tensor_mapping.py 70 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2 glm4-0414 plamo2 granite-hybrid
  13. "embed_tokens", # embeddinggemma
  14. "tok_embeddings", # llama-pth
  15. "embeddings.word_embeddings", # bert nomic-bert
  16. "language_model.embedding.word_embeddings", # persimmon
  17. "wte", # gpt2
  18. "transformer.embd.wte", # phi2
  19. "model.tok_embeddings", # internlm2
  20. "model.embedding", # mamba-qbert
  21. "backbone.embedding", # mamba
  22. "backbone.embeddings", # mamba-hf
  23. "transformer.in_out_embed", # Grok
  24. "embedding.word_embeddings", # chatglm
  25. "transformer.token_embeddings", # openelm
  26. "shared", # t5
  27. "rwkv.embeddings", # rwkv6
  28. "model.embeddings", # rwkv7
  29. "model.word_embeddings", # bailingmoe
  30. "language_model.model.embed_tokens", # llama4
  31. "encoder", # neobert
  32. "model.transformer.wte", # llada
  33. "embed_tokens", # qwen3-embedding
  34. ),
  35. # Token type embeddings
  36. MODEL_TENSOR.TOKEN_TYPES: (
  37. "embeddings.token_type_embeddings", # bert nomic-bert
  38. ),
  39. # Normalization of token embeddings
  40. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  41. "word_embeddings_layernorm", # bloom
  42. "embeddings.LayerNorm", # bert
  43. "emb_ln", # nomic-bert
  44. "transformer.norm", # openelm
  45. "rwkv.blocks.0.pre_ln", # rwkv
  46. "rwkv.blocks.0.pre_ln", # rwkv6
  47. "model.pre_ln", # rwkv7
  48. "model.layers.0.pre_norm", # rwkv7
  49. "backbone.norm", # wavtokenizer
  50. "model.embedding_norm", # lfm2
  51. ),
  52. # Position embeddings
  53. MODEL_TENSOR.POS_EMBD: (
  54. "transformer.wpe", # gpt2
  55. "embeddings.position_embeddings", # bert
  56. "wpe", # gpt2
  57. ),
  58. # Output
  59. MODEL_TENSOR.OUTPUT: (
  60. "embed_out", # gptneox
  61. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe plamo2
  62. "output", # llama-pth bloom internlm2
  63. "word_embeddings_for_head", # persimmon
  64. "lm_head.linear", # phi2
  65. "output_layer", # chatglm
  66. "head", # rwkv
  67. "head.out", # wavtokenizer
  68. "lm_head", # llama4
  69. "model.transformer.ff_out", # llada
  70. ),
  71. # Output norm
  72. MODEL_TENSOR.OUTPUT_NORM: (
  73. "gpt_neox.final_layer_norm", # gptneox
  74. "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
  75. "model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe plamo2
  76. "norm", # llama-pth
  77. "transformer.norm_f", # mpt dbrx
  78. "ln_f", # refact bloom qwen gpt2
  79. "language_model.encoder.final_layernorm", # persimmon
  80. "model.final_layernorm", # persimmon
  81. "lm_head.ln", # phi2
  82. "model.norm_f", # mamba-qbert
  83. "backbone.norm_f", # mamba
  84. "transformer.rms_norm", # Grok
  85. "encoder.final_layernorm", # chatglm
  86. "transformer.norm", # openelm
  87. "model.norm", # nemotron
  88. "rwkv.ln_out", # rwkv6
  89. "model.ln_out", # rwkv7
  90. "backbone.final_layer_norm", # wavtokenizer
  91. "model.norm", # llama4
  92. "model.transformer.ln_f", # llada
  93. ),
  94. # Rope frequencies
  95. MODEL_TENSOR.ROPE_FREQS: (
  96. "rope.freqs", # llama-pth
  97. "rotary_pos_emb.inv_freq", # chatglm
  98. ),
  99. MODEL_TENSOR.ROPE_FACTORS_LONG: (),
  100. MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
  101. MODEL_TENSOR.CONV1D: (
  102. "backbone.embed", # roberta
  103. ),
  104. }
  105. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  106. # Attention norm
  107. MODEL_TENSOR.ATTN_NORM: (
  108. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  109. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
  110. "transformer.blocks.{bid}.norm_1", # mpt
  111. "transformer.h.{bid}.input_layernorm", # falcon7b
  112. "h.{bid}.input_layernorm", # bloom
  113. "transformer.h.{bid}.ln_mlp", # falcon40b
  114. "model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe phimoe granite-hybrid
  115. "layers.{bid}.attention_norm", # llama-pth
  116. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  117. "model.layers.{bid}.ln1", # yi
  118. "h.{bid}.ln_1", # gpt2
  119. "transformer.h.{bid}.ln", # phi2
  120. "model.layers.layers.{bid}.norm", # plamo
  121. "model.layers.layers.{bid}.pre_mixer_norm", # plamo2
  122. "model.layers.{bid}.attention_norm", # internlm2
  123. "model.layers.{bid}.norm", # mamba-qbert
  124. "backbone.layers.{bid}.norm", # mamba
  125. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  126. "model.layers.{bid}.pre_attn_norm", # grok-2
  127. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  128. "encoder.layers.{bid}.input_layernorm", # chatglm
  129. "transformer.layers.{bid}.attn_norm", # openelm
  130. "rwkv.blocks.{bid}.ln1", # rwkv6
  131. "model.layers.{bid}.ln1", # rwkv7
  132. "model.layers.{bid}.input_layernorm", # llama4
  133. "layers.{bid}.input_layernorm", # embeddinggemma
  134. "transformer_encoder.{bid}.attention_norm", # neobert
  135. "model.layers.{bid}.operator_norm", # lfm2
  136. "model.transformer.blocks.{bid}.attn_norm", # llada
  137. "layers.{bid}.input_layernorm", # qwen3-embedding
  138. "model.layers.{bid}.attention_layernorm" # apertus
  139. ),
  140. # Attention norm 2
  141. MODEL_TENSOR.ATTN_NORM_2: (
  142. "transformer.h.{bid}.ln_attn", # falcon40b
  143. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  144. "rwkv.blocks.{bid}.ln2", # rwkv6
  145. "model.layers.{bid}.ln2", # rwkv7
  146. ),
  147. # Attention query-key-value
  148. MODEL_TENSOR.ATTN_QKV: (
  149. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  150. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  151. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  152. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  153. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  154. "h.{bid}.self_attention.query_key_value", # bloom
  155. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  156. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  157. "h.{bid}.attn.c_attn", # gpt2
  158. "transformer.h.{bid}.mixer.Wqkv", # phi2
  159. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  160. "encoder.layers.{bid}.mixer.Wqkv", # jina
  161. "model.layers.{bid}.self_attn.qkv_proj", # phi3
  162. "model.layers.layers.{bid}.mixer.qkv_proj", # plamo2
  163. "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
  164. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  165. "transformer_encoder.{bid}.qkv", # neobert
  166. ),
  167. # Attention query
  168. MODEL_TENSOR.ATTN_Q: (
  169. "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe
  170. "layers.{bid}.self_attn.q_proj", # embeddinggemma
  171. "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
  172. "layers.{bid}.attention.wq", # llama-pth
  173. "encoder.layer.{bid}.attention.self.query", # bert
  174. "transformer.layer.{bid}.attention.q_lin", # distillbert
  175. "transformer.h.{bid}.attn.q_proj", # gpt-j
  176. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  177. "model.layers.{bid}.attention.wq", # internlm2
  178. "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
  179. "transformer.h.{bid}.attn.attention.q_proj", # exaone
  180. "model.layers.{bid}.self_attn.q_proj", # llama4
  181. "model.transformer.blocks.{bid}.q_proj", # llada
  182. "layers.{bid}.self_attn.q_proj", # qwen3-embedding
  183. "backbone.layers.{bid}.mixer.q_proj", # nemotron-h
  184. ),
  185. # Attention key
  186. MODEL_TENSOR.ATTN_K: (
  187. "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe
  188. "layers.{bid}.self_attn.k_proj", # embeddinggemma
  189. "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
  190. "layers.{bid}.attention.wk", # llama-pth
  191. "encoder.layer.{bid}.attention.self.key", # bert
  192. "transformer.layer.{bid}.attention.k_lin", # distillbert
  193. "transformer.h.{bid}.attn.k_proj", # gpt-j
  194. "transformer.h.{bid}.attn.k", # refact
  195. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  196. "model.layers.{bid}.attention.wk", # internlm2
  197. "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
  198. "transformer.h.{bid}.attn.attention.k_proj", # exaone
  199. "model.layers.{bid}.self_attn.k_proj", # llama4
  200. "model.transformer.blocks.{bid}.k_proj", # llada
  201. "layers.{bid}.self_attn.k_proj", # qwen3-embedding
  202. "backbone.layers.{bid}.mixer.k_proj", # nemotron-h
  203. ),
  204. # Attention value
  205. MODEL_TENSOR.ATTN_V: (
  206. "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe
  207. "layers.{bid}.self_attn.v_proj", # embeddinggemma
  208. "layers.{bid}.attention.wv", # llama-pth
  209. "encoder.layer.{bid}.attention.self.value", # bert
  210. "transformer.layer.{bid}.attention.v_lin", # distillbert
  211. "transformer.h.{bid}.attn.v_proj", # gpt-j
  212. "transformer.h.{bid}.attn.v", # refact
  213. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  214. "model.layers.{bid}.attention.wv", # internlm2
  215. "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
  216. "transformer.h.{bid}.attn.attention.v_proj", # exaone
  217. "model.layers.{bid}.self_attn.v_proj", # llama4
  218. "model.transformer.blocks.{bid}.v_proj", # llada
  219. "layers.{bid}.self_attn.v_proj", # qwen3-embedding
  220. "backbone.layers.{bid}.mixer.v_proj", # nemotron-h
  221. ),
  222. # Attention output
  223. MODEL_TENSOR.ATTN_OUT: (
  224. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  225. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  226. "transformer.blocks.{bid}.attn.out_proj", # mpt
  227. "transformer.h.{bid}.self_attention.dense", # falcon
  228. "h.{bid}.self_attention.dense", # bloom
  229. "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe
  230. "layers.{bid}.self_attn.o_proj", # embeddinggemma
  231. "model.layers.{bid}.self_attn.out_proj", # lfm2
  232. "model.layers.{bid}.self_attn.linear_attn", # deci
  233. "layers.{bid}.attention.wo", # llama-pth
  234. "encoder.layer.{bid}.attention.output.dense", # bert
  235. "transformer.layer.{bid}.attention.out_lin", # distillbert
  236. "transformer.h.{bid}.attn.out_proj", # gpt-j
  237. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  238. "model.layers.{bid}.self_attn.dense", # persimmon
  239. "h.{bid}.attn.c_proj", # gpt2
  240. "transformer.h.{bid}.mixer.out_proj", # phi2
  241. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  242. "model.layers.layers.{bid}.mixer.o_proj", # plamo2
  243. "model.layers.{bid}.attention.wo", # internlm2
  244. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  245. "encoder.layers.{bid}.mixer.out_proj", # jina
  246. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  247. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  248. "encoder.layers.{bid}.self_attention.dense", # chatglm
  249. "transformer.layers.{bid}.attn.out_proj", # openelm
  250. "transformer.h.{bid}.attn.attention.out_proj", # exaone
  251. "model.layers.{bid}.self_attn.o_proj", # llama4
  252. "transformer_encoder.{bid}.wo", # neobert
  253. "model.transformer.blocks.{bid}.attn_out", # llada
  254. "layers.{bid}.self_attn.o_proj", # qwen3-embedding
  255. "backbone.layers.{bid}.mixer.o_proj", # nemotron-h
  256. ),
  257. # Attention output norm
  258. MODEL_TENSOR.ATTN_OUT_NORM: (
  259. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  260. "transformer.layer.{bid}.sa_layer_norm", # distillbert
  261. "encoder.layers.{bid}.norm1", # nomic-bert
  262. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  263. "model.layers.{bid}.post_attn_norm", # grok-2
  264. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  265. ),
  266. MODEL_TENSOR.ATTN_POST_NORM: (
  267. "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2 # ge
  268. "layers.{bid}.post_attention_layernorm", # embeddinggemma
  269. "model.layers.{bid}.post_self_attn_layernorm", # glm-4-0414
  270. "model.layers.layers.{bid}.post_mixer_norm.weight", # plamo2
  271. ),
  272. # Rotary embeddings
  273. MODEL_TENSOR.ATTN_ROT_EMBD: (
  274. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  275. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  276. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  277. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  278. ),
  279. MODEL_TENSOR.ATTN_SINKS: (
  280. "model.layers.{bid}.self_attn.sinks", # openai-moe
  281. ),
  282. # Feed-forward norm
  283. MODEL_TENSOR.FFN_NORM: (
  284. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  285. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
  286. "h.{bid}.post_attention_layernorm", # bloom
  287. "transformer.blocks.{bid}.norm_2", # mpt
  288. "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe phimoe
  289. "layers.{bid}.ffn_norm", # llama-pth
  290. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  291. "model.layers.{bid}.ln2", # yi
  292. "h.{bid}.ln_2", # gpt2
  293. "model.layers.{bid}.ffn_norm", # internlm2
  294. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  295. "model.layers.{bid}.pre_moe_norm", # grok-2
  296. "encoder.layers.{bid}.post_attention_layernorm", # chatglm
  297. "transformer.layers.{bid}.ffn_norm", # openelm
  298. "model.layers.{bid}.pre_ff_layernorm", # jamba granite-hybrid
  299. "model.layers.{bid}.pre_moe_layernorm", # mini-jamba
  300. "model.layers.{bid}.post_attention_layernorm", # llama4
  301. "transformer_encoder.{bid}.ffn_norm", # neobert
  302. "model.layers.layers.{bid}.pre_mlp_norm", # plamo2
  303. "model.transformer.blocks.{bid}.ff_norm", # llada
  304. "layers.{bid}.post_attention_layernorm", # qwen3-embedding
  305. "model.layers.{bid}.feedforward_layernorm", # apertus
  306. ),
  307. # Post feed-forward norm
  308. MODEL_TENSOR.FFN_PRE_NORM: (
  309. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  310. "layers.{bid}.pre_feedforward_layernorm", # embeddinggemma
  311. "model.layers.{bid}.pre_ff_layernorm.weight",
  312. ),
  313. # Post feed-forward norm
  314. MODEL_TENSOR.FFN_POST_NORM: (
  315. "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
  316. "layers.{bid}.post_feedforward_layernorm", # embeddinggemma
  317. "model.layers.{bid}.post_mlp_layernorm", # glm-4-0414
  318. "model.layers.layers.{bid}.post_mlp_norm.weight", # plamo2
  319. "model.layers.{bid}.feed_forward.up_proj",
  320. "model.layers.{bid}.post_moe_norm", # grok-2
  321. ),
  322. MODEL_TENSOR.FFN_GATE_INP: (
  323. "layers.{bid}.feed_forward.gate", # mixtral
  324. "model.layers.{bid}.block_sparse_moe.gate", # mixtral phimoe
  325. "model.layers.{bid}.mlp.gate", # qwen2moe olmoe
  326. "transformer.decoder_layer.{bid}.router", # Grok
  327. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  328. "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
  329. "model.layers.{bid}.feed_forward.router", # llama4 jamba
  330. "encoder.layers.{bid}.mlp.router.layer", # nomic-bert-moe
  331. "model.layers.{bid}.mlp.router", # openai-moe
  332. "model.layers.{bid}.mlp.gate.wg", # hunyuan
  333. "model.layers.{bid}.block_sparse_moe.primary_router", # smallthinker
  334. ),
  335. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  336. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  337. ),
  338. MODEL_TENSOR.FFN_EXP_PROBS_B: (
  339. "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1
  340. "model.layers.{bid}.mlp.moe_statics.e_score_correction", # ernie4.5-moe
  341. ),
  342. # Feed-forward up
  343. MODEL_TENSOR.FFN_UP: (
  344. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  345. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  346. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  347. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  348. "h.{bid}.mlp.dense_h_to_4h", # bloom
  349. "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2
  350. "layers.{bid}.mlp.up_proj", # embeddinggemma
  351. "layers.{bid}.feed_forward.w3", # llama-pth
  352. "encoder.layer.{bid}.intermediate.dense", # bert
  353. "transformer.layer.{bid}.ffn.lin1", # distillbert
  354. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  355. "transformer.h.{bid}.mlp.linear_3", # refact
  356. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  357. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  358. "transformer.h.{bid}.mlp.w1", # qwen
  359. "h.{bid}.mlp.c_fc", # gpt2
  360. "transformer.h.{bid}.mlp.fc1", # phi2
  361. "model.layers.{bid}.mlp.fc1", # phi2
  362. "model.layers.{bid}.mlp.gate_up_proj", # phi3 glm-4-0414
  363. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  364. "model.layers.layers.{bid}.mlp.gate_up_proj", # plamo2
  365. "model.layers.{bid}.feed_forward.w3", # internlm2
  366. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  367. "encoder.layers.{bid}.mlp.fc1", # nomic-bert-moe
  368. "model.layers.{bid}.mlp.c_fc", # starcoder2
  369. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2 (split up/gate, no longer used)
  370. "encoder.layer.{bid}.mlp.gated_layers", # jina-bert-v2 (GEGLU)
  371. "encoder.layer.{bid}.mlp.up_gated_layer", # jina-v2-code (GEGLU)
  372. "model.layers.{bid}.residual_mlp.w3", # arctic
  373. "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
  374. "transformer.h.{bid}.mlp.c_fc_1", # exaone
  375. "model.layers.{bid}.feed_forward.up_proj", # llama4 jamba granite-hybrid
  376. "transformer_encoder.{bid}.ffn.w12", # neobert
  377. "model.layers.{bid}.block_sparse_moe.up", # smallthinker
  378. "model.transformer.blocks.{bid}.up_proj", # llada
  379. "layers.{bid}.mlp.up_proj", # qwen3-embedding
  380. "backbone.layers.{bid}.mixer.up_proj", # nemotron-h
  381. ),
  382. MODEL_TENSOR.FFN_UP_EXP: (
  383. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  384. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  385. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  386. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  387. "model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
  388. "model.layers.{bid}.feed_forward.experts.up_proj", # llama4
  389. "encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe
  390. "model.layers.{bid}.block_sparse_moe.experts.up", # smallthinker
  391. ),
  392. MODEL_TENSOR.FFN_UP_SHEXP: (
  393. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  394. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
  395. "model.layers.{bid}.feed_forward.shared_expert.up_proj", # llama4
  396. "model.layers.{bid}.feed_forward.down_proj",
  397. "model.layers.{bid}.mlp.shared_mlp.up_proj", # hunyuan
  398. ),
  399. MODEL_TENSOR.FFN_UP_CHEXP: (
  400. "model.layers.{bid}.mlp.chunk_experts.up_proj", # grovemoe
  401. ),
  402. # AWQ-activation gate
  403. MODEL_TENSOR.FFN_ACT: (
  404. "transformer.blocks.{bid}.ffn.act", # mpt
  405. ),
  406. # Feed-forward gate
  407. MODEL_TENSOR.FFN_GATE: (
  408. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2
  409. "layers.{bid}.mlp.gate_proj", # embeddinggemma
  410. "layers.{bid}.feed_forward.w1", # llama-pth
  411. "transformer.h.{bid}.mlp.w2", # qwen
  412. "transformer.h.{bid}.mlp.c_fc2", # jais
  413. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  414. "model.layers.{bid}.feed_forward.w1", # internlm2
  415. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  416. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2 (split up/gate, no longer used)
  417. "transformer.h.{bid}.mlp.linear_1", # refact
  418. "model.layers.{bid}.residual_mlp.w1", # arctic
  419. "transformer.h.{bid}.mlp.c_fc_0", # exaone
  420. "model.layers.{bid}.feed_forward.gate_proj", # llama4 jamba granite-hybrid
  421. "model.transformer.blocks.{bid}.ff_proj", # llada
  422. "layers.{bid}.mlp.gate_proj", # qwen3-embedding
  423. ),
  424. MODEL_TENSOR.FFN_GATE_EXP: (
  425. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  426. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  427. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  428. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  429. "model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
  430. "model.layers.{bid}.feed_forward.experts.gate_proj", # llama4
  431. "model.layers.{bid}.block_sparse_moe.experts.gate", # smallthinker
  432. ),
  433. MODEL_TENSOR.FFN_GATE_SHEXP: (
  434. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  435. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
  436. "model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4
  437. "model.layers.{bid}.mlp.shared_mlp.gate_proj", # hunyuan
  438. ),
  439. MODEL_TENSOR.FFN_GATE_CHEXP: (
  440. "model.layers.{bid}.mlp.chunk_experts.gate_proj", # grovemoe
  441. ),
  442. # Feed-forward down
  443. MODEL_TENSOR.FFN_DOWN: (
  444. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  445. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  446. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  447. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  448. "h.{bid}.mlp.dense_4h_to_h", # bloom
  449. "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2
  450. "layers.{bid}.mlp.down_proj", # embeddinggemma
  451. "layers.{bid}.feed_forward.w2", # llama-pth
  452. "encoder.layer.{bid}.output.dense", # bert
  453. "transformer.layer.{bid}.ffn.lin2", # distillbert
  454. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  455. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  456. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  457. "h.{bid}.mlp.c_proj", # gpt2
  458. "transformer.h.{bid}.mlp.fc2", # phi2
  459. "model.layers.{bid}.mlp.fc2", # phi2
  460. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  461. "model.layers.{bid}.feed_forward.w2", # internlm2
  462. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  463. "model.layers.{bid}.mlp.c_proj", # starcoder2
  464. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  465. "transformer.layers.{bid}.ffn.proj_2", # openelm
  466. "model.layers.{bid}.residual_mlp.w2", # arctic
  467. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  468. "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
  469. "model.layers.h.{bid}.mlp.c_proj", # exaone
  470. "model.layers.{bid}.feed_forward.down_proj", # llama4 jamba granite-hybrid
  471. "transformer_encoder.{bid}.ffn.w3", # neobert
  472. "model.layers.{bid}.block_sparse_moe.down", # smallthinker
  473. "model.transformer.blocks.{bid}.ff_out", # llada
  474. "layers.{bid}.mlp.down_proj", # qwen3-embedding
  475. "backbone.layers.{bid}.mixer.down_proj", # nemotron-h
  476. ),
  477. MODEL_TENSOR.FFN_DOWN_EXP: (
  478. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  479. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  480. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  481. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  482. "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
  483. "model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
  484. "model.layers.{bid}.feed_forward.experts.down_proj", # llama4
  485. "encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe
  486. "model.layers.{bid}.block_sparse_moe.experts.down", # smallthinker
  487. ),
  488. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  489. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  490. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
  491. "model.layers.{bid}.feed_forward.shared_expert.down_proj", # llama4
  492. "model.layers.{bid}.shared_mlp.output_linear", # granitemoe
  493. "model.layers.{bid}.mlp.shared_mlp.down_proj", # hunyuan
  494. ),
  495. MODEL_TENSOR.FFN_DOWN_CHEXP: (
  496. "model.layers.{bid}.mlp.chunk_experts.down_proj", # grovemoe
  497. ),
  498. MODEL_TENSOR.ATTN_Q_NORM: (
  499. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  500. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  501. "model.layers.{bid}.self_attn.query_layernorm", # hunyuan
  502. "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2
  503. "layers.{bid}.self_attn.q_norm", # embeddinggemma
  504. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  505. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  506. "transformer.layers.{bid}.attn.q_norm", # openelm
  507. "model.layers.layers.{bid}.mixer.q", # plamo2
  508. "layers.{bid}.self_attn.q_norm", # qwen3-embedding
  509. "model.layers.{bid}.attention.query_layernorm", # apertus
  510. ),
  511. MODEL_TENSOR.ATTN_K_NORM: (
  512. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  513. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  514. "model.layers.{bid}.self_attn.key_layernorm", # hunyuan
  515. "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2
  516. "layers.{bid}.self_attn.k_norm", # embeddinggemma
  517. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  518. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  519. "transformer.layers.{bid}.attn.k_norm", # openelm
  520. "model.layers.layers.{bid}.mixer.k", # plamo2
  521. "layers.{bid}.self_attn.k_norm", # qwen3-embedding
  522. "model.layers.{bid}.attention.key_layernorm", # apertus
  523. ),
  524. MODEL_TENSOR.ROPE_FREQS: (
  525. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  526. ),
  527. MODEL_TENSOR.LAYER_OUT_NORM: (
  528. "encoder.layer.{bid}.output.LayerNorm", # bert
  529. "transformer.layer.{bid}.output_layer_norm", # distillbert
  530. "encoder.layers.{bid}.norm2", # nomic-bert
  531. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  532. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  533. "encoder.layer.{bid}.layer_norm_2", # jina-v2-code
  534. ),
  535. MODEL_TENSOR.PER_LAYER_TOKEN_EMBD: (
  536. "model.embed_tokens_per_layer", # gemma3n
  537. ),
  538. MODEL_TENSOR.PER_LAYER_MODEL_PROJ: (
  539. "model.per_layer_model_projection", # gemma3n
  540. ),
  541. MODEL_TENSOR.PER_LAYER_PROJ_NORM: (
  542. "model.per_layer_projection_norm", # gemma3n
  543. ),
  544. MODEL_TENSOR.ALTUP_PROJ: (
  545. "model.altup_projections", # gemma3n
  546. ),
  547. MODEL_TENSOR.ALTUP_UNEMBD_PROJ: (
  548. "model.altup_unembed_projections", # gemma3n
  549. ),
  550. MODEL_TENSOR.PER_LAYER_INP_GATE: (
  551. "model.layers.{bid}.per_layer_input_gate", # gemma3n
  552. ),
  553. MODEL_TENSOR.PER_LAYER_PROJ: (
  554. "model.layers.{bid}.per_layer_projection", # gemma3n
  555. ),
  556. MODEL_TENSOR.PER_LAYER_POST_NORM: (
  557. "model.layers.{bid}.post_per_layer_input_norm", # gemma3n
  558. ),
  559. MODEL_TENSOR.ALTUP_CORRECT_COEF: (
  560. "model.layers.{bid}.altup.correction_coefs", # gemma3n
  561. ),
  562. MODEL_TENSOR.ALTUP_CORRECT_SCALE: (
  563. "model.layers.{bid}.altup.correct_output_scale", # gemma3n
  564. ),
  565. MODEL_TENSOR.ALTUP_PREDICT_COEF: (
  566. "model.layers.{bid}.altup.prediction_coefs", # gemma3n
  567. ),
  568. MODEL_TENSOR.ALTUP_ROUTER: (
  569. "model.layers.{bid}.altup.modality_router", # gemma3n
  570. ),
  571. MODEL_TENSOR.ALTUP_ROUTER_NORM: (
  572. "model.layers.{bid}.altup.router_norm", # gemma3n
  573. ),
  574. MODEL_TENSOR.LAUREL_L: (
  575. "model.layers.{bid}.laurel.linear_left", # gemma3n
  576. ),
  577. MODEL_TENSOR.LAUREL_R: (
  578. "model.layers.{bid}.laurel.linear_right", # gemma3n
  579. ),
  580. MODEL_TENSOR.LAUREL_POST_NORM: (
  581. "model.layers.{bid}.laurel.post_laurel_norm", # gemma3n
  582. ),
  583. MODEL_TENSOR.SSM_IN: (
  584. "model.layers.{bid}.in_proj", # mamba-hf
  585. "backbone.layers.{bid}.mixer.in_proj", # mamba
  586. "model.layers.{bid}.mamba.in_proj", # jamba falcon-h1 granite-hybrid
  587. "model.layers.layers.{bid}.mixer.in_proj", # plamo2
  588. ),
  589. MODEL_TENSOR.SSM_CONV1D: (
  590. "model.layers.{bid}.conv1d", # mamba-hf
  591. "backbone.layers.{bid}.mixer.conv1d", # mamba
  592. "model.layers.{bid}.mamba.conv1d", # jamba falcon-h1 granite-hybrid
  593. "model.layers.layers.{bid}.mixer.conv1d", # plamo2
  594. ),
  595. MODEL_TENSOR.SSM_X: (
  596. "model.layers.{bid}.x_proj", # mamba-hf
  597. "backbone.layers.{bid}.mixer.x_proj", # mamba
  598. "model.layers.{bid}.mamba.x_proj", # jamba
  599. "model.layers.layers.{bid}.mixer.bcdt_proj", # plamo2
  600. ),
  601. MODEL_TENSOR.SSM_DT: (
  602. "model.layers.{bid}.dt_proj", # mamba-hf
  603. "backbone.layers.{bid}.mixer.dt_proj", # mamba
  604. "model.layers.{bid}.mamba.dt_proj", # jamba falcon-h1 granite-hybrid
  605. "model.layers.layers.{bid}.mixer.dt_proj", # plamo2
  606. ),
  607. MODEL_TENSOR.SSM_DT_NORM: (
  608. "model.layers.layers.{bid}.mixer.dt_norm.weight", # plamo2
  609. "model.layers.{bid}.mamba.dt_layernorm", # jamba
  610. ),
  611. MODEL_TENSOR.SSM_A: (
  612. "model.layers.{bid}.A_log", # mamba-hf
  613. "backbone.layers.{bid}.mixer.A_log", # mamba
  614. "model.layers.{bid}.mamba.A_log", # jamba falcon-h1 granite-hybrid
  615. "model.layers.layers.{bid}.mixer.A_log", # plamo2
  616. ),
  617. MODEL_TENSOR.SSM_B_NORM: (
  618. "model.layers.{bid}.mamba.b_layernorm", # jamba
  619. "model.layers.{bid}.mamba.B_layernorm", # mini-jamba
  620. "model.layers.layers.{bid}.mixer.B_norm.weight", # plamo2
  621. ),
  622. MODEL_TENSOR.SSM_C_NORM: (
  623. "model.layers.{bid}.mamba.c_layernorm", # jamba
  624. "model.layers.{bid}.mamba.C_layernorm", # mini-jamba
  625. "model.layers.layers.{bid}.mixer.C_norm.weight", # plamo2
  626. ),
  627. MODEL_TENSOR.SSM_D: (
  628. "model.layers.{bid}.D", # mamba-hf
  629. "backbone.layers.{bid}.mixer.D", # mamba
  630. "model.layers.{bid}.mamba.D", # jamba falcon-h1 granite-hybrid
  631. "model.layers.layers.{bid}.mixer.D", # plamo2
  632. ),
  633. MODEL_TENSOR.SSM_NORM: (
  634. "model.layers.{bid}.mamba.norm", # falcon-h1 granite-hybrid
  635. "backbone.layers.{bid}.mixer.norm", # mamba2
  636. ),
  637. MODEL_TENSOR.SSM_OUT: (
  638. "model.layers.{bid}.out_proj", # mamba-hf
  639. "backbone.layers.{bid}.mixer.out_proj", # mamba
  640. "model.layers.{bid}.mamba.out_proj", # jamba falcon-h1 granite-hybrid
  641. "model.layers.layers.{bid}.mixer.out_proj", # plamo2
  642. ),
  643. MODEL_TENSOR.TIME_MIX_W0: (
  644. "model.layers.{bid}.attention.w0", # rwkv7
  645. ),
  646. MODEL_TENSOR.TIME_MIX_W1: (
  647. "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv6
  648. "model.layers.{bid}.self_attn.time_maa_w1", # rwkv6qwen2
  649. "model.layers.{bid}.attention.w1", # rwkv7
  650. ),
  651. MODEL_TENSOR.TIME_MIX_W2: (
  652. "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv6
  653. "model.layers.{bid}.self_attn.time_maa_w2", # rwkv6qwen2
  654. "model.layers.{bid}.attention.w2", # rwkv7
  655. ),
  656. MODEL_TENSOR.TIME_MIX_A0: (
  657. "model.layers.{bid}.attention.a0", # rwkv7
  658. ),
  659. MODEL_TENSOR.TIME_MIX_A1: (
  660. "model.layers.{bid}.attention.a1", # rwkv7
  661. ),
  662. MODEL_TENSOR.TIME_MIX_A2: (
  663. "model.layers.{bid}.attention.a2", # rwkv7
  664. ),
  665. MODEL_TENSOR.TIME_MIX_V0: (
  666. "model.layers.{bid}.attention.v0", # rwkv7
  667. ),
  668. MODEL_TENSOR.TIME_MIX_V1: (
  669. "model.layers.{bid}.attention.v1", # rwkv7
  670. ),
  671. MODEL_TENSOR.TIME_MIX_V2: (
  672. "model.layers.{bid}.attention.v2", # rwkv7
  673. ),
  674. MODEL_TENSOR.TIME_MIX_G1: (
  675. "model.layers.{bid}.attention.g1", # rwkv7
  676. ),
  677. MODEL_TENSOR.TIME_MIX_G2: (
  678. "model.layers.{bid}.attention.g2", # rwkv7
  679. ),
  680. MODEL_TENSOR.TIME_MIX_K_K: (
  681. "model.layers.{bid}.attention.k_k", # rwkv7
  682. ),
  683. MODEL_TENSOR.TIME_MIX_K_A: (
  684. "model.layers.{bid}.attention.k_a", # rwkv7
  685. ),
  686. MODEL_TENSOR.TIME_MIX_R_K: (
  687. "model.layers.{bid}.attention.r_k", # rwkv7
  688. ),
  689. MODEL_TENSOR.TIME_MIX_LERP_X: (
  690. "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv6
  691. "model.layers.{bid}.self_attn.time_maa_x", # rwkv6qwen2
  692. ),
  693. MODEL_TENSOR.TIME_MIX_LERP_K: (
  694. "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv6
  695. "model.layers.{bid}.self_attn.time_maa_k", # rwkv6qwen2
  696. ),
  697. MODEL_TENSOR.TIME_MIX_LERP_V: (
  698. "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv6
  699. "model.layers.{bid}.self_attn.time_maa_v", # rwkv6qwen2
  700. ),
  701. MODEL_TENSOR.TIME_MIX_LERP_R: (
  702. "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv6
  703. "model.layers.{bid}.self_attn.time_maa_r", # rwkv6qwen2
  704. ),
  705. MODEL_TENSOR.TIME_MIX_LERP_G: (
  706. "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv6
  707. "model.layers.{bid}.self_attn.time_maa_g", # rwkv6qwen2
  708. ),
  709. MODEL_TENSOR.TIME_MIX_LERP_W: (
  710. "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv6
  711. "model.layers.{bid}.self_attn.time_maa_w", # rwkv6qwen2
  712. ),
  713. MODEL_TENSOR.TIME_MIX_FIRST: (
  714. "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv6
  715. ),
  716. MODEL_TENSOR.TIME_MIX_DECAY: (
  717. "rwkv.blocks.{bid}.attention.time_decay", # rwkv6
  718. "model.layers.{bid}.self_attn.time_decay", # rwkv6qwen2
  719. ),
  720. MODEL_TENSOR.TIME_MIX_DECAY_W1: (
  721. "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv6
  722. "model.layers.{bid}.self_attn.time_decay_w1", # rwkv6qwen2
  723. ),
  724. MODEL_TENSOR.TIME_MIX_DECAY_W2: (
  725. "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv6
  726. "model.layers.{bid}.self_attn.time_decay_w2", # rwkv6qwen2
  727. ),
  728. MODEL_TENSOR.TIME_MIX_KEY: (
  729. "rwkv.blocks.{bid}.attention.key", # rwkv6
  730. "model.layers.{bid}.self_attn.k_proj", # rwkv6qwen2
  731. "model.layers.{bid}.attention.key", # rwkv7
  732. "model.layers.{bid}.attention.k_proj", # rwkv7
  733. ),
  734. MODEL_TENSOR.TIME_MIX_VALUE: (
  735. "rwkv.blocks.{bid}.attention.value", # rwkv6
  736. "model.layers.{bid}.self_attn.v_proj", # rwkv6qwen2
  737. "model.layers.{bid}.attention.value", # rwkv7
  738. "model.layers.{bid}.attention.v_proj", # rwkv7
  739. ),
  740. MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
  741. "rwkv.blocks.{bid}.attention.receptance", # rwkv6
  742. "model.layers.{bid}.self_attn.q_proj", # rwkv6qwen2
  743. "model.layers.{bid}.attention.receptance", # rwkv7
  744. "model.layers.{bid}.attention.r_proj", # rwkv7
  745. ),
  746. MODEL_TENSOR.TIME_MIX_GATE: (
  747. "rwkv.blocks.{bid}.attention.gate", # rwkv6
  748. "model.layers.{bid}.self_attn.gate", # rwkv6qwen2
  749. ),
  750. MODEL_TENSOR.TIME_MIX_LN: (
  751. "rwkv.blocks.{bid}.attention.ln_x", # rwkv6
  752. "model.layers.{bid}.attention.ln_x" # rwkv7
  753. ),
  754. MODEL_TENSOR.TIME_MIX_OUTPUT: (
  755. "rwkv.blocks.{bid}.attention.output", # rwkv6
  756. "model.layers.{bid}.self_attn.o_proj", # rwkv6qwen2
  757. "model.layers.{bid}.attention.output", # rwkv7
  758. "model.layers.{bid}.attention.o_proj", # rwkv7
  759. ),
  760. MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
  761. "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv6
  762. "model.layers.{bid}.feed_forward.x_k", # rwkv7
  763. ),
  764. MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
  765. "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv6
  766. ),
  767. MODEL_TENSOR.CHANNEL_MIX_KEY: (
  768. "rwkv.blocks.{bid}.feed_forward.key", # rwkv6
  769. "model.layers.{bid}.feed_forward.key", # rwkv7
  770. ),
  771. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
  772. "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv6
  773. ),
  774. MODEL_TENSOR.CHANNEL_MIX_VALUE: (
  775. "rwkv.blocks.{bid}.feed_forward.value", # rwkv6
  776. "model.layers.{bid}.feed_forward.value", # rwkv7
  777. ),
  778. MODEL_TENSOR.ATTN_Q_A: (
  779. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  780. ),
  781. MODEL_TENSOR.ATTN_Q_B: (
  782. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  783. ),
  784. MODEL_TENSOR.ATTN_KV_A_MQA: (
  785. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  786. ),
  787. MODEL_TENSOR.ATTN_KV_B: (
  788. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  789. ),
  790. MODEL_TENSOR.ATTN_K_B: (
  791. "model.layers.{bid}.self_attn.k_b_proj", # deepseek2
  792. ),
  793. MODEL_TENSOR.ATTN_V_B: (
  794. "model.layers.{bid}.self_attn.v_b_proj", # deepseek2
  795. ),
  796. MODEL_TENSOR.ATTN_Q_A_NORM: (
  797. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  798. ),
  799. MODEL_TENSOR.ATTN_KV_A_NORM: (
  800. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  801. ),
  802. MODEL_TENSOR.ATTN_SUB_NORM: (
  803. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  804. ),
  805. MODEL_TENSOR.FFN_SUB_NORM: (
  806. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  807. ),
  808. MODEL_TENSOR.DEC_ATTN_NORM: (
  809. "decoder.block.{bid}.layer.0.layer_norm", # t5
  810. ),
  811. MODEL_TENSOR.DEC_ATTN_Q: (
  812. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  813. ),
  814. MODEL_TENSOR.DEC_ATTN_K: (
  815. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  816. ),
  817. MODEL_TENSOR.DEC_ATTN_V: (
  818. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  819. ),
  820. MODEL_TENSOR.DEC_ATTN_OUT: (
  821. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  822. ),
  823. MODEL_TENSOR.DEC_ATTN_REL_B: (
  824. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  825. ),
  826. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  827. "decoder.block.{bid}.layer.1.layer_norm", # t5
  828. ),
  829. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  830. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  831. ),
  832. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  833. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  834. ),
  835. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  836. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  837. ),
  838. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  839. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  840. ),
  841. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  842. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  843. ),
  844. MODEL_TENSOR.DEC_FFN_NORM: (
  845. "decoder.block.{bid}.layer.2.layer_norm", # t5
  846. ),
  847. MODEL_TENSOR.DEC_FFN_GATE: (
  848. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  849. ),
  850. MODEL_TENSOR.DEC_FFN_UP: (
  851. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  852. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  853. ),
  854. MODEL_TENSOR.DEC_FFN_DOWN: (
  855. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  856. ),
  857. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  858. "decoder.final_layer_norm", # t5
  859. ),
  860. MODEL_TENSOR.ENC_ATTN_NORM: (
  861. "encoder.block.{bid}.layer.0.layer_norm", # t5
  862. ),
  863. MODEL_TENSOR.ENC_ATTN_Q: (
  864. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  865. ),
  866. MODEL_TENSOR.ENC_ATTN_K: (
  867. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  868. ),
  869. MODEL_TENSOR.ENC_ATTN_V: (
  870. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  871. ),
  872. MODEL_TENSOR.ENC_ATTN_OUT: (
  873. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  874. ),
  875. MODEL_TENSOR.ENC_ATTN_REL_B: (
  876. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  877. ),
  878. MODEL_TENSOR.ENC_FFN_NORM: (
  879. "encoder.block.{bid}.layer.1.layer_norm", # t5
  880. ),
  881. MODEL_TENSOR.ENC_FFN_GATE: (
  882. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  883. ),
  884. MODEL_TENSOR.ENC_FFN_UP: (
  885. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  886. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  887. ),
  888. MODEL_TENSOR.ENC_FFN_DOWN: (
  889. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  890. ),
  891. ############################################################################
  892. # TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
  893. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  894. "encoder.final_layer_norm", # t5
  895. "layer_norm", # neobert
  896. ),
  897. MODEL_TENSOR.CLS: (
  898. "classifier", # jina
  899. "classifier.dense", # roberta
  900. "pre_classifier", # distillbert
  901. "dense", # neobert
  902. ),
  903. MODEL_TENSOR.CLS_OUT: (
  904. "classifier.out_proj", # roberta
  905. ),
  906. #############################################################################
  907. MODEL_TENSOR.CONVNEXT_DW: (
  908. "backbone.convnext.{bid}.dwconv", # wavtokenizer
  909. ),
  910. MODEL_TENSOR.CONVNEXT_NORM: (
  911. "backbone.convnext.{bid}.norm", # wavtokenizer
  912. ),
  913. MODEL_TENSOR.CONVNEXT_PW1: (
  914. "backbone.convnext.{bid}.pwconv1", # wavtokenizer
  915. ),
  916. MODEL_TENSOR.CONVNEXT_PW2: (
  917. "backbone.convnext.{bid}.pwconv2", # wavtokenizer
  918. ),
  919. MODEL_TENSOR.CONVNEXT_GAMMA: (
  920. "backbone.convnext.{bid}.gamma", # wavtokenizer
  921. ),
  922. MODEL_TENSOR.POSNET_CONV1: (
  923. "backbone.posnet.{bid}.conv1", # wavtokenizer
  924. ),
  925. MODEL_TENSOR.POSNET_CONV2: (
  926. "backbone.posnet.{bid}.conv2", # wavtokenizer
  927. ),
  928. MODEL_TENSOR.POSNET_NORM: (
  929. "backbone.posnet.{bid}.norm", # wavtokenizer
  930. ),
  931. MODEL_TENSOR.POSNET_NORM1: (
  932. "backbone.posnet.{bid}.norm1", # wavtokenizer
  933. ),
  934. MODEL_TENSOR.POSNET_NORM2: (
  935. "backbone.posnet.{bid}.norm2", # wavtokenizer
  936. ),
  937. MODEL_TENSOR.POSNET_ATTN_NORM: (
  938. "backbone.posnet.{bid}.norm", # wavtokenizer
  939. ),
  940. MODEL_TENSOR.POSNET_ATTN_Q: (
  941. "backbone.posnet.{bid}.q", # wavtokenizer
  942. ),
  943. MODEL_TENSOR.POSNET_ATTN_K: (
  944. "backbone.posnet.{bid}.k", # wavtokenizer
  945. ),
  946. MODEL_TENSOR.POSNET_ATTN_V: (
  947. "backbone.posnet.{bid}.v", # wavtokenizer
  948. ),
  949. MODEL_TENSOR.POSNET_ATTN_OUT: (
  950. "backbone.posnet.{bid}.proj_out", # wavtokenizer
  951. ),
  952. MODEL_TENSOR.SHORTCONV_CONV: (
  953. "model.layers.{bid}.conv.conv",
  954. ),
  955. MODEL_TENSOR.SHORTCONV_INPROJ: (
  956. "model.layers.{bid}.conv.in_proj",
  957. ),
  958. MODEL_TENSOR.SHORTCONV_OUTPROJ: (
  959. "model.layers.{bid}.conv.out_proj",
  960. ),
  961. #############################################################################
  962. ## Vision encoder
  963. MODEL_TENSOR.V_MMPROJ: (
  964. "multi_modal_projector.linear_{bid}",
  965. "visual.merger.mlp.{bid}", # qwen2vl
  966. ),
  967. MODEL_TENSOR.V_MMPROJ_FC: (
  968. "model.connector.modality_projection.proj", # SmolVLM
  969. ),
  970. MODEL_TENSOR.V_MMPROJ_MLP: (
  971. "model.mm_projector.mlp.mlp.{bid}",
  972. "vision_model.vision_adapter.mlp.fc{bid}", # llama 4
  973. "mlp1.{bid}", # InternVL
  974. ),
  975. MODEL_TENSOR.V_MMPROJ_PEG: (
  976. "model.mm_projector.peg.peg.{bid}",
  977. ),
  978. MODEL_TENSOR.V_ENC_EMBD_CLS: (
  979. "vision_tower.vision_model.embeddings.class_embedding",
  980. "model.vision_tower.embeddings.cls_token", # Intern-S1
  981. "vision_model.class_embedding", # llama 4
  982. ),
  983. MODEL_TENSOR.V_ENC_EMBD_PATCH: (
  984. "vision_tower.vision_model.embeddings.patch_embedding",
  985. "model.vision_tower.embeddings.patch_embeddings.projection", # Intern-S1
  986. "vpm.embeddings.patch_embedding",
  987. "model.vision_model.embeddings.patch_embedding", # SmolVLM
  988. "vision_tower.patch_conv", # pixtral-hf
  989. "vision_encoder.patch_conv", # pixtral
  990. "vision_model.patch_embedding.linear", # llama 4
  991. "visual.patch_embed.proj", # qwen2vl
  992. "vision_tower.patch_embed.proj", # kimi-vl
  993. ),
  994. MODEL_TENSOR.V_ENC_EMBD_POS: (
  995. "vision_tower.vision_model.embeddings.position_embedding",
  996. "model.vision_tower.embeddings.position_embeddings", # Intern-S1
  997. "vpm.embeddings.position_embedding",
  998. "model.vision_model.embeddings.position_embedding", # SmolVLM
  999. "vision_model.positional_embedding_vlm", # llama 4
  1000. "vision_tower.patch_embed.pos_emb", # kimi-vl
  1001. ),
  1002. MODEL_TENSOR.V_ENC_ATTN_Q: (
  1003. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.q_proj",
  1004. "model.vision_tower.encoder.layer.{bid}.attention.q_proj", # Intern-S1
  1005. "vpm.encoder.layers.{bid}.self_attn.q_proj",
  1006. "model.vision_model.encoder.layers.{bid}.self_attn.q_proj", # SmolVLM
  1007. "vision_model.model.layers.{bid}.self_attn.q_proj", # llama4
  1008. "vision_tower.transformer.layers.{bid}.attention.q_proj", # pixtral-hf
  1009. "vision_encoder.transformer.layers.{bid}.attention.wq", # pixtral
  1010. "visual.blocks.{bid}.attn.q", # qwen2vl, generated
  1011. "vision_tower.encoder.blocks.{bid}.wq", # kimi-vl, generated
  1012. ),
  1013. MODEL_TENSOR.V_ENC_ATTN_Q_NORM: (
  1014. "vision_tower.vision_model.encoder.layers.{bid}.attn.q_norm", # InternVL
  1015. "model.vision_tower.encoder.layer.{bid}.attention.q_norm", # Intern-S1
  1016. ),
  1017. MODEL_TENSOR.V_ENC_ATTN_K: (
  1018. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.k_proj",
  1019. "model.vision_tower.encoder.layer.{bid}.attention.k_proj", # Intern-S1
  1020. "vpm.encoder.layers.{bid}.self_attn.k_proj",
  1021. "model.vision_model.encoder.layers.{bid}.self_attn.k_proj", # SmolVLM
  1022. "vision_model.model.layers.{bid}.self_attn.k_proj", # llama4
  1023. "vision_tower.transformer.layers.{bid}.attention.k_proj", # pixtral-hf
  1024. "vision_encoder.transformer.layers.{bid}.attention.wk", # pixtral
  1025. "visual.blocks.{bid}.attn.k", # qwen2vl, generated
  1026. "vision_tower.encoder.blocks.{bid}.wk", # kimi-vl, generated
  1027. ),
  1028. MODEL_TENSOR.V_ENC_ATTN_K_NORM: (
  1029. "vision_tower.vision_model.encoder.layers.{bid}.attn.k_norm", # InternVL
  1030. "model.vision_tower.encoder.layer.{bid}.attention.k_norm", # Intern-S1
  1031. ),
  1032. MODEL_TENSOR.V_ENC_ATTN_V: (
  1033. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.v_proj",
  1034. "model.vision_tower.encoder.layer.{bid}.attention.v_proj", # Intern-S1
  1035. "vpm.encoder.layers.{bid}.self_attn.v_proj",
  1036. "model.vision_model.encoder.layers.{bid}.self_attn.v_proj", # SmolVLM
  1037. "vision_model.model.layers.{bid}.self_attn.v_proj", # llama4
  1038. "vision_tower.transformer.layers.{bid}.attention.v_proj", # pixtral-hf
  1039. "vision_encoder.transformer.layers.{bid}.attention.wv", # pixtral
  1040. "visual.blocks.{bid}.attn.v", # qwen2vl, generated
  1041. "vision_tower.encoder.blocks.{bid}.wv", # kimi-vl, generated
  1042. ),
  1043. MODEL_TENSOR.V_ENC_INPUT_NORM: (
  1044. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm1",
  1045. "vision_tower.vision_model.encoder.layers.{bid}.norm1", # InternVL
  1046. "model.vision_tower.encoder.layer.{bid}.layernorm_before", # Intern-S1
  1047. "vpm.encoder.layers.{bid}.layer_norm1",
  1048. "model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM
  1049. "vision_tower.transformer.layers.{bid}.attention_norm", # pixtral-hf
  1050. "vision_encoder.transformer.layers.{bid}.attention_norm", # pixtral
  1051. "vision_model.model.layers.{bid}.input_layernorm", # llama4
  1052. "visual.blocks.{bid}.norm1", # qwen2vl
  1053. "vision_tower.encoder.blocks.{bid}.norm0", # kimi-vl (norm0/norm1)
  1054. ),
  1055. MODEL_TENSOR.V_ENC_ATTN_O: (
  1056. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.out_proj",
  1057. "vision_tower.vision_model.encoder.layers.{bid}.attn.proj", # InternVL
  1058. "model.vision_tower.encoder.layer.{bid}.attention.projection_layer", # Intern-S1
  1059. "vpm.encoder.layers.{bid}.self_attn.out_proj",
  1060. "model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
  1061. "vision_model.model.layers.{bid}.self_attn.o_proj", # llama4
  1062. "vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral-hf
  1063. "vision_encoder.transformer.layers.{bid}.attention.wo", # pixtral
  1064. "visual.blocks.{bid}.attn.proj", # qwen2vl
  1065. "vision_tower.encoder.blocks.{bid}.wo", # kimi-vl
  1066. ),
  1067. MODEL_TENSOR.V_ENC_POST_ATTN_NORM: (
  1068. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm2",
  1069. "vision_tower.vision_model.encoder.layers.{bid}.norm2", # InternVL
  1070. "model.vision_tower.encoder.layer.{bid}.layernorm_after", # Intern-S1
  1071. "vpm.encoder.layers.{bid}.layer_norm2",
  1072. "model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM
  1073. "vision_model.model.layers.{bid}.post_attention_layernorm", # llama4
  1074. "vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral-hf
  1075. "vision_encoder.transformer.layers.{bid}.ffn_norm", # pixtral
  1076. "visual.blocks.{bid}.norm2", # qwen2vl
  1077. "vision_tower.encoder.blocks.{bid}.norm1", # kimi-vl (norm0/norm1)
  1078. ),
  1079. MODEL_TENSOR.V_ENC_FFN_UP: (
  1080. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc1",
  1081. "model.vision_tower.encoder.layer.{bid}.mlp.fc1", # Intern-S1
  1082. "vpm.encoder.layers.{bid}.mlp.fc1",
  1083. "model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3
  1084. "vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral-hf
  1085. "vision_encoder.transformer.layers.{bid}.feed_forward.w3", # pixtral
  1086. "vision_model.model.layers.{bid}.mlp.fc1", # llama4
  1087. "visual.blocks.{bid}.mlp.fc1", # qwen2vl
  1088. "visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl
  1089. "vision_tower.encoder.blocks.{bid}.mlp.fc0", # kimi-vl (fc0/fc1)
  1090. ),
  1091. MODEL_TENSOR.V_ENC_FFN_GATE: (
  1092. "vision_tower.transformer.layers.{bid}.feed_forward.gate_proj", # pixtral-hf
  1093. "vision_encoder.transformer.layers.{bid}.feed_forward.w1", # pixtral
  1094. "visual.blocks.{bid}.mlp.gate_proj", # qwen2.5vl
  1095. ),
  1096. MODEL_TENSOR.V_ENC_FFN_DOWN: (
  1097. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc2",
  1098. "model.vision_tower.encoder.layer.{bid}.mlp.fc2", # Intern-S1
  1099. "vpm.encoder.layers.{bid}.mlp.fc2",
  1100. "model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3
  1101. "vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral-hf
  1102. "vision_encoder.transformer.layers.{bid}.feed_forward.w2", # pixtral
  1103. "vision_model.model.layers.{bid}.mlp.fc2", # llama4
  1104. "visual.blocks.{bid}.mlp.fc2", # qwen2vl
  1105. "visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl
  1106. "vision_tower.encoder.blocks.{bid}.mlp.fc1", # kimi-vl (fc0/fc1)
  1107. ),
  1108. MODEL_TENSOR.V_LAYER_SCALE_1: (
  1109. "vision_tower.vision_model.encoder.layers.{bid}.ls1", # InternVL
  1110. "model.vision_tower.encoder.layer.{bid}.lambda_1", # Intern-S1
  1111. ),
  1112. MODEL_TENSOR.V_LAYER_SCALE_2: (
  1113. "vision_tower.vision_model.encoder.layers.{bid}.ls2", # InternVL
  1114. "model.vision_tower.encoder.layer.{bid}.lambda_2", # Intern-S1
  1115. ),
  1116. MODEL_TENSOR.V_PRE_NORM: (
  1117. "vision_tower.vision_model.pre_layrnorm",
  1118. "vision_tower.ln_pre", # pixtral-hf
  1119. "vision_encoder.ln_pre", # pixtral
  1120. "vision_model.layernorm_pre", # llama4
  1121. ),
  1122. MODEL_TENSOR.V_POST_NORM: (
  1123. "vision_tower.vision_model.post_layernorm",
  1124. "model.vision_model.post_layernorm", # SmolVLM
  1125. "vision_model.layernorm_post", # llama4
  1126. "visual.merger.ln_q", # qwen2vl
  1127. "vision_tower.encoder.final_layernorm", # kimi-vl
  1128. ),
  1129. MODEL_TENSOR.V_MM_INP_PROJ: (
  1130. "multi_modal_projector.mm_input_projection",
  1131. ),
  1132. MODEL_TENSOR.V_MM_INP_NORM: (
  1133. "multi_modal_projector.norm",
  1134. "multi_modal_projector.layer_norm",
  1135. "multi_modal_projector.pre_norm",
  1136. "pre_mm_projector_norm",
  1137. ),
  1138. MODEL_TENSOR.V_MM_SOFT_EMB_NORM: (
  1139. "multi_modal_projector.mm_soft_emb_norm",
  1140. ),
  1141. MODEL_TENSOR.V_RESMPL_POS_EMBD_K: (
  1142. "resampler.pos_embed_k",
  1143. ),
  1144. MODEL_TENSOR.V_RESMPL_ATTN_Q: (
  1145. "resampler.attn.in_proj_q", # tensor generated from resampler.attn.in_proj
  1146. ),
  1147. MODEL_TENSOR.V_RESMPL_ATTN_K: (
  1148. "resampler.attn.in_proj_k", # tensor generated from resampler.attn.in_proj
  1149. ),
  1150. MODEL_TENSOR.V_RESMPL_ATTN_V: (
  1151. "resampler.attn.in_proj_v", # tensor generated from resampler.attn.in_proj
  1152. ),
  1153. MODEL_TENSOR.V_RESMPL_ATTN_OUT: (
  1154. "resampler.attn.out_proj",
  1155. ),
  1156. MODEL_TENSOR.V_RESMPL_KV: (
  1157. "resampler.kv_proj",
  1158. ),
  1159. MODEL_TENSOR.V_RESMPL_POST_NORM: (
  1160. "resampler.ln_post",
  1161. ),
  1162. MODEL_TENSOR.V_RESMPL_KV_NORM: (
  1163. "resampler.ln_kv",
  1164. ),
  1165. MODEL_TENSOR.V_RESMPL_Q_NORM: (
  1166. "resampler.ln_q",
  1167. ),
  1168. MODEL_TENSOR.V_RESMPL_PROJ: (
  1169. "resampler.proj",
  1170. ),
  1171. MODEL_TENSOR.V_RESMPL_QUERY: (
  1172. "resampler.query",
  1173. ),
  1174. MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK: (
  1175. "v.token_embd.img_break", # for pixtral, this is a generated vector
  1176. ),
  1177. MODEL_TENSOR.V_MM_PATCH_MERGER: (
  1178. "multi_modal_projector.patch_merger.merging_layer", # mistral small 3.1 - hf
  1179. "patch_merger.merging_layer", # mistral
  1180. ),
  1181. # audio (mtmd)
  1182. MODEL_TENSOR.A_ENC_EMBD_POS: (
  1183. "audio_tower.embed_positions", # ultravox
  1184. ),
  1185. MODEL_TENSOR.A_ENC_CONV1D: (
  1186. "audio_tower.conv{bid}", # ultravox
  1187. ),
  1188. MODEL_TENSOR.A_PRE_NORM: (),
  1189. MODEL_TENSOR.A_POST_NORM: (
  1190. "audio_tower.layer_norm", # ultravox
  1191. "audio_tower.ln_post", # qwen2omni
  1192. ),
  1193. MODEL_TENSOR.A_ENC_ATTN_Q: (
  1194. "audio_tower.layers.{bid}.self_attn.q_proj", # ultravox
  1195. ),
  1196. MODEL_TENSOR.A_ENC_ATTN_K: (
  1197. "audio_tower.layers.{bid}.self_attn.k_proj", # ultravox
  1198. ),
  1199. MODEL_TENSOR.A_ENC_ATTN_V: (
  1200. "audio_tower.layers.{bid}.self_attn.v_proj", # ultravox
  1201. ),
  1202. MODEL_TENSOR.A_ENC_INPUT_NORM: (
  1203. "audio_tower.layers.{bid}.self_attn_layer_norm", # ultravox
  1204. ),
  1205. MODEL_TENSOR.A_ENC_OUTPUT: (
  1206. "audio_tower.layers.{bid}.self_attn.out_proj", # ultravox
  1207. ),
  1208. MODEL_TENSOR.A_ENC_OUTPUT_NORM: (
  1209. "audio_tower.layers.{bid}.final_layer_norm", # ultravox
  1210. ),
  1211. MODEL_TENSOR.A_ENC_FFN_UP: (
  1212. "audio_tower.layers.{bid}.fc1", # ultravox
  1213. ),
  1214. MODEL_TENSOR.A_ENC_FFN_GATE: (),
  1215. MODEL_TENSOR.A_ENC_FFN_DOWN: (
  1216. "audio_tower.layers.{bid}.fc2", # ultravox
  1217. ),
  1218. # note: some tensors below has "audio." pseudo-prefix, to prevent conflicts with vision tensors
  1219. # this prefix is added in the conversion code in modify_tensors()
  1220. MODEL_TENSOR.A_MMPROJ: (
  1221. "audio.multi_modal_projector.linear_{bid}", # ultravox
  1222. ),
  1223. MODEL_TENSOR.A_MMPROJ_FC: (
  1224. "audio.multi_modal_projector.linear", # qwen2audio
  1225. "audio_tower.proj", # qwen2omni
  1226. ),
  1227. MODEL_TENSOR.A_MM_NORM_PRE: (
  1228. "audio.multi_modal_projector.ln_pre", # ultravox
  1229. ),
  1230. MODEL_TENSOR.A_MM_NORM_MID: (
  1231. "audio.multi_modal_projector.ln_mid", # ultravox
  1232. ),
  1233. # NextN/MTP tensors for GLM4_MOE
  1234. MODEL_TENSOR.NEXTN_EH_PROJ: (
  1235. "model.layers.{bid}.eh_proj",
  1236. ),
  1237. MODEL_TENSOR.NEXTN_EMBED_TOKENS: (
  1238. "model.layers.{bid}.embed_tokens",
  1239. ),
  1240. MODEL_TENSOR.NEXTN_ENORM: (
  1241. "model.layers.{bid}.enorm",
  1242. ),
  1243. MODEL_TENSOR.NEXTN_HNORM: (
  1244. "model.layers.{bid}.hnorm",
  1245. ),
  1246. MODEL_TENSOR.NEXTN_SHARED_HEAD_HEAD: (
  1247. "model.layers.{bid}.shared_head.head",
  1248. ),
  1249. MODEL_TENSOR.NEXTN_SHARED_HEAD_NORM: (
  1250. "model.layers.{bid}.shared_head.norm",
  1251. ),
  1252. }
  1253. # architecture-specific block mappings
  1254. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  1255. MODEL_ARCH.ARCTIC: {
  1256. MODEL_TENSOR.FFN_NORM: (
  1257. "model.layers.{bid}.residual_layernorm",
  1258. ),
  1259. MODEL_TENSOR.FFN_NORM_EXP: (
  1260. "model.layers.{bid}.post_attention_layernorm",
  1261. ),
  1262. },
  1263. }
  1264. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  1265. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  1266. self.mapping = {}
  1267. for tensor, keys in self.mappings_cfg.items():
  1268. if tensor not in MODEL_TENSORS[arch]:
  1269. continue
  1270. tensor_name = TENSOR_NAMES[tensor]
  1271. self.mapping[tensor_name] = (tensor, tensor_name)
  1272. for key in keys:
  1273. self.mapping[key] = (tensor, tensor_name)
  1274. if arch in self.arch_block_mappings_cfg:
  1275. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  1276. for bid in range(n_blocks):
  1277. for tensor, keys in self.block_mappings_cfg.items():
  1278. if tensor not in MODEL_TENSORS[arch]:
  1279. continue
  1280. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  1281. self.mapping[tensor_name] = (tensor, tensor_name)
  1282. for key in keys:
  1283. key = key.format(bid = bid)
  1284. self.mapping[key] = (tensor, tensor_name)
  1285. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  1286. result = self.mapping.get(key)
  1287. if result is not None:
  1288. return result
  1289. for suffix in try_suffixes:
  1290. if key.endswith(suffix):
  1291. result = self.mapping.get(key[:-len(suffix)])
  1292. if result is not None:
  1293. return result[0], result[1] + suffix
  1294. return None
  1295. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  1296. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1297. if result is None:
  1298. return None
  1299. return result[1]
  1300. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  1301. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1302. if result is None:
  1303. return None
  1304. return result[0]
  1305. def __getitem__(self, key: str) -> str:
  1306. try:
  1307. return self.mapping[key][1]
  1308. except KeyError:
  1309. raise KeyError(key)
  1310. def __contains__(self, key: str) -> bool:
  1311. return key in self.mapping
  1312. def __repr__(self) -> str:
  1313. return repr(self.mapping)
  1314. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  1315. return TensorNameMap(arch, n_blocks)