_data[i00*ew0 + i01] = src[i00];
  6068. }
  6069. }
  6070. }
  6071. }
  6072. // prepare source data (src1)
  6073. {
  6074. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6075. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6076. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6077. ggml_fp16_t * dst_data = wdata;
  6078. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6079. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6080. }
  6081. }
  6082. }
  6083. return;
  6084. }
  6085. if (params->type == GGML_TASK_FINALIZE) {
  6086. return;
  6087. }
  6088. // total rows in dst
  6089. const int nr = ne02;
  6090. // rows per thread
  6091. const int dr = (nr + nth - 1)/nth;
  6092. // row range for this thread
  6093. const int ir0 = dr*ith;
  6094. const int ir1 = MIN(ir0 + dr, nr);
  6095. for (int i1 = ir0; i1 < ir1; i1++) {
  6096. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6097. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6098. dst_data[i0] = 0;
  6099. for (int k = -nh; k <= nh; k++) {
  6100. float v = 0.0f;
  6101. ggml_vec_dot_f16(ew0, &v,
  6102. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6103. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6104. dst_data[i0] += v;
  6105. }
  6106. }
  6107. }
  6108. }
  6109. static void ggml_compute_forward_conv_1d_1s_f32(
  6110. const struct ggml_compute_params * params,
  6111. const struct ggml_tensor * src0,
  6112. const struct ggml_tensor * src1,
  6113. struct ggml_tensor * dst) {
  6114. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6115. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6116. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6117. int64_t t0 = ggml_perf_time_us();
  6118. UNUSED(t0);
  6119. const int64_t ne00 = src0->ne[0];
  6120. const int64_t ne01 = src0->ne[1];
  6121. const int64_t ne02 = src0->ne[2];
  6122. //const int64_t ne03 = src0->ne[3];
  6123. const int64_t ne10 = src1->ne[0];
  6124. const int64_t ne11 = src1->ne[1];
  6125. //const int64_t ne12 = src1->ne[2];
  6126. //const int64_t ne13 = src1->ne[3];
  6127. //const int64_t ne0 = dst->ne[0];
  6128. //const int64_t ne1 = dst->ne[1];
  6129. //const int64_t ne2 = dst->ne[2];
  6130. //const int64_t ne3 = dst->ne[3];
  6131. //const int64_t ne = ne0*ne1*ne2*ne3;
  6132. const int nb00 = src0->nb[0];
  6133. const int nb01 = src0->nb[1];
  6134. const int nb02 = src0->nb[2];
  6135. //const int nb03 = src0->nb[3];
  6136. const int nb10 = src1->nb[0];
  6137. const int nb11 = src1->nb[1];
  6138. //const int nb12 = src1->nb[2];
  6139. //const int nb13 = src1->nb[3];
  6140. //const int nb0 = dst->nb[0];
  6141. const int nb1 = dst->nb[1];
  6142. //const int nb2 = dst->nb[2];
  6143. //const int nb3 = dst->nb[3];
  6144. const int ith = params->ith;
  6145. const int nth = params->nth;
  6146. const int nk = ne00;
  6147. const int nh = nk/2;
  6148. const int ew0 = ggml_up32(ne01);
  6149. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6150. GGML_ASSERT(nb00 == sizeof(float));
  6151. GGML_ASSERT(nb10 == sizeof(float));
  6152. if (params->type == GGML_TASK_INIT) {
  6153. // TODO: fix this memset (wsize is overestimated)
  6154. memset(params->wdata, 0, params->wsize);
  6155. // prepare kernel data (src0)
  6156. {
  6157. float * const wdata = (float *) params->wdata + 0;
  6158. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6159. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6160. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6161. float * dst_data = wdata + i02*ew0*ne00;
  6162. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6163. dst_data[i00*ew0 + i01] = src[i00];
  6164. }
  6165. }
  6166. }
  6167. }
  6168. // prepare source data (src1)
  6169. {
  6170. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6171. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6172. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6173. float * dst_data = wdata;
  6174. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6175. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6176. }
  6177. }
  6178. }
  6179. return;
  6180. }
  6181. if (params->type == GGML_TASK_FINALIZE) {
  6182. return;
  6183. }
  6184. // total rows in dst
  6185. const int nr = ne02;
  6186. // rows per thread
  6187. const int dr = (nr + nth - 1)/nth;
  6188. // row range for this thread
  6189. const int ir0 = dr*ith;
  6190. const int ir1 = MIN(ir0 + dr, nr);
  6191. for (int i1 = ir0; i1 < ir1; i1++) {
  6192. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6193. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6194. dst_data[i0] = 0;
  6195. for (int k = -nh; k <= nh; k++) {
  6196. float v = 0.0f;
  6197. ggml_vec_dot_f32(ew0, &v,
  6198. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6199. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6200. dst_data[i0] += v;
  6201. }
  6202. }
  6203. }
  6204. }
  6205. static void ggml_compute_forward_conv_1d_1s(
  6206. const struct ggml_compute_params * params,
  6207. const struct ggml_tensor * src0,
  6208. const struct ggml_tensor * src1,
  6209. struct ggml_tensor * dst) {
  6210. switch (src0->type) {
  6211. case GGML_TYPE_F16:
  6212. {
  6213. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  6214. } break;
  6215. case GGML_TYPE_F32:
  6216. {
  6217. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  6218. } break;
  6219. case GGML_TYPE_Q4_0:
  6220. case GGML_TYPE_Q4_1:
  6221. case GGML_TYPE_I8:
  6222. case GGML_TYPE_I16:
  6223. case GGML_TYPE_I32:
  6224. case GGML_TYPE_COUNT:
  6225. {
  6226. GGML_ASSERT(false);
  6227. } break;
  6228. }
  6229. }
  6230. // ggml_compute_forward_conv_1d_2s
  6231. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  6232. const struct ggml_compute_params * params,
  6233. const struct ggml_tensor * src0,
  6234. const struct ggml_tensor * src1,
  6235. struct ggml_tensor * dst) {
  6236. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6237. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6238. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6239. int64_t t0 = ggml_perf_time_us();
  6240. UNUSED(t0);
  6241. const int64_t ne00 = src0->ne[0];
  6242. const int64_t ne01 = src0->ne[1];
  6243. const int64_t ne02 = src0->ne[2];
  6244. //const int64_t ne03 = src0->ne[3];
  6245. const int64_t ne10 = src1->ne[0];
  6246. const int64_t ne11 = src1->ne[1];
  6247. //const int64_t ne12 = src1->ne[2];
  6248. //const int64_t ne13 = src1->ne[3];
  6249. //const int64_t ne0 = dst->ne[0];
  6250. //const int64_t ne1 = dst->ne[1];
  6251. //const int64_t ne2 = dst->ne[2];
  6252. //const int64_t ne3 = dst->ne[3];
  6253. //const int64_t ne = ne0*ne1*ne2*ne3;
  6254. const int nb00 = src0->nb[0];
  6255. const int nb01 = src0->nb[1];
  6256. const int nb02 = src0->nb[2];
  6257. //const int nb03 = src0->nb[3];
  6258. const int nb10 = src1->nb[0];
  6259. const int nb11 = src1->nb[1];
  6260. //const int nb12 = src1->nb[2];
  6261. //const int nb13 = src1->nb[3];
  6262. //const int nb0 = dst->nb[0];
  6263. const int nb1 = dst->nb[1];
  6264. //const int nb2 = dst->nb[2];
  6265. //const int nb3 = dst->nb[3];
  6266. const int ith = params->ith;
  6267. const int nth = params->nth;
  6268. const int nk = ne00;
  6269. const int nh = nk/2;
  6270. const int ew0 = ggml_up32(ne01);
  6271. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6272. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6273. GGML_ASSERT(nb10 == sizeof(float));
  6274. if (params->type == GGML_TASK_INIT) {
  6275. // TODO: fix this memset (wsize is overestimated)
  6276. memset(params->wdata, 0, params->wsize);
  6277. // prepare kernel data (src0)
  6278. {
  6279. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6280. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6281. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6282. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6283. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6284. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6285. dst_data[i00*ew0 + i01] = src[i00];
  6286. }
  6287. }
  6288. }
  6289. }
  6290. // prepare source data (src1)
  6291. {
  6292. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6293. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6294. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6295. ggml_fp16_t * dst_data = wdata;
  6296. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6297. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6298. }
  6299. }
  6300. }
  6301. return;
  6302. }
  6303. if (params->type == GGML_TASK_FINALIZE) {
  6304. return;
  6305. }
  6306. // total rows in dst
  6307. const int nr = ne02;
  6308. // rows per thread
  6309. const int dr = (nr + nth - 1)/nth;
  6310. // row range for this thread
  6311. const int ir0 = dr*ith;
  6312. const int ir1 = MIN(ir0 + dr, nr);
  6313. for (int i1 = ir0; i1 < ir1; i1++) {
  6314. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6315. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  6316. dst_data[i0/2] = 0;
  6317. for (int k = -nh; k <= nh; k++) {
  6318. float v = 0.0f;
  6319. ggml_vec_dot_f16(ew0, &v,
  6320. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6321. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6322. dst_data[i0/2] += v;
  6323. }
  6324. }
  6325. }
  6326. }
  6327. static void ggml_compute_forward_conv_1d_2s_f32(
  6328. const struct ggml_compute_params * params,
  6329. const struct ggml_tensor * src0,
  6330. const struct ggml_tensor * src1,
  6331. struct ggml_tensor * dst) {
  6332. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6333. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6334. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6335. int64_t t0 = ggml_perf_time_us();
  6336. UNUSED(t0);
  6337. const int64_t ne00 = src0->ne[0];
  6338. const int64_t ne01 = src0->ne[1];
  6339. const int64_t ne02 = src0->ne[2];
  6340. //const int64_t ne03 = src0->ne[3];
  6341. const int64_t ne10 = src1->ne[0];
  6342. const int64_t ne11 = src1->ne[1];
  6343. //const int64_t ne12 = src1->ne[2];
  6344. //const int64_t ne13 = src1->ne[3];
  6345. //const int64_t ne0 = dst->ne[0];
  6346. //const int64_t ne1 = dst->ne[1];
  6347. //const int64_t ne2 = dst->ne[2];
  6348. //const int64_t ne3 = dst->ne[3];
  6349. //const int64_t ne = ne0*ne1*ne2*ne3;
  6350. const int nb00 = src0->nb[0];
  6351. const int nb01 = src0->nb[1];
  6352. const int nb02 = src0->nb[2];
  6353. //const int nb03 = src0->nb[3];
  6354. const int nb10 = src1->nb[0];
  6355. const int nb11 = src1->nb[1];
  6356. //const int nb12 = src1->nb[2];
  6357. //const int nb13 = src1->nb[3];
  6358. //const int nb0 = dst->nb[0];
  6359. const int nb1 = dst->nb[1];
  6360. //const int nb2 = dst->nb[2];
  6361. //const int nb3 = dst->nb[3];
  6362. const int ith = params->ith;
  6363. const int nth = params->nth;
  6364. const int nk = ne00;
  6365. const int nh = nk/2;
  6366. const int ew0 = ggml_up32(ne01);
  6367. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6368. GGML_ASSERT(nb00 == sizeof(float));
  6369. GGML_ASSERT(nb10 == sizeof(float));
  6370. if (params->type == GGML_TASK_INIT) {
  6371. // TODO: fix this memset (wsize is overestimated)
  6372. memset(params->wdata, 0, params->wsize);
  6373. // prepare kernel data (src0)
  6374. {
  6375. float * const wdata = (float *) params->wdata + 0;
  6376. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6377. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6378. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6379. float * dst_data = wdata + i02*ew0*ne00;
  6380. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6381. dst_data[i00*ew0 + i01] = src[i00];
  6382. }
  6383. }
  6384. }
  6385. }
  6386. // prepare source data (src1)
  6387. {
  6388. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6389. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6390. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6391. float * dst_data = wdata;
  6392. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6393. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6394. }
  6395. }
  6396. }
  6397. return;
  6398. }
  6399. if (params->type == GGML_TASK_FINALIZE) {
  6400. return;
  6401. }
  6402. // total rows in dst
  6403. const int nr = ne02;
  6404. // rows per thread
  6405. const int dr = (nr + nth - 1)/nth;
  6406. // row range for this thread
  6407. const int ir0 = dr*ith;
  6408. const int ir1 = MIN(ir0 + dr, nr);
  6409. for (int i1 = ir0; i1 < ir1; i1++) {
  6410. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6411. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  6412. dst_data[i0/2] = 0;
  6413. for (int k = -nh; k <= nh; k++) {
  6414. float v = 0.0f;
  6415. ggml_vec_dot_f32(ew0, &v,
  6416. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6417. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6418. dst_data[i0/2] += v;
  6419. }
  6420. }
  6421. }
  6422. }
  6423. static void ggml_compute_forward_conv_1d_2s(
  6424. const struct ggml_compute_params * params,
  6425. const struct ggml_tensor * src0,
  6426. const struct ggml_tensor * src1,
  6427. struct ggml_tensor * dst) {
  6428. switch (src0->type) {
  6429. case GGML_TYPE_F16:
  6430. {
  6431. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6432. } break;
  6433. case GGML_TYPE_F32:
  6434. {
  6435. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6436. } break;
  6437. case GGML_TYPE_Q4_0:
  6438. case GGML_TYPE_Q4_1:
  6439. case GGML_TYPE_I8:
  6440. case GGML_TYPE_I16:
  6441. case GGML_TYPE_I32:
  6442. case GGML_TYPE_COUNT:
  6443. {
  6444. GGML_ASSERT(false);
  6445. } break;
  6446. }
  6447. }
  6448. // ggml_compute_forward_flash_attn
  6449. static void ggml_compute_forward_flash_attn_f32(
  6450. const struct ggml_compute_params * params,
  6451. const struct ggml_tensor * q,
  6452. const struct ggml_tensor * k,
  6453. const struct ggml_tensor * v,
  6454. const bool masked,
  6455. struct ggml_tensor * dst) {
  6456. int64_t t0 = ggml_perf_time_us();
  6457. UNUSED(t0);
  6458. const int64_t neq0 = q->ne[0];
  6459. const int64_t neq1 = q->ne[1];
  6460. const int64_t neq2 = q->ne[2];
  6461. const int64_t neq3 = q->ne[3];
  6462. const int64_t nek0 = k->ne[0];
  6463. const int64_t nek1 = k->ne[1];
  6464. //const int64_t nek2 = k->ne[2];
  6465. //const int64_t nek3 = k->ne[3];
  6466. //const int64_t nev0 = v->ne[0];
  6467. const int64_t nev1 = v->ne[1];
  6468. //const int64_t nev2 = v->ne[2];
  6469. //const int64_t nev3 = v->ne[3];
  6470. const int64_t ne0 = dst->ne[0];
  6471. const int64_t ne1 = dst->ne[1];
  6472. //const int64_t ne2 = dst->ne[2];
  6473. //const int64_t ne3 = dst->ne[3];
  6474. const int nbk0 = k->nb[0];
  6475. const int nbk1 = k->nb[1];
  6476. const int nbk2 = k->nb[2];
  6477. const int nbk3 = k->nb[3];
  6478. const int nbq0 = q->nb[0];
  6479. const int nbq1 = q->nb[1];
  6480. const int nbq2 = q->nb[2];
  6481. const int nbq3 = q->nb[3];
  6482. const int nbv0 = v->nb[0];
  6483. const int nbv1 = v->nb[1];
  6484. const int nbv2 = v->nb[2];
  6485. const int nbv3 = v->nb[3];
  6486. const int nb0 = dst->nb[0];
  6487. const int nb1 = dst->nb[1];
  6488. const int nb2 = dst->nb[2];
  6489. const int nb3 = dst->nb[3];
  6490. const int ith = params->ith;
  6491. const int nth = params->nth;
  6492. const int64_t D = neq0;
  6493. const int64_t N = neq1;
  6494. const int64_t P = nek1 - N;
  6495. const int64_t M = P + N;
  6496. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6497. GGML_ASSERT(ne0 == D);
  6498. GGML_ASSERT(ne1 == N);
  6499. GGML_ASSERT(P >= 0);
  6500. GGML_ASSERT(nbq0 == sizeof(float));
  6501. GGML_ASSERT(nbk0 == sizeof(float));
  6502. GGML_ASSERT(nbv0 == sizeof(float));
  6503. GGML_ASSERT(neq0 == D);
  6504. GGML_ASSERT(nek0 == D);
  6505. GGML_ASSERT(nev1 == D);
  6506. GGML_ASSERT(neq1 == N);
  6507. GGML_ASSERT(nek1 == N + P);
  6508. GGML_ASSERT(nev1 == D);
  6509. // dst cannot be transposed or permuted
  6510. GGML_ASSERT(nb0 == sizeof(float));
  6511. GGML_ASSERT(nb0 <= nb1);
  6512. GGML_ASSERT(nb1 <= nb2);
  6513. GGML_ASSERT(nb2 <= nb3);
  6514. if (params->type == GGML_TASK_INIT) {
  6515. return;
  6516. }
  6517. if (params->type == GGML_TASK_FINALIZE) {
  6518. return;
  6519. }
  6520. // parallelize by q rows using ggml_vec_dot_f32
  6521. // total rows in q
  6522. const int nr = neq1*neq2*neq3;
  6523. // rows per thread
  6524. const int dr = (nr + nth - 1)/nth;
  6525. // row range for this thread
  6526. const int ir0 = dr*ith;
  6527. const int ir1 = MIN(ir0 + dr, nr);
  6528. const float scale = 1.0f/sqrtf(D);
  6529. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6530. for (int ir = ir0; ir < ir1; ++ir) {
  6531. // q indices
  6532. const int iq3 = ir/(neq2*neq1);
  6533. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6534. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6535. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6536. for (int i = M; i < Mup; ++i) {
  6537. S[i] = -INFINITY;
  6538. }
  6539. for (int64_t ic = 0; ic < nek1; ++ic) {
  6540. // k indices
  6541. const int ik3 = iq3;
  6542. const int ik2 = iq2;
  6543. const int ik1 = ic;
  6544. // S indices
  6545. const int i1 = ik1;
  6546. ggml_vec_dot_f32(neq0,
  6547. S + i1,
  6548. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6549. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6550. }
  6551. // scale
  6552. ggml_vec_scale_f32(nek1, S, scale);
  6553. if (masked) {
  6554. for (int64_t i = P; i < M; i++) {
  6555. if (i > P + iq1) {
  6556. S[i] = -INFINITY;
  6557. }
  6558. }
  6559. }
  6560. // softmax
  6561. {
  6562. float max = -INFINITY;
  6563. ggml_vec_max_f32(M, &max, S);
  6564. ggml_float sum = 0.0;
  6565. {
  6566. #ifdef GGML_SOFT_MAX_ACCELERATE
  6567. max = -max;
  6568. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6569. vvexpf(S, S, &Mup);
  6570. ggml_vec_sum_f32(Mup, &sum, S);
  6571. #else
  6572. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6573. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6574. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6575. float * SS = S + i;
  6576. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6577. if (SS[j] == -INFINITY) {
  6578. SS[j] = 0.0f;
  6579. } else {
  6580. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6581. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6582. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6583. sump[j] += (ggml_float)val;
  6584. SS[j] = val;
  6585. }
  6586. }
  6587. }
  6588. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6589. sum += sump[i];
  6590. }
  6591. #endif
  6592. }
  6593. assert(sum > 0.0);
  6594. sum = 1.0/sum;
  6595. ggml_vec_scale_f32(M, S, sum);
  6596. #ifndef NDEBUG
  6597. for (int i = 0; i < M; ++i) {
  6598. assert(!isnan(S[i]));
  6599. assert(!isinf(S[i]));
  6600. }
  6601. #endif
  6602. }
  6603. for (int64_t ic = 0; ic < nev1; ++ic) {
  6604. // dst indices
  6605. const int i1 = iq1;
  6606. const int i2 = iq2;
  6607. const int i3 = iq3;
  6608. ggml_vec_dot_f32(nek1,
  6609. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6610. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6611. S);
  6612. }
  6613. }
  6614. }
  6615. static void ggml_compute_forward_flash_attn_f16(
  6616. const struct ggml_compute_params * params,
  6617. const struct ggml_tensor * q,
  6618. const struct ggml_tensor * k,
  6619. const struct ggml_tensor * v,
  6620. const bool masked,
  6621. struct ggml_tensor * dst) {
  6622. int64_t t0 = ggml_perf_time_us();
  6623. UNUSED(t0);
  6624. const int64_t neq0 = q->ne[0];
  6625. const int64_t neq1 = q->ne[1];
  6626. const int64_t neq2 = q->ne[2];
  6627. const int64_t neq3 = q->ne[3];
  6628. const int64_t nek0 = k->ne[0];
  6629. const int64_t nek1 = k->ne[1];
  6630. //const int64_t nek2 = k->ne[2];
  6631. //const int64_t nek3 = k->ne[3];
  6632. //const int64_t nev0 = v->ne[0];
  6633. const int64_t nev1 = v->ne[1];
  6634. //const int64_t nev2 = v->ne[2];
  6635. //const int64_t nev3 = v->ne[3];
  6636. const int64_t ne0 = dst->ne[0];
  6637. const int64_t ne1 = dst->ne[1];
  6638. //const int64_t ne2 = dst->ne[2];
  6639. //const int64_t ne3 = dst->ne[3];
  6640. const int nbk0 = k->nb[0];
  6641. const int nbk1 = k->nb[1];
  6642. const int nbk2 = k->nb[2];
  6643. const int nbk3 = k->nb[3];
  6644. const int nbq0 = q->nb[0];
  6645. const int nbq1 = q->nb[1];
  6646. const int nbq2 = q->nb[2];
  6647. const int nbq3 = q->nb[3];
  6648. const int nbv0 = v->nb[0];
  6649. const int nbv1 = v->nb[1];
  6650. const int nbv2 = v->nb[2];
  6651. const int nbv3 = v->nb[3];
  6652. const int nb0 = dst->nb[0];
  6653. const int nb1 = dst->nb[1];
  6654. const int nb2 = dst->nb[2];
  6655. const int nb3 = dst->nb[3];
  6656. const int ith = params->ith;
  6657. const int nth = params->nth;
  6658. const int64_t D = neq0;
  6659. const int64_t N = neq1;
  6660. const int64_t P = nek1 - N;
  6661. const int64_t M = P + N;
  6662. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6663. GGML_ASSERT(ne0 == D);
  6664. GGML_ASSERT(ne1 == N);
  6665. GGML_ASSERT(P >= 0);
  6666. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  6667. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  6668. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  6669. GGML_ASSERT(neq0 == D);
  6670. GGML_ASSERT(nek0 == D);
  6671. GGML_ASSERT(nev1 == D);
  6672. GGML_ASSERT(neq1 == N);
  6673. GGML_ASSERT(nek1 == N + P);
  6674. GGML_ASSERT(nev1 == D);
  6675. // dst cannot be transposed or permuted
  6676. GGML_ASSERT(nb0 == sizeof(float));
  6677. GGML_ASSERT(nb0 <= nb1);
  6678. GGML_ASSERT(nb1 <= nb2);
  6679. GGML_ASSERT(nb2 <= nb3);
  6680. if (params->type == GGML_TASK_INIT) {
  6681. return;
  6682. }
  6683. if (params->type == GGML_TASK_FINALIZE) {
  6684. return;
  6685. }
  6686. // parallelize by q rows using ggml_vec_dot_f32
  6687. // total rows in q
  6688. const int nr = neq1*neq2*neq3;
  6689. // rows per thread
  6690. const int dr = (nr + nth - 1)/nth;
  6691. // row range for this thread
  6692. const int ir0 = dr*ith;
  6693. const int ir1 = MIN(ir0 + dr, nr);
  6694. const float scale = 1.0f/sqrtf(D);
  6695. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6696. for (int ir = ir0; ir < ir1; ++ir) {
  6697. // q indices
  6698. const int iq3 = ir/(neq2*neq1);
  6699. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6700. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6701. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  6702. for (int i = M; i < Mup; ++i) {
  6703. S[i] = -INFINITY;
  6704. }
  6705. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  6706. for (int64_t ic = 0; ic < nek1; ++ic) {
  6707. // k indices
  6708. const int ik3 = iq3;
  6709. const int ik2 = iq2;
  6710. const int ik1 = ic;
  6711. // S indices
  6712. const int i1 = ik1;
  6713. ggml_vec_dot_f16(neq0,
  6714. S + i1,
  6715. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6716. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6717. }
  6718. } else {
  6719. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  6720. // k indices
  6721. const int ik3 = iq3;
  6722. const int ik2 = iq2;
  6723. const int ik1 = ic;
  6724. // S indices
  6725. const int i1 = ik1;
  6726. ggml_vec_dot_f16_unroll(neq0, nbk1,
  6727. S + i1,
  6728. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6729. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6730. }
  6731. }
  6732. // scale
  6733. ggml_vec_scale_f32(nek1, S, scale);
  6734. if (masked) {
  6735. for (int64_t i = P; i < M; i++) {
  6736. if (i > P + iq1) {
  6737. S[i] = -INFINITY;
  6738. }
  6739. }
  6740. }
  6741. // softmax
  6742. {
  6743. float max = -INFINITY;
  6744. ggml_vec_max_f32(M, &max, S);
  6745. ggml_float sum = 0.0;
  6746. {
  6747. #ifdef GGML_SOFT_MAX_ACCELERATE
  6748. max = -max;
  6749. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6750. vvexpf(S, S, &Mup);
  6751. ggml_vec_sum_f32(Mup, &sum, S);
  6752. #else
  6753. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6754. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6755. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6756. float * SS = S + i;
  6757. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6758. if (SS[j] == -INFINITY) {
  6759. SS[j] = 0.0f;
  6760. } else {
  6761. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6762. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6763. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6764. sump[j] += (ggml_float)val;
  6765. SS[j] = val;
  6766. }
  6767. }
  6768. }
  6769. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6770. sum += sump[i];
  6771. }
  6772. #endif
  6773. }
  6774. assert(sum > 0.0);
  6775. sum = 1.0/sum;
  6776. ggml_vec_scale_f32(M, S, sum);
  6777. #ifndef NDEBUG
  6778. for (int i = 0; i < M; ++i) {
  6779. assert(!isnan(S[i]));
  6780. assert(!isinf(S[i]));
  6781. }
  6782. #endif
  6783. }
  6784. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  6785. for (int64_t i = 0; i < M; i++) {
  6786. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6787. }
  6788. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  6789. for (int64_t ic = 0; ic < nev1; ++ic) {
  6790. // dst indices
  6791. const int i1 = iq1;
  6792. const int i2 = iq2;
  6793. const int i3 = iq3;
  6794. ggml_vec_dot_f16(nek1,
  6795. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6796. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6797. S16);
  6798. }
  6799. } else {
  6800. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  6801. // dst indices
  6802. const int i1 = iq1;
  6803. const int i2 = iq2;
  6804. const int i3 = iq3;
  6805. ggml_vec_dot_f16_unroll(nek1, nbv1,
  6806. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6807. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6808. S16);
  6809. }
  6810. }
  6811. }
  6812. }
  6813. static void ggml_compute_forward_flash_attn(
  6814. const struct ggml_compute_params * params,
  6815. const struct ggml_tensor * q,
  6816. const struct ggml_tensor * k,
  6817. const struct ggml_tensor * v,
  6818. const bool masked,
  6819. struct ggml_tensor * dst) {
  6820. switch (q->type) {
  6821. case GGML_TYPE_F16:
  6822. {
  6823. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  6824. } break;
  6825. case GGML_TYPE_F32:
  6826. {
  6827. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  6828. } break;
  6829. case GGML_TYPE_Q4_0:
  6830. case GGML_TYPE_Q4_1:
  6831. case GGML_TYPE_I8:
  6832. case GGML_TYPE_I16:
  6833. case GGML_TYPE_I32:
  6834. case GGML_TYPE_COUNT:
  6835. {
  6836. GGML_ASSERT(false);
  6837. } break;
  6838. }
  6839. }
  6840. // ggml_compute_forward_flash_ff
  6841. static void ggml_compute_forward_flash_ff_f16(
  6842. const struct ggml_compute_params * params,
  6843. const struct ggml_tensor * a, // F16
  6844. const struct ggml_tensor * b0, // F16 fc_w
  6845. const struct ggml_tensor * b1, // F32 fc_b
  6846. const struct ggml_tensor * c0, // F16 proj_w
  6847. const struct ggml_tensor * c1, // F32 proj_b
  6848. struct ggml_tensor * dst) {
  6849. int64_t t0 = ggml_perf_time_us();
  6850. UNUSED(t0);
  6851. const int64_t nea0 = a->ne[0];
  6852. const int64_t nea1 = a->ne[1];
  6853. const int64_t nea2 = a->ne[2];
  6854. const int64_t nea3 = a->ne[3];
  6855. const int64_t neb00 = b0->ne[0];
  6856. const int64_t neb01 = b0->ne[1];
  6857. //const int64_t neb02 = b0->ne[2];
  6858. //const int64_t neb03 = b0->ne[3];
  6859. const int64_t neb10 = b1->ne[0];
  6860. const int64_t neb11 = b1->ne[1];
  6861. //const int64_t neb12 = b1->ne[2];
  6862. //const int64_t neb13 = b1->ne[3];
  6863. const int64_t nec00 = c0->ne[0];
  6864. const int64_t nec01 = c0->ne[1];
  6865. //const int64_t nec02 = c0->ne[2];
  6866. //const int64_t nec03 = c0->ne[3];
  6867. const int64_t nec10 = c1->ne[0];
  6868. const int64_t nec11 = c1->ne[1];
  6869. //const int64_t nec12 = c1->ne[2];
  6870. //const int64_t nec13 = c1->ne[3];
  6871. const int64_t ne0 = dst->ne[0];
  6872. const int64_t ne1 = dst->ne[1];
  6873. const int64_t ne2 = dst->ne[2];
  6874. //const int64_t ne3 = dst->ne[3];
  6875. const int nba0 = a->nb[0];
  6876. const int nba1 = a->nb[1];
  6877. const int nba2 = a->nb[2];
  6878. const int nba3 = a->nb[3];
  6879. const int nbb00 = b0->nb[0];
  6880. const int nbb01 = b0->nb[1];
  6881. const int nbb02 = b0->nb[2];
  6882. const int nbb03 = b0->nb[3];
  6883. const int nbb10 = b1->nb[0];
  6884. //const int nbb11 = b1->nb[1];
  6885. //const int nbb12 = b1->nb[2];
  6886. //const int nbb13 = b1->nb[3];
  6887. const int nbc00 = c0->nb[0];
  6888. const int nbc01 = c0->nb[1];
  6889. const int nbc02 = c0->nb[2];
  6890. const int nbc03 = c0->nb[3];
  6891. const int nbc10 = c1->nb[0];
  6892. //const int nbc11 = c1->nb[1];
  6893. //const int nbc12 = c1->nb[2];
  6894. //const int nbc13 = c1->nb[3];
  6895. const int nb0 = dst->nb[0];
  6896. const int nb1 = dst->nb[1];
  6897. const int nb2 = dst->nb[2];
  6898. const int nb3 = dst->nb[3];
  6899. const int ith = params->ith;
  6900. const int nth = params->nth;
  6901. const int64_t D = nea0;
  6902. //const int64_t N = nea1;
  6903. const int64_t M = neb01;
  6904. GGML_ASSERT(ne0 == nea0);
  6905. GGML_ASSERT(ne1 == nea1);
  6906. GGML_ASSERT(ne2 == nea2);
  6907. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  6908. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  6909. GGML_ASSERT(nbb10 == sizeof(float));
  6910. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  6911. GGML_ASSERT(nbc10 == sizeof(float));
  6912. GGML_ASSERT(neb00 == D);
  6913. GGML_ASSERT(neb01 == M);
  6914. GGML_ASSERT(neb10 == M);
  6915. GGML_ASSERT(neb11 == 1);
  6916. GGML_ASSERT(nec00 == M);
  6917. GGML_ASSERT(nec01 == D);
  6918. GGML_ASSERT(nec10 == D);
  6919. GGML_ASSERT(nec11 == 1);
  6920. // dst cannot be transposed or permuted
  6921. GGML_ASSERT(nb0 == sizeof(float));
  6922. GGML_ASSERT(nb0 <= nb1);
  6923. GGML_ASSERT(nb1 <= nb2);
  6924. GGML_ASSERT(nb2 <= nb3);
  6925. if (params->type == GGML_TASK_INIT) {
  6926. return;
  6927. }
  6928. if (params->type == GGML_TASK_FINALIZE) {
  6929. return;
  6930. }
  6931. // parallelize by a rows using ggml_vec_dot_f32
  6932. // total rows in a
  6933. const int nr = nea1*nea2*nea3;
  6934. // rows per thread
  6935. const int dr = (nr + nth - 1)/nth;
  6936. // row range for this thread
  6937. const int ir0 = dr*ith;
  6938. const int ir1 = MIN(ir0 + dr, nr);
  6939. for (int ir = ir0; ir < ir1; ++ir) {
  6940. // a indices
  6941. const int ia3 = ir/(nea2*nea1);
  6942. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  6943. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  6944. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  6945. for (int64_t ic = 0; ic < neb01; ++ic) {
  6946. // b0 indices
  6947. const int ib03 = ia3;
  6948. const int ib02 = ia2;
  6949. const int ib01 = ic;
  6950. // S indices
  6951. const int i1 = ib01;
  6952. ggml_vec_dot_f16(nea0,
  6953. S + i1,
  6954. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  6955. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  6956. }
  6957. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  6958. //ggml_vec_gelu_f32(neb01, S, S);
  6959. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  6960. for (int64_t i = 0; i < M; i++) {
  6961. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6962. }
  6963. ggml_vec_gelu_f16(neb01, S16, S16);
  6964. {
  6965. // dst indices
  6966. const int i1 = ia1;
  6967. const int i2 = ia2;
  6968. const int i3 = ia3;
  6969. for (int64_t ic = 0; ic < nec01; ++ic) {
  6970. ggml_vec_dot_f16(neb01,
  6971. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6972. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  6973. S16);
  6974. }
  6975. ggml_vec_add_f32(nec01,
  6976. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6977. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6978. (float *) c1->data);
  6979. }
  6980. }
  6981. }
  6982. static void ggml_compute_forward_flash_ff(
  6983. const struct ggml_compute_params * params,
  6984. const struct ggml_tensor * a,
  6985. const struct ggml_tensor * b0,
  6986. const struct ggml_tensor * b1,
  6987. const struct ggml_tensor * c0,
  6988. const struct ggml_tensor * c1,
  6989. struct ggml_tensor * dst) {
  6990. switch (b0->type) {
  6991. case GGML_TYPE_F16:
  6992. {
  6993. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  6994. } break;
  6995. case GGML_TYPE_F32:
  6996. {
  6997. GGML_ASSERT(false); // TODO
  6998. } break;
  6999. case GGML_TYPE_Q4_0:
  7000. case GGML_TYPE_Q4_1:
  7001. case GGML_TYPE_I8:
  7002. case GGML_TYPE_I16:
  7003. case GGML_TYPE_I32:
  7004. case GGML_TYPE_COUNT:
  7005. {
  7006. GGML_ASSERT(false);
  7007. } break;
  7008. }
  7009. }
  7010. /////////////////////////////////
  7011. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  7012. GGML_ASSERT(params);
  7013. switch (tensor->op) {
  7014. case GGML_OP_DUP:
  7015. {
  7016. ggml_compute_forward_dup(params, tensor->src0, tensor);
  7017. } break;
  7018. case GGML_OP_ADD:
  7019. {
  7020. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  7021. } break;
  7022. case GGML_OP_SUB:
  7023. {
  7024. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  7025. } break;
  7026. case GGML_OP_MUL:
  7027. {
  7028. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  7029. } break;
  7030. case GGML_OP_DIV:
  7031. {
  7032. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  7033. } break;
  7034. case GGML_OP_SQR:
  7035. {
  7036. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  7037. } break;
  7038. case GGML_OP_SQRT:
  7039. {
  7040. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  7041. } break;
  7042. case GGML_OP_SUM:
  7043. {
  7044. ggml_compute_forward_sum(params, tensor->src0, tensor);
  7045. } break;
  7046. case GGML_OP_MEAN:
  7047. {
  7048. ggml_compute_forward_mean(params, tensor->src0, tensor);
  7049. } break;
  7050. case GGML_OP_REPEAT:
  7051. {
  7052. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  7053. } break;
  7054. case GGML_OP_ABS:
  7055. {
  7056. ggml_compute_forward_abs(params, tensor->src0, tensor);
  7057. } break;
  7058. case GGML_OP_SGN:
  7059. {
  7060. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  7061. } break;
  7062. case GGML_OP_NEG:
  7063. {
  7064. ggml_compute_forward_neg(params, tensor->src0, tensor);
  7065. } break;
  7066. case GGML_OP_STEP:
  7067. {
  7068. ggml_compute_forward_step(params, tensor->src0, tensor);
  7069. } break;
  7070. case GGML_OP_RELU:
  7071. {
  7072. ggml_compute_forward_relu(params, tensor->src0, tensor);
  7073. } break;
  7074. case GGML_OP_GELU:
  7075. {
  7076. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  7077. } break;
  7078. case GGML_OP_SILU:
  7079. {
  7080. ggml_compute_forward_silu(params, tensor->src0, tensor);
  7081. } break;
  7082. case GGML_OP_NORM:
  7083. {
  7084. ggml_compute_forward_norm(params, tensor->src0, tensor);
  7085. } break;
  7086. case GGML_OP_RMS_NORM:
  7087. {
  7088. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  7089. } break;
  7090. case GGML_OP_MUL_MAT:
  7091. {
  7092. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  7093. } break;
  7094. case GGML_OP_SCALE:
  7095. {
  7096. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  7097. } break;
  7098. case GGML_OP_CPY:
  7099. {
  7100. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  7101. } break;
  7102. case GGML_OP_RESHAPE:
  7103. {
  7104. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  7105. } break;
  7106. case GGML_OP_VIEW:
  7107. {
  7108. ggml_compute_forward_view(params, tensor->src0);
  7109. } break;
  7110. case GGML_OP_PERMUTE:
  7111. {
  7112. ggml_compute_forward_permute(params, tensor->src0);
  7113. } break;
  7114. case GGML_OP_TRANSPOSE:
  7115. {
  7116. ggml_compute_forward_transpose(params, tensor->src0);
  7117. } break;
  7118. case GGML_OP_GET_ROWS:
  7119. {
  7120. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  7121. } break;
  7122. case GGML_OP_DIAG_MASK_INF:
  7123. {
  7124. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  7125. } break;
  7126. case GGML_OP_SOFT_MAX:
  7127. {
  7128. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  7129. } break;
  7130. case GGML_OP_ROPE:
  7131. {
  7132. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  7133. } break;
  7134. case GGML_OP_CONV_1D_1S:
  7135. {
  7136. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  7137. } break;
  7138. case GGML_OP_CONV_1D_2S:
  7139. {
  7140. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  7141. } break;
  7142. case GGML_OP_FLASH_ATTN:
  7143. {
  7144. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  7145. GGML_ASSERT(t == 0 || t == 1);
  7146. bool masked = t != 0;
  7147. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  7148. } break;
  7149. case GGML_OP_FLASH_FF:
  7150. {
  7151. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  7152. } break;
  7153. case GGML_OP_NONE:
  7154. {
  7155. // nop
  7156. } break;
  7157. case GGML_OP_COUNT:
  7158. {
  7159. GGML_ASSERT(false);
  7160. } break;
  7161. }
  7162. }
  7163. ////////////////////////////////////////////////////////////////////////////////
  7164. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  7165. struct ggml_tensor * src0 = tensor->src0;
  7166. struct ggml_tensor * src1 = tensor->src1;
  7167. switch (tensor->op) {
  7168. case GGML_OP_DUP:
  7169. {
  7170. if (src0->grad) {
  7171. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7172. }
  7173. } break;
  7174. case GGML_OP_ADD:
  7175. {
  7176. if (src0->grad) {
  7177. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7178. }
  7179. if (src1->grad) {
  7180. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  7181. }
  7182. } break;
  7183. case GGML_OP_SUB:
  7184. {
  7185. if (src0->grad) {
  7186. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7187. }
  7188. if (src1->grad) {
  7189. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  7190. }
  7191. } break;
  7192. case GGML_OP_MUL:
  7193. {
  7194. if (src0->grad) {
  7195. src0->grad =
  7196. ggml_add_impl(ctx,
  7197. src0->grad,
  7198. ggml_mul(ctx, src1, tensor->grad),
  7199. inplace);
  7200. }
  7201. if (src1->grad) {
  7202. src1->grad =
  7203. ggml_add_impl(ctx,
  7204. src1->grad,
  7205. ggml_mul(ctx, src0, tensor->grad),
  7206. inplace);
  7207. }
  7208. } break;
  7209. case GGML_OP_DIV:
  7210. {
  7211. if (src0->grad) {
  7212. src0->grad =
  7213. ggml_add_impl(ctx,
  7214. src0->grad,
  7215. ggml_div(ctx, tensor->grad, src1),
  7216. inplace);
  7217. }
  7218. if (src1->grad) {
  7219. src1->grad =
  7220. ggml_sub_impl(ctx,
  7221. src1->grad,
  7222. ggml_mul(ctx,
  7223. tensor->grad,
  7224. ggml_div(ctx, tensor, src1)),
  7225. inplace);
  7226. }
  7227. } break;
  7228. case GGML_OP_SQR:
  7229. {
  7230. if (src0->grad) {
  7231. src0->grad =
  7232. ggml_add_impl(ctx,
  7233. src0->grad,
  7234. ggml_mul(ctx,
  7235. ggml_mul(ctx, src0, tensor->grad),
  7236. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  7237. inplace);
  7238. }
  7239. } break;
  7240. case GGML_OP_SQRT:
  7241. {
  7242. if (src0->grad) {
  7243. src0->grad =
  7244. ggml_add_impl(ctx,
  7245. src0->grad,
  7246. ggml_div(ctx,
  7247. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  7248. tensor),
  7249. inplace);
  7250. }
  7251. } break;
  7252. case GGML_OP_SUM:
  7253. {
  7254. if (src0->grad) {
  7255. src0->grad =
  7256. ggml_add_impl(ctx,
  7257. src0->grad,
  7258. ggml_repeat(ctx, tensor->grad, src0->grad),
  7259. inplace);
  7260. }
  7261. } break;
  7262. case GGML_OP_MEAN:
  7263. {
  7264. GGML_ASSERT(false); // TODO: implement
  7265. } break;
  7266. case GGML_OP_REPEAT:
  7267. {
  7268. if (src0->grad) {
  7269. src0->grad =
  7270. ggml_add_impl(ctx,
  7271. src0->grad,
  7272. ggml_sum(ctx, tensor->grad),
  7273. inplace);
  7274. }
  7275. } break;
  7276. case GGML_OP_ABS:
  7277. {
  7278. if (src0->grad) {
  7279. src0->grad =
  7280. ggml_add_impl(ctx,
  7281. src0->grad,
  7282. ggml_mul(ctx,
  7283. ggml_sgn(ctx, src0),
  7284. tensor->grad),
  7285. inplace);
  7286. }
  7287. } break;
  7288. case GGML_OP_SGN:
  7289. {
  7290. if (src0->grad) {
  7291. // noop
  7292. }
  7293. } break;
  7294. case GGML_OP_NEG:
  7295. {
  7296. if (src0->grad) {
  7297. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  7298. }
  7299. } break;
  7300. case GGML_OP_STEP:
  7301. {
  7302. if (src0->grad) {
  7303. // noop
  7304. }
  7305. } break;
  7306. case GGML_OP_RELU:
  7307. {
  7308. if (src0->grad) {
  7309. src0->grad = ggml_sub_impl(ctx,
  7310. src0->grad,
  7311. ggml_mul(ctx,
  7312. ggml_step(ctx, src0),
  7313. tensor->grad),
  7314. inplace);
  7315. }
  7316. } break;
  7317. case GGML_OP_GELU:
  7318. {
  7319. GGML_ASSERT(false); // TODO: not implemented
  7320. } break;
  7321. case GGML_OP_SILU:
  7322. {
  7323. GGML_ASSERT(false); // TODO: not implemented
  7324. } break;
  7325. case GGML_OP_NORM:
  7326. {
  7327. GGML_ASSERT(false); // TODO: not implemented
  7328. } break;
  7329. case GGML_OP_RMS_NORM:
  7330. {
  7331. GGML_ASSERT(false); // TODO: not implemented
  7332. } break;
  7333. case GGML_OP_MUL_MAT:
  7334. {
  7335. if (src0->grad) {
  7336. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7337. GGML_ASSERT(false);
  7338. }
  7339. if (src1->grad) {
  7340. src1->grad =
  7341. ggml_add_impl(ctx,
  7342. src1->grad,
  7343. // TODO: fix transpose, the node will break the graph connections
  7344. ggml_mul_mat(ctx, ggml_transpose(ctx, src0), tensor->grad),
  7345. inplace);
  7346. }
  7347. } break;
  7348. case GGML_OP_SCALE:
  7349. {
  7350. GGML_ASSERT(false); // TODO: not implemented
  7351. } break;
  7352. case GGML_OP_CPY:
  7353. {
  7354. GGML_ASSERT(false); // TODO: not implemented
  7355. } break;
  7356. case GGML_OP_RESHAPE:
  7357. {
  7358. GGML_ASSERT(false); // TODO: not implemented
  7359. } break;
  7360. case GGML_OP_VIEW:
  7361. {
  7362. GGML_ASSERT(false); // not supported
  7363. } break;
  7364. case GGML_OP_PERMUTE:
  7365. {
  7366. GGML_ASSERT(false); // TODO: not implemented
  7367. } break;
  7368. case GGML_OP_TRANSPOSE:
  7369. {
  7370. GGML_ASSERT(false); // TODO: not implemented
  7371. } break;
  7372. case GGML_OP_GET_ROWS:
  7373. {
  7374. GGML_ASSERT(false); // TODO: not implemented
  7375. } break;
  7376. case GGML_OP_DIAG_MASK_INF:
  7377. {
  7378. GGML_ASSERT(false); // TODO: not implemented
  7379. } break;
  7380. case GGML_OP_SOFT_MAX:
  7381. {
  7382. GGML_ASSERT(false); // TODO: not implemented
  7383. } break;
  7384. case GGML_OP_ROPE:
  7385. {
  7386. GGML_ASSERT(false); // TODO: not implemented
  7387. } break;
  7388. case GGML_OP_CONV_1D_1S:
  7389. {
  7390. GGML_ASSERT(false); // TODO: not implemented
  7391. } break;
  7392. case GGML_OP_CONV_1D_2S:
  7393. {
  7394. GGML_ASSERT(false); // TODO: not implemented
  7395. } break;
  7396. case GGML_OP_FLASH_ATTN:
  7397. {
  7398. GGML_ASSERT(false); // not supported
  7399. } break;
  7400. case GGML_OP_FLASH_FF:
  7401. {
  7402. GGML_ASSERT(false); // not supported
  7403. } break;
  7404. case GGML_OP_NONE:
  7405. {
  7406. // nop
  7407. } break;
  7408. case GGML_OP_COUNT:
  7409. {
  7410. GGML_ASSERT(false);
  7411. } break;
  7412. }
  7413. }
  7414. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7415. if (node->grad == NULL) {
  7416. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7417. // it can also happen during forward pass, if the user performs computations with constants
  7418. if (node->op != GGML_OP_NONE) {
  7419. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7420. }
  7421. }
  7422. // check if already visited
  7423. for (int i = 0; i < cgraph->n_nodes; i++) {
  7424. if (cgraph->nodes[i] == node) {
  7425. return;
  7426. }
  7427. }
  7428. for (int i = 0; i < cgraph->n_leafs; i++) {
  7429. if (cgraph->leafs[i] == node) {
  7430. return;
  7431. }
  7432. }
  7433. if (node->src0) {
  7434. ggml_visit_parents(cgraph, node->src0);
  7435. }
  7436. if (node->src1) {
  7437. ggml_visit_parents(cgraph, node->src1);
  7438. }
  7439. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7440. if (node->opt[i]) {
  7441. ggml_visit_parents(cgraph, node->opt[i]);
  7442. }
  7443. }
  7444. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7445. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7446. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7447. cgraph->leafs[cgraph->n_leafs] = node;
  7448. cgraph->n_leafs++;
  7449. } else {
  7450. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7451. cgraph->nodes[cgraph->n_nodes] = node;
  7452. cgraph->grads[cgraph->n_nodes] = node->grad;
  7453. cgraph->n_nodes++;
  7454. }
  7455. }
  7456. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7457. if (!expand) {
  7458. cgraph->n_nodes = 0;
  7459. cgraph->n_leafs = 0;
  7460. }
  7461. const int n0 = cgraph->n_nodes;
  7462. UNUSED(n0);
  7463. ggml_visit_parents(cgraph, tensor);
  7464. const int n_new = cgraph->n_nodes - n0;
  7465. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7466. if (n_new > 0) {
  7467. // the last added node should always be starting point
  7468. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7469. }
  7470. }
  7471. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7472. ggml_build_forward_impl(cgraph, tensor, true);
  7473. }
  7474. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7475. struct ggml_cgraph result = {
  7476. /*.n_nodes =*/ 0,
  7477. /*.n_leafs =*/ 0,
  7478. /*.n_threads =*/ 0,
  7479. /*.work_size =*/ 0,
  7480. /*.work =*/ NULL,
  7481. /*.nodes =*/ { NULL },
  7482. /*.grads =*/ { NULL },
  7483. /*.leafs =*/ { NULL },
  7484. /*.perf_runs =*/ 0,
  7485. /*.perf_cycles =*/ 0,
  7486. /*.perf_time_us =*/ 0,
  7487. };
  7488. ggml_build_forward_impl(&result, tensor, false);
  7489. return result;
  7490. }
  7491. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7492. struct ggml_cgraph result = *gf;
  7493. GGML_ASSERT(gf->n_nodes > 0);
  7494. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7495. if (keep) {
  7496. for (int i = 0; i < gf->n_nodes; i++) {
  7497. struct ggml_tensor * node = gf->nodes[i];
  7498. if (node->grad) {
  7499. node->grad = ggml_dup_tensor(ctx, node);
  7500. gf->grads[i] = node->grad;
  7501. }
  7502. }
  7503. }
  7504. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7505. struct ggml_tensor * node = gf->nodes[i];
  7506. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7507. if (node->grad) {
  7508. ggml_compute_backward(ctx, node, keep);
  7509. }
  7510. }
  7511. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7512. struct ggml_tensor * node = gf->nodes[i];
  7513. if (node->is_param) {
  7514. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7515. ggml_build_forward_impl(&result, node->grad, true);
  7516. }
  7517. }
  7518. return result;
  7519. }
  7520. //
  7521. // thread data
  7522. //
  7523. // synchronization is done via busy loops
  7524. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  7525. //
  7526. #ifdef __APPLE__
  7527. //#include <os/lock.h>
  7528. //
  7529. //typedef os_unfair_lock ggml_lock_t;
  7530. //
  7531. //#define ggml_lock_init(x) UNUSED(x)
  7532. //#define ggml_lock_destroy(x) UNUSED(x)
  7533. //#define ggml_lock_lock os_unfair_lock_lock
  7534. //#define ggml_lock_unlock os_unfair_lock_unlock
  7535. //
  7536. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  7537. typedef int ggml_lock_t;
  7538. #define ggml_lock_init(x) UNUSED(x)
  7539. #define ggml_lock_destroy(x) UNUSED(x)
  7540. #define ggml_lock_lock(x) UNUSED(x)
  7541. #define ggml_lock_unlock(x) UNUSED(x)
  7542. #define GGML_LOCK_INITIALIZER 0
  7543. typedef pthread_t ggml_thread_t;
  7544. #define ggml_thread_create pthread_create
  7545. #define ggml_thread_join pthread_join
  7546. #else
  7547. //typedef pthread_spinlock_t ggml_lock_t;
  7548. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  7549. //#define ggml_lock_destroy pthread_spin_destroy
  7550. //#define ggml_lock_lock pthread_spin_lock
  7551. //#define ggml_lock_unlock pthread_spin_unlock
  7552. typedef int ggml_lock_t;
  7553. #define ggml_lock_init(x) UNUSED(x)
  7554. #define ggml_lock_destroy(x) UNUSED(x)
  7555. #define ggml_lock_lock(x) UNUSED(x)
  7556. #define ggml_lock_unlock(x) UNUSED(x)
  7557. #define GGML_LOCK_INITIALIZER 0
  7558. typedef pthread_t ggml_thread_t;
  7559. #define ggml_thread_create pthread_create
  7560. #define ggml_thread_join pthread_join
  7561. #endif
  7562. struct ggml_compute_state_shared {
  7563. ggml_lock_t spin;
  7564. int n_threads;
  7565. // synchronization primitives
  7566. atomic_int n_ready;
  7567. atomic_bool has_work;
  7568. atomic_bool stop; // stop all threads
  7569. };
  7570. struct ggml_compute_state {
  7571. ggml_thread_t thrd;
  7572. struct ggml_compute_params params;
  7573. struct ggml_tensor * node;
  7574. struct ggml_compute_state_shared * shared;
  7575. };
  7576. static thread_ret_t ggml_graph_compute_thread(void * data) {
  7577. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  7578. const int n_threads = state->shared->n_threads;
  7579. while (true) {
  7580. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  7581. atomic_store(&state->shared->has_work, false);
  7582. } else {
  7583. while (atomic_load(&state->shared->has_work)) {
  7584. if (atomic_load(&state->shared->stop)) {
  7585. return 0;
  7586. }
  7587. ggml_lock_lock (&state->shared->spin);
  7588. ggml_lock_unlock(&state->shared->spin);
  7589. }
  7590. }
  7591. atomic_fetch_sub(&state->shared->n_ready, 1);
  7592. // wait for work
  7593. while (!atomic_load(&state->shared->has_work)) {
  7594. if (atomic_load(&state->shared->stop)) {
  7595. return 0;
  7596. }
  7597. ggml_lock_lock (&state->shared->spin);
  7598. ggml_lock_unlock(&state->shared->spin);
  7599. }
  7600. // check if we should stop
  7601. if (atomic_load(&state->shared->stop)) {
  7602. break;
  7603. }
  7604. if (state->node) {
  7605. if (state->params.ith < state->params.nth) {
  7606. ggml_compute_forward(&state->params, state->node);
  7607. }
  7608. state->node = NULL;
  7609. } else {
  7610. break;
  7611. }
  7612. }
  7613. return 0;
  7614. }
  7615. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  7616. const int n_threads = cgraph->n_threads;
  7617. struct ggml_compute_state_shared state_shared = {
  7618. /*.spin =*/ GGML_LOCK_INITIALIZER,
  7619. /*.n_threads =*/ n_threads,
  7620. /*.n_ready =*/ 0,
  7621. /*.has_work =*/ false,
  7622. /*.stop =*/ false,
  7623. };
  7624. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  7625. // create thread pool
  7626. if (n_threads > 1) {
  7627. ggml_lock_init(&state_shared.spin);
  7628. atomic_store(&state_shared.has_work, true);
  7629. for (int j = 0; j < n_threads - 1; j++) {
  7630. workers[j] = (struct ggml_compute_state) {
  7631. .thrd = 0,
  7632. .params = {
  7633. .type = GGML_TASK_COMPUTE,
  7634. .ith = j + 1,
  7635. .nth = n_threads,
  7636. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7637. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7638. },
  7639. .node = NULL,
  7640. .shared = &state_shared,
  7641. };
  7642. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  7643. GGML_ASSERT(rc == 0);
  7644. UNUSED(rc);
  7645. }
  7646. }
  7647. // initialize tasks + work buffer
  7648. {
  7649. size_t work_size = 0;
  7650. // thread scheduling for the different operations
  7651. for (int i = 0; i < cgraph->n_nodes; i++) {
  7652. struct ggml_tensor * node = cgraph->nodes[i];
  7653. switch (node->op) {
  7654. case GGML_OP_DUP:
  7655. {
  7656. node->n_tasks = 1;
  7657. } break;
  7658. case GGML_OP_ADD:
  7659. {
  7660. node->n_tasks = n_threads;
  7661. } break;
  7662. case GGML_OP_SUB:
  7663. case GGML_OP_MUL:
  7664. case GGML_OP_DIV:
  7665. case GGML_OP_SQR:
  7666. case GGML_OP_SQRT:
  7667. case GGML_OP_SUM:
  7668. case GGML_OP_MEAN:
  7669. case GGML_OP_REPEAT:
  7670. case GGML_OP_ABS:
  7671. case GGML_OP_SGN:
  7672. case GGML_OP_NEG:
  7673. case GGML_OP_STEP:
  7674. case GGML_OP_RELU:
  7675. {
  7676. node->n_tasks = 1;
  7677. } break;
  7678. case GGML_OP_GELU:
  7679. {
  7680. node->n_tasks = n_threads;
  7681. } break;
  7682. case GGML_OP_SILU:
  7683. {
  7684. node->n_tasks = n_threads;
  7685. } break;
  7686. case GGML_OP_NORM:
  7687. case GGML_OP_RMS_NORM:
  7688. {
  7689. node->n_tasks = n_threads;
  7690. } break;
  7691. case GGML_OP_MUL_MAT:
  7692. {
  7693. node->n_tasks = n_threads;
  7694. // TODO: use different scheduling for different matrix sizes
  7695. //const int nr0 = ggml_nrows(node->src0);
  7696. //const int nr1 = ggml_nrows(node->src1);
  7697. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  7698. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  7699. size_t cur = 0;
  7700. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  7701. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7702. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7703. node->n_tasks = 1; // TODO: this actually is doing nothing
  7704. // the threads are still spinning
  7705. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7706. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  7707. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  7708. //printf("cur = %zu\n", cur);
  7709. } else {
  7710. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7711. }
  7712. #else
  7713. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7714. #endif
  7715. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  7716. cur = 0;
  7717. } else if (quantize_fns[node->src0->type].vec_dot_q && node->src1->type == GGML_TYPE_F32) {
  7718. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7719. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7720. node->n_tasks = 1;
  7721. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7722. } else
  7723. #endif
  7724. {
  7725. cur = GGML_TYPE_SIZE[node->src0->type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[node->src0->type];
  7726. }
  7727. } else {
  7728. GGML_ASSERT(false);
  7729. }
  7730. work_size = MAX(work_size, cur);
  7731. } break;
  7732. case GGML_OP_SCALE:
  7733. {
  7734. node->n_tasks = n_threads;
  7735. } break;
  7736. case GGML_OP_CPY:
  7737. case GGML_OP_RESHAPE:
  7738. case GGML_OP_VIEW:
  7739. case GGML_OP_PERMUTE:
  7740. case GGML_OP_TRANSPOSE:
  7741. case GGML_OP_GET_ROWS:
  7742. case GGML_OP_DIAG_MASK_INF:
  7743. {
  7744. node->n_tasks = 1;
  7745. } break;
  7746. case GGML_OP_SOFT_MAX:
  7747. {
  7748. node->n_tasks = n_threads;
  7749. } break;
  7750. case GGML_OP_ROPE:
  7751. {
  7752. node->n_tasks = n_threads;
  7753. } break;
  7754. case GGML_OP_CONV_1D_1S:
  7755. case GGML_OP_CONV_1D_2S:
  7756. {
  7757. node->n_tasks = n_threads;
  7758. GGML_ASSERT(node->src0->ne[3] == 1);
  7759. GGML_ASSERT(node->src1->ne[2] == 1);
  7760. GGML_ASSERT(node->src1->ne[3] == 1);
  7761. size_t cur = 0;
  7762. const int nk = node->src0->ne[0];
  7763. if (node->src0->type == GGML_TYPE_F16 &&
  7764. node->src1->type == GGML_TYPE_F32) {
  7765. cur = sizeof(ggml_fp16_t)*(
  7766. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7767. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7768. );
  7769. } else if (node->src0->type == GGML_TYPE_F32 &&
  7770. node->src1->type == GGML_TYPE_F32) {
  7771. cur = sizeof(float)*(
  7772. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7773. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7774. );
  7775. } else {
  7776. GGML_ASSERT(false);
  7777. }
  7778. work_size = MAX(work_size, cur);
  7779. } break;
  7780. case GGML_OP_FLASH_ATTN:
  7781. {
  7782. node->n_tasks = n_threads;
  7783. size_t cur = 0;
  7784. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  7785. if (node->src1->type == GGML_TYPE_F32) {
  7786. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7787. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7788. }
  7789. if (node->src1->type == GGML_TYPE_F16) {
  7790. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7791. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7792. }
  7793. work_size = MAX(work_size, cur);
  7794. } break;
  7795. case GGML_OP_FLASH_FF:
  7796. {
  7797. node->n_tasks = n_threads;
  7798. size_t cur = 0;
  7799. if (node->src1->type == GGML_TYPE_F32) {
  7800. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7801. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7802. }
  7803. if (node->src1->type == GGML_TYPE_F16) {
  7804. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7805. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7806. }
  7807. work_size = MAX(work_size, cur);
  7808. } break;
  7809. case GGML_OP_NONE:
  7810. {
  7811. node->n_tasks = 1;
  7812. } break;
  7813. case GGML_OP_COUNT:
  7814. {
  7815. GGML_ASSERT(false);
  7816. } break;
  7817. }
  7818. }
  7819. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  7820. GGML_ASSERT(false); // TODO: better handling
  7821. }
  7822. if (work_size > 0 && cgraph->work == NULL) {
  7823. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  7824. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  7825. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  7826. }
  7827. }
  7828. const int64_t perf_start_cycles = ggml_perf_cycles();
  7829. const int64_t perf_start_time_us = ggml_perf_time_us();
  7830. for (int i = 0; i < cgraph->n_nodes; i++) {
  7831. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  7832. struct ggml_tensor * node = cgraph->nodes[i];
  7833. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  7834. //if (node->grad == NULL && node->perf_runs > 0) {
  7835. // continue;
  7836. //}
  7837. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  7838. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  7839. // INIT
  7840. struct ggml_compute_params params = {
  7841. /*.type =*/ GGML_TASK_INIT,
  7842. /*.ith =*/ 0,
  7843. /*.nth =*/ node->n_tasks,
  7844. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7845. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  7846. };
  7847. ggml_compute_forward(&params, node);
  7848. // COMPUTE
  7849. if (node->n_tasks > 1) {
  7850. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7851. atomic_store(&state_shared.has_work, false);
  7852. }
  7853. while (atomic_load(&state_shared.has_work)) {
  7854. ggml_lock_lock (&state_shared.spin);
  7855. ggml_lock_unlock(&state_shared.spin);
  7856. }
  7857. // launch thread pool
  7858. for (int j = 0; j < n_threads - 1; j++) {
  7859. workers[j].params = (struct ggml_compute_params) {
  7860. .type = GGML_TASK_COMPUTE,
  7861. .ith = j + 1,
  7862. .nth = node->n_tasks,
  7863. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7864. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7865. };
  7866. workers[j].node = node;
  7867. }
  7868. atomic_fetch_sub(&state_shared.n_ready, 1);
  7869. while (atomic_load(&state_shared.n_ready) > 0) {
  7870. ggml_lock_lock (&state_shared.spin);
  7871. ggml_lock_unlock(&state_shared.spin);
  7872. }
  7873. atomic_store(&state_shared.has_work, true);
  7874. }
  7875. params.type = GGML_TASK_COMPUTE;
  7876. ggml_compute_forward(&params, node);
  7877. // wait for thread pool
  7878. if (node->n_tasks > 1) {
  7879. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7880. atomic_store(&state_shared.has_work, false);
  7881. }
  7882. while (atomic_load(&state_shared.has_work)) {
  7883. ggml_lock_lock (&state_shared.spin);
  7884. ggml_lock_unlock(&state_shared.spin);
  7885. }
  7886. atomic_fetch_sub(&state_shared.n_ready, 1);
  7887. while (atomic_load(&state_shared.n_ready) != 0) {
  7888. ggml_lock_lock (&state_shared.spin);
  7889. ggml_lock_unlock(&state_shared.spin);
  7890. }
  7891. }
  7892. // FINALIZE
  7893. if (node->n_tasks > 1) {
  7894. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7895. atomic_store(&state_shared.has_work, false);
  7896. }
  7897. while (atomic_load(&state_shared.has_work)) {
  7898. ggml_lock_lock (&state_shared.spin);
  7899. ggml_lock_unlock(&state_shared.spin);
  7900. }
  7901. // launch thread pool
  7902. for (int j = 0; j < n_threads - 1; j++) {
  7903. workers[j].params = (struct ggml_compute_params) {
  7904. .type = GGML_TASK_FINALIZE,
  7905. .ith = j + 1,
  7906. .nth = node->n_tasks,
  7907. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7908. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7909. };
  7910. workers[j].node = node;
  7911. }
  7912. atomic_fetch_sub(&state_shared.n_ready, 1);
  7913. while (atomic_load(&state_shared.n_ready) > 0) {
  7914. ggml_lock_lock (&state_shared.spin);
  7915. ggml_lock_unlock(&state_shared.spin);
  7916. }
  7917. atomic_store(&state_shared.has_work, true);
  7918. }
  7919. params.type = GGML_TASK_FINALIZE;
  7920. ggml_compute_forward(&params, node);
  7921. // wait for thread pool
  7922. if (node->n_tasks > 1) {
  7923. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7924. atomic_store(&state_shared.has_work, false);
  7925. }
  7926. while (atomic_load(&state_shared.has_work)) {
  7927. ggml_lock_lock (&state_shared.spin);
  7928. ggml_lock_unlock(&state_shared.spin);
  7929. }
  7930. atomic_fetch_sub(&state_shared.n_ready, 1);
  7931. while (atomic_load(&state_shared.n_ready) != 0) {
  7932. ggml_lock_lock (&state_shared.spin);
  7933. ggml_lock_unlock(&state_shared.spin);
  7934. }
  7935. }
  7936. // performance stats (node)
  7937. {
  7938. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  7939. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  7940. node->perf_runs++;
  7941. node->perf_cycles += perf_cycles_cur;
  7942. node->perf_time_us += perf_time_us_cur;
  7943. }
  7944. }
  7945. // join thread pool
  7946. if (n_threads > 1) {
  7947. atomic_store(&state_shared.stop, true);
  7948. atomic_store(&state_shared.has_work, true);
  7949. for (int j = 0; j < n_threads - 1; j++) {
  7950. int rc = ggml_thread_join(workers[j].thrd, NULL);
  7951. GGML_ASSERT(rc == 0);
  7952. UNUSED(rc);
  7953. }
  7954. ggml_lock_destroy(&state_shared.spin);
  7955. }
  7956. // performance stats (graph)
  7957. {
  7958. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  7959. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  7960. cgraph->perf_runs++;
  7961. cgraph->perf_cycles += perf_cycles_cur;
  7962. cgraph->perf_time_us += perf_time_us_cur;
  7963. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  7964. __func__, cgraph->perf_runs,
  7965. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  7966. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  7967. (double) perf_time_us_cur / 1000.0,
  7968. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  7969. }
  7970. }
  7971. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  7972. for (int i = 0; i < cgraph->n_nodes; i++) {
  7973. struct ggml_tensor * grad = cgraph->grads[i];
  7974. if (grad) {
  7975. ggml_set_zero(grad);
  7976. }
  7977. }
  7978. }
  7979. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  7980. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  7981. GGML_PRINT("=== GRAPH ===\n");
  7982. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  7983. GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size);
  7984. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  7985. for (int i = 0; i < cgraph->n_nodes; i++) {
  7986. struct ggml_tensor * node = cgraph->nodes[i];
  7987. perf_total_per_op_us[node->op] += node->perf_time_us;
  7988. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 ", %" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  7989. i,
  7990. node->ne[0], node->ne[1], node->ne[2],
  7991. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  7992. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  7993. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  7994. (double) node->perf_time_us / 1000.0,
  7995. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  7996. }
  7997. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  7998. for (int i = 0; i < cgraph->n_leafs; i++) {
  7999. struct ggml_tensor * node = cgraph->leafs[i];
  8000. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 "] %8s\n",
  8001. i,
  8002. node->ne[0], node->ne[1],
  8003. GGML_OP_LABEL[node->op]);
  8004. }
  8005. for (int i = 0; i < GGML_OP_COUNT; i++) {
  8006. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  8007. }
  8008. GGML_PRINT("========================================\n");
  8009. }
  8010. // check if node is part of the graph
  8011. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8012. if (cgraph == NULL) {
  8013. return true;
  8014. }
  8015. for (int i = 0; i < cgraph->n_nodes; i++) {
  8016. if (cgraph->nodes[i] == node) {
  8017. return true;
  8018. }
  8019. }
  8020. return false;
  8021. }
  8022. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8023. for (int i = 0; i < cgraph->n_nodes; i++) {
  8024. struct ggml_tensor * parent = cgraph->nodes[i];
  8025. if (parent->grad == node) {
  8026. return parent;
  8027. }
  8028. }
  8029. return NULL;
  8030. }
  8031. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  8032. char color[16];
  8033. FILE * fp = fopen(filename, "w");
  8034. GGML_ASSERT(fp);
  8035. fprintf(fp, "digraph G {\n");
  8036. fprintf(fp, " newrank = true;\n");
  8037. fprintf(fp, " rankdir = LR;\n");
  8038. for (int i = 0; i < gb->n_nodes; i++) {
  8039. struct ggml_tensor * node = gb->nodes[i];
  8040. if (ggml_graph_get_parent(gb, node) != NULL) {
  8041. continue;
  8042. }
  8043. if (node->is_param) {
  8044. snprintf(color, sizeof(color), "yellow");
  8045. } else if (node->grad) {
  8046. if (ggml_graph_find(gf, node)) {
  8047. snprintf(color, sizeof(color), "green");
  8048. } else {
  8049. snprintf(color, sizeof(color), "lightblue");
  8050. }
  8051. } else {
  8052. snprintf(color, sizeof(color), "white");
  8053. }
  8054. fprintf(fp, " \"%p\" [ \
  8055. style = filled; fillcolor = %s; shape = record; \
  8056. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  8057. (void *) node, color,
  8058. i, node->ne[0], node->ne[1],
  8059. GGML_OP_SYMBOL[node->op]);
  8060. if (node->grad) {
  8061. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  8062. } else {
  8063. fprintf(fp, "\"; ]\n");
  8064. }
  8065. }
  8066. for (int i = 0; i < gb->n_leafs; i++) {
  8067. struct ggml_tensor * node = gb->leafs[i];
  8068. snprintf(color, sizeof(color), "pink");
  8069. if (ggml_nelements(node) == 1) {
  8070. fprintf(fp, " \"%p\" [ \
  8071. style = filled; fillcolor = %s; shape = record; \
  8072. label=\"<x>%.1e\"; ]\n",
  8073. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  8074. } else {
  8075. fprintf(fp, " \"%p\" [ \
  8076. style = filled; fillcolor = %s; shape = record; \
  8077. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  8078. (void *) node, color,
  8079. i, node->ne[0], node->ne[1]);
  8080. }
  8081. }
  8082. for (int i = 0; i < gb->n_nodes; i++) {
  8083. struct ggml_tensor * node = gb->nodes[i];
  8084. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  8085. if (node->src0) {
  8086. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  8087. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  8088. parent0 ? (void *) parent0 : (void *) node->src0,
  8089. parent0 ? "g" : "x",
  8090. parent ? (void *) parent : (void *) node,
  8091. parent ? "g" : "x",
  8092. parent ? "empty" : "vee",
  8093. parent ? "dashed" : "solid");
  8094. }
  8095. if (node->src1) {
  8096. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  8097. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  8098. parent1 ? (void *) parent1 : (void *) node->src1,
  8099. parent1 ? "g" : "x",
  8100. parent ? (void *) parent : (void *) node,
  8101. parent ? "g" : "x",
  8102. parent ? "empty" : "vee",
  8103. parent ? "dashed" : "solid");
  8104. }
  8105. }
  8106. for (int i = 0; i < gb->n_leafs; i++) {
  8107. struct ggml_tensor * node = gb->leafs[i];
  8108. if (node->src0) {
  8109. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  8110. (void *) node->src0, "x",
  8111. (void *) node, "x");
  8112. }
  8113. if (node->src1) {
  8114. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  8115. (void *) node->src1, "x",
  8116. (void *) node, "x");
  8117. }
  8118. }
  8119. fprintf(fp, "}\n");
  8120. fclose(fp);
  8121. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  8122. }
  8123. ////////////////////////////////////////////////////////////////////////////////
  8124. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  8125. int i = 0;
  8126. for (int p = 0; p < np; ++p) {
  8127. const int64_t ne = ggml_nelements(ps[p]) ;
  8128. // TODO: add function to set tensor from array
  8129. for (int64_t j = 0; j < ne; ++j) {
  8130. ggml_set_f32_1d(ps[p], j, x[i++]);
  8131. }
  8132. }
  8133. }
  8134. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  8135. int i = 0;
  8136. for (int p = 0; p < np; ++p) {
  8137. const int64_t ne = ggml_nelements(ps[p]) ;
  8138. // TODO: add function to get all elements at once
  8139. for (int64_t j = 0; j < ne; ++j) {
  8140. x[i++] = ggml_get_f32_1d(ps[p], j);
  8141. }
  8142. }
  8143. }
  8144. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  8145. int i = 0;
  8146. for (int p = 0; p < np; ++p) {
  8147. const int64_t ne = ggml_nelements(ps[p]) ;
  8148. // TODO: add function to get all elements at once
  8149. for (int64_t j = 0; j < ne; ++j) {
  8150. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  8151. }
  8152. }
  8153. }
  8154. //
  8155. // ADAM
  8156. //
  8157. // ref: https://arxiv.org/pdf/1412.6980.pdf
  8158. //
  8159. static enum ggml_opt_result ggml_opt_adam(
  8160. struct ggml_context * ctx,
  8161. struct ggml_opt_params params,
  8162. struct ggml_tensor * f,
  8163. struct ggml_cgraph * gf,
  8164. struct ggml_cgraph * gb) {
  8165. GGML_ASSERT(ggml_is_scalar(f));
  8166. gf->n_threads = params.n_threads;
  8167. gb->n_threads = params.n_threads;
  8168. // these will store the parameters we want to optimize
  8169. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8170. int np = 0;
  8171. int nx = 0;
  8172. for (int i = 0; i < gf->n_nodes; ++i) {
  8173. if (gf->nodes[i]->is_param) {
  8174. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8175. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8176. ps[np++] = gf->nodes[i];
  8177. nx += ggml_nelements(gf->nodes[i]);
  8178. }
  8179. }
  8180. // constants
  8181. const float alpha = params.adam.alpha;
  8182. const float beta1 = params.adam.beta1;
  8183. const float beta2 = params.adam.beta2;
  8184. const float eps = params.adam.eps;
  8185. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  8186. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  8187. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  8188. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  8189. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  8190. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  8191. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  8192. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8193. // initialize
  8194. ggml_vec_set_f32(nx, m, 0.0f);
  8195. ggml_vec_set_f32(nx, v, 0.0f);
  8196. // update view
  8197. ggml_opt_get_params(np, ps, x);
  8198. // compute the function value
  8199. ggml_graph_reset (gf);
  8200. ggml_set_f32 (f->grad, 1.0f);
  8201. ggml_graph_compute(ctx, gb);
  8202. float fx_prev = ggml_get_f32_1d(f, 0);
  8203. if (pf) {
  8204. pf[0] = fx_prev;
  8205. }
  8206. int n_no_improvement = 0;
  8207. float fx_best = fx_prev;
  8208. // run the optimizer
  8209. for (int t = 0; t < params.adam.n_iter; ++t) {
  8210. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  8211. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8212. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  8213. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  8214. for (int i = 0; i < np; ++i) {
  8215. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  8216. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  8217. }
  8218. const int64_t t_start_wall = ggml_time_us();
  8219. const int64_t t_start_cpu = ggml_cycles();
  8220. UNUSED(t_start_wall);
  8221. UNUSED(t_start_cpu);
  8222. {
  8223. // update the gradient
  8224. ggml_opt_get_grad(np, ps, g1);
  8225. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  8226. ggml_vec_scale_f32(nx, m, beta1);
  8227. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  8228. // g2 = g1^2
  8229. ggml_vec_sqr_f32 (nx, g2, g1);
  8230. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  8231. ggml_vec_scale_f32(nx, v, beta2);
  8232. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  8233. // m^hat = m_t / (1 - beta1^t)
  8234. // v^hat = v_t / (1 - beta2^t)
  8235. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  8236. ggml_vec_cpy_f32 (nx, mh, m);
  8237. ggml_vec_cpy_f32 (nx, vh, v);
  8238. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  8239. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  8240. ggml_vec_sqrt_f32 (nx, vh, vh);
  8241. ggml_vec_acc1_f32 (nx, vh, eps);
  8242. ggml_vec_div_f32 (nx, mh, mh, vh);
  8243. ggml_vec_sub_f32 (nx, x, x, mh);
  8244. // update the parameters
  8245. ggml_opt_set_params(np, ps, x);
  8246. }
  8247. ggml_graph_reset (gf);
  8248. ggml_set_f32 (f->grad, 1.0f);
  8249. ggml_graph_compute(ctx, gb);
  8250. const float fx = ggml_get_f32_1d(f, 0);
  8251. // check convergence
  8252. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  8253. GGML_PRINT_DEBUG("converged\n");
  8254. return GGML_OPT_OK;
  8255. }
  8256. // delta-based convergence test
  8257. if (pf != NULL) {
  8258. // need at least params.past iterations to start checking for convergence
  8259. if (params.past <= t) {
  8260. const float rate = (pf[t%params.past] - fx)/fx;
  8261. if (fabsf(rate) < params.delta) {
  8262. return GGML_OPT_OK;
  8263. }
  8264. }
  8265. pf[t%params.past] = fx;
  8266. }
  8267. // check for improvement
  8268. if (params.max_no_improvement > 0) {
  8269. if (fx_best > fx) {
  8270. fx_best = fx;
  8271. n_no_improvement = 0;
  8272. } else {
  8273. ++n_no_improvement;
  8274. if (n_no_improvement >= params.max_no_improvement) {
  8275. return GGML_OPT_OK;
  8276. }
  8277. }
  8278. }
  8279. fx_prev = fx;
  8280. {
  8281. const int64_t t_end_cpu = ggml_cycles();
  8282. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  8283. UNUSED(t_end_cpu);
  8284. const int64_t t_end_wall = ggml_time_us();
  8285. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  8286. UNUSED(t_end_wall);
  8287. }
  8288. }
  8289. return GGML_OPT_DID_NOT_CONVERGE;
  8290. }
  8291. //
  8292. // L-BFGS
  8293. //
  8294. // the L-BFGS implementation below is based on the following implementation:
  8295. //
  8296. // https://github.com/chokkan/liblbfgs
  8297. //
  8298. struct ggml_lbfgs_iteration_data {
  8299. float alpha;
  8300. float ys;
  8301. float * s;
  8302. float * y;
  8303. };
  8304. static enum ggml_opt_result linesearch_backtracking(
  8305. struct ggml_context * ctx,
  8306. const struct ggml_opt_params * params,
  8307. int nx,
  8308. float * x,
  8309. float * fx,
  8310. float * g,
  8311. float * d,
  8312. float * step,
  8313. const float * xp,
  8314. struct ggml_tensor * f,
  8315. struct ggml_cgraph * gf,
  8316. struct ggml_cgraph * gb,
  8317. const int np,
  8318. struct ggml_tensor * ps[]) {
  8319. int count = 0;
  8320. float width = 0.0f;
  8321. float dg = 0.0f;
  8322. float finit = 0.0f;
  8323. float dginit = 0.0f;
  8324. float dgtest = 0.0f;
  8325. const float dec = 0.5f;
  8326. const float inc = 2.1f;
  8327. if (*step <= 0.f) {
  8328. return GGML_LINESEARCH_INVALID_PARAMETERS;
  8329. }
  8330. // compute the initial gradient in the search direction
  8331. ggml_vec_dot_f32(nx, &dginit, g, d);
  8332. // make sure that d points to a descent direction
  8333. if (0 < dginit) {
  8334. return GGML_LINESEARCH_FAIL;
  8335. }
  8336. // initialize local variables
  8337. finit = *fx;
  8338. dgtest = params->lbfgs.ftol*dginit;
  8339. while (true) {
  8340. ggml_vec_cpy_f32(nx, x, xp);
  8341. ggml_vec_mad_f32(nx, x, d, *step);
  8342. // evaluate the function and gradient values
  8343. {
  8344. ggml_opt_set_params(np, ps, x);
  8345. ggml_graph_reset (gf);
  8346. ggml_set_f32 (f->grad, 1.0f);
  8347. ggml_graph_compute(ctx, gb);
  8348. ggml_opt_get_grad(np, ps, g);
  8349. *fx = ggml_get_f32_1d(f, 0);
  8350. }
  8351. ++count;
  8352. if (*fx > finit + (*step)*dgtest) {
  8353. width = dec;
  8354. } else {
  8355. // Armijo condition is satisfied
  8356. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8357. return count;
  8358. }
  8359. ggml_vec_dot_f32(nx, &dg, g, d);
  8360. // check the Wolfe condition
  8361. if (dg < params->lbfgs.wolfe * dginit) {
  8362. width = inc;
  8363. } else {
  8364. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8365. // regular Wolfe conditions
  8366. return count;
  8367. }
  8368. if(dg > -params->lbfgs.wolfe*dginit) {
  8369. width = dec;
  8370. } else {
  8371. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  8372. return count;
  8373. }
  8374. return count;
  8375. }
  8376. }
  8377. if (*step < params->lbfgs.min_step) {
  8378. return GGML_LINESEARCH_MINIMUM_STEP;
  8379. }
  8380. if (*step > params->lbfgs.max_step) {
  8381. return GGML_LINESEARCH_MAXIMUM_STEP;
  8382. }
  8383. if (params->lbfgs.max_linesearch <= count) {
  8384. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  8385. }
  8386. (*step) *= width;
  8387. }
  8388. return GGML_LINESEARCH_FAIL;
  8389. }
  8390. static enum ggml_opt_result ggml_opt_lbfgs(
  8391. struct ggml_context * ctx,
  8392. struct ggml_opt_params params,
  8393. struct ggml_tensor * f,
  8394. struct ggml_cgraph * gf,
  8395. struct ggml_cgraph * gb) {
  8396. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  8397. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  8398. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  8399. return GGML_OPT_INVALID_WOLFE;
  8400. }
  8401. }
  8402. gf->n_threads = params.n_threads;
  8403. gb->n_threads = params.n_threads;
  8404. const int m = params.lbfgs.m;
  8405. // these will store the parameters we want to optimize
  8406. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8407. int np = 0;
  8408. int nx = 0;
  8409. for (int i = 0; i < gf->n_nodes; ++i) {
  8410. if (gf->nodes[i]->is_param) {
  8411. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8412. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8413. ps[np++] = gf->nodes[i];
  8414. nx += ggml_nelements(gf->nodes[i]);
  8415. }
  8416. }
  8417. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8418. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8419. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8420. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8421. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8422. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8423. float fx = 0.0f; // cost function value
  8424. float xnorm = 0.0f; // ||x||
  8425. float gnorm = 0.0f; // ||g||
  8426. float step = 0.0f;
  8427. // initialize x from the graph nodes
  8428. ggml_opt_get_params(np, ps, x);
  8429. // the L-BFGS memory
  8430. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8431. for (int i = 0; i < m; ++i) {
  8432. lm[i].alpha = 0.0f;
  8433. lm[i].ys = 0.0f;
  8434. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8435. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8436. }
  8437. // evaluate the function value and its gradient
  8438. {
  8439. ggml_opt_set_params(np, ps, x);
  8440. ggml_graph_reset (gf);
  8441. ggml_set_f32 (f->grad, 1.0f);
  8442. ggml_graph_compute(ctx, gb);
  8443. ggml_opt_get_grad(np, ps, g);
  8444. fx = ggml_get_f32_1d(f, 0);
  8445. }
  8446. if (pf) {
  8447. pf[0] = fx;
  8448. }
  8449. float fx_best = fx;
  8450. // search direction = -gradient
  8451. ggml_vec_neg_f32(nx, d, g);
  8452. // ||x||, ||g||
  8453. ggml_vec_norm_f32(nx, &xnorm, x);
  8454. ggml_vec_norm_f32(nx, &gnorm, g);
  8455. if (xnorm < 1.0f) {
  8456. xnorm = 1.0f;
  8457. }
  8458. // already optimized
  8459. if (gnorm/xnorm <= params.lbfgs.eps) {
  8460. return GGML_OPT_OK;
  8461. }
  8462. // initial step
  8463. ggml_vec_norm_inv_f32(nx, &step, d);
  8464. int j = 0;
  8465. int k = 1;
  8466. int ls = 0;
  8467. int end = 0;
  8468. int bound = 0;
  8469. int n_no_improvement = 0;
  8470. float ys = 0.0f;
  8471. float yy = 0.0f;
  8472. float beta = 0.0f;
  8473. while (true) {
  8474. // store the current position and gradient vectors
  8475. ggml_vec_cpy_f32(nx, xp, x);
  8476. ggml_vec_cpy_f32(nx, gp, g);
  8477. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8478. if (ls < 0) {
  8479. // linesearch failed - go back to the previous point and return
  8480. ggml_vec_cpy_f32(nx, x, xp);
  8481. ggml_vec_cpy_f32(nx, g, gp);
  8482. return ls;
  8483. }
  8484. ggml_vec_norm_f32(nx, &xnorm, x);
  8485. ggml_vec_norm_f32(nx, &gnorm, g);
  8486. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8487. if (xnorm < 1.0f) {
  8488. xnorm = 1.0f;
  8489. }
  8490. if (gnorm/xnorm <= params.lbfgs.eps) {
  8491. // converged
  8492. return GGML_OPT_OK;
  8493. }
  8494. // delta-based convergence test
  8495. if (pf != NULL) {
  8496. // need at least params.past iterations to start checking for convergence
  8497. if (params.past <= k) {
  8498. const float rate = (pf[k%params.past] - fx)/fx;
  8499. if (fabsf(rate) < params.delta) {
  8500. return GGML_OPT_OK;
  8501. }
  8502. }
  8503. pf[k%params.past] = fx;
  8504. }
  8505. // check for improvement
  8506. if (params.max_no_improvement > 0) {
  8507. if (fx < fx_best) {
  8508. fx_best = fx;
  8509. n_no_improvement = 0;
  8510. } else {
  8511. n_no_improvement++;
  8512. if (n_no_improvement >= params.max_no_improvement) {
  8513. return GGML_OPT_OK;
  8514. }
  8515. }
  8516. }
  8517. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8518. // reached the maximum number of iterations
  8519. return GGML_OPT_DID_NOT_CONVERGE;
  8520. }
  8521. // update vectors s and y:
  8522. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  8523. // y_{k+1} = g_{k+1} - g_{k}.
  8524. //
  8525. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  8526. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  8527. // compute scalars ys and yy:
  8528. // ys = y^t \cdot s -> 1 / \rho.
  8529. // yy = y^t \cdot y.
  8530. //
  8531. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  8532. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  8533. lm[end].ys = ys;
  8534. // find new search direction
  8535. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  8536. bound = (m <= k) ? m : k;
  8537. k++;
  8538. end = (end + 1)%m;
  8539. // initialize search direction with -g
  8540. ggml_vec_neg_f32(nx, d, g);
  8541. j = end;
  8542. for (int i = 0; i < bound; ++i) {
  8543. j = (j + m - 1) % m;
  8544. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  8545. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  8546. lm[j].alpha /= lm[j].ys;
  8547. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  8548. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  8549. }
  8550. ggml_vec_scale_f32(nx, d, ys/yy);
  8551. for (int i = 0; i < bound; ++i) {
  8552. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  8553. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  8554. beta /= lm[j].ys;
  8555. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  8556. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  8557. j = (j + 1)%m;
  8558. }
  8559. step = 1.0;
  8560. }
  8561. return GGML_OPT_DID_NOT_CONVERGE;
  8562. }
  8563. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  8564. struct ggml_opt_params result;
  8565. switch (type) {
  8566. case GGML_OPT_ADAM:
  8567. {
  8568. result = (struct ggml_opt_params) {
  8569. .type = GGML_OPT_ADAM,
  8570. .n_threads = 1,
  8571. .past = 0,
  8572. .delta = 1e-5f,
  8573. .max_no_improvement = 100,
  8574. .print_forward_graph = true,
  8575. .print_backward_graph = true,
  8576. .adam = {
  8577. .n_iter = 10000,
  8578. .alpha = 0.001f,
  8579. .beta1 = 0.9f,
  8580. .beta2 = 0.999f,
  8581. .eps = 1e-8f,
  8582. .eps_f = 1e-5f,
  8583. .eps_g = 1e-3f,
  8584. },
  8585. };
  8586. } break;
  8587. case GGML_OPT_LBFGS:
  8588. {
  8589. result = (struct ggml_opt_params) {
  8590. .type = GGML_OPT_LBFGS,
  8591. .n_threads = 1,
  8592. .past = 0,
  8593. .delta = 1e-5f,
  8594. .max_no_improvement = 0,
  8595. .print_forward_graph = true,
  8596. .print_backward_graph = true,
  8597. .lbfgs = {
  8598. .m = 6,
  8599. .n_iter = 100,
  8600. .max_linesearch = 20,
  8601. .eps = 1e-5f,
  8602. .ftol = 1e-4f,
  8603. .wolfe = 0.9f,
  8604. .min_step = 1e-20f,
  8605. .max_step = 1e+20f,
  8606. .linesearch = GGML_LINESEARCH_DEFAULT,
  8607. },
  8608. };
  8609. } break;
  8610. }
  8611. return result;
  8612. }
  8613. enum ggml_opt_result ggml_opt(
  8614. struct ggml_context * ctx,
  8615. struct ggml_opt_params params,
  8616. struct ggml_tensor * f) {
  8617. bool free_ctx = false;
  8618. if (ctx == NULL) {
  8619. struct ggml_init_params params_ctx = {
  8620. .mem_size = 16*1024*1024,
  8621. .mem_buffer = NULL,
  8622. .no_alloc = false,
  8623. };
  8624. ctx = ggml_init(params_ctx);
  8625. if (ctx == NULL) {
  8626. return GGML_OPT_NO_CONTEXT;
  8627. }
  8628. free_ctx = true;
  8629. }
  8630. enum ggml_opt_result result = GGML_OPT_OK;
  8631. // build forward + backward compute graphs
  8632. struct ggml_cgraph gf = ggml_build_forward (f);
  8633. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  8634. switch (params.type) {
  8635. case GGML_OPT_ADAM:
  8636. {
  8637. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  8638. } break;
  8639. case GGML_OPT_LBFGS:
  8640. {
  8641. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  8642. } break;
  8643. }
  8644. if (params.print_forward_graph) {
  8645. ggml_graph_print (&gf);
  8646. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  8647. }
  8648. if (params.print_backward_graph) {
  8649. ggml_graph_print (&gb);
  8650. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  8651. }
  8652. if (free_ctx) {
  8653. ggml_free(ctx);
  8654. }
  8655. return result;
  8656. }
  8657. ////////////////////////////////////////////////////////////////////////////////
  8658. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  8659. assert(k % QK == 0);
  8660. const int nb = k / QK;
  8661. for (int j = 0; j < n; j += k) {
  8662. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK;
  8663. quantize_row_q4_0_reference(src + j, y, k);
  8664. for (int i = 0; i < nb; i++) {
  8665. for (int l = 0; l < QK; l += 2) {
  8666. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8667. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8668. hist[vi0]++;
  8669. hist[vi1]++;
  8670. }
  8671. }
  8672. }
  8673. return (n/QK*sizeof(block_q4_0));
  8674. }
  8675. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  8676. assert(k % QK == 0);
  8677. const int nb = k / QK;
  8678. for (int j = 0; j < n; j += k) {
  8679. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK;
  8680. quantize_row_q4_1_reference(src + j, y, k);
  8681. for (int i = 0; i < nb; i++) {
  8682. for (int l = 0; l < QK; l += 2) {
  8683. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8684. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8685. hist[vi0]++;
  8686. hist[vi1]++;
  8687. }
  8688. }
  8689. }
  8690. return (n/QK*sizeof(block_q4_1));
  8691. }
  8692. ////////////////////////////////////////////////////////////////////////////////
  8693. int ggml_cpu_has_avx(void) {
  8694. #if defined(__AVX__)
  8695. return 1;
  8696. #else
  8697. return 0;
  8698. #endif
  8699. }
  8700. int ggml_cpu_has_avx2(void) {
  8701. #if defined(__AVX2__)
  8702. return 1;
  8703. #else
  8704. return 0;
  8705. #endif
  8706. }
  8707. int ggml_cpu_has_avx512(void) {
  8708. #if defined(__AVX512F__)
  8709. return 1;
  8710. #else
  8711. return 0;
  8712. #endif
  8713. }
  8714. int ggml_cpu_has_fma(void) {
  8715. #if defined(__FMA__)
  8716. return 1;
  8717. #else
  8718. return 0;
  8719. #endif
  8720. }
  8721. int ggml_cpu_has_neon(void) {
  8722. #if defined(__ARM_NEON)
  8723. return 1;
  8724. #else
  8725. return 0;
  8726. #endif
  8727. }
  8728. int ggml_cpu_has_arm_fma(void) {
  8729. #if defined(__ARM_FEATURE_FMA)
  8730. return 1;
  8731. #else
  8732. return 0;
  8733. #endif
  8734. }
  8735. int ggml_cpu_has_f16c(void) {
  8736. #if defined(__F16C__)
  8737. return 1;
  8738. #else
  8739. return 0;
  8740. #endif
  8741. }
  8742. int ggml_cpu_has_fp16_va(void) {
  8743. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  8744. return 1;
  8745. #else
  8746. return 0;
  8747. #endif
  8748. }
  8749. int ggml_cpu_has_wasm_simd(void) {
  8750. #if defined(__wasm_simd128__)
  8751. return 1;
  8752. #else
  8753. return 0;
  8754. #endif
  8755. }
  8756. int ggml_cpu_has_blas(void) {
  8757. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8758. return 1;
  8759. #else
  8760. return 0;
  8761. #endif
  8762. }
  8763. int ggml_cpu_has_sse3(void) {
  8764. #if defined(__SSE3__)
  8765. return 1;
  8766. #else
  8767. return 0;
  8768. #endif
  8769. }
  8770. int ggml_cpu_has_vsx(void) {
  8771. #if defined(__POWER9_VECTOR__)
  8772. return 1;
  8773. #else
  8774. return 0;
  8775. #endif
  8776. }
  8777. ////////////////////////////////////////////////////////////////////////////////