convert_hf_to_gguf.py 430 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. from gguf.vocab import MistralTokenizerType, MistralVocab
  27. from mistral_common.tokens.tokenizers.base import TokenizerVersion
  28. from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN, DATASET_STD
  29. from mistral_common.tokens.tokenizers.tekken import Tekkenizer
  30. from mistral_common.tokens.tokenizers.sentencepiece import (
  31. SentencePieceTokenizer,
  32. )
  33. logger = logging.getLogger("hf-to-gguf")
  34. ###### MODEL DEFINITIONS ######
  35. class SentencePieceTokenTypes(IntEnum):
  36. NORMAL = 1
  37. UNKNOWN = 2
  38. CONTROL = 3
  39. USER_DEFINED = 4
  40. UNUSED = 5
  41. BYTE = 6
  42. class ModelType(IntEnum):
  43. TEXT = 1
  44. MMPROJ = 2
  45. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  46. class ModelBase:
  47. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  48. ModelType.TEXT: {},
  49. ModelType.MMPROJ: {},
  50. }
  51. dir_model: Path
  52. ftype: gguf.LlamaFileType
  53. fname_out: Path
  54. is_big_endian: bool
  55. endianess: gguf.GGUFEndian
  56. use_temp_file: bool
  57. lazy: bool
  58. dry_run: bool
  59. part_names: list[str]
  60. is_safetensors: bool
  61. hparams: dict[str, Any]
  62. tensor_names: set[str] | None
  63. gguf_writer: gguf.GGUFWriter
  64. model_name: str | None
  65. metadata_override: Path | None
  66. dir_model_card: Path
  67. remote_hf_model_id: str | None
  68. # subclasses should define this!
  69. model_arch: gguf.MODEL_ARCH
  70. # subclasses should initialize this!
  71. block_count: int
  72. tensor_map: gguf.TensorNameMap
  73. # Mistral format specifics
  74. is_mistral_format: bool = False
  75. disable_mistral_community_chat_template: bool = False
  76. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  77. use_temp_file: bool = False, eager: bool = False,
  78. metadata_override: Path | None = None, model_name: str | None = None,
  79. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  80. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
  81. disable_mistral_community_chat_template: bool = False):
  82. if type(self) is ModelBase or \
  83. type(self) is TextModel or \
  84. type(self) is MmprojModel:
  85. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  86. self.dir_model = dir_model
  87. self.ftype = ftype
  88. self.fname_out = fname_out
  89. self.is_big_endian = is_big_endian
  90. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  91. self.use_temp_file = use_temp_file
  92. self.lazy = not eager or (remote_hf_model_id is not None)
  93. self.dry_run = dry_run
  94. self.remote_hf_model_id = remote_hf_model_id
  95. if remote_hf_model_id is not None:
  96. self.is_safetensors = True
  97. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  98. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  99. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  100. self.tensor_names = set(name for name in remote_tensors.keys())
  101. for name, remote_tensor in remote_tensors.items():
  102. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  103. self.get_tensors = get_remote_tensors
  104. else:
  105. prefix = "model" if not self.is_mistral_format else "consolidated"
  106. self.part_names = ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors")
  107. self.is_safetensors = len(self.part_names) > 0
  108. if not self.is_safetensors:
  109. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  110. self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
  111. self.tensor_names = None
  112. self.metadata_override = metadata_override
  113. self.model_name = model_name
  114. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  115. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  116. if self.ftype == gguf.LlamaFileType.GUESSED:
  117. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  118. _, first_tensor = next(self.get_tensors())
  119. if first_tensor.dtype == torch.float16:
  120. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  121. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  122. else:
  123. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  124. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  125. # Configure GGUF Writer
  126. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  127. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  128. # Mistral specific
  129. self.disable_mistral_community_chat_template = disable_mistral_community_chat_template
  130. @classmethod
  131. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  132. stem, suffix = path.stem, path.suffix
  133. new_name = f"{prefix}{stem}{suffix}"
  134. return path.with_name(new_name)
  135. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  136. key = next((k for k in keys if k in self.hparams), None)
  137. if key is not None:
  138. return self.hparams[key]
  139. if optional:
  140. return None
  141. raise KeyError(f"could not find any of: {keys}")
  142. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  143. tensor_names_from_parts: set[str] = set()
  144. if not self.is_mistral_format:
  145. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  146. index_name += ".index.json"
  147. index_file = self.dir_model / index_name
  148. if index_file.is_file():
  149. self.tensor_names = set()
  150. logger.info(f"gguf: loading model weight map from '{index_name}'")
  151. with open(index_file, "r", encoding="utf-8") as f:
  152. index: dict[str, Any] = json.load(f)
  153. weight_map = index.get("weight_map")
  154. if weight_map is None or not isinstance(weight_map, dict):
  155. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  156. self.tensor_names.update(weight_map.keys())
  157. else:
  158. self.tensor_names = tensor_names_from_parts
  159. weight_map = {}
  160. else:
  161. self.tensor_names = tensor_names_from_parts
  162. weight_map = {}
  163. for part_name in self.part_names:
  164. logger.info(f"gguf: loading model part '{part_name}'")
  165. ctx: ContextManager[Any]
  166. if self.is_safetensors:
  167. from safetensors import safe_open
  168. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  169. else:
  170. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  171. with ctx as model_part:
  172. tensor_names_from_parts.update(model_part.keys())
  173. for name in model_part.keys():
  174. if self.is_safetensors:
  175. if self.lazy:
  176. data = model_part.get_slice(name)
  177. data = LazyTorchTensor.from_safetensors_slice(data)
  178. else:
  179. data = model_part.get_tensor(name)
  180. else:
  181. data = model_part[name]
  182. if self.lazy:
  183. data = LazyTorchTensor.from_eager(data)
  184. yield name, data
  185. # verify tensor name presence and identify potentially missing files
  186. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  187. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  188. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  189. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  190. if len(extra) == 0 and len(missing_files) > 0:
  191. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  192. f"Missing tensors: {missing}")
  193. else:
  194. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  195. f"Missing tensors: {missing}\n"
  196. f"Extra tensors: {extra}")
  197. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  198. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  199. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  200. name: str = gguf.TENSOR_NAMES[key]
  201. if "{bid}" in name:
  202. assert bid is not None
  203. name = name.format(bid=bid)
  204. return name + suffix
  205. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  206. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  207. return False
  208. key_name: str = gguf.TENSOR_NAMES[key]
  209. if "{bid}" in key_name:
  210. if bid is None:
  211. return False
  212. key_name = key_name.format(bid=bid)
  213. else:
  214. if bid is not None:
  215. return False
  216. return name == (key_name + suffix)
  217. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  218. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  219. if new_name is None:
  220. raise ValueError(f"Can not map tensor {name!r}")
  221. return new_name
  222. def set_gguf_parameters(self):
  223. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  224. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  225. del bid # unused
  226. return [(self.map_tensor_name(name), data_torch)]
  227. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  228. del name, new_name, bid, n_dims # unused
  229. return False
  230. # some models need extra generated tensors (like rope_freqs)
  231. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  232. return ()
  233. def prepare_tensors(self):
  234. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  235. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  236. # we don't need these
  237. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  238. continue
  239. old_dtype = data_torch.dtype
  240. # convert any unsupported data types to float32
  241. if data_torch.dtype not in (torch.float16, torch.float32):
  242. data_torch = data_torch.to(torch.float32)
  243. # use the first number-like part of the tensor name as the block id
  244. bid = None
  245. for part in name.split("."):
  246. if part.isdecimal():
  247. bid = int(part)
  248. break
  249. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  250. # TODO: why do we squeeze here?
  251. # data = data_torch.squeeze().numpy()
  252. data = data_torch.numpy()
  253. n_dims = len(data.shape)
  254. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  255. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  256. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  257. data_qtype = gguf.GGMLQuantizationType.F32
  258. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  259. # Some tensor types are always in float32
  260. if data_qtype is False and (
  261. any(
  262. self.match_model_tensor_name(new_name, key, bid)
  263. for key in (
  264. gguf.MODEL_TENSOR.FFN_GATE_INP,
  265. gguf.MODEL_TENSOR.POS_EMBD,
  266. gguf.MODEL_TENSOR.TOKEN_TYPES,
  267. gguf.MODEL_TENSOR.SSM_CONV1D,
  268. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  269. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  270. gguf.MODEL_TENSOR.TIME_MIX_W1,
  271. gguf.MODEL_TENSOR.TIME_MIX_W2,
  272. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  273. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  274. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  275. gguf.MODEL_TENSOR.POSNET_NORM1,
  276. gguf.MODEL_TENSOR.POSNET_NORM2,
  277. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  278. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  279. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  280. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  281. )
  282. )
  283. or not new_name.endswith(".weight")
  284. ):
  285. data_qtype = gguf.GGMLQuantizationType.F32
  286. if data_qtype is False and any(
  287. self.match_model_tensor_name(new_name, key, bid)
  288. for key in (
  289. gguf.MODEL_TENSOR.TOKEN_EMBD,
  290. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  291. gguf.MODEL_TENSOR.OUTPUT,
  292. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  293. gguf.MODEL_TENSOR.LAUREL_L,
  294. gguf.MODEL_TENSOR.LAUREL_R,
  295. )
  296. ):
  297. if self.ftype in (
  298. gguf.LlamaFileType.MOSTLY_TQ1_0,
  299. gguf.LlamaFileType.MOSTLY_TQ2_0,
  300. ):
  301. # TODO: use Q4_K and Q6_K
  302. data_qtype = gguf.GGMLQuantizationType.F16
  303. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  304. if isinstance(data_qtype, bool):
  305. if self.ftype == gguf.LlamaFileType.ALL_F32:
  306. data_qtype = gguf.GGMLQuantizationType.F32
  307. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  308. data_qtype = gguf.GGMLQuantizationType.F16
  309. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  310. data_qtype = gguf.GGMLQuantizationType.BF16
  311. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  312. data_qtype = gguf.GGMLQuantizationType.Q8_0
  313. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  314. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  315. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  316. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  317. else:
  318. raise ValueError(f"Unknown file type: {self.ftype.name}")
  319. try:
  320. data = gguf.quants.quantize(data, data_qtype)
  321. except gguf.QuantError as e:
  322. logger.warning("%s, %s", e, "falling back to F16")
  323. data_qtype = gguf.GGMLQuantizationType.F16
  324. data = gguf.quants.quantize(data, data_qtype)
  325. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  326. # reverse shape to make it similar to the internal ggml dimension order
  327. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  328. # n_dims is implicit in the shape
  329. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  330. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  331. def set_type(self):
  332. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  333. def prepare_metadata(self, vocab_only: bool):
  334. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  335. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  336. # If we are using HF model id, set the metadata name to the model id
  337. if self.remote_hf_model_id:
  338. self.metadata.name = self.remote_hf_model_id
  339. # Fallback to model directory name if metadata name is still missing
  340. if self.metadata.name is None:
  341. self.metadata.name = self.dir_model.name
  342. # Generate parameter weight class (useful for leader boards) if not yet determined
  343. if self.metadata.size_label is None and total_params > 0:
  344. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  345. self.set_type()
  346. logger.info("Set meta model")
  347. self.metadata.set_gguf_meta_model(self.gguf_writer)
  348. logger.info("Set model parameters")
  349. self.set_gguf_parameters()
  350. logger.info("Set model quantization version")
  351. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  352. def write_vocab(self):
  353. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  354. def write(self):
  355. self.prepare_tensors()
  356. self.prepare_metadata(vocab_only=False)
  357. self.gguf_writer.write_header_to_file(path=self.fname_out)
  358. self.gguf_writer.write_kv_data_to_file()
  359. self.gguf_writer.write_tensors_to_file(progress=True)
  360. self.gguf_writer.close()
  361. @staticmethod
  362. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  363. part_names: list[str] = []
  364. for filename in os.listdir(dir_model):
  365. if filename.startswith(prefix) and filename.endswith(suffix):
  366. part_names.append(filename)
  367. part_names.sort()
  368. return part_names
  369. @staticmethod
  370. def load_hparams(dir_model: Path, is_mistral_format: bool):
  371. if is_mistral_format:
  372. with open(dir_model / "params.json", "r", encoding="utf-8") as f:
  373. config = json.load(f)
  374. return config
  375. try:
  376. # for security reason, we don't allow loading remote code by default
  377. # if a model need remote code, we will fallback to config.json
  378. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  379. except Exception as e:
  380. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  381. logger.warning("Trying to load config.json instead")
  382. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  383. config = json.load(f)
  384. if "llm_config" in config:
  385. # rename for InternVL
  386. config["text_config"] = config["llm_config"]
  387. if "thinker_config" in config:
  388. # rename for Qwen2.5-Omni
  389. config["text_config"] = config["thinker_config"]["text_config"]
  390. return config
  391. @classmethod
  392. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  393. assert names
  394. def func(modelcls: AnyModel) -> AnyModel:
  395. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  396. for name in names:
  397. cls._model_classes[model_type][name] = modelcls
  398. return modelcls
  399. return func
  400. @classmethod
  401. def print_registered_models(cls):
  402. for model_type, model_classes in cls._model_classes.items():
  403. logger.error(f"{model_type.name} models:")
  404. for name in sorted(model_classes.keys()):
  405. logger.error(f" - {name}")
  406. @classmethod
  407. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  408. try:
  409. return cls._model_classes[model_type][arch]
  410. except KeyError:
  411. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  412. class TextModel(ModelBase):
  413. model_type = ModelType.TEXT
  414. hf_arch: str
  415. def __init__(self, *args, **kwargs):
  416. super().__init__(*args, **kwargs)
  417. if not self.is_mistral_format:
  418. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  419. else:
  420. self.hf_arch = ""
  421. if "text_config" in self.hparams:
  422. # move the text_config to the root level
  423. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  424. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  425. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  426. @classmethod
  427. def __init_subclass__(cls):
  428. # can't use an abstract property, because overriding it without type errors
  429. # would require using decorated functions instead of simply defining the property
  430. if "model_arch" not in cls.__dict__:
  431. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  432. def set_vocab(self):
  433. self._set_vocab_gpt2()
  434. def prepare_metadata(self, vocab_only: bool):
  435. super().prepare_metadata(vocab_only=vocab_only)
  436. total_params = self.gguf_writer.get_total_parameter_count()[0]
  437. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  438. output_type: str = self.ftype.name.partition("_")[2]
  439. # Filename Output
  440. if self.fname_out.is_dir():
  441. # Generate default filename based on model specification and available metadata
  442. if not vocab_only:
  443. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  444. else:
  445. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  446. # Use the default filename
  447. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  448. else:
  449. # Output path is a custom defined templated filename
  450. # Note: `not is_dir()` is used because `.is_file()` will not detect
  451. # file template strings as it doesn't actually exist as a file
  452. # Process templated file name with the output ftype, useful with the "auto" ftype
  453. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  454. logger.info("Set model tokenizer")
  455. self.set_vocab()
  456. def set_gguf_parameters(self):
  457. self.gguf_writer.add_block_count(self.block_count)
  458. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
  459. self.gguf_writer.add_context_length(n_ctx)
  460. logger.info(f"gguf: context length = {n_ctx}")
  461. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  462. self.gguf_writer.add_embedding_length(n_embd)
  463. logger.info(f"gguf: embedding length = {n_embd}")
  464. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  465. self.gguf_writer.add_feed_forward_length(n_ff)
  466. logger.info(f"gguf: feed forward length = {n_ff}")
  467. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  468. self.gguf_writer.add_head_count(n_head)
  469. logger.info(f"gguf: head count = {n_head}")
  470. if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
  471. self.gguf_writer.add_head_count_kv(n_head_kv)
  472. logger.info(f"gguf: key-value head count = {n_head_kv}")
  473. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  474. self.gguf_writer.add_rope_freq_base(rope_theta)
  475. logger.info(f"gguf: rope theta = {rope_theta}")
  476. if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
  477. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  478. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  479. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  480. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  481. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  482. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  483. self.gguf_writer.add_expert_count(n_experts)
  484. logger.info(f"gguf: expert count = {n_experts}")
  485. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  486. self.gguf_writer.add_expert_used_count(n_experts_used)
  487. logger.info(f"gguf: experts used count = {n_experts_used}")
  488. if (head_dim := self.hparams.get("head_dim")) is not None:
  489. self.gguf_writer.add_key_length(head_dim)
  490. self.gguf_writer.add_value_length(head_dim)
  491. self.gguf_writer.add_file_type(self.ftype)
  492. logger.info(f"gguf: file type = {self.ftype}")
  493. def write_vocab(self):
  494. if len(self.gguf_writer.tensors) != 1:
  495. raise ValueError('Splitting the vocabulary is not supported')
  496. self.prepare_metadata(vocab_only=True)
  497. self.gguf_writer.write_header_to_file(path=self.fname_out)
  498. self.gguf_writer.write_kv_data_to_file()
  499. self.gguf_writer.close()
  500. def does_token_look_special(self, token: str | bytes) -> bool:
  501. if isinstance(token, (bytes, bytearray)):
  502. token_text = token.decode(encoding="utf-8")
  503. elif isinstance(token, memoryview):
  504. token_text = token.tobytes().decode(encoding="utf-8")
  505. else:
  506. token_text = token
  507. # Some models mark some added tokens which ought to be control tokens as not special.
  508. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  509. seems_special = token_text in (
  510. "<pad>", # deepseek-coder
  511. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  512. )
  513. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  514. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  515. # TODO: should these be marked as UNUSED instead? (maybe not)
  516. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  517. return seems_special
  518. # used for GPT-2 BPE and WordPiece vocabs
  519. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  520. tokens: list[str] = []
  521. toktypes: list[int] = []
  522. from transformers import AutoTokenizer
  523. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  524. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  525. assert max(tokenizer.vocab.values()) < vocab_size
  526. tokpre = self.get_vocab_base_pre(tokenizer)
  527. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  528. added_vocab = tokenizer.get_added_vocab()
  529. added_tokens_decoder = tokenizer.added_tokens_decoder
  530. for i in range(vocab_size):
  531. if i not in reverse_vocab:
  532. tokens.append(f"[PAD{i}]")
  533. toktypes.append(gguf.TokenType.UNUSED)
  534. else:
  535. token: str = reverse_vocab[i]
  536. if token in added_vocab:
  537. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  538. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  539. if not added_tokens_decoder[i].normalized:
  540. previous_token = token
  541. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  542. if previous_token != token:
  543. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  544. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  545. toktypes.append(gguf.TokenType.CONTROL)
  546. else:
  547. # NOTE: this was added for Gemma.
  548. # Encoding and decoding the tokens above isn't sufficient for this case.
  549. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  550. toktypes.append(gguf.TokenType.USER_DEFINED)
  551. else:
  552. toktypes.append(gguf.TokenType.NORMAL)
  553. tokens.append(token)
  554. return tokens, toktypes, tokpre
  555. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  556. # do not modify it manually!
  557. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  558. # Marker: Start get_vocab_base_pre
  559. def get_vocab_base_pre(self, tokenizer) -> str:
  560. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  561. # is specific for the BPE pre-tokenizer used by the model
  562. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  563. # use in llama.cpp to implement the same pre-tokenizer
  564. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  565. chktok = tokenizer.encode(chktxt)
  566. chkhsh = sha256(str(chktok).encode()).hexdigest()
  567. logger.debug(f"chktok: {chktok}")
  568. logger.debug(f"chkhsh: {chkhsh}")
  569. res = None
  570. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  571. # or pull the latest version of the model from Huggingface
  572. # don't edit the hashes manually!
  573. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  574. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  575. res = "chatglm-bpe"
  576. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  577. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  578. res = "chatglm-bpe"
  579. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  580. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  581. res = "glm4"
  582. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  583. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  584. res = "glm4"
  585. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  586. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  587. res = "minerva-7b"
  588. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  589. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  590. res = "hunyuan"
  591. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  592. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  593. res = "hunyuan-dense"
  594. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  595. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  596. res = "falcon-h1"
  597. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  598. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  599. res = "falcon-h1"
  600. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  601. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  602. res = "falcon-h1"
  603. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  604. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  605. res = "falcon-h1"
  606. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  607. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  608. res = "kimi-k2"
  609. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  610. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  611. res = "qwen2"
  612. if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
  613. # ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
  614. res = "grok-2"
  615. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  616. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  617. res = "llama-bpe"
  618. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  619. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  620. res = "deepseek-llm"
  621. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  622. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  623. res = "deepseek-coder"
  624. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  625. # ref: https://huggingface.co/tiiuae/falcon-7b
  626. res = "falcon"
  627. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  628. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  629. res = "bert-bge"
  630. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  631. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  632. res = "falcon3"
  633. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  634. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  635. res = "bert-bge-large"
  636. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  637. # ref: https://huggingface.co/mosaicml/mpt-7b
  638. res = "mpt"
  639. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  640. # ref: https://huggingface.co/bigcode/starcoder2-3b
  641. res = "starcoder"
  642. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  643. # ref: https://huggingface.co/openai-community/gpt2
  644. res = "gpt-2"
  645. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  646. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  647. res = "stablelm2"
  648. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  649. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  650. res = "refact"
  651. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  652. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  653. res = "command-r"
  654. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  655. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  656. res = "qwen2"
  657. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  658. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  659. res = "olmo"
  660. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  661. # ref: https://huggingface.co/databricks/dbrx-base
  662. res = "dbrx"
  663. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  664. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  665. res = "jina-v1-en"
  666. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  667. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  668. res = "jina-v2-en"
  669. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  670. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  671. res = "jina-v2-es"
  672. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  673. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  674. res = "jina-v2-de"
  675. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  676. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  677. res = "smaug-bpe"
  678. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  679. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  680. res = "poro-chat"
  681. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  682. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  683. res = "jina-v2-code"
  684. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  685. # ref: https://huggingface.co/LumiOpen/Viking-7B
  686. res = "viking"
  687. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  688. # ref: https://huggingface.co/core42/jais-13b
  689. res = "jais"
  690. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  691. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  692. res = "codeshell"
  693. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  694. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  695. res = "tekken"
  696. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  697. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  698. res = "smollm"
  699. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  700. # ref: https://huggingface.co/bigscience/bloom
  701. res = "bloom"
  702. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  703. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  704. res = "gpt3-finnish"
  705. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  706. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  707. res = "exaone"
  708. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  709. # ref: https://huggingface.co/microsoft/phi-2
  710. res = "phi-2"
  711. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  712. # ref: https://huggingface.co/facebook/chameleon-7b
  713. res = "chameleon"
  714. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  715. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  716. res = "roberta-bpe"
  717. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  718. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  719. res = "gigachat"
  720. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  721. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  722. res = "megrez"
  723. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  724. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  725. res = "deepseek-v3"
  726. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  727. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  728. res = "deepseek-r1-qwen"
  729. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  730. # ref: https://huggingface.co/Xenova/gpt-4o
  731. res = "gpt-4o"
  732. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  733. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  734. res = "superbpe"
  735. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  736. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  737. res = "trillion"
  738. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  739. # ref: https://huggingface.co/inclusionAI/Ling-lite
  740. res = "bailingmoe"
  741. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  742. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  743. res = "llama4"
  744. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  745. # ref: https://huggingface.co/mistral-community/pixtral-12b
  746. res = "pixtral"
  747. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  748. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  749. res = "seed-coder"
  750. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  751. # ref: https://huggingface.co/skt/A.X-4.0
  752. res = "a.x-4.0"
  753. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  754. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  755. res = "midm-2.0"
  756. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  757. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  758. res = "lfm2"
  759. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  760. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  761. res = "exaone4"
  762. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  763. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  764. res = "mellum"
  765. if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
  766. # ref: https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Base
  767. res = "llada-moe"
  768. if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e":
  769. # ref: https://huggingface.co/ibm-granite/granite-docling-258M
  770. res = "granite-docling"
  771. if res is None:
  772. logger.warning("\n")
  773. logger.warning("**************************************************************************************")
  774. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  775. logger.warning("** There are 2 possible reasons for this:")
  776. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  777. logger.warning("** - the pre-tokenization config has changed upstream")
  778. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  779. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  780. logger.warning("**")
  781. logger.warning(f"** chkhsh: {chkhsh}")
  782. logger.warning("**************************************************************************************")
  783. logger.warning("\n")
  784. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  785. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  786. logger.debug(f"chkhsh: {chkhsh}")
  787. return res
  788. # Marker: End get_vocab_base_pre
  789. def _set_vocab_none(self) -> None:
  790. self.gguf_writer.add_tokenizer_model("none")
  791. def _set_vocab_gpt2(self) -> None:
  792. tokens, toktypes, tokpre = self.get_vocab_base()
  793. self.gguf_writer.add_tokenizer_model("gpt2")
  794. self.gguf_writer.add_tokenizer_pre(tokpre)
  795. self.gguf_writer.add_token_list(tokens)
  796. self.gguf_writer.add_token_types(toktypes)
  797. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  798. special_vocab.add_to_gguf(self.gguf_writer)
  799. def _set_vocab_qwen(self):
  800. dir_model = self.dir_model
  801. hparams = self.hparams
  802. tokens: list[str] = []
  803. toktypes: list[int] = []
  804. from transformers import AutoTokenizer
  805. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  806. vocab_size = hparams["vocab_size"]
  807. assert max(tokenizer.get_vocab().values()) < vocab_size
  808. tokpre = self.get_vocab_base_pre(tokenizer)
  809. merges = []
  810. vocab = {}
  811. mergeable_ranks = tokenizer.mergeable_ranks
  812. for token, rank in mergeable_ranks.items():
  813. vocab[QwenModel.token_bytes_to_string(token)] = rank
  814. if len(token) == 1:
  815. continue
  816. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  817. assert len(merged) == 2
  818. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  819. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  820. added_vocab = tokenizer.special_tokens
  821. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  822. for i in range(vocab_size):
  823. if i not in reverse_vocab:
  824. tokens.append(f"[PAD{i}]")
  825. toktypes.append(gguf.TokenType.UNUSED)
  826. elif reverse_vocab[i] in added_vocab:
  827. tokens.append(reverse_vocab[i])
  828. toktypes.append(gguf.TokenType.CONTROL)
  829. else:
  830. tokens.append(reverse_vocab[i])
  831. toktypes.append(gguf.TokenType.NORMAL)
  832. self.gguf_writer.add_tokenizer_model("gpt2")
  833. self.gguf_writer.add_tokenizer_pre(tokpre)
  834. self.gguf_writer.add_token_list(tokens)
  835. self.gguf_writer.add_token_types(toktypes)
  836. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  837. special_vocab.merges = merges
  838. # only add special tokens when they were not already loaded from config.json
  839. if len(special_vocab.special_token_ids) == 0:
  840. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  841. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  842. # this one is usually not in config.json anyway
  843. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  844. special_vocab.add_to_gguf(self.gguf_writer)
  845. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  846. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  847. self.gguf_writer.add_tokenizer_model("llama")
  848. self.gguf_writer.add_tokenizer_pre("default")
  849. self.gguf_writer.add_token_list(tokens)
  850. self.gguf_writer.add_token_scores(scores)
  851. self.gguf_writer.add_token_types(toktypes)
  852. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  853. special_vocab.add_to_gguf(self.gguf_writer)
  854. def _create_vocab_sentencepiece(self):
  855. from sentencepiece import SentencePieceProcessor
  856. tokenizer_path = self.dir_model / 'tokenizer.model'
  857. if not tokenizer_path.is_file():
  858. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  859. tokenizer = SentencePieceProcessor()
  860. tokenizer.LoadFromFile(str(tokenizer_path))
  861. vocab_size = self.find_hparam([
  862. "vocab_size_per_layer_input", # gemma3n
  863. "vocab_size",
  864. ], optional=True) or tokenizer.vocab_size()
  865. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  866. scores: list[float] = [-10000.0] * vocab_size
  867. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  868. for token_id in range(tokenizer.vocab_size()):
  869. if token_id >= vocab_size:
  870. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  871. break
  872. piece = tokenizer.IdToPiece(token_id)
  873. text = piece.encode("utf-8")
  874. score = tokenizer.GetScore(token_id)
  875. toktype = SentencePieceTokenTypes.NORMAL
  876. if tokenizer.IsUnknown(token_id):
  877. toktype = SentencePieceTokenTypes.UNKNOWN
  878. elif tokenizer.IsControl(token_id):
  879. toktype = SentencePieceTokenTypes.CONTROL
  880. elif tokenizer.IsUnused(token_id):
  881. toktype = SentencePieceTokenTypes.UNUSED
  882. elif tokenizer.IsByte(token_id):
  883. toktype = SentencePieceTokenTypes.BYTE
  884. tokens[token_id] = text
  885. scores[token_id] = score
  886. toktypes[token_id] = toktype
  887. added_tokens_file = self.dir_model / 'added_tokens.json'
  888. if added_tokens_file.is_file():
  889. with open(added_tokens_file, "r", encoding="utf-8") as f:
  890. added_tokens_json = json.load(f)
  891. for key in added_tokens_json:
  892. token_id = added_tokens_json[key]
  893. if token_id >= vocab_size:
  894. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  895. continue
  896. tokens[token_id] = key.encode("utf-8")
  897. scores[token_id] = -1000.0
  898. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  899. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  900. if tokenizer_config_file.is_file():
  901. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  902. tokenizer_config_json = json.load(f)
  903. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  904. for token_id, token_data in added_tokens_decoder.items():
  905. token_id = int(token_id)
  906. token: str = token_data["content"]
  907. if token_id >= vocab_size:
  908. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  909. continue
  910. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  911. if tokens[token_id] != token.encode("utf-8"):
  912. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  913. if token_data.get("special") or self.does_token_look_special(token):
  914. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  915. else:
  916. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  917. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  918. scores[token_id] = -1000.0
  919. tokens[token_id] = token.encode("utf-8")
  920. if vocab_size > len(tokens):
  921. pad_count = vocab_size - len(tokens)
  922. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  923. for i in range(1, pad_count + 1):
  924. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  925. scores.append(-1000.0)
  926. toktypes.append(SentencePieceTokenTypes.UNUSED)
  927. return tokens, scores, toktypes
  928. def _set_vocab_llama_hf(self):
  929. vocab = gguf.LlamaHfVocab(self.dir_model)
  930. tokens = []
  931. scores = []
  932. toktypes = []
  933. for text, score, toktype in vocab.all_tokens():
  934. tokens.append(text)
  935. scores.append(score)
  936. toktypes.append(toktype)
  937. assert len(tokens) == vocab.vocab_size
  938. self.gguf_writer.add_tokenizer_model("llama")
  939. self.gguf_writer.add_tokenizer_pre("default")
  940. self.gguf_writer.add_token_list(tokens)
  941. self.gguf_writer.add_token_scores(scores)
  942. self.gguf_writer.add_token_types(toktypes)
  943. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  944. special_vocab.add_to_gguf(self.gguf_writer)
  945. def _set_vocab_rwkv_world(self):
  946. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  947. vocab_size = self.hparams.get("vocab_size", 65536)
  948. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  949. toktypes: list[int] = [gguf.TokenType.CONTROL]
  950. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  951. lines = f.readlines()
  952. for line in lines:
  953. parts = line.split(' ')
  954. assert len(parts) >= 3
  955. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  956. token = token.encode("utf-8") if isinstance(token, str) else token
  957. assert isinstance(token, bytes)
  958. assert len(token) == token_len
  959. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  960. tokens.append(token_text.encode("utf-8"))
  961. toktypes.append(gguf.TokenType.NORMAL)
  962. remainder = vocab_size - len(tokens)
  963. assert remainder >= 0
  964. for i in range(len(tokens), vocab_size):
  965. tokens.append(f"[PAD{i}]".encode("utf-8"))
  966. toktypes.append(gguf.TokenType.UNUSED)
  967. self.gguf_writer.add_tokenizer_model("rwkv")
  968. self.gguf_writer.add_token_list(tokens)
  969. self.gguf_writer.add_token_types(toktypes)
  970. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  971. if special_vocab.chat_template is None:
  972. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  973. if template_path.is_file():
  974. with open(template_path, "r", encoding="utf-8") as f:
  975. template = f.read()
  976. else:
  977. template = "rwkv-world"
  978. special_vocab.chat_template = template
  979. # hack: Add '\n\n' as the EOT token to make it chat normally
  980. special_vocab._set_special_token("eot", 261)
  981. # hack: Override these as they have already been set (incorrectly)
  982. special_vocab.special_token_ids["bos"] = 0
  983. special_vocab.special_token_ids["eos"] = 0
  984. special_vocab.add_to_gguf(self.gguf_writer)
  985. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  986. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  987. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  988. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  989. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  990. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  991. assert field # tokenizer model
  992. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  993. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  994. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  995. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  996. assert field # token list
  997. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  998. if model_name == "llama-spm":
  999. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  1000. assert field # token scores
  1001. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1002. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1003. assert field # token types
  1004. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1005. if model_name != "llama-spm":
  1006. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1007. assert field # token merges
  1008. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1009. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  1010. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1011. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  1012. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1013. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  1014. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1015. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  1016. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  1017. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  1018. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  1019. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  1020. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  1021. def _try_set_pooling_type(self) -> None:
  1022. # get pooling path
  1023. pooling_path = None
  1024. module_path = self.dir_model / "modules.json"
  1025. if module_path.is_file():
  1026. with open(module_path, encoding="utf-8") as f:
  1027. modules = json.load(f)
  1028. for mod in modules:
  1029. if mod["type"] == "sentence_transformers.models.Pooling":
  1030. pooling_path = mod["path"]
  1031. break
  1032. # get pooling type
  1033. if pooling_path is not None:
  1034. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1035. pooling = json.load(f)
  1036. if pooling["pooling_mode_mean_tokens"]:
  1037. pooling_type = gguf.PoolingType.MEAN
  1038. elif pooling["pooling_mode_cls_token"]:
  1039. pooling_type = gguf.PoolingType.CLS
  1040. elif pooling["pooling_mode_lasttoken"]:
  1041. pooling_type = gguf.PoolingType.LAST
  1042. else:
  1043. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1044. self.gguf_writer.add_pooling_type(pooling_type)
  1045. def _set_vocab_interns1(self):
  1046. tokens: list[str] = []
  1047. toktypes: list[int] = []
  1048. from transformers import AutoTokenizer
  1049. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  1050. vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
  1051. vocab_size = self.hparams.get("vocab_size", len(vocab))
  1052. assert max(vocab.values()) < vocab_size
  1053. tokpre = self.get_vocab_base_pre(tokenizer)
  1054. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
  1055. added_vocab = tokenizer.get_added_vocab()
  1056. added_tokens_decoder = tokenizer.added_tokens_decoder
  1057. for i in range(vocab_size):
  1058. if i not in reverse_vocab:
  1059. tokens.append(f"[PAD{i}]")
  1060. toktypes.append(gguf.TokenType.UNUSED)
  1061. else:
  1062. token: str = reverse_vocab[i]
  1063. if token in added_vocab:
  1064. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  1065. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  1066. if not added_tokens_decoder[i].normalized:
  1067. previous_token = token
  1068. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  1069. if previous_token != token:
  1070. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  1071. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  1072. toktypes.append(gguf.TokenType.CONTROL)
  1073. else:
  1074. toktypes.append(gguf.TokenType.USER_DEFINED)
  1075. else:
  1076. toktypes.append(gguf.TokenType.NORMAL)
  1077. tokens.append(token)
  1078. self.gguf_writer.add_tokenizer_model("gpt2")
  1079. self.gguf_writer.add_tokenizer_pre(tokpre)
  1080. self.gguf_writer.add_token_list(tokens)
  1081. self.gguf_writer.add_token_types(toktypes)
  1082. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1083. special_vocab._set_special_token("bos", 151643)
  1084. special_vocab.add_to_gguf(self.gguf_writer)
  1085. class MmprojModel(ModelBase):
  1086. model_type = ModelType.MMPROJ
  1087. model_arch = gguf.MODEL_ARCH.MMPROJ
  1088. preprocessor_config: dict[str, Any]
  1089. global_config: dict[str, Any]
  1090. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  1091. has_vision_encoder: bool = True # by default
  1092. has_audio_encoder: bool = False
  1093. # for models having multiple encoders, we need to separate their hparams
  1094. hparams_vision: dict[str, Any] | None = None
  1095. hparams_audio: dict[str, Any] | None = None
  1096. def __init__(self, *args, **kwargs):
  1097. super().__init__(*args, **kwargs)
  1098. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1099. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1100. # get n_embd of the text model
  1101. if not self.is_mistral_format:
  1102. if "text_config" not in self.hparams:
  1103. self.hparams["text_config"] = {}
  1104. if "audio_config" not in self.hparams:
  1105. self.hparams["audio_config"] = {}
  1106. text_config = {**self.hparams, **self.hparams["text_config"]}
  1107. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1108. else:
  1109. text_config = {
  1110. k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
  1111. }
  1112. self.n_embd_text = text_config.get("hidden_dim", 0)
  1113. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1114. # move vision config to the top level, while preserving the original hparams in global_config
  1115. import copy
  1116. self.global_config = copy.deepcopy(self.hparams)
  1117. self.hparams_vision = self.get_vision_config()
  1118. self.hparams_audio = self.get_audio_config()
  1119. if self.hparams_vision is None and self.hparams_audio is None:
  1120. raise ValueError("vision_config / audio_config not found in hparams")
  1121. # for compat with vision-only models
  1122. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1123. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1124. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1125. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1126. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1127. # load preprocessor config
  1128. self.preprocessor_config = {}
  1129. if not self.is_mistral_format:
  1130. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  1131. self.preprocessor_config = json.load(f)
  1132. def get_vision_config(self) -> dict[str, Any] | None:
  1133. config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
  1134. return self.global_config.get(config_name)
  1135. def get_audio_config(self) -> dict[str, Any] | None:
  1136. return self.global_config.get("audio_config")
  1137. def set_type(self):
  1138. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1139. def set_gguf_parameters(self):
  1140. self.gguf_writer.add_file_type(self.ftype)
  1141. if self.has_vision_encoder:
  1142. self.gguf_writer.add_clip_has_vision_encoder(True)
  1143. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1144. # vision config
  1145. self.image_size = self.find_vparam(["image_size"])
  1146. self.gguf_writer.add_vision_image_size(self.image_size)
  1147. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1148. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1149. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1150. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1151. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
  1152. # preprocessor config
  1153. image_mean = DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
  1154. image_std = DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
  1155. self.gguf_writer.add_vision_image_mean(image_mean)
  1156. self.gguf_writer.add_vision_image_std(image_std)
  1157. if self.has_audio_encoder:
  1158. self.gguf_writer.add_clip_has_audio_encoder(True)
  1159. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1160. # audio config
  1161. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1162. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1163. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1164. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1165. if not self.has_vision_encoder and not self.has_audio_encoder:
  1166. raise ValueError("MmprojModel must have either vision or audio encoder")
  1167. def write_vocab(self):
  1168. raise ValueError("MmprojModel does not support vocab writing")
  1169. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1170. assert self.hparams_vision is not None
  1171. return self._find_param(self.hparams_vision, keys, optional)
  1172. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1173. assert self.hparams_audio is not None
  1174. return self._find_param(self.hparams_audio, keys, optional)
  1175. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1176. key = next((k for k in keys if k in obj), None)
  1177. if key is not None:
  1178. return obj[key]
  1179. if optional:
  1180. return None
  1181. raise KeyError(f"could not find any of: {keys}")
  1182. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1183. del bid, name, n_dims # unused
  1184. if ".patch_embd.weight" in new_name:
  1185. return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
  1186. return False
  1187. @ModelBase.register("GPTNeoXForCausalLM")
  1188. class GPTNeoXModel(TextModel):
  1189. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1190. def set_gguf_parameters(self):
  1191. block_count = self.hparams["num_hidden_layers"]
  1192. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1193. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1194. self.gguf_writer.add_block_count(block_count)
  1195. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1196. self.gguf_writer.add_rope_dimension_count(
  1197. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1198. )
  1199. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1200. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1201. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1202. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1203. del bid # unused
  1204. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1205. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1206. tensors: list[tuple[str, Tensor]] = []
  1207. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1208. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1209. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1210. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1211. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1212. data_torch = torch.cat(
  1213. (
  1214. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1215. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1216. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1217. ),
  1218. dim=0,
  1219. )
  1220. logger.info("re-format attention.linear_qkv.weight")
  1221. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1222. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1223. data_torch = torch.cat(
  1224. (
  1225. qkv_bias[:, 0, :].reshape((n_embed,)),
  1226. qkv_bias[:, 1, :].reshape((n_embed,)),
  1227. qkv_bias[:, 2, :].reshape((n_embed,)),
  1228. ),
  1229. dim=0,
  1230. )
  1231. logger.info("re-format attention.linear_qkv.bias")
  1232. tensors.append((self.map_tensor_name(name), data_torch))
  1233. return tensors
  1234. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1235. class BloomModel(TextModel):
  1236. model_arch = gguf.MODEL_ARCH.BLOOM
  1237. def set_gguf_parameters(self):
  1238. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1239. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1240. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1241. self.gguf_writer.add_embedding_length(n_embed)
  1242. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1243. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1244. self.gguf_writer.add_head_count(n_head)
  1245. self.gguf_writer.add_head_count_kv(n_head)
  1246. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1247. self.gguf_writer.add_file_type(self.ftype)
  1248. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1249. del bid # unused
  1250. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1251. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1252. name = re.sub(r'transformer\.', '', name)
  1253. tensors: list[tuple[str, Tensor]] = []
  1254. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1255. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1256. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1257. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1258. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1259. data_torch = torch.cat(
  1260. (
  1261. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1262. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1263. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1264. ),
  1265. dim=0,
  1266. )
  1267. logger.info("re-format attention.linear_qkv.weight")
  1268. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1269. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1270. data_torch = torch.cat(
  1271. (
  1272. qkv_bias[:, 0, :].reshape((n_embed,)),
  1273. qkv_bias[:, 1, :].reshape((n_embed,)),
  1274. qkv_bias[:, 2, :].reshape((n_embed,)),
  1275. ),
  1276. dim=0,
  1277. )
  1278. logger.info("re-format attention.linear_qkv.bias")
  1279. tensors.append((self.map_tensor_name(name), data_torch))
  1280. return tensors
  1281. @ModelBase.register("MPTForCausalLM")
  1282. class MPTModel(TextModel):
  1283. model_arch = gguf.MODEL_ARCH.MPT
  1284. def set_vocab(self):
  1285. try:
  1286. self._set_vocab_gpt2()
  1287. except Exception:
  1288. # Fallback for SEA-LION model
  1289. self._set_vocab_sentencepiece()
  1290. self.gguf_writer.add_add_bos_token(False)
  1291. self.gguf_writer.add_pad_token_id(3)
  1292. self.gguf_writer.add_eos_token_id(1)
  1293. self.gguf_writer.add_unk_token_id(0)
  1294. def set_gguf_parameters(self):
  1295. block_count = self.hparams["n_layers"]
  1296. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1297. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1298. self.gguf_writer.add_block_count(block_count)
  1299. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1300. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1301. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1302. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1303. self.gguf_writer.add_layer_norm_eps(1e-5)
  1304. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1305. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1306. if self.hparams["attn_config"]["alibi"]:
  1307. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1308. else:
  1309. self.gguf_writer.add_max_alibi_bias(0.0)
  1310. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1311. del bid # unused
  1312. if "scales" in name:
  1313. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1314. new_name = new_name.replace("scales", "act.scales")
  1315. else:
  1316. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1317. return [(new_name, data_torch)]
  1318. @ModelBase.register("OrionForCausalLM")
  1319. class OrionModel(TextModel):
  1320. model_arch = gguf.MODEL_ARCH.ORION
  1321. def set_vocab(self):
  1322. self._set_vocab_sentencepiece()
  1323. def set_gguf_parameters(self):
  1324. block_count = self.hparams["num_hidden_layers"]
  1325. head_count = self.hparams["num_attention_heads"]
  1326. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1327. ctx_length = 0
  1328. if "max_sequence_length" in self.hparams:
  1329. ctx_length = self.hparams["max_sequence_length"]
  1330. elif "max_position_embeddings" in self.hparams:
  1331. ctx_length = self.hparams["max_position_embeddings"]
  1332. elif "model_max_length" in self.hparams:
  1333. ctx_length = self.hparams["model_max_length"]
  1334. else:
  1335. raise ValueError("gguf: can not find ctx length parameter.")
  1336. self.gguf_writer.add_file_type(self.ftype)
  1337. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1338. self.gguf_writer.add_context_length(ctx_length)
  1339. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1340. self.gguf_writer.add_block_count(block_count)
  1341. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1342. self.gguf_writer.add_head_count(head_count)
  1343. self.gguf_writer.add_head_count_kv(head_count_kv)
  1344. # note: config provides rms norm but it is actually layer norm
  1345. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1346. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1347. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1348. class BaichuanModel(TextModel):
  1349. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1350. def set_vocab(self):
  1351. self._set_vocab_sentencepiece()
  1352. def set_gguf_parameters(self):
  1353. block_count = self.hparams["num_hidden_layers"]
  1354. head_count = self.hparams["num_attention_heads"]
  1355. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1356. ctx_length = 0
  1357. if "max_sequence_length" in self.hparams:
  1358. ctx_length = self.hparams["max_sequence_length"]
  1359. elif "max_position_embeddings" in self.hparams:
  1360. ctx_length = self.hparams["max_position_embeddings"]
  1361. elif "model_max_length" in self.hparams:
  1362. ctx_length = self.hparams["model_max_length"]
  1363. else:
  1364. raise ValueError("gguf: can not find ctx length parameter.")
  1365. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1366. self.gguf_writer.add_context_length(ctx_length)
  1367. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1368. self.gguf_writer.add_block_count(block_count)
  1369. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1370. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1371. self.gguf_writer.add_head_count(head_count)
  1372. self.gguf_writer.add_head_count_kv(head_count_kv)
  1373. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1374. self.gguf_writer.add_file_type(self.ftype)
  1375. rope_scaling = self.hparams.get("rope_scaling") or {}
  1376. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1377. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1378. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1379. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1380. head_count = self.hparams["num_attention_heads"]
  1381. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1382. tensors: list[tuple[str, Tensor]] = []
  1383. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1384. logger.info(f"Unpacking and permuting layer {bid}")
  1385. tensors = [
  1386. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1387. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1388. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1389. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1390. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1391. self._reverse_hf_part(data_torch, 2)),
  1392. ]
  1393. else:
  1394. tensors = [(self.map_tensor_name(name), data_torch)]
  1395. return tensors
  1396. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1397. if n_kv_head is not None and n_head != n_kv_head:
  1398. n_head //= n_kv_head
  1399. return (
  1400. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1401. .swapaxes(1, 2)
  1402. .reshape(weights.shape)
  1403. )
  1404. def _reverse_hf_permute_part(
  1405. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1406. ) -> Tensor:
  1407. r = weights.shape[0] // 3
  1408. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1409. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1410. r = weights.shape[0] // 3
  1411. return weights[r * n_part:r * n_part + r, ...]
  1412. @ModelBase.register("XverseForCausalLM")
  1413. class XverseModel(TextModel):
  1414. model_arch = gguf.MODEL_ARCH.XVERSE
  1415. def set_vocab(self):
  1416. assert (self.dir_model / "tokenizer.json").is_file()
  1417. dir_model = self.dir_model
  1418. hparams = self.hparams
  1419. tokens: list[bytes] = []
  1420. toktypes: list[int] = []
  1421. from transformers import AutoTokenizer
  1422. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1423. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1424. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1425. # because vocab_size is the count of items, and indexes start at 0.
  1426. max_vocab_index = max(tokenizer.get_vocab().values())
  1427. if max_vocab_index >= vocab_size:
  1428. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1429. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1430. added_vocab = tokenizer.get_added_vocab()
  1431. for token_id in range(vocab_size):
  1432. token_text = reverse_vocab[token_id].encode('utf-8')
  1433. # replace "\x00" to string with length > 0
  1434. if token_text == b"\x00":
  1435. toktype = gguf.TokenType.BYTE # special
  1436. token_text = f"<{token_text}>".encode('utf-8')
  1437. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1438. toktype = gguf.TokenType.BYTE # special
  1439. elif reverse_vocab[token_id] in added_vocab:
  1440. if tokenizer.added_tokens_decoder[token_id].special:
  1441. toktype = gguf.TokenType.CONTROL
  1442. else:
  1443. toktype = gguf.TokenType.USER_DEFINED
  1444. else:
  1445. toktype = gguf.TokenType.NORMAL
  1446. tokens.append(token_text)
  1447. toktypes.append(toktype)
  1448. self.gguf_writer.add_tokenizer_model("llama")
  1449. self.gguf_writer.add_tokenizer_pre("default")
  1450. self.gguf_writer.add_token_list(tokens)
  1451. self.gguf_writer.add_token_types(toktypes)
  1452. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1453. special_vocab.add_to_gguf(self.gguf_writer)
  1454. def set_gguf_parameters(self):
  1455. block_count = self.hparams["num_hidden_layers"]
  1456. head_count = self.hparams["num_attention_heads"]
  1457. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1458. ctx_length = 0
  1459. if "max_sequence_length" in self.hparams:
  1460. ctx_length = self.hparams["max_sequence_length"]
  1461. elif "max_position_embeddings" in self.hparams:
  1462. ctx_length = self.hparams["max_position_embeddings"]
  1463. elif "model_max_length" in self.hparams:
  1464. ctx_length = self.hparams["model_max_length"]
  1465. else:
  1466. raise ValueError("gguf: can not find ctx length parameter.")
  1467. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1468. self.gguf_writer.add_context_length(ctx_length)
  1469. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1470. self.gguf_writer.add_block_count(block_count)
  1471. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1472. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1473. self.gguf_writer.add_head_count(head_count)
  1474. self.gguf_writer.add_head_count_kv(head_count_kv)
  1475. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1476. self.gguf_writer.add_file_type(self.ftype)
  1477. rope_scaling = self.hparams.get("rope_scaling") or {}
  1478. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1479. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1480. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1481. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1482. del bid # unused
  1483. head_count = self.hparams["num_attention_heads"]
  1484. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1485. # HF models permute some of the tensors, so we need to undo that
  1486. if name.endswith("q_proj.weight"):
  1487. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1488. if name.endswith("k_proj.weight"):
  1489. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1490. return [(self.map_tensor_name(name), data_torch)]
  1491. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1492. if n_kv_head is not None and n_head != n_kv_head:
  1493. n_head //= n_kv_head
  1494. return (
  1495. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1496. .swapaxes(1, 2)
  1497. .reshape(weights.shape)
  1498. )
  1499. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1500. class FalconModel(TextModel):
  1501. model_arch = gguf.MODEL_ARCH.FALCON
  1502. def set_gguf_parameters(self):
  1503. block_count = self.hparams.get("num_hidden_layers")
  1504. if block_count is None:
  1505. block_count = self.hparams["n_layer"] # old name
  1506. n_head = self.hparams.get("num_attention_heads")
  1507. if n_head is None:
  1508. n_head = self.hparams["n_head"] # old name
  1509. n_head_kv = self.hparams.get("num_kv_heads")
  1510. if n_head_kv is None:
  1511. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1512. self.gguf_writer.add_context_length(2048) # not in config.json
  1513. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1514. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1515. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1516. self.gguf_writer.add_block_count(block_count)
  1517. self.gguf_writer.add_head_count(n_head)
  1518. self.gguf_writer.add_head_count_kv(n_head_kv)
  1519. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1520. self.gguf_writer.add_file_type(self.ftype)
  1521. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1522. del bid # unused
  1523. # QKV tensor transform
  1524. # The original query_key_value tensor contains n_head_kv "kv groups",
  1525. # each consisting of n_head/n_head_kv query weights followed by one key
  1526. # and one value weight (shared by all query heads in the kv group).
  1527. # This layout makes it a big pain to work with in GGML.
  1528. # So we rearrange them here,, so that we have n_head query weights
  1529. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1530. # in contiguous fashion.
  1531. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1532. if "query_key_value" in name:
  1533. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1534. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1535. head_dim = self.hparams["hidden_size"] // n_head
  1536. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1537. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1538. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1539. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1540. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1541. return [(self.map_tensor_name(name), data_torch)]
  1542. @ModelBase.register("GPTBigCodeForCausalLM")
  1543. class StarCoderModel(TextModel):
  1544. model_arch = gguf.MODEL_ARCH.STARCODER
  1545. def set_gguf_parameters(self):
  1546. block_count = self.hparams["n_layer"]
  1547. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1548. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1549. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1550. self.gguf_writer.add_block_count(block_count)
  1551. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1552. self.gguf_writer.add_head_count_kv(1)
  1553. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1554. self.gguf_writer.add_file_type(self.ftype)
  1555. @ModelBase.register("GPTRefactForCausalLM")
  1556. class RefactModel(TextModel):
  1557. model_arch = gguf.MODEL_ARCH.REFACT
  1558. def set_vocab(self):
  1559. super().set_vocab()
  1560. # TODO: how to determine special FIM tokens automatically?
  1561. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1562. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1563. special_vocab._set_special_token("prefix", 1)
  1564. special_vocab._set_special_token("suffix", 3)
  1565. special_vocab._set_special_token("middle", 2)
  1566. special_vocab.chat_template = None # do not add it twice
  1567. special_vocab.add_to_gguf(self.gguf_writer)
  1568. def set_gguf_parameters(self):
  1569. hidden_dim = self.hparams["n_embd"]
  1570. inner_dim = 4 * hidden_dim
  1571. hidden_dim = int(2 * inner_dim / 3)
  1572. multiple_of = 256
  1573. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1574. block_count = self.hparams["n_layer"]
  1575. # refact uses Alibi. So this is from config.json which might be used by training.
  1576. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1577. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1578. self.gguf_writer.add_feed_forward_length(ff_dim)
  1579. self.gguf_writer.add_block_count(block_count)
  1580. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1581. self.gguf_writer.add_head_count_kv(1)
  1582. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1583. self.gguf_writer.add_file_type(self.ftype)
  1584. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1585. hidden_dim = self.hparams["n_embd"]
  1586. inner_dim = 4 * hidden_dim
  1587. hidden_dim = int(2 * inner_dim / 3)
  1588. multiple_of = 256
  1589. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1590. n_head = self.hparams["n_head"]
  1591. n_head_kv = 1
  1592. head_dim = self.hparams["n_embd"] // n_head
  1593. tensors: list[tuple[str, Tensor]] = []
  1594. if bid is not None:
  1595. if name == f"transformer.h.{bid}.attn.kv.weight":
  1596. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1597. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1598. elif name == f"transformer.h.{bid}.attn.q.weight":
  1599. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1600. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1601. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1602. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1603. if len(tensors) == 0:
  1604. tensors.append((self.map_tensor_name(name), data_torch))
  1605. return tensors
  1606. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1607. class StableLMModel(TextModel):
  1608. model_arch = gguf.MODEL_ARCH.STABLELM
  1609. def set_vocab(self):
  1610. if (self.dir_model / "tokenizer.json").is_file():
  1611. self._set_vocab_gpt2()
  1612. else:
  1613. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1614. self._set_vocab_qwen()
  1615. def set_gguf_parameters(self):
  1616. hparams = self.hparams
  1617. block_count = hparams["num_hidden_layers"]
  1618. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1619. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1620. self.gguf_writer.add_block_count(block_count)
  1621. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1622. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1623. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1624. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1625. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1626. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1627. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1628. self.gguf_writer.add_file_type(self.ftype)
  1629. _q_norms: list[dict[str, Tensor]] | None = None
  1630. _k_norms: list[dict[str, Tensor]] | None = None
  1631. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1632. n_head = self.hparams["num_attention_heads"]
  1633. n_kv_head = self.hparams["num_key_value_heads"]
  1634. if name.find("q_layernorm.norms") != -1:
  1635. assert bid is not None
  1636. if self._q_norms is None:
  1637. self._q_norms = [{} for _ in range(self.block_count)]
  1638. self._q_norms[bid][name] = data_torch
  1639. if len(self._q_norms[bid]) >= n_head:
  1640. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1641. else:
  1642. return []
  1643. if name.find("k_layernorm.norms") != -1:
  1644. assert bid is not None
  1645. if self._k_norms is None:
  1646. self._k_norms = [{} for _ in range(self.block_count)]
  1647. self._k_norms[bid][name] = data_torch
  1648. if len(self._k_norms[bid]) >= n_kv_head:
  1649. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1650. else:
  1651. return []
  1652. return [(self.map_tensor_name(name), data_torch)]
  1653. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1654. datas: list[Tensor] = []
  1655. # extract the norms in order
  1656. for xid in range(n_head):
  1657. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1658. datas.append(norms[ename])
  1659. del norms[ename]
  1660. data_torch = torch.stack(datas, dim=0)
  1661. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1662. new_name = self.map_tensor_name(merged_name)
  1663. return [(new_name, data_torch)]
  1664. def prepare_tensors(self):
  1665. super().prepare_tensors()
  1666. if self._q_norms is not None or self._k_norms is not None:
  1667. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1668. norms = (
  1669. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1670. ) + (
  1671. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1672. )
  1673. if len(norms) > 0:
  1674. raise ValueError(f"Unprocessed norms: {norms}")
  1675. @ModelBase.register(
  1676. "LLaMAForCausalLM",
  1677. "LlamaForCausalLM",
  1678. "MistralForCausalLM",
  1679. "MixtralForCausalLM",
  1680. "VLlama3ForCausalLM",
  1681. "LlavaForConditionalGeneration",
  1682. "VoxtralForConditionalGeneration",
  1683. "LlamaModel")
  1684. class LlamaModel(TextModel):
  1685. model_arch = gguf.MODEL_ARCH.LLAMA
  1686. undo_permute = True
  1687. def __init__(self, *args, **kwargs):
  1688. super().__init__(*args, **kwargs)
  1689. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1690. if self.hf_arch == "VLlama3ForCausalLM":
  1691. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1692. def _set_vocab_mistral(self):
  1693. vocab = MistralVocab(self.dir_model)
  1694. logger.info(
  1695. f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
  1696. )
  1697. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1698. tokens = []
  1699. scores = []
  1700. toktypes = []
  1701. for text, score, toktype in vocab.all_tokens():
  1702. tokens.append(text)
  1703. scores.append(score)
  1704. toktypes.append(toktype)
  1705. assert len(tokens) == vocab.vocab_size, (
  1706. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1707. )
  1708. if vocab.tokenizer_type == MistralTokenizerType.tekken:
  1709. self.gguf_writer.add_tokenizer_pre("tekken")
  1710. self.gguf_writer.add_token_merges(
  1711. vocab.extract_vocab_merges_from_model()
  1712. )
  1713. logger.info(
  1714. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1715. )
  1716. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1717. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1718. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1719. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1720. self.gguf_writer.add_token_list(tokens)
  1721. self.gguf_writer.add_token_scores(scores)
  1722. self.gguf_writer.add_token_types(toktypes)
  1723. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1724. self.gguf_writer.add_add_bos_token(True)
  1725. self.gguf_writer.add_add_eos_token(False)
  1726. template_dir = Path(__file__).parent / "models/templates/"
  1727. if not self.is_mistral_format or not self.disable_mistral_community_chat_template:
  1728. # Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
  1729. if self.is_mistral_format:
  1730. logger.info(
  1731. "Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
  1732. "Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
  1733. )
  1734. template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
  1735. self.gguf_writer.add_chat_template(template)
  1736. else:
  1737. logger.info("Not using a Mistral community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
  1738. def set_vocab(self):
  1739. if self.is_mistral_format:
  1740. return self._set_vocab_mistral()
  1741. path_tekken_json = self.dir_model / "tekken.json"
  1742. path_tokenizer_json = self.dir_model / "tokenizer.json"
  1743. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  1744. self._set_vocab_mistral()
  1745. try:
  1746. self._set_vocab_sentencepiece()
  1747. except FileNotFoundError:
  1748. try:
  1749. self._set_vocab_llama_hf()
  1750. except (FileNotFoundError, TypeError):
  1751. # Llama 3
  1752. self._set_vocab_gpt2()
  1753. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1754. if self.hparams.get("vocab_size", 32000) == 32016:
  1755. special_vocab = gguf.SpecialVocab(
  1756. self.dir_model, load_merges=False,
  1757. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1758. )
  1759. special_vocab._set_special_token("prefix", 32007)
  1760. special_vocab._set_special_token("suffix", 32008)
  1761. special_vocab._set_special_token("middle", 32009)
  1762. special_vocab._set_special_token("eot", 32010)
  1763. special_vocab.add_to_gguf(self.gguf_writer)
  1764. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1765. if tokenizer_config_file.is_file():
  1766. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1767. tokenizer_config_json = json.load(f)
  1768. if "add_prefix_space" in tokenizer_config_json:
  1769. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1770. # Apply to granite small models only
  1771. if self.hparams.get("vocab_size", 32000) == 49152:
  1772. self.gguf_writer.add_add_bos_token(False)
  1773. def set_gguf_parameters(self):
  1774. super().set_gguf_parameters()
  1775. hparams = self.hparams
  1776. if not self.is_mistral_format:
  1777. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1778. if (rope_dim := hparams.get("head_dim")) is None:
  1779. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1780. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1781. rope_scaling = self.hparams.get("rope_scaling") or {}
  1782. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1783. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1784. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1785. @staticmethod
  1786. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1787. if n_head_kv is not None and n_head != n_head_kv:
  1788. n_head = n_head_kv
  1789. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1790. .swapaxes(1, 2)
  1791. .reshape(weights.shape))
  1792. _experts: list[dict[str, Tensor]] | None = None
  1793. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1794. n_head = self.find_hparam(["n_heads", "num_attention_heads"])
  1795. n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
  1796. vision_prefixes = [
  1797. "vision_encoder.",
  1798. "vision_language_adapter.",
  1799. "patch_merger.",
  1800. "pre_mm_projector_norm",
  1801. ]
  1802. is_multimodal_tensor = "vision_tower" in name \
  1803. or "vision_model" in name \
  1804. or "audio_tower" in name \
  1805. or "model.connector" in name \
  1806. or "multi_modal_projector" in name \
  1807. or any(
  1808. name.startswith(prefix)
  1809. for prefix in vision_prefixes
  1810. )
  1811. if is_multimodal_tensor:
  1812. return [] # skip vision tensors
  1813. elif self.hf_arch == "LlamaModel":
  1814. name = "model." + name
  1815. elif name.startswith("model.text_model"):
  1816. name = name.replace("text_model.", "") # for SmolVLM
  1817. elif name.startswith("language_model."):
  1818. name = name.replace("language_model.", "") # for the rest
  1819. if self.undo_permute:
  1820. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1821. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1822. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1823. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1824. # process the experts separately
  1825. if name.find("block_sparse_moe.experts") != -1:
  1826. n_experts = self.hparams["num_local_experts"]
  1827. assert bid is not None
  1828. if self._experts is None:
  1829. self._experts = [{} for _ in range(self.block_count)]
  1830. self._experts[bid][name] = data_torch
  1831. if len(self._experts[bid]) >= n_experts * 3:
  1832. tensors: list[tuple[str, Tensor]] = []
  1833. # merge the experts into a single 3d tensor
  1834. for wid in ["w1", "w2", "w3"]:
  1835. datas: list[Tensor] = []
  1836. for xid in range(n_experts):
  1837. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1838. datas.append(self._experts[bid][ename])
  1839. del self._experts[bid][ename]
  1840. data_torch = torch.stack(datas, dim=0)
  1841. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1842. new_name = self.map_tensor_name(merged_name)
  1843. tensors.append((new_name, data_torch))
  1844. return tensors
  1845. else:
  1846. return []
  1847. return [(self.map_tensor_name(name), data_torch)]
  1848. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1849. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1850. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1851. base = self.hparams.get("rope_theta", 10000.0)
  1852. if (dim := self.hparams.get("head_dim")) is None:
  1853. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1854. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1855. factor = rope_scaling.get("factor", 8.0)
  1856. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1857. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1858. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1859. low_freq_wavelen = old_context_len / low_freq_factor
  1860. high_freq_wavelen = old_context_len / high_freq_factor
  1861. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1862. rope_factors = []
  1863. for freq in freqs:
  1864. wavelen = 2 * math.pi / freq
  1865. if wavelen < high_freq_wavelen:
  1866. rope_factors.append(1)
  1867. elif wavelen > low_freq_wavelen:
  1868. rope_factors.append(factor)
  1869. else:
  1870. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1871. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1872. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1873. def prepare_tensors(self):
  1874. super().prepare_tensors()
  1875. if self._experts is not None:
  1876. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1877. experts = [k for d in self._experts for k in d.keys()]
  1878. if len(experts) > 0:
  1879. raise ValueError(f"Unprocessed experts: {experts}")
  1880. @ModelBase.register("ArceeForCausalLM")
  1881. class ArceeModel(LlamaModel):
  1882. model_arch = gguf.MODEL_ARCH.ARCEE
  1883. def set_gguf_parameters(self):
  1884. super().set_gguf_parameters()
  1885. self._try_set_pooling_type()
  1886. rope_scaling = self.hparams.get("rope_scaling") or {}
  1887. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  1888. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1889. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1890. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  1891. @ModelBase.register(
  1892. "LlavaForConditionalGeneration", # pixtral
  1893. "Mistral3ForConditionalGeneration", # mistral small 3.1
  1894. )
  1895. class LlavaVisionModel(MmprojModel):
  1896. img_break_tok_id = -1
  1897. def __init__(self, *args, **kwargs):
  1898. super().__init__(*args, **kwargs)
  1899. if self.hparams.get("model_type") == "pixtral":
  1900. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  1901. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1902. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  1903. elif self.is_mistral_format:
  1904. # hparams is already vision config here so norm_eps is only defined in global_config.
  1905. self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
  1906. assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
  1907. self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
  1908. else:
  1909. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1910. logger.info(f"Image break token id: {self.img_break_tok_id}")
  1911. def get_token_id(self, token: str) -> int:
  1912. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1913. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1914. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  1915. for id_, token_data in added_tokens_decoder.items():
  1916. if token_data["content"] == token:
  1917. return int(id_)
  1918. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  1919. def set_gguf_parameters(self):
  1920. super().set_gguf_parameters()
  1921. hparams = self.hparams
  1922. if hparams.get("model_type") == "pixtral":
  1923. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1924. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1925. # hidden_act
  1926. if hparams["hidden_act"] == "silu":
  1927. self.gguf_writer.add_vision_use_silu(True)
  1928. elif hparams["hidden_act"] == "gelu":
  1929. self.gguf_writer.add_vision_use_gelu(True)
  1930. else:
  1931. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  1932. # spatial_merge_size
  1933. if "spatial_merge_size" in self.global_config:
  1934. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  1935. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1936. del bid # unused
  1937. n_head = (
  1938. self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
  1939. )
  1940. n_kv_head = n_head
  1941. valid_prefixes = (
  1942. "multi_modal_projector.",
  1943. "vision_tower.",
  1944. "vision_encoder.",
  1945. "vision_language_adapter.",
  1946. "patch_merger.",
  1947. "pre_mm_projector_norm",
  1948. )
  1949. if any(name.startswith(prefix) for prefix in valid_prefixes):
  1950. # process vision tensors
  1951. if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
  1952. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1953. if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
  1954. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1955. return [(self.map_tensor_name(name), data_torch)]
  1956. embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
  1957. if self.img_break_tok_id > 0 and embed_key in name:
  1958. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1959. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1960. img_break_embd = data_torch[self.img_break_tok_id]
  1961. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1962. return [(self.map_tensor_name(name), img_break_embd)]
  1963. return [] # skip other tensors
  1964. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1965. class SmolVLMModel(MmprojModel):
  1966. def __init__(self, *args, **kwargs):
  1967. super().__init__(*args, **kwargs)
  1968. if self.hparams["model_type"] == "smolvlm_vision":
  1969. # fix for SmolVLM2, missing some keys in config.json
  1970. # default values are taken from transformers code
  1971. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1972. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1973. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1974. def set_gguf_parameters(self):
  1975. super().set_gguf_parameters()
  1976. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1977. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1978. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1979. self.gguf_writer.add_vision_use_gelu(True)
  1980. # Add the preprocessor longest edge size
  1981. preproc_image_size = self.preprocessor_config.get("size", {}).get("longest_edge", self.image_size)
  1982. self.gguf_writer.add_vision_preproc_image_size(preproc_image_size)
  1983. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1984. if ".embeddings." in name:
  1985. return gguf.GGMLQuantizationType.F32
  1986. return super().tensor_force_quant(name, new_name, bid, n_dims)
  1987. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1988. del bid # unused
  1989. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1990. if is_vision_tensor:
  1991. return [(self.map_tensor_name(name), data_torch)]
  1992. return [] # skip other tensors
  1993. @ModelBase.register(
  1994. "Llama4ForConditionalGeneration",
  1995. "Llama4ForCausalLM",
  1996. )
  1997. class Llama4Model(LlamaModel):
  1998. model_arch = gguf.MODEL_ARCH.LLAMA4
  1999. undo_permute = False
  2000. def __init__(self, *args, **kwargs):
  2001. super().__init__(*args, **kwargs)
  2002. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  2003. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  2004. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  2005. def set_vocab(self):
  2006. self._set_vocab_gpt2()
  2007. def set_gguf_parameters(self):
  2008. super().set_gguf_parameters()
  2009. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  2010. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  2011. if "layer_types" in self.hparams:
  2012. if all(lt == "full_attention" for lt in self.hparams["layer_types"]):
  2013. # all layers are full attention (for MobileLLM), disable swa
  2014. self.gguf_writer.add_sliding_window(0)
  2015. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2016. if name.startswith("language_model."):
  2017. name = name.replace("language_model.", "")
  2018. # split the gate_up into gate and up
  2019. if "gate_up_proj" in name:
  2020. name_up = name.replace("gate_up_proj", "up_proj.weight")
  2021. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  2022. dim_half = data_torch.shape[-1] // 2
  2023. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  2024. return [
  2025. (self.map_tensor_name(name_gate), gate_proj_weight),
  2026. (self.map_tensor_name(name_up), up_proj_weight)
  2027. ]
  2028. if name.endswith("down_proj"):
  2029. name += ".weight"
  2030. data_torch = data_torch.transpose(-1, -2)
  2031. if "multi_modal_projector" in name or "vision_model" in name:
  2032. return []
  2033. return super().modify_tensors(data_torch, name, bid)
  2034. @ModelBase.register("Llama4ForConditionalGeneration")
  2035. class Llama4VisionModel(MmprojModel):
  2036. def set_gguf_parameters(self):
  2037. super().set_gguf_parameters()
  2038. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  2039. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  2040. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  2041. assert self.hparams["hidden_act"] == "gelu"
  2042. self.gguf_writer.add_vision_use_gelu(True)
  2043. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2044. del bid # unused
  2045. if "multi_modal_projector" in name or "vision_model" in name:
  2046. # process vision tensors
  2047. if "positional_embedding_vlm" in name and ".weight" not in name:
  2048. name += ".weight"
  2049. if "multi_modal_projector.linear_1" in name:
  2050. # despite the name with number postfix, this is a single fully connected layer
  2051. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  2052. return [(self.map_tensor_name(name), data_torch)]
  2053. return []
  2054. @ModelBase.register("Mistral3ForConditionalGeneration")
  2055. class Mistral3Model(LlamaModel):
  2056. model_arch = gguf.MODEL_ARCH.LLAMA
  2057. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2058. name = name.replace("language_model.", "")
  2059. if "multi_modal_projector" in name or "vision_tower" in name:
  2060. return []
  2061. return super().modify_tensors(data_torch, name, bid)
  2062. @ModelBase.register("DeciLMForCausalLM")
  2063. class DeciModel(TextModel):
  2064. model_arch = gguf.MODEL_ARCH.DECI
  2065. @staticmethod
  2066. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  2067. # DeciLM-specific code
  2068. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  2069. return DeciModel._find_multiple(intermediate_size, 256)
  2070. @staticmethod
  2071. def _find_multiple(n: int, k: int) -> int:
  2072. # DeciLM-specific code
  2073. if n % k == 0:
  2074. return n
  2075. return n + k - (n % k)
  2076. def __init__(self, *args, **kwargs):
  2077. super().__init__(*args, **kwargs)
  2078. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2079. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  2080. assert self.block_count == len(_block_configs)
  2081. self._num_kv_heads = list()
  2082. self._num_heads = list()
  2083. _ffn_multipliers = list()
  2084. # ***linear attention layer***
  2085. # if n_heads_in_group is None and replace_with_linear is True
  2086. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  2087. # ***attention-free layer***
  2088. # if n_heads_in_group is None and replace_with_linear is False
  2089. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  2090. # ***normal attention-layer***
  2091. # if n_heads_in_group is not None, then
  2092. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  2093. # _num_heads[il] is num_attention_head
  2094. # ***dummy layer*** for nemotron 253B
  2095. # if n_heads_in_group is None and ffn_mult is None
  2096. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  2097. for il in range(len(_block_configs)):
  2098. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  2099. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  2100. self._num_kv_heads.append(0)
  2101. self._num_heads.append(self.hparams["num_attention_heads"])
  2102. else:
  2103. self._num_kv_heads.append(0)
  2104. self._num_heads.append(0)
  2105. else:
  2106. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  2107. self._num_heads.append(self.hparams["num_attention_heads"])
  2108. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  2109. _ffn_multipliers.append(0.0)
  2110. else:
  2111. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  2112. assert self.block_count == len(self._num_kv_heads)
  2113. assert self.block_count == len(self._num_heads)
  2114. assert self.block_count == len(_ffn_multipliers)
  2115. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2116. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  2117. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  2118. self._ffn_dims: list[int] = [
  2119. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  2120. for multiplier in _ffn_multipliers
  2121. ]
  2122. def set_vocab(self):
  2123. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  2124. # eos_token from '|eot_id|' to '|end_of_text|'
  2125. if self.hparams.get("vocab_size", 128256) == 128256:
  2126. tokens, toktypes, tokpre = self.get_vocab_base()
  2127. self.gguf_writer.add_tokenizer_model("gpt2")
  2128. self.gguf_writer.add_tokenizer_pre(tokpre)
  2129. self.gguf_writer.add_token_list(tokens)
  2130. self.gguf_writer.add_token_types(toktypes)
  2131. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  2132. special_vocab.add_to_gguf(self.gguf_writer)
  2133. else:
  2134. # DeciLM-7B
  2135. self._set_vocab_llama_hf()
  2136. def set_gguf_parameters(self):
  2137. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2138. assert self.block_count == len(self._num_kv_heads)
  2139. assert self.block_count == len(self._num_heads)
  2140. assert self.block_count == len(self._ffn_dims)
  2141. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  2142. self.gguf_writer.add_rope_freq_base(rope_theta)
  2143. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2144. self.gguf_writer.add_head_count(self._num_heads)
  2145. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2146. self.gguf_writer.add_block_count(self.block_count)
  2147. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2148. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2149. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2150. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2151. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2152. self.gguf_writer.add_file_type(self.ftype)
  2153. else: # DeciLM-7B
  2154. super().set_gguf_parameters()
  2155. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2156. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2157. assert self.block_count == len(self._num_kv_heads)
  2158. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2159. hparams = self.hparams
  2160. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2161. if (rope_dim := hparams.get("head_dim")) is None:
  2162. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2163. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2164. rope_scaling = self.hparams.get("rope_scaling") or {}
  2165. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2166. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2167. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2168. @staticmethod
  2169. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2170. if n_head_kv is not None and n_head != n_head_kv:
  2171. n_head = n_head_kv
  2172. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2173. .swapaxes(1, 2)
  2174. .reshape(weights.shape))
  2175. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2176. n_head = self.hparams["num_attention_heads"]
  2177. if bid is not None:
  2178. if "num_key_value_heads_per_layer" in self.hparams:
  2179. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2180. elif "block_configs" in self.hparams:
  2181. n_kv_head = self._num_kv_heads[bid]
  2182. n_head = self._num_heads[bid]
  2183. else:
  2184. n_kv_head = self.hparams.get("num_key_value_heads")
  2185. else:
  2186. n_kv_head = self.hparams.get("num_key_value_heads")
  2187. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2188. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2189. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2190. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2191. return [(self.map_tensor_name(name), data_torch)]
  2192. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2193. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  2194. if rope_scaling.get("rope_type", '').lower() == "llama3":
  2195. base = self.hparams.get("rope_theta", 10000.0)
  2196. if (dim := self.hparams.get("head_dim")) is None:
  2197. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2198. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2199. factor = rope_scaling.get("factor", 8.0)
  2200. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2201. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2202. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2203. low_freq_wavelen = old_context_len / low_freq_factor
  2204. high_freq_wavelen = old_context_len / high_freq_factor
  2205. assert low_freq_wavelen != high_freq_wavelen
  2206. rope_factors = []
  2207. for freq in freqs:
  2208. wavelen = 2 * math.pi / freq
  2209. if wavelen < high_freq_wavelen:
  2210. rope_factors.append(1)
  2211. elif wavelen > low_freq_wavelen:
  2212. rope_factors.append(factor)
  2213. else:
  2214. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2215. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2216. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2217. def prepare_tensors(self):
  2218. super().prepare_tensors()
  2219. @ModelBase.register("BitnetForCausalLM")
  2220. class BitnetModel(TextModel):
  2221. model_arch = gguf.MODEL_ARCH.BITNET
  2222. def set_vocab(self):
  2223. self._set_vocab_sentencepiece()
  2224. def set_gguf_parameters(self):
  2225. super().set_gguf_parameters()
  2226. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2227. self.gguf_writer.add_rope_scaling_factor(1.0)
  2228. def weight_quant(self, weight: Tensor) -> Tensor:
  2229. dtype = weight.dtype
  2230. weight = weight.float()
  2231. scale = weight.abs().mean().clamp(min=1e-5)
  2232. iscale = 1 / scale
  2233. # TODO: multiply by the scale directly instead of inverting it twice
  2234. # (this is also unnecessarily doubly inverted upstream)
  2235. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2236. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2237. return result.type(dtype)
  2238. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2239. new_name = self.map_tensor_name(name)
  2240. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2241. gguf.MODEL_TENSOR.ATTN_Q,
  2242. gguf.MODEL_TENSOR.ATTN_K,
  2243. gguf.MODEL_TENSOR.ATTN_V,
  2244. gguf.MODEL_TENSOR.ATTN_OUT,
  2245. gguf.MODEL_TENSOR.FFN_UP,
  2246. gguf.MODEL_TENSOR.FFN_DOWN,
  2247. gguf.MODEL_TENSOR.FFN_GATE,
  2248. ]):
  2249. # transform weight into 1/0/-1 (in fp32)
  2250. data_torch = self.weight_quant(data_torch)
  2251. yield (new_name, data_torch)
  2252. @ModelBase.register("GrokForCausalLM", "Grok1ForCausalLM")
  2253. class GrokModel(TextModel):
  2254. model_arch = gguf.MODEL_ARCH.GROK
  2255. def set_vocab(self):
  2256. if (self.dir_model / 'tokenizer.model').is_file():
  2257. self._set_vocab_sentencepiece()
  2258. return
  2259. if not (self.dir_model / 'tokenizer.json').is_file() or not (self.dir_model / 'chat_template.jinja').is_file():
  2260. logger.error('Error: Missing vocab and chat template, download files from https://huggingface.co/alvarobartt/grok-2-tokenizer')
  2261. sys.exit(1)
  2262. self._set_vocab_gpt2()
  2263. def __init__(self, *args, **kwargs):
  2264. super().__init__(*args, **kwargs)
  2265. def set_gguf_parameters(self):
  2266. super().set_gguf_parameters()
  2267. self.gguf_writer.add_attn_logit_softcapping(self.hparams.get("attn_logit_softcapping", 30.0))
  2268. self.gguf_writer.add_router_logit_softcapping(self.hparams.get("router_logit_softcapping", 30.0))
  2269. if (final_logit_softcap := self.hparams.get("final_logit_softcapping")):
  2270. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  2271. if (rope_dim := self.hparams.get("head_dim")) is None:
  2272. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2273. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2274. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2275. # Treat "original" as "yarn", seems to have been a mistake
  2276. if self.hparams.get("rope_type") in ("yarn", "original"):
  2277. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2278. self.gguf_writer.add_rope_scaling_factor(self.hparams["scaling_factor"])
  2279. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["original_max_position_embeddings"])
  2280. self.gguf_writer.add_rope_scaling_yarn_ext_factor(self.hparams["extrapolation_factor"])
  2281. self.gguf_writer.add_rope_scaling_yarn_attn_factor(self.hparams["attn_factor"])
  2282. self.gguf_writer.add_rope_scaling_yarn_beta_fast(self.hparams["beta_fast"])
  2283. self.gguf_writer.add_rope_scaling_yarn_beta_slow(self.hparams["beta_slow"])
  2284. if temp_len := self.hparams.get("attn_temperature_len"):
  2285. self.gguf_writer.add_attn_temperature_length(temp_len)
  2286. self.gguf_writer.add_attn_output_scale(self.hparams.get("attn_output_multiplier", rope_dim**-0.5))
  2287. self.gguf_writer.add_embedding_scale(self.hparams["embedding_multiplier_scale"])
  2288. self.gguf_writer.add_logit_scale(self.hparams["output_multiplier_scale"])
  2289. _experts: list[dict[str, list[Tensor]]] | None = None
  2290. _cur_expert = ""
  2291. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2292. tensors: list[tuple[str, Tensor]] = []
  2293. is_expert = ".moe." in name or ".block_sparse_moe.experts." in name
  2294. if not is_expert:
  2295. tensors.append((self.map_tensor_name(name), data_torch))
  2296. # process the experts separately
  2297. if is_expert or self._cur_expert:
  2298. n_experts = self.hparams["num_local_experts"]
  2299. assert bid is not None
  2300. if self._experts is None:
  2301. self._experts = [{} for _ in range(self.block_count)]
  2302. # concatenate split tensors
  2303. if name in self._experts[bid]:
  2304. self._cur_expert = name
  2305. self._experts[bid][name].append(data_torch)
  2306. return []
  2307. elif is_expert:
  2308. self._cur_expert = name
  2309. self._experts[bid][name] = [data_torch]
  2310. return []
  2311. else:
  2312. self._cur_expert = ""
  2313. for bid in range(self.block_count):
  2314. if len(self._experts[bid]) >= n_experts * 3:
  2315. # merge the experts into a single 3d tensor
  2316. for wid in [("linear", "w1", 0), ("linear_1", "w2", 1), ("linear_v", "w3", 0)]:
  2317. datas: list[Tensor] = []
  2318. for xid in range(n_experts):
  2319. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid[0]}.weight"
  2320. if ename not in self._experts[bid]:
  2321. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid[1]}.weight"
  2322. tensor_list = self._experts[bid][ename]
  2323. datas.append(torch.cat(tensor_list, dim=wid[2]) if len(tensor_list) > 1 else tensor_list[0])
  2324. del self._experts[bid][ename]
  2325. data_torch = torch.stack(datas, dim=0)
  2326. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid[0]}.weight"
  2327. new_name = self.map_tensor_name(merged_name)
  2328. yield (new_name, data_torch)
  2329. yield from tensors
  2330. @ModelBase.register("DbrxForCausalLM")
  2331. class DbrxModel(TextModel):
  2332. model_arch = gguf.MODEL_ARCH.DBRX
  2333. def set_gguf_parameters(self):
  2334. ffn_config = self.hparams["ffn_config"]
  2335. attn_config = self.hparams["attn_config"]
  2336. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  2337. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2338. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2339. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2340. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2341. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2342. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2343. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2344. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2345. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2346. self.gguf_writer.add_layer_norm_eps(1e-5)
  2347. self.gguf_writer.add_file_type(self.ftype)
  2348. logger.info(f"gguf: file type = {self.ftype}")
  2349. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2350. del bid # unused
  2351. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2352. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2353. n_embd = self.hparams["d_model"]
  2354. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2355. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2356. # But llama.cpp moe graph works differently
  2357. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2358. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2359. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2360. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2361. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2362. experts = False
  2363. for exp_tensor_name in exp_tensor_names.keys():
  2364. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2365. experts = True
  2366. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2367. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2368. data_torch = data_torch.permute(*permute_tensor)
  2369. break
  2370. # map tensor names
  2371. # In MoE models the ffn tensors are typically most of the model weights,
  2372. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2373. # Every other model has the weight names ending in .weight,
  2374. # let's assume that is the convention which is not the case for dbrx:
  2375. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2376. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2377. return [(new_name, data_torch)]
  2378. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2379. del name, new_name, bid # unused
  2380. return n_dims > 1
  2381. @ModelBase.register("MiniCPMForCausalLM")
  2382. class MiniCPMModel(TextModel):
  2383. model_arch = gguf.MODEL_ARCH.MINICPM
  2384. def set_gguf_parameters(self):
  2385. super().set_gguf_parameters()
  2386. embedding_scale = float(self.hparams["scale_emb"])
  2387. self.gguf_writer.add_embedding_scale(embedding_scale)
  2388. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2389. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2390. self.gguf_writer.add_residual_scale(residual_scale)
  2391. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2392. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2393. self.gguf_writer.add_logit_scale(logit_scale)
  2394. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2395. rope_scaling = self.hparams.get("rope_scaling") or {}
  2396. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2397. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2398. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2399. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2400. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2401. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2402. if rope_scaling is not None:
  2403. long_factors = rope_scaling.get('long_factor', None)
  2404. short_factors = rope_scaling.get('short_factor', None)
  2405. if long_factors is None or short_factors is None:
  2406. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2407. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2408. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2409. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2410. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2411. def set_vocab(self):
  2412. self._set_vocab_sentencepiece()
  2413. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2414. del bid # unused
  2415. n_head = self.hparams["num_attention_heads"]
  2416. n_kv_head = self.hparams.get("num_key_value_heads")
  2417. # HF models permute some of the tensors, so we need to undo that
  2418. if name.endswith(("q_proj.weight")):
  2419. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2420. if name.endswith(("k_proj.weight")):
  2421. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2422. return [(self.map_tensor_name(name), data_torch)]
  2423. @ModelBase.register("MiniCPM3ForCausalLM")
  2424. class MiniCPM3Model(TextModel):
  2425. model_arch = gguf.MODEL_ARCH.MINICPM3
  2426. def set_gguf_parameters(self):
  2427. hparams = self.hparams
  2428. self.gguf_writer.add_file_type(self.ftype)
  2429. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2430. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2431. self.gguf_writer.add_block_count(self.block_count)
  2432. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2433. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2434. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2435. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2436. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2437. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2438. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2439. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2440. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2441. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2442. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2443. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2444. if rope_scaling is not None:
  2445. rope_dims = self.hparams["qk_rope_head_dim"]
  2446. long_factors = rope_scaling.get('long_factor', None)
  2447. short_factors = rope_scaling.get('short_factor', None)
  2448. if long_factors is None or short_factors is None:
  2449. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2450. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2451. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2452. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2453. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2454. def set_vocab(self):
  2455. self._set_vocab_sentencepiece()
  2456. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2457. if n_kv_head is not None and n_head != n_kv_head:
  2458. n_head //= n_kv_head
  2459. return (
  2460. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2461. .swapaxes(1, 2)
  2462. .reshape(weights.shape)
  2463. )
  2464. @ModelBase.register("QWenLMHeadModel")
  2465. class QwenModel(TextModel):
  2466. model_arch = gguf.MODEL_ARCH.QWEN
  2467. @staticmethod
  2468. def token_bytes_to_string(b):
  2469. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2470. byte_encoder = bytes_to_unicode()
  2471. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2472. @staticmethod
  2473. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2474. parts = [bytes([b]) for b in token]
  2475. while True:
  2476. min_idx = None
  2477. min_rank = None
  2478. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2479. rank = mergeable_ranks.get(pair[0] + pair[1])
  2480. if rank is not None and (min_rank is None or rank < min_rank):
  2481. min_idx = i
  2482. min_rank = rank
  2483. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2484. break
  2485. assert min_idx is not None
  2486. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2487. return parts
  2488. def set_vocab(self):
  2489. self._set_vocab_qwen()
  2490. def set_gguf_parameters(self):
  2491. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2492. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2493. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2494. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2495. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2496. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2497. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2498. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2499. self.gguf_writer.add_file_type(self.ftype)
  2500. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2501. class Qwen2Model(TextModel):
  2502. model_arch = gguf.MODEL_ARCH.QWEN2
  2503. def set_vocab(self):
  2504. try:
  2505. self._set_vocab_sentencepiece()
  2506. except FileNotFoundError:
  2507. self._set_vocab_gpt2()
  2508. def set_gguf_parameters(self):
  2509. super().set_gguf_parameters()
  2510. self._try_set_pooling_type()
  2511. rope_scaling = self.hparams.get("rope_scaling") or {}
  2512. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2513. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2514. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2515. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2516. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2517. if self.hf_arch == "Qwen2Model":
  2518. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2519. if "language_model." in name:
  2520. name = name.replace("language_model.", "") # for InternVL
  2521. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2522. or name.startswith("vision_model") or name.startswith("audio_tower") \
  2523. or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2524. # skip vision and audio tensors
  2525. return []
  2526. yield from super().modify_tensors(data_torch, name, bid)
  2527. @ModelBase.register("DreamModel")
  2528. class DreamModel(TextModel):
  2529. model_arch = gguf.MODEL_ARCH.DREAM
  2530. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2531. tokens: list[str] = []
  2532. toktypes: list[int] = []
  2533. from transformers import AutoTokenizer
  2534. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2535. vocab_dict = tokenizer.get_vocab()
  2536. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2537. assert max(vocab_dict.values()) < vocab_size
  2538. tokpre = self.get_vocab_base_pre(tokenizer)
  2539. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2540. added_vocab = tokenizer.get_added_vocab()
  2541. for i in range(vocab_size):
  2542. if i not in reverse_vocab:
  2543. tokens.append(f"[PAD{i}]")
  2544. toktypes.append(gguf.TokenType.UNUSED)
  2545. elif reverse_vocab[i] in added_vocab:
  2546. tokens.append(reverse_vocab[i])
  2547. # Check if it's a special token - treat special tokens as CONTROL tokens
  2548. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2549. if tokenizer.added_tokens_decoder[i].special:
  2550. toktypes.append(gguf.TokenType.CONTROL)
  2551. else:
  2552. toktypes.append(gguf.TokenType.USER_DEFINED)
  2553. else:
  2554. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2555. toktypes.append(gguf.TokenType.CONTROL)
  2556. else:
  2557. tokens.append(reverse_vocab[i])
  2558. toktypes.append(gguf.TokenType.NORMAL)
  2559. return tokens, toktypes, tokpre
  2560. def set_vocab(self):
  2561. try:
  2562. self._set_vocab_sentencepiece()
  2563. except FileNotFoundError:
  2564. self._set_vocab_gpt2()
  2565. def set_gguf_parameters(self):
  2566. super().set_gguf_parameters()
  2567. self._try_set_pooling_type()
  2568. # Dream models use non-causal attention for diffusion
  2569. self.gguf_writer.add_causal_attention(False)
  2570. # Handle RoPE scaling similar to Qwen2
  2571. rope_scaling = self.hparams.get("rope_scaling") or {}
  2572. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2573. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2574. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2575. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2576. # Add Dream-specific parameters
  2577. mask_token_id = self.hparams.get("mask_token_id")
  2578. if mask_token_id is not None:
  2579. self.gguf_writer.add_mask_token_id(mask_token_id)
  2580. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2581. # Dream model tensors should be mapped directly since it's the base model
  2582. yield from super().modify_tensors(data_torch, name, bid)
  2583. @ModelBase.register("LLaDAModelLM")
  2584. class LLaDAModel(TextModel):
  2585. model_arch = gguf.MODEL_ARCH.LLADA
  2586. undo_permute = True
  2587. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2588. tokens: list[str] = []
  2589. toktypes: list[int] = []
  2590. from transformers import AutoTokenizer
  2591. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2592. vocab_dict = tokenizer.get_vocab()
  2593. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2594. assert max(vocab_dict.values()) < vocab_size
  2595. tokpre = self.get_vocab_base_pre(tokenizer)
  2596. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2597. added_vocab = tokenizer.get_added_vocab()
  2598. for i in range(vocab_size):
  2599. if i not in reverse_vocab:
  2600. tokens.append(f"[PAD{i}]")
  2601. toktypes.append(gguf.TokenType.UNUSED)
  2602. elif reverse_vocab[i] in added_vocab:
  2603. tokens.append(reverse_vocab[i])
  2604. # Check if it's a special token - treat special tokens as CONTROL tokens
  2605. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2606. if tokenizer.added_tokens_decoder[i].special:
  2607. toktypes.append(gguf.TokenType.CONTROL)
  2608. else:
  2609. toktypes.append(gguf.TokenType.USER_DEFINED)
  2610. else:
  2611. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2612. toktypes.append(gguf.TokenType.CONTROL)
  2613. else:
  2614. tokens.append(reverse_vocab[i])
  2615. toktypes.append(gguf.TokenType.NORMAL)
  2616. return tokens, toktypes, tokpre
  2617. def set_vocab(self):
  2618. self._set_vocab_gpt2()
  2619. # LLaDA specific parameters
  2620. self.gguf_writer.add_add_bos_token(True)
  2621. def set_gguf_parameters(self):
  2622. super().set_gguf_parameters()
  2623. self._try_set_pooling_type()
  2624. # Add parameters similar to LlamaModel
  2625. hparams = self.hparams
  2626. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2627. if (rope_dim := hparams.get("head_dim")) is None:
  2628. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  2629. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  2630. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2631. # Set context length for LLaDA
  2632. context_length = self.hparams.get("max_sequence_length", 4096)
  2633. self.gguf_writer.add_context_length(context_length)
  2634. # Set embedding length (dimension size)
  2635. embedding_length = self.hparams.get("d_model", 4096)
  2636. self.gguf_writer.add_embedding_length(embedding_length)
  2637. # Set feed forward length (MLP hidden size)
  2638. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  2639. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  2640. # LLaDA models use non-causal attention for diffusion, similar to Dream
  2641. self.gguf_writer.add_causal_attention(False)
  2642. # LLaDA models don't shift their logits
  2643. self.gguf_writer.add_diffusion_shift_logits(False)
  2644. @staticmethod
  2645. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2646. if n_head_kv is not None and n_head != n_head_kv:
  2647. n_head = n_head_kv
  2648. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2649. .swapaxes(1, 2)
  2650. .reshape(weights.shape))
  2651. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2652. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  2653. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  2654. if self.undo_permute:
  2655. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2656. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  2657. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2658. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  2659. # LLaDA model tensors should be mapped directly since it's the base model
  2660. yield from super().modify_tensors(data_torch, name, bid)
  2661. @ModelBase.register("Ernie4_5_ForCausalLM", "Ernie4_5ForCausalLM")
  2662. class Ernie4_5Model(TextModel):
  2663. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2664. def set_vocab(self):
  2665. self._set_vocab_sentencepiece()
  2666. def set_gguf_parameters(self):
  2667. super().set_gguf_parameters()
  2668. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2669. num_heads = self.hparams["num_attention_heads"]
  2670. num_kv_heads = self.hparams["num_key_value_heads"]
  2671. if (head_dim := self.hparams.get("head_dim")) is None:
  2672. head_dim = self.hparams["hidden_size"] // num_heads
  2673. if "ernie." in name:
  2674. name = name.replace("ernie.", "model.")
  2675. # split the qkv weights
  2676. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2677. if "qkv_proj" in name:
  2678. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2679. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2680. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2681. total_q_dim = num_heads * head_dim
  2682. total_k_dim = num_kv_heads * head_dim
  2683. total_v_dim = num_kv_heads * head_dim
  2684. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  2685. return [
  2686. (self.map_tensor_name(name_q), q_proj_weight),
  2687. (self.map_tensor_name(name_k), k_proj_weight),
  2688. (self.map_tensor_name(name_v), v_proj_weight)
  2689. ]
  2690. # split the up_gate_proj into gate and up
  2691. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  2692. if "up_gate_proj" in name:
  2693. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  2694. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  2695. dim_half = data_torch.shape[0] // 2
  2696. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  2697. return [
  2698. (self.map_tensor_name(name_gate), gate_proj_weight),
  2699. (self.map_tensor_name(name_up), up_proj_weight)
  2700. ]
  2701. return [(self.map_tensor_name(name), data_torch)]
  2702. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  2703. class Ernie4_5MoeModel(Ernie4_5Model):
  2704. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  2705. _experts: list[dict[str, Tensor]] | None = None
  2706. def __init__(self, *args, **kwargs):
  2707. super().__init__(*args, **kwargs)
  2708. self._experts = [{} for _ in range(self.block_count)]
  2709. def set_gguf_parameters(self):
  2710. super().set_gguf_parameters()
  2711. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  2712. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  2713. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  2714. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  2715. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2716. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2717. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  2718. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  2719. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  2720. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  2721. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2722. # Modify correction bias name as in DeepseekV2
  2723. if name.endswith("e_score_correction_bias"):
  2724. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  2725. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  2726. match = re.match(r"model.mtp_block.(\d+)", name)
  2727. if match:
  2728. return []
  2729. # skip all other MTP tensors for now
  2730. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  2731. if match:
  2732. return []
  2733. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  2734. if match:
  2735. return []
  2736. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  2737. if match:
  2738. return []
  2739. # process the experts separately
  2740. if name.find("mlp.experts") != -1:
  2741. n_experts = self.hparams["moe_num_experts"]
  2742. assert bid is not None
  2743. if self._experts is None:
  2744. self._experts = [{} for _ in range(self.block_count)]
  2745. self._experts[bid][name] = data_torch
  2746. if len(self._experts[bid]) >= n_experts * 3:
  2747. tensors: list[tuple[str, Tensor]] = []
  2748. # merge the experts into a single 3d tensor
  2749. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2750. datas: list[Tensor] = []
  2751. for xid in range(n_experts):
  2752. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2753. datas.append(self._experts[bid][ename_to_retrieve])
  2754. del self._experts[bid][ename_to_retrieve]
  2755. data_torch = torch.stack(datas, dim=0)
  2756. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2757. new_name = self.map_tensor_name(merged_name)
  2758. tensors.append((new_name, data_torch))
  2759. return tensors
  2760. else:
  2761. return []
  2762. return [(self.map_tensor_name(name), data_torch)]
  2763. def prepare_tensors(self):
  2764. super().prepare_tensors()
  2765. if self._experts is not None:
  2766. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2767. experts = [k for d in self._experts for k in d.keys()]
  2768. if len(experts) > 0:
  2769. raise ValueError(f"Unprocessed experts: {experts}")
  2770. @ModelBase.register(
  2771. "Qwen2VLModel",
  2772. "Qwen2VLForConditionalGeneration",
  2773. "Qwen2_5_VLForConditionalGeneration",
  2774. "Qwen2_5OmniModel",
  2775. )
  2776. class Qwen2VLModel(TextModel):
  2777. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2778. def set_gguf_parameters(self):
  2779. super().set_gguf_parameters()
  2780. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2781. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2782. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2783. def set_vocab(self):
  2784. try:
  2785. self._set_vocab_sentencepiece()
  2786. except FileNotFoundError:
  2787. self._set_vocab_gpt2()
  2788. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2789. del bid # unused
  2790. if name.startswith("thinker."):
  2791. name = name.replace("thinker.", "")
  2792. if name.startswith("visual") or name.startswith("audio") or \
  2793. name.startswith("talker") or name.startswith("token2wav"):
  2794. # skip multimodal tensors
  2795. return []
  2796. return [(self.map_tensor_name(name), data_torch)]
  2797. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2798. class Qwen2VLVisionModel(MmprojModel):
  2799. def __init__(self, *args, **kwargs):
  2800. super().__init__(*args, **kwargs)
  2801. assert self.hparams_vision is not None
  2802. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  2803. # rename config.json values
  2804. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  2805. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  2806. if "embed_dim" in self.hparams_vision: # qwen2vl
  2807. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  2808. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  2809. def set_gguf_parameters(self):
  2810. super().set_gguf_parameters()
  2811. assert self.hparams_vision is not None
  2812. hparams = self.hparams_vision
  2813. model_type = self.global_config['model_type']
  2814. if model_type == 'qwen2_vl':
  2815. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  2816. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  2817. if model_type == 'qwen2_5_omni':
  2818. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  2819. else:
  2820. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  2821. self.gguf_writer.add_vision_use_silu(True)
  2822. # find n_wa_pattern (window attention pattern)
  2823. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  2824. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  2825. n_wa_pattern = fullatt_block_indexes[0] + 1
  2826. # validate n_wa_pattern
  2827. for i in range(1, len(fullatt_block_indexes)):
  2828. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  2829. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  2830. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  2831. else:
  2832. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  2833. # default values below are taken from HF tranformers code
  2834. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  2835. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2836. if ".position_embd." in new_name:
  2837. return gguf.GGMLQuantizationType.F32
  2838. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2839. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2840. del bid # unused
  2841. if name.startswith("visual."):
  2842. # process visual tensors
  2843. # split QKV tensors if needed
  2844. if ".qkv." in name:
  2845. if data_torch.ndim == 2: # weight
  2846. c3, _ = data_torch.shape
  2847. else: # bias
  2848. c3 = data_torch.shape[0]
  2849. assert c3 % 3 == 0
  2850. c = c3 // 3
  2851. wq = data_torch[:c]
  2852. wk = data_torch[c: c * 2]
  2853. wv = data_torch[c * 2:]
  2854. return [
  2855. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  2856. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  2857. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  2858. ]
  2859. elif 'patch_embed.proj.weight' in name:
  2860. # split Conv3D into Conv2Ds
  2861. c1, c2, kt, kh, kw = data_torch.shape
  2862. del c1, c2, kh, kw # unused
  2863. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  2864. return [
  2865. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  2866. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  2867. ]
  2868. else:
  2869. return [(self.map_tensor_name(name), data_torch)]
  2870. return [] # skip other tensors
  2871. @ModelBase.register("Qwen2_5OmniModel")
  2872. class Qwen25OmniModel(Qwen2VLVisionModel):
  2873. has_vision_encoder = True
  2874. has_audio_encoder = True
  2875. def __init__(self, *args, **kwargs):
  2876. super().__init__(*args, **kwargs)
  2877. assert self.hparams_audio is not None
  2878. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  2879. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  2880. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  2881. def set_gguf_parameters(self):
  2882. super().set_gguf_parameters()
  2883. assert self.hparams_audio is not None
  2884. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  2885. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  2886. def get_vision_config(self) -> dict[str, Any] | None:
  2887. return self.global_config["thinker_config"].get("vision_config")
  2888. def get_audio_config(self) -> dict[str, Any] | None:
  2889. return self.global_config["thinker_config"].get("audio_config")
  2890. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2891. # SinusoidsPositionEmbedding
  2892. assert self.hparams_audio is not None
  2893. max_timescale = 10000
  2894. length = 1500
  2895. channels = self.hparams_audio["hidden_size"]
  2896. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  2897. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  2898. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  2899. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  2900. yield ("audio_tower.embed_positions.weight", pos_embd)
  2901. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2902. if ".conv" in name and ".weight" in name:
  2903. return gguf.GGMLQuantizationType.F16
  2904. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2905. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2906. if name.startswith("thinker."):
  2907. name = name.replace("thinker.", "")
  2908. if name.startswith("audio_tower"):
  2909. # process audio tensors
  2910. if "conv1.bias" in name or "conv2.bias" in name:
  2911. # transpose conv1 and conv2 bias
  2912. data_torch = data_torch.unsqueeze(-1)
  2913. if "audio_bos_eos_token" in name:
  2914. # this tensor is left unused in transformers code
  2915. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  2916. return []
  2917. return [(self.map_tensor_name(name), data_torch)]
  2918. return super().modify_tensors(data_torch, name, bid)
  2919. @ModelBase.register("InternVisionModel")
  2920. class InternVisionModel(MmprojModel):
  2921. def set_gguf_parameters(self):
  2922. assert self.hparams_vision is not None
  2923. if isinstance(self.hparams_vision['image_size'], list):
  2924. self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
  2925. if isinstance(self.hparams_vision['patch_size'], list):
  2926. self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
  2927. super().set_gguf_parameters()
  2928. hparams = self.hparams
  2929. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  2930. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2931. # hidden_act
  2932. if hparams["hidden_act"] == "silu":
  2933. self.gguf_writer.add_vision_use_silu(True)
  2934. elif hparams["hidden_act"] == "gelu":
  2935. self.gguf_writer.add_vision_use_gelu(True)
  2936. else:
  2937. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2938. # downsample_ratio
  2939. downsample_ratio = self.global_config.get("downsample_ratio")
  2940. assert downsample_ratio is not None
  2941. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  2942. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2943. if ".position_embd." in new_name:
  2944. return gguf.GGMLQuantizationType.F32
  2945. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2946. def _mapping_interns1_name(self, name):
  2947. names_map = {
  2948. "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
  2949. "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
  2950. "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
  2951. "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
  2952. "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
  2953. "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
  2954. }
  2955. if name in names_map:
  2956. name = names_map[name]
  2957. return name
  2958. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2959. del bid # unused
  2960. vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
  2961. # deal with intern-s1 special case
  2962. name = self._mapping_interns1_name(name)
  2963. if any([name.startswith(prefix) for prefix in vision_prefix]):
  2964. # process visual tensors
  2965. # correct name
  2966. if name.startswith("vision_model"):
  2967. name = "vision_tower." + name
  2968. if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
  2969. name += ".weight"
  2970. # split QKV tensors if needed
  2971. if ".qkv." in name:
  2972. if data_torch.ndim == 2: # weight
  2973. c3, _ = data_torch.shape
  2974. else: # bias
  2975. c3 = data_torch.shape[0]
  2976. assert c3 % 3 == 0
  2977. c = c3 // 3
  2978. wq = data_torch[:c]
  2979. wk = data_torch[c: c * 2]
  2980. wv = data_torch[c * 2:]
  2981. return [
  2982. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  2983. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  2984. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  2985. ]
  2986. return [(self.map_tensor_name(name), data_torch)]
  2987. return [] # skip other tensors
  2988. @ModelBase.register("WavTokenizerDec")
  2989. class WavTokenizerDecModel(TextModel):
  2990. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2991. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2992. del bid # unused
  2993. if \
  2994. name.endswith("codebook.cluster_size") or \
  2995. name.endswith("codebook.embed_avg") or \
  2996. name.endswith("codebook.inited"):
  2997. logger.debug(f"Skipping {name!r}")
  2998. return []
  2999. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  3000. return [(self.map_tensor_name(name), data_torch)]
  3001. def set_vocab(self):
  3002. self._set_vocab_none()
  3003. def set_gguf_parameters(self):
  3004. super().set_gguf_parameters()
  3005. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  3006. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  3007. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  3008. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  3009. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  3010. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  3011. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  3012. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  3013. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  3014. self.gguf_writer.add_causal_attention(False)
  3015. @ModelBase.register("Qwen2MoeForCausalLM")
  3016. class Qwen2MoeModel(TextModel):
  3017. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  3018. def set_gguf_parameters(self):
  3019. super().set_gguf_parameters()
  3020. if (n_experts := self.hparams.get("num_experts")) is not None:
  3021. self.gguf_writer.add_expert_count(n_experts)
  3022. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3023. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3024. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  3025. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  3026. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  3027. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  3028. # YaRN is not enabled by default
  3029. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  3030. rope_scaling = self.hparams.get("rope_scaling") or {}
  3031. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  3032. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3033. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3034. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  3035. _experts: list[dict[str, Tensor]] | None = None
  3036. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3037. # process the experts separately
  3038. name = name.replace("language_model.", "") # InternVL
  3039. if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  3040. # skip visual tensors
  3041. return []
  3042. if name.find("experts") != -1:
  3043. n_experts = self.hparams["num_experts"]
  3044. assert bid is not None
  3045. if self._experts is None:
  3046. self._experts = [{} for _ in range(self.block_count)]
  3047. self._experts[bid][name] = data_torch
  3048. if len(self._experts[bid]) >= n_experts * 3:
  3049. tensors: list[tuple[str, Tensor]] = []
  3050. # merge the experts into a single 3d tensor
  3051. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3052. datas: list[Tensor] = []
  3053. for xid in range(n_experts):
  3054. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3055. datas.append(self._experts[bid][ename])
  3056. del self._experts[bid][ename]
  3057. data_torch = torch.stack(datas, dim=0)
  3058. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3059. new_name = self.map_tensor_name(merged_name)
  3060. tensors.append((new_name, data_torch))
  3061. return tensors
  3062. else:
  3063. return []
  3064. return [(self.map_tensor_name(name), data_torch)]
  3065. def prepare_tensors(self):
  3066. super().prepare_tensors()
  3067. if self._experts is not None:
  3068. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3069. experts = [k for d in self._experts for k in d.keys()]
  3070. if len(experts) > 0:
  3071. raise ValueError(f"Unprocessed experts: {experts}")
  3072. @ModelBase.register("Qwen3ForCausalLM")
  3073. class Qwen3Model(Qwen2Model):
  3074. model_arch = gguf.MODEL_ARCH.QWEN3
  3075. # extra logic for rerank models
  3076. is_rerank: bool = False
  3077. is_tied_embeddings: bool = False
  3078. token_false_id: int | None = None
  3079. token_true_id: int | None = None
  3080. def __init__(self, *args, **kwargs):
  3081. super().__init__(*args, **kwargs)
  3082. # track for intern-s1-mini
  3083. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  3084. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3085. # a bit hacky, but currently the only way to detect if this is a rerank model
  3086. # ref: https://huggingface.co/Qwen/Qwen3-Reranker-0.6B
  3087. readme_path = self.dir_model / "README.md"
  3088. readme_text = ""
  3089. if readme_path.exists():
  3090. with readme_path.open("r", encoding="utf-8") as f:
  3091. readme_text = f.read()
  3092. if "# Qwen3-Reranker" in readme_text:
  3093. self._find_rerank_config()
  3094. def set_vocab(self):
  3095. # deal with intern-s1-mini
  3096. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3097. self._set_vocab_interns1()
  3098. return
  3099. super().set_vocab()
  3100. def _find_rerank_config(self):
  3101. from transformers import AutoTokenizer
  3102. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3103. self.is_rerank = True
  3104. self.is_tied_embeddings = self.hparams.get("tie_word_embeddings", False)
  3105. self.token_false_id = tokenizer.convert_tokens_to_ids("no")
  3106. self.token_true_id = tokenizer.convert_tokens_to_ids("yes")
  3107. self.sep_token_id = tokenizer.convert_tokens_to_ids("|")
  3108. assert self.token_false_id is not None and self.token_true_id is not None
  3109. def set_gguf_parameters(self):
  3110. super().set_gguf_parameters()
  3111. if self.is_rerank:
  3112. self.gguf_writer.add_pooling_type(gguf.PoolingType.RANK)
  3113. self.gguf_writer.add_classifier_output_labels(["yes", "no"])
  3114. self.gguf_writer.add_chat_template([{
  3115. "name": "rerank",
  3116. "template": "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n"
  3117. "<|im_start|>user\n<Instruct>: Given a web search query, retrieve relevant passages that answer the query\n<Query>: {query}\n<Document>: {document}<|im_end|>\n"
  3118. "<|im_start|>assistant\n<think>\n\n</think>\n\n"
  3119. }])
  3120. def _get_cls_out_tensor(self, data_torch: Tensor) -> Tensor:
  3121. # extract "yes" and "no" tokens from the output lm_head tensor
  3122. false_row = data_torch[self.token_false_id]
  3123. true_row = data_torch[self.token_true_id]
  3124. return torch.stack([true_row, false_row], dim=0)
  3125. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3126. if self.is_rerank:
  3127. is_tied_head = self.is_tied_embeddings and "embed_tokens" in name
  3128. is_real_head = not self.is_tied_embeddings and "lm_head" in name
  3129. if is_tied_head or is_real_head:
  3130. cls_out_head = (
  3131. gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.CLS_OUT] + ".weight",
  3132. self._get_cls_out_tensor(data_torch),
  3133. )
  3134. if is_tied_head:
  3135. embed = (self.map_tensor_name(name), data_torch)
  3136. return [cls_out_head, embed]
  3137. if is_real_head:
  3138. return [cls_out_head]
  3139. return super().modify_tensors(data_torch, name, bid)
  3140. @ModelBase.register("Qwen3MoeForCausalLM")
  3141. class Qwen3MoeModel(Qwen2MoeModel):
  3142. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  3143. def __init__(self, *args, **kwargs):
  3144. super().__init__(*args, **kwargs)
  3145. hparams = ModelBase.load_hparams(self.dir_model, False)
  3146. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3147. def set_vocab(self):
  3148. # deal with intern-s1
  3149. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3150. self._set_vocab_interns1()
  3151. return
  3152. super().set_vocab()
  3153. @ModelBase.register("GPT2LMHeadModel")
  3154. class GPT2Model(TextModel):
  3155. model_arch = gguf.MODEL_ARCH.GPT2
  3156. def set_gguf_parameters(self):
  3157. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3158. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  3159. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3160. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3161. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3162. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3163. self.gguf_writer.add_file_type(self.ftype)
  3164. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3165. del bid # unused
  3166. tensors: list[tuple[str, Tensor]] = []
  3167. # we don't need these
  3168. if name.endswith((".attn.bias", ".attn.masked_bias")):
  3169. return tensors
  3170. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  3171. data_torch = data_torch.transpose(1, 0)
  3172. new_name = self.map_tensor_name(name)
  3173. tensors.append((new_name, data_torch))
  3174. return tensors
  3175. @ModelBase.register("PhiForCausalLM")
  3176. class Phi2Model(TextModel):
  3177. model_arch = gguf.MODEL_ARCH.PHI2
  3178. def set_gguf_parameters(self):
  3179. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  3180. rot_pct = self.find_hparam(["partial_rotary_factor"])
  3181. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3182. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3183. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  3184. self.gguf_writer.add_embedding_length(n_embd)
  3185. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  3186. self.gguf_writer.add_block_count(block_count)
  3187. self.gguf_writer.add_head_count(n_head)
  3188. self.gguf_writer.add_head_count_kv(n_head)
  3189. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  3190. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3191. self.gguf_writer.add_file_type(self.ftype)
  3192. self.gguf_writer.add_add_bos_token(False)
  3193. @ModelBase.register("Phi3ForCausalLM")
  3194. class Phi3MiniModel(TextModel):
  3195. model_arch = gguf.MODEL_ARCH.PHI3
  3196. def set_vocab(self):
  3197. # Phi-4 model uses GPT2Tokenizer
  3198. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3199. if tokenizer_config_file.is_file():
  3200. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3201. tokenizer_config_json = json.load(f)
  3202. tokenizer_class = tokenizer_config_json['tokenizer_class']
  3203. if tokenizer_class == 'GPT2Tokenizer':
  3204. return self._set_vocab_gpt2()
  3205. from sentencepiece import SentencePieceProcessor
  3206. tokenizer_path = self.dir_model / 'tokenizer.model'
  3207. if not tokenizer_path.is_file():
  3208. raise ValueError(f'Error: Missing {tokenizer_path}')
  3209. tokenizer = SentencePieceProcessor()
  3210. tokenizer.LoadFromFile(str(tokenizer_path))
  3211. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3212. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3213. scores: list[float] = [-10000.0] * vocab_size
  3214. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3215. for token_id in range(tokenizer.vocab_size()):
  3216. piece = tokenizer.IdToPiece(token_id)
  3217. text = piece.encode("utf-8")
  3218. score = tokenizer.GetScore(token_id)
  3219. toktype = SentencePieceTokenTypes.NORMAL
  3220. if tokenizer.IsUnknown(token_id):
  3221. toktype = SentencePieceTokenTypes.UNKNOWN
  3222. elif tokenizer.IsControl(token_id):
  3223. toktype = SentencePieceTokenTypes.CONTROL
  3224. elif tokenizer.IsUnused(token_id):
  3225. toktype = SentencePieceTokenTypes.UNUSED
  3226. elif tokenizer.IsByte(token_id):
  3227. toktype = SentencePieceTokenTypes.BYTE
  3228. tokens[token_id] = text
  3229. scores[token_id] = score
  3230. toktypes[token_id] = toktype
  3231. added_tokens_file = self.dir_model / 'added_tokens.json'
  3232. if added_tokens_file.is_file():
  3233. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3234. added_tokens_json = json.load(f)
  3235. for key in added_tokens_json:
  3236. token_id = added_tokens_json[key]
  3237. if token_id >= vocab_size:
  3238. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3239. continue
  3240. tokens[token_id] = key.encode("utf-8")
  3241. scores[token_id] = -1000.0
  3242. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3243. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3244. if tokenizer_config_file.is_file():
  3245. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3246. tokenizer_config_json = json.load(f)
  3247. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3248. for token_id, foken_data in added_tokens_decoder.items():
  3249. token_id = int(token_id)
  3250. token = foken_data["content"].encode("utf-8")
  3251. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3252. if tokens[token_id] != token:
  3253. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3254. tokens[token_id] = token
  3255. scores[token_id] = -1000.0
  3256. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3257. if foken_data.get("special"):
  3258. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3259. tokenizer_file = self.dir_model / 'tokenizer.json'
  3260. if tokenizer_file.is_file():
  3261. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3262. tokenizer_json = json.load(f)
  3263. added_tokens = tokenizer_json.get("added_tokens", [])
  3264. for foken_data in added_tokens:
  3265. token_id = int(foken_data["id"])
  3266. token = foken_data["content"].encode("utf-8")
  3267. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3268. if tokens[token_id] != token:
  3269. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3270. tokens[token_id] = token
  3271. scores[token_id] = -1000.0
  3272. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3273. if foken_data.get("special"):
  3274. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3275. self.gguf_writer.add_tokenizer_model("llama")
  3276. self.gguf_writer.add_tokenizer_pre("default")
  3277. self.gguf_writer.add_token_list(tokens)
  3278. self.gguf_writer.add_token_scores(scores)
  3279. self.gguf_writer.add_token_types(toktypes)
  3280. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3281. special_vocab.add_to_gguf(self.gguf_writer)
  3282. def set_gguf_parameters(self):
  3283. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  3284. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3285. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3286. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3287. rms_eps = self.find_hparam(["rms_norm_eps"])
  3288. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3289. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3290. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3291. rope_dims = int(rot_pct * n_embd) // n_head
  3292. self.gguf_writer.add_context_length(max_pos_embds)
  3293. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3294. self.gguf_writer.add_embedding_length(n_embd)
  3295. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3296. self.gguf_writer.add_block_count(block_count)
  3297. self.gguf_writer.add_head_count(n_head)
  3298. self.gguf_writer.add_head_count_kv(n_head_kv)
  3299. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3300. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3301. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  3302. self.gguf_writer.add_file_type(self.ftype)
  3303. sliding_window = self.hparams.get("sliding_window")
  3304. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3305. if sliding_window is None:
  3306. sliding_window = 0
  3307. self.gguf_writer.add_sliding_window(sliding_window)
  3308. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3309. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3310. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3311. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3312. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3313. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3314. rope_dims = int(rot_pct * n_embd) // n_head
  3315. # write rope scaling for long context (128k) model
  3316. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3317. if rope_scaling is None:
  3318. return
  3319. scale = max_pos_embds / orig_max_pos_embds
  3320. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3321. if len(rope_scaling_type) == 0:
  3322. raise KeyError('Missing the required key rope_scaling.type')
  3323. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3324. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3325. elif rope_scaling_type == 'yarn':
  3326. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3327. else:
  3328. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3329. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3330. long_factors = rope_scaling.get('long_factor', None)
  3331. short_factors = rope_scaling.get('short_factor', None)
  3332. if long_factors is None or short_factors is None:
  3333. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3334. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3335. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3336. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3337. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3338. @ModelBase.register("PhiMoEForCausalLM")
  3339. class PhiMoeModel(Phi3MiniModel):
  3340. model_arch = gguf.MODEL_ARCH.PHIMOE
  3341. _experts: list[dict[str, Tensor]] | None = None
  3342. def set_gguf_parameters(self):
  3343. super().set_gguf_parameters()
  3344. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3345. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3346. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3347. # process the experts separately
  3348. if name.find("block_sparse_moe.experts") != -1:
  3349. n_experts = self.hparams["num_local_experts"]
  3350. assert bid is not None
  3351. if self._experts is None:
  3352. self._experts = [{} for _ in range(self.block_count)]
  3353. self._experts[bid][name] = data_torch
  3354. if len(self._experts[bid]) >= n_experts * 3:
  3355. tensors: list[tuple[str, Tensor]] = []
  3356. # merge the experts into a single 3d tensor
  3357. for w_name in ["w1", "w2", "w3"]:
  3358. datas: list[Tensor] = []
  3359. for xid in range(n_experts):
  3360. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3361. datas.append(self._experts[bid][ename])
  3362. del self._experts[bid][ename]
  3363. data_torch = torch.stack(datas, dim=0)
  3364. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3365. new_name = self.map_tensor_name(merged_name)
  3366. tensors.append((new_name, data_torch))
  3367. return tensors
  3368. else:
  3369. return []
  3370. return [(self.map_tensor_name(name), data_torch)]
  3371. def prepare_tensors(self):
  3372. super().prepare_tensors()
  3373. if self._experts is not None:
  3374. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3375. experts = [k for d in self._experts for k in d.keys()]
  3376. if len(experts) > 0:
  3377. raise ValueError(f"Unprocessed experts: {experts}")
  3378. @ModelBase.register("PlamoForCausalLM")
  3379. class PlamoModel(TextModel):
  3380. model_arch = gguf.MODEL_ARCH.PLAMO
  3381. def set_vocab(self):
  3382. self._set_vocab_sentencepiece()
  3383. def set_gguf_parameters(self):
  3384. hparams = self.hparams
  3385. block_count = hparams["num_hidden_layers"]
  3386. self.gguf_writer.add_context_length(4096) # not in config.json
  3387. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3388. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3389. self.gguf_writer.add_block_count(block_count)
  3390. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3391. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3392. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3393. self.gguf_writer.add_file_type(self.ftype)
  3394. def shuffle_attn_q_weight(self, data_torch):
  3395. assert data_torch.size() == (5120, 5120)
  3396. data_torch = data_torch.reshape(8, 5, 128, 5120)
  3397. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  3398. data_torch = torch.reshape(data_torch, (5120, 5120))
  3399. return data_torch
  3400. def shuffle_attn_output_weight(self, data_torch):
  3401. assert data_torch.size() == (5120, 5120)
  3402. data_torch = data_torch.reshape(5120, 8, 5, 128)
  3403. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  3404. data_torch = torch.reshape(data_torch, (5120, 5120))
  3405. return data_torch
  3406. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3407. del bid # unused
  3408. new_name = self.map_tensor_name(name)
  3409. # shuffle for broadcasting of gqa in ggml_mul_mat
  3410. if new_name.endswith("attn_q.weight"):
  3411. data_torch = self.shuffle_attn_q_weight(data_torch)
  3412. elif new_name.endswith("attn_output.weight"):
  3413. data_torch = self.shuffle_attn_output_weight(data_torch)
  3414. return [(new_name, data_torch)]
  3415. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  3416. class Plamo2Model(TextModel):
  3417. model_arch = gguf.MODEL_ARCH.PLAMO2
  3418. def set_vocab(self):
  3419. # PLaMo 2 uses a custom tokenizer with a .jsonl file
  3420. # We need to handle this specially
  3421. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  3422. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  3423. if not tokenizer_jsonl_path.is_file():
  3424. raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
  3425. # Load tokenizer config
  3426. with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
  3427. tokenizer_config = json.load(f)
  3428. # Load tokens from JSONL file (actually a list format)
  3429. tokens = []
  3430. scores = []
  3431. toktypes = []
  3432. with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
  3433. for line_num, line in enumerate(f):
  3434. if line.strip():
  3435. token_data = json.loads(line)
  3436. # Format: [token, score, type, ?, ?, ?, ?]
  3437. token = token_data[0].encode("utf-8")
  3438. score = float(token_data[1])
  3439. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  3440. tokens.append(token)
  3441. scores.append(score)
  3442. # Map token type strings to GGUF token types
  3443. if token_type_str == "UNKNOWN":
  3444. toktypes.append(gguf.TokenType.UNKNOWN)
  3445. elif token_type_str == "CONTROL":
  3446. toktypes.append(gguf.TokenType.CONTROL)
  3447. elif token_type_str == "BYTE":
  3448. toktypes.append(gguf.TokenType.BYTE)
  3449. else:
  3450. # Check for PLaMo-2 special tokens
  3451. token_str = token_data[0]
  3452. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  3453. toktypes.append(gguf.TokenType.CONTROL)
  3454. else:
  3455. toktypes.append(gguf.TokenType.NORMAL)
  3456. vocab_size = self.hparams["vocab_size"]
  3457. if vocab_size > len(tokens):
  3458. pad_count = vocab_size - len(tokens)
  3459. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3460. for i in range(1, pad_count + 1):
  3461. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3462. scores.append(-1000.0)
  3463. toktypes.append(gguf.TokenType.UNUSED)
  3464. # Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
  3465. self.gguf_writer.add_tokenizer_model("plamo2")
  3466. self.gguf_writer.add_tokenizer_pre("default")
  3467. self.gguf_writer.add_token_list(tokens)
  3468. self.gguf_writer.add_token_scores(scores)
  3469. self.gguf_writer.add_token_types(toktypes)
  3470. # Add special tokens from config
  3471. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  3472. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  3473. self.gguf_writer.add_bos_token_id(token_id)
  3474. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  3475. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  3476. self.gguf_writer.add_eos_token_id(token_id)
  3477. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  3478. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  3479. self.gguf_writer.add_pad_token_id(token_id)
  3480. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  3481. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  3482. self.gguf_writer.add_sep_token_id(token_id)
  3483. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  3484. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  3485. self.gguf_writer.add_unk_token_id(token_id)
  3486. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  3487. self.gguf_writer.add_eot_token_id(4)
  3488. self.gguf_writer.add_add_space_prefix(False)
  3489. def set_gguf_parameters(self):
  3490. hparams = self.hparams
  3491. block_count = hparams["num_hidden_layers"]
  3492. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3493. # Which layers are Mamba layers
  3494. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  3495. # This logic matches modeling_plamo.py's is_mamba function
  3496. mamba_step = hparams.get("mamba_step", 2)
  3497. mamba_enabled = hparams.get("mamba_enabled", True)
  3498. num_key_value_heads = []
  3499. num_attention_heads = []
  3500. if mamba_enabled:
  3501. for i in range(block_count):
  3502. if block_count <= (mamba_step // 2):
  3503. # use attention in last layer
  3504. is_mamba = (i != block_count - 1)
  3505. else:
  3506. is_mamba = (i % mamba_step) != (mamba_step // 2)
  3507. if is_mamba:
  3508. num_key_value_heads.append(0)
  3509. num_attention_heads.append(0)
  3510. else:
  3511. num_key_value_heads.append(hparams.get("num_key_value_heads", 4))
  3512. num_attention_heads.append(hparams.get("num_attention_heads", 32))
  3513. if num_key_value_heads and num_attention_heads:
  3514. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  3515. self.gguf_writer.add_head_count(num_attention_heads)
  3516. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  3517. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  3518. self.gguf_writer.add_key_length(hparams.get("hidden_size_per_head", 128))
  3519. self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128))
  3520. self.gguf_writer.add_block_count(block_count)
  3521. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  3522. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000))
  3523. # Mamba parameters
  3524. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  3525. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  3526. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  3527. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  3528. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  3529. self.gguf_writer.add_ssm_group_count(0)
  3530. # MLP feed forward parameters (for attention layers)
  3531. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  3532. self.gguf_writer.add_file_type(self.ftype)
  3533. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3534. del bid # unused
  3535. if name.endswith(".A_log"):
  3536. data_torch = -torch.exp(data_torch)
  3537. elif name.endswith(".dt_bias"):
  3538. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3539. elif name.endswith(".dt_norm_weight"):
  3540. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  3541. elif name.endswith(".B_norm_weight"):
  3542. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  3543. elif name.endswith(".C_norm_weight"):
  3544. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  3545. elif name.endswith(".k_weight"):
  3546. name = name.rpartition(".k_weight")[0] + ".k.weight"
  3547. elif name.endswith(".q_weight"):
  3548. name = name.rpartition(".q_weight")[0] + ".q.weight"
  3549. elif name.endswith(".conv1d.weight"):
  3550. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  3551. assert data_torch.ndim == 2
  3552. elif name.endswith(".pre_mixer_norm.weight"):
  3553. data_torch += 1.0
  3554. elif name.endswith(".post_mixer_norm.weight"):
  3555. data_torch += 1.0 / 5
  3556. elif name.endswith(".pre_mlp_norm.weight"):
  3557. data_torch += 1.0
  3558. elif name.endswith(".post_mlp_norm.weight"):
  3559. data_torch += 1.0 / (5**1.5)
  3560. elif name.endswith(".norm.weight"):
  3561. data_torch += 1.0
  3562. new_name = self.map_tensor_name(name)
  3563. return [(new_name, data_torch)]
  3564. @ModelBase.register("CodeShellForCausalLM")
  3565. class CodeShellModel(TextModel):
  3566. model_arch = gguf.MODEL_ARCH.CODESHELL
  3567. def set_gguf_parameters(self):
  3568. block_count = self.hparams["n_layer"]
  3569. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3570. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3571. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3572. self.gguf_writer.add_block_count(block_count)
  3573. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3574. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  3575. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3576. self.gguf_writer.add_file_type(self.ftype)
  3577. self.gguf_writer.add_rope_freq_base(10000.0)
  3578. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3579. self.gguf_writer.add_rope_scaling_factor(1.0)
  3580. _has_tok_embd = False
  3581. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3582. del bid # unused
  3583. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3584. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3585. new_name = self.map_tensor_name(name)
  3586. # assuming token_embd.weight is seen before output.weight
  3587. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3588. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  3589. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  3590. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  3591. self.tensor_names.remove("transformer.wte.weight")
  3592. elif new_name == tok_embd_name:
  3593. self._has_tok_embd = True
  3594. return [(new_name, data_torch)]
  3595. @ModelBase.register("InternLM2ForCausalLM")
  3596. class InternLM2Model(TextModel):
  3597. model_arch = gguf.MODEL_ARCH.INTERNLM2
  3598. def set_vocab(self):
  3599. # (TODO): Is there a better way?
  3600. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  3601. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  3602. # recognized as an empty string in C++.
  3603. from sentencepiece import SentencePieceProcessor
  3604. from sentencepiece import sentencepiece_model_pb2 as model
  3605. tokenizer_path = self.dir_model / 'tokenizer.model'
  3606. tokens: list[bytes] = []
  3607. scores: list[float] = []
  3608. toktypes: list[int] = []
  3609. if not tokenizer_path.is_file():
  3610. logger.error(f'Error: Missing {tokenizer_path}')
  3611. sys.exit(1)
  3612. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3613. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3614. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3615. tokenizer = SentencePieceProcessor()
  3616. tokenizer.LoadFromFile(str(tokenizer_path))
  3617. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3618. for token_id in range(vocab_size):
  3619. piece = tokenizer.IdToPiece(token_id)
  3620. text = piece.encode("utf-8")
  3621. score = tokenizer.GetScore(token_id)
  3622. if text == b"\x00":
  3623. # (TODO): fixme
  3624. # Hack here and replace the \x00 characters.
  3625. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  3626. text = "🐉".encode("utf-8")
  3627. toktype = SentencePieceTokenTypes.NORMAL
  3628. if tokenizer.IsUnknown(token_id):
  3629. toktype = SentencePieceTokenTypes.UNKNOWN
  3630. elif tokenizer.IsControl(token_id):
  3631. toktype = SentencePieceTokenTypes.CONTROL
  3632. elif tokenizer.IsUnused(token_id):
  3633. toktype = SentencePieceTokenTypes.UNUSED
  3634. elif tokenizer.IsByte(token_id):
  3635. toktype = SentencePieceTokenTypes.BYTE
  3636. # take care of ununsed raw token
  3637. if piece.startswith('[UNUSED'):
  3638. toktype = SentencePieceTokenTypes.UNUSED
  3639. tokens.append(text)
  3640. scores.append(score)
  3641. toktypes.append(toktype)
  3642. added_tokens_file = self.dir_model / 'added_tokens.json'
  3643. if added_tokens_file.is_file():
  3644. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3645. added_tokens_json = json.load(f)
  3646. for key in added_tokens_json:
  3647. tokens.append(key.encode("utf-8"))
  3648. scores.append(-1000.0)
  3649. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  3650. chat_eos_token = '<|im_end|>'
  3651. chat_eos_token_id = None
  3652. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3653. if tokenizer_config_file.is_file():
  3654. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3655. tokenizer_config_json = json.load(f)
  3656. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3657. for token_id, foken_data in added_tokens_decoder.items():
  3658. token_id = int(token_id)
  3659. token = foken_data["content"]
  3660. if token == chat_eos_token:
  3661. chat_eos_token_id = token_id
  3662. token = token.encode("utf-8")
  3663. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3664. if tokens[token_id] != token:
  3665. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3666. tokens[token_id] = token
  3667. scores[token_id] = -1000.0
  3668. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3669. if foken_data.get("special"):
  3670. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3671. tokenizer_file = self.dir_model / 'tokenizer.json'
  3672. if tokenizer_file.is_file():
  3673. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3674. tokenizer_json = json.load(f)
  3675. added_tokens = tokenizer_json.get("added_tokens", [])
  3676. for foken_data in added_tokens:
  3677. token_id = int(foken_data["id"])
  3678. token = foken_data["content"]
  3679. if token == chat_eos_token:
  3680. chat_eos_token_id = token_id
  3681. token = token.encode("utf-8")
  3682. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3683. if tokens[token_id] != token:
  3684. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3685. tokens[token_id] = token
  3686. scores[token_id] = -1000.0
  3687. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3688. if foken_data.get("special"):
  3689. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3690. self.gguf_writer.add_tokenizer_model("llama")
  3691. self.gguf_writer.add_tokenizer_pre("default")
  3692. self.gguf_writer.add_token_list(tokens)
  3693. self.gguf_writer.add_token_scores(scores)
  3694. self.gguf_writer.add_token_types(toktypes)
  3695. self.gguf_writer.add_add_space_prefix(add_prefix)
  3696. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3697. old_eos = special_vocab.special_token_ids["eos"]
  3698. if chat_eos_token_id is not None:
  3699. # For the chat model, we replace the eos with '<|im_end|>'.
  3700. # TODO: this is a hack, should be fixed
  3701. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  3702. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  3703. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  3704. " in chat mode so that the conversation can end normally.")
  3705. special_vocab.add_to_gguf(self.gguf_writer)
  3706. def set_gguf_parameters(self):
  3707. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  3708. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  3709. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  3710. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  3711. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  3712. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  3713. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3714. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  3715. self.gguf_writer.add_file_type(self.ftype)
  3716. rope_scaling = self.hparams.get("rope_scaling") or {}
  3717. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3718. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3719. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3720. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3721. num_heads = self.hparams["num_attention_heads"]
  3722. num_kv_heads = self.hparams["num_key_value_heads"]
  3723. n_embd = self.hparams["hidden_size"]
  3724. q_per_kv = num_heads // num_kv_heads
  3725. head_dim = n_embd // num_heads
  3726. num_groups = num_heads // q_per_kv
  3727. name = name.replace("language_model.", "") # InternVL
  3728. if name.startswith("mlp") or name.startswith("vision_model"):
  3729. # skip visual tensors
  3730. return []
  3731. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  3732. qkv = data_torch
  3733. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  3734. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  3735. # The model weights of q and k equire additional reshape.
  3736. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  3737. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  3738. v = v.reshape((-1, v.shape[-1]))
  3739. return [
  3740. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  3741. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  3742. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  3743. ]
  3744. else:
  3745. return [(self.map_tensor_name(name), data_torch)]
  3746. @ModelBase.register("InternLM3ForCausalLM")
  3747. class InternLM3Model(TextModel):
  3748. model_arch = gguf.MODEL_ARCH.LLAMA
  3749. def set_vocab(self):
  3750. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  3751. self.gguf_writer.add_tokenizer_model("llama")
  3752. self.gguf_writer.add_tokenizer_pre("default")
  3753. self.gguf_writer.add_token_list(tokens)
  3754. self.gguf_writer.add_token_scores(scores)
  3755. self.gguf_writer.add_token_types(toktypes)
  3756. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3757. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3758. if tokenizer_config_file.is_file():
  3759. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3760. tokenizer_config_json = json.load(f)
  3761. if "add_prefix_space" in tokenizer_config_json:
  3762. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  3763. if "added_tokens_decoder" in tokenizer_config_json:
  3764. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  3765. if token_data.get("special"):
  3766. token_id = int(token_id)
  3767. token = token_data["content"]
  3768. special_vocab._set_special_token(token, token_id)
  3769. # update eos token
  3770. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  3771. special_vocab.special_token_ids["eos"] = token_id
  3772. special_vocab.add_to_gguf(self.gguf_writer)
  3773. def set_gguf_parameters(self):
  3774. super().set_gguf_parameters()
  3775. hparams = self.hparams
  3776. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3777. if (rope_dim := hparams.get("head_dim")) is None:
  3778. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3779. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3780. rope_scaling = self.hparams.get("rope_scaling") or {}
  3781. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3782. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3783. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3784. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3785. n_head = self.hparams["num_attention_heads"]
  3786. n_kv_head = self.hparams.get("num_key_value_heads")
  3787. name = name.replace("language_model.", "") # InternVL
  3788. if name.startswith("mlp") or name.startswith("vision_model"):
  3789. # skip visual tensors
  3790. return []
  3791. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3792. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3793. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3794. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3795. return [(self.map_tensor_name(name), data_torch)]
  3796. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  3797. class BertModel(TextModel):
  3798. model_arch = gguf.MODEL_ARCH.BERT
  3799. def __init__(self, *args, **kwargs):
  3800. super().__init__(*args, **kwargs)
  3801. self.vocab_size = None
  3802. if cls_out_labels := self.hparams.get("id2label"):
  3803. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  3804. # Remove dummy labels added by AutoConfig
  3805. cls_out_labels = None
  3806. self.cls_out_labels = cls_out_labels
  3807. def set_gguf_parameters(self):
  3808. super().set_gguf_parameters()
  3809. self.gguf_writer.add_causal_attention(False)
  3810. self._try_set_pooling_type()
  3811. if self.cls_out_labels:
  3812. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  3813. def set_vocab(self):
  3814. tokens, toktypes, tokpre = self.get_vocab_base()
  3815. self.vocab_size = len(tokens)
  3816. # we need this to validate the size of the token_type embeddings
  3817. # though currently we are passing all zeros to the token_type embeddings
  3818. # "Sequence A" or "Sequence B"
  3819. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3820. # convert to phantom space vocab
  3821. def phantom(tok):
  3822. if tok.startswith("[") and tok.endswith("]"):
  3823. return tok
  3824. if tok.startswith("##"):
  3825. return tok[2:]
  3826. return "\u2581" + tok
  3827. tokens = list(map(phantom, tokens))
  3828. # add vocab to gguf
  3829. self.gguf_writer.add_tokenizer_model("bert")
  3830. self.gguf_writer.add_tokenizer_pre(tokpre)
  3831. self.gguf_writer.add_token_list(tokens)
  3832. self.gguf_writer.add_token_types(toktypes)
  3833. # handle special tokens
  3834. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3835. special_vocab.add_to_gguf(self.gguf_writer)
  3836. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3837. del bid # unused
  3838. if name.startswith("bert."):
  3839. name = name[5:]
  3840. if name.endswith(".gamma"):
  3841. name = name[:-6] + ".weight"
  3842. if name.endswith(".beta"):
  3843. name = name[:-5] + ".bias"
  3844. # we are only using BERT for embeddings so we don't need the pooling layer
  3845. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  3846. return [] # we don't need these
  3847. if name.startswith("cls.predictions"):
  3848. return []
  3849. if name.startswith("cls.seq_relationship"):
  3850. return []
  3851. if self.cls_out_labels:
  3852. # For BertForSequenceClassification (direct projection layer)
  3853. if name == "classifier.weight":
  3854. name = "classifier.out_proj.weight"
  3855. if name == "classifier.bias":
  3856. name = "classifier.out_proj.bias"
  3857. return [(self.map_tensor_name(name), data_torch)]
  3858. def _xlmroberta_tokenizer_init(self) -> None:
  3859. # we need the pad_token_id to know how to chop down position_embd matrix
  3860. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3861. self._position_offset = 1 + pad_token_id
  3862. if "max_position_embeddings" in self.hparams:
  3863. self.hparams["max_position_embeddings"] -= self._position_offset
  3864. else:
  3865. self._position_offset = None
  3866. def _xlmroberta_set_vocab(self) -> None:
  3867. # to avoid TypeError: Descriptors cannot be created directly
  3868. # exception when importing sentencepiece_model_pb2
  3869. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3870. from sentencepiece import SentencePieceProcessor
  3871. from sentencepiece import sentencepiece_model_pb2 as model
  3872. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  3873. tokenizer_json = {}
  3874. tokenizer_config_json = {}
  3875. if not tokenizer_path.is_file():
  3876. tokenizer_path = self.dir_model / 'tokenizer.json'
  3877. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  3878. if not tokenizer_path.is_file():
  3879. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3880. from base64 import b64decode
  3881. from transformers import AutoTokenizer
  3882. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3883. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  3884. tokenizer_json = json.load(fp)
  3885. if tokenizer_config_path.is_file():
  3886. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  3887. tokenizer_config_json = json.load(fp)
  3888. add_prefix = tokenizer.add_prefix_space
  3889. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  3890. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  3891. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  3892. else:
  3893. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3894. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3895. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3896. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3897. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3898. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3899. tokenizer = SentencePieceProcessor()
  3900. tokenizer.LoadFromFile(str(tokenizer_path))
  3901. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  3902. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3903. scores: list[float] = [-10000.0] * vocab_size
  3904. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3905. if isinstance(tokenizer, SentencePieceProcessor):
  3906. for token_id in range(tokenizer.vocab_size()):
  3907. piece = tokenizer.IdToPiece(token_id)
  3908. text = piece.encode("utf-8")
  3909. score = tokenizer.GetScore(token_id)
  3910. toktype = SentencePieceTokenTypes.NORMAL
  3911. if tokenizer.IsUnknown(token_id):
  3912. toktype = SentencePieceTokenTypes.UNKNOWN
  3913. elif tokenizer.IsControl(token_id):
  3914. toktype = SentencePieceTokenTypes.CONTROL
  3915. elif tokenizer.IsUnused(token_id):
  3916. toktype = SentencePieceTokenTypes.UNUSED
  3917. elif tokenizer.IsByte(token_id):
  3918. toktype = SentencePieceTokenTypes.BYTE
  3919. tokens[token_id] = text
  3920. scores[token_id] = score
  3921. toktypes[token_id] = toktype
  3922. else:
  3923. added_vocab = tokenizer.get_added_vocab()
  3924. unk_token = tokenizer_config_json.get("unk_token")
  3925. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  3926. for token_id in range(tokenizer.vocab_size):
  3927. piece = tokenizer._convert_id_to_token(token_id)
  3928. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  3929. text = piece.encode("utf-8")
  3930. score = tokenizer_json["model"]["vocab"][token_id][1]
  3931. toktype = SentencePieceTokenTypes.NORMAL
  3932. if token_id == unk_token_id:
  3933. toktype = SentencePieceTokenTypes.UNKNOWN
  3934. elif token_id in tokenizer.all_special_ids:
  3935. toktype = SentencePieceTokenTypes.CONTROL
  3936. elif token_id in added_vocab.values():
  3937. toktype = SentencePieceTokenTypes.USER_DEFINED
  3938. # No reliable way to detect this, but jina doesn't have any
  3939. # elif tokenizer.IsByte(token_id):
  3940. # toktype = SentencePieceTokenTypes.BYTE
  3941. tokens[token_id] = text
  3942. scores[token_id] = score
  3943. toktypes[token_id] = toktype
  3944. if isinstance(tokenizer, SentencePieceProcessor):
  3945. # realign tokens (see HF tokenizer code)
  3946. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  3947. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  3948. toktypes = [
  3949. SentencePieceTokenTypes.CONTROL,
  3950. SentencePieceTokenTypes.CONTROL,
  3951. SentencePieceTokenTypes.CONTROL,
  3952. SentencePieceTokenTypes.UNKNOWN,
  3953. ] + toktypes[3:-1]
  3954. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  3955. # Add mask token missing from sentencepiece.bpe.model
  3956. tokens[250001] = b'<mask>'
  3957. scores[250001] = 0.0
  3958. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  3959. self.gguf_writer.add_tokenizer_model("t5")
  3960. self.gguf_writer.add_tokenizer_pre("default")
  3961. self.gguf_writer.add_token_list(tokens)
  3962. self.gguf_writer.add_token_scores(scores)
  3963. self.gguf_writer.add_token_types(toktypes)
  3964. self.gguf_writer.add_add_space_prefix(add_prefix)
  3965. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3966. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3967. if precompiled_charsmap:
  3968. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3969. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3970. special_vocab.add_to_gguf(self.gguf_writer)
  3971. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  3972. class DistilBertModel(BertModel):
  3973. model_arch = gguf.MODEL_ARCH.BERT
  3974. def set_gguf_parameters(self):
  3975. self.gguf_writer.add_layer_norm_eps(1e-12)
  3976. logger.info("gguf: layer norm epsilon = 1e-12")
  3977. super().set_gguf_parameters()
  3978. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3979. if name.startswith("distilbert."):
  3980. name = name[11:]
  3981. # These layers act as MLM head, so we don't need them
  3982. if name.startswith("vocab_"):
  3983. return []
  3984. return super().modify_tensors(data_torch, name, bid)
  3985. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  3986. class RobertaModel(BertModel):
  3987. model_arch = gguf.MODEL_ARCH.BERT
  3988. def __init__(self, *args, **kwargs):
  3989. super().__init__(*args, **kwargs)
  3990. # we need the pad_token_id to know how to chop down position_embd matrix
  3991. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3992. self._position_offset = 1 + pad_token_id
  3993. if "max_position_embeddings" in self.hparams:
  3994. self.hparams["max_position_embeddings"] -= self._position_offset
  3995. else:
  3996. self._position_offset = None
  3997. def set_vocab(self):
  3998. """Support BPE tokenizers for roberta models"""
  3999. bpe_tok_path = self.dir_model / "tokenizer.json"
  4000. if bpe_tok_path.exists():
  4001. self._set_vocab_gpt2()
  4002. # we need this to validate the size of the token_type embeddings
  4003. # though currently we are passing all zeros to the token_type embeddings
  4004. # "Sequence A" or "Sequence B"
  4005. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4006. else:
  4007. return super().set_vocab()
  4008. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4009. # if name starts with "roberta.", remove the prefix
  4010. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4011. if name.startswith("roberta."):
  4012. name = name[8:]
  4013. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4014. if name == "embeddings.position_embeddings.weight":
  4015. if self._position_offset is not None:
  4016. data_torch = data_torch[self._position_offset:,:]
  4017. return super().modify_tensors(data_torch, name, bid)
  4018. @ModelBase.register("NomicBertModel")
  4019. class NomicBertModel(BertModel):
  4020. model_arch = gguf.MODEL_ARCH.BERT
  4021. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4022. hparams = kwargs.pop("hparams", None)
  4023. if hparams is None:
  4024. hparams = ModelBase.load_hparams(dir_model, False)
  4025. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  4026. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  4027. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4028. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  4029. if self._tokenizer_is_xlmroberta:
  4030. self._xlmroberta_tokenizer_init()
  4031. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  4032. if npos == 8192 and mtp == 2048:
  4033. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  4034. elif npos == 2048 and mtp == 2048:
  4035. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  4036. else:
  4037. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  4038. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  4039. # this doesn't do anything in the HF version
  4040. assert self.hparams["causal"] is False
  4041. # no bias tensors unless MoE
  4042. assert self.hparams["qkv_proj_bias"] == self.is_moe
  4043. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  4044. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  4045. # norm at end of layer
  4046. assert self.hparams["prenorm"] is False
  4047. # standard RoPE
  4048. assert self.hparams["rotary_emb_fraction"] == 1.0
  4049. assert self.hparams["rotary_emb_interleaved"] is False
  4050. assert self.hparams["rotary_emb_scale_base"] is None
  4051. def set_vocab(self) -> None:
  4052. if self._tokenizer_is_xlmroberta:
  4053. return self._xlmroberta_set_vocab()
  4054. return super().set_vocab()
  4055. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  4056. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  4057. if "mlp.experts.bias" in name:
  4058. return [] # Explicitly return an empty list.
  4059. if "mlp.experts.mlp.w1" in name:
  4060. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4061. name += ".weight"
  4062. if "mlp.experts.mlp.w2" in name:
  4063. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4064. data_torch = data_torch.transpose(1, 2)
  4065. name += ".weight"
  4066. return [(self.map_tensor_name(name), data_torch)]
  4067. def set_gguf_parameters(self):
  4068. super().set_gguf_parameters()
  4069. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  4070. if self.is_moe:
  4071. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  4072. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4073. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  4074. def _is_tokenizer_xlmroberta(self) -> bool:
  4075. with open(self.dir_model / "tokenizer.json") as f:
  4076. tokenizer_json = json.load(f)
  4077. toktyp = tokenizer_json["model"]["type"]
  4078. if toktyp == "Unigram":
  4079. return True
  4080. if toktyp == "WordPiece":
  4081. return False
  4082. raise ValueError(f"unknown tokenizer: {toktyp}")
  4083. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  4084. class NeoBert(BertModel):
  4085. model_arch = gguf.MODEL_ARCH.NEO_BERT
  4086. def set_gguf_parameters(self):
  4087. super().set_gguf_parameters()
  4088. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  4089. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  4090. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  4091. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4092. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  4093. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  4094. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  4095. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  4096. def modify_tensors(self, data_torch, name, bid):
  4097. if name.startswith("decoder."):
  4098. return []
  4099. if name.startswith("model."):
  4100. name = name[6:]
  4101. return super().modify_tensors(data_torch, name, bid)
  4102. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  4103. class XLMRobertaModel(BertModel):
  4104. model_arch = gguf.MODEL_ARCH.BERT
  4105. _lora_files = {}
  4106. _lora_names = []
  4107. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4108. hparams = kwargs.pop("hparams", None)
  4109. if hparams is None:
  4110. hparams = ModelBase.load_hparams(dir_model, False)
  4111. if lora_names := hparams.get("lora_adaptations"):
  4112. self._lora_names = lora_names
  4113. self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3
  4114. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4115. self._xlmroberta_tokenizer_init()
  4116. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4117. if self._lora_names:
  4118. for name in self._lora_names:
  4119. fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-")
  4120. self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run)
  4121. return super().generate_extra_tensors()
  4122. def set_type(self):
  4123. for lora_writer in self._lora_files.values():
  4124. lora_writer.add_type(gguf.GGUFType.ADAPTER)
  4125. lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
  4126. super().set_type()
  4127. def set_vocab(self):
  4128. self._xlmroberta_set_vocab()
  4129. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4130. # if name starts with "roberta.", remove the prefix
  4131. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4132. if name.startswith("roberta."):
  4133. name = name[8:]
  4134. # jina-embeddings-v3
  4135. if ".parametrizations." in name:
  4136. name = name.replace(".parametrizations.", ".")
  4137. if name.endswith(".original"):
  4138. name = name[:-9]
  4139. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4140. if name == "embeddings.position_embeddings.weight":
  4141. if self._position_offset is not None:
  4142. data_torch = data_torch[self._position_offset:,:]
  4143. if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"):
  4144. if name.startswith("pooler.dense"):
  4145. return []
  4146. num_loras = data_torch.size(0)
  4147. assert num_loras == len(self._lora_names)
  4148. # Split out each LoRA in their own GGUF
  4149. for i, lora_writer in enumerate(self._lora_files.values()):
  4150. new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower()
  4151. data = data_torch[i, :, :]
  4152. # Transpose/flip token_embd/types into correct shape
  4153. if new_name == "token_embd.weight.lora_b":
  4154. data = data.T
  4155. elif new_name.startswith("token_types.weight."):
  4156. new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b")
  4157. lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32)
  4158. return []
  4159. return super().modify_tensors(data_torch, name, bid)
  4160. def set_gguf_parameters(self):
  4161. super().set_gguf_parameters()
  4162. # jina-embeddings-v3
  4163. if rotary_emb_base := self.hparams.get("rotary_emb_base"):
  4164. self.gguf_writer.add_rope_freq_base(rotary_emb_base)
  4165. lora_alpha = self.hparams.get("lora_alpha")
  4166. if lora_prompt_prefixes := self.hparams.get("task_instructions"):
  4167. assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
  4168. for lora_name, lora_writer in self._lora_files.items():
  4169. lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0)
  4170. lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name)
  4171. if lora_prompt_prefixes:
  4172. lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name])
  4173. def write(self):
  4174. super().write()
  4175. for lora_writer in self._lora_files.values():
  4176. lora_writer.write_header_to_file()
  4177. lora_writer.write_kv_data_to_file()
  4178. lora_writer.write_tensors_to_file(progress=True)
  4179. lora_writer.close()
  4180. @ModelBase.register("GemmaForCausalLM")
  4181. class GemmaModel(TextModel):
  4182. model_arch = gguf.MODEL_ARCH.GEMMA
  4183. def set_vocab(self):
  4184. self._set_vocab_sentencepiece()
  4185. # TODO: these special tokens should be exported only for the CodeGemma family
  4186. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  4187. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  4188. special_vocab._set_special_token("prefix", 67)
  4189. special_vocab._set_special_token("suffix", 69)
  4190. special_vocab._set_special_token("middle", 68)
  4191. special_vocab._set_special_token("fsep", 70)
  4192. special_vocab._set_special_token("eot", 107)
  4193. special_vocab.chat_template = None # do not add it twice
  4194. special_vocab.add_to_gguf(self.gguf_writer)
  4195. self.gguf_writer.add_add_space_prefix(False)
  4196. def set_gguf_parameters(self):
  4197. hparams = self.hparams
  4198. block_count = hparams["num_hidden_layers"]
  4199. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4200. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4201. self.gguf_writer.add_block_count(block_count)
  4202. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4203. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4204. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4205. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4206. self.gguf_writer.add_key_length(hparams["head_dim"])
  4207. self.gguf_writer.add_value_length(hparams["head_dim"])
  4208. self.gguf_writer.add_file_type(self.ftype)
  4209. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4210. del bid # unused
  4211. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4212. # To prevent errors, skip loading lm_head.weight.
  4213. if name == "lm_head.weight":
  4214. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4215. return []
  4216. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4217. if name.endswith("norm.weight"):
  4218. data_torch = data_torch + 1
  4219. return [(self.map_tensor_name(name), data_torch)]
  4220. @ModelBase.register("Gemma2ForCausalLM")
  4221. class Gemma2Model(TextModel):
  4222. model_arch = gguf.MODEL_ARCH.GEMMA2
  4223. def set_vocab(self):
  4224. self._set_vocab_sentencepiece()
  4225. self.gguf_writer.add_add_space_prefix(False)
  4226. def set_gguf_parameters(self):
  4227. hparams = self.hparams
  4228. block_count = hparams["num_hidden_layers"]
  4229. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4230. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4231. self.gguf_writer.add_block_count(block_count)
  4232. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4233. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4234. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4235. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4236. self.gguf_writer.add_key_length(hparams["head_dim"])
  4237. self.gguf_writer.add_value_length(hparams["head_dim"])
  4238. self.gguf_writer.add_file_type(self.ftype)
  4239. self.gguf_writer.add_attn_logit_softcapping(
  4240. self.hparams["attn_logit_softcapping"]
  4241. )
  4242. self.gguf_writer.add_final_logit_softcapping(
  4243. self.hparams["final_logit_softcapping"]
  4244. )
  4245. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4246. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4247. del bid # unused
  4248. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4249. # To prevent errors, skip loading lm_head.weight.
  4250. if name == "lm_head.weight":
  4251. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4252. return []
  4253. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4254. if name.endswith("norm.weight"):
  4255. data_torch = data_torch + 1
  4256. return [(self.map_tensor_name(name), data_torch)]
  4257. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  4258. class Gemma3Model(TextModel):
  4259. model_arch = gguf.MODEL_ARCH.GEMMA3
  4260. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  4261. def set_vocab(self):
  4262. self._set_vocab_sentencepiece()
  4263. self.gguf_writer.add_add_space_prefix(False)
  4264. def set_gguf_parameters(self):
  4265. hparams = self.hparams
  4266. block_count = hparams["num_hidden_layers"]
  4267. # some default values are not specified in the hparams
  4268. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  4269. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4270. self.gguf_writer.add_block_count(block_count)
  4271. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4272. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  4273. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  4274. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  4275. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  4276. self.gguf_writer.add_file_type(self.ftype)
  4277. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  4278. # attn_logit_softcapping is removed in Gemma3
  4279. assert hparams.get("attn_logit_softcapping") is None
  4280. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  4281. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  4282. if hparams.get("rope_scaling") is not None:
  4283. assert hparams["rope_scaling"]["rope_type"] == "linear"
  4284. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  4285. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4286. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  4287. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4288. del bid # unused
  4289. if "language_model." in name:
  4290. name = name.replace("language_model.", "")
  4291. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4292. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4293. return [] # skip vision tensors
  4294. # remove OOV (out-of-vocabulary) rows in token_embd
  4295. if "embed_tokens.weight" in name:
  4296. vocab = self._create_vocab_sentencepiece()
  4297. tokens = vocab[0]
  4298. data_torch = data_torch[:len(tokens)]
  4299. # ref code in Gemma3RMSNorm
  4300. # output = output * (1.0 + self.weight.float())
  4301. # note: this is not the case on gemma3n
  4302. if name.endswith("norm.weight"):
  4303. data_torch = data_torch + self.norm_shift
  4304. return [(self.map_tensor_name(name), data_torch)]
  4305. @ModelBase.register("Gemma3TextModel")
  4306. class EmbeddingGemma(Gemma3Model):
  4307. model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
  4308. def set_gguf_parameters(self):
  4309. super().set_gguf_parameters()
  4310. # Override the sliding window size as it gets adjusted by the Gemma3TextConfig
  4311. # constructor. We want to use the value from the original model's config.json.
  4312. # ref: https://github.com/huggingface/transformers/pull/40700
  4313. with open(self.dir_model / "config.json", "r", encoding="utf-8") as f:
  4314. config = json.load(f)
  4315. orig_sliding_window = config.get("sliding_window")
  4316. if orig_sliding_window is None:
  4317. raise ValueError("sliding_window not found in model config - this is required for the model")
  4318. logger.info(f"Using original sliding_window from config: {orig_sliding_window} "
  4319. f"instead of {self.hparams['sliding_window']}")
  4320. self.gguf_writer.add_sliding_window(orig_sliding_window)
  4321. self._try_set_pooling_type()
  4322. @ModelBase.register("Gemma3ForConditionalGeneration")
  4323. class Gemma3VisionModel(MmprojModel):
  4324. def set_gguf_parameters(self):
  4325. super().set_gguf_parameters()
  4326. hparams = self.hparams
  4327. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  4328. # default values below are taken from HF tranformers code
  4329. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  4330. self.gguf_writer.add_vision_use_gelu(True)
  4331. # calculate proj_scale_factor (used by tinygemma3 test model)
  4332. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  4333. n_per_side = int(image_seq_length ** 0.5)
  4334. image_size = self.hparams["image_size"]
  4335. patch_size = self.hparams["patch_size"]
  4336. proj_scale_factor = (image_size // patch_size) // n_per_side
  4337. if proj_scale_factor > 0 and proj_scale_factor != 4:
  4338. # we only need to write this if it's not the default value
  4339. # in this case, we are converting a test model
  4340. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  4341. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4342. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  4343. if "input_projection" in name:
  4344. return gguf.GGMLQuantizationType.F16
  4345. if ".embeddings." in name:
  4346. return gguf.GGMLQuantizationType.F32
  4347. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4348. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4349. del bid # unused
  4350. if "vision_model.head." in name:
  4351. return [] # skip redundant tensors for tinygemma3
  4352. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4353. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4354. # process vision tensors
  4355. name = name.replace("_weight", ".weight")
  4356. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4357. # the other norm values are part of SigLIP model, and they are already correct
  4358. # ref code: Gemma3RMSNorm
  4359. if "soft_emb_norm.weight" in name:
  4360. logger.info(f"Correcting norm value for '{name}'")
  4361. data_torch = data_torch + 1
  4362. return [(self.map_tensor_name(name), data_torch)]
  4363. return [] # skip other tensors
  4364. @ModelBase.register("Gemma3nForConditionalGeneration")
  4365. class Gemma3NModel(Gemma3Model):
  4366. model_arch = gguf.MODEL_ARCH.GEMMA3N
  4367. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  4368. _altup_proj: list[Tensor] = []
  4369. _altup_unembd: list[Tensor] = []
  4370. def __init__(self, *args, **kwargs):
  4371. super().__init__(*args, **kwargs)
  4372. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  4373. self._altup_proj = [
  4374. torch.Tensor(), # to be replaced
  4375. torch.Tensor(), # to be replaced
  4376. torch.Tensor(), # to be replaced
  4377. ]
  4378. self._altup_unembd = [
  4379. torch.Tensor(), # to be replaced
  4380. torch.Tensor(), # to be replaced
  4381. torch.Tensor(), # to be replaced
  4382. ]
  4383. def set_vocab(self):
  4384. super().set_vocab()
  4385. def set_gguf_parameters(self):
  4386. super().set_gguf_parameters()
  4387. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  4388. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  4389. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  4390. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  4391. activation_sparsity_scale = []
  4392. for s in self.hparams["activation_sparsity_pattern"]:
  4393. normal_dist = torch.distributions.normal.Normal(0, 1)
  4394. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  4395. activation_sparsity_scale.append(std_multiplier.item())
  4396. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  4397. sliding_window_pattern = []
  4398. for t in self.hparams["layer_types"]:
  4399. sliding_window_pattern.append(t == "sliding_attention")
  4400. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4401. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  4402. has_all = all(m.numel() > 0 for m in matrices)
  4403. if not has_all:
  4404. return None
  4405. else:
  4406. return torch.stack(matrices, dim=0)
  4407. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4408. if name.endswith("_scale"):
  4409. name = name + ".weight"
  4410. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  4411. if "language_model." not in name:
  4412. return [] # skip non-language model tensors
  4413. if "altup_unembed_projections" in name:
  4414. data_torch = data_torch.to(device="cpu")
  4415. if ".0." in name:
  4416. self._altup_unembd[0] = data_torch
  4417. elif ".1." in name:
  4418. self._altup_unembd[1] = data_torch
  4419. elif ".2." in name:
  4420. self._altup_unembd[2] = data_torch
  4421. else:
  4422. raise ValueError(f"Unknown name: {name}")
  4423. out = self._stack_matrices(self._altup_unembd)
  4424. if out is not None:
  4425. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  4426. else:
  4427. return []
  4428. if "altup_projections" in name:
  4429. data_torch = data_torch.to(device="cpu")
  4430. if ".0." in name:
  4431. self._altup_proj[0] = data_torch
  4432. elif ".1." in name:
  4433. self._altup_proj[1] = data_torch
  4434. elif ".2." in name:
  4435. self._altup_proj[2] = data_torch
  4436. else:
  4437. raise ValueError(f"Unknown name: {name}")
  4438. out = self._stack_matrices(self._altup_proj)
  4439. if out is not None:
  4440. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  4441. else:
  4442. return []
  4443. return super().modify_tensors(data_torch, name, bid)
  4444. @ModelBase.register("Starcoder2ForCausalLM")
  4445. class StarCoder2Model(TextModel):
  4446. model_arch = gguf.MODEL_ARCH.STARCODER2
  4447. @ModelBase.register("Rwkv6ForCausalLM")
  4448. class Rwkv6Model(TextModel):
  4449. model_arch = gguf.MODEL_ARCH.RWKV6
  4450. def set_vocab(self):
  4451. self._set_vocab_rwkv_world()
  4452. def set_gguf_parameters(self):
  4453. block_count = self.hparams["num_hidden_layers"]
  4454. head_size = self.hparams["head_size"]
  4455. hidden_size = self.hparams["hidden_size"]
  4456. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4457. rescale_every_n_layers = self.hparams["rescale_every"]
  4458. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  4459. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  4460. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  4461. # RWKV isn't context limited
  4462. self.gguf_writer.add_context_length(1048576)
  4463. self.gguf_writer.add_embedding_length(hidden_size)
  4464. self.gguf_writer.add_block_count(block_count)
  4465. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4466. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  4467. self.gguf_writer.add_wkv_head_size(head_size)
  4468. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4469. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4470. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4471. self.gguf_writer.add_file_type(self.ftype)
  4472. # required by llama.cpp, unused
  4473. self.gguf_writer.add_head_count(0)
  4474. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4475. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4476. new_name = self.map_tensor_name(name)
  4477. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4478. new_name += ".weight"
  4479. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  4480. data_torch = data_torch.transpose(0, 1)
  4481. if new_name.endswith("time_mix_w2.weight"):
  4482. data_torch = data_torch.permute(0, 2, 1)
  4483. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  4484. data_torch = data_torch.squeeze()
  4485. try:
  4486. rescale_every_n_layers = self.hparams["rescale_every"]
  4487. if rescale_every_n_layers > 0:
  4488. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  4489. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  4490. except KeyError:
  4491. pass
  4492. # concat time_mix_lerp weights to reduce some cpu overhead
  4493. # also reduces the number of tensors in the model
  4494. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  4495. try:
  4496. self.lerp_weights[bid][new_name] = data_torch
  4497. except KeyError:
  4498. self.lerp_weights[bid] = {new_name: data_torch}
  4499. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  4500. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4501. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  4502. yield (new_name, data)
  4503. return
  4504. yield (new_name, data_torch)
  4505. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  4506. class RWKV6Qwen2Model(Rwkv6Model):
  4507. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  4508. def set_vocab(self):
  4509. try:
  4510. self._set_vocab_sentencepiece()
  4511. except FileNotFoundError:
  4512. self._set_vocab_gpt2()
  4513. def set_gguf_parameters(self):
  4514. block_count = self.hparams["num_hidden_layers"]
  4515. num_attention_heads = self.hparams["num_attention_heads"]
  4516. num_key_value_heads = self.hparams["num_key_value_heads"]
  4517. hidden_size = self.hparams["hidden_size"]
  4518. head_size = hidden_size // num_attention_heads
  4519. rms_norm_eps = self.hparams["rms_norm_eps"]
  4520. intermediate_size = self.hparams["intermediate_size"]
  4521. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  4522. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  4523. # RWKV isn't context limited
  4524. self.gguf_writer.add_context_length(1048576)
  4525. self.gguf_writer.add_embedding_length(hidden_size)
  4526. self.gguf_writer.add_block_count(block_count)
  4527. self.gguf_writer.add_wkv_head_size(head_size)
  4528. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4529. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4530. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4531. self.gguf_writer.add_file_type(self.ftype)
  4532. # special parameters for time_mixing in RWKV6QWEN2
  4533. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4534. self.gguf_writer.add_token_shift_count(1)
  4535. # RWKV6QWEN2 use grouped key/value like GQA
  4536. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4537. # required by llama.cpp, unused
  4538. self.gguf_writer.add_head_count(0)
  4539. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4540. for new_name, data in super().modify_tensors(data_torch, name, bid):
  4541. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  4542. data = data.view(5, -1, data.shape[-1])
  4543. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  4544. # permute them here to avoid code changes
  4545. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  4546. if "w2" in new_name:
  4547. data = data.view(5, -1, data.shape[-1])
  4548. yield (new_name, data)
  4549. continue
  4550. yield (new_name, data)
  4551. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  4552. class Rwkv7Model(TextModel):
  4553. model_arch = gguf.MODEL_ARCH.RWKV7
  4554. def set_vocab(self):
  4555. self._set_vocab_rwkv_world()
  4556. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  4557. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  4558. def set_gguf_parameters(self):
  4559. block_count = self.hparams["num_hidden_layers"]
  4560. try:
  4561. head_size = self.hparams["head_size"]
  4562. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4563. except KeyError:
  4564. head_size = self.hparams["head_dim"]
  4565. layer_norm_eps = self.hparams["norm_eps"]
  4566. hidden_size = self.hparams["hidden_size"]
  4567. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  4568. # ICLR: In-Context-Learning-Rate
  4569. try:
  4570. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4571. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4572. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4573. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4574. except KeyError:
  4575. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4576. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4577. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4578. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4579. # RWKV isn't context limited
  4580. self.gguf_writer.add_context_length(1048576)
  4581. self.gguf_writer.add_embedding_length(hidden_size)
  4582. self.gguf_writer.add_block_count(block_count)
  4583. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4584. self.gguf_writer.add_wkv_head_size(head_size)
  4585. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4586. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4587. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4588. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4589. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4590. self.gguf_writer.add_file_type(self.ftype)
  4591. # required by llama.cpp, unused
  4592. self.gguf_writer.add_head_count(0)
  4593. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4594. lora_needs_transpose: bool = True
  4595. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4596. # unify tensor names here to make life easier
  4597. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  4598. name = name.replace("self_attn", "attention").replace("attn", "attention")
  4599. name = name.replace("time_mixer.", "")
  4600. # lora layer names in fla-hub's impl
  4601. if "_lora.lora" in name:
  4602. self.lora_needs_transpose = False
  4603. name = name.replace("_lora.lora.0.weight", "1.weight")
  4604. name = name.replace("_lora.lora.2.weight", "2.weight")
  4605. name = name.replace("_lora.lora.2.bias", "0.weight")
  4606. name = name.replace("feed_forward_norm", "ln2")
  4607. name = name.replace("g_norm", "ln_x")
  4608. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  4609. # some models have dummy v0/v1/v2 on first layer while others don't
  4610. # ignore them all since they are not used
  4611. return
  4612. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  4613. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  4614. if bid is not None and "attention.x_" in name:
  4615. if "attention.x_x" in name:
  4616. # already concatenated
  4617. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4618. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  4619. yield (new_name, data)
  4620. else:
  4621. try:
  4622. self.lerp_weights[bid][name] = data_torch
  4623. except KeyError:
  4624. self.lerp_weights[bid] = {name: data_torch}
  4625. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  4626. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4627. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  4628. yield (new_name, data)
  4629. return
  4630. else:
  4631. data_torch = data_torch.squeeze()
  4632. new_name = self.map_tensor_name(name)
  4633. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4634. new_name += ".weight"
  4635. if self.lora_needs_transpose and any(
  4636. new_name.endswith(t) for t in [
  4637. "time_mix_w1.weight", "time_mix_w2.weight",
  4638. "time_mix_a1.weight", "time_mix_a2.weight",
  4639. "time_mix_v1.weight", "time_mix_v2.weight",
  4640. "time_mix_g1.weight", "time_mix_g2.weight",
  4641. ]
  4642. ):
  4643. data_torch = data_torch.transpose(0, 1)
  4644. if 'r_k' in new_name:
  4645. data_torch = data_torch.flatten()
  4646. if bid == 0 and "time_mix_a" in new_name:
  4647. # dummy v0/v1/v2 on first layer
  4648. # easist way to make llama happy
  4649. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  4650. yield (new_name, data_torch)
  4651. @ModelBase.register("RwkvHybridForCausalLM")
  4652. class ARwkv7Model(Rwkv7Model):
  4653. model_arch = gguf.MODEL_ARCH.ARWKV7
  4654. def set_vocab(self):
  4655. try:
  4656. self._set_vocab_sentencepiece()
  4657. except FileNotFoundError:
  4658. self._set_vocab_gpt2()
  4659. def set_gguf_parameters(self):
  4660. block_count = self.hparams["num_hidden_layers"]
  4661. hidden_size = self.hparams["hidden_size"]
  4662. head_size = self.hparams["head_size"]
  4663. rms_norm_eps = self.hparams["rms_norm_eps"]
  4664. intermediate_size = self.hparams["intermediate_size"]
  4665. wkv_has_gate = self.hparams["wkv_has_gate"]
  4666. assert self.hparams["wkv_version"] == 7
  4667. # ICLR: In-Context-Learning-Rate
  4668. lora_rank_decay = 64
  4669. lora_rank_iclr = 64
  4670. lora_rank_value_residual_mix = 32
  4671. lora_rank_gate = 128 if wkv_has_gate else 0
  4672. # RWKV isn't context limited
  4673. self.gguf_writer.add_context_length(1048576)
  4674. self.gguf_writer.add_embedding_length(hidden_size)
  4675. self.gguf_writer.add_block_count(block_count)
  4676. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4677. self.gguf_writer.add_wkv_head_size(head_size)
  4678. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4679. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4680. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4681. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4682. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4683. self.gguf_writer.add_file_type(self.ftype)
  4684. self.gguf_writer.add_token_shift_count(1)
  4685. # required by llama.cpp, unused
  4686. self.gguf_writer.add_head_count(0)
  4687. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  4688. class MambaModel(TextModel):
  4689. model_arch = gguf.MODEL_ARCH.MAMBA
  4690. def __init__(self, dir_model: Path, *args, **kwargs):
  4691. # Avoid using AutoConfig for hparams
  4692. hparams = kwargs.pop("hparams", None)
  4693. if hparams is None:
  4694. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4695. hparams = json.load(f)
  4696. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4697. def set_vocab(self):
  4698. vocab_size = self.hparams["vocab_size"]
  4699. # Round vocab size to next multiple of 8
  4700. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  4701. # pad using ceiling division
  4702. # ref: https://stackoverflow.com/a/17511341/22827863
  4703. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4704. self.hparams["vocab_size"] = vocab_size
  4705. if (self.dir_model / "tokenizer.json").is_file():
  4706. self._set_vocab_gpt2()
  4707. elif (self.dir_model / "tokenizer.model").is_file():
  4708. self._set_vocab_sentencepiece()
  4709. else:
  4710. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4711. self._set_vocab_builtin("gpt-neox", vocab_size)
  4712. def set_gguf_parameters(self):
  4713. d_model = self.find_hparam(["hidden_size", "d_model"])
  4714. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4715. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  4716. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  4717. # ceiling division
  4718. # ref: https://stackoverflow.com/a/17511341/22827863
  4719. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4720. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  4721. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4722. use_dt_b_c_norm = False
  4723. # For falconmamba we do apply RMS norm on B / DT and C layers
  4724. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  4725. use_dt_b_c_norm = True
  4726. # Fail early for models which don't have a block expansion factor of 2
  4727. assert d_inner == 2 * d_model
  4728. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4729. self.gguf_writer.add_embedding_length(d_model)
  4730. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4731. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4732. self.gguf_writer.add_block_count(self.block_count)
  4733. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4734. self.gguf_writer.add_ssm_inner_size(d_inner)
  4735. self.gguf_writer.add_ssm_state_size(d_state)
  4736. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4737. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4738. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  4739. self.gguf_writer.add_file_type(self.ftype)
  4740. _tok_embd = None
  4741. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4742. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4743. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  4744. new_name = self.map_tensor_name(name)
  4745. if name.endswith(".A_log"):
  4746. logger.debug("A_log --> A ==> " + new_name)
  4747. data_torch = -torch.exp(data_torch)
  4748. # [4 1 8192 1] -> [4 8192 1 1]
  4749. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4750. data_torch = data_torch.squeeze()
  4751. # assuming token_embd.weight is seen before output.weight
  4752. if self._tok_embd is not None and new_name == output_name:
  4753. if torch.equal(self._tok_embd, data_torch):
  4754. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  4755. return []
  4756. elif new_name == tok_embd_name:
  4757. self._tok_embd = data_torch
  4758. return [(new_name, data_torch)]
  4759. @ModelBase.register("Mamba2ForCausalLM")
  4760. class Mamba2Model(TextModel):
  4761. model_arch = gguf.MODEL_ARCH.MAMBA2
  4762. def __init__(self, dir_model: Path, *args, **kwargs):
  4763. # Avoid using AutoConfig for hparams
  4764. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  4765. hparams = kwargs.pop("hparams", None)
  4766. if hparams is None:
  4767. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4768. hparams = json.load(f)
  4769. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4770. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  4771. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  4772. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  4773. def set_vocab(self):
  4774. vocab_size = self.hparams["vocab_size"]
  4775. # Round vocab size to next multiple of 16
  4776. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  4777. # pad using ceiling division
  4778. # ref: https://stackoverflow.com/a/17511341/22827863
  4779. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4780. self.hparams["vocab_size"] = vocab_size
  4781. if (self.dir_model / "tokenizer.model").is_file():
  4782. self._set_vocab_sentencepiece()
  4783. elif (self.dir_model / "tokenizer.model.v3").is_file():
  4784. # mamba-codestral
  4785. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  4786. elif (self.dir_model / "tokenizer.json").is_file():
  4787. self._set_vocab_gpt2()
  4788. else:
  4789. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4790. self._set_vocab_builtin("gpt-neox", vocab_size)
  4791. def set_gguf_parameters(self):
  4792. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4793. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  4794. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  4795. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4796. # Fail early for models which don't have a block expansion factor of 2
  4797. # TODO: does this really matter?
  4798. # skip the assertion for FalconH1 Model
  4799. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  4800. assert self.d_inner == 2 * self.d_model
  4801. assert self.d_inner % head_dim == 0
  4802. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4803. self.gguf_writer.add_embedding_length(self.d_model)
  4804. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4805. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4806. self.gguf_writer.add_block_count(self.block_count)
  4807. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4808. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  4809. self.gguf_writer.add_ssm_state_size(d_state)
  4810. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  4811. self.gguf_writer.add_ssm_group_count(self.n_group)
  4812. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4813. self.gguf_writer.add_file_type(self.ftype)
  4814. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4815. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  4816. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  4817. name = name.removeprefix("model.")
  4818. if name.endswith(".dt_bias"):
  4819. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4820. new_name = self.map_tensor_name(name)
  4821. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4822. data_torch = data_torch.squeeze()
  4823. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  4824. gguf.MODEL_TENSOR.SSM_A,
  4825. gguf.MODEL_TENSOR.SSM_D,
  4826. ]):
  4827. # unsqueeze A to use similar shape semantics as Mamba-1
  4828. # (D is also unsqueezed, but for more straightforward broadcast internally)
  4829. data_torch = data_torch.reshape((*data_torch.shape, 1))
  4830. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  4831. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  4832. if name.endswith(".A_log"):
  4833. logger.debug("A_log --> A ==> " + new_name)
  4834. data_torch = -torch.exp(data_torch)
  4835. yield (new_name, data_torch)
  4836. @ModelBase.register("JambaForCausalLM")
  4837. class JambaModel(TextModel):
  4838. model_arch = gguf.MODEL_ARCH.JAMBA
  4839. def get_vocab_base_pre(self, tokenizer) -> str:
  4840. del tokenizer # unused
  4841. return "gpt-2"
  4842. def set_vocab(self):
  4843. if (self.dir_model / "tokenizer.model").is_file():
  4844. # Using Jamba's tokenizer.json causes errors on model load
  4845. # (something about "byte not found in vocab"),
  4846. # but there's a working tokenizer.model
  4847. self._set_vocab_sentencepiece()
  4848. else:
  4849. # Some Jamba models only have a tokenizer.json, which works.
  4850. self._set_vocab_gpt2()
  4851. def set_gguf_parameters(self):
  4852. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  4853. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  4854. d_inner = self.hparams["mamba_expand"] * d_model
  4855. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  4856. # ceiling division
  4857. # ref: https://stackoverflow.com/a/17511341/22827863
  4858. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4859. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  4860. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  4861. n_kv_head = self.hparams["num_key_value_heads"]
  4862. attn_offset = self.hparams["attn_layer_offset"]
  4863. attn_period = self.hparams["attn_layer_period"]
  4864. n_kv_vec = [0 for _ in range(attn_offset)] + [
  4865. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  4866. ]
  4867. self.gguf_writer.add_block_count(self.block_count)
  4868. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  4869. self.gguf_writer.add_embedding_length(d_model)
  4870. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  4871. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  4872. self.gguf_writer.add_head_count_kv(n_kv_vec)
  4873. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4874. self.gguf_writer.add_ssm_inner_size(d_inner)
  4875. self.gguf_writer.add_ssm_state_size(d_state)
  4876. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4877. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4878. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4879. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  4880. self.gguf_writer.add_file_type(self.ftype)
  4881. _experts: list[dict[str, Tensor]] | None = None
  4882. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4883. # Mini-Jamba
  4884. name = name.replace(".moe.", ".feed_forward.")
  4885. if bid is not None:
  4886. moe_offset = self.hparams["expert_layer_offset"]
  4887. moe_period = self.hparams["expert_layer_period"]
  4888. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  4889. name = name.replace(".experts.0.", ".")
  4890. # process the experts separately
  4891. if ".feed_forward.experts." in name:
  4892. n_experts = self.hparams["num_experts"]
  4893. assert bid is not None
  4894. if self._experts is None:
  4895. self._experts = [{} for _ in range(self.block_count)]
  4896. self._experts[bid][name] = data_torch
  4897. if len(self._experts[bid]) >= n_experts * 3:
  4898. # merge the experts into a single 3d tensor
  4899. for wid in ["down_proj", "gate_proj", "up_proj"]:
  4900. datas: list[Tensor] = []
  4901. for xid in range(n_experts):
  4902. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  4903. datas.append(self._experts[bid][ename])
  4904. del self._experts[bid][ename]
  4905. data_torch = torch.stack(datas, dim=0)
  4906. # using the same merged name as qwen2moe
  4907. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  4908. new_name = self.map_tensor_name(merged_name)
  4909. yield new_name, data_torch
  4910. return
  4911. new_name = self.map_tensor_name(name)
  4912. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4913. data_torch = data_torch.squeeze()
  4914. if name.endswith(".A_log"):
  4915. logger.debug("A_log --> A ==> " + new_name)
  4916. data_torch = -torch.exp(data_torch)
  4917. yield (new_name, data_torch)
  4918. def prepare_tensors(self):
  4919. super().prepare_tensors()
  4920. if self._experts is not None:
  4921. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4922. experts = [k for d in self._experts for k in d.keys()]
  4923. if len(experts) > 0:
  4924. raise ValueError(f"Unprocessed experts: {experts}")
  4925. @ModelBase.register("CohereForCausalLM")
  4926. class CommandR2Model(TextModel):
  4927. model_arch = gguf.MODEL_ARCH.COMMAND_R
  4928. def __init__(self, *args, **kwargs):
  4929. super().__init__(*args, **kwargs)
  4930. # max_position_embeddings = 8192 in config.json but model was actually
  4931. # trained on 128k context length
  4932. # aya-23 models don't have model_max_length specified
  4933. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  4934. def set_gguf_parameters(self):
  4935. super().set_gguf_parameters()
  4936. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4937. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4938. @ModelBase.register("Cohere2ForCausalLM")
  4939. class Cohere2Model(TextModel):
  4940. model_arch = gguf.MODEL_ARCH.COHERE2
  4941. def set_gguf_parameters(self):
  4942. super().set_gguf_parameters()
  4943. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4944. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4945. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4946. rotary_pct = self.hparams["rotary_pct"]
  4947. hidden_size = self.hparams["hidden_size"]
  4948. num_attention_heads = self.hparams["num_attention_heads"]
  4949. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  4950. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4951. @ModelBase.register("OlmoForCausalLM")
  4952. @ModelBase.register("OLMoForCausalLM")
  4953. class OlmoModel(TextModel):
  4954. model_arch = gguf.MODEL_ARCH.OLMO
  4955. def set_gguf_parameters(self):
  4956. super().set_gguf_parameters()
  4957. self.gguf_writer.add_layer_norm_eps(1e-5)
  4958. clip_qkv = self.hparams.get("clip_qkv")
  4959. if clip_qkv is not None:
  4960. self.gguf_writer.add_clamp_kqv(clip_qkv)
  4961. # Same as super class, but permuting q_proj, k_proj
  4962. # Copied from: LlamaModel
  4963. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4964. del bid # unused
  4965. n_head = self.hparams["num_attention_heads"]
  4966. n_kv_head = self.hparams.get("num_key_value_heads")
  4967. if name.endswith("q_proj.weight"):
  4968. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4969. if name.endswith("k_proj.weight"):
  4970. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4971. return [(self.map_tensor_name(name), data_torch)]
  4972. @ModelBase.register("SeedOssForCausalLM")
  4973. class SeedOssModel(TextModel):
  4974. model_arch = gguf.MODEL_ARCH.SEED_OSS
  4975. @ModelBase.register("Olmo2ForCausalLM")
  4976. @ModelBase.register("Olmo3ForCausalLM")
  4977. class Olmo2Model(TextModel):
  4978. model_arch = gguf.MODEL_ARCH.OLMO2
  4979. def set_gguf_parameters(self):
  4980. super().set_gguf_parameters()
  4981. rope_scaling = self.hparams.get("rope_scaling") or {}
  4982. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4983. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4984. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4985. self.gguf_writer.add_rope_scaling_attn_factors(rope_scaling["attention_factor"])
  4986. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4987. if "sliding_window" in self.hparams:
  4988. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4989. sliding_window_pattern = []
  4990. if "layer_types" in self.hparams:
  4991. sliding_window_pattern = [t == "sliding_attention" for t in self.hparams["layer_types"]]
  4992. else:
  4993. # Olmo2 does not use sliding window attention.
  4994. # Olmo3 defaults to using sliding window for all layers except every 4th.
  4995. for i in range(self.hparams["num_hidden_layers"]):
  4996. sliding_window_pattern.append((i + 1) % 4 != 0)
  4997. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4998. @ModelBase.register("OlmoeForCausalLM")
  4999. class OlmoeModel(TextModel):
  5000. model_arch = gguf.MODEL_ARCH.OLMOE
  5001. def set_gguf_parameters(self):
  5002. super().set_gguf_parameters()
  5003. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  5004. if (n_experts := self.hparams.get("num_experts")) is not None:
  5005. self.gguf_writer.add_expert_count(n_experts)
  5006. _experts: list[dict[str, Tensor]] | None = None
  5007. # Copied from: Qwen2MoeModel
  5008. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5009. # process the experts separately
  5010. if name.find("experts") != -1:
  5011. n_experts = self.hparams["num_experts"]
  5012. assert bid is not None
  5013. if self._experts is None:
  5014. self._experts = [{} for _ in range(self.block_count)]
  5015. self._experts[bid][name] = data_torch
  5016. if len(self._experts[bid]) >= n_experts * 3:
  5017. tensors: list[tuple[str, Tensor]] = []
  5018. # merge the experts into a single 3d tensor
  5019. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5020. datas: list[Tensor] = []
  5021. for xid in range(n_experts):
  5022. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5023. datas.append(self._experts[bid][ename])
  5024. del self._experts[bid][ename]
  5025. data_torch = torch.stack(datas, dim=0)
  5026. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5027. new_name = self.map_tensor_name(merged_name)
  5028. tensors.append((new_name, data_torch))
  5029. return tensors
  5030. else:
  5031. return []
  5032. return [(self.map_tensor_name(name), data_torch)]
  5033. # Copied from: Qwen2MoeModel
  5034. def prepare_tensors(self):
  5035. super().prepare_tensors()
  5036. if self._experts is not None:
  5037. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5038. experts = [k for d in self._experts for k in d.keys()]
  5039. if len(experts) > 0:
  5040. raise ValueError(f"Unprocessed experts: {experts}")
  5041. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  5042. class JinaBertV2Model(BertModel):
  5043. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  5044. def set_vocab(self):
  5045. tokenizer_class = 'BertTokenizer'
  5046. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  5047. tokenizer_class = json.load(f)['tokenizer_class']
  5048. if tokenizer_class == 'BertTokenizer':
  5049. super().set_vocab()
  5050. elif tokenizer_class == 'RobertaTokenizer':
  5051. self._set_vocab_gpt2()
  5052. self.gguf_writer.add_token_type_count(2)
  5053. else:
  5054. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  5055. @ModelBase.register("OpenELMForCausalLM")
  5056. class OpenELMModel(TextModel):
  5057. model_arch = gguf.MODEL_ARCH.OPENELM
  5058. @staticmethod
  5059. def _make_divisible(v: float | int, divisor: int) -> int:
  5060. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  5061. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  5062. # Make sure that round down does not go down by more than 10%.
  5063. if new_v < 0.9 * v:
  5064. new_v += divisor
  5065. return new_v
  5066. def __init__(self, *args, **kwargs):
  5067. super().__init__(*args, **kwargs)
  5068. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  5069. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  5070. self._n_embd: int = self.hparams["model_dim"]
  5071. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  5072. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  5073. self._ffn_dims: list[int] = [
  5074. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  5075. for multiplier in ffn_multipliers
  5076. ]
  5077. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  5078. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  5079. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  5080. def set_vocab(self):
  5081. try:
  5082. self._set_vocab_sentencepiece()
  5083. except FileNotFoundError:
  5084. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  5085. def set_gguf_parameters(self):
  5086. n_embd = self._n_embd
  5087. head_dim = self.hparams["head_dim"]
  5088. rot_pct = 1.0
  5089. assert self.block_count == len(self._num_kv_heads)
  5090. assert self.block_count == len(self._num_query_heads)
  5091. assert self.block_count == len(self._ffn_dims)
  5092. self.gguf_writer.add_block_count(self.block_count)
  5093. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  5094. self.gguf_writer.add_embedding_length(n_embd)
  5095. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  5096. self.gguf_writer.add_head_count(self._num_query_heads)
  5097. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  5098. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  5099. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  5100. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  5101. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  5102. self.gguf_writer.add_key_length(head_dim)
  5103. self.gguf_writer.add_value_length(head_dim)
  5104. self.gguf_writer.add_file_type(self.ftype)
  5105. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  5106. if "n_layers" in keys:
  5107. return self.hparams["num_transformer_layers"]
  5108. return super().find_hparam(keys, optional)
  5109. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5110. # split ff
  5111. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  5112. ff_dim = self._ffn_dims[bid]
  5113. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  5114. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  5115. return
  5116. yield (self.map_tensor_name(name), data_torch)
  5117. @ModelBase.register("ArcticForCausalLM")
  5118. class ArcticModel(TextModel):
  5119. model_arch = gguf.MODEL_ARCH.ARCTIC
  5120. def set_vocab(self):
  5121. # The reason for using a custom implementation here is that the
  5122. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  5123. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  5124. from sentencepiece import SentencePieceProcessor
  5125. tokenizer_path = self.dir_model / 'tokenizer.model'
  5126. if not tokenizer_path.is_file():
  5127. logger.error(f'Error: Missing {tokenizer_path}')
  5128. sys.exit(1)
  5129. # Read the whole vocabulary from the tokenizer.model file
  5130. tokenizer = SentencePieceProcessor()
  5131. tokenizer.LoadFromFile(str(tokenizer_path))
  5132. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5133. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5134. scores: list[float] = [-10000.0] * vocab_size
  5135. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5136. for token_id in range(tokenizer.vocab_size()):
  5137. piece = tokenizer.IdToPiece(token_id)
  5138. text = piece.encode("utf-8")
  5139. score = tokenizer.GetScore(token_id)
  5140. toktype = SentencePieceTokenTypes.NORMAL
  5141. if tokenizer.IsUnknown(token_id):
  5142. toktype = SentencePieceTokenTypes.UNKNOWN
  5143. elif tokenizer.IsControl(token_id):
  5144. toktype = SentencePieceTokenTypes.CONTROL
  5145. elif tokenizer.IsUnused(token_id):
  5146. toktype = SentencePieceTokenTypes.UNUSED
  5147. elif tokenizer.IsByte(token_id):
  5148. toktype = SentencePieceTokenTypes.BYTE
  5149. tokens[token_id] = text
  5150. scores[token_id] = score
  5151. toktypes[token_id] = toktype
  5152. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  5153. # of information about added/redefined tokens and modify them accordingly.
  5154. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5155. if tokenizer_config_file.is_file():
  5156. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5157. tokenizer_config_json = json.load(f)
  5158. if "added_tokens_decoder" in tokenizer_config_json:
  5159. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  5160. for token_id, token_json in added_tokens_decoder.items():
  5161. token_id = int(token_id)
  5162. if token_id >= vocab_size:
  5163. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5164. continue
  5165. token_content = token_json["content"]
  5166. token_type = SentencePieceTokenTypes.USER_DEFINED
  5167. token_score = -10000.0
  5168. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  5169. # Set the score to 0.0 as in the original tokenizer.model
  5170. if ("special" in token_json) and token_json["special"]:
  5171. if token_content == tokenizer_config_json["unk_token"]:
  5172. token_type = SentencePieceTokenTypes.UNKNOWN
  5173. else:
  5174. token_type = SentencePieceTokenTypes.CONTROL
  5175. token_score = 0.0
  5176. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  5177. tokens[token_id] = token_content.encode("utf-8")
  5178. toktypes[token_id] = token_type
  5179. scores[token_id] = token_score
  5180. self.gguf_writer.add_tokenizer_model("llama")
  5181. self.gguf_writer.add_tokenizer_pre("default")
  5182. self.gguf_writer.add_token_list(tokens)
  5183. self.gguf_writer.add_token_scores(scores)
  5184. self.gguf_writer.add_token_types(toktypes)
  5185. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5186. special_vocab.add_to_gguf(self.gguf_writer)
  5187. def set_gguf_parameters(self):
  5188. super().set_gguf_parameters()
  5189. hparams = self.hparams
  5190. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5191. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  5192. _experts: list[dict[str, Tensor]] | None = None
  5193. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5194. n_head = self.hparams["num_attention_heads"]
  5195. n_kv_head = self.hparams.get("num_key_value_heads")
  5196. if name.endswith("q_proj.weight"):
  5197. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5198. if name.endswith("k_proj.weight"):
  5199. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5200. # process the experts separately
  5201. if name.find("block_sparse_moe.experts") != -1:
  5202. n_experts = self.hparams["num_local_experts"]
  5203. assert bid is not None
  5204. if self._experts is None:
  5205. self._experts = [{} for _ in range(self.block_count)]
  5206. self._experts[bid][name] = data_torch
  5207. if len(self._experts[bid]) >= n_experts * 3:
  5208. tensors: list[tuple[str, Tensor]] = []
  5209. # merge the experts into a single 3d tensor
  5210. for wid in ["w1", "w2", "w3"]:
  5211. datas: list[Tensor] = []
  5212. for xid in range(n_experts):
  5213. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  5214. datas.append(self._experts[bid][ename])
  5215. del self._experts[bid][ename]
  5216. data_torch = torch.stack(datas, dim=0)
  5217. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  5218. new_name = self.map_tensor_name(merged_name)
  5219. tensors.append((new_name, data_torch))
  5220. return tensors
  5221. else:
  5222. return []
  5223. return [(self.map_tensor_name(name), data_torch)]
  5224. def prepare_tensors(self):
  5225. super().prepare_tensors()
  5226. if self._experts is not None:
  5227. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5228. experts = [k for d in self._experts for k in d.keys()]
  5229. if len(experts) > 0:
  5230. raise ValueError(f"Unprocessed experts: {experts}")
  5231. @ModelBase.register("DeepseekForCausalLM")
  5232. class DeepseekModel(TextModel):
  5233. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  5234. def set_vocab(self):
  5235. try:
  5236. self._set_vocab_sentencepiece()
  5237. except FileNotFoundError:
  5238. self._set_vocab_gpt2()
  5239. def set_gguf_parameters(self):
  5240. super().set_gguf_parameters()
  5241. hparams = self.hparams
  5242. if (rope_dim := hparams.get("head_dim")) is None:
  5243. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5244. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5245. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5246. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5247. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5248. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5249. self.gguf_writer.add_expert_weights_scale(1.0)
  5250. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5251. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5252. _experts: list[dict[str, Tensor]] | None = None
  5253. @staticmethod
  5254. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5255. if n_head_kv is not None and n_head != n_head_kv:
  5256. n_head = n_head_kv
  5257. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5258. .swapaxes(1, 2)
  5259. .reshape(weights.shape))
  5260. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5261. n_head = self.hparams["num_attention_heads"]
  5262. n_kv_head = self.hparams.get("num_key_value_heads")
  5263. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5264. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  5265. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5266. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  5267. # process the experts separately
  5268. if name.find("mlp.experts") != -1:
  5269. n_experts = self.hparams["n_routed_experts"]
  5270. assert bid is not None
  5271. if self._experts is None:
  5272. self._experts = [{} for _ in range(self.block_count)]
  5273. self._experts[bid][name] = data_torch
  5274. if len(self._experts[bid]) >= n_experts * 3:
  5275. tensors: list[tuple[str, Tensor]] = []
  5276. # merge the experts into a single 3d tensor
  5277. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5278. datas: list[Tensor] = []
  5279. for xid in range(n_experts):
  5280. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5281. datas.append(self._experts[bid][ename])
  5282. del self._experts[bid][ename]
  5283. data_torch = torch.stack(datas, dim=0)
  5284. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5285. new_name = self.map_tensor_name(merged_name)
  5286. tensors.append((new_name, data_torch))
  5287. return tensors
  5288. else:
  5289. return []
  5290. return [(self.map_tensor_name(name), data_torch)]
  5291. def prepare_tensors(self):
  5292. super().prepare_tensors()
  5293. if self._experts is not None:
  5294. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5295. experts = [k for d in self._experts for k in d.keys()]
  5296. if len(experts) > 0:
  5297. raise ValueError(f"Unprocessed experts: {experts}")
  5298. @ModelBase.register(
  5299. "DeepseekV2ForCausalLM",
  5300. "DeepseekV3ForCausalLM",
  5301. "KimiVLForConditionalGeneration",
  5302. )
  5303. class DeepseekV2Model(TextModel):
  5304. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  5305. def set_vocab(self):
  5306. try:
  5307. self._set_vocab_gpt2()
  5308. return
  5309. except Exception:
  5310. pass
  5311. from transformers import AutoTokenizer
  5312. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5313. tokpre = self.get_vocab_base_pre(tokenizer)
  5314. if tokpre == "kimi-k2":
  5315. # Build merges list using the approach similar to HunYuanMoE
  5316. merges = []
  5317. vocab = {}
  5318. mergeable_ranks = tokenizer.model._mergeable_ranks
  5319. for token, rank in mergeable_ranks.items():
  5320. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5321. if len(token) == 1:
  5322. continue
  5323. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5324. if len(merged) == 2:
  5325. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5326. # Build token list
  5327. vocab_size = self.hparams["vocab_size"]
  5328. special_tokens = tokenizer.special_tokens
  5329. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5330. tokens: list[str] = []
  5331. toktypes: list[int] = []
  5332. for i in range(vocab_size):
  5333. if i not in reverse_vocab:
  5334. tokens.append(f"[PAD{i}]")
  5335. toktypes.append(gguf.TokenType.UNUSED)
  5336. else:
  5337. token = reverse_vocab[i]
  5338. tokens.append(token)
  5339. if i in special_tokens.values():
  5340. toktypes.append(gguf.TokenType.CONTROL)
  5341. else:
  5342. toktypes.append(gguf.TokenType.NORMAL)
  5343. self.gguf_writer.add_tokenizer_model("gpt2")
  5344. self.gguf_writer.add_tokenizer_pre(tokpre)
  5345. self.gguf_writer.add_token_list(tokens)
  5346. self.gguf_writer.add_token_types(toktypes)
  5347. self.gguf_writer.add_token_merges(merges)
  5348. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5349. special_vocab.add_to_gguf(self.gguf_writer)
  5350. else:
  5351. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  5352. def set_gguf_parameters(self):
  5353. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  5354. self.hparams["num_key_value_heads"] = 1
  5355. super().set_gguf_parameters()
  5356. hparams = self.hparams
  5357. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5358. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5359. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  5360. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  5361. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5362. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  5363. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  5364. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  5365. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5366. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  5367. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5368. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5369. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5370. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  5371. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5372. if hparams["scoring_func"] == "sigmoid":
  5373. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5374. elif hparams["scoring_func"] == "softmax":
  5375. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  5376. else:
  5377. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  5378. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5379. rope_scaling = self.hparams.get("rope_scaling") or {}
  5380. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5381. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5382. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5383. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5384. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  5385. _experts: list[dict[str, Tensor]] | None = None
  5386. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5387. # skip vision tensors and remove "language_model." for Kimi-VL
  5388. if "vision_tower" in name or "multi_modal_projector" in name:
  5389. return []
  5390. if name.startswith("language_model."):
  5391. name = name.replace("language_model.", "")
  5392. # rename e_score_correction_bias tensors
  5393. if name.endswith("e_score_correction_bias"):
  5394. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5395. # skip Multi-Token Prediction (MTP) layers
  5396. block_count = self.hparams["num_hidden_layers"]
  5397. match = re.match(r"model.layers.(\d+)", name)
  5398. if match and int(match.group(1)) >= block_count:
  5399. return []
  5400. # process the experts separately
  5401. if name.find("mlp.experts") != -1:
  5402. n_experts = self.hparams["n_routed_experts"]
  5403. assert bid is not None
  5404. if self._experts is None:
  5405. self._experts = [{} for _ in range(self.block_count)]
  5406. self._experts[bid][name] = data_torch
  5407. if len(self._experts[bid]) >= n_experts * 3:
  5408. tensors: list[tuple[str, Tensor]] = []
  5409. # merge the experts into a single 3d tensor
  5410. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5411. datas: list[Tensor] = []
  5412. for xid in range(n_experts):
  5413. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5414. datas.append(self._experts[bid][ename])
  5415. del self._experts[bid][ename]
  5416. data_torch = torch.stack(datas, dim=0)
  5417. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5418. new_name = self.map_tensor_name(merged_name)
  5419. tensors.append((new_name, data_torch))
  5420. return tensors
  5421. else:
  5422. return []
  5423. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  5424. if name.endswith("kv_b_proj.weight"):
  5425. name_kb = name.replace("kv_b_proj", "k_b_proj")
  5426. name_vb = name.replace("kv_b_proj", "v_b_proj")
  5427. n_head_kv = self.hparams["num_key_value_heads"]
  5428. v_head_dim = self.hparams["v_head_dim"]
  5429. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  5430. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  5431. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  5432. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  5433. k_b = k_b.transpose(1, 2)
  5434. return [
  5435. (self.map_tensor_name(name_kb), k_b),
  5436. (self.map_tensor_name(name_vb), v_b)
  5437. ]
  5438. return [(self.map_tensor_name(name), data_torch)]
  5439. def prepare_tensors(self):
  5440. super().prepare_tensors()
  5441. if self._experts is not None:
  5442. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5443. experts = [k for d in self._experts for k in d.keys()]
  5444. if len(experts) > 0:
  5445. raise ValueError(f"Unprocessed experts: {experts}")
  5446. @ModelBase.register("Dots1ForCausalLM")
  5447. class Dots1Model(Qwen2MoeModel):
  5448. model_arch = gguf.MODEL_ARCH.DOTS1
  5449. def __init__(self, *args, **kwargs):
  5450. super().__init__(*args, **kwargs)
  5451. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  5452. def set_gguf_parameters(self):
  5453. super().set_gguf_parameters()
  5454. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  5455. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  5456. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  5457. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  5458. if self.hparams["scoring_func"] == "noaux_tc":
  5459. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5460. else:
  5461. raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
  5462. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  5463. if name.endswith("e_score_correction_bias"):
  5464. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5465. if "shared_experts" in name:
  5466. return [(self.map_tensor_name(name), data_torch)]
  5467. return super().modify_tensors(data_torch, name, bid)
  5468. @ModelBase.register("PLMForCausalLM")
  5469. class PLMModel(TextModel):
  5470. model_arch = gguf.MODEL_ARCH.PLM
  5471. def set_vocab(self):
  5472. self._set_vocab_gpt2()
  5473. def set_gguf_parameters(self):
  5474. super().set_gguf_parameters()
  5475. hparams = self.hparams
  5476. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5477. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5478. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5479. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  5480. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5481. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5482. return [(self.map_tensor_name(name), data_torch)]
  5483. def prepare_tensors(self):
  5484. super().prepare_tensors()
  5485. @ModelBase.register("T5WithLMHeadModel")
  5486. @ModelBase.register("T5ForConditionalGeneration")
  5487. @ModelBase.register("MT5ForConditionalGeneration")
  5488. @ModelBase.register("UMT5ForConditionalGeneration")
  5489. class T5Model(TextModel):
  5490. model_arch = gguf.MODEL_ARCH.T5
  5491. def __init__(self, *args, **kwargs):
  5492. super().__init__(*args, **kwargs)
  5493. self.shared_token_embeddings_found = False
  5494. def set_vocab(self):
  5495. # to avoid TypeError: Descriptors cannot be created directly
  5496. # exception when importing sentencepiece_model_pb2
  5497. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5498. from sentencepiece import SentencePieceProcessor
  5499. from sentencepiece import sentencepiece_model_pb2 as model
  5500. tokenizer_path = self.dir_model / 'tokenizer.model'
  5501. # many older models use spiece.model tokenizer model filename
  5502. if not tokenizer_path.is_file():
  5503. tokenizer_path = self.dir_model / 'spiece.model'
  5504. if not tokenizer_path.is_file():
  5505. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5506. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5507. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5508. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5509. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5510. # assure the tokenizer model file name is correct
  5511. assert tokenizer_path.name == 'tokenizer.model'
  5512. return self._set_vocab_sentencepiece()
  5513. else:
  5514. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5515. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5516. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5517. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5518. tokenizer = SentencePieceProcessor()
  5519. tokenizer.LoadFromFile(str(tokenizer_path))
  5520. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5521. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5522. scores: list[float] = [-10000.0] * vocab_size
  5523. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5524. for token_id in range(tokenizer.vocab_size()):
  5525. piece = tokenizer.IdToPiece(token_id)
  5526. text = piece.encode("utf-8")
  5527. score = tokenizer.GetScore(token_id)
  5528. toktype = SentencePieceTokenTypes.NORMAL
  5529. if tokenizer.IsUnknown(token_id):
  5530. toktype = SentencePieceTokenTypes.UNKNOWN
  5531. elif tokenizer.IsControl(token_id):
  5532. toktype = SentencePieceTokenTypes.CONTROL
  5533. elif tokenizer.IsUnused(token_id):
  5534. toktype = SentencePieceTokenTypes.UNUSED
  5535. elif tokenizer.IsByte(token_id):
  5536. toktype = SentencePieceTokenTypes.BYTE
  5537. tokens[token_id] = text
  5538. scores[token_id] = score
  5539. toktypes[token_id] = toktype
  5540. added_tokens_file = self.dir_model / 'added_tokens.json'
  5541. if added_tokens_file.is_file():
  5542. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5543. added_tokens_json = json.load(f)
  5544. for key in added_tokens_json:
  5545. token_id = added_tokens_json[key]
  5546. if token_id >= vocab_size:
  5547. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5548. continue
  5549. tokens[token_id] = key.encode("utf-8")
  5550. scores[token_id] = -1000.0
  5551. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5552. if vocab_size > len(tokens):
  5553. pad_count = vocab_size - len(tokens)
  5554. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5555. for i in range(1, pad_count + 1):
  5556. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5557. scores.append(-1000.0)
  5558. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5559. self.gguf_writer.add_tokenizer_model("t5")
  5560. self.gguf_writer.add_tokenizer_pre("default")
  5561. self.gguf_writer.add_token_list(tokens)
  5562. self.gguf_writer.add_token_scores(scores)
  5563. self.gguf_writer.add_token_types(toktypes)
  5564. self.gguf_writer.add_add_space_prefix(add_prefix)
  5565. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5566. if precompiled_charsmap:
  5567. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5568. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5569. special_vocab.add_to_gguf(self.gguf_writer)
  5570. def set_gguf_parameters(self):
  5571. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5572. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5573. n_ctx = 512
  5574. self.gguf_writer.add_context_length(n_ctx)
  5575. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5576. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5577. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5578. if (dec_n_layer := self.hparams.get("num_decoder_layers")) is not None:
  5579. self.gguf_writer.add_decoder_block_count(dec_n_layer)
  5580. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5581. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5582. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5583. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5584. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5585. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5586. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  5587. self.gguf_writer.add_file_type(self.ftype)
  5588. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5589. del bid # unused
  5590. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5591. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5592. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5593. # and decoder and ignore the remaining ones.
  5594. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5595. if not self.shared_token_embeddings_found:
  5596. name = "shared.weight"
  5597. self.shared_token_embeddings_found = True
  5598. else:
  5599. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5600. return []
  5601. return [(self.map_tensor_name(name), data_torch)]
  5602. @ModelBase.register("T5EncoderModel")
  5603. class T5EncoderModel(TextModel):
  5604. model_arch = gguf.MODEL_ARCH.T5ENCODER
  5605. def __init__(self, *args, **kwargs):
  5606. super().__init__(*args, **kwargs)
  5607. self.shared_token_embeddings_found = False
  5608. def set_vocab(self):
  5609. # to avoid TypeError: Descriptors cannot be created directly
  5610. # exception when importing sentencepiece_model_pb2
  5611. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5612. from sentencepiece import SentencePieceProcessor
  5613. from sentencepiece import sentencepiece_model_pb2 as model
  5614. tokenizer_path = self.dir_model / 'tokenizer.model'
  5615. # many older models use spiece.model tokenizer model filename
  5616. if not tokenizer_path.is_file():
  5617. tokenizer_path = self.dir_model / 'spiece.model'
  5618. if not tokenizer_path.is_file():
  5619. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5620. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5621. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5622. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5623. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5624. # assure the tokenizer model file name is correct
  5625. assert tokenizer_path.name == 'tokenizer.model'
  5626. return self._set_vocab_sentencepiece()
  5627. else:
  5628. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5629. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5630. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5631. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5632. tokenizer = SentencePieceProcessor()
  5633. tokenizer.LoadFromFile(str(tokenizer_path))
  5634. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5635. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5636. scores: list[float] = [-10000.0] * vocab_size
  5637. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5638. for token_id in range(tokenizer.vocab_size()):
  5639. piece = tokenizer.IdToPiece(token_id)
  5640. text = piece.encode("utf-8")
  5641. score = tokenizer.GetScore(token_id)
  5642. toktype = SentencePieceTokenTypes.NORMAL
  5643. if tokenizer.IsUnknown(token_id):
  5644. toktype = SentencePieceTokenTypes.UNKNOWN
  5645. elif tokenizer.IsControl(token_id):
  5646. toktype = SentencePieceTokenTypes.CONTROL
  5647. elif tokenizer.IsUnused(token_id):
  5648. toktype = SentencePieceTokenTypes.UNUSED
  5649. elif tokenizer.IsByte(token_id):
  5650. toktype = SentencePieceTokenTypes.BYTE
  5651. tokens[token_id] = text
  5652. scores[token_id] = score
  5653. toktypes[token_id] = toktype
  5654. added_tokens_file = self.dir_model / 'added_tokens.json'
  5655. if added_tokens_file.is_file():
  5656. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5657. added_tokens_json = json.load(f)
  5658. for key in added_tokens_json:
  5659. token_id = added_tokens_json[key]
  5660. if token_id >= vocab_size:
  5661. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5662. continue
  5663. tokens[token_id] = key.encode("utf-8")
  5664. scores[token_id] = -1000.0
  5665. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5666. if vocab_size > len(tokens):
  5667. pad_count = vocab_size - len(tokens)
  5668. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5669. for i in range(1, pad_count + 1):
  5670. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5671. scores.append(-1000.0)
  5672. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5673. self.gguf_writer.add_tokenizer_model("t5")
  5674. self.gguf_writer.add_tokenizer_pre("default")
  5675. self.gguf_writer.add_token_list(tokens)
  5676. self.gguf_writer.add_token_scores(scores)
  5677. self.gguf_writer.add_token_types(toktypes)
  5678. self.gguf_writer.add_add_space_prefix(add_prefix)
  5679. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5680. if precompiled_charsmap:
  5681. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5682. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5683. special_vocab.add_to_gguf(self.gguf_writer)
  5684. def set_gguf_parameters(self):
  5685. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5686. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5687. n_ctx = 512
  5688. self.gguf_writer.add_context_length(n_ctx)
  5689. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5690. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5691. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5692. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5693. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5694. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5695. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5696. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5697. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5698. self.gguf_writer.add_file_type(self.ftype)
  5699. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5700. del bid # unused
  5701. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5702. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5703. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5704. # and decoder and ignore the remaining ones.
  5705. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5706. if not self.shared_token_embeddings_found:
  5707. name = "shared.weight"
  5708. self.shared_token_embeddings_found = True
  5709. else:
  5710. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5711. return []
  5712. return [(self.map_tensor_name(name), data_torch)]
  5713. @ModelBase.register("JAISLMHeadModel")
  5714. class JaisModel(TextModel):
  5715. model_arch = gguf.MODEL_ARCH.JAIS
  5716. def __init__(self, *args, **kwargs):
  5717. super().__init__(*args, **kwargs)
  5718. # SwigLU activation
  5719. assert self.hparams["activation_function"] == "swiglu"
  5720. # ALiBi position embedding
  5721. assert self.hparams["position_embedding_type"] == "alibi"
  5722. # Embeddings scale
  5723. self.embeddings_scale = 1.0
  5724. if 'mup_embeddings_scale' in self.hparams:
  5725. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  5726. elif 'embeddings_scale' in self.hparams:
  5727. self.embeddings_scale = self.hparams['embeddings_scale']
  5728. else:
  5729. assert False
  5730. self.width_scale = 1.0
  5731. if 'mup_output_alpha' in self.hparams:
  5732. assert 'mup_width_scale' in self.hparams
  5733. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  5734. elif 'width_scale' in self.hparams:
  5735. self.width_scale = self.hparams['width_scale']
  5736. else:
  5737. assert False
  5738. self.max_alibi_bias = 8.0
  5739. def set_vocab(self):
  5740. self._set_vocab_gpt2()
  5741. def set_gguf_parameters(self):
  5742. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  5743. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  5744. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  5745. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  5746. self.gguf_writer.add_head_count(self.hparams["n_head"])
  5747. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5748. self.gguf_writer.add_file_type(self.ftype)
  5749. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5750. del bid # unused
  5751. tensors: list[tuple[str, Tensor]] = []
  5752. # we don't need these
  5753. if name.endswith((".attn.bias")):
  5754. return tensors
  5755. if name.endswith(("relative_pe.slopes")):
  5756. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  5757. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  5758. # but Jais's PyTorch model simply precalculates the slope values and places them
  5759. # in relative_pes.slopes
  5760. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  5761. first_val = float(data_torch[0].item())
  5762. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  5763. return tensors
  5764. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  5765. data_torch = data_torch.transpose(1, 0)
  5766. new_name = self.map_tensor_name(name)
  5767. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  5768. tensors.append((new_name, data_torch * self.embeddings_scale))
  5769. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  5770. tensors.append((new_name, data_torch * self.width_scale))
  5771. else:
  5772. tensors.append((new_name, data_torch))
  5773. return tensors
  5774. def prepare_tensors(self):
  5775. super().prepare_tensors()
  5776. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  5777. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  5778. class Glm4Model(TextModel):
  5779. model_arch = gguf.MODEL_ARCH.GLM4
  5780. def set_vocab(self):
  5781. from transformers import AutoTokenizer
  5782. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5783. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5784. tokens, toktypes, tokpre = self.get_vocab_base()
  5785. self.gguf_writer.add_tokenizer_model("gpt2")
  5786. self.gguf_writer.add_tokenizer_pre(tokpre)
  5787. self.gguf_writer.add_token_list(tokens)
  5788. self.gguf_writer.add_token_types(toktypes)
  5789. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5790. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5791. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5792. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5793. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5794. special_vocab.add_to_gguf(self.gguf_writer)
  5795. def set_gguf_parameters(self):
  5796. super().set_gguf_parameters()
  5797. if (rope_dim := self.hparams.get("head_dim")) is None:
  5798. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5799. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5800. rope_scaling = self.hparams.get("rope_scaling") or {}
  5801. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5802. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5803. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5804. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5805. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5806. if name.startswith("model.visual."): # ignore visual part of Glm4v
  5807. return []
  5808. elif name.startswith("model.language_model."):
  5809. name = name.replace("language_model.", "") # for Glm4v
  5810. return super().modify_tensors(data_torch, name, bid)
  5811. @ModelBase.register("Glm4MoeForCausalLM")
  5812. class Glm4MoeModel(TextModel):
  5813. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  5814. def __init__(self, *args, **kwargs):
  5815. super().__init__(*args, **kwargs)
  5816. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  5817. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  5818. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  5819. def set_vocab(self):
  5820. from transformers import AutoTokenizer
  5821. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  5822. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5823. tokens, toktypes, tokpre = self.get_vocab_base()
  5824. self.gguf_writer.add_tokenizer_model("gpt2")
  5825. self.gguf_writer.add_tokenizer_pre(tokpre)
  5826. self.gguf_writer.add_token_list(tokens)
  5827. self.gguf_writer.add_token_types(toktypes)
  5828. # Special tokens
  5829. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  5830. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  5831. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  5832. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  5833. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  5834. # Patch broken chat template
  5835. if isinstance(special_vocab.chat_template, str) and "visible_text(m.content).endswith" in special_vocab.chat_template:
  5836. special_vocab.chat_template = special_vocab.chat_template.replace(
  5837. """{{ visible_text(m.content) }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not visible_text(m.content).endswith("/nothink")) else '' -}}""",
  5838. """{% set content = visible_text(m.content) %}{{ content }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not content.endswith("/nothink")) else '' -}}""")
  5839. special_vocab.add_to_gguf(self.gguf_writer)
  5840. def set_gguf_parameters(self):
  5841. super().set_gguf_parameters()
  5842. if (rope_dim := self.hparams.get("head_dim")) is None:
  5843. rope_dim = (
  5844. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5845. )
  5846. self.gguf_writer.add_rope_dimension_count(
  5847. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  5848. )
  5849. # MoE parameters - Use only routed expert count (shared experts handled separately)
  5850. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  5851. self.gguf_writer.add_expert_count(n_routed_experts)
  5852. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  5853. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  5854. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  5855. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  5856. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  5857. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  5858. # Expert gating function (sigmoid for GLM4_MOE)
  5859. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5860. # Routed scaling factor
  5861. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  5862. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  5863. # Normalise topk probabilities
  5864. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  5865. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  5866. # NextN/MTP prediction layers
  5867. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  5868. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  5869. _experts: list[dict[str, Tensor]] | None = None
  5870. def modify_tensors(
  5871. self, data_torch: Tensor, name: str, bid: int | None
  5872. ) -> Iterable[tuple[str, Tensor]]:
  5873. if name.startswith("model.visual."): # ignore visual part
  5874. return []
  5875. elif name.startswith("model.language_model."):
  5876. name = name.replace("language_model.", "") # for multimodal variants
  5877. # Handle main token embedding (but not layer-specific NextN embeddings)
  5878. if name == "model.embed_tokens.weight" and ".layers." not in name:
  5879. return [(self.map_tensor_name("token_embd.weight"), data_torch)]
  5880. # Handle routed experts
  5881. if name.find("mlp.experts") != -1:
  5882. n_experts = self.hparams["n_routed_experts"]
  5883. assert bid is not None
  5884. if self._experts is None:
  5885. self._experts = [{} for _ in range(self.block_count)]
  5886. self._experts[bid][name] = data_torch
  5887. if len(self._experts[bid]) >= n_experts * 3:
  5888. tensors: list[tuple[str, Tensor]] = []
  5889. # merge the experts into a single 3d tensor
  5890. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5891. datas: list[Tensor] = []
  5892. for xid in range(n_experts):
  5893. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5894. datas.append(self._experts[bid][ename])
  5895. del self._experts[bid][ename]
  5896. data_torch = torch.stack(datas, dim=0)
  5897. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5898. new_name = self.map_tensor_name(merged_name)
  5899. tensors.append((new_name, data_torch))
  5900. return tensors
  5901. else:
  5902. return []
  5903. if name.endswith("e_score_correction_bias"):
  5904. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5905. new_name = self.map_tensor_name(name)
  5906. return [(new_name, data_torch)]
  5907. def prepare_tensors(self):
  5908. super().prepare_tensors()
  5909. if self._experts is not None:
  5910. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5911. experts = [k for d in self._experts for k in d.keys()]
  5912. if len(experts) > 0:
  5913. raise ValueError(f"Unprocessed experts: {experts}")
  5914. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  5915. class ChatGLMModel(TextModel):
  5916. model_arch = gguf.MODEL_ARCH.CHATGLM
  5917. def set_vocab_chatglm3(self):
  5918. dir_model = self.dir_model
  5919. hparams = self.hparams
  5920. tokens: list[bytes] = []
  5921. toktypes: list[int] = []
  5922. scores: list[float] = []
  5923. from transformers import AutoTokenizer
  5924. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5925. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  5926. assert max(tokenizer.get_vocab().values()) < vocab_size
  5927. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  5928. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  5929. for token_id in range(vocab_size):
  5930. piece = tokenizer._convert_id_to_token(token_id)
  5931. if token_id == 0:
  5932. piece = "<unk>"
  5933. elif token_id == 1:
  5934. piece = "<bos>"
  5935. elif token_id == 2:
  5936. piece = "<eos>"
  5937. text = piece.encode("utf-8")
  5938. score = 0.0
  5939. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  5940. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  5941. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  5942. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  5943. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  5944. if piece in special_tokens:
  5945. toktype = SentencePieceTokenTypes.CONTROL
  5946. elif len(piece) == 0:
  5947. text = f"[PAD{token_id}]".encode("utf-8")
  5948. toktype = SentencePieceTokenTypes.UNUSED
  5949. else:
  5950. toktype = SentencePieceTokenTypes.USER_DEFINED
  5951. tokens.append(text)
  5952. scores.append(score)
  5953. toktypes.append(toktype)
  5954. continue
  5955. toktype = SentencePieceTokenTypes.NORMAL
  5956. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  5957. toktype = SentencePieceTokenTypes.UNKNOWN
  5958. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  5959. toktype = SentencePieceTokenTypes.CONTROL
  5960. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  5961. toktype = SentencePieceTokenTypes.UNUSED
  5962. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  5963. toktype = SentencePieceTokenTypes.BYTE
  5964. tokens.append(text)
  5965. scores.append(score)
  5966. toktypes.append(toktype)
  5967. self.gguf_writer.add_tokenizer_model("llama")
  5968. # glm3 needs prefix and suffix formatted as:
  5969. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  5970. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  5971. self.gguf_writer.add_token_list(tokens)
  5972. self.gguf_writer.add_token_scores(scores)
  5973. self.gguf_writer.add_token_types(toktypes)
  5974. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5975. special_vocab.add_to_gguf(self.gguf_writer)
  5976. @staticmethod
  5977. def token_bytes_to_string(b):
  5978. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  5979. byte_encoder = bytes_to_unicode()
  5980. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  5981. @staticmethod
  5982. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  5983. parts = [bytes([b]) for b in token]
  5984. while True:
  5985. min_idx = None
  5986. min_rank = None
  5987. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  5988. rank = mergeable_ranks.get(pair[0] + pair[1])
  5989. if rank is not None and (min_rank is None or rank < min_rank):
  5990. min_idx = i
  5991. min_rank = rank
  5992. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  5993. break
  5994. assert min_idx is not None
  5995. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  5996. return parts
  5997. def set_vocab(self):
  5998. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  5999. self.set_vocab_chatglm3()
  6000. return
  6001. dir_model = self.dir_model
  6002. hparams = self.hparams
  6003. tokens: list[str] = []
  6004. toktypes: list[int] = []
  6005. from transformers import AutoTokenizer
  6006. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6007. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  6008. assert max(tokenizer.get_vocab().values()) < vocab_size
  6009. tokens, toktypes, tokpre = self.get_vocab_base()
  6010. self.gguf_writer.add_tokenizer_model("gpt2")
  6011. self.gguf_writer.add_tokenizer_pre(tokpre)
  6012. self.gguf_writer.add_token_list(tokens)
  6013. self.gguf_writer.add_token_types(toktypes)
  6014. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6015. # only add special tokens when they were not already loaded from config.json
  6016. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6017. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6018. # this one is usually not in config.json anyway
  6019. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6020. special_vocab.add_to_gguf(self.gguf_writer)
  6021. def set_gguf_parameters(self):
  6022. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  6023. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  6024. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  6025. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  6026. self.gguf_writer.add_embedding_length(n_embed)
  6027. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  6028. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  6029. self.gguf_writer.add_head_count(n_head)
  6030. self.gguf_writer.add_head_count_kv(n_head_kv)
  6031. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  6032. self.gguf_writer.add_file_type(self.ftype)
  6033. if "attention_dim" in self.hparams:
  6034. rope_dim = self.hparams["attention_dim"]
  6035. else:
  6036. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6037. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6038. self.gguf_writer.add_add_bos_token(False)
  6039. rope_freq = 10000
  6040. if "rope_ratio" in self.hparams:
  6041. rope_freq = rope_freq * self.hparams["rope_ratio"]
  6042. self.gguf_writer.add_rope_freq_base(rope_freq)
  6043. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6044. del bid # unused
  6045. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  6046. return []
  6047. name = name.removeprefix("transformer.")
  6048. return [(self.map_tensor_name(name), data_torch)]
  6049. @ModelBase.register("NemotronForCausalLM")
  6050. class NemotronModel(TextModel):
  6051. model_arch = gguf.MODEL_ARCH.NEMOTRON
  6052. def set_vocab(self):
  6053. self._set_vocab_sentencepiece()
  6054. self.gguf_writer.add_pad_token_id(0)
  6055. self.gguf_writer.add_unk_token_id(1)
  6056. def set_gguf_parameters(self):
  6057. super().set_gguf_parameters()
  6058. hparams = self.hparams
  6059. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6060. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  6061. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  6062. # * Partial RoPE
  6063. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  6064. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  6065. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  6066. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  6067. # * RopeScaling for Nemotron
  6068. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  6069. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6070. else:
  6071. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6072. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  6073. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6074. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  6075. # model.layers.{l}.input_layernorm.weight
  6076. # model.layers.{l}.post_attention_layernorm.weight
  6077. # model.norm.weight
  6078. if name.endswith("norm.weight"):
  6079. data_torch = data_torch + 1
  6080. return [(self.map_tensor_name(name), data_torch)]
  6081. @ModelBase.register("ExaoneForCausalLM")
  6082. class ExaoneModel(TextModel):
  6083. model_arch = gguf.MODEL_ARCH.EXAONE
  6084. def set_gguf_parameters(self):
  6085. hparams = self.hparams
  6086. assert (hparams["activation_function"] == "silu")
  6087. max_position_embeddings = hparams["max_position_embeddings"]
  6088. embed_dim = hparams["hidden_size"]
  6089. num_heads = hparams["num_attention_heads"]
  6090. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  6091. layer_norm_eps = hparams["layer_norm_epsilon"]
  6092. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  6093. num_layers = hparams["num_layers"]
  6094. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  6095. # attention_dropout_rate = hparams["attention_dropout"]
  6096. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  6097. # embed_dropout_rate = hparams["embed_dropout"]
  6098. self.gguf_writer.add_embedding_length(embed_dim)
  6099. self.gguf_writer.add_head_count(num_heads)
  6100. self.gguf_writer.add_head_count_kv(num_kv_heads)
  6101. self.gguf_writer.add_context_length(max_position_embeddings)
  6102. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  6103. self.gguf_writer.add_feed_forward_length(intermediate_size)
  6104. self.gguf_writer.add_block_count(num_layers)
  6105. self.gguf_writer.add_file_type(self.ftype)
  6106. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  6107. self.gguf_writer.add_rope_freq_base(rope_theta)
  6108. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  6109. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  6110. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  6111. rope_scaling = self.hparams.get("rope_scaling") or {}
  6112. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  6113. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6114. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6115. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6116. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  6117. if rope_scaling.get("rope_type", '').lower() == "llama3":
  6118. base = self.hparams.get("rope_theta", 10000.0)
  6119. if (dim := self.hparams.get("head_dim")) is None:
  6120. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6121. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6122. factor = rope_scaling.get("factor", 8.0)
  6123. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  6124. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  6125. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6126. low_freq_wavelen = old_context_len / low_freq_factor
  6127. high_freq_wavelen = old_context_len / high_freq_factor
  6128. assert low_freq_wavelen != high_freq_wavelen
  6129. rope_factors = []
  6130. for freq in freqs:
  6131. wavelen = 2 * math.pi / freq
  6132. if wavelen < high_freq_wavelen:
  6133. rope_factors.append(1)
  6134. elif wavelen > low_freq_wavelen:
  6135. rope_factors.append(factor)
  6136. else:
  6137. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6138. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6139. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6140. @ModelBase.register("Exaone4ForCausalLM")
  6141. class Exaone4Model(TextModel):
  6142. model_arch = gguf.MODEL_ARCH.EXAONE4
  6143. def set_vocab(self):
  6144. tokens, toktypes, tokpre = self.get_vocab_base()
  6145. self.gguf_writer.add_tokenizer_model("gpt2")
  6146. self.gguf_writer.add_tokenizer_pre(tokpre)
  6147. self.gguf_writer.add_token_list(tokens)
  6148. self.gguf_writer.add_token_types(toktypes)
  6149. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6150. special_vocab.add_to_gguf(self.gguf_writer)
  6151. def set_gguf_parameters(self):
  6152. super().set_gguf_parameters()
  6153. hparams = self.hparams
  6154. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6155. if hparams.get("sliding_window") is not None:
  6156. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  6157. if "layer_types" in hparams:
  6158. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  6159. elif "sliding_window_pattern" in hparams:
  6160. sliding_window_pattern = []
  6161. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  6162. for i in range(hparams["num_hidden_layers"]):
  6163. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  6164. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  6165. for i in range(hparams["num_hidden_layers"]):
  6166. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  6167. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  6168. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  6169. rope_scaling = self.hparams.get("rope_scaling") or {}
  6170. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  6171. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6172. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6173. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6174. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  6175. if rope_scaling.get("rope_type", '').lower() == "llama3":
  6176. base = self.hparams.get("rope_theta", 10_000.0)
  6177. if (dim := self.hparams.get("head_dim")) is None:
  6178. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6179. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6180. factor = rope_scaling.get("factor", 16.0)
  6181. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  6182. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  6183. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6184. low_freq_wavelen = old_context_len / low_freq_factor
  6185. high_freq_wavelen = old_context_len / high_freq_factor
  6186. rope_factors = []
  6187. for freq in freqs:
  6188. wavelen = 2 * math.pi / freq
  6189. if wavelen < high_freq_wavelen:
  6190. rope_factors.append(1)
  6191. elif wavelen > low_freq_wavelen:
  6192. rope_factors.append(factor)
  6193. else:
  6194. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6195. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6196. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6197. @ModelBase.register("GraniteForCausalLM")
  6198. class GraniteModel(LlamaModel):
  6199. """Conversion for IBM's GraniteForCausalLM"""
  6200. model_arch = gguf.MODEL_ARCH.GRANITE
  6201. def set_gguf_parameters(self):
  6202. """Granite uses standard llama parameters with the following differences:
  6203. - No head_dim support
  6204. - New multiplier params:
  6205. - attention_scale
  6206. - embedding_scale
  6207. - residual_scale
  6208. - logits_scaling
  6209. """
  6210. if head_dim := self.hparams.pop("head_dim", None):
  6211. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  6212. super().set_gguf_parameters()
  6213. # NOTE: Convert _multiplier params to _scale params for naming
  6214. # consistency
  6215. if attention_scale := self.hparams.get("attention_multiplier"):
  6216. self.gguf_writer.add_attention_scale(attention_scale)
  6217. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  6218. if embedding_scale := self.hparams.get("embedding_multiplier"):
  6219. self.gguf_writer.add_embedding_scale(embedding_scale)
  6220. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  6221. if residual_scale := self.hparams.get("residual_multiplier"):
  6222. self.gguf_writer.add_residual_scale(residual_scale)
  6223. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  6224. if logits_scale := self.hparams.get("logits_scaling"):
  6225. self.gguf_writer.add_logit_scale(logits_scale)
  6226. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  6227. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  6228. class GraniteMoeModel(GraniteModel):
  6229. """Conversion for IBM's GraniteMoeForCausalLM"""
  6230. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  6231. def set_gguf_parameters(self):
  6232. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  6233. - shared_intermediate_size
  6234. """
  6235. super().set_gguf_parameters()
  6236. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  6237. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  6238. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  6239. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6240. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  6241. is used. This essentially merges w1 and w3 into a single tensor with 2x
  6242. the hidden size that is then split during forward. To keep compatibility
  6243. with existing mixtral support, we pull them apart here.
  6244. """
  6245. if name.endswith("block_sparse_moe.input_linear.weight"):
  6246. ffn_dim = self.hparams["intermediate_size"]
  6247. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  6248. gate, up = data_torch.split(ffn_dim, dim=-2)
  6249. return [
  6250. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  6251. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  6252. ]
  6253. has_experts = bool(self.hparams.get('num_local_experts'))
  6254. if name.endswith("shared_mlp.input_linear.weight"):
  6255. ffn_dim = self.hparams["shared_intermediate_size"]
  6256. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  6257. gate, up = data_torch.split(ffn_dim, dim=-2)
  6258. if has_experts:
  6259. return [
  6260. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  6261. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  6262. ]
  6263. return [
  6264. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  6265. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  6266. ]
  6267. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  6268. return [
  6269. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  6270. ]
  6271. return super().modify_tensors(data_torch, name, bid)
  6272. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  6273. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  6274. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  6275. layers and optionally uses MoE w/ a shared expert"""
  6276. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  6277. undo_permute = True
  6278. def __init__(self, *args, **kwargs):
  6279. # Hybrid mamba models use a prefix for the mamba-specific params.
  6280. # TODO: Extend this if the prefix(es) need to be configurable
  6281. self.hparam_prefixes = ["mamba"]
  6282. super().__init__(*args, **kwargs)
  6283. # Lists of which layers use ssm vs attention
  6284. self._attn_layers = self.get_attn_layers()
  6285. self._ssm_layers = [
  6286. i for i in range(self.block_count)
  6287. if i not in self._attn_layers
  6288. ]
  6289. # There are some models in this family that are non-hybrid, but keep the
  6290. # same parent class by setting all layers to "attention." If this is the
  6291. # case, the model architecture needs to be updated to a standard
  6292. # "granite" or "granitemoe" model
  6293. if not self._ssm_layers:
  6294. has_experts = self.find_hparam(["num_experts_per_tok"], optional=True)
  6295. new_arch = (
  6296. gguf.MODEL_ARCH.GRANITE_MOE
  6297. if has_experts else
  6298. gguf.MODEL_ARCH.GRANITE
  6299. )
  6300. self.model_arch = new_arch
  6301. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[new_arch]
  6302. self.gguf_writer.add_architecture()
  6303. # n_group and d_inner are used during reshape_tensors for mamba2
  6304. # NOTE: Explicitly include hparam prefix prefix for d_model to
  6305. # disambiguate with top-level head_dim
  6306. # NOTE 2: If needed for future models, this can be isolated in a method
  6307. # to separate the prefix setting and teh keys used
  6308. self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"])
  6309. self.n_group = self.find_hparam(["n_groups", "num_groups"])
  6310. self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model
  6311. def get_attn_layers(self):
  6312. # Explicit list of layer type names
  6313. if layer_types := self.hparams.get("layer_types"):
  6314. return [
  6315. i for i, typ in enumerate(layer_types)
  6316. if typ == "attention"
  6317. ]
  6318. # Layer types indicated by index or period
  6319. attn_layers = self.hparams.get("attn_layer_indices", [])
  6320. if not attn_layers:
  6321. attn_period = self.hparams.get("attn_layer_period")
  6322. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  6323. attn_offset = self.hparams.get("attn_layer_offset")
  6324. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  6325. attn_layers = [
  6326. i for i in range(self.block_count)
  6327. if i % attn_period == attn_offset
  6328. ]
  6329. return attn_layers
  6330. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6331. prefixed = []
  6332. for pfx in self.hparam_prefixes:
  6333. prefixed.extend(
  6334. "_".join([pfx, k])
  6335. for k in keys
  6336. )
  6337. keys = list(keys) + prefixed
  6338. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  6339. def modify_tensors(
  6340. self, data_torch: Tensor, name: str, bid: int | None
  6341. ) -> Iterable[tuple[str, Tensor]]:
  6342. if (
  6343. name.endswith("block_sparse_moe.input_linear.weight")
  6344. or "shared_mlp" in name
  6345. ):
  6346. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6347. # Determine whether this is a mamba layer or an attention layer
  6348. if bid in self._ssm_layers:
  6349. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  6350. elif bid in self._attn_layers:
  6351. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6352. return [(self.map_tensor_name(name), data_torch)]
  6353. def set_gguf_parameters(self):
  6354. """This method merges params from both parents and some that are
  6355. specific to this model. The result is some duplication of how the params
  6356. get set. The following warnings are expected during conversion:
  6357. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  6358. WARNING:Duplicated key name 'granitehybrid.context_length'
  6359. """
  6360. GraniteMoeModel.set_gguf_parameters(self)
  6361. ## Mamba mixer params ##
  6362. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  6363. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"]))
  6364. self.gguf_writer.add_ssm_group_count(self.n_group)
  6365. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  6366. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  6367. # in llama.cpp
  6368. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"]))
  6369. ## Attention params ##
  6370. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  6371. head_count_kv_vec = [
  6372. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  6373. ]
  6374. if rope_dim := self.hparams.get("attn_rotary_emb"):
  6375. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6376. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  6377. ## If Bamba or non-hybrid, use rope, otherwise don't
  6378. use_rope = (
  6379. "BambaForCausalLM" in self.hparams["architectures"]
  6380. or not self._ssm_layers
  6381. )
  6382. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  6383. if not use_rope:
  6384. self.gguf_writer.add_context_length(2**20)
  6385. ## Validation ##
  6386. d_head = self.find_hparam(["d_head"], optional=True) or 64
  6387. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6388. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  6389. def set_vocab(self):
  6390. self.hparams["pad_vocab_size_multiple"] = 8
  6391. Mamba2Model.set_vocab(self)
  6392. @ModelBase.register("NemotronHForCausalLM")
  6393. class NemotronHModel(GraniteHybridModel):
  6394. """Hybrid mamba2/attention model from NVIDIA"""
  6395. model_arch = gguf.MODEL_ARCH.NEMOTRON_H
  6396. def __init__(self, *args, **kwargs):
  6397. super().__init__(*args, **kwargs)
  6398. # Save the top-level head_dim for later
  6399. self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim"))
  6400. assert self.head_dim is not None, "Could not find the attention head dim in config"
  6401. # Don't use expand to calculate d_inner
  6402. self.d_inner = self.find_hparam(["num_heads"]) * self.d_model
  6403. # Update the ssm / attn / mlp layers
  6404. # M: Mamba2, *: Attention, -: MLP
  6405. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6406. self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
  6407. self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "-"]
  6408. def get_attn_layers(self):
  6409. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6410. assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!"
  6411. return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"]
  6412. def set_gguf_parameters(self):
  6413. super().set_gguf_parameters()
  6414. self.gguf_writer.add_key_length(self.head_dim)
  6415. self.gguf_writer.add_value_length(self.head_dim)
  6416. # Set feed_forward_length
  6417. # NOTE: This will trigger an override warning. This is preferrable to
  6418. # duplicating all the parent logic
  6419. n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
  6420. self.gguf_writer.add_feed_forward_length([
  6421. n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
  6422. ])
  6423. def set_vocab(self):
  6424. super().set_vocab()
  6425. # The tokenizer _does_ add a BOS token (via post_processor type
  6426. # TemplateProcessing) but does not set add_bos_token to true in the
  6427. # config, so we need to explicitly override it here.
  6428. self.gguf_writer.add_add_bos_token(True)
  6429. @ModelBase.register("BailingMoeForCausalLM")
  6430. class BailingMoeModel(TextModel):
  6431. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  6432. def set_vocab(self):
  6433. self._set_vocab_gpt2()
  6434. def set_gguf_parameters(self):
  6435. super().set_gguf_parameters()
  6436. hparams = self.hparams
  6437. if (rope_dim := hparams.get("head_dim")) is None:
  6438. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6439. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6440. rope_scaling = self.hparams.get("rope_scaling") or {}
  6441. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6442. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6443. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6444. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6445. else:
  6446. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6447. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  6448. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6449. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  6450. self.gguf_writer.add_expert_weights_scale(1.0)
  6451. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6452. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  6453. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  6454. _experts: list[dict[str, Tensor]] | None = None
  6455. @staticmethod
  6456. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  6457. if n_head_kv is not None and n_head != n_head_kv:
  6458. n_head = n_head_kv
  6459. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  6460. .swapaxes(1, 2)
  6461. .reshape(weights.shape))
  6462. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6463. n_head = self.hparams["num_attention_heads"]
  6464. n_kv_head = self.hparams.get("num_key_value_heads")
  6465. n_embd = self.hparams["hidden_size"]
  6466. if (head_dim := self.hparams.get("head_dim")) is None:
  6467. head_dim = n_embd // n_head
  6468. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  6469. if name.endswith("attention.dense.weight"):
  6470. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  6471. elif name.endswith("query_key_value.weight"):
  6472. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  6473. return [
  6474. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  6475. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  6476. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  6477. ]
  6478. elif name.find("mlp.experts") != -1:
  6479. n_experts = self.hparams["num_experts"]
  6480. assert bid is not None
  6481. tensors: list[tuple[str, Tensor]] = []
  6482. if self._experts is None:
  6483. self._experts = [{} for _ in range(self.block_count)]
  6484. self._experts[bid][name] = data_torch
  6485. if len(self._experts[bid]) >= n_experts * 3:
  6486. # merge the experts into a single 3d tensor
  6487. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6488. datas: list[Tensor] = []
  6489. for xid in range(n_experts):
  6490. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6491. datas.append(self._experts[bid][ename])
  6492. del self._experts[bid][ename]
  6493. data_torch = torch.stack(datas, dim=0)
  6494. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6495. new_name = self.map_tensor_name(merged_name)
  6496. tensors.append((new_name, data_torch))
  6497. return tensors
  6498. new_name = self.map_tensor_name(name)
  6499. if new_name == output_name and self.hparams.get("norm_head"):
  6500. data_torch = data_torch.float()
  6501. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  6502. return [(new_name, data_torch)]
  6503. def prepare_tensors(self):
  6504. super().prepare_tensors()
  6505. if self._experts is not None:
  6506. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6507. experts = [k for d in self._experts for k in d.keys()]
  6508. if len(experts) > 0:
  6509. raise ValueError(f"Unprocessed experts: {experts}")
  6510. @ModelBase.register("GroveMoeForCausalLM", "modeling_grove_moe.GroveMoeForCausalLM")
  6511. class GroveMoeModel(TextModel):
  6512. model_arch = gguf.MODEL_ARCH.GROVEMOE
  6513. def set_gguf_parameters(self):
  6514. super().set_gguf_parameters()
  6515. if (n_experts := self.hparams.get("num_experts")) is not None:
  6516. self.gguf_writer.add_expert_count(n_experts)
  6517. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  6518. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6519. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  6520. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L299
  6521. self.gguf_writer.add_expert_chunk_feed_forward_length(self.hparams.get("head_dim") or 128)
  6522. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L298
  6523. self.gguf_writer.add_experts_per_group(2)
  6524. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L376
  6525. self.gguf_writer.add_expert_group_scale(0.05)
  6526. # YaRN is not enabled by default
  6527. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  6528. rope_scaling = self.hparams.get("rope_scaling") or {}
  6529. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6530. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6531. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6532. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6533. _experts: list[dict[str, Tensor]] | None = None
  6534. _chunk_experts: list[dict[str, Tensor]] | None = None
  6535. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6536. if name.endswith(".expert_bias"):
  6537. # FIXME?: Unused https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L303
  6538. return []
  6539. # process the experts separately
  6540. if name.find("chunk_experts") != -1:
  6541. n_experts = self.hparams["num_experts"] // 2 # see add_experts_per_group
  6542. assert bid is not None
  6543. if self._chunk_experts is None:
  6544. self._chunk_experts = [{} for _ in range(self.block_count)]
  6545. self._chunk_experts[bid][name] = data_torch
  6546. if len(self._chunk_experts[bid]) >= n_experts * 3:
  6547. tensors: list[tuple[str, Tensor]] = []
  6548. # merge the experts into a single 3d tensor
  6549. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6550. datas: list[Tensor] = []
  6551. for xid in range(n_experts):
  6552. ename = f"model.layers.{bid}.mlp.chunk_experts.{xid}.{w_name}.weight"
  6553. datas.append(self._chunk_experts[bid][ename])
  6554. del self._chunk_experts[bid][ename]
  6555. data_torch = torch.stack(datas, dim=0)
  6556. merged_name = f"model.layers.{bid}.mlp.chunk_experts.{w_name}.weight"
  6557. new_name = self.map_tensor_name(merged_name)
  6558. tensors.append((new_name, data_torch))
  6559. return tensors
  6560. else:
  6561. return []
  6562. elif name.find("experts") != -1:
  6563. n_experts = self.hparams["num_experts"]
  6564. assert bid is not None
  6565. if self._experts is None:
  6566. self._experts = [{} for _ in range(self.block_count)]
  6567. self._experts[bid][name] = data_torch
  6568. if len(self._experts[bid]) >= n_experts * 3:
  6569. tensors: list[tuple[str, Tensor]] = []
  6570. # merge the experts into a single 3d tensor
  6571. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6572. datas: list[Tensor] = []
  6573. for xid in range(n_experts):
  6574. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6575. datas.append(self._experts[bid][ename])
  6576. del self._experts[bid][ename]
  6577. data_torch = torch.stack(datas, dim=0)
  6578. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6579. new_name = self.map_tensor_name(merged_name)
  6580. tensors.append((new_name, data_torch))
  6581. return tensors
  6582. else:
  6583. return []
  6584. return [(self.map_tensor_name(name), data_torch)]
  6585. def prepare_tensors(self):
  6586. super().prepare_tensors()
  6587. if self._chunk_experts is not None:
  6588. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6589. chunk_experts = [k for d in self._chunk_experts for k in d.keys()]
  6590. if len(chunk_experts) > 0:
  6591. raise ValueError(f"Unprocessed adjugate experts: {chunk_experts}")
  6592. if self._experts is not None:
  6593. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6594. experts = [k for d in self._experts for k in d.keys()]
  6595. if len(experts) > 0:
  6596. raise ValueError(f"Unprocessed experts: {experts}")
  6597. @ModelBase.register("ChameleonForConditionalGeneration")
  6598. @ModelBase.register("ChameleonForCausalLM") # obsolete
  6599. class ChameleonModel(TextModel):
  6600. model_arch = gguf.MODEL_ARCH.CHAMELEON
  6601. def set_gguf_parameters(self):
  6602. super().set_gguf_parameters()
  6603. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  6604. def set_vocab(self):
  6605. self._set_vocab_gpt2()
  6606. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6607. # ignore image tokenizer for now
  6608. # TODO: remove this once image support is implemented for Chameleon
  6609. if name.startswith("model.vqmodel"):
  6610. return []
  6611. n_head = self.hparams["num_attention_heads"]
  6612. n_kv_head = self.hparams.get("num_key_value_heads")
  6613. hidden_dim = self.hparams.get("hidden_size")
  6614. if name.endswith(("q_proj.weight", "q_proj.bias")):
  6615. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  6616. if name.endswith(("k_proj.weight", "k_proj.bias")):
  6617. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  6618. if name.endswith(("q_norm.weight", "q_norm.bias")):
  6619. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  6620. if name.endswith(("k_norm.weight", "k_norm.bias")):
  6621. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  6622. return [(self.map_tensor_name(name), data_torch)]
  6623. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  6624. @staticmethod
  6625. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  6626. head_dim = hidden_dim // n_heads
  6627. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  6628. data_torch = data_torch.repeat_interleave(n_heads, 0)
  6629. return data_torch
  6630. @ModelBase.register("UltravoxModel")
  6631. class UltravoxModel(TextModel):
  6632. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  6633. def __init__(self, *args, **kwargs):
  6634. super().__init__(*args, **kwargs)
  6635. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  6636. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  6637. class WhisperEncoderModel(MmprojModel):
  6638. has_vision_encoder = False # no vision encoder
  6639. has_audio_encoder = True
  6640. def __init__(self, *args, **kwargs):
  6641. super().__init__(*args, **kwargs)
  6642. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  6643. self.hparams["hidden_size"] = self.hparams["d_model"]
  6644. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  6645. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  6646. def set_gguf_parameters(self):
  6647. super().set_gguf_parameters()
  6648. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  6649. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  6650. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  6651. def tensor_force_quant(self, name, new_name, bid, n_dims):
  6652. if ".conv" in name and ".weight" in name:
  6653. return gguf.GGMLQuantizationType.F16
  6654. return super().tensor_force_quant(name, new_name, bid, n_dims)
  6655. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6656. del bid # unused
  6657. if name.startswith("language_model."):
  6658. # skip language model tensors
  6659. return []
  6660. # prevent clash naming with vision tensors
  6661. if name.startswith("multi_modal_projector"):
  6662. name = "audio." + name
  6663. if "conv1.bias" in name or "conv2.bias" in name:
  6664. # transpose conv1 and conv2 bias
  6665. data_torch = data_torch.unsqueeze(-1)
  6666. return [(self.map_tensor_name(name), data_torch)]
  6667. @ModelBase.register("UltravoxModel")
  6668. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  6669. has_vision_encoder = False # no vision encoder
  6670. has_audio_encoder = True
  6671. def set_gguf_parameters(self):
  6672. super().set_gguf_parameters()
  6673. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  6674. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  6675. @ModelBase.register("VoxtralForConditionalGeneration")
  6676. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  6677. has_vision_encoder = False # no vision encoder
  6678. has_audio_encoder = True
  6679. def set_gguf_parameters(self):
  6680. super().set_gguf_parameters()
  6681. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  6682. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  6683. @ModelBase.register("FalconH1ForCausalLM")
  6684. class FalconH1Model(Mamba2Model):
  6685. model_arch = gguf.MODEL_ARCH.FALCON_H1
  6686. def __init__(self, *args, **kwargs):
  6687. # Set the hparam prefixes for Falcon Mamba2
  6688. self.hparam_prefixes = ["mamba"]
  6689. # Initialize the base Mamba2Model
  6690. super().__init__(*args, **kwargs)
  6691. # Use Llama conversion for attention
  6692. self._transformer_model_class = LlamaModel
  6693. # n_group and d_inner are used during reshape_tensors for mamba2
  6694. self.n_group = self.find_hparam(["n_groups"])
  6695. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  6696. self.d_head = self.find_hparam(["d_head"])
  6697. # Initialize any Falcon Mamba2 specific attributes
  6698. self.has_attention = True # Falcon Mamba2 has attention components
  6699. # Load Falcon-H1 multipliers from hyperparameters
  6700. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  6701. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  6702. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  6703. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  6704. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  6705. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  6706. self.intermediate_size = self.find_hparam(["intermediate_size"])
  6707. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  6708. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6709. prefixed = []
  6710. for pfx in self.hparam_prefixes:
  6711. prefixed.extend(
  6712. "_".join([pfx, k])
  6713. for k in keys
  6714. )
  6715. keys = list(keys) + prefixed
  6716. return super().find_hparam(keys, *args, **kwargs)
  6717. def set_vocab(self):
  6718. self._set_vocab_gpt2()
  6719. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6720. tensors = list(super().modify_tensors(data_torch, name, bid))
  6721. tensor = tensors[0][1]
  6722. if "down_proj" in name:
  6723. tensor = tensor * self.mlp_multipliers[1]
  6724. elif "gate_proj" in name:
  6725. tensor = tensor * self.mlp_multipliers[0]
  6726. elif "k_proj" in name:
  6727. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  6728. elif "q_proj" in name:
  6729. tensor = tensor * self.attention_in_multiplier
  6730. elif "v_proj" in name:
  6731. tensor = tensor * self.attention_in_multiplier
  6732. elif "o_proj" in name:
  6733. tensor = tensor * self.attention_out_multiplier
  6734. elif "out_proj" in name:
  6735. tensor = tensor * self.ssm_out_multiplier
  6736. elif "in_proj" in name:
  6737. tensor = tensor * self.ssm_in_multiplier
  6738. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  6739. intermediate_size = self.hparams["mamba_d_ssm"]
  6740. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  6741. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  6742. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  6743. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  6744. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  6745. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  6746. elif "lm_head" in name:
  6747. tensor = tensor * self.hparams["lm_head_multiplier"]
  6748. elif "embed_tokens" in name:
  6749. tensor = tensor * self.hparams["embedding_multiplier"]
  6750. elif "mamba.norm" in name:
  6751. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  6752. tensors = [(tensors[0][0], tensor)]
  6753. return tensors
  6754. def set_gguf_parameters(self):
  6755. super().set_gguf_parameters()
  6756. ## General Params ##
  6757. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  6758. # Override some Mamba2 defaults
  6759. self.gguf_writer.add_block_count(self.block_count)
  6760. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  6761. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  6762. ## Attention params ##
  6763. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  6764. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  6765. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  6766. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  6767. ## Validation ##
  6768. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6769. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  6770. # Add any other Falcon Mamba2 specific configuration
  6771. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  6772. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  6773. class HunYuanMoEModel(TextModel):
  6774. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  6775. def set_vocab(self):
  6776. from transformers import AutoTokenizer
  6777. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6778. # 1. Get the pre-tokenizer identifier hash
  6779. tokpre = self.get_vocab_base_pre(tokenizer)
  6780. # 2. Reverse-engineer the merges list from mergeable_ranks
  6781. merges = []
  6782. vocab = {}
  6783. mergeable_ranks = tokenizer.mergeable_ranks
  6784. for token, rank in mergeable_ranks.items():
  6785. vocab[QwenModel.token_bytes_to_string(token)] = rank
  6786. if len(token) == 1:
  6787. continue
  6788. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  6789. if len(merged) == 2: # todo this is an assert in Qwen, why?
  6790. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  6791. # 3. Generate the tokens and toktypes lists
  6792. vocab_size = self.hparams["vocab_size"]
  6793. assert tokenizer.vocab_size == vocab_size
  6794. special_tokens = tokenizer.special_tokens
  6795. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  6796. tokens: list[str] = []
  6797. toktypes: list[int] = []
  6798. for i in range(vocab_size):
  6799. if i not in reverse_vocab:
  6800. tokens.append(f"[PAD{i}]")
  6801. toktypes.append(gguf.TokenType.UNUSED)
  6802. else:
  6803. token = reverse_vocab[i]
  6804. tokens.append(token)
  6805. if i in special_tokens.values():
  6806. toktypes.append(gguf.TokenType.CONTROL)
  6807. else:
  6808. toktypes.append(gguf.TokenType.NORMAL)
  6809. # 4. Write all vocab-related fields to the GGUF writer
  6810. self.gguf_writer.add_tokenizer_model("gpt2")
  6811. self.gguf_writer.add_tokenizer_pre(tokpre)
  6812. self.gguf_writer.add_token_list(tokens)
  6813. self.gguf_writer.add_token_types(toktypes)
  6814. self.gguf_writer.add_token_merges(merges)
  6815. # 5. Add special tokens and chat templates
  6816. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  6817. special_vocab.add_to_gguf(self.gguf_writer)
  6818. # FIX for BOS token: Overwrite incorrect id read from config.json
  6819. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  6820. def set_gguf_parameters(self):
  6821. super().set_gguf_parameters()
  6822. hparams = self.hparams
  6823. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6824. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  6825. moe_intermediate_size = hparams["moe_intermediate_size"]
  6826. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  6827. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  6828. moe_topk = hparams["moe_topk"]
  6829. assert all(topk == moe_topk[0] for topk in moe_topk)
  6830. self.gguf_writer.add_expert_used_count(moe_topk[0])
  6831. moe_shared_expert = hparams["num_shared_expert"]
  6832. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  6833. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  6834. # Rope
  6835. rope_scaling = hparams.get("rope_scaling", {})
  6836. if rope_scaling.get("type") == "dynamic":
  6837. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  6838. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  6839. alpha = rope_scaling.get("alpha", 1000)
  6840. base = hparams.get("rope_theta", 10000.0)
  6841. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  6842. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  6843. self.gguf_writer.add_rope_freq_base(scaled_base)
  6844. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6845. self.gguf_writer.add_rope_scaling_factor(1)
  6846. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  6847. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  6848. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  6849. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  6850. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  6851. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  6852. _experts: list[dict[str, Tensor]] | None = None
  6853. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6854. if name == "lm_head.weight":
  6855. if self.hparams.get("tie_word_embeddings", False):
  6856. logger.info("Skipping tied output layer 'lm_head.weight'")
  6857. return []
  6858. if name.find("mlp.experts") != -1:
  6859. n_experts = self.hparams["num_experts"]
  6860. assert bid is not None
  6861. if self._experts is None:
  6862. self._experts = [{} for _ in range(self.block_count)]
  6863. self._experts[bid][name] = data_torch
  6864. if len(self._experts[bid]) >= n_experts * 3:
  6865. # merge the experts into a single 3d tensor
  6866. tensors: list[tuple[str, Tensor]] = []
  6867. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6868. datas: list[Tensor] = []
  6869. for xid in range(n_experts):
  6870. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6871. datas.append(self._experts[bid][ename])
  6872. del self._experts[bid][ename]
  6873. data_torch = torch.stack(datas, dim=0)
  6874. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6875. new_name = self.map_tensor_name(merged_name)
  6876. tensors.append((new_name, data_torch))
  6877. return tensors
  6878. else:
  6879. return []
  6880. return [(self.map_tensor_name(name), data_torch)]
  6881. def prepare_tensors(self):
  6882. super().prepare_tensors()
  6883. if self._experts is not None:
  6884. experts = [k for d in self._experts for k in d.keys()]
  6885. if len(experts) > 0:
  6886. raise ValueError(f"Unprocessed experts: {experts}")
  6887. @ModelBase.register("LLaDAMoEModel", "LLaDAMoEModelLM")
  6888. class LLaDAMoEModel(TextModel):
  6889. model_arch = gguf.MODEL_ARCH.LLADA_MOE
  6890. def set_gguf_parameters(self):
  6891. super().set_gguf_parameters()
  6892. if (n_experts := self.hparams.get("num_experts")) is not None:
  6893. self.gguf_writer.add_expert_count(n_experts)
  6894. if (expert_intermediate_size := self.hparams.get("expert_intermediate_size")) is not None:
  6895. self.gguf_writer.add_expert_feed_forward_length(expert_intermediate_size)
  6896. # number of experts used per token (top-k)
  6897. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  6898. self.gguf_writer.add_expert_used_count(n_experts_used)
  6899. self.gguf_writer.add_mask_token_id(156895)
  6900. self.gguf_writer.add_causal_attention(False)
  6901. self.gguf_writer.add_diffusion_shift_logits(False)
  6902. _experts: list[dict[str, Tensor]] | None = None
  6903. # Copied from: Qwen2MoeModel
  6904. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6905. # process the experts separately
  6906. if name.find("experts") != -1:
  6907. n_experts = self.hparams["num_experts"]
  6908. assert bid is not None
  6909. if self._experts is None:
  6910. self._experts = [{} for _ in range(self.block_count)]
  6911. self._experts[bid][name] = data_torch
  6912. if len(self._experts[bid]) >= n_experts * 3:
  6913. tensors: list[tuple[str, Tensor]] = []
  6914. # merge the experts into a single 3d tensor
  6915. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6916. datas: list[Tensor] = []
  6917. for xid in range(n_experts):
  6918. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6919. datas.append(self._experts[bid][ename])
  6920. del self._experts[bid][ename]
  6921. data_torch = torch.stack(datas, dim=0)
  6922. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6923. new_name = self.map_tensor_name(merged_name)
  6924. tensors.append((new_name, data_torch))
  6925. return tensors
  6926. else:
  6927. return []
  6928. return [(self.map_tensor_name(name), data_torch)]
  6929. # Copied from: Qwen2MoeModel
  6930. def prepare_tensors(self):
  6931. super().prepare_tensors()
  6932. if self._experts is not None:
  6933. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6934. experts = [k for d in self._experts for k in d.keys()]
  6935. if len(experts) > 0:
  6936. raise ValueError(f"Unprocessed experts: {experts}")
  6937. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  6938. class HunYuanModel(TextModel):
  6939. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  6940. def set_vocab(self):
  6941. if (self.dir_model / "tokenizer.json").is_file():
  6942. self._set_vocab_gpt2()
  6943. else:
  6944. from transformers import AutoTokenizer
  6945. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6946. # 1. Get the pre-tokenizer identifier hash
  6947. tokpre = self.get_vocab_base_pre(tokenizer)
  6948. # 2. Reverse-engineer the merges list from mergeable_ranks
  6949. merges = []
  6950. vocab = {}
  6951. mergeable_ranks = tokenizer.mergeable_ranks
  6952. for token, rank in mergeable_ranks.items():
  6953. vocab[QwenModel.token_bytes_to_string(token)] = rank
  6954. if len(token) == 1:
  6955. continue
  6956. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  6957. if len(merged) == 2:
  6958. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  6959. # 3. Generate the tokens and toktypes lists
  6960. vocab_size = self.hparams["vocab_size"]
  6961. assert tokenizer.vocab_size == vocab_size
  6962. special_tokens = tokenizer.special_tokens
  6963. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  6964. tokens: list[str] = []
  6965. toktypes: list[int] = []
  6966. for i in range(vocab_size):
  6967. if i not in reverse_vocab:
  6968. tokens.append(f"[PAD{i}]")
  6969. toktypes.append(gguf.TokenType.UNUSED)
  6970. else:
  6971. token = reverse_vocab[i]
  6972. tokens.append(token)
  6973. if i in special_tokens.values():
  6974. toktypes.append(gguf.TokenType.CONTROL)
  6975. else:
  6976. toktypes.append(gguf.TokenType.NORMAL)
  6977. # 4. Write all vocab-related fields to the GGUF writer
  6978. self.gguf_writer.add_tokenizer_model("gpt2")
  6979. self.gguf_writer.add_tokenizer_pre(tokpre)
  6980. self.gguf_writer.add_token_list(tokens)
  6981. self.gguf_writer.add_token_types(toktypes)
  6982. self.gguf_writer.add_token_merges(merges)
  6983. # 5. Add special tokens and chat templates
  6984. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  6985. special_vocab.add_to_gguf(self.gguf_writer)
  6986. # FIX for BOS token: Overwrite incorrect id read from config.json
  6987. if self.hparams['hidden_size'] == 4096:
  6988. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  6989. def set_gguf_parameters(self):
  6990. super().set_gguf_parameters()
  6991. hparams = self.hparams
  6992. # Rope
  6993. rope_scaling = hparams.get("rope_scaling", {})
  6994. if rope_scaling.get("type") == "dynamic":
  6995. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  6996. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  6997. alpha = rope_scaling.get("alpha", 50)
  6998. base = hparams.get("rope_theta", 10000.0)
  6999. dim = hparams["head_dim"]
  7000. scaled_base = base * (alpha ** (dim / (dim - 2)))
  7001. self.gguf_writer.add_rope_freq_base(scaled_base)
  7002. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7003. self.gguf_writer.add_rope_scaling_factor(1)
  7004. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7005. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7006. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7007. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7008. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7009. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7010. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7011. if name == "lm_head.weight":
  7012. if self.hparams.get("tie_word_embeddings", False):
  7013. logger.info("Skipping tied output layer 'lm_head.weight'")
  7014. return []
  7015. return [(self.map_tensor_name(name), data_torch)]
  7016. @ModelBase.register("SmolLM3ForCausalLM")
  7017. class SmolLM3Model(LlamaModel):
  7018. model_arch = gguf.MODEL_ARCH.SMOLLM3
  7019. def set_vocab(self):
  7020. super().set_vocab()
  7021. # remove unsupported array slicing in chat template
  7022. # ref: https://huggingface.co/ggml-org/SmolLM3-3B-GGUF/discussions/1
  7023. from transformers import AutoTokenizer
  7024. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  7025. if tokenizer.chat_template is not None:
  7026. chat_template = tokenizer.chat_template.replace("[:]", "")
  7027. self.gguf_writer.add_chat_template(chat_template)
  7028. @ModelBase.register("GptOssForCausalLM")
  7029. class GptOssModel(TextModel):
  7030. model_arch = gguf.MODEL_ARCH.GPT_OSS
  7031. def transform_nibble_layout(self, tensor):
  7032. assert tensor.dtype == torch.uint8
  7033. assert tensor.shape[-1] == 16
  7034. # swap nibbles
  7035. t_lo = tensor & 0x0F
  7036. t_hi = tensor & 0xF0
  7037. t_swapped = (t_lo << 4) | (t_hi >> 4)
  7038. tensor = t_swapped
  7039. # transform aaaa...bbbb... to abababab...
  7040. blk_a, blk_b = tensor.chunk(2, dim=-1)
  7041. # get a_
  7042. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  7043. blk_a1 = (blk_a << 4).view(-1, 1)
  7044. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  7045. # get _b
  7046. blk_b0 = (blk_b >> 4).view(-1, 1)
  7047. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  7048. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  7049. # swap once more
  7050. out = blk_a | blk_b
  7051. out_h = out & 0xF0
  7052. out_l = out & 0x0F
  7053. out = (out_h >> 4) | (out_l << 4)
  7054. return out
  7055. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  7056. assert blocks.dtype == torch.uint8
  7057. assert scales.dtype == torch.uint8
  7058. scales = scales.unsqueeze(-1)
  7059. assert len(blocks.shape) == 4
  7060. assert len(scales.shape) == 4
  7061. blocks = self.transform_nibble_layout(blocks)
  7062. new_data = torch.concat((scales, blocks), dim=-1)
  7063. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  7064. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  7065. # flatten last dim
  7066. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  7067. new_data = new_data.numpy()
  7068. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  7069. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  7070. blocks0: Tensor = torch.zeros(1)
  7071. blocks1: Tensor = torch.zeros(1)
  7072. # we assume that tensors are loaded in the correct order
  7073. for name, data_torch in self.get_tensors():
  7074. if "mlp.experts.down_proj_blocks" in name:
  7075. blocks0 = data_torch
  7076. elif "mlp.experts.down_proj_scales" in name:
  7077. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  7078. self.repack_mxfp4(new_name, blocks0, data_torch)
  7079. elif "mlp.experts.gate_up_proj_blocks" in name:
  7080. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  7081. elif "mlp.experts.gate_up_proj_scales" in name:
  7082. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7083. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  7084. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  7085. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  7086. self.repack_mxfp4(new_name_up, blocks1, scales1)
  7087. return []
  7088. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7089. del bid # unused
  7090. if "sinks" in name:
  7091. name += ".weight"
  7092. # correct naming for down_proj
  7093. if "down_proj" in name:
  7094. if name.endswith("_bias"):
  7095. name = name.replace("down_proj_bias", "down_proj.bias")
  7096. elif "_blocks" not in name and "_scales" not in name:
  7097. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7098. name = name.replace("down_proj", "down_proj.weight")
  7099. data_torch = data_torch.transpose(-1, -2)
  7100. else:
  7101. # otherwise, it should already be repacked to ggml MXFP4 format
  7102. return []
  7103. # split the gate_up into gate and up
  7104. if "gate_up_proj" in name:
  7105. if name.endswith("_bias"):
  7106. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  7107. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  7108. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  7109. return [
  7110. (self.map_tensor_name(name_gate), gate_proj_bias),
  7111. (self.map_tensor_name(name_up), up_proj_bias)
  7112. ]
  7113. elif "_blocks" not in name and "_scales" not in name:
  7114. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7115. name_up = name.replace("gate_up_proj", "up_proj.weight")
  7116. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  7117. data_torch = data_torch.transpose(-1, -2)
  7118. gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7119. return [
  7120. (self.map_tensor_name(name_gate), gate_proj_weight),
  7121. (self.map_tensor_name(name_up), up_proj_weight)
  7122. ]
  7123. else:
  7124. # otherwise, it should already be repacked to ggml MXFP4 format
  7125. return []
  7126. return [(self.map_tensor_name(name), data_torch)]
  7127. def set_vocab(self):
  7128. self._set_vocab_gpt2()
  7129. def set_gguf_parameters(self):
  7130. super().set_gguf_parameters()
  7131. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  7132. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  7133. rope_scaling = self.hparams.get("rope_scaling") or {}
  7134. rope_type = rope_scaling.get("rope_type", rope_scaling.get("type"))
  7135. assert rope_type == "yarn", f"GPT-OSS only supports yarn rope scaling, got {rope_type}"
  7136. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7137. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7138. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling.get("original_max_position_embeddings", 4096))
  7139. @ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
  7140. class LFM2Model(TextModel):
  7141. model_arch = gguf.MODEL_ARCH.LFM2
  7142. def _add_feed_forward_length(self):
  7143. ff_dim = self.hparams["block_ff_dim"]
  7144. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  7145. ff_dim = self.hparams["block_ff_dim"]
  7146. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  7147. multiple_of = self.hparams["block_multiple_of"]
  7148. if auto_adjust_ff_dim:
  7149. ff_dim = int(2 * ff_dim / 3)
  7150. # custom dim factor multiplier
  7151. if ffn_dim_multiplier is not None:
  7152. ff_dim = int(ffn_dim_multiplier * ff_dim)
  7153. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  7154. self.gguf_writer.add_feed_forward_length(ff_dim)
  7155. def set_gguf_parameters(self):
  7156. # set num_key_value_heads only for attention layers
  7157. self.hparams["num_key_value_heads"] = [
  7158. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7159. for layer_type in self.hparams["layer_types"]
  7160. ]
  7161. super().set_gguf_parameters()
  7162. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7163. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7164. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  7165. self._add_feed_forward_length()
  7166. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7167. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7168. if is_vision_tensor:
  7169. # skip vision tensors
  7170. return []
  7171. name = name.replace("language_model.", "")
  7172. # conv op requires 2d tensor
  7173. if 'conv.conv' in name:
  7174. data_torch = data_torch.squeeze(1)
  7175. return [(self.map_tensor_name(name), data_torch)]
  7176. @ModelBase.register("Lfm2VlForConditionalGeneration")
  7177. class LFM2VLModel(MmprojModel):
  7178. def __init__(self, *args, **kwargs):
  7179. super().__init__(*args, **kwargs)
  7180. assert self.hparams_vision is not None
  7181. # TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
  7182. self.hparams_vision["image_size"] = 256
  7183. def set_gguf_parameters(self):
  7184. super().set_gguf_parameters()
  7185. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
  7186. self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
  7187. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
  7188. self.gguf_writer.add_vision_use_gelu(True)
  7189. # python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
  7190. vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
  7191. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
  7192. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7193. del bid # unused
  7194. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7195. if is_vision_tensor:
  7196. # remove "model." prefix
  7197. name = name.replace("model.vision_tower.", "vision_tower.")
  7198. name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
  7199. if "patch_embedding.weight" in name:
  7200. data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
  7201. return [(self.map_tensor_name(name), data_torch)]
  7202. return [] # skip other tensors
  7203. @ModelBase.register("SmallThinkerForCausalLM")
  7204. class SmallThinkerModel(TextModel):
  7205. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  7206. def set_gguf_parameters(self):
  7207. super().set_gguf_parameters()
  7208. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  7209. self.gguf_writer.add_expert_count(n_experts)
  7210. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  7211. self.gguf_writer.add_expert_used_count(n_experts_used)
  7212. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  7213. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7214. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  7215. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7216. if (self.hparams.get('moe_primary_router_apply_softmax')):
  7217. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  7218. else:
  7219. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7220. # YaRN is not enabled by default
  7221. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  7222. rope_scaling = self.hparams.get("rope_scaling") or {}
  7223. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  7224. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7225. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7226. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  7227. sliding_window_layout = self.hparams.get("sliding_window_layout")
  7228. if sliding_window_layout:
  7229. for i in sliding_window_layout:
  7230. if i != 0:
  7231. sliding_window = self.hparams.get("sliding_window_size")
  7232. if sliding_window:
  7233. self.gguf_writer.add_sliding_window(sliding_window)
  7234. break
  7235. _experts: list[dict[str, Tensor]] | None = None
  7236. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7237. # process the experts separately
  7238. if name.find("experts") != -1:
  7239. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  7240. assert bid is not None
  7241. if self._experts is None:
  7242. self._experts = [{} for _ in range(self.block_count)]
  7243. self._experts[bid][name] = data_torch
  7244. if len(self._experts[bid]) >= n_experts * 3:
  7245. tensors: list[tuple[str, Tensor]] = []
  7246. # merge the experts into a single 3d tensor
  7247. for w_name in ["down", "gate", "up"]:
  7248. datas: list[Tensor] = []
  7249. for xid in range(n_experts):
  7250. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  7251. datas.append(self._experts[bid][ename])
  7252. del self._experts[bid][ename]
  7253. data_torch = torch.stack(datas, dim=0)
  7254. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  7255. new_name = self.map_tensor_name(merged_name)
  7256. tensors.append((new_name, data_torch))
  7257. return tensors
  7258. else:
  7259. return []
  7260. return [(self.map_tensor_name(name), data_torch)]
  7261. def prepare_tensors(self):
  7262. super().prepare_tensors()
  7263. if self._experts is not None:
  7264. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7265. experts = [k for d in self._experts for k in d.keys()]
  7266. if len(experts) > 0:
  7267. raise ValueError(f"Unprocessed experts: {experts}")
  7268. @ModelBase.register("ApertusForCausalLM")
  7269. class ApertusModel(LlamaModel):
  7270. model_arch = gguf.MODEL_ARCH.APERTUS
  7271. undo_permute = False
  7272. _alpha_n = {}
  7273. _alpha_p = {}
  7274. _beta = {}
  7275. _eps = {}
  7276. def modify_tensors(self, data_torch, name, bid):
  7277. # Handle xIELU activation parameters
  7278. n_layers = self.hparams["num_hidden_layers"]
  7279. if name.endswith(".act_fn.alpha_n"):
  7280. self._alpha_n[bid] = data_torch.to("cpu").float().item()
  7281. if (len(self._alpha_n) == n_layers):
  7282. self.gguf_writer.add_xielu_alpha_n([self._alpha_n[k] for k in sorted(self._alpha_n)])
  7283. return []
  7284. if name.endswith(".act_fn.alpha_p"):
  7285. self._alpha_p[bid] = data_torch.to("cpu").float().item()
  7286. if (len(self._alpha_p) == n_layers):
  7287. self.gguf_writer.add_xielu_alpha_p([self._alpha_p[k] for k in sorted(self._alpha_p)])
  7288. return []
  7289. if name.endswith(".act_fn.beta"):
  7290. self._beta[bid] = data_torch.to("cpu").float().item()
  7291. if (len(self._beta) == n_layers):
  7292. self.gguf_writer.add_xielu_beta([self._beta[k] for k in sorted(self._beta)])
  7293. return []
  7294. if name.endswith(".act_fn.eps"):
  7295. self._eps[bid] = data_torch.to("cpu").float().item()
  7296. if (len(self._eps) == n_layers):
  7297. self.gguf_writer.add_xielu_eps([self._eps[k] for k in sorted(self._eps)])
  7298. return []
  7299. return super().modify_tensors(data_torch, name, bid)
  7300. class MistralModel(LlamaModel):
  7301. model_arch = gguf.MODEL_ARCH.LLAMA
  7302. model_name = "Mistral"
  7303. hf_arch = ""
  7304. is_mistral_format = True
  7305. undo_permute = False
  7306. @staticmethod
  7307. def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
  7308. assert TokenizerVersion is not None, "mistral_common is not installed"
  7309. assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
  7310. f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
  7311. )
  7312. if vocab.tokenizer.version == TokenizerVersion.v1:
  7313. return "mistral-v1"
  7314. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
  7315. return "mistral-v3"
  7316. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  7317. return "mistral-v3-tekken"
  7318. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
  7319. return "mistral-v7"
  7320. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  7321. return "mistral-v7-tekken"
  7322. elif vocab.tokenizer.version == TokenizerVersion.v11:
  7323. template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
  7324. elif vocab.tokenizer.version == TokenizerVersion.v13:
  7325. template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
  7326. else:
  7327. err_message = f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}"
  7328. if is_mistral_format:
  7329. err_message += (
  7330. " . Please pass --disable-mistral-community-chat-template argument to the CLI "
  7331. "if you want to skip this error and use the Mistral official `mistral-common` pre-processing library."
  7332. )
  7333. raise ValueError(err_message)
  7334. template_path = templates_dir / template_file
  7335. if not template_path.exists():
  7336. raise FileNotFoundError(f"Template file not found: {template_path}")
  7337. with open(template_path, "r", encoding="utf-8") as f:
  7338. template = f.read()
  7339. return template
  7340. class PixtralModel(LlavaVisionModel):
  7341. model_name = "Pixtral"
  7342. hf_arch = ""
  7343. is_mistral_format = True
  7344. def set_gguf_parameters(self):
  7345. super().set_gguf_parameters()
  7346. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  7347. self.gguf_writer.add_vision_attention_layernorm_eps(
  7348. self.find_hparam(["norm_eps"])
  7349. )
  7350. self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
  7351. self.gguf_writer.add_vision_use_silu(True)
  7352. # spatial_merge_size
  7353. if self.find_vparam(["mm_projector_id"]) == "patch_merge":
  7354. self.gguf_writer.add_vision_spatial_merge_size(
  7355. self.find_vparam(["spatial_merge_size"])
  7356. )
  7357. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  7358. if name == "vision_language_adapter.w_in.weight":
  7359. return "mm.1.weight"
  7360. elif name == "vision_language_adapter.w_out.weight":
  7361. return "mm.2.weight"
  7362. return super().map_tensor_name(name, try_suffixes)
  7363. @ModelBase.register("KimiVLForConditionalGeneration")
  7364. class KimiVLModel(MmprojModel):
  7365. def __init__(self, *args, **kwargs):
  7366. super().__init__(*args, **kwargs)
  7367. assert self.hparams_vision is not None
  7368. self.hparams_vision["image_size"] = 64 * 14 # for compatibility
  7369. def set_gguf_parameters(self):
  7370. super().set_gguf_parameters()
  7371. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.KIMIVL)
  7372. self.gguf_writer.add_vision_use_gelu(True)
  7373. self.gguf_writer.add_vision_projector_scale_factor(2)
  7374. # eps is the same as pytorch's default value
  7375. assert self.hparams_vision is not None
  7376. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-5))
  7377. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7378. del bid # unused
  7379. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7380. if is_vision_tensor:
  7381. if "pos_emb.weight" in name:
  7382. data_torch = data_torch.view(data_torch.shape[0] * data_torch.shape[1], data_torch.shape[2])
  7383. elif "wqkv" in name:
  7384. split_dim = 0 if "weight" in name else -1
  7385. wq, wk, wv = data_torch.chunk(3, dim=split_dim)
  7386. return [
  7387. (self.map_tensor_name(name.replace("wqkv", "wq")), wq),
  7388. (self.map_tensor_name(name.replace("wqkv", "wk")), wk),
  7389. (self.map_tensor_name(name.replace("wqkv", "wv")), wv)
  7390. ]
  7391. return [(self.map_tensor_name(name), data_torch)]
  7392. return [] # skip other tensors
  7393. ###### CONVERSION LOGIC ######
  7394. # tree of lazy tensors
  7395. class LazyTorchTensor(gguf.LazyBase):
  7396. _tensor_type = torch.Tensor
  7397. # to keep the type-checker happy
  7398. dtype: torch.dtype
  7399. shape: torch.Size
  7400. # only used when converting a torch.Tensor to a np.ndarray
  7401. _dtype_map: dict[torch.dtype, type] = {
  7402. torch.float16: np.float16,
  7403. torch.float32: np.float32,
  7404. torch.uint8: np.uint8,
  7405. }
  7406. # used for safetensors slices
  7407. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  7408. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  7409. _dtype_str_map: dict[str, torch.dtype] = {
  7410. "F64": torch.float64,
  7411. "F32": torch.float32,
  7412. "BF16": torch.bfloat16,
  7413. "F16": torch.float16,
  7414. # "U64": torch.uint64,
  7415. "I64": torch.int64,
  7416. # "U32": torch.uint32,
  7417. "I32": torch.int32,
  7418. # "U16": torch.uint16,
  7419. "I16": torch.int16,
  7420. "U8": torch.uint8,
  7421. "I8": torch.int8,
  7422. "BOOL": torch.bool,
  7423. "F8_E4M3": torch.float8_e4m3fn,
  7424. "F8_E5M2": torch.float8_e5m2,
  7425. }
  7426. def numpy(self) -> gguf.LazyNumpyTensor:
  7427. dtype = self._dtype_map[self.dtype]
  7428. return gguf.LazyNumpyTensor(
  7429. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  7430. args=(self,),
  7431. func=(lambda s: s.numpy())
  7432. )
  7433. @classmethod
  7434. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  7435. return torch.empty(size=shape, dtype=dtype, device="meta")
  7436. @classmethod
  7437. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  7438. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  7439. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  7440. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[...] if len(s.get_shape()) == 0 else s[:])
  7441. return cast(torch.Tensor, lazy)
  7442. @classmethod
  7443. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  7444. dtype = cls._dtype_str_map[remote_tensor.dtype]
  7445. shape = remote_tensor.shape
  7446. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  7447. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  7448. return cast(torch.Tensor, lazy)
  7449. @classmethod
  7450. def __torch_function__(cls, func, types, args=(), kwargs=None):
  7451. del types # unused
  7452. if kwargs is None:
  7453. kwargs = {}
  7454. if func is torch.Tensor.numpy:
  7455. return args[0].numpy()
  7456. return cls._wrap_fn(func)(*args, **kwargs)
  7457. def parse_args() -> argparse.Namespace:
  7458. parser = argparse.ArgumentParser(
  7459. description="Convert a huggingface model to a GGML compatible file")
  7460. parser.add_argument(
  7461. "--vocab-only", action="store_true",
  7462. help="extract only the vocab",
  7463. )
  7464. parser.add_argument(
  7465. "--outfile", type=Path,
  7466. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  7467. )
  7468. parser.add_argument(
  7469. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  7470. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  7471. )
  7472. parser.add_argument(
  7473. "--bigendian", action="store_true",
  7474. help="model is executed on big endian machine",
  7475. )
  7476. parser.add_argument(
  7477. "model", type=str,
  7478. help="directory containing model file or huggingface repository ID (if --remote)",
  7479. nargs="?",
  7480. )
  7481. parser.add_argument(
  7482. "--use-temp-file", action="store_true",
  7483. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  7484. )
  7485. parser.add_argument(
  7486. "--no-lazy", action="store_true",
  7487. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  7488. )
  7489. parser.add_argument(
  7490. "--model-name", type=str, default=None,
  7491. help="name of the model",
  7492. )
  7493. parser.add_argument(
  7494. "--verbose", action="store_true",
  7495. help="increase output verbosity",
  7496. )
  7497. parser.add_argument(
  7498. "--split-max-tensors", type=int, default=0,
  7499. help="max tensors in each split",
  7500. )
  7501. parser.add_argument(
  7502. "--split-max-size", type=str, default="0",
  7503. help="max size per split N(M|G)",
  7504. )
  7505. parser.add_argument(
  7506. "--dry-run", action="store_true",
  7507. help="only print out a split plan and exit, without writing any new files",
  7508. )
  7509. parser.add_argument(
  7510. "--no-tensor-first-split", action="store_true",
  7511. help="do not add tensors to the first split (disabled by default)"
  7512. )
  7513. parser.add_argument(
  7514. "--metadata", type=Path,
  7515. help="Specify the path for an authorship metadata override file"
  7516. )
  7517. parser.add_argument(
  7518. "--print-supported-models", action="store_true",
  7519. help="Print the supported models"
  7520. )
  7521. parser.add_argument(
  7522. "--remote", action="store_true",
  7523. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  7524. )
  7525. parser.add_argument(
  7526. "--mmproj", action="store_true",
  7527. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  7528. )
  7529. parser.add_argument(
  7530. "--mistral-format", action="store_true",
  7531. help="Whether the model is stored following the Mistral format.",
  7532. )
  7533. parser.add_argument(
  7534. "--disable-mistral-community-chat-template", action="store_true",
  7535. help=(
  7536. "Whether to disable usage of Mistral community chat templates. If set, use the Mistral official `mistral-common` library for tokenization and detokenization of Mistral models. "
  7537. "Using `mistral-common` ensure correctness and zero-day support of tokenization for models converted from the Mistral format but requires to manually setup the tokenization server."
  7538. )
  7539. )
  7540. args = parser.parse_args()
  7541. if not args.print_supported_models and args.model is None:
  7542. parser.error("the following arguments are required: model")
  7543. return args
  7544. def split_str_to_n_bytes(split_str: str) -> int:
  7545. if split_str.endswith("K"):
  7546. n = int(split_str[:-1]) * 1000
  7547. elif split_str.endswith("M"):
  7548. n = int(split_str[:-1]) * 1000 * 1000
  7549. elif split_str.endswith("G"):
  7550. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  7551. elif split_str.isnumeric():
  7552. n = int(split_str)
  7553. else:
  7554. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  7555. if n < 0:
  7556. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  7557. return n
  7558. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  7559. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  7560. # maybe we should fallback to text model's arch in that case, since not many models have both
  7561. text_config = hparams.get("text_config", {})
  7562. vision_config = hparams.get("vision_config", {})
  7563. arch = None
  7564. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  7565. arch = arches[0]
  7566. elif "ssm_cfg" in hparams:
  7567. # For non-hf Mamba and Mamba2 models
  7568. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  7569. # if "architectures" is found in the sub-config, use that instead
  7570. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  7571. arch = text_config["architectures"][0]
  7572. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  7573. arch = vision_config["architectures"][0]
  7574. if arch is None:
  7575. raise ValueError("Failed to detect model architecture")
  7576. return arch
  7577. def main() -> None:
  7578. args = parse_args()
  7579. if args.print_supported_models:
  7580. logger.error("Supported models:")
  7581. ModelBase.print_registered_models()
  7582. sys.exit(0)
  7583. if args.verbose:
  7584. logging.basicConfig(level=logging.DEBUG)
  7585. else:
  7586. logging.basicConfig(level=logging.INFO)
  7587. if args.remote:
  7588. hf_repo_id = args.model
  7589. from huggingface_hub import snapshot_download
  7590. local_dir = snapshot_download(
  7591. repo_id=hf_repo_id,
  7592. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  7593. dir_model = Path(local_dir)
  7594. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  7595. else:
  7596. hf_repo_id = None
  7597. dir_model = Path(args.model)
  7598. if not dir_model.is_dir():
  7599. logger.error(f'Error: {dir_model} is not a directory')
  7600. sys.exit(1)
  7601. ftype_map: dict[str, gguf.LlamaFileType] = {
  7602. "f32": gguf.LlamaFileType.ALL_F32,
  7603. "f16": gguf.LlamaFileType.MOSTLY_F16,
  7604. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  7605. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  7606. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  7607. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  7608. "auto": gguf.LlamaFileType.GUESSED,
  7609. }
  7610. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  7611. if args.use_temp_file and is_split:
  7612. logger.error("Error: Cannot use temp file when splitting")
  7613. sys.exit(1)
  7614. if args.outfile is not None:
  7615. fname_out = args.outfile
  7616. elif hf_repo_id:
  7617. # if remote, use the model ID as the output file name
  7618. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  7619. else:
  7620. fname_out = dir_model
  7621. logger.info(f"Loading model: {dir_model.name}")
  7622. if args.mmproj:
  7623. if "mmproj" not in fname_out.name:
  7624. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  7625. is_mistral_format = args.mistral_format
  7626. disable_mistral_community_chat_template = args.disable_mistral_community_chat_template
  7627. with torch.inference_mode():
  7628. output_type = ftype_map[args.outtype]
  7629. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  7630. hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
  7631. if not is_mistral_format:
  7632. model_architecture = get_model_architecture(hparams, model_type)
  7633. logger.info(f"Model architecture: {model_architecture}")
  7634. try:
  7635. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  7636. except NotImplementedError:
  7637. logger.error(f"Model {model_architecture} is not supported")
  7638. sys.exit(1)
  7639. elif args.mmproj:
  7640. assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
  7641. model_class = PixtralModel
  7642. else:
  7643. model_class = MistralModel
  7644. model_instance = model_class(dir_model, output_type, fname_out,
  7645. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  7646. eager=args.no_lazy,
  7647. metadata_override=args.metadata, model_name=args.model_name,
  7648. split_max_tensors=args.split_max_tensors,
  7649. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  7650. small_first_shard=args.no_tensor_first_split,
  7651. remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template
  7652. )
  7653. if args.vocab_only:
  7654. logger.info("Exporting model vocab...")
  7655. model_instance.write_vocab()
  7656. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  7657. else:
  7658. logger.info("Exporting model...")
  7659. model_instance.write()
  7660. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  7661. logger.info(f"Model successfully exported to {out_path}")
  7662. if __name__ == '__main__':
  7663. main()