convert.py 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201
  1. #!/usr/bin/env python3
  2. from __future__ import annotations
  3. import argparse
  4. import concurrent.futures
  5. import copy
  6. import enum
  7. import faulthandler
  8. import functools
  9. import io
  10. import itertools
  11. import json
  12. import math
  13. import mmap
  14. import pickle
  15. import re
  16. import signal
  17. import struct
  18. import sys
  19. import time
  20. import zipfile
  21. from abc import ABCMeta, abstractmethod
  22. from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
  23. from dataclasses import dataclass
  24. from pathlib import Path
  25. from typing import IO, TYPE_CHECKING, Any, Callable, Generator, Iterable, Literal, Sequence, TypeVar
  26. import numpy as np
  27. from sentencepiece import SentencePieceProcessor # type: ignore[import]
  28. import os
  29. if 'NO_LOCAL_GGUF' not in os.environ:
  30. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
  31. import gguf
  32. if TYPE_CHECKING:
  33. from typing import TypeAlias
  34. if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'):
  35. faulthandler.register(signal.SIGUSR1)
  36. NDArray: TypeAlias = 'np.ndarray[Any, Any]'
  37. ARCH=gguf.MODEL_ARCH.LLAMA
  38. NAMES=gguf.MODEL_TENSOR_NAMES[ARCH]
  39. DEFAULT_CONCURRENCY = 8
  40. #
  41. # data types
  42. #
  43. @dataclass(frozen=True)
  44. class DataType:
  45. name: str
  46. dtype: np.dtype[Any]
  47. valid_conversions: list[str]
  48. def elements_to_bytes(self, n_elements: int) -> int:
  49. return n_elements * self.dtype.itemsize
  50. @dataclass(frozen=True)
  51. class UnquantizedDataType(DataType):
  52. pass
  53. DT_F16 = UnquantizedDataType('F16', dtype = np.dtype(np.float16), valid_conversions = ['F32', 'Q8_0'])
  54. DT_F32 = UnquantizedDataType('F32', dtype = np.dtype(np.float32), valid_conversions = ['F16', 'Q8_0'])
  55. DT_I32 = UnquantizedDataType('I32', dtype = np.dtype(np.int16), valid_conversions = [])
  56. DT_BF16 = UnquantizedDataType('BF16', dtype = np.dtype(np.uint16), valid_conversions = ['F32', 'F16', 'Q8_0'])
  57. @dataclass(frozen=True)
  58. class QuantizedDataType(DataType):
  59. block_size: int
  60. quantized_dtype: np.dtype[Any]
  61. ggml_type: gguf.GGMLQuantizationType
  62. def quantize(self, arr: NDArray) -> NDArray:
  63. raise NotImplementedError(f'Quantization for {self.name} not implemented')
  64. def elements_to_bytes(self, n_elements: int) -> int:
  65. assert n_elements % self.block_size == 0, f'Invalid number of elements {n_elements} for {self.name} with block size {self.block_size}'
  66. return self.quantized_dtype.itemsize * (n_elements // self.block_size)
  67. @dataclass(frozen=True)
  68. class Q8_0QuantizedDataType(QuantizedDataType):
  69. # Mini Q8_0 quantization in Python!
  70. def quantize(self, arr: NDArray) -> NDArray:
  71. assert arr.size % self.block_size == 0 and arr.size != 0, f'Bad array size {arr.size}'
  72. assert arr.dtype == np.float32, f'Bad array type {arr.dtype}'
  73. n_blocks = arr.size // self.block_size
  74. blocks = arr.reshape((n_blocks, self.block_size))
  75. # Much faster implementation of block quantization contributed by @Cebtenzzre
  76. def quantize_blocks_q8_0(blocks: NDArray) -> Iterable[tuple[Any, Any]]:
  77. d = abs(blocks).max(axis = 1) / np.float32(127)
  78. with np.errstate(divide = 'ignore'):
  79. qs = (blocks / d[:, None]).round()
  80. qs[d == 0] = 0
  81. yield from zip(d, qs)
  82. return np.fromiter(quantize_blocks_q8_0(blocks), count = n_blocks, dtype = self.quantized_dtype)
  83. DT_Q8_0 = Q8_0QuantizedDataType('Q8_0',
  84. dtype = np.dtype(np.float32), valid_conversions = [],
  85. ggml_type = gguf.GGMLQuantizationType.Q8_0, block_size = 32,
  86. quantized_dtype = np.dtype([('d', '<f2'), ('qs', 'i1', (32,))]))
  87. # Quantized types skipped here because they may also map to np.float32
  88. NUMPY_TYPE_TO_DATA_TYPE: dict[np.dtype[Any], DataType] = {}
  89. for dt in (DT_BF16, DT_F16, DT_F32, DT_I32):
  90. if dt.dtype in NUMPY_TYPE_TO_DATA_TYPE:
  91. raise ValueError(f'Invalid duplicate data type {dt}')
  92. NUMPY_TYPE_TO_DATA_TYPE[dt.dtype] = dt
  93. SAFETENSORS_DATA_TYPES: dict[str, DataType] = {
  94. 'BF16': DT_BF16,
  95. 'F16': DT_F16,
  96. 'F32': DT_F32,
  97. 'I32': DT_I32,
  98. }
  99. # TODO: match this with `llama_ftype`
  100. # TODO: rename to LLAMAFileType
  101. # TODO: move to `gguf.py`
  102. class GGMLFileType(enum.IntEnum):
  103. AllF32 = 0
  104. MostlyF16 = 1 # except 1d tensors
  105. MostlyQ8_0 = 7 # except 1d tensors
  106. def type_for_tensor(self, name: str, tensor: LazyTensor) -> DataType:
  107. dt = GGML_FILE_TYPE_TO_DATA_TYPE.get(self)
  108. if dt is None:
  109. raise ValueError(self)
  110. # 1D tensors are always F32.
  111. return dt if len(tensor.shape) > 1 else DT_F32
  112. GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = {
  113. GGMLFileType.AllF32 : DT_F32,
  114. GGMLFileType.MostlyF16 : DT_F16,
  115. GGMLFileType.MostlyQ8_0: DT_Q8_0,
  116. }
  117. #
  118. # hparams loading
  119. #
  120. @dataclass
  121. class Params:
  122. n_vocab: int
  123. n_embd: int
  124. n_mult: int
  125. n_layer: int
  126. n_ctx: int
  127. n_ff: int
  128. n_head: int
  129. n_head_kv: int
  130. f_norm_eps: float
  131. f_rope_freq_base: float | None = None
  132. f_rope_scale: float | None = None
  133. ftype: GGMLFileType | None = None
  134. # path to the directory containing the model files
  135. path_model: Path | None = None
  136. @staticmethod
  137. def find_n_mult(n_ff: int, n_embd: int) -> int:
  138. # hardcoded magic range
  139. for n_mult in range(8192, 1, -1):
  140. calc_ff = (((8*n_embd) // 3 + n_mult - 1) // n_mult)*n_mult
  141. if calc_ff == n_ff:
  142. return n_mult
  143. raise Exception(f"failed to find n_mult for (n_ff={n_ff}, n_embd={n_embd}).")
  144. @staticmethod
  145. def guessed(model: LazyModel) -> Params:
  146. # try transformer naming first
  147. n_vocab, n_embd = model["model.embed_tokens.weight"].shape if "model.embed_tokens.weight" in model else model["tok_embeddings.weight"].shape
  148. # try transformer naming first
  149. if "model.layers.0.self_attn.q_proj.weight" in model:
  150. n_layer=next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model)
  151. elif "model.layers.0.self_attn.W_pack.weight" in model: # next: try baichuan naming
  152. n_layer=next(i for i in itertools.count() if f"model.layers.{i}.self_attn.W_pack.weight" not in model)
  153. else:
  154. n_layer=next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model)
  155. if n_layer < 1:
  156. raise Exception("failed to guess 'n_layer'. This model is unknown or unsupported.\n"
  157. "Suggestion: provide 'config.json' of the model in the same directory containing model files.")
  158. n_head = n_embd // 128 # guessed
  159. n_mult = 256 # guessed
  160. # TODO: verify this
  161. n_ff = int(2 * (4 * n_embd) / 3)
  162. n_ff = n_mult * ((n_ff + n_mult - 1) // n_mult)
  163. return Params(
  164. n_vocab = n_vocab,
  165. n_embd = n_embd,
  166. n_mult = n_mult,
  167. n_layer = n_layer,
  168. n_ctx = -1,
  169. n_ff = n_ff,
  170. n_head = n_head,
  171. n_head_kv = n_head,
  172. f_norm_eps = 1e-5,
  173. )
  174. @staticmethod
  175. def loadHFTransformerJson(model: LazyModel, config_path: Path) -> Params:
  176. config = json.load(open(config_path))
  177. n_vocab = config["vocab_size"]
  178. n_embd = config["hidden_size"]
  179. n_layer = config["num_hidden_layers"]
  180. n_ff = config["intermediate_size"]
  181. n_head = config["num_attention_heads"]
  182. n_head_kv = config["num_key_value_heads"] if "num_key_value_heads" in config else n_head
  183. f_norm_eps = config["rms_norm_eps"]
  184. f_rope_freq_base = config["rope_theta"] if "rope_theta" in config else None
  185. rope_scaling = config.get("rope_scaling")
  186. if isinstance(rope_scaling, dict) and rope_scaling.get("type") == "linear":
  187. f_rope_scale = config["rope_scaling"].get("factor")
  188. else:
  189. f_rope_scale = None
  190. n_mult = Params.find_n_mult(n_ff, n_embd)
  191. if "max_sequence_length" in config:
  192. n_ctx = config["max_sequence_length"]
  193. elif "max_position_embeddings" in config:
  194. n_ctx = config["max_position_embeddings"]
  195. else:
  196. raise Exception("failed to guess 'n_ctx'. This model is unknown or unsupported.\n"
  197. "Suggestion: provide 'config.json' of the model in the same directory containing model files.")
  198. return Params(
  199. n_vocab = n_vocab,
  200. n_embd = n_embd,
  201. n_mult = n_mult,
  202. n_layer = n_layer,
  203. n_ctx = n_ctx,
  204. n_ff = n_ff,
  205. n_head = n_head,
  206. n_head_kv = n_head_kv,
  207. f_norm_eps = f_norm_eps,
  208. f_rope_freq_base = f_rope_freq_base,
  209. f_rope_scale = f_rope_scale,
  210. )
  211. # LLaMA v2 70B params.json
  212. # {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1
  213. @staticmethod
  214. def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params:
  215. config = json.load(open(config_path))
  216. n_vocab = config["vocab_size"] if "vocab_size" in config else -1
  217. n_embd = config["dim"]
  218. n_layer = config["n_layers"]
  219. n_mult = config["multiple_of"]
  220. n_ff = -1
  221. n_head = config["n_heads"]
  222. n_head_kv = config["n_kv_heads"] if "n_kv_heads" in config else n_head
  223. f_norm_eps = config["norm_eps"]
  224. f_rope_freq_base = config["rope_theta"] if "rope_theta" in config else None
  225. # hack to determine LLaMA v1 vs v2 vs CodeLlama
  226. if f_rope_freq_base and f_rope_freq_base == 1000000:
  227. # CodeLlama
  228. n_ctx = 16384
  229. elif config["norm_eps"] == 1e-05:
  230. # LLaMA v2
  231. n_ctx = 4096
  232. else:
  233. # LLaMA v1
  234. n_ctx = 2048
  235. if n_vocab == -1:
  236. n_vocab = model["tok_embeddings.weight"].shape[0]
  237. if n_ff == -1:
  238. n_ff = model["layers.0.feed_forward.w1.weight"].shape[0]
  239. return Params(
  240. n_vocab = n_vocab,
  241. n_embd = n_embd,
  242. n_mult = n_mult,
  243. n_layer = n_layer,
  244. n_ctx = n_ctx,
  245. n_ff = n_ff,
  246. n_head = n_head,
  247. n_head_kv = n_head_kv,
  248. f_norm_eps = f_norm_eps,
  249. f_rope_freq_base = f_rope_freq_base,
  250. )
  251. @staticmethod
  252. def load(model_plus: ModelPlus) -> Params:
  253. hf_config_path = model_plus.paths[0].parent / "config.json"
  254. orig_config_path = model_plus.paths[0].parent / "params.json"
  255. if hf_config_path.exists():
  256. params = Params.loadHFTransformerJson(model_plus.model, hf_config_path)
  257. elif orig_config_path.exists():
  258. params = Params.loadOriginalParamsJson(model_plus.model, orig_config_path)
  259. elif model_plus.format != 'none':
  260. params = Params.guessed(model_plus.model)
  261. else:
  262. raise ValueError('Cannot guess params when model format is none')
  263. params.path_model = model_plus.paths[0].parent
  264. return params
  265. #
  266. # vocab
  267. #
  268. class BpeVocab:
  269. def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None:
  270. self.bpe_tokenizer = json.loads(open(str(fname_tokenizer), encoding="utf-8").read())
  271. added_tokens: dict[str, int]
  272. if fname_added_tokens is not None:
  273. added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
  274. else:
  275. added_tokens = {}
  276. vocab_size: int = len(self.bpe_tokenizer)
  277. expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
  278. actual_ids = sorted(added_tokens.values())
  279. if expected_ids != actual_ids:
  280. raise Exception(f"Expected added token IDs to be sequential and start at {len(added_tokens)}; got {actual_ids}")
  281. items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
  282. self.added_tokens_list = [text for (text, idx) in items]
  283. self.vocab_size_base: int = vocab_size
  284. self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list)
  285. self.fname_tokenizer = fname_tokenizer
  286. self.fname_added_tokens = fname_added_tokens
  287. def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
  288. tokenizer = self.bpe_tokenizer
  289. from transformers.models.gpt2 import tokenization_gpt2 # type: ignore[import]
  290. byte_encoder = tokenization_gpt2.bytes_to_unicode()
  291. byte_decoder = {v: k for k, v in byte_encoder.items()}
  292. for i, item in enumerate(tokenizer):
  293. text: bytes = item.encode("utf-8")
  294. score: float = -i
  295. yield text, score, gguf.TokenType.USER_DEFINED
  296. def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
  297. for text in self.added_tokens_list:
  298. score = -1000.0
  299. yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED
  300. def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
  301. yield from self.bpe_tokens()
  302. yield from self.added_tokens()
  303. def __repr__(self) -> str:
  304. return f"<BpeVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
  305. class SentencePieceVocab:
  306. def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None:
  307. self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
  308. added_tokens: dict[str, int]
  309. if fname_added_tokens is not None:
  310. added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
  311. else:
  312. added_tokens = {}
  313. vocab_size: int = self.sentencepiece_tokenizer.vocab_size()
  314. expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
  315. actual_ids = sorted(added_tokens.values())
  316. if expected_ids != actual_ids:
  317. raise Exception(f"Expected added token IDs to be sequential and start at {len(added_tokens)}; got {actual_ids}")
  318. items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
  319. self.added_tokens_list = [text for (text, idx) in items]
  320. self.vocab_size_base: int = vocab_size
  321. self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list)
  322. self.fname_tokenizer = fname_tokenizer
  323. self.fname_added_tokens = fname_added_tokens
  324. def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
  325. tokenizer = self.sentencepiece_tokenizer
  326. for i in range(tokenizer.vocab_size()):
  327. piece = tokenizer.id_to_piece(i)
  328. text: bytes = piece.encode("utf-8")
  329. score: float = tokenizer.get_score(i)
  330. toktype = gguf.TokenType.NORMAL
  331. if tokenizer.is_unknown(i):
  332. toktype = gguf.TokenType.UNKNOWN
  333. if tokenizer.is_control(i):
  334. toktype = gguf.TokenType.CONTROL
  335. # NOTE: I think added_tokens are user defined.
  336. # ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
  337. # if tokenizer.is_user_defined(i): toktype = gguf.TokenType.USER_DEFINED
  338. if tokenizer.is_unused(i):
  339. toktype = gguf.TokenType.UNUSED
  340. if tokenizer.is_byte(i):
  341. toktype = gguf.TokenType.BYTE
  342. yield text, score, toktype
  343. def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
  344. for text in self.added_tokens_list:
  345. score = -1000.0
  346. yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED
  347. def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
  348. yield from self.sentencepiece_tokens()
  349. yield from self.added_tokens()
  350. def __repr__(self) -> str:
  351. return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
  352. Vocab: TypeAlias = 'BpeVocab | SentencePieceVocab'
  353. #
  354. # data loading
  355. # TODO: reuse (probably move to gguf.py?)
  356. #
  357. def permute(weights: NDArray, n_head: int, n_head_kv: int) -> NDArray:
  358. #print( "permute debug " + str(weights.shape[0]) + " x " + str(weights.shape[1]) + " nhead " + str(n_head) + " nheadkv " + str(n_kv_head) )
  359. if n_head_kv is not None and n_head != n_head_kv:
  360. n_head //= n_head_kv
  361. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  362. .swapaxes(1, 2)
  363. .reshape(weights.shape))
  364. class Tensor(metaclass=ABCMeta):
  365. data_type: DataType
  366. @abstractmethod
  367. def astype(self, data_type: DataType) -> Tensor: ...
  368. @abstractmethod
  369. def permute(self, n_head: int, n_head_kv: int) -> Tensor: ...
  370. @abstractmethod
  371. def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> UnquantizedTensor: ...
  372. @abstractmethod
  373. def part(self, n_part: int) -> UnquantizedTensor: ...
  374. @abstractmethod
  375. def to_ggml(self) -> GGMLCompatibleTensor: ...
  376. def bf16_to_fp32(bf16_arr: np.ndarray[Any, np.dtype[np.uint16]]) -> NDArray:
  377. assert bf16_arr.dtype == np.uint16, f"Input array should be of dtype uint16, but got {bf16_arr.dtype}"
  378. fp32_arr = bf16_arr.astype(np.uint32) << 16
  379. return fp32_arr.view(np.float32)
  380. class UnquantizedTensor(Tensor):
  381. def __init__(self, ndarray: NDArray) -> None:
  382. assert isinstance(ndarray, np.ndarray)
  383. self.ndarray = ndarray
  384. self.data_type = NUMPY_TYPE_TO_DATA_TYPE[ndarray.dtype]
  385. def astype(self, data_type: DataType) -> Tensor:
  386. dtype = data_type.dtype
  387. if self.data_type == DT_BF16:
  388. self.ndarray = bf16_to_fp32(self.ndarray)
  389. return UnquantizedTensor(self.ndarray.astype(dtype))
  390. def to_ggml(self) -> UnquantizedTensor:
  391. return self
  392. def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> UnquantizedTensor:
  393. r = self.ndarray.shape[0] // 3
  394. return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head, n_head_kv))
  395. def part(self, n_part: int) -> UnquantizedTensor:
  396. r = self.ndarray.shape[0] // 3
  397. return UnquantizedTensor(self.ndarray[r * n_part : r * n_part + r, ...])
  398. def permute(self, n_head: int, n_head_kv: int) -> UnquantizedTensor:
  399. return UnquantizedTensor(permute(self.ndarray, n_head, n_head_kv))
  400. def load_unquantized(lazy_tensor: LazyTensor, expected_dtype: Any = None, convert: bool = False) -> NDArray:
  401. tensor = lazy_tensor.load()
  402. assert isinstance(tensor, UnquantizedTensor)
  403. # double-check:
  404. actual_shape = list(tensor.ndarray.shape)
  405. assert actual_shape == lazy_tensor.shape, (actual_shape, lazy_tensor.shape)
  406. if expected_dtype is not None and expected_dtype != tensor.ndarray.dtype:
  407. if convert:
  408. tensor.ndarray = tensor.ndarray.astype(expected_dtype)
  409. else:
  410. raise ValueError(f'expected this tensor to have dtype {expected_dtype}, got {tensor.ndarray.dtype}')
  411. return tensor.ndarray
  412. GGMLCompatibleTensor = UnquantizedTensor
  413. @dataclass
  414. class LazyTensor:
  415. _load: Callable[[], Tensor]
  416. shape: list[int]
  417. data_type: DataType
  418. description: str
  419. def load(self) -> Tensor:
  420. ret = self._load()
  421. # Should be okay if it maps to the same numpy type?
  422. assert ret.data_type == self.data_type or (self.data_type.dtype == ret.data_type.dtype), \
  423. (self.data_type, ret.data_type, self.description)
  424. return ret
  425. def astype(self, data_type: DataType) -> LazyTensor:
  426. self.validate_conversion_to(data_type)
  427. def load() -> Tensor:
  428. return self.load().astype(data_type)
  429. return LazyTensor(load, self.shape, data_type, f'convert({data_type}) {self.description}')
  430. def validate_conversion_to(self, data_type: DataType) -> None:
  431. if data_type != self.data_type and data_type.name not in self.data_type.valid_conversions:
  432. raise ValueError(f'Cannot validate conversion from {self.data_type} to {data_type}.')
  433. LazyModel: TypeAlias = 'dict[str, LazyTensor]'
  434. @dataclass
  435. class ModelPlus:
  436. model: LazyModel
  437. paths: list[Path] # Where this was read from.
  438. format: Literal['ggml', 'torch', 'safetensors', 'none']
  439. vocab: Vocab | None # For GGML models (which have vocab built in), the vocab.
  440. def merge_sharded(models: list[LazyModel]) -> LazyModel:
  441. # Original LLaMA models have each file contain one part of each tensor.
  442. # Use a dict instead of a set to preserve order.
  443. names = {name: None for model in models for name in model}
  444. def convert(name: str) -> LazyTensor:
  445. lazy_tensors: list[LazyTensor] = [model[name] for model in models]
  446. if len(lazy_tensors) == 1:
  447. # only one file; don't go through this procedure since there might
  448. # be quantized tensors
  449. return lazy_tensors[0]
  450. if len(lazy_tensors[0].shape) == 1:
  451. # the tensor is just duplicated in every file
  452. return lazy_tensors[0]
  453. if name.startswith('tok_embeddings.') or \
  454. name.endswith('.attention.wo.weight') or \
  455. name.endswith('.feed_forward.w2.weight'):
  456. # split by columns
  457. axis = 1
  458. else:
  459. # split by rows
  460. axis = 0
  461. concatenated_shape = list(lazy_tensors[0].shape)
  462. concatenated_shape[axis] = sum(tensor.shape[axis] for tensor in lazy_tensors)
  463. def load() -> UnquantizedTensor:
  464. ndarrays = [load_unquantized(tensor) for tensor in lazy_tensors]
  465. concatenated: NDArray = np.concatenate(ndarrays, axis=axis)
  466. return UnquantizedTensor(concatenated)
  467. description = 'concatenated[[' + '] | ['.join(lt.description for lt in lazy_tensors) + ']]'
  468. return LazyTensor(load, concatenated_shape, lazy_tensors[0].data_type, description)
  469. return {name: convert(name) for name in names}
  470. def merge_multifile_models(models_plus: list[ModelPlus]) -> ModelPlus:
  471. formats = set(mp.format for mp in models_plus)
  472. assert len(formats) == 1, "different formats?"
  473. format = formats.pop()
  474. paths = [path for mp in models_plus for path in mp.paths]
  475. # Use the first non-None vocab, if any.
  476. try:
  477. vocab = next(mp.vocab for mp in models_plus if mp.vocab is not None)
  478. except StopIteration:
  479. vocab = None
  480. if any("model.embed_tokens.weight" in mp.model for mp in models_plus):
  481. # Transformers models put different tensors in different files, but
  482. # don't split indivdual tensors between files.
  483. model: LazyModel = {}
  484. for mp in models_plus:
  485. model.update(mp.model)
  486. else:
  487. model = merge_sharded([mp.model for mp in models_plus])
  488. return ModelPlus(model, paths, format, vocab)
  489. def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_head_kv: int) -> LazyTensor:
  490. def load() -> Tensor:
  491. return lazy_tensor.load().permute(n_head, n_head_kv)
  492. return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)
  493. def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int, n_head_kv: int) -> LazyTensor:
  494. def load() -> Tensor:
  495. return lazy_tensor.load().permute_part(n_part, n_head, n_head_kv)
  496. s = lazy_tensor.shape.copy()
  497. s[0] = s[0] // 3
  498. return LazyTensor(load, s, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)
  499. def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor:
  500. def load() -> Tensor:
  501. return lazy_tensor.load().part(n_part)
  502. s = lazy_tensor.shape.copy()
  503. s[0] = s[0] // 3
  504. return LazyTensor(load, s, lazy_tensor.data_type, 'part ' + lazy_tensor.description)
  505. # Functionality that simulates `torch.load` but where individual tensors are
  506. # only loaded into memory on demand, not all at once.
  507. # PyTorch can't do this natively as of time of writing:
  508. # - https://github.com/pytorch/pytorch/issues/64327
  509. # This allows us to de-shard without multiplying RAM usage, and also
  510. # conveniently drops the PyTorch dependency (though we still need numpy).
  511. @dataclass
  512. class LazyStorageKind:
  513. data_type: DataType
  514. @dataclass
  515. class LazyStorage:
  516. load: Callable[[int, int], NDArray]
  517. kind: LazyStorageKind
  518. description: str
  519. class LazyUnpickler(pickle.Unpickler):
  520. def __init__(self, fp: IO[bytes], data_base_path: str, zip_file: zipfile.ZipFile):
  521. super().__init__(fp)
  522. self.data_base_path = data_base_path
  523. self.zip_file = zip_file
  524. def persistent_load(self, pid: Any) -> Any:
  525. assert pid[0] == 'storage'
  526. assert isinstance(pid[1], LazyStorageKind)
  527. data_type = pid[1].data_type
  528. filename_stem = pid[2]
  529. filename = self.data_base_path + '/' + filename_stem
  530. info = self.zip_file.getinfo(filename)
  531. def load(offset: int, elm_count: int) -> NDArray:
  532. dtype = data_type.dtype
  533. fp = self.zip_file.open(info)
  534. fp.seek(offset * dtype.itemsize)
  535. size = elm_count * dtype.itemsize
  536. data = fp.read(size)
  537. assert len(data) == size
  538. return np.frombuffer(data, dtype)
  539. description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}'
  540. return LazyStorage(load=load, kind=pid[1], description=description)
  541. @staticmethod
  542. def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any,
  543. # pyright: ignore[reportSelfClsParameterName]
  544. requires_grad: Any, backward_hooks: Any, metadata: Any = None) -> LazyTensor:
  545. assert isinstance(storage, LazyStorage)
  546. def load() -> UnquantizedTensor:
  547. elm_count = stride[0] * size[0]
  548. return UnquantizedTensor(storage.load(storage_offset, elm_count).reshape(size))
  549. description = f'pickled storage_offset={storage_offset} in {storage.description}'
  550. return LazyTensor(load, list(size), storage.kind.data_type, description)
  551. @staticmethod
  552. def rebuild_from_type_v2(func, new_type, args, state):
  553. return func(*args)
  554. CLASSES: dict[tuple[str, str], Any] = {
  555. # getattr used here as a workaround for mypy not being smart enough to detrmine
  556. # the staticmethods have a __func__ attribute.
  557. ('torch._tensor', '_rebuild_from_type_v2'): getattr(rebuild_from_type_v2, '__func__'),
  558. ('torch._utils', '_rebuild_tensor_v2'): getattr(lazy_rebuild_tensor_v2, '__func__'),
  559. ('torch', 'BFloat16Storage'): LazyStorageKind(DT_BF16),
  560. ('torch', 'HalfStorage'): LazyStorageKind(DT_F16),
  561. ('torch', 'FloatStorage'): LazyStorageKind(DT_F32),
  562. ('torch', 'IntStorage'): LazyStorageKind(DT_I32),
  563. ('torch', 'Tensor'): LazyTensor,
  564. }
  565. def find_class(self, module: str, name: str) -> Any:
  566. if not module.startswith('torch'):
  567. return super().find_class(module, name)
  568. return self.CLASSES[(module, name)]
  569. def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus:
  570. zf = zipfile.ZipFile(outer_fp)
  571. pickle_paths = [name for name in zf.namelist() if name.endswith('.pkl')]
  572. assert len(pickle_paths) == 1, pickle_paths
  573. pickle_fp = zf.open(pickle_paths[0], 'r')
  574. unpickler = LazyUnpickler(pickle_fp,
  575. data_base_path=pickle_paths[0][:-4],
  576. zip_file=zf)
  577. model = unpickler.load()
  578. as_dict = dict(model.items())
  579. return ModelPlus(model=as_dict, paths=[path], format='torch', vocab=None)
  580. def lazy_load_safetensors_file(fp: IO[bytes], path: Path) -> ModelPlus:
  581. header_size, = struct.unpack('<Q', fp.read(8))
  582. header: dict[str, dict[str, Any]] = json.loads(fp.read(header_size))
  583. # Use mmap for the actual data to avoid race conditions with the file offset.
  584. mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ))
  585. byte_buf = mapped[8 + header_size:]
  586. def convert(info: dict[str, Any]) -> LazyTensor:
  587. data_type = SAFETENSORS_DATA_TYPES[info['dtype']]
  588. numpy_dtype = data_type.dtype
  589. shape: list[int] = info['shape']
  590. begin, end = info['data_offsets']
  591. assert 0 <= begin <= end <= len(byte_buf)
  592. assert end - begin == math.prod(shape) * numpy_dtype.itemsize
  593. buf = byte_buf[begin:end]
  594. def load() -> UnquantizedTensor:
  595. return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape))
  596. description = f'safetensors begin={begin} end={end} type={data_type} path={path}'
  597. return LazyTensor(load, shape, data_type, description)
  598. model = {name: convert(info) for (name, info) in header.items() if name != '__metadata__'}
  599. return ModelPlus(model=model, paths=[path], format='safetensors', vocab=None)
  600. def must_read(fp: IO[bytes], length: int) -> bytes:
  601. ret = fp.read(length)
  602. if len(ret) < length:
  603. raise Exception("unexpectedly reached end of file")
  604. return ret
  605. @functools.lru_cache(maxsize=None)
  606. def lazy_load_file(path: Path) -> ModelPlus:
  607. fp = open(path, 'rb')
  608. first8 = fp.read(8)
  609. fp.seek(0)
  610. if first8[:2] == b'PK':
  611. # A zip file, i.e. PyTorch format
  612. return lazy_load_torch_file(fp, path)
  613. elif struct.unpack('<Q', first8)[0] < 16 * 1024 * 1024:
  614. # Probably safetensors
  615. return lazy_load_safetensors_file(fp, path)
  616. else:
  617. raise ValueError(f"unknown format: {path}")
  618. In = TypeVar('In')
  619. Out = TypeVar('Out')
  620. def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int, max_workers: int | None = None, use_processpool_executor: bool = False) -> Iterable[Out]:
  621. '''Parallel map, but with backpressure. If the caller doesn't call `next`
  622. fast enough, this will stop calling `func` at some point rather than
  623. letting results pile up in memory. Specifically, there is a max of one
  624. output value buffered per thread.'''
  625. if concurrency < 2:
  626. yield from map(func, iterable)
  627. # Not reached.
  628. iterable = iter(iterable)
  629. executor_class: type[ThreadPoolExecutor] | type[ProcessPoolExecutor]
  630. if use_processpool_executor:
  631. executor_class = ProcessPoolExecutor
  632. else:
  633. executor_class = ThreadPoolExecutor
  634. with executor_class(max_workers = max_workers) as executor:
  635. futures: list[concurrent.futures.Future[Out]] = []
  636. done = False
  637. for _ in range(concurrency):
  638. try:
  639. futures.append(executor.submit(func, next(iterable)))
  640. except StopIteration:
  641. done = True
  642. break
  643. while futures:
  644. result = futures.pop(0).result()
  645. while not done and len(futures) < concurrency:
  646. try:
  647. futures.append(executor.submit(func, next(iterable)))
  648. except StopIteration:
  649. done = True
  650. break
  651. yield result
  652. def check_vocab_size(params: Params, vocab: Vocab) -> None:
  653. if params.n_vocab != vocab.vocab_size:
  654. assert isinstance(vocab, BpeVocab) or isinstance(vocab, SentencePieceVocab)
  655. if params.n_vocab == vocab.vocab_size_base:
  656. print("Ignoring added_tokens.json since model matches vocab size without it.")
  657. vocab.added_tokens_list = []
  658. vocab.vocab_size = vocab.vocab_size_base
  659. return
  660. msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer}"
  661. if vocab.fname_added_tokens is not None:
  662. msg += f" combined with {vocab.fname_added_tokens}"
  663. msg += f" has {vocab.vocab_size})."
  664. if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20 and vocab.fname_added_tokens is None:
  665. msg += f" Most likely you are missing added_tokens.json (should be in {vocab.fname_tokenizer.parent})."
  666. raise Exception(msg)
  667. class OutputFile:
  668. def __init__(self, fname_out: Path) -> None:
  669. self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
  670. def add_meta_arch(self, params: Params) -> None:
  671. name = "LLaMA"
  672. # TODO: better logic to determine model name
  673. if (params.n_ctx == 4096):
  674. name = "LLaMA v2"
  675. elif params.path_model:
  676. name = str(params.path_model.parent).split('/')[-1]
  677. self.gguf.add_name (name)
  678. self.gguf.add_context_length (params.n_ctx)
  679. self.gguf.add_embedding_length (params.n_embd)
  680. self.gguf.add_block_count (params.n_layer)
  681. self.gguf.add_feed_forward_length (params.n_ff)
  682. self.gguf.add_rope_dimension_count(params.n_embd // params.n_head)
  683. self.gguf.add_head_count (params.n_head)
  684. self.gguf.add_head_count_kv (params.n_head_kv)
  685. self.gguf.add_layer_norm_rms_eps (params.f_norm_eps)
  686. if params.f_rope_freq_base:
  687. self.gguf.add_rope_freq_base(params.f_rope_freq_base)
  688. if params.f_rope_scale:
  689. self.gguf.add_rope_scale_linear(params.f_rope_scale)
  690. if params.ftype:
  691. self.gguf.add_file_type(params.ftype)
  692. def add_meta_vocab(self, vocab: Vocab) -> None:
  693. tokens = []
  694. scores = []
  695. toktypes = []
  696. # NOTE: `all_tokens` returns the base vocabulary and added tokens
  697. for text, score, toktype in vocab.all_tokens():
  698. tokens.append(text)
  699. scores.append(score)
  700. toktypes.append(toktype)
  701. if isinstance(vocab, SentencePieceVocab):
  702. self.gguf.add_tokenizer_model("llama")
  703. elif isinstance(vocab, BpeVocab):
  704. self.gguf.add_tokenizer_model("gpt2")
  705. else:
  706. raise ValueError(f'Unknown vocab type: Not BpeVocab or SentencePieceVocab')
  707. self.gguf.add_token_list(tokens)
  708. self.gguf.add_token_scores(scores)
  709. self.gguf.add_token_types(toktypes)
  710. def add_meta_special_vocab(self, svocab: gguf.SpecialVocab) -> None:
  711. svocab.add_to_gguf(self.gguf)
  712. def add_tensor_info(self, name: str, tensor: LazyTensor) -> None:
  713. n_elements = int(np.prod(tensor.shape))
  714. raw_dtype = getattr(tensor.data_type, 'ggml_type', None)
  715. data_type = getattr(tensor.data_type, 'quantized_type', None) or tensor.data_type.dtype
  716. data_nbytes = tensor.data_type.elements_to_bytes(n_elements)
  717. self.gguf.add_tensor_info(name, tensor.shape, data_type, data_nbytes, raw_dtype = raw_dtype)
  718. def write_meta(self) -> None:
  719. self.gguf.write_header_to_file()
  720. self.gguf.write_kv_data_to_file()
  721. def write_tensor_info(self) -> None:
  722. self.gguf.write_ti_data_to_file()
  723. def close(self) -> None:
  724. self.gguf.close()
  725. @staticmethod
  726. def write_vocab_only(fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab) -> None:
  727. check_vocab_size(params, vocab)
  728. of = OutputFile(fname_out)
  729. # meta data
  730. of.add_meta_arch(params)
  731. of.add_meta_vocab(vocab)
  732. of.add_meta_special_vocab(svocab)
  733. of.write_meta()
  734. of.close()
  735. @staticmethod
  736. def do_item(item: tuple[str, LazyTensor]) -> tuple[DataType, NDArray]:
  737. name, lazy_tensor = item
  738. tensor = lazy_tensor.load().to_ggml()
  739. return (lazy_tensor.data_type, tensor.ndarray)
  740. @staticmethod
  741. def maybe_do_quantize(item: tuple[DataType, NDArray]) -> NDArray:
  742. dt, arr = item
  743. if not isinstance(dt, QuantizedDataType):
  744. return arr
  745. return dt.quantize(arr)
  746. @staticmethod
  747. def write_all(fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: Vocab, svocab: gguf.SpecialVocab, concurrency: int = DEFAULT_CONCURRENCY) -> None:
  748. check_vocab_size(params, vocab)
  749. of = OutputFile(fname_out)
  750. # meta data
  751. of.add_meta_arch(params)
  752. of.add_meta_vocab(vocab)
  753. of.add_meta_special_vocab(svocab)
  754. # tensor info
  755. for name, lazy_tensor in model.items():
  756. of.add_tensor_info(name, lazy_tensor)
  757. of.write_meta()
  758. of.write_tensor_info()
  759. # tensor data
  760. ndarrays_inner = bounded_parallel_map(OutputFile.do_item, model.items(), concurrency = concurrency)
  761. if ftype == GGMLFileType.MostlyQ8_0:
  762. ndarrays = bounded_parallel_map(OutputFile.maybe_do_quantize, ndarrays_inner, concurrency = concurrency, max_workers = concurrency, use_processpool_executor = True)
  763. else:
  764. ndarrays = map(OutputFile.maybe_do_quantize, ndarrays_inner)
  765. start = time.time()
  766. for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)):
  767. elapsed = time.time() - start
  768. size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape)
  769. padi = len(str(len(model)))
  770. print(f"[{i+1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type.name:4} | T+{int(elapsed):4}")
  771. of.gguf.write_tensor_data(ndarray)
  772. of.close()
  773. def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileType:
  774. wq_type = model[NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0)+".weight"].data_type
  775. if output_type_str == "f32" or (output_type_str is None and wq_type == DT_F32):
  776. return GGMLFileType.AllF32
  777. if output_type_str == "f16" or (output_type_str is None and wq_type in (DT_F16, DT_BF16)):
  778. return GGMLFileType.MostlyF16
  779. if output_type_str == "q8_0":
  780. return GGMLFileType.MostlyQ8_0
  781. name_to_type = {name: lazy_tensor.data_type for (name, lazy_tensor) in model.items()}
  782. raise Exception(f"Unexpected combination of types: {name_to_type}")
  783. def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel:
  784. return {name: tensor.astype(output_type.type_for_tensor(name, tensor))
  785. for (name, tensor) in model.items()}
  786. def convert_model_names(model: LazyModel, params: Params) -> LazyModel:
  787. tmap = gguf.TensorNameMap(ARCH, params.n_layer)
  788. should_skip: set[gguf.MODEL_TENSOR] = set(gguf.MODEL_TENSOR_SKIP.get(ARCH, []))
  789. tmp = model
  790. # HF models permut or pack some of the tensors, so we need to undo that
  791. for i in itertools.count():
  792. if f"model.layers.{i}.self_attn.q_proj.weight" in model:
  793. print(f"Permuting layer {i}")
  794. tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head, params.n_head)
  795. tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head, params.n_head_kv)
  796. #tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
  797. elif f"model.layers.{i}.self_attn.W_pack.weight" in model:
  798. print(f"Unpacking and permuting layer {i}")
  799. tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head, params.n_head)
  800. tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head, params.n_head_kv)
  801. tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = part_lazy (model[f"model.layers.{i}.self_attn.W_pack.weight"], 2)
  802. del tmp[f"model.layers.{i}.self_attn.W_pack.weight"]
  803. else:
  804. break
  805. out: LazyModel = {}
  806. for name, lazy_tensor in model.items():
  807. tensor_type, name_new = tmap.get_type_and_name(name, try_suffixes = (".weight", ".bias")) or (None, None)
  808. if name_new is None:
  809. raise Exception(f"Unexpected tensor name: {name}")
  810. if tensor_type in should_skip:
  811. print(f"skipping tensor {name_new}")
  812. continue
  813. print(f"{name:48s} -> {name_new:40s} | {lazy_tensor.data_type.name:6s} | {lazy_tensor.shape}")
  814. out[name_new] = lazy_tensor
  815. return out
  816. def nth_multifile_path(path: Path, n: int) -> Path | None:
  817. '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
  818. the nth path in the model.
  819. '''
  820. # Support the following patterns:
  821. patterns: list[tuple[str, str]] = [
  822. # - x.00.pth, x.01.pth, etc.
  823. (r'\.[0-9]{2}\.pth$', f'.{n:02}.pth'),
  824. # - x-00001-of-00002.bin, x-00002-of-00002.bin, etc.
  825. (r'-[0-9]{5}-of-(.*)$', fr'-{n:05}-of-\1'),
  826. # x.bin, x.bin.1, etc.
  827. (r'(\.[0-9]+)?$', r'\1' if n == 0 else fr'\1.{n}')
  828. ]
  829. for regex, replacement in patterns:
  830. if re.search(regex, path.name):
  831. new_path = path.with_name(re.sub(regex, replacement, path.name))
  832. if new_path.exists():
  833. return new_path
  834. return None
  835. def find_multifile_paths(path: Path) -> list[Path]:
  836. '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
  837. the whole list of paths in the model.
  838. '''
  839. ret: list[Path] = []
  840. for i in itertools.count():
  841. nth_path = nth_multifile_path(path, i)
  842. if nth_path is None:
  843. break
  844. ret.append(nth_path)
  845. if not ret:
  846. # No matches. This should only happen if the file was named, e.g.,
  847. # foo.0, and there was no file named foo. Oh well, try to process it
  848. # as a single file.
  849. return [path]
  850. return ret
  851. def load_some_model(path: Path) -> ModelPlus:
  852. '''Load a model of any supported format.'''
  853. # Be extra-friendly and accept either a file or a directory:
  854. if path.is_dir():
  855. # Check if it's a set of safetensors files first
  856. files = list(path.glob("model-00001-of-*.safetensors"))
  857. if not files:
  858. # Try the PyTorch patterns too, with lower priority
  859. globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt", "pytorch_model.bin"]
  860. files = [file for glob in globs for file in path.glob(glob)]
  861. if not files:
  862. raise Exception(f"Can't find model in directory {path}")
  863. if len(files) > 1:
  864. raise Exception(f"Found multiple models in {path}, not sure which to pick: {files}")
  865. path = files[0]
  866. paths = find_multifile_paths(path)
  867. models_plus: list[ModelPlus] = []
  868. for path in paths:
  869. print(f"Loading model file {path}")
  870. models_plus.append(lazy_load_file(path))
  871. model_plus = merge_multifile_models(models_plus)
  872. return model_plus
  873. def load_vocab(path: Path, vocabtype: str | None) -> Vocab:
  874. # Be extra-friendly and accept either a file or a directory. Also, if it's
  875. # a directory, it might be the model directory, and tokenizer.model might
  876. # be in the parent of that.
  877. if path.is_dir():
  878. vocab_file = "tokenizer.model"
  879. if vocabtype == 'bpe':
  880. vocab_file = "vocab.json"
  881. path2 = path / vocab_file
  882. # Use `.parent` instead of /.. to handle the symlink case better.
  883. path3 = path.parent / vocab_file
  884. if path2.exists():
  885. path = path2
  886. elif path3.exists():
  887. path = path3
  888. else:
  889. raise FileNotFoundError(
  890. f"Could not find {vocab_file} in {path} or its parent; "
  891. "if it's in another directory, pass the directory as --vocab-dir")
  892. print(f"Loading vocab file '{path}', type '{vocabtype}'")
  893. added_tokens_path = path.parent / "added_tokens.json"
  894. if vocabtype == "bpe":
  895. return BpeVocab(path, added_tokens_path if added_tokens_path.exists() else None)
  896. elif vocabtype == "spm":
  897. return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None)
  898. else:
  899. raise ValueError(f"Unsupported vocabulary type {vocabtype}")
  900. def default_outfile(model_paths: list[Path], file_type: GGMLFileType) -> Path:
  901. namestr = {
  902. GGMLFileType.AllF32: "f32",
  903. GGMLFileType.MostlyF16: "f16",
  904. GGMLFileType.MostlyQ8_0:"q8_0",
  905. }[file_type]
  906. ret = model_paths[0].parent / f"ggml-model-{namestr}.gguf"
  907. if ret in model_paths:
  908. sys.stderr.write(
  909. f"Error: Default output path ({ret}) would overwrite the input. "
  910. "Please explicitly specify a path using --outfile.\n")
  911. sys.exit(1)
  912. return ret
  913. def do_dump_model(model_plus: ModelPlus) -> None:
  914. print(f"model_plus.paths = {model_plus.paths!r}")
  915. print(f"model_plus.format = {model_plus.format!r}")
  916. print(f"model_plus.vocab = {model_plus.vocab!r}")
  917. for name, lazy_tensor in model_plus.model.items():
  918. print(f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}")
  919. def main(args_in: list[str] | None = None) -> None:
  920. parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file")
  921. parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
  922. parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")
  923. parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
  924. parser.add_argument("--outtype", choices=["f32", "f16", "q8_0"], help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)")
  925. parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file")
  926. parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
  927. parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
  928. parser.add_argument("--vocabtype", choices=["spm", "bpe"], help="vocab format (default: spm)", default="spm")
  929. parser.add_argument("--ctx", type=int, help="model training context (default: based on input)")
  930. parser.add_argument("--concurrency", type=int, help=f"concurrency used for conversion (default: {DEFAULT_CONCURRENCY})", default = DEFAULT_CONCURRENCY)
  931. args = parser.parse_args(args_in)
  932. if args.dump_single:
  933. model_plus = lazy_load_file(args.model)
  934. do_dump_model(model_plus)
  935. return
  936. if not args.vocab_only:
  937. model_plus = load_some_model(args.model)
  938. else:
  939. model_plus = ModelPlus(model = {}, paths = [args.model / 'dummy'], format = 'none', vocab = None)
  940. if args.dump:
  941. do_dump_model(model_plus)
  942. return
  943. params = Params.load(model_plus)
  944. if params.n_ctx == -1:
  945. if args.ctx is None:
  946. raise Exception("The model doesn't have a context size, and you didn't specify one with --ctx\n"
  947. "Please specify one with --ctx:\n"
  948. " - LLaMA v1: --ctx 2048\n"
  949. " - LLaMA v2: --ctx 4096\n")
  950. params.n_ctx = args.ctx
  951. if args.outtype:
  952. params.ftype = {
  953. "f32": GGMLFileType.AllF32,
  954. "f16": GGMLFileType.MostlyF16,
  955. "q8_0": GGMLFileType.MostlyQ8_0,
  956. }[args.outtype]
  957. print(f"params = {params}")
  958. vocab: Vocab
  959. if args.vocab_only:
  960. assert args.outfile, "need --outfile if using --vocab-only"
  961. # FIXME: Try to respect vocab_dir somehow?
  962. vocab = load_vocab(args.vocab_dir or args.model, args.vocabtype)
  963. special_vocab = gguf.SpecialVocab(model_plus.paths[0].parent, load_merges = args.vocabtype == 'bpe')
  964. outfile = args.outfile
  965. OutputFile.write_vocab_only(outfile, params, vocab, special_vocab)
  966. print(f"Wrote {outfile}")
  967. return
  968. if model_plus.vocab is not None and args.vocab_dir is None:
  969. vocab = model_plus.vocab
  970. else:
  971. vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent
  972. vocab = load_vocab(vocab_dir, args.vocabtype)
  973. # FIXME: Try to respect vocab_dir somehow?
  974. special_vocab = gguf.SpecialVocab(model_plus.paths[0].parent, load_merges = args.vocabtype == 'bpe')
  975. model = model_plus.model
  976. model = convert_model_names(model, params)
  977. ftype = pick_output_type(model, args.outtype)
  978. model = convert_to_output_type(model, ftype)
  979. outfile = args.outfile or default_outfile(model_plus.paths, ftype)
  980. params.ftype = ftype
  981. print(f"Writing {outfile}, format {ftype}")
  982. OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab, concurrency = args.concurrency)
  983. print(f"Wrote {outfile}")
  984. if __name__ == '__main__':
  985. main()