ggml.c 677 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511205122051320514205152051620517205182051920520205212052220523205242052520526205272052820529205302053120532205332053420535205362053720538205392054020541205422054320544205452054620547205482054920550205512055220553205542055520556205572055820559205602056120562205632056420565205662056720568205692057020571205722057320574205752057620577205782057920580205812058220583205842058520586205872058820589205902059120592205932059420595205962059720598205992060020601206022060320604206052060620607206082060920610206112061220613206142061520616206172061820619206202062120622206232062420625206262062720628206292063020631206322063320634206352063620637206382063920640206412064220643206442064520646206472064820649206502065120652206532065420655206562065720658206592066020661206622066320664206652066620667206682066920670206712067220673206742067520676206772067820679206802068120682206832068420685206862068720688206892069020691206922069320694206952069620697206982069920700207012070220703207042070520706207072070820709207102071120712207132071420715207162071720718207192072020721207222072320724207252072620727207282072920730207312073220733207342073520736207372073820739207402074120742207432074420745207462074720748207492075020751207522075320754207552075620757207582075920760207612076220763207642076520766207672076820769207702077120772207732077420775207762077720778207792078020781207822078320784207852078620787207882078920790207912079220793207942079520796207972079820799208002080120802208032080420805208062080720808208092081020811208122081320814208152081620817208182081920820208212082220823208242082520826208272082820829208302083120832208332083420835208362083720838208392084020841208422084320844208452084620847208482084920850208512085220853208542085520856208572085820859208602086120862208632086420865208662086720868208692087020871208722087320874208752087620877208782087920880208812088220883208842088520886208872088820889208902089120892208932089420895208962089720898208992090020901209022090320904209052090620907209082090920910209112091220913209142091520916209172091820919209202092120922209232092420925209262092720928209292093020931209322093320934209352093620937209382093920940209412094220943209442094520946209472094820949209502095120952209532095420955209562095720958209592096020961209622096320964209652096620967209682096920970209712097220973209742097520976209772097820979209802098120982209832098420985209862098720988209892099020991209922099320994209952099620997209982099921000210012100221003210042100521006210072100821009210102101121012210132101421015210162101721018210192102021021210222102321024210252102621027210282102921030210312103221033210342103521036210372103821039210402104121042210432104421045210462104721048210492105021051210522105321054210552105621057210582105921060210612106221063210642106521066210672106821069210702107121072210732107421075210762107721078210792108021081210822108321084210852108621087210882108921090210912109221093210942109521096210972109821099211002110121102211032110421105211062110721108211092111021111211122111321114211152111621117211182111921120211212112221123211242112521126211272112821129211302113121132211332113421135211362113721138211392114021141211422114321144211452114621147211482114921150211512115221153211542115521156211572115821159211602116121162211632116421165211662116721168211692117021171211722117321174211752117621177211782117921180211812118221183211842118521186211872118821189211902119121192211932119421195211962119721198211992120021201212022120321204212052120621207212082120921210212112121221213212142121521216212172121821219212202122121222212232122421225212262122721228212292123021231212322123321234212352123621237
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #if defined(__gnu_linux__)
  24. #include <syscall.h>
  25. #endif
  26. #ifdef GGML_USE_METAL
  27. #include <unistd.h>
  28. #endif
  29. #if defined(_MSC_VER)
  30. // disable "possible loss of data" to avoid hundreds of casts
  31. // we should just be careful :)
  32. #pragma warning(disable: 4244 4267)
  33. // disable POSIX deprecation warnings
  34. // these functions are never going away, anyway
  35. #pragma warning(disable: 4996)
  36. #endif
  37. #if defined(_WIN32)
  38. #include <windows.h>
  39. typedef volatile LONG atomic_int;
  40. typedef atomic_int atomic_bool;
  41. static void atomic_store(atomic_int * ptr, LONG val) {
  42. InterlockedExchange(ptr, val);
  43. }
  44. static LONG atomic_load(atomic_int * ptr) {
  45. return InterlockedCompareExchange(ptr, 0, 0);
  46. }
  47. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  48. return InterlockedExchangeAdd(ptr, inc);
  49. }
  50. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  51. return atomic_fetch_add(ptr, -(dec));
  52. }
  53. typedef HANDLE pthread_t;
  54. typedef DWORD thread_ret_t;
  55. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  56. (void) unused;
  57. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  58. if (handle == NULL)
  59. {
  60. return EAGAIN;
  61. }
  62. *out = handle;
  63. return 0;
  64. }
  65. static int pthread_join(pthread_t thread, void * unused) {
  66. (void) unused;
  67. int ret = (int) WaitForSingleObject(thread, INFINITE);
  68. CloseHandle(thread);
  69. return ret;
  70. }
  71. static int sched_yield (void) {
  72. Sleep (0);
  73. return 0;
  74. }
  75. #else
  76. #include <pthread.h>
  77. #include <stdatomic.h>
  78. typedef void * thread_ret_t;
  79. #include <sys/types.h>
  80. #include <sys/stat.h>
  81. #include <unistd.h>
  82. #endif
  83. #ifdef GGML_USE_CPU_HBM
  84. #include <hbwmalloc.h>
  85. #endif
  86. #if defined(__APPLE__)
  87. #include <TargetConditionals.h>
  88. #endif
  89. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  90. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  91. #include <sys/wait.h>
  92. void ggml_print_backtrace(void) {
  93. /*
  94. #include <execinfo.h>
  95. #include <dlfcn.h>
  96. void * trace[100];
  97. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  98. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  99. */
  100. // backtrack_symbols does not show line numbers, use gdb instead
  101. char attach[32];
  102. snprintf(attach, sizeof(attach), "attach %d", getpid());
  103. int pid = fork();
  104. if (pid == 0) {
  105. execlp("gdb", "gdb", "--batch",
  106. "-ex", "set style enabled on",
  107. "-ex", attach,
  108. "-ex", "bt -frame-info source-and-location",
  109. "-ex", "detach",
  110. "-ex", "quit",
  111. (char *) NULL);
  112. } else {
  113. waitpid(pid, NULL, 0);
  114. }
  115. }
  116. #else
  117. void ggml_print_backtrace(void) {
  118. // platform not supported
  119. }
  120. #endif
  121. /*#define GGML_PERF*/
  122. #define GGML_DEBUG 0
  123. #define GGML_GELU_FP16
  124. #define GGML_GELU_QUICK_FP16
  125. #define GGML_SILU_FP16
  126. // #define GGML_CROSS_ENTROPY_EXP_FP16
  127. // #define GGML_FLASH_ATTN_EXP_FP16
  128. #define GGML_SOFT_MAX_UNROLL 4
  129. #define GGML_VEC_DOT_UNROLL 2
  130. #define GGML_VEC_MAD_UNROLL 32
  131. //
  132. // logging
  133. //
  134. #if (GGML_DEBUG >= 1)
  135. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  136. #else
  137. #define GGML_PRINT_DEBUG(...)
  138. #endif
  139. #if (GGML_DEBUG >= 5)
  140. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  141. #else
  142. #define GGML_PRINT_DEBUG_5(...)
  143. #endif
  144. #if (GGML_DEBUG >= 10)
  145. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  146. #else
  147. #define GGML_PRINT_DEBUG_10(...)
  148. #endif
  149. #define GGML_PRINT(...) printf(__VA_ARGS__)
  150. //
  151. // end of logging block
  152. //
  153. #ifdef GGML_USE_ACCELERATE
  154. // uncomment to use vDSP for soft max computation
  155. // note: not sure if it is actually faster
  156. //#define GGML_SOFT_MAX_ACCELERATE
  157. #endif
  158. #if defined(_MSC_VER) || defined(__MINGW32__)
  159. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  160. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  161. #else
  162. inline static void * ggml_aligned_malloc(size_t size) {
  163. if (size == 0) {
  164. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  165. return NULL;
  166. }
  167. void * aligned_memory = NULL;
  168. #ifdef GGML_USE_CPU_HBM
  169. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  170. #elif GGML_USE_METAL
  171. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  172. #else
  173. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  174. #endif
  175. if (result != 0) {
  176. // Handle allocation failure
  177. const char *error_desc = "unknown allocation error";
  178. switch (result) {
  179. case EINVAL:
  180. error_desc = "invalid alignment value";
  181. break;
  182. case ENOMEM:
  183. error_desc = "insufficient memory";
  184. break;
  185. }
  186. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  187. GGML_ASSERT(false);
  188. return NULL;
  189. }
  190. return aligned_memory;
  191. }
  192. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  193. #ifdef GGML_USE_CPU_HBM
  194. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  195. #else
  196. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  197. #endif
  198. #endif
  199. inline static void * ggml_malloc(size_t size) {
  200. if (size == 0) {
  201. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  202. return NULL;
  203. }
  204. void * result = malloc(size);
  205. if (result == NULL) {
  206. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  207. GGML_ASSERT(false);
  208. }
  209. return result;
  210. }
  211. // calloc
  212. inline static void * ggml_calloc(size_t num, size_t size) {
  213. if (num == 0 || size == 0) {
  214. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  215. return NULL;
  216. }
  217. void * result = calloc(num, size);
  218. if (result == NULL) {
  219. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  220. GGML_ASSERT(false);
  221. }
  222. return result;
  223. }
  224. #define GGML_MALLOC(size) ggml_malloc(size)
  225. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  226. #define GGML_FREE(ptr) free(ptr)
  227. #define UNUSED GGML_UNUSED
  228. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  229. #if defined(GGML_USE_ACCELERATE)
  230. #include <Accelerate/Accelerate.h>
  231. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  232. #include "ggml-opencl.h"
  233. #elif defined(GGML_USE_VULKAN)
  234. #include "ggml-vulkan.h"
  235. #endif
  236. #elif defined(GGML_USE_OPENBLAS)
  237. #if defined(GGML_BLAS_USE_MKL)
  238. #include <mkl.h>
  239. #else
  240. #include <cblas.h>
  241. #endif
  242. #elif defined(GGML_USE_CUBLAS)
  243. #include "ggml-cuda.h"
  244. #elif defined(GGML_USE_CLBLAST)
  245. #include "ggml-opencl.h"
  246. #elif defined(GGML_USE_VULKAN)
  247. #include "ggml-vulkan.h"
  248. #elif defined(GGML_USE_SYCL)
  249. #include "ggml-sycl.h"
  250. #endif
  251. // floating point type used to accumulate sums
  252. typedef double ggml_float;
  253. #undef MIN
  254. #undef MAX
  255. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  256. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  257. //
  258. // global data
  259. //
  260. // precomputed gelu table for f16 (128 KB)
  261. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  262. // precomputed quick gelu table for f16 (128 KB)
  263. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  264. // precomputed silu table for f16 (128 KB)
  265. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  266. // precomputed exp table for f16 (128 KB)
  267. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  268. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  269. float ggml_table_f32_f16[1 << 16];
  270. // note: do not use these inside ggml.c
  271. // these are meant to be used via the ggml.h API
  272. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  273. return GGML_FP16_TO_FP32(x);
  274. }
  275. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  276. return GGML_FP32_TO_FP16(x);
  277. }
  278. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  279. for (int i = 0; i < n; i++) {
  280. y[i] = GGML_FP16_TO_FP32(x[i]);
  281. }
  282. }
  283. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  284. int i = 0;
  285. #if defined(__F16C__)
  286. for (; i + 7 < n; i += 8) {
  287. __m256 x_vec = _mm256_loadu_ps(x + i);
  288. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  289. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  290. }
  291. for(; i + 3 < n; i += 4) {
  292. __m128 x_vec = _mm_loadu_ps(x + i);
  293. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  294. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  295. }
  296. #endif
  297. for (; i < n; i++) {
  298. y[i] = GGML_FP32_TO_FP16(x[i]);
  299. }
  300. }
  301. //
  302. // timing
  303. //
  304. #if defined(_MSC_VER) || defined(__MINGW32__)
  305. static int64_t timer_freq, timer_start;
  306. void ggml_time_init(void) {
  307. LARGE_INTEGER t;
  308. QueryPerformanceFrequency(&t);
  309. timer_freq = t.QuadPart;
  310. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  311. // and the uptime is high enough.
  312. // We subtract the program start time to reduce the likelihood of that happening.
  313. QueryPerformanceCounter(&t);
  314. timer_start = t.QuadPart;
  315. }
  316. int64_t ggml_time_ms(void) {
  317. LARGE_INTEGER t;
  318. QueryPerformanceCounter(&t);
  319. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  320. }
  321. int64_t ggml_time_us(void) {
  322. LARGE_INTEGER t;
  323. QueryPerformanceCounter(&t);
  324. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  325. }
  326. #else
  327. void ggml_time_init(void) {}
  328. int64_t ggml_time_ms(void) {
  329. struct timespec ts;
  330. clock_gettime(CLOCK_MONOTONIC, &ts);
  331. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  332. }
  333. int64_t ggml_time_us(void) {
  334. struct timespec ts;
  335. clock_gettime(CLOCK_MONOTONIC, &ts);
  336. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  337. }
  338. #endif
  339. int64_t ggml_cycles(void) {
  340. return clock();
  341. }
  342. int64_t ggml_cycles_per_ms(void) {
  343. return CLOCKS_PER_SEC/1000;
  344. }
  345. #ifdef GGML_PERF
  346. #define ggml_perf_time_ms() ggml_time_ms()
  347. #define ggml_perf_time_us() ggml_time_us()
  348. #define ggml_perf_cycles() ggml_cycles()
  349. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  350. #else
  351. #define ggml_perf_time_ms() 0
  352. #define ggml_perf_time_us() 0
  353. #define ggml_perf_cycles() 0
  354. #define ggml_perf_cycles_per_ms() 0
  355. #endif
  356. //
  357. // cache line
  358. //
  359. #if defined(__cpp_lib_hardware_interference_size)
  360. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  361. #else
  362. #if defined(__POWER9_VECTOR__)
  363. #define CACHE_LINE_SIZE 128
  364. #else
  365. #define CACHE_LINE_SIZE 64
  366. #endif
  367. #endif
  368. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  369. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  370. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  371. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  372. [GGML_TYPE_I8] = {
  373. .type_name = "i8",
  374. .blck_size = 1,
  375. .type_size = sizeof(int8_t),
  376. .is_quantized = false,
  377. },
  378. [GGML_TYPE_I16] = {
  379. .type_name = "i16",
  380. .blck_size = 1,
  381. .type_size = sizeof(int16_t),
  382. .is_quantized = false,
  383. },
  384. [GGML_TYPE_I32] = {
  385. .type_name = "i32",
  386. .blck_size = 1,
  387. .type_size = sizeof(int32_t),
  388. .is_quantized = false,
  389. },
  390. [GGML_TYPE_F32] = {
  391. .type_name = "f32",
  392. .blck_size = 1,
  393. .type_size = sizeof(float),
  394. .is_quantized = false,
  395. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  396. .vec_dot_type = GGML_TYPE_F32,
  397. .nrows = 1,
  398. },
  399. [GGML_TYPE_F16] = {
  400. .type_name = "f16",
  401. .blck_size = 1,
  402. .type_size = sizeof(ggml_fp16_t),
  403. .is_quantized = false,
  404. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  405. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  406. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  407. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  408. .vec_dot_type = GGML_TYPE_F16,
  409. .nrows = 1,
  410. },
  411. [GGML_TYPE_Q4_0] = {
  412. .type_name = "q4_0",
  413. .blck_size = QK4_0,
  414. .type_size = sizeof(block_q4_0),
  415. .is_quantized = true,
  416. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  417. .from_float = quantize_row_q4_0,
  418. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  419. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  420. .vec_dot_type = GGML_TYPE_Q8_0,
  421. #if defined (__ARM_FEATURE_MATMUL_INT8)
  422. .nrows = 2,
  423. #else
  424. .nrows = 1,
  425. #endif
  426. },
  427. [GGML_TYPE_Q4_1] = {
  428. .type_name = "q4_1",
  429. .blck_size = QK4_1,
  430. .type_size = sizeof(block_q4_1),
  431. .is_quantized = true,
  432. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  433. .from_float = quantize_row_q4_1,
  434. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  435. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  436. .vec_dot_type = GGML_TYPE_Q8_1,
  437. #if defined (__ARM_FEATURE_MATMUL_INT8)
  438. .nrows = 2,
  439. #else
  440. .nrows = 1,
  441. #endif
  442. },
  443. [4] = { // GGML_TYPE_Q4_2
  444. .type_name = "DEPRECATED",
  445. .blck_size = 0,
  446. .type_size = 0,
  447. .is_quantized = false,
  448. .to_float = NULL,
  449. .from_float = NULL,
  450. .from_float_reference = NULL,
  451. .vec_dot = NULL,
  452. .vec_dot_type = GGML_TYPE_COUNT,
  453. .nrows = 1,
  454. },
  455. [5] = { // GGML_TYPE_Q4_3
  456. .type_name = "DEPRECATED",
  457. .blck_size = 0,
  458. .type_size = 0,
  459. .is_quantized = false,
  460. .to_float = NULL,
  461. .from_float = NULL,
  462. .from_float_reference = NULL,
  463. .vec_dot = NULL,
  464. .vec_dot_type = GGML_TYPE_COUNT,
  465. .nrows = 1,
  466. },
  467. [GGML_TYPE_Q5_0] = {
  468. .type_name = "q5_0",
  469. .blck_size = QK5_0,
  470. .type_size = sizeof(block_q5_0),
  471. .is_quantized = true,
  472. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  473. .from_float = quantize_row_q5_0,
  474. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  475. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  476. .vec_dot_type = GGML_TYPE_Q8_0,
  477. .nrows = 1,
  478. },
  479. [GGML_TYPE_Q5_1] = {
  480. .type_name = "q5_1",
  481. .blck_size = QK5_1,
  482. .type_size = sizeof(block_q5_1),
  483. .is_quantized = true,
  484. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  485. .from_float = quantize_row_q5_1,
  486. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  487. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  488. .vec_dot_type = GGML_TYPE_Q8_1,
  489. .nrows = 1,
  490. },
  491. [GGML_TYPE_Q8_0] = {
  492. .type_name = "q8_0",
  493. .blck_size = QK8_0,
  494. .type_size = sizeof(block_q8_0),
  495. .is_quantized = true,
  496. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  497. .from_float = quantize_row_q8_0,
  498. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  499. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  500. .vec_dot_type = GGML_TYPE_Q8_0,
  501. #if defined (__ARM_FEATURE_MATMUL_INT8)
  502. .nrows = 2,
  503. #else
  504. .nrows = 1,
  505. #endif
  506. },
  507. [GGML_TYPE_Q8_1] = {
  508. .type_name = "q8_1",
  509. .blck_size = QK8_1,
  510. .type_size = sizeof(block_q8_1),
  511. .is_quantized = true,
  512. .from_float = quantize_row_q8_1,
  513. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  514. .vec_dot_type = GGML_TYPE_Q8_1,
  515. .nrows = 1,
  516. },
  517. [GGML_TYPE_Q2_K] = {
  518. .type_name = "q2_K",
  519. .blck_size = QK_K,
  520. .type_size = sizeof(block_q2_K),
  521. .is_quantized = true,
  522. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  523. .from_float = quantize_row_q2_K,
  524. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  525. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  526. .vec_dot_type = GGML_TYPE_Q8_K,
  527. .nrows = 1,
  528. },
  529. [GGML_TYPE_Q3_K] = {
  530. .type_name = "q3_K",
  531. .blck_size = QK_K,
  532. .type_size = sizeof(block_q3_K),
  533. .is_quantized = true,
  534. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  535. .from_float = quantize_row_q3_K,
  536. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  537. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  538. .vec_dot_type = GGML_TYPE_Q8_K,
  539. .nrows = 1,
  540. },
  541. [GGML_TYPE_Q4_K] = {
  542. .type_name = "q4_K",
  543. .blck_size = QK_K,
  544. .type_size = sizeof(block_q4_K),
  545. .is_quantized = true,
  546. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  547. .from_float = quantize_row_q4_K,
  548. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  549. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  550. .vec_dot_type = GGML_TYPE_Q8_K,
  551. .nrows = 1,
  552. },
  553. [GGML_TYPE_Q5_K] = {
  554. .type_name = "q5_K",
  555. .blck_size = QK_K,
  556. .type_size = sizeof(block_q5_K),
  557. .is_quantized = true,
  558. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  559. .from_float = quantize_row_q5_K,
  560. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  561. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  562. .vec_dot_type = GGML_TYPE_Q8_K,
  563. .nrows = 1,
  564. },
  565. [GGML_TYPE_Q6_K] = {
  566. .type_name = "q6_K",
  567. .blck_size = QK_K,
  568. .type_size = sizeof(block_q6_K),
  569. .is_quantized = true,
  570. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  571. .from_float = quantize_row_q6_K,
  572. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  573. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  574. .vec_dot_type = GGML_TYPE_Q8_K,
  575. .nrows = 1,
  576. },
  577. [GGML_TYPE_IQ2_XXS] = {
  578. .type_name = "iq2_xxs",
  579. .blck_size = QK_K,
  580. .type_size = sizeof(block_iq2_xxs),
  581. .is_quantized = true,
  582. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  583. .from_float = NULL,
  584. .from_float_reference = NULL,
  585. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  586. .vec_dot_type = GGML_TYPE_Q8_K,
  587. .nrows = 1,
  588. },
  589. [GGML_TYPE_IQ2_XS] = {
  590. .type_name = "iq2_xs",
  591. .blck_size = QK_K,
  592. .type_size = sizeof(block_iq2_xs),
  593. .is_quantized = true,
  594. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  595. .from_float = NULL,
  596. .from_float_reference = NULL,
  597. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  598. .vec_dot_type = GGML_TYPE_Q8_K,
  599. .nrows = 1,
  600. },
  601. [GGML_TYPE_IQ3_XXS] = {
  602. .type_name = "iq3_xxs",
  603. .blck_size = QK_K,
  604. .type_size = sizeof(block_iq3_xxs),
  605. .is_quantized = true,
  606. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  607. .from_float = quantize_row_iq3_xxs,
  608. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  609. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  610. .vec_dot_type = GGML_TYPE_Q8_K,
  611. .nrows = 1,
  612. },
  613. [GGML_TYPE_IQ3_S] = {
  614. .type_name = "iq3_s",
  615. .blck_size = QK_K,
  616. .type_size = sizeof(block_iq3_s),
  617. .is_quantized = true,
  618. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  619. .from_float = quantize_row_iq3_s,
  620. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  621. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  622. .vec_dot_type = GGML_TYPE_Q8_K,
  623. .nrows = 1,
  624. },
  625. [GGML_TYPE_IQ2_S] = {
  626. .type_name = "iq2_s",
  627. .blck_size = QK_K,
  628. .type_size = sizeof(block_iq2_s),
  629. .is_quantized = true,
  630. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  631. .from_float = quantize_row_iq2_s,
  632. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  633. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  634. .vec_dot_type = GGML_TYPE_Q8_K,
  635. .nrows = 1,
  636. },
  637. [GGML_TYPE_IQ1_S] = {
  638. .type_name = "iq1_s",
  639. .blck_size = QK_K,
  640. .type_size = sizeof(block_iq1_s),
  641. .is_quantized = true,
  642. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  643. .from_float = NULL,
  644. .from_float_reference = NULL,
  645. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  646. .vec_dot_type = GGML_TYPE_Q8_K,
  647. .nrows = 1,
  648. },
  649. [GGML_TYPE_IQ4_NL] = {
  650. .type_name = "iq4_nl",
  651. .blck_size = QK4_NL,
  652. .type_size = sizeof(block_iq4_nl),
  653. .is_quantized = true,
  654. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  655. .from_float = quantize_row_iq4_nl,
  656. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  657. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  658. .vec_dot_type = GGML_TYPE_Q8_0,
  659. .nrows = 1,
  660. },
  661. [GGML_TYPE_IQ4_XS] = {
  662. .type_name = "iq4_xs",
  663. #if QK_K == 64
  664. .blck_size = QK4_NL,
  665. #else
  666. .blck_size = QK_K,
  667. #endif
  668. .type_size = sizeof(block_iq4_xs),
  669. .is_quantized = true,
  670. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  671. .from_float = quantize_row_iq4_xs,
  672. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  673. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  674. #if QK_K == 64
  675. .vec_dot_type = GGML_TYPE_Q8_0,
  676. #else
  677. .vec_dot_type = GGML_TYPE_Q8_K,
  678. #endif
  679. .nrows = 1,
  680. },
  681. [GGML_TYPE_Q8_K] = {
  682. .type_name = "q8_K",
  683. .blck_size = QK_K,
  684. .type_size = sizeof(block_q8_K),
  685. .is_quantized = true,
  686. .from_float = quantize_row_q8_K,
  687. }
  688. };
  689. // For internal test use
  690. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  691. GGML_ASSERT(type < GGML_TYPE_COUNT);
  692. return type_traits[type];
  693. }
  694. //
  695. // simd mappings
  696. //
  697. #if defined(__ARM_NEON)
  698. #if !defined(__aarch64__)
  699. // 64-bit compatibility
  700. inline static float vaddvq_f32(float32x4_t v) {
  701. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  702. }
  703. #endif
  704. #endif
  705. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  706. // we then implement the fundamental computation operations below using only these macros
  707. // adding support for new architectures requires to define the corresponding SIMD macros
  708. //
  709. // GGML_F32_STEP / GGML_F16_STEP
  710. // number of elements to process in a single step
  711. //
  712. // GGML_F32_EPR / GGML_F16_EPR
  713. // number of elements to fit in a single register
  714. //
  715. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  716. #define GGML_SIMD
  717. // F32 NEON
  718. #define GGML_F32_STEP 16
  719. #define GGML_F32_EPR 4
  720. #define GGML_F32x4 float32x4_t
  721. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  722. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  723. #define GGML_F32x4_LOAD vld1q_f32
  724. #define GGML_F32x4_STORE vst1q_f32
  725. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  726. #define GGML_F32x4_ADD vaddq_f32
  727. #define GGML_F32x4_MUL vmulq_f32
  728. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  729. #define GGML_F32x4_REDUCE(res, x) \
  730. { \
  731. int offset = GGML_F32_ARR >> 1; \
  732. for (int i = 0; i < offset; ++i) { \
  733. x[i] = vaddq_f32(x[i], x[offset+i]); \
  734. } \
  735. offset >>= 1; \
  736. for (int i = 0; i < offset; ++i) { \
  737. x[i] = vaddq_f32(x[i], x[offset+i]); \
  738. } \
  739. offset >>= 1; \
  740. for (int i = 0; i < offset; ++i) { \
  741. x[i] = vaddq_f32(x[i], x[offset+i]); \
  742. } \
  743. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  744. }
  745. #define GGML_F32_VEC GGML_F32x4
  746. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  747. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  748. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  749. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  750. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  751. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  752. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  753. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  754. // F16 NEON
  755. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  756. #define GGML_F16_STEP 32
  757. #define GGML_F16_EPR 8
  758. #define GGML_F16x8 float16x8_t
  759. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  760. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  761. #define GGML_F16x8_LOAD(x) vld1q_f16((const __fp16 *)(x))
  762. #define GGML_F16x8_STORE vst1q_f16
  763. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  764. #define GGML_F16x8_ADD vaddq_f16
  765. #define GGML_F16x8_MUL vmulq_f16
  766. #define GGML_F16x8_REDUCE(res, x) \
  767. do { \
  768. int offset = GGML_F16_ARR >> 1; \
  769. for (int i = 0; i < offset; ++i) { \
  770. x[i] = vaddq_f16(x[i], x[offset+i]); \
  771. } \
  772. offset >>= 1; \
  773. for (int i = 0; i < offset; ++i) { \
  774. x[i] = vaddq_f16(x[i], x[offset+i]); \
  775. } \
  776. offset >>= 1; \
  777. for (int i = 0; i < offset; ++i) { \
  778. x[i] = vaddq_f16(x[i], x[offset+i]); \
  779. } \
  780. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  781. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  782. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  783. } while (0)
  784. #define GGML_F16_VEC GGML_F16x8
  785. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  786. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  787. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  788. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  789. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  790. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  791. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  792. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  793. #else
  794. // if FP16 vector arithmetic is not supported, we use FP32 instead
  795. // and take advantage of the vcvt_ functions to convert to/from FP16
  796. #define GGML_F16_STEP 16
  797. #define GGML_F16_EPR 4
  798. #define GGML_F32Cx4 float32x4_t
  799. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  800. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  801. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const __fp16 *)(x)))
  802. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  803. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  804. #define GGML_F32Cx4_ADD vaddq_f32
  805. #define GGML_F32Cx4_MUL vmulq_f32
  806. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  807. #define GGML_F16_VEC GGML_F32Cx4
  808. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  809. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  810. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  811. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  812. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  813. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  814. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  815. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  816. #endif
  817. #elif defined(__AVX__)
  818. #define GGML_SIMD
  819. // F32 AVX
  820. #define GGML_F32_STEP 32
  821. #define GGML_F32_EPR 8
  822. #define GGML_F32x8 __m256
  823. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  824. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  825. #define GGML_F32x8_LOAD _mm256_loadu_ps
  826. #define GGML_F32x8_STORE _mm256_storeu_ps
  827. #if defined(__FMA__)
  828. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  829. #else
  830. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  831. #endif
  832. #define GGML_F32x8_ADD _mm256_add_ps
  833. #define GGML_F32x8_MUL _mm256_mul_ps
  834. #define GGML_F32x8_REDUCE(res, x) \
  835. do { \
  836. int offset = GGML_F32_ARR >> 1; \
  837. for (int i = 0; i < offset; ++i) { \
  838. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  839. } \
  840. offset >>= 1; \
  841. for (int i = 0; i < offset; ++i) { \
  842. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  843. } \
  844. offset >>= 1; \
  845. for (int i = 0; i < offset; ++i) { \
  846. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  847. } \
  848. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  849. _mm256_extractf128_ps(x[0], 1)); \
  850. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  851. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  852. } while (0)
  853. // TODO: is this optimal ?
  854. #define GGML_F32_VEC GGML_F32x8
  855. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  856. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  857. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  858. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  859. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  860. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  861. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  862. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  863. // F16 AVX
  864. #define GGML_F16_STEP 32
  865. #define GGML_F16_EPR 8
  866. // F16 arithmetic is not supported by AVX, so we use F32 instead
  867. #define GGML_F32Cx8 __m256
  868. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  869. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  870. #if defined(__F16C__)
  871. // the _mm256_cvt intrinsics require F16C
  872. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  873. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  874. #else
  875. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  876. float tmp[8];
  877. for (int i = 0; i < 8; i++) {
  878. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  879. }
  880. return _mm256_loadu_ps(tmp);
  881. }
  882. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  883. float arr[8];
  884. _mm256_storeu_ps(arr, y);
  885. for (int i = 0; i < 8; i++)
  886. x[i] = GGML_FP32_TO_FP16(arr[i]);
  887. }
  888. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  889. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  890. #endif
  891. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  892. #define GGML_F32Cx8_ADD _mm256_add_ps
  893. #define GGML_F32Cx8_MUL _mm256_mul_ps
  894. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  895. #define GGML_F16_VEC GGML_F32Cx8
  896. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  897. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  898. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  899. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  900. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  901. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  902. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  903. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  904. #elif defined(__POWER9_VECTOR__)
  905. #define GGML_SIMD
  906. // F32 POWER9
  907. #define GGML_F32_STEP 32
  908. #define GGML_F32_EPR 4
  909. #define GGML_F32x4 vector float
  910. #define GGML_F32x4_ZERO 0.0f
  911. #define GGML_F32x4_SET1 vec_splats
  912. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  913. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  914. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  915. #define GGML_F32x4_ADD vec_add
  916. #define GGML_F32x4_MUL vec_mul
  917. #define GGML_F32x4_REDUCE(res, x) \
  918. { \
  919. int offset = GGML_F32_ARR >> 1; \
  920. for (int i = 0; i < offset; ++i) { \
  921. x[i] = vec_add(x[i], x[offset+i]); \
  922. } \
  923. offset >>= 1; \
  924. for (int i = 0; i < offset; ++i) { \
  925. x[i] = vec_add(x[i], x[offset+i]); \
  926. } \
  927. offset >>= 1; \
  928. for (int i = 0; i < offset; ++i) { \
  929. x[i] = vec_add(x[i], x[offset+i]); \
  930. } \
  931. res = vec_extract(x[0], 0) + \
  932. vec_extract(x[0], 1) + \
  933. vec_extract(x[0], 2) + \
  934. vec_extract(x[0], 3); \
  935. }
  936. #define GGML_F32_VEC GGML_F32x4
  937. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  938. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  939. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  940. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  941. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  942. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  943. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  944. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  945. // F16 POWER9
  946. #define GGML_F16_STEP GGML_F32_STEP
  947. #define GGML_F16_EPR GGML_F32_EPR
  948. #define GGML_F16_VEC GGML_F32x4
  949. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  950. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  951. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  952. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  953. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  954. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  955. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  956. vec_extract_fp32_from_shortl(vec_xl(0, p))
  957. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  958. #define GGML_F16_VEC_STORE(p, r, i) \
  959. if (i & 0x1) \
  960. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  961. r[i - GGML_ENDIAN_BYTE(0)]), \
  962. 0, p - GGML_F16_EPR)
  963. #elif defined(__wasm_simd128__)
  964. #define GGML_SIMD
  965. // F32 WASM
  966. #define GGML_F32_STEP 16
  967. #define GGML_F32_EPR 4
  968. #define GGML_F32x4 v128_t
  969. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  970. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  971. #define GGML_F32x4_LOAD wasm_v128_load
  972. #define GGML_F32x4_STORE wasm_v128_store
  973. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  974. #define GGML_F32x4_ADD wasm_f32x4_add
  975. #define GGML_F32x4_MUL wasm_f32x4_mul
  976. #define GGML_F32x4_REDUCE(res, x) \
  977. { \
  978. int offset = GGML_F32_ARR >> 1; \
  979. for (int i = 0; i < offset; ++i) { \
  980. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  981. } \
  982. offset >>= 1; \
  983. for (int i = 0; i < offset; ++i) { \
  984. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  985. } \
  986. offset >>= 1; \
  987. for (int i = 0; i < offset; ++i) { \
  988. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  989. } \
  990. res = wasm_f32x4_extract_lane(x[0], 0) + \
  991. wasm_f32x4_extract_lane(x[0], 1) + \
  992. wasm_f32x4_extract_lane(x[0], 2) + \
  993. wasm_f32x4_extract_lane(x[0], 3); \
  994. }
  995. #define GGML_F32_VEC GGML_F32x4
  996. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  997. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  998. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  999. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1000. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1001. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1002. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1003. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1004. // F16 WASM
  1005. #define GGML_F16_STEP 16
  1006. #define GGML_F16_EPR 4
  1007. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1008. float tmp[4];
  1009. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1010. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1011. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1012. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1013. return wasm_v128_load(tmp);
  1014. }
  1015. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1016. float tmp[4];
  1017. wasm_v128_store(tmp, x);
  1018. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1019. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1020. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1021. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1022. }
  1023. #define GGML_F16x4 v128_t
  1024. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1025. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1026. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1027. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1028. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1029. #define GGML_F16x4_ADD wasm_f32x4_add
  1030. #define GGML_F16x4_MUL wasm_f32x4_mul
  1031. #define GGML_F16x4_REDUCE(res, x) \
  1032. { \
  1033. int offset = GGML_F16_ARR >> 1; \
  1034. for (int i = 0; i < offset; ++i) { \
  1035. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1036. } \
  1037. offset >>= 1; \
  1038. for (int i = 0; i < offset; ++i) { \
  1039. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1040. } \
  1041. offset >>= 1; \
  1042. for (int i = 0; i < offset; ++i) { \
  1043. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1044. } \
  1045. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1046. wasm_f32x4_extract_lane(x[0], 1) + \
  1047. wasm_f32x4_extract_lane(x[0], 2) + \
  1048. wasm_f32x4_extract_lane(x[0], 3); \
  1049. }
  1050. #define GGML_F16_VEC GGML_F16x4
  1051. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1052. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1053. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1054. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1055. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1056. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1057. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1058. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1059. #elif defined(__SSE3__)
  1060. #define GGML_SIMD
  1061. // F32 SSE
  1062. #define GGML_F32_STEP 32
  1063. #define GGML_F32_EPR 4
  1064. #define GGML_F32x4 __m128
  1065. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1066. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1067. #define GGML_F32x4_LOAD _mm_loadu_ps
  1068. #define GGML_F32x4_STORE _mm_storeu_ps
  1069. #if defined(__FMA__)
  1070. // TODO: Does this work?
  1071. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1072. #else
  1073. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1074. #endif
  1075. #define GGML_F32x4_ADD _mm_add_ps
  1076. #define GGML_F32x4_MUL _mm_mul_ps
  1077. #define GGML_F32x4_REDUCE(res, x) \
  1078. { \
  1079. int offset = GGML_F32_ARR >> 1; \
  1080. for (int i = 0; i < offset; ++i) { \
  1081. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1082. } \
  1083. offset >>= 1; \
  1084. for (int i = 0; i < offset; ++i) { \
  1085. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1086. } \
  1087. offset >>= 1; \
  1088. for (int i = 0; i < offset; ++i) { \
  1089. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1090. } \
  1091. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1092. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1093. }
  1094. // TODO: is this optimal ?
  1095. #define GGML_F32_VEC GGML_F32x4
  1096. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1097. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1098. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1099. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1100. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1101. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1102. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1103. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1104. // F16 SSE
  1105. #define GGML_F16_STEP 32
  1106. #define GGML_F16_EPR 4
  1107. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1108. float tmp[4];
  1109. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1110. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1111. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1112. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1113. return _mm_loadu_ps(tmp);
  1114. }
  1115. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1116. float arr[4];
  1117. _mm_storeu_ps(arr, y);
  1118. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1119. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1120. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1121. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1122. }
  1123. #define GGML_F32Cx4 __m128
  1124. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1125. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1126. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1127. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1128. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1129. #define GGML_F32Cx4_ADD _mm_add_ps
  1130. #define GGML_F32Cx4_MUL _mm_mul_ps
  1131. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1132. #define GGML_F16_VEC GGML_F32Cx4
  1133. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1134. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1135. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1136. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1137. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1138. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1139. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1140. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1141. #endif
  1142. // GGML_F32_ARR / GGML_F16_ARR
  1143. // number of registers to use per step
  1144. #ifdef GGML_SIMD
  1145. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1146. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1147. #endif
  1148. //
  1149. // fundamental operations
  1150. //
  1151. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1152. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1153. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1154. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1155. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1156. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1157. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1158. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1159. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1160. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1161. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1162. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1163. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1164. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1165. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1166. assert(nrc == 1);
  1167. UNUSED(nrc);
  1168. UNUSED(bx);
  1169. UNUSED(by);
  1170. UNUSED(bs);
  1171. #ifdef GGML_SIMD
  1172. float sumf = 0.0f;
  1173. const int np = (n & ~(GGML_F32_STEP - 1));
  1174. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1175. GGML_F32_VEC ax[GGML_F32_ARR];
  1176. GGML_F32_VEC ay[GGML_F32_ARR];
  1177. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1178. for (int j = 0; j < GGML_F32_ARR; j++) {
  1179. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1180. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1181. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1182. }
  1183. }
  1184. // reduce sum0..sum3 to sum0
  1185. GGML_F32_VEC_REDUCE(sumf, sum);
  1186. // leftovers
  1187. for (int i = np; i < n; ++i) {
  1188. sumf += x[i]*y[i];
  1189. }
  1190. #else
  1191. // scalar
  1192. ggml_float sumf = 0.0;
  1193. for (int i = 0; i < n; ++i) {
  1194. sumf += (ggml_float)(x[i]*y[i]);
  1195. }
  1196. #endif
  1197. *s = sumf;
  1198. }
  1199. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1200. assert(nrc == 1);
  1201. UNUSED(nrc);
  1202. UNUSED(bx);
  1203. UNUSED(by);
  1204. UNUSED(bs);
  1205. ggml_float sumf = 0.0;
  1206. #if defined(GGML_SIMD)
  1207. const int np = (n & ~(GGML_F16_STEP - 1));
  1208. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1209. GGML_F16_VEC ax[GGML_F16_ARR];
  1210. GGML_F16_VEC ay[GGML_F16_ARR];
  1211. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1212. for (int j = 0; j < GGML_F16_ARR; j++) {
  1213. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1214. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1215. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1216. }
  1217. }
  1218. // reduce sum0..sum3 to sum0
  1219. GGML_F16_VEC_REDUCE(sumf, sum);
  1220. // leftovers
  1221. for (int i = np; i < n; ++i) {
  1222. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1223. }
  1224. #else
  1225. for (int i = 0; i < n; ++i) {
  1226. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1227. }
  1228. #endif
  1229. *s = sumf;
  1230. }
  1231. // compute GGML_VEC_DOT_UNROLL dot products at once
  1232. // xs - x row stride in bytes
  1233. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1234. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1235. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1236. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1237. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1238. }
  1239. #if defined(GGML_SIMD)
  1240. const int np = (n & ~(GGML_F16_STEP - 1));
  1241. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1242. GGML_F16_VEC ax[GGML_F16_ARR];
  1243. GGML_F16_VEC ay[GGML_F16_ARR];
  1244. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1245. for (int j = 0; j < GGML_F16_ARR; j++) {
  1246. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1247. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1248. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1249. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1250. }
  1251. }
  1252. }
  1253. // reduce sum0..sum3 to sum0
  1254. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1255. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1256. }
  1257. // leftovers
  1258. for (int i = np; i < n; ++i) {
  1259. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1260. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1261. }
  1262. }
  1263. #else
  1264. for (int i = 0; i < n; ++i) {
  1265. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1266. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1267. }
  1268. }
  1269. #endif
  1270. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1271. s[i] = sumf[i];
  1272. }
  1273. }
  1274. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1275. #if defined(GGML_SIMD)
  1276. const int np = (n & ~(GGML_F32_STEP - 1));
  1277. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1278. GGML_F32_VEC ax[GGML_F32_ARR];
  1279. GGML_F32_VEC ay[GGML_F32_ARR];
  1280. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1281. for (int j = 0; j < GGML_F32_ARR; j++) {
  1282. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1283. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1284. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1285. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1286. }
  1287. }
  1288. // leftovers
  1289. for (int i = np; i < n; ++i) {
  1290. y[i] += x[i]*v;
  1291. }
  1292. #else
  1293. // scalar
  1294. for (int i = 0; i < n; ++i) {
  1295. y[i] += x[i]*v;
  1296. }
  1297. #endif
  1298. }
  1299. // xs and vs are byte strides of x and v
  1300. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1301. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1302. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1303. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1304. x[i] = (const float *) ((const char *) xv + i*xs);
  1305. v[i] = (const float *) ((const char *) vv + i*vs);
  1306. }
  1307. #if defined(GGML_SIMD)
  1308. const int np = (n & ~(GGML_F32_STEP - 1));
  1309. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1310. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1311. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1312. }
  1313. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1314. GGML_F32_VEC ay[GGML_F32_ARR];
  1315. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1316. for (int j = 0; j < GGML_F32_ARR; j++) {
  1317. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1318. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1319. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1320. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1321. }
  1322. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1323. }
  1324. }
  1325. // leftovers
  1326. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1327. for (int i = np; i < n; ++i) {
  1328. y[i] += x[k][i]*v[k][0];
  1329. }
  1330. }
  1331. #else
  1332. // scalar
  1333. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1334. for (int i = 0; i < n; ++i) {
  1335. y[i] += x[k][i]*v[k][0];
  1336. }
  1337. }
  1338. #endif
  1339. }
  1340. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1341. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1342. #if defined(GGML_USE_ACCELERATE)
  1343. vDSP_vsmul(y, 1, &v, y, 1, n);
  1344. #elif defined(GGML_SIMD)
  1345. const int np = (n & ~(GGML_F32_STEP - 1));
  1346. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1347. GGML_F32_VEC ay[GGML_F32_ARR];
  1348. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1349. for (int j = 0; j < GGML_F32_ARR; j++) {
  1350. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1351. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1352. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1353. }
  1354. }
  1355. // leftovers
  1356. for (int i = np; i < n; ++i) {
  1357. y[i] *= v;
  1358. }
  1359. #else
  1360. // scalar
  1361. for (int i = 0; i < n; ++i) {
  1362. y[i] *= v;
  1363. }
  1364. #endif
  1365. }
  1366. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1367. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1368. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1369. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1370. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1371. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1372. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1373. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1374. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1375. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1376. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1377. // TODO: optimize performance
  1378. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1379. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1380. static const float GELU_COEF_A = 0.044715f;
  1381. static const float GELU_QUICK_COEF = -1.702f;
  1382. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1383. inline static float ggml_gelu_f32(float x) {
  1384. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1385. }
  1386. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1387. const uint16_t * i16 = (const uint16_t *) x;
  1388. for (int i = 0; i < n; ++i) {
  1389. y[i] = ggml_table_gelu_f16[i16[i]];
  1390. }
  1391. }
  1392. #ifdef GGML_GELU_FP16
  1393. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1394. uint16_t t;
  1395. for (int i = 0; i < n; ++i) {
  1396. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1397. memcpy(&t, &fp16, sizeof(uint16_t));
  1398. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1399. }
  1400. }
  1401. #else
  1402. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1403. for (int i = 0; i < n; ++i) {
  1404. y[i] = ggml_gelu_f32(x[i]);
  1405. }
  1406. }
  1407. #endif
  1408. inline static float ggml_gelu_quick_f32(float x) {
  1409. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1410. }
  1411. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1412. // const uint16_t * i16 = (const uint16_t *) x;
  1413. // for (int i = 0; i < n; ++i) {
  1414. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1415. // }
  1416. //}
  1417. #ifdef GGML_GELU_QUICK_FP16
  1418. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1419. uint16_t t;
  1420. for (int i = 0; i < n; ++i) {
  1421. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1422. memcpy(&t, &fp16, sizeof(uint16_t));
  1423. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1424. }
  1425. }
  1426. #else
  1427. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1428. for (int i = 0; i < n; ++i) {
  1429. y[i] = ggml_gelu_quick_f32(x[i]);
  1430. }
  1431. }
  1432. #endif
  1433. // Sigmoid Linear Unit (SiLU) function
  1434. inline static float ggml_silu_f32(float x) {
  1435. return x/(1.0f + expf(-x));
  1436. }
  1437. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1438. // const uint16_t * i16 = (const uint16_t *) x;
  1439. // for (int i = 0; i < n; ++i) {
  1440. // y[i] = ggml_table_silu_f16[i16[i]];
  1441. // }
  1442. //}
  1443. #ifdef GGML_SILU_FP16
  1444. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1445. uint16_t t;
  1446. for (int i = 0; i < n; ++i) {
  1447. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1448. memcpy(&t, &fp16, sizeof(uint16_t));
  1449. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1450. }
  1451. }
  1452. #else
  1453. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1454. for (int i = 0; i < n; ++i) {
  1455. y[i] = ggml_silu_f32(x[i]);
  1456. }
  1457. }
  1458. #endif
  1459. inline static float ggml_silu_backward_f32(float x, float dy) {
  1460. const float s = 1.0f/(1.0f + expf(-x));
  1461. return dy*s*(1.0f + x*(1.0f - s));
  1462. }
  1463. #ifdef GGML_SILU_FP16
  1464. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1465. for (int i = 0; i < n; ++i) {
  1466. // we did not use x[i] to compute forward silu but its f16 equivalent
  1467. // take derivative at f16 of x[i]:
  1468. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1469. float usedx = GGML_FP16_TO_FP32(fp16);
  1470. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1471. }
  1472. }
  1473. #else
  1474. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1475. for (int i = 0; i < n; ++i) {
  1476. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1477. }
  1478. }
  1479. #endif
  1480. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1481. #ifndef GGML_USE_ACCELERATE
  1482. ggml_float sum = 0.0;
  1483. for (int i = 0; i < n; ++i) {
  1484. sum += (ggml_float)x[i];
  1485. }
  1486. *s = sum;
  1487. #else
  1488. vDSP_sve(x, 1, s, n);
  1489. #endif
  1490. }
  1491. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1492. ggml_float sum = 0.0;
  1493. for (int i = 0; i < n; ++i) {
  1494. sum += (ggml_float)x[i];
  1495. }
  1496. *s = sum;
  1497. }
  1498. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1499. float sum = 0.0f;
  1500. for (int i = 0; i < n; ++i) {
  1501. sum += GGML_FP16_TO_FP32(x[i]);
  1502. }
  1503. *s = sum;
  1504. }
  1505. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1506. #ifndef GGML_USE_ACCELERATE
  1507. float max = -INFINITY;
  1508. for (int i = 0; i < n; ++i) {
  1509. max = MAX(max, x[i]);
  1510. }
  1511. *s = max;
  1512. #else
  1513. vDSP_maxv(x, 1, s, n);
  1514. #endif
  1515. }
  1516. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1517. ggml_vec_norm_f32(n, s, x);
  1518. *s = 1.f/(*s);
  1519. }
  1520. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1521. float max = -INFINITY;
  1522. int idx = 0;
  1523. for (int i = 0; i < n; ++i) {
  1524. max = MAX(max, x[i]);
  1525. if (max == x[i]) { idx = i; }
  1526. }
  1527. *s = idx;
  1528. }
  1529. //
  1530. // data types
  1531. //
  1532. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1533. "NONE",
  1534. "DUP",
  1535. "ADD",
  1536. "ADD1",
  1537. "ACC",
  1538. "SUB",
  1539. "MUL",
  1540. "DIV",
  1541. "SQR",
  1542. "SQRT",
  1543. "LOG",
  1544. "SUM",
  1545. "SUM_ROWS",
  1546. "MEAN",
  1547. "ARGMAX",
  1548. "REPEAT",
  1549. "REPEAT_BACK",
  1550. "CONCAT",
  1551. "SILU_BACK",
  1552. "NORM",
  1553. "RMS_NORM",
  1554. "RMS_NORM_BACK",
  1555. "GROUP_NORM",
  1556. "MUL_MAT",
  1557. "MUL_MAT_ID",
  1558. "OUT_PROD",
  1559. "SCALE",
  1560. "SET",
  1561. "CPY",
  1562. "CONT",
  1563. "RESHAPE",
  1564. "VIEW",
  1565. "PERMUTE",
  1566. "TRANSPOSE",
  1567. "GET_ROWS",
  1568. "GET_ROWS_BACK",
  1569. "DIAG",
  1570. "DIAG_MASK_INF",
  1571. "DIAG_MASK_ZERO",
  1572. "SOFT_MAX",
  1573. "SOFT_MAX_BACK",
  1574. "ROPE",
  1575. "ROPE_BACK",
  1576. "ALIBI",
  1577. "CLAMP",
  1578. "CONV_TRANSPOSE_1D",
  1579. "IM2COL",
  1580. "CONV_TRANSPOSE_2D",
  1581. "POOL_1D",
  1582. "POOL_2D",
  1583. "UPSCALE",
  1584. "PAD",
  1585. "ARGSORT",
  1586. "LEAKY_RELU",
  1587. "FLASH_ATTN",
  1588. "FLASH_FF",
  1589. "FLASH_ATTN_BACK",
  1590. "WIN_PART",
  1591. "WIN_UNPART",
  1592. "GET_REL_POS",
  1593. "ADD_REL_POS",
  1594. "UNARY",
  1595. "MAP_UNARY",
  1596. "MAP_BINARY",
  1597. "MAP_CUSTOM1_F32",
  1598. "MAP_CUSTOM2_F32",
  1599. "MAP_CUSTOM3_F32",
  1600. "MAP_CUSTOM1",
  1601. "MAP_CUSTOM2",
  1602. "MAP_CUSTOM3",
  1603. "CROSS_ENTROPY_LOSS",
  1604. "CROSS_ENTROPY_LOSS_BACK",
  1605. };
  1606. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1607. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1608. "none",
  1609. "x",
  1610. "x+y",
  1611. "x+y",
  1612. "view(x,nb,offset)+=y->x",
  1613. "x-y",
  1614. "x*y",
  1615. "x/y",
  1616. "x^2",
  1617. "√x",
  1618. "log(x)",
  1619. "Σx",
  1620. "Σx_k",
  1621. "Σx/n",
  1622. "argmax(x)",
  1623. "repeat(x)",
  1624. "repeat_back(x)",
  1625. "concat(x, y)",
  1626. "silu_back(x)",
  1627. "norm(x)",
  1628. "rms_norm(x)",
  1629. "rms_norm_back(x)",
  1630. "group_norm(x)",
  1631. "X*Y",
  1632. "X[i]*Y",
  1633. "X*Y",
  1634. "x*v",
  1635. "y-\\>view(x)",
  1636. "x-\\>y",
  1637. "cont(x)",
  1638. "reshape(x)",
  1639. "view(x)",
  1640. "permute(x)",
  1641. "transpose(x)",
  1642. "get_rows(x)",
  1643. "get_rows_back(x)",
  1644. "diag(x)",
  1645. "diag_mask_inf(x)",
  1646. "diag_mask_zero(x)",
  1647. "soft_max(x)",
  1648. "soft_max_back(x)",
  1649. "rope(x)",
  1650. "rope_back(x)",
  1651. "alibi(x)",
  1652. "clamp(x)",
  1653. "conv_transpose_1d(x)",
  1654. "im2col(x)",
  1655. "conv_transpose_2d(x)",
  1656. "pool_1d(x)",
  1657. "pool_2d(x)",
  1658. "upscale(x)",
  1659. "pad(x)",
  1660. "argsort(x)",
  1661. "leaky_relu(x)",
  1662. "flash_attn(x)",
  1663. "flash_ff(x)",
  1664. "flash_attn_back(x)",
  1665. "win_part(x)",
  1666. "win_unpart(x)",
  1667. "get_rel_pos(x)",
  1668. "add_rel_pos(x)",
  1669. "unary(x)",
  1670. "f(x)",
  1671. "f(x,y)",
  1672. "custom_f32(x)",
  1673. "custom_f32(x,y)",
  1674. "custom_f32(x,y,z)",
  1675. "custom(x)",
  1676. "custom(x,y)",
  1677. "custom(x,y,z)",
  1678. "cross_entropy_loss(x,y)",
  1679. "cross_entropy_loss_back(x,y)",
  1680. };
  1681. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1682. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1683. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1684. "ABS",
  1685. "SGN",
  1686. "NEG",
  1687. "STEP",
  1688. "TANH",
  1689. "ELU",
  1690. "RELU",
  1691. "GELU",
  1692. "GELU_QUICK",
  1693. "SILU",
  1694. "HARDSWISH",
  1695. "HARDSIGMOID",
  1696. };
  1697. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1698. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1699. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1700. // WARN:
  1701. // Mis-configuration can lead to problem that's hard to reason about:
  1702. // * At best it crash or talks nosense.
  1703. // * At worst it talks slightly difference but hard to perceive.
  1704. //
  1705. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1706. // Take care about compile options (e.g., GGML_USE_xxx).
  1707. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1708. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1709. static void ggml_setup_op_has_task_pass(void) {
  1710. { // INIT
  1711. bool * p = GGML_OP_HAS_INIT;
  1712. p[GGML_OP_ACC ] = true;
  1713. p[GGML_OP_MUL_MAT ] = true;
  1714. p[GGML_OP_MUL_MAT_ID ] = true;
  1715. p[GGML_OP_OUT_PROD ] = true;
  1716. p[GGML_OP_SET ] = true;
  1717. p[GGML_OP_GET_ROWS_BACK ] = true;
  1718. p[GGML_OP_DIAG_MASK_INF ] = true;
  1719. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1720. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1721. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1722. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1723. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1724. p[GGML_OP_ADD_REL_POS ] = true;
  1725. }
  1726. { // FINALIZE
  1727. bool * p = GGML_OP_HAS_FINALIZE;
  1728. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1729. }
  1730. }
  1731. //
  1732. // ggml context
  1733. //
  1734. struct ggml_context {
  1735. size_t mem_size;
  1736. void * mem_buffer;
  1737. bool mem_buffer_owned;
  1738. bool no_alloc;
  1739. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1740. int n_objects;
  1741. struct ggml_object * objects_begin;
  1742. struct ggml_object * objects_end;
  1743. struct ggml_scratch scratch;
  1744. struct ggml_scratch scratch_save;
  1745. };
  1746. struct ggml_context_container {
  1747. bool used;
  1748. struct ggml_context context;
  1749. };
  1750. //
  1751. // NUMA support
  1752. //
  1753. #define GGML_NUMA_MAX_NODES 8
  1754. #define GGML_NUMA_MAX_CPUS 512
  1755. struct ggml_numa_node {
  1756. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1757. uint32_t n_cpus;
  1758. };
  1759. struct ggml_numa_nodes {
  1760. enum ggml_numa_strategy numa_strategy;
  1761. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1762. uint32_t n_nodes;
  1763. uint32_t total_cpus; // hardware threads on system
  1764. uint32_t current_node; // node on which main process is execting
  1765. #if defined(__gnu_linux__)
  1766. cpu_set_t cpuset; // cpuset from numactl
  1767. #else
  1768. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  1769. #endif
  1770. };
  1771. //
  1772. // ggml state
  1773. //
  1774. struct ggml_state {
  1775. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1776. struct ggml_numa_nodes numa;
  1777. };
  1778. // global state
  1779. static struct ggml_state g_state;
  1780. static atomic_int g_state_barrier = 0;
  1781. // barrier via spin lock
  1782. inline static void ggml_critical_section_start(void) {
  1783. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1784. while (processing > 0) {
  1785. // wait for other threads to finish
  1786. atomic_fetch_sub(&g_state_barrier, 1);
  1787. sched_yield(); // TODO: reconsider this
  1788. processing = atomic_fetch_add(&g_state_barrier, 1);
  1789. }
  1790. }
  1791. // TODO: make this somehow automatically executed
  1792. // some sort of "sentry" mechanism
  1793. inline static void ggml_critical_section_end(void) {
  1794. atomic_fetch_sub(&g_state_barrier, 1);
  1795. }
  1796. #if defined(__gnu_linux__)
  1797. static cpu_set_t ggml_get_numa_affinity(void) {
  1798. cpu_set_t cpuset;
  1799. pthread_t thread;
  1800. thread = pthread_self();
  1801. CPU_ZERO(&cpuset);
  1802. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  1803. return cpuset;
  1804. }
  1805. #else
  1806. static uint32_t ggml_get_numa_affinity(void) {
  1807. return 0; // no NUMA support
  1808. }
  1809. #endif
  1810. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  1811. if (g_state.numa.n_nodes > 0) {
  1812. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1813. return;
  1814. }
  1815. #if defined(__gnu_linux__)
  1816. struct stat st;
  1817. char path[256];
  1818. int rv;
  1819. // set numa scheme
  1820. g_state.numa.numa_strategy = numa_flag;
  1821. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  1822. g_state.numa.cpuset = ggml_get_numa_affinity();
  1823. // enumerate nodes
  1824. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1825. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1826. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1827. if (stat(path, &st) != 0) { break; }
  1828. ++g_state.numa.n_nodes;
  1829. }
  1830. // enumerate CPUs
  1831. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1832. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1833. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1834. if (stat(path, &st) != 0) { break; }
  1835. ++g_state.numa.total_cpus;
  1836. }
  1837. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1838. // figure out which node we're on
  1839. uint current_cpu;
  1840. int getcpu_ret = 0;
  1841. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28)
  1842. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  1843. #else
  1844. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  1845. getcpu_ret = syscall(SYS_getcpu,&current_cpu,&g_state.numa.current_node);
  1846. #endif
  1847. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  1848. g_state.numa.n_nodes = 0;
  1849. return;
  1850. }
  1851. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  1852. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1853. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1854. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1855. node->n_cpus = 0;
  1856. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1857. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1858. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1859. if (stat(path, &st) == 0) {
  1860. node->cpus[node->n_cpus++] = c;
  1861. GGML_PRINT_DEBUG(" %u", c);
  1862. }
  1863. }
  1864. GGML_PRINT_DEBUG("\n");
  1865. }
  1866. if (ggml_is_numa()) {
  1867. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1868. if (fptr != NULL) {
  1869. char buf[42];
  1870. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1871. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1872. }
  1873. fclose(fptr);
  1874. }
  1875. }
  1876. #else
  1877. GGML_UNUSED(numa_flag);
  1878. // TODO
  1879. #endif
  1880. }
  1881. bool ggml_is_numa(void) {
  1882. return g_state.numa.n_nodes > 1;
  1883. }
  1884. ////////////////////////////////////////////////////////////////////////////////
  1885. void ggml_print_object(const struct ggml_object * obj) {
  1886. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1887. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1888. }
  1889. void ggml_print_objects(const struct ggml_context * ctx) {
  1890. struct ggml_object * obj = ctx->objects_begin;
  1891. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1892. while (obj != NULL) {
  1893. ggml_print_object(obj);
  1894. obj = obj->next;
  1895. }
  1896. GGML_PRINT("%s: --- end ---\n", __func__);
  1897. }
  1898. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1899. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1900. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1901. }
  1902. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1903. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1904. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1905. }
  1906. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1907. size_t nbytes;
  1908. size_t blck_size = ggml_blck_size(tensor->type);
  1909. if (blck_size == 1) {
  1910. nbytes = ggml_type_size(tensor->type);
  1911. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1912. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1913. }
  1914. }
  1915. else {
  1916. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1917. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1918. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1919. }
  1920. }
  1921. return nbytes;
  1922. }
  1923. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1924. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1925. }
  1926. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  1927. return type_traits[type].blck_size;
  1928. }
  1929. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  1930. return type_traits[type].type_size;
  1931. }
  1932. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  1933. assert(ne % ggml_blck_size(type) == 0);
  1934. return ggml_type_size(type)*ne/ggml_blck_size(type);
  1935. }
  1936. double ggml_type_sizef(enum ggml_type type) {
  1937. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  1938. }
  1939. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  1940. return type_traits[type].type_name;
  1941. }
  1942. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  1943. return type_traits[type].is_quantized;
  1944. }
  1945. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  1946. return GGML_OP_NAME[op];
  1947. }
  1948. const char * ggml_op_symbol(enum ggml_op op) {
  1949. return GGML_OP_SYMBOL[op];
  1950. }
  1951. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1952. return GGML_UNARY_OP_NAME[op];
  1953. }
  1954. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  1955. if (t->op == GGML_OP_UNARY) {
  1956. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1957. return ggml_unary_op_name(uop);
  1958. }
  1959. else {
  1960. return ggml_op_name(t->op);
  1961. }
  1962. }
  1963. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1964. return ggml_type_size(tensor->type);
  1965. }
  1966. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1967. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1968. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1969. }
  1970. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1971. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1972. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1973. }
  1974. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1975. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1976. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1977. }
  1978. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  1979. return tensor->ne[3] == 1;
  1980. }
  1981. int ggml_n_dims(const struct ggml_tensor * tensor) {
  1982. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  1983. if (tensor->ne[i] > 1) {
  1984. return i + 1;
  1985. }
  1986. }
  1987. return 1;
  1988. }
  1989. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1990. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1991. return (t0->ne[0] == t1->ne[0]) &&
  1992. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1993. (t1->ne[3]%t0->ne[3] == 0);
  1994. }
  1995. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1996. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1997. return (t0->ne[1] == t1->ne[1]) &&
  1998. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1999. (t1->ne[3]%t0->ne[3] == 0);
  2000. }
  2001. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2002. enum ggml_type wtype = GGML_TYPE_COUNT;
  2003. switch (ftype) {
  2004. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2005. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2006. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2007. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2008. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2009. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2010. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2011. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2012. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2013. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2014. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2015. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2016. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2017. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2018. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2019. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2020. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2021. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2022. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2023. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2024. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2025. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2026. }
  2027. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2028. return wtype;
  2029. }
  2030. size_t ggml_tensor_overhead(void) {
  2031. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2032. }
  2033. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2034. return tensor->nb[0] > tensor->nb[1];
  2035. }
  2036. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2037. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2038. return
  2039. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2040. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2041. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2042. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2043. }
  2044. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2045. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2046. return
  2047. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2048. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2049. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2050. }
  2051. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2052. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2053. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2054. }
  2055. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2056. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2057. return
  2058. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2059. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2060. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2061. }
  2062. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2063. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2064. return
  2065. (t0->ne[0] == t1->ne[0] ) &&
  2066. (t0->ne[1] == t1->ne[1] ) &&
  2067. (t0->ne[2] == t1->ne[2] ) &&
  2068. (t0->ne[3] == t1->ne[3] );
  2069. }
  2070. // check if t1 can be represented as a repeatition of t0
  2071. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2072. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2073. return
  2074. (t1->ne[0]%t0->ne[0] == 0) &&
  2075. (t1->ne[1]%t0->ne[1] == 0) &&
  2076. (t1->ne[2]%t0->ne[2] == 0) &&
  2077. (t1->ne[3]%t0->ne[3] == 0);
  2078. }
  2079. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2080. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2081. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2082. }
  2083. static inline int ggml_up32(int n) {
  2084. return (n + 31) & ~31;
  2085. }
  2086. //static inline int ggml_up64(int n) {
  2087. // return (n + 63) & ~63;
  2088. //}
  2089. static inline int ggml_up(int n, int m) {
  2090. // assert m is a power of 2
  2091. GGML_ASSERT((m & (m - 1)) == 0);
  2092. return (n + m - 1) & ~(m - 1);
  2093. }
  2094. // assert that pointer is aligned to GGML_MEM_ALIGN
  2095. #define ggml_assert_aligned(ptr) \
  2096. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2097. ////////////////////////////////////////////////////////////////////////////////
  2098. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2099. // make this function thread safe
  2100. ggml_critical_section_start();
  2101. static bool is_first_call = true;
  2102. if (is_first_call) {
  2103. // initialize time system (required on Windows)
  2104. ggml_time_init();
  2105. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2106. {
  2107. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2108. ggml_fp16_t ii;
  2109. for (int i = 0; i < (1 << 16); ++i) {
  2110. uint16_t ui = i;
  2111. memcpy(&ii, &ui, sizeof(ii));
  2112. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2113. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2114. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2115. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2116. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2117. }
  2118. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2119. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2120. }
  2121. // initialize g_state
  2122. {
  2123. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2124. g_state = (struct ggml_state) {
  2125. /*.contexts =*/ { { 0 } },
  2126. /*.numa =*/ {
  2127. .n_nodes = 0,
  2128. .total_cpus = 0,
  2129. },
  2130. };
  2131. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2132. g_state.contexts[i].used = false;
  2133. }
  2134. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2135. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2136. }
  2137. #if defined(GGML_USE_CUBLAS)
  2138. ggml_init_cublas();
  2139. #elif defined(GGML_USE_CLBLAST)
  2140. ggml_cl_init();
  2141. #elif defined(GGML_USE_VULKAN)
  2142. ggml_vk_init_cpu_assist();
  2143. #elif defined(GGML_USE_SYCL)
  2144. ggml_init_sycl();
  2145. #endif
  2146. ggml_setup_op_has_task_pass();
  2147. is_first_call = false;
  2148. }
  2149. // find non-used context in g_state
  2150. struct ggml_context * ctx = NULL;
  2151. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2152. if (!g_state.contexts[i].used) {
  2153. g_state.contexts[i].used = true;
  2154. ctx = &g_state.contexts[i].context;
  2155. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2156. break;
  2157. }
  2158. }
  2159. if (ctx == NULL) {
  2160. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2161. ggml_critical_section_end();
  2162. return NULL;
  2163. }
  2164. // allow to call ggml_init with 0 size
  2165. if (params.mem_size == 0) {
  2166. params.mem_size = GGML_MEM_ALIGN;
  2167. }
  2168. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2169. *ctx = (struct ggml_context) {
  2170. /*.mem_size =*/ mem_size,
  2171. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2172. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2173. /*.no_alloc =*/ params.no_alloc,
  2174. /*.no_alloc_save =*/ params.no_alloc,
  2175. /*.n_objects =*/ 0,
  2176. /*.objects_begin =*/ NULL,
  2177. /*.objects_end =*/ NULL,
  2178. /*.scratch =*/ { 0, 0, NULL, },
  2179. /*.scratch_save =*/ { 0, 0, NULL, },
  2180. };
  2181. GGML_ASSERT(ctx->mem_buffer != NULL);
  2182. ggml_assert_aligned(ctx->mem_buffer);
  2183. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2184. ggml_critical_section_end();
  2185. return ctx;
  2186. }
  2187. void ggml_free(struct ggml_context * ctx) {
  2188. if (ctx == NULL) {
  2189. return;
  2190. }
  2191. // make this function thread safe
  2192. ggml_critical_section_start();
  2193. bool found = false;
  2194. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2195. if (&g_state.contexts[i].context == ctx) {
  2196. g_state.contexts[i].used = false;
  2197. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2198. __func__, i, ggml_used_mem(ctx));
  2199. if (ctx->mem_buffer_owned) {
  2200. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2201. }
  2202. found = true;
  2203. break;
  2204. }
  2205. }
  2206. if (!found) {
  2207. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2208. }
  2209. ggml_critical_section_end();
  2210. }
  2211. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2212. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2213. }
  2214. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2215. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2216. ctx->scratch = scratch;
  2217. return result;
  2218. }
  2219. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2220. return ctx->no_alloc;
  2221. }
  2222. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2223. ctx->no_alloc = no_alloc;
  2224. }
  2225. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2226. return ctx->mem_buffer;
  2227. }
  2228. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2229. return ctx->mem_size;
  2230. }
  2231. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2232. size_t max_size = 0;
  2233. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2234. size_t bytes = ggml_nbytes(tensor);
  2235. max_size = MAX(max_size, bytes);
  2236. }
  2237. return max_size;
  2238. }
  2239. // IMPORTANT:
  2240. // when creating "opt" tensors, always save and load the scratch buffer
  2241. // this is an error prone process, but it is necessary to support inplace
  2242. // operators when using scratch buffers
  2243. // TODO: implement a better way
  2244. static void ggml_scratch_save(struct ggml_context * ctx) {
  2245. // this is needed to allow opt tensors to store their data
  2246. // TODO: again, need to find a better way
  2247. ctx->no_alloc_save = ctx->no_alloc;
  2248. ctx->no_alloc = false;
  2249. ctx->scratch_save = ctx->scratch;
  2250. ctx->scratch.data = NULL;
  2251. }
  2252. static void ggml_scratch_load(struct ggml_context * ctx) {
  2253. ctx->no_alloc = ctx->no_alloc_save;
  2254. ctx->scratch = ctx->scratch_save;
  2255. }
  2256. ////////////////////////////////////////////////////////////////////////////////
  2257. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2258. // always insert objects at the end of the context's memory pool
  2259. struct ggml_object * obj_cur = ctx->objects_end;
  2260. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2261. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2262. const size_t cur_end = cur_offs + cur_size;
  2263. // align to GGML_MEM_ALIGN
  2264. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2265. char * const mem_buffer = ctx->mem_buffer;
  2266. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2267. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2268. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2269. __func__, cur_end + size_needed, ctx->mem_size);
  2270. assert(false);
  2271. return NULL;
  2272. }
  2273. *obj_new = (struct ggml_object) {
  2274. .offs = cur_end + GGML_OBJECT_SIZE,
  2275. .size = size_needed,
  2276. .next = NULL,
  2277. .type = type,
  2278. };
  2279. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2280. if (obj_cur != NULL) {
  2281. obj_cur->next = obj_new;
  2282. } else {
  2283. // this is the first object in this context
  2284. ctx->objects_begin = obj_new;
  2285. }
  2286. ctx->objects_end = obj_new;
  2287. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2288. return obj_new;
  2289. }
  2290. static struct ggml_tensor * ggml_new_tensor_impl(
  2291. struct ggml_context * ctx,
  2292. enum ggml_type type,
  2293. int n_dims,
  2294. const int64_t * ne,
  2295. struct ggml_tensor * view_src,
  2296. size_t view_offs) {
  2297. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2298. // find the base tensor and absolute offset
  2299. if (view_src != NULL && view_src->view_src != NULL) {
  2300. view_offs += view_src->view_offs;
  2301. view_src = view_src->view_src;
  2302. }
  2303. size_t data_size = ggml_row_size(type, ne[0]);
  2304. for (int i = 1; i < n_dims; i++) {
  2305. data_size *= ne[i];
  2306. }
  2307. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2308. void * data = view_src != NULL ? view_src->data : NULL;
  2309. if (data != NULL) {
  2310. data = (char *) data + view_offs;
  2311. }
  2312. size_t obj_alloc_size = 0;
  2313. if (view_src == NULL && !ctx->no_alloc) {
  2314. if (ctx->scratch.data != NULL) {
  2315. // allocate tensor data in the scratch buffer
  2316. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2317. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2318. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2319. assert(false);
  2320. return NULL;
  2321. }
  2322. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2323. ctx->scratch.offs += data_size;
  2324. } else {
  2325. // allocate tensor data in the context's memory pool
  2326. obj_alloc_size = data_size;
  2327. }
  2328. }
  2329. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2330. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2331. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2332. *result = (struct ggml_tensor) {
  2333. /*.type =*/ type,
  2334. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  2335. /*.buffer =*/ NULL,
  2336. /*.ne =*/ { 1, 1, 1, 1 },
  2337. /*.nb =*/ { 0, 0, 0, 0 },
  2338. /*.op =*/ GGML_OP_NONE,
  2339. /*.op_params =*/ { 0 },
  2340. /*.flags =*/ 0,
  2341. /*.grad =*/ NULL,
  2342. /*.src =*/ { NULL },
  2343. /*.perf_runs =*/ 0,
  2344. /*.perf_cycles =*/ 0,
  2345. /*.perf_time_us =*/ 0,
  2346. /*.view_src =*/ view_src,
  2347. /*.view_offs =*/ view_offs,
  2348. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2349. /*.name =*/ { 0 },
  2350. /*.extra =*/ NULL,
  2351. /*.padding =*/ { 0 },
  2352. };
  2353. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2354. //ggml_assert_aligned(result->data);
  2355. for (int i = 0; i < n_dims; i++) {
  2356. result->ne[i] = ne[i];
  2357. }
  2358. result->nb[0] = ggml_type_size(type);
  2359. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2360. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2361. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2362. }
  2363. ctx->n_objects++;
  2364. return result;
  2365. }
  2366. struct ggml_tensor * ggml_new_tensor(
  2367. struct ggml_context * ctx,
  2368. enum ggml_type type,
  2369. int n_dims,
  2370. const int64_t * ne) {
  2371. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2372. }
  2373. struct ggml_tensor * ggml_new_tensor_1d(
  2374. struct ggml_context * ctx,
  2375. enum ggml_type type,
  2376. int64_t ne0) {
  2377. return ggml_new_tensor(ctx, type, 1, &ne0);
  2378. }
  2379. struct ggml_tensor * ggml_new_tensor_2d(
  2380. struct ggml_context * ctx,
  2381. enum ggml_type type,
  2382. int64_t ne0,
  2383. int64_t ne1) {
  2384. const int64_t ne[2] = { ne0, ne1 };
  2385. return ggml_new_tensor(ctx, type, 2, ne);
  2386. }
  2387. struct ggml_tensor * ggml_new_tensor_3d(
  2388. struct ggml_context * ctx,
  2389. enum ggml_type type,
  2390. int64_t ne0,
  2391. int64_t ne1,
  2392. int64_t ne2) {
  2393. const int64_t ne[3] = { ne0, ne1, ne2 };
  2394. return ggml_new_tensor(ctx, type, 3, ne);
  2395. }
  2396. struct ggml_tensor * ggml_new_tensor_4d(
  2397. struct ggml_context * ctx,
  2398. enum ggml_type type,
  2399. int64_t ne0,
  2400. int64_t ne1,
  2401. int64_t ne2,
  2402. int64_t ne3) {
  2403. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2404. return ggml_new_tensor(ctx, type, 4, ne);
  2405. }
  2406. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2407. ggml_scratch_save(ctx);
  2408. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2409. ggml_scratch_load(ctx);
  2410. ggml_set_i32(result, value);
  2411. return result;
  2412. }
  2413. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2414. ggml_scratch_save(ctx);
  2415. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2416. ggml_scratch_load(ctx);
  2417. ggml_set_f32(result, value);
  2418. return result;
  2419. }
  2420. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2421. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2422. }
  2423. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2424. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2425. assert(params_size <= GGML_MAX_OP_PARAMS);
  2426. memcpy(tensor->op_params, params, params_size);
  2427. }
  2428. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2429. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2430. return ((const int32_t *)(tensor->op_params))[i];
  2431. }
  2432. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2433. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2434. ((int32_t *)(tensor->op_params))[i] = value;
  2435. }
  2436. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2437. memset(tensor->data, 0, ggml_nbytes(tensor));
  2438. return tensor;
  2439. }
  2440. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2441. const int n = ggml_nrows(tensor);
  2442. const int nc = tensor->ne[0];
  2443. const size_t n1 = tensor->nb[1];
  2444. char * const data = tensor->data;
  2445. switch (tensor->type) {
  2446. case GGML_TYPE_I8:
  2447. {
  2448. assert(tensor->nb[0] == sizeof(int8_t));
  2449. for (int i = 0; i < n; i++) {
  2450. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2451. }
  2452. } break;
  2453. case GGML_TYPE_I16:
  2454. {
  2455. assert(tensor->nb[0] == sizeof(int16_t));
  2456. for (int i = 0; i < n; i++) {
  2457. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2458. }
  2459. } break;
  2460. case GGML_TYPE_I32:
  2461. {
  2462. assert(tensor->nb[0] == sizeof(int32_t));
  2463. for (int i = 0; i < n; i++) {
  2464. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2465. }
  2466. } break;
  2467. case GGML_TYPE_F16:
  2468. {
  2469. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2470. for (int i = 0; i < n; i++) {
  2471. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2472. }
  2473. } break;
  2474. case GGML_TYPE_F32:
  2475. {
  2476. assert(tensor->nb[0] == sizeof(float));
  2477. for (int i = 0; i < n; i++) {
  2478. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2479. }
  2480. } break;
  2481. default:
  2482. {
  2483. GGML_ASSERT(false);
  2484. } break;
  2485. }
  2486. return tensor;
  2487. }
  2488. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2489. const int n = ggml_nrows(tensor);
  2490. const int nc = tensor->ne[0];
  2491. const size_t n1 = tensor->nb[1];
  2492. char * const data = tensor->data;
  2493. switch (tensor->type) {
  2494. case GGML_TYPE_I8:
  2495. {
  2496. assert(tensor->nb[0] == sizeof(int8_t));
  2497. for (int i = 0; i < n; i++) {
  2498. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2499. }
  2500. } break;
  2501. case GGML_TYPE_I16:
  2502. {
  2503. assert(tensor->nb[0] == sizeof(int16_t));
  2504. for (int i = 0; i < n; i++) {
  2505. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2506. }
  2507. } break;
  2508. case GGML_TYPE_I32:
  2509. {
  2510. assert(tensor->nb[0] == sizeof(int32_t));
  2511. for (int i = 0; i < n; i++) {
  2512. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2513. }
  2514. } break;
  2515. case GGML_TYPE_F16:
  2516. {
  2517. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2518. for (int i = 0; i < n; i++) {
  2519. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2520. }
  2521. } break;
  2522. case GGML_TYPE_F32:
  2523. {
  2524. assert(tensor->nb[0] == sizeof(float));
  2525. for (int i = 0; i < n; i++) {
  2526. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2527. }
  2528. } break;
  2529. default:
  2530. {
  2531. GGML_ASSERT(false);
  2532. } break;
  2533. }
  2534. return tensor;
  2535. }
  2536. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2537. const int64_t ne2 = tensor->ne[2];
  2538. const int64_t ne1 = tensor->ne[1];
  2539. const int64_t ne0 = tensor->ne[0];
  2540. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2541. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2542. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2543. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2544. if (i0) {
  2545. * i0 = i0_;
  2546. }
  2547. if (i1) {
  2548. * i1 = i1_;
  2549. }
  2550. if (i2) {
  2551. * i2 = i2_;
  2552. }
  2553. if (i3) {
  2554. * i3 = i3_;
  2555. }
  2556. }
  2557. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2558. if (!ggml_is_contiguous(tensor)) {
  2559. int64_t id[4] = { 0, 0, 0, 0 };
  2560. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2561. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2562. }
  2563. switch (tensor->type) {
  2564. case GGML_TYPE_I8:
  2565. {
  2566. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2567. return ((int8_t *)(tensor->data))[i];
  2568. }
  2569. case GGML_TYPE_I16:
  2570. {
  2571. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2572. return ((int16_t *)(tensor->data))[i];
  2573. }
  2574. case GGML_TYPE_I32:
  2575. {
  2576. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2577. return ((int32_t *)(tensor->data))[i];
  2578. }
  2579. case GGML_TYPE_F16:
  2580. {
  2581. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2582. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2583. }
  2584. case GGML_TYPE_F32:
  2585. {
  2586. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2587. return ((float *)(tensor->data))[i];
  2588. }
  2589. default:
  2590. {
  2591. GGML_ASSERT(false);
  2592. }
  2593. }
  2594. return 0.0f;
  2595. }
  2596. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2597. if (!ggml_is_contiguous(tensor)) {
  2598. int64_t id[4] = { 0, 0, 0, 0 };
  2599. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2600. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2601. return;
  2602. }
  2603. switch (tensor->type) {
  2604. case GGML_TYPE_I8:
  2605. {
  2606. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2607. ((int8_t *)(tensor->data))[i] = value;
  2608. } break;
  2609. case GGML_TYPE_I16:
  2610. {
  2611. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2612. ((int16_t *)(tensor->data))[i] = value;
  2613. } break;
  2614. case GGML_TYPE_I32:
  2615. {
  2616. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2617. ((int32_t *)(tensor->data))[i] = value;
  2618. } break;
  2619. case GGML_TYPE_F16:
  2620. {
  2621. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2622. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2623. } break;
  2624. case GGML_TYPE_F32:
  2625. {
  2626. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2627. ((float *)(tensor->data))[i] = value;
  2628. } break;
  2629. default:
  2630. {
  2631. GGML_ASSERT(false);
  2632. } break;
  2633. }
  2634. }
  2635. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2636. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2637. switch (tensor->type) {
  2638. case GGML_TYPE_I8:
  2639. return ((int8_t *) data)[0];
  2640. case GGML_TYPE_I16:
  2641. return ((int16_t *) data)[0];
  2642. case GGML_TYPE_I32:
  2643. return ((int32_t *) data)[0];
  2644. case GGML_TYPE_F16:
  2645. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2646. case GGML_TYPE_F32:
  2647. return ((float *) data)[0];
  2648. default:
  2649. GGML_ASSERT(false);
  2650. }
  2651. return 0.0f;
  2652. }
  2653. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2654. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2655. switch (tensor->type) {
  2656. case GGML_TYPE_I8:
  2657. {
  2658. ((int8_t *)(data))[0] = value;
  2659. } break;
  2660. case GGML_TYPE_I16:
  2661. {
  2662. ((int16_t *)(data))[0] = value;
  2663. } break;
  2664. case GGML_TYPE_I32:
  2665. {
  2666. ((int32_t *)(data))[0] = value;
  2667. } break;
  2668. case GGML_TYPE_F16:
  2669. {
  2670. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2671. } break;
  2672. case GGML_TYPE_F32:
  2673. {
  2674. ((float *)(data))[0] = value;
  2675. } break;
  2676. default:
  2677. {
  2678. GGML_ASSERT(false);
  2679. } break;
  2680. }
  2681. }
  2682. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2683. if (!ggml_is_contiguous(tensor)) {
  2684. int64_t id[4] = { 0, 0, 0, 0 };
  2685. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2686. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2687. }
  2688. switch (tensor->type) {
  2689. case GGML_TYPE_I8:
  2690. {
  2691. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2692. return ((int8_t *)(tensor->data))[i];
  2693. }
  2694. case GGML_TYPE_I16:
  2695. {
  2696. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2697. return ((int16_t *)(tensor->data))[i];
  2698. }
  2699. case GGML_TYPE_I32:
  2700. {
  2701. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2702. return ((int32_t *)(tensor->data))[i];
  2703. }
  2704. case GGML_TYPE_F16:
  2705. {
  2706. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2707. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2708. }
  2709. case GGML_TYPE_F32:
  2710. {
  2711. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2712. return ((float *)(tensor->data))[i];
  2713. }
  2714. default:
  2715. {
  2716. GGML_ASSERT(false);
  2717. }
  2718. }
  2719. return 0.0f;
  2720. }
  2721. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2722. if (!ggml_is_contiguous(tensor)) {
  2723. int64_t id[4] = { 0, 0, 0, 0 };
  2724. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2725. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2726. return;
  2727. }
  2728. switch (tensor->type) {
  2729. case GGML_TYPE_I8:
  2730. {
  2731. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2732. ((int8_t *)(tensor->data))[i] = value;
  2733. } break;
  2734. case GGML_TYPE_I16:
  2735. {
  2736. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2737. ((int16_t *)(tensor->data))[i] = value;
  2738. } break;
  2739. case GGML_TYPE_I32:
  2740. {
  2741. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2742. ((int32_t *)(tensor->data))[i] = value;
  2743. } break;
  2744. case GGML_TYPE_F16:
  2745. {
  2746. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2747. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2748. } break;
  2749. case GGML_TYPE_F32:
  2750. {
  2751. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2752. ((float *)(tensor->data))[i] = value;
  2753. } break;
  2754. default:
  2755. {
  2756. GGML_ASSERT(false);
  2757. } break;
  2758. }
  2759. }
  2760. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2761. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2762. switch (tensor->type) {
  2763. case GGML_TYPE_I8:
  2764. return ((int8_t *) data)[0];
  2765. case GGML_TYPE_I16:
  2766. return ((int16_t *) data)[0];
  2767. case GGML_TYPE_I32:
  2768. return ((int32_t *) data)[0];
  2769. case GGML_TYPE_F16:
  2770. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2771. case GGML_TYPE_F32:
  2772. return ((float *) data)[0];
  2773. default:
  2774. GGML_ASSERT(false);
  2775. }
  2776. return 0.0f;
  2777. }
  2778. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2779. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2780. switch (tensor->type) {
  2781. case GGML_TYPE_I8:
  2782. {
  2783. ((int8_t *)(data))[0] = value;
  2784. } break;
  2785. case GGML_TYPE_I16:
  2786. {
  2787. ((int16_t *)(data))[0] = value;
  2788. } break;
  2789. case GGML_TYPE_I32:
  2790. {
  2791. ((int32_t *)(data))[0] = value;
  2792. } break;
  2793. case GGML_TYPE_F16:
  2794. {
  2795. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2796. } break;
  2797. case GGML_TYPE_F32:
  2798. {
  2799. ((float *)(data))[0] = value;
  2800. } break;
  2801. default:
  2802. {
  2803. GGML_ASSERT(false);
  2804. } break;
  2805. }
  2806. }
  2807. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2808. return tensor->data;
  2809. }
  2810. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2811. assert(tensor->type == GGML_TYPE_F32);
  2812. return (float *)(tensor->data);
  2813. }
  2814. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2815. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2816. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2817. }
  2818. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2819. return tensor->name;
  2820. }
  2821. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2822. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  2823. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2824. return tensor;
  2825. }
  2826. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2827. va_list args;
  2828. va_start(args, fmt);
  2829. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2830. va_end(args);
  2831. return tensor;
  2832. }
  2833. struct ggml_tensor * ggml_view_tensor(
  2834. struct ggml_context * ctx,
  2835. struct ggml_tensor * src) {
  2836. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2837. ggml_format_name(result, "%s (view)", src->name);
  2838. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2839. result->nb[i] = src->nb[i];
  2840. }
  2841. return result;
  2842. }
  2843. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2844. struct ggml_object * obj = ctx->objects_begin;
  2845. char * const mem_buffer = ctx->mem_buffer;
  2846. while (obj != NULL) {
  2847. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2848. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2849. }
  2850. obj = obj->next;
  2851. }
  2852. return NULL;
  2853. }
  2854. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2855. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2856. obj = obj->next;
  2857. char * const mem_buffer = ctx->mem_buffer;
  2858. while (obj != NULL) {
  2859. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2860. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2861. }
  2862. obj = obj->next;
  2863. }
  2864. return NULL;
  2865. }
  2866. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2867. struct ggml_object * obj = ctx->objects_begin;
  2868. char * const mem_buffer = ctx->mem_buffer;
  2869. while (obj != NULL) {
  2870. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2871. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2872. if (strcmp(cur->name, name) == 0) {
  2873. return cur;
  2874. }
  2875. }
  2876. obj = obj->next;
  2877. }
  2878. return NULL;
  2879. }
  2880. ////////////////////////////////////////////////////////////////////////////////
  2881. // ggml_dup
  2882. static struct ggml_tensor * ggml_dup_impl(
  2883. struct ggml_context * ctx,
  2884. struct ggml_tensor * a,
  2885. bool inplace) {
  2886. bool is_node = false;
  2887. if (!inplace && (a->grad)) {
  2888. is_node = true;
  2889. }
  2890. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2891. result->op = GGML_OP_DUP;
  2892. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2893. result->src[0] = a;
  2894. return result;
  2895. }
  2896. struct ggml_tensor * ggml_dup(
  2897. struct ggml_context * ctx,
  2898. struct ggml_tensor * a) {
  2899. return ggml_dup_impl(ctx, a, false);
  2900. }
  2901. struct ggml_tensor * ggml_dup_inplace(
  2902. struct ggml_context * ctx,
  2903. struct ggml_tensor * a) {
  2904. return ggml_dup_impl(ctx, a, true);
  2905. }
  2906. // ggml_add
  2907. static struct ggml_tensor * ggml_add_impl(
  2908. struct ggml_context * ctx,
  2909. struct ggml_tensor * a,
  2910. struct ggml_tensor * b,
  2911. bool inplace) {
  2912. GGML_ASSERT(ggml_can_repeat(b, a));
  2913. bool is_node = false;
  2914. if (!inplace && (a->grad || b->grad)) {
  2915. // TODO: support backward pass for broadcasting
  2916. GGML_ASSERT(ggml_are_same_shape(a, b));
  2917. is_node = true;
  2918. }
  2919. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2920. result->op = GGML_OP_ADD;
  2921. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2922. result->src[0] = a;
  2923. result->src[1] = b;
  2924. return result;
  2925. }
  2926. struct ggml_tensor * ggml_add(
  2927. struct ggml_context * ctx,
  2928. struct ggml_tensor * a,
  2929. struct ggml_tensor * b) {
  2930. return ggml_add_impl(ctx, a, b, false);
  2931. }
  2932. struct ggml_tensor * ggml_add_inplace(
  2933. struct ggml_context * ctx,
  2934. struct ggml_tensor * a,
  2935. struct ggml_tensor * b) {
  2936. return ggml_add_impl(ctx, a, b, true);
  2937. }
  2938. // ggml_add_cast
  2939. static struct ggml_tensor * ggml_add_cast_impl(
  2940. struct ggml_context * ctx,
  2941. struct ggml_tensor * a,
  2942. struct ggml_tensor * b,
  2943. enum ggml_type type) {
  2944. // TODO: support less-strict constraint
  2945. // GGML_ASSERT(ggml_can_repeat(b, a));
  2946. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2947. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2948. bool is_node = false;
  2949. if (a->grad || b->grad) {
  2950. // TODO: support backward pass for broadcasting
  2951. GGML_ASSERT(ggml_are_same_shape(a, b));
  2952. is_node = true;
  2953. }
  2954. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  2955. result->op = GGML_OP_ADD;
  2956. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  2957. result->src[0] = a;
  2958. result->src[1] = b;
  2959. return result;
  2960. }
  2961. struct ggml_tensor * ggml_add_cast(
  2962. struct ggml_context * ctx,
  2963. struct ggml_tensor * a,
  2964. struct ggml_tensor * b,
  2965. enum ggml_type type) {
  2966. return ggml_add_cast_impl(ctx, a, b, type);
  2967. }
  2968. // ggml_add1
  2969. static struct ggml_tensor * ggml_add1_impl(
  2970. struct ggml_context * ctx,
  2971. struct ggml_tensor * a,
  2972. struct ggml_tensor * b,
  2973. bool inplace) {
  2974. GGML_ASSERT(ggml_is_scalar(b));
  2975. GGML_ASSERT(ggml_is_padded_1d(a));
  2976. bool is_node = false;
  2977. if (a->grad || b->grad) {
  2978. is_node = true;
  2979. }
  2980. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2981. result->op = GGML_OP_ADD1;
  2982. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2983. result->src[0] = a;
  2984. result->src[1] = b;
  2985. return result;
  2986. }
  2987. struct ggml_tensor * ggml_add1(
  2988. struct ggml_context * ctx,
  2989. struct ggml_tensor * a,
  2990. struct ggml_tensor * b) {
  2991. return ggml_add1_impl(ctx, a, b, false);
  2992. }
  2993. struct ggml_tensor * ggml_add1_inplace(
  2994. struct ggml_context * ctx,
  2995. struct ggml_tensor * a,
  2996. struct ggml_tensor * b) {
  2997. return ggml_add1_impl(ctx, a, b, true);
  2998. }
  2999. // ggml_acc
  3000. static struct ggml_tensor * ggml_acc_impl(
  3001. struct ggml_context * ctx,
  3002. struct ggml_tensor * a,
  3003. struct ggml_tensor * b,
  3004. size_t nb1,
  3005. size_t nb2,
  3006. size_t nb3,
  3007. size_t offset,
  3008. bool inplace) {
  3009. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3010. GGML_ASSERT(ggml_is_contiguous(a));
  3011. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3012. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3013. bool is_node = false;
  3014. if (!inplace && (a->grad || b->grad)) {
  3015. is_node = true;
  3016. }
  3017. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3018. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3019. ggml_set_op_params(result, params, sizeof(params));
  3020. result->op = GGML_OP_ACC;
  3021. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3022. result->src[0] = a;
  3023. result->src[1] = b;
  3024. return result;
  3025. }
  3026. struct ggml_tensor * ggml_acc(
  3027. struct ggml_context * ctx,
  3028. struct ggml_tensor * a,
  3029. struct ggml_tensor * b,
  3030. size_t nb1,
  3031. size_t nb2,
  3032. size_t nb3,
  3033. size_t offset) {
  3034. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3035. }
  3036. struct ggml_tensor * ggml_acc_inplace(
  3037. struct ggml_context * ctx,
  3038. struct ggml_tensor * a,
  3039. struct ggml_tensor * b,
  3040. size_t nb1,
  3041. size_t nb2,
  3042. size_t nb3,
  3043. size_t offset) {
  3044. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3045. }
  3046. // ggml_sub
  3047. static struct ggml_tensor * ggml_sub_impl(
  3048. struct ggml_context * ctx,
  3049. struct ggml_tensor * a,
  3050. struct ggml_tensor * b,
  3051. bool inplace) {
  3052. GGML_ASSERT(ggml_are_same_shape(a, b));
  3053. bool is_node = false;
  3054. if (!inplace && (a->grad || b->grad)) {
  3055. is_node = true;
  3056. }
  3057. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3058. result->op = GGML_OP_SUB;
  3059. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3060. result->src[0] = a;
  3061. result->src[1] = b;
  3062. return result;
  3063. }
  3064. struct ggml_tensor * ggml_sub(
  3065. struct ggml_context * ctx,
  3066. struct ggml_tensor * a,
  3067. struct ggml_tensor * b) {
  3068. return ggml_sub_impl(ctx, a, b, false);
  3069. }
  3070. struct ggml_tensor * ggml_sub_inplace(
  3071. struct ggml_context * ctx,
  3072. struct ggml_tensor * a,
  3073. struct ggml_tensor * b) {
  3074. return ggml_sub_impl(ctx, a, b, true);
  3075. }
  3076. // ggml_mul
  3077. static struct ggml_tensor * ggml_mul_impl(
  3078. struct ggml_context * ctx,
  3079. struct ggml_tensor * a,
  3080. struct ggml_tensor * b,
  3081. bool inplace) {
  3082. GGML_ASSERT(ggml_can_repeat(b, a));
  3083. bool is_node = false;
  3084. if (!inplace && (a->grad || b->grad)) {
  3085. // TODO: support backward pass for broadcasting
  3086. GGML_ASSERT(ggml_are_same_shape(a, b));
  3087. is_node = true;
  3088. }
  3089. if (inplace) {
  3090. GGML_ASSERT(!is_node);
  3091. }
  3092. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3093. result->op = GGML_OP_MUL;
  3094. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3095. result->src[0] = a;
  3096. result->src[1] = b;
  3097. return result;
  3098. }
  3099. struct ggml_tensor * ggml_mul(
  3100. struct ggml_context * ctx,
  3101. struct ggml_tensor * a,
  3102. struct ggml_tensor * b) {
  3103. return ggml_mul_impl(ctx, a, b, false);
  3104. }
  3105. struct ggml_tensor * ggml_mul_inplace(
  3106. struct ggml_context * ctx,
  3107. struct ggml_tensor * a,
  3108. struct ggml_tensor * b) {
  3109. return ggml_mul_impl(ctx, a, b, true);
  3110. }
  3111. // ggml_div
  3112. static struct ggml_tensor * ggml_div_impl(
  3113. struct ggml_context * ctx,
  3114. struct ggml_tensor * a,
  3115. struct ggml_tensor * b,
  3116. bool inplace) {
  3117. GGML_ASSERT(ggml_can_repeat(b, a));
  3118. bool is_node = false;
  3119. if (!inplace && (a->grad || b->grad)) {
  3120. is_node = true;
  3121. }
  3122. if (inplace) {
  3123. GGML_ASSERT(!is_node);
  3124. }
  3125. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3126. result->op = GGML_OP_DIV;
  3127. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3128. result->src[0] = a;
  3129. result->src[1] = b;
  3130. return result;
  3131. }
  3132. struct ggml_tensor * ggml_div(
  3133. struct ggml_context * ctx,
  3134. struct ggml_tensor * a,
  3135. struct ggml_tensor * b) {
  3136. return ggml_div_impl(ctx, a, b, false);
  3137. }
  3138. struct ggml_tensor * ggml_div_inplace(
  3139. struct ggml_context * ctx,
  3140. struct ggml_tensor * a,
  3141. struct ggml_tensor * b) {
  3142. return ggml_div_impl(ctx, a, b, true);
  3143. }
  3144. // ggml_sqr
  3145. static struct ggml_tensor * ggml_sqr_impl(
  3146. struct ggml_context * ctx,
  3147. struct ggml_tensor * a,
  3148. bool inplace) {
  3149. bool is_node = false;
  3150. if (!inplace && (a->grad)) {
  3151. is_node = true;
  3152. }
  3153. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3154. result->op = GGML_OP_SQR;
  3155. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3156. result->src[0] = a;
  3157. return result;
  3158. }
  3159. struct ggml_tensor * ggml_sqr(
  3160. struct ggml_context * ctx,
  3161. struct ggml_tensor * a) {
  3162. return ggml_sqr_impl(ctx, a, false);
  3163. }
  3164. struct ggml_tensor * ggml_sqr_inplace(
  3165. struct ggml_context * ctx,
  3166. struct ggml_tensor * a) {
  3167. return ggml_sqr_impl(ctx, a, true);
  3168. }
  3169. // ggml_sqrt
  3170. static struct ggml_tensor * ggml_sqrt_impl(
  3171. struct ggml_context * ctx,
  3172. struct ggml_tensor * a,
  3173. bool inplace) {
  3174. bool is_node = false;
  3175. if (!inplace && (a->grad)) {
  3176. is_node = true;
  3177. }
  3178. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3179. result->op = GGML_OP_SQRT;
  3180. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3181. result->src[0] = a;
  3182. return result;
  3183. }
  3184. struct ggml_tensor * ggml_sqrt(
  3185. struct ggml_context * ctx,
  3186. struct ggml_tensor * a) {
  3187. return ggml_sqrt_impl(ctx, a, false);
  3188. }
  3189. struct ggml_tensor * ggml_sqrt_inplace(
  3190. struct ggml_context * ctx,
  3191. struct ggml_tensor * a) {
  3192. return ggml_sqrt_impl(ctx, a, true);
  3193. }
  3194. // ggml_log
  3195. static struct ggml_tensor * ggml_log_impl(
  3196. struct ggml_context * ctx,
  3197. struct ggml_tensor * a,
  3198. bool inplace) {
  3199. bool is_node = false;
  3200. if (!inplace && (a->grad)) {
  3201. is_node = true;
  3202. }
  3203. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3204. result->op = GGML_OP_LOG;
  3205. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3206. result->src[0] = a;
  3207. return result;
  3208. }
  3209. struct ggml_tensor * ggml_log(
  3210. struct ggml_context * ctx,
  3211. struct ggml_tensor * a) {
  3212. return ggml_log_impl(ctx, a, false);
  3213. }
  3214. struct ggml_tensor * ggml_log_inplace(
  3215. struct ggml_context * ctx,
  3216. struct ggml_tensor * a) {
  3217. return ggml_log_impl(ctx, a, true);
  3218. }
  3219. // ggml_sum
  3220. struct ggml_tensor * ggml_sum(
  3221. struct ggml_context * ctx,
  3222. struct ggml_tensor * a) {
  3223. bool is_node = false;
  3224. if (a->grad) {
  3225. is_node = true;
  3226. }
  3227. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3228. result->op = GGML_OP_SUM;
  3229. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3230. result->src[0] = a;
  3231. return result;
  3232. }
  3233. // ggml_sum_rows
  3234. struct ggml_tensor * ggml_sum_rows(
  3235. struct ggml_context * ctx,
  3236. struct ggml_tensor * a) {
  3237. bool is_node = false;
  3238. if (a->grad) {
  3239. is_node = true;
  3240. }
  3241. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3242. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3243. ne[i] = a->ne[i];
  3244. }
  3245. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3246. result->op = GGML_OP_SUM_ROWS;
  3247. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3248. result->src[0] = a;
  3249. return result;
  3250. }
  3251. // ggml_mean
  3252. struct ggml_tensor * ggml_mean(
  3253. struct ggml_context * ctx,
  3254. struct ggml_tensor * a) {
  3255. bool is_node = false;
  3256. if (a->grad) {
  3257. GGML_ASSERT(false); // TODO: implement
  3258. is_node = true;
  3259. }
  3260. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3261. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3262. result->op = GGML_OP_MEAN;
  3263. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3264. result->src[0] = a;
  3265. return result;
  3266. }
  3267. // ggml_argmax
  3268. struct ggml_tensor * ggml_argmax(
  3269. struct ggml_context * ctx,
  3270. struct ggml_tensor * a) {
  3271. GGML_ASSERT(ggml_is_matrix(a));
  3272. bool is_node = false;
  3273. if (a->grad) {
  3274. GGML_ASSERT(false);
  3275. is_node = true;
  3276. }
  3277. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3278. result->op = GGML_OP_ARGMAX;
  3279. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3280. result->src[0] = a;
  3281. return result;
  3282. }
  3283. // ggml_repeat
  3284. struct ggml_tensor * ggml_repeat(
  3285. struct ggml_context * ctx,
  3286. struct ggml_tensor * a,
  3287. struct ggml_tensor * b) {
  3288. GGML_ASSERT(ggml_can_repeat(a, b));
  3289. bool is_node = false;
  3290. if (a->grad) {
  3291. is_node = true;
  3292. }
  3293. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3294. result->op = GGML_OP_REPEAT;
  3295. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3296. result->src[0] = a;
  3297. return result;
  3298. }
  3299. // ggml_repeat_back
  3300. struct ggml_tensor * ggml_repeat_back(
  3301. struct ggml_context * ctx,
  3302. struct ggml_tensor * a,
  3303. struct ggml_tensor * b) {
  3304. GGML_ASSERT(ggml_can_repeat(b, a));
  3305. bool is_node = false;
  3306. if (a->grad) {
  3307. is_node = true;
  3308. }
  3309. if (ggml_are_same_shape(a, b) && !is_node) {
  3310. return a;
  3311. }
  3312. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3313. result->op = GGML_OP_REPEAT_BACK;
  3314. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3315. result->src[0] = a;
  3316. return result;
  3317. }
  3318. // ggml_concat
  3319. struct ggml_tensor * ggml_concat(
  3320. struct ggml_context* ctx,
  3321. struct ggml_tensor* a,
  3322. struct ggml_tensor* b) {
  3323. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3324. bool is_node = false;
  3325. if (a->grad || b->grad) {
  3326. is_node = true;
  3327. }
  3328. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3329. result->op = GGML_OP_CONCAT;
  3330. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3331. result->src[0] = a;
  3332. result->src[1] = b;
  3333. return result;
  3334. }
  3335. // ggml_abs
  3336. struct ggml_tensor * ggml_abs(
  3337. struct ggml_context * ctx,
  3338. struct ggml_tensor * a) {
  3339. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3340. }
  3341. struct ggml_tensor * ggml_abs_inplace(
  3342. struct ggml_context * ctx,
  3343. struct ggml_tensor * a) {
  3344. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3345. }
  3346. // ggml_sgn
  3347. struct ggml_tensor * ggml_sgn(
  3348. struct ggml_context * ctx,
  3349. struct ggml_tensor * a) {
  3350. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3351. }
  3352. struct ggml_tensor * ggml_sgn_inplace(
  3353. struct ggml_context * ctx,
  3354. struct ggml_tensor * a) {
  3355. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3356. }
  3357. // ggml_neg
  3358. struct ggml_tensor * ggml_neg(
  3359. struct ggml_context * ctx,
  3360. struct ggml_tensor * a) {
  3361. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3362. }
  3363. struct ggml_tensor * ggml_neg_inplace(
  3364. struct ggml_context * ctx,
  3365. struct ggml_tensor * a) {
  3366. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3367. }
  3368. // ggml_step
  3369. struct ggml_tensor * ggml_step(
  3370. struct ggml_context * ctx,
  3371. struct ggml_tensor * a) {
  3372. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3373. }
  3374. struct ggml_tensor * ggml_step_inplace(
  3375. struct ggml_context * ctx,
  3376. struct ggml_tensor * a) {
  3377. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3378. }
  3379. // ggml_tanh
  3380. struct ggml_tensor * ggml_tanh(
  3381. struct ggml_context * ctx,
  3382. struct ggml_tensor * a) {
  3383. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3384. }
  3385. struct ggml_tensor * ggml_tanh_inplace(
  3386. struct ggml_context * ctx,
  3387. struct ggml_tensor * a) {
  3388. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3389. }
  3390. // ggml_elu
  3391. struct ggml_tensor * ggml_elu(
  3392. struct ggml_context * ctx,
  3393. struct ggml_tensor * a) {
  3394. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3395. }
  3396. struct ggml_tensor * ggml_elu_inplace(
  3397. struct ggml_context * ctx,
  3398. struct ggml_tensor * a) {
  3399. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3400. }
  3401. // ggml_relu
  3402. struct ggml_tensor * ggml_relu(
  3403. struct ggml_context * ctx,
  3404. struct ggml_tensor * a) {
  3405. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3406. }
  3407. struct ggml_tensor * ggml_relu_inplace(
  3408. struct ggml_context * ctx,
  3409. struct ggml_tensor * a) {
  3410. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3411. }
  3412. // ggml_leaky_relu
  3413. struct ggml_tensor * ggml_leaky_relu(
  3414. struct ggml_context * ctx,
  3415. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3416. bool is_node = false;
  3417. if (!inplace && (a->grad)) {
  3418. is_node = true;
  3419. }
  3420. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3421. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3422. result->op = GGML_OP_LEAKY_RELU;
  3423. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3424. result->src[0] = a;
  3425. return result;
  3426. }
  3427. // ggml_gelu
  3428. struct ggml_tensor * ggml_gelu(
  3429. struct ggml_context * ctx,
  3430. struct ggml_tensor * a) {
  3431. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3432. }
  3433. struct ggml_tensor * ggml_gelu_inplace(
  3434. struct ggml_context * ctx,
  3435. struct ggml_tensor * a) {
  3436. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3437. }
  3438. // ggml_gelu_quick
  3439. struct ggml_tensor * ggml_gelu_quick(
  3440. struct ggml_context * ctx,
  3441. struct ggml_tensor * a) {
  3442. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3443. }
  3444. struct ggml_tensor * ggml_gelu_quick_inplace(
  3445. struct ggml_context * ctx,
  3446. struct ggml_tensor * a) {
  3447. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3448. }
  3449. // ggml_silu
  3450. struct ggml_tensor * ggml_silu(
  3451. struct ggml_context * ctx,
  3452. struct ggml_tensor * a) {
  3453. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3454. }
  3455. struct ggml_tensor * ggml_silu_inplace(
  3456. struct ggml_context * ctx,
  3457. struct ggml_tensor * a) {
  3458. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3459. }
  3460. // ggml_silu_back
  3461. struct ggml_tensor * ggml_silu_back(
  3462. struct ggml_context * ctx,
  3463. struct ggml_tensor * a,
  3464. struct ggml_tensor * b) {
  3465. bool is_node = false;
  3466. if (a->grad || b->grad) {
  3467. // TODO: implement backward
  3468. is_node = true;
  3469. }
  3470. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3471. result->op = GGML_OP_SILU_BACK;
  3472. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3473. result->src[0] = a;
  3474. result->src[1] = b;
  3475. return result;
  3476. }
  3477. // ggml hardswish
  3478. struct ggml_tensor * ggml_hardswish(
  3479. struct ggml_context * ctx,
  3480. struct ggml_tensor * a) {
  3481. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3482. }
  3483. // ggml hardsigmoid
  3484. struct ggml_tensor * ggml_hardsigmoid(
  3485. struct ggml_context * ctx,
  3486. struct ggml_tensor * a) {
  3487. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3488. }
  3489. // ggml_norm
  3490. static struct ggml_tensor * ggml_norm_impl(
  3491. struct ggml_context * ctx,
  3492. struct ggml_tensor * a,
  3493. float eps,
  3494. bool inplace) {
  3495. bool is_node = false;
  3496. if (!inplace && (a->grad)) {
  3497. GGML_ASSERT(false); // TODO: implement backward
  3498. is_node = true;
  3499. }
  3500. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3501. ggml_set_op_params(result, &eps, sizeof(eps));
  3502. result->op = GGML_OP_NORM;
  3503. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3504. result->src[0] = a;
  3505. return result;
  3506. }
  3507. struct ggml_tensor * ggml_norm(
  3508. struct ggml_context * ctx,
  3509. struct ggml_tensor * a,
  3510. float eps) {
  3511. return ggml_norm_impl(ctx, a, eps, false);
  3512. }
  3513. struct ggml_tensor * ggml_norm_inplace(
  3514. struct ggml_context * ctx,
  3515. struct ggml_tensor * a,
  3516. float eps) {
  3517. return ggml_norm_impl(ctx, a, eps, true);
  3518. }
  3519. // ggml_rms_norm
  3520. static struct ggml_tensor * ggml_rms_norm_impl(
  3521. struct ggml_context * ctx,
  3522. struct ggml_tensor * a,
  3523. float eps,
  3524. bool inplace) {
  3525. bool is_node = false;
  3526. if (!inplace && (a->grad)) {
  3527. is_node = true;
  3528. }
  3529. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3530. ggml_set_op_params(result, &eps, sizeof(eps));
  3531. result->op = GGML_OP_RMS_NORM;
  3532. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3533. result->src[0] = a;
  3534. return result;
  3535. }
  3536. struct ggml_tensor * ggml_rms_norm(
  3537. struct ggml_context * ctx,
  3538. struct ggml_tensor * a,
  3539. float eps) {
  3540. return ggml_rms_norm_impl(ctx, a, eps, false);
  3541. }
  3542. struct ggml_tensor * ggml_rms_norm_inplace(
  3543. struct ggml_context * ctx,
  3544. struct ggml_tensor * a,
  3545. float eps) {
  3546. return ggml_rms_norm_impl(ctx, a, eps, true);
  3547. }
  3548. // ggml_rms_norm_back
  3549. struct ggml_tensor * ggml_rms_norm_back(
  3550. struct ggml_context * ctx,
  3551. struct ggml_tensor * a,
  3552. struct ggml_tensor * b,
  3553. float eps) {
  3554. bool is_node = false;
  3555. if (a->grad) {
  3556. // TODO: implement backward
  3557. is_node = true;
  3558. }
  3559. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3560. ggml_set_op_params(result, &eps, sizeof(eps));
  3561. result->op = GGML_OP_RMS_NORM_BACK;
  3562. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3563. result->src[0] = a;
  3564. result->src[1] = b;
  3565. return result;
  3566. }
  3567. // ggml_group_norm
  3568. static struct ggml_tensor * ggml_group_norm_impl(
  3569. struct ggml_context * ctx,
  3570. struct ggml_tensor * a,
  3571. int n_groups,
  3572. bool inplace) {
  3573. bool is_node = false;
  3574. if (!inplace && (a->grad)) {
  3575. GGML_ASSERT(false); // TODO: implement backward
  3576. is_node = true;
  3577. }
  3578. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3579. result->op_params[0] = n_groups;
  3580. result->op = GGML_OP_GROUP_NORM;
  3581. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3582. result->src[0] = a;
  3583. return result;
  3584. }
  3585. struct ggml_tensor * ggml_group_norm(
  3586. struct ggml_context * ctx,
  3587. struct ggml_tensor * a,
  3588. int n_groups) {
  3589. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3590. }
  3591. struct ggml_tensor * ggml_group_norm_inplace(
  3592. struct ggml_context * ctx,
  3593. struct ggml_tensor * a,
  3594. int n_groups) {
  3595. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3596. }
  3597. // ggml_mul_mat
  3598. struct ggml_tensor * ggml_mul_mat(
  3599. struct ggml_context * ctx,
  3600. struct ggml_tensor * a,
  3601. struct ggml_tensor * b) {
  3602. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3603. GGML_ASSERT(!ggml_is_transposed(a));
  3604. bool is_node = false;
  3605. if (a->grad || b->grad) {
  3606. is_node = true;
  3607. }
  3608. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3609. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3610. result->op = GGML_OP_MUL_MAT;
  3611. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3612. result->src[0] = a;
  3613. result->src[1] = b;
  3614. return result;
  3615. }
  3616. void ggml_mul_mat_set_prec(
  3617. struct ggml_tensor * a,
  3618. enum ggml_prec prec) {
  3619. const int32_t prec_i32 = (int32_t) prec;
  3620. ggml_set_op_params_i32(a, 0, prec_i32);
  3621. }
  3622. // ggml_mul_mat_id
  3623. struct ggml_tensor * ggml_mul_mat_id(
  3624. struct ggml_context * ctx,
  3625. struct ggml_tensor * const as[],
  3626. int n_as,
  3627. struct ggml_tensor * ids,
  3628. int id,
  3629. struct ggml_tensor * b) {
  3630. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3631. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3632. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3633. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3634. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3635. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3636. bool is_node = false;
  3637. if (as[0]->grad || b->grad) {
  3638. is_node = true;
  3639. }
  3640. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3641. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3642. ggml_set_op_params_i32(result, 0, id);
  3643. ggml_set_op_params_i32(result, 1, n_as);
  3644. result->op = GGML_OP_MUL_MAT_ID;
  3645. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3646. result->src[0] = ids;
  3647. result->src[1] = b;
  3648. for (int i = 0; i < n_as; i++) {
  3649. struct ggml_tensor * a = as[i];
  3650. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3651. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3652. GGML_ASSERT(!ggml_is_transposed(a));
  3653. result->src[i + 2] = a;
  3654. }
  3655. return result;
  3656. }
  3657. // ggml_out_prod
  3658. struct ggml_tensor * ggml_out_prod(
  3659. struct ggml_context * ctx,
  3660. struct ggml_tensor * a,
  3661. struct ggml_tensor * b) {
  3662. GGML_ASSERT(ggml_can_out_prod(a, b));
  3663. GGML_ASSERT(!ggml_is_transposed(a));
  3664. bool is_node = false;
  3665. if (a->grad || b->grad) {
  3666. is_node = true;
  3667. }
  3668. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3669. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3670. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3671. result->op = GGML_OP_OUT_PROD;
  3672. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3673. result->src[0] = a;
  3674. result->src[1] = b;
  3675. return result;
  3676. }
  3677. // ggml_scale
  3678. static struct ggml_tensor * ggml_scale_impl(
  3679. struct ggml_context * ctx,
  3680. struct ggml_tensor * a,
  3681. float s,
  3682. bool inplace) {
  3683. GGML_ASSERT(ggml_is_padded_1d(a));
  3684. bool is_node = false;
  3685. if (a->grad) {
  3686. is_node = true;
  3687. }
  3688. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3689. ggml_set_op_params(result, &s, sizeof(s));
  3690. result->op = GGML_OP_SCALE;
  3691. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3692. result->src[0] = a;
  3693. return result;
  3694. }
  3695. struct ggml_tensor * ggml_scale(
  3696. struct ggml_context * ctx,
  3697. struct ggml_tensor * a,
  3698. float s) {
  3699. return ggml_scale_impl(ctx, a, s, false);
  3700. }
  3701. struct ggml_tensor * ggml_scale_inplace(
  3702. struct ggml_context * ctx,
  3703. struct ggml_tensor * a,
  3704. float s) {
  3705. return ggml_scale_impl(ctx, a, s, true);
  3706. }
  3707. // ggml_set
  3708. static struct ggml_tensor * ggml_set_impl(
  3709. struct ggml_context * ctx,
  3710. struct ggml_tensor * a,
  3711. struct ggml_tensor * b,
  3712. size_t nb1,
  3713. size_t nb2,
  3714. size_t nb3,
  3715. size_t offset,
  3716. bool inplace) {
  3717. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3718. bool is_node = false;
  3719. if (a->grad || b->grad) {
  3720. is_node = true;
  3721. }
  3722. // make a view of the destination
  3723. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3724. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3725. ggml_set_op_params(result, params, sizeof(params));
  3726. result->op = GGML_OP_SET;
  3727. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3728. result->src[0] = a;
  3729. result->src[1] = b;
  3730. return result;
  3731. }
  3732. struct ggml_tensor * ggml_set(
  3733. struct ggml_context * ctx,
  3734. struct ggml_tensor * a,
  3735. struct ggml_tensor * b,
  3736. size_t nb1,
  3737. size_t nb2,
  3738. size_t nb3,
  3739. size_t offset) {
  3740. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3741. }
  3742. struct ggml_tensor * ggml_set_inplace(
  3743. struct ggml_context * ctx,
  3744. struct ggml_tensor * a,
  3745. struct ggml_tensor * b,
  3746. size_t nb1,
  3747. size_t nb2,
  3748. size_t nb3,
  3749. size_t offset) {
  3750. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3751. }
  3752. struct ggml_tensor * ggml_set_1d(
  3753. struct ggml_context * ctx,
  3754. struct ggml_tensor * a,
  3755. struct ggml_tensor * b,
  3756. size_t offset) {
  3757. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3758. }
  3759. struct ggml_tensor * ggml_set_1d_inplace(
  3760. struct ggml_context * ctx,
  3761. struct ggml_tensor * a,
  3762. struct ggml_tensor * b,
  3763. size_t offset) {
  3764. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3765. }
  3766. struct ggml_tensor * ggml_set_2d(
  3767. struct ggml_context * ctx,
  3768. struct ggml_tensor * a,
  3769. struct ggml_tensor * b,
  3770. size_t nb1,
  3771. size_t offset) {
  3772. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3773. }
  3774. struct ggml_tensor * ggml_set_2d_inplace(
  3775. struct ggml_context * ctx,
  3776. struct ggml_tensor * a,
  3777. struct ggml_tensor * b,
  3778. size_t nb1,
  3779. size_t offset) {
  3780. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3781. }
  3782. // ggml_cpy
  3783. static struct ggml_tensor * ggml_cpy_impl(
  3784. struct ggml_context * ctx,
  3785. struct ggml_tensor * a,
  3786. struct ggml_tensor * b) {
  3787. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3788. bool is_node = false;
  3789. if (a->grad || b->grad) {
  3790. // inplace is false and either one have a grad
  3791. is_node = true;
  3792. }
  3793. // make a view of the destination
  3794. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3795. if (strlen(b->name) > 0) {
  3796. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3797. } else {
  3798. ggml_format_name(result, "%s (copy)", a->name);
  3799. }
  3800. result->op = GGML_OP_CPY;
  3801. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3802. result->src[0] = a;
  3803. result->src[1] = b;
  3804. return result;
  3805. }
  3806. struct ggml_tensor * ggml_cpy(
  3807. struct ggml_context * ctx,
  3808. struct ggml_tensor * a,
  3809. struct ggml_tensor * b) {
  3810. return ggml_cpy_impl(ctx, a, b);
  3811. }
  3812. struct ggml_tensor * ggml_cast(
  3813. struct ggml_context * ctx,
  3814. struct ggml_tensor * a,
  3815. enum ggml_type type) {
  3816. bool is_node = false;
  3817. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3818. ggml_format_name(result, "%s (copy)", a->name);
  3819. result->op = GGML_OP_CPY;
  3820. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3821. result->src[0] = a;
  3822. result->src[1] = result;
  3823. return result;
  3824. }
  3825. // ggml_cont
  3826. static struct ggml_tensor * ggml_cont_impl(
  3827. struct ggml_context * ctx,
  3828. struct ggml_tensor * a) {
  3829. bool is_node = false;
  3830. if (a->grad) {
  3831. is_node = true;
  3832. }
  3833. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3834. ggml_format_name(result, "%s (cont)", a->name);
  3835. result->op = GGML_OP_CONT;
  3836. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3837. result->src[0] = a;
  3838. return result;
  3839. }
  3840. struct ggml_tensor * ggml_cont(
  3841. struct ggml_context * ctx,
  3842. struct ggml_tensor * a) {
  3843. return ggml_cont_impl(ctx, a);
  3844. }
  3845. // make contiguous, with new shape
  3846. GGML_API struct ggml_tensor * ggml_cont_1d(
  3847. struct ggml_context * ctx,
  3848. struct ggml_tensor * a,
  3849. int64_t ne0) {
  3850. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3851. }
  3852. GGML_API struct ggml_tensor * ggml_cont_2d(
  3853. struct ggml_context * ctx,
  3854. struct ggml_tensor * a,
  3855. int64_t ne0,
  3856. int64_t ne1) {
  3857. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3858. }
  3859. GGML_API struct ggml_tensor * ggml_cont_3d(
  3860. struct ggml_context * ctx,
  3861. struct ggml_tensor * a,
  3862. int64_t ne0,
  3863. int64_t ne1,
  3864. int64_t ne2) {
  3865. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3866. }
  3867. struct ggml_tensor * ggml_cont_4d(
  3868. struct ggml_context * ctx,
  3869. struct ggml_tensor * a,
  3870. int64_t ne0,
  3871. int64_t ne1,
  3872. int64_t ne2,
  3873. int64_t ne3) {
  3874. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3875. bool is_node = false;
  3876. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3877. ggml_format_name(result, "%s (cont)", a->name);
  3878. result->op = GGML_OP_CONT;
  3879. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3880. result->src[0] = a;
  3881. return result;
  3882. }
  3883. // ggml_reshape
  3884. struct ggml_tensor * ggml_reshape(
  3885. struct ggml_context * ctx,
  3886. struct ggml_tensor * a,
  3887. struct ggml_tensor * b) {
  3888. GGML_ASSERT(ggml_is_contiguous(a));
  3889. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3890. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3891. bool is_node = false;
  3892. if (a->grad) {
  3893. is_node = true;
  3894. }
  3895. if (b->grad) {
  3896. // gradient propagation is not supported
  3897. //GGML_ASSERT(false);
  3898. }
  3899. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  3900. ggml_format_name(result, "%s (reshaped)", a->name);
  3901. result->op = GGML_OP_RESHAPE;
  3902. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3903. result->src[0] = a;
  3904. return result;
  3905. }
  3906. struct ggml_tensor * ggml_reshape_1d(
  3907. struct ggml_context * ctx,
  3908. struct ggml_tensor * a,
  3909. int64_t ne0) {
  3910. GGML_ASSERT(ggml_is_contiguous(a));
  3911. GGML_ASSERT(ggml_nelements(a) == ne0);
  3912. bool is_node = false;
  3913. if (a->grad) {
  3914. is_node = true;
  3915. }
  3916. const int64_t ne[1] = { ne0 };
  3917. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3918. ggml_format_name(result, "%s (reshaped)", a->name);
  3919. result->op = GGML_OP_RESHAPE;
  3920. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3921. result->src[0] = a;
  3922. return result;
  3923. }
  3924. struct ggml_tensor * ggml_reshape_2d(
  3925. struct ggml_context * ctx,
  3926. struct ggml_tensor * a,
  3927. int64_t ne0,
  3928. int64_t ne1) {
  3929. GGML_ASSERT(ggml_is_contiguous(a));
  3930. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3931. bool is_node = false;
  3932. if (a->grad) {
  3933. is_node = true;
  3934. }
  3935. const int64_t ne[2] = { ne0, ne1 };
  3936. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3937. ggml_format_name(result, "%s (reshaped)", a->name);
  3938. result->op = GGML_OP_RESHAPE;
  3939. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3940. result->src[0] = a;
  3941. return result;
  3942. }
  3943. struct ggml_tensor * ggml_reshape_3d(
  3944. struct ggml_context * ctx,
  3945. struct ggml_tensor * a,
  3946. int64_t ne0,
  3947. int64_t ne1,
  3948. int64_t ne2) {
  3949. GGML_ASSERT(ggml_is_contiguous(a));
  3950. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3951. bool is_node = false;
  3952. if (a->grad) {
  3953. is_node = true;
  3954. }
  3955. const int64_t ne[3] = { ne0, ne1, ne2 };
  3956. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3957. ggml_format_name(result, "%s (reshaped)", a->name);
  3958. result->op = GGML_OP_RESHAPE;
  3959. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3960. result->src[0] = a;
  3961. return result;
  3962. }
  3963. struct ggml_tensor * ggml_reshape_4d(
  3964. struct ggml_context * ctx,
  3965. struct ggml_tensor * a,
  3966. int64_t ne0,
  3967. int64_t ne1,
  3968. int64_t ne2,
  3969. int64_t ne3) {
  3970. GGML_ASSERT(ggml_is_contiguous(a));
  3971. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3972. bool is_node = false;
  3973. if (a->grad) {
  3974. is_node = true;
  3975. }
  3976. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3977. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3978. ggml_format_name(result, "%s (reshaped)", a->name);
  3979. result->op = GGML_OP_RESHAPE;
  3980. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3981. result->src[0] = a;
  3982. return result;
  3983. }
  3984. static struct ggml_tensor * ggml_view_impl(
  3985. struct ggml_context * ctx,
  3986. struct ggml_tensor * a,
  3987. int n_dims,
  3988. const int64_t * ne,
  3989. size_t offset) {
  3990. bool is_node = false;
  3991. if (a->grad) {
  3992. is_node = true;
  3993. }
  3994. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3995. ggml_format_name(result, "%s (view)", a->name);
  3996. ggml_set_op_params(result, &offset, sizeof(offset));
  3997. result->op = GGML_OP_VIEW;
  3998. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3999. result->src[0] = a;
  4000. return result;
  4001. }
  4002. // ggml_view_1d
  4003. struct ggml_tensor * ggml_view_1d(
  4004. struct ggml_context * ctx,
  4005. struct ggml_tensor * a,
  4006. int64_t ne0,
  4007. size_t offset) {
  4008. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4009. return result;
  4010. }
  4011. // ggml_view_2d
  4012. struct ggml_tensor * ggml_view_2d(
  4013. struct ggml_context * ctx,
  4014. struct ggml_tensor * a,
  4015. int64_t ne0,
  4016. int64_t ne1,
  4017. size_t nb1,
  4018. size_t offset) {
  4019. const int64_t ne[2] = { ne0, ne1 };
  4020. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4021. result->nb[1] = nb1;
  4022. result->nb[2] = result->nb[1]*ne1;
  4023. result->nb[3] = result->nb[2];
  4024. return result;
  4025. }
  4026. // ggml_view_3d
  4027. struct ggml_tensor * ggml_view_3d(
  4028. struct ggml_context * ctx,
  4029. struct ggml_tensor * a,
  4030. int64_t ne0,
  4031. int64_t ne1,
  4032. int64_t ne2,
  4033. size_t nb1,
  4034. size_t nb2,
  4035. size_t offset) {
  4036. const int64_t ne[3] = { ne0, ne1, ne2 };
  4037. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4038. result->nb[1] = nb1;
  4039. result->nb[2] = nb2;
  4040. result->nb[3] = result->nb[2]*ne2;
  4041. return result;
  4042. }
  4043. // ggml_view_4d
  4044. struct ggml_tensor * ggml_view_4d(
  4045. struct ggml_context * ctx,
  4046. struct ggml_tensor * a,
  4047. int64_t ne0,
  4048. int64_t ne1,
  4049. int64_t ne2,
  4050. int64_t ne3,
  4051. size_t nb1,
  4052. size_t nb2,
  4053. size_t nb3,
  4054. size_t offset) {
  4055. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4056. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4057. result->nb[1] = nb1;
  4058. result->nb[2] = nb2;
  4059. result->nb[3] = nb3;
  4060. return result;
  4061. }
  4062. // ggml_permute
  4063. struct ggml_tensor * ggml_permute(
  4064. struct ggml_context * ctx,
  4065. struct ggml_tensor * a,
  4066. int axis0,
  4067. int axis1,
  4068. int axis2,
  4069. int axis3) {
  4070. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4071. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4072. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4073. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4074. GGML_ASSERT(axis0 != axis1);
  4075. GGML_ASSERT(axis0 != axis2);
  4076. GGML_ASSERT(axis0 != axis3);
  4077. GGML_ASSERT(axis1 != axis2);
  4078. GGML_ASSERT(axis1 != axis3);
  4079. GGML_ASSERT(axis2 != axis3);
  4080. bool is_node = false;
  4081. if (a->grad) {
  4082. is_node = true;
  4083. }
  4084. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4085. ggml_format_name(result, "%s (permuted)", a->name);
  4086. int ne[GGML_MAX_DIMS];
  4087. int nb[GGML_MAX_DIMS];
  4088. ne[axis0] = a->ne[0];
  4089. ne[axis1] = a->ne[1];
  4090. ne[axis2] = a->ne[2];
  4091. ne[axis3] = a->ne[3];
  4092. nb[axis0] = a->nb[0];
  4093. nb[axis1] = a->nb[1];
  4094. nb[axis2] = a->nb[2];
  4095. nb[axis3] = a->nb[3];
  4096. result->ne[0] = ne[0];
  4097. result->ne[1] = ne[1];
  4098. result->ne[2] = ne[2];
  4099. result->ne[3] = ne[3];
  4100. result->nb[0] = nb[0];
  4101. result->nb[1] = nb[1];
  4102. result->nb[2] = nb[2];
  4103. result->nb[3] = nb[3];
  4104. result->op = GGML_OP_PERMUTE;
  4105. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4106. result->src[0] = a;
  4107. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4108. ggml_set_op_params(result, params, sizeof(params));
  4109. return result;
  4110. }
  4111. // ggml_transpose
  4112. struct ggml_tensor * ggml_transpose(
  4113. struct ggml_context * ctx,
  4114. struct ggml_tensor * a) {
  4115. bool is_node = false;
  4116. if (a->grad) {
  4117. is_node = true;
  4118. }
  4119. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4120. ggml_format_name(result, "%s (transposed)", a->name);
  4121. result->ne[0] = a->ne[1];
  4122. result->ne[1] = a->ne[0];
  4123. result->nb[0] = a->nb[1];
  4124. result->nb[1] = a->nb[0];
  4125. result->op = GGML_OP_TRANSPOSE;
  4126. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4127. result->src[0] = a;
  4128. return result;
  4129. }
  4130. // ggml_get_rows
  4131. struct ggml_tensor * ggml_get_rows(
  4132. struct ggml_context * ctx,
  4133. struct ggml_tensor * a,
  4134. struct ggml_tensor * b) {
  4135. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4136. GGML_ASSERT(b->ne[3] == 1);
  4137. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4138. bool is_node = false;
  4139. if (a->grad || b->grad) {
  4140. is_node = true;
  4141. }
  4142. // TODO: implement non F32 return
  4143. enum ggml_type type = GGML_TYPE_F32;
  4144. if (a->type == GGML_TYPE_I32) {
  4145. type = a->type;
  4146. }
  4147. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4148. result->op = GGML_OP_GET_ROWS;
  4149. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4150. result->src[0] = a;
  4151. result->src[1] = b;
  4152. return result;
  4153. }
  4154. // ggml_get_rows_back
  4155. struct ggml_tensor * ggml_get_rows_back(
  4156. struct ggml_context * ctx,
  4157. struct ggml_tensor * a,
  4158. struct ggml_tensor * b,
  4159. struct ggml_tensor * c) {
  4160. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4161. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4162. bool is_node = false;
  4163. if (a->grad || b->grad) {
  4164. is_node = true;
  4165. }
  4166. // TODO: implement non F32 return
  4167. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4168. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4169. result->op = GGML_OP_GET_ROWS_BACK;
  4170. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4171. result->src[0] = a;
  4172. result->src[1] = b;
  4173. return result;
  4174. }
  4175. // ggml_diag
  4176. struct ggml_tensor * ggml_diag(
  4177. struct ggml_context * ctx,
  4178. struct ggml_tensor * a) {
  4179. GGML_ASSERT(a->ne[1] == 1);
  4180. bool is_node = false;
  4181. if (a->grad) {
  4182. is_node = true;
  4183. }
  4184. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4185. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4186. result->op = GGML_OP_DIAG;
  4187. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4188. result->src[0] = a;
  4189. return result;
  4190. }
  4191. // ggml_diag_mask_inf
  4192. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4193. struct ggml_context * ctx,
  4194. struct ggml_tensor * a,
  4195. int n_past,
  4196. bool inplace) {
  4197. bool is_node = false;
  4198. if (a->grad) {
  4199. is_node = true;
  4200. }
  4201. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4202. int32_t params[] = { n_past };
  4203. ggml_set_op_params(result, params, sizeof(params));
  4204. result->op = GGML_OP_DIAG_MASK_INF;
  4205. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4206. result->src[0] = a;
  4207. return result;
  4208. }
  4209. struct ggml_tensor * ggml_diag_mask_inf(
  4210. struct ggml_context * ctx,
  4211. struct ggml_tensor * a,
  4212. int n_past) {
  4213. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4214. }
  4215. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4216. struct ggml_context * ctx,
  4217. struct ggml_tensor * a,
  4218. int n_past) {
  4219. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4220. }
  4221. // ggml_diag_mask_zero
  4222. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4223. struct ggml_context * ctx,
  4224. struct ggml_tensor * a,
  4225. int n_past,
  4226. bool inplace) {
  4227. bool is_node = false;
  4228. if (a->grad) {
  4229. is_node = true;
  4230. }
  4231. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4232. int32_t params[] = { n_past };
  4233. ggml_set_op_params(result, params, sizeof(params));
  4234. result->op = GGML_OP_DIAG_MASK_ZERO;
  4235. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4236. result->src[0] = a;
  4237. return result;
  4238. }
  4239. struct ggml_tensor * ggml_diag_mask_zero(
  4240. struct ggml_context * ctx,
  4241. struct ggml_tensor * a,
  4242. int n_past) {
  4243. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4244. }
  4245. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4246. struct ggml_context * ctx,
  4247. struct ggml_tensor * a,
  4248. int n_past) {
  4249. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4250. }
  4251. // ggml_soft_max
  4252. static struct ggml_tensor * ggml_soft_max_impl(
  4253. struct ggml_context * ctx,
  4254. struct ggml_tensor * a,
  4255. struct ggml_tensor * mask,
  4256. struct ggml_tensor * pos,
  4257. float scale,
  4258. float max_bias,
  4259. bool inplace) {
  4260. GGML_ASSERT(ggml_is_contiguous(a));
  4261. if (mask) {
  4262. GGML_ASSERT(ggml_is_contiguous(mask));
  4263. GGML_ASSERT(ggml_is_matrix(mask));
  4264. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4265. }
  4266. if (pos) {
  4267. GGML_ASSERT(ggml_is_vector(pos));
  4268. GGML_ASSERT(pos->type == GGML_TYPE_F32);
  4269. GGML_ASSERT(pos->ne[0] == a->ne[0]);
  4270. }
  4271. if (max_bias > 0.0f) {
  4272. GGML_ASSERT(pos);
  4273. }
  4274. bool is_node = false;
  4275. if (a->grad) {
  4276. is_node = true;
  4277. }
  4278. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4279. float params[] = { scale, max_bias };
  4280. ggml_set_op_params(result, params, sizeof(params));
  4281. result->op = GGML_OP_SOFT_MAX;
  4282. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4283. result->src[0] = a;
  4284. result->src[1] = mask;
  4285. result->src[2] = pos;
  4286. return result;
  4287. }
  4288. struct ggml_tensor * ggml_soft_max(
  4289. struct ggml_context * ctx,
  4290. struct ggml_tensor * a) {
  4291. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, false);
  4292. }
  4293. struct ggml_tensor * ggml_soft_max_inplace(
  4294. struct ggml_context * ctx,
  4295. struct ggml_tensor * a) {
  4296. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, true);
  4297. }
  4298. struct ggml_tensor * ggml_soft_max_ext(
  4299. struct ggml_context * ctx,
  4300. struct ggml_tensor * a,
  4301. struct ggml_tensor * mask,
  4302. struct ggml_tensor * pos,
  4303. float scale,
  4304. float max_bias) {
  4305. return ggml_soft_max_impl(ctx, a, mask, pos, scale, max_bias, false);
  4306. }
  4307. // ggml_soft_max_back
  4308. static struct ggml_tensor * ggml_soft_max_back_impl(
  4309. struct ggml_context * ctx,
  4310. struct ggml_tensor * a,
  4311. struct ggml_tensor * b,
  4312. bool inplace) {
  4313. bool is_node = false;
  4314. if (a->grad || b->grad) {
  4315. is_node = true; // TODO : implement backward pass
  4316. }
  4317. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4318. result->op = GGML_OP_SOFT_MAX_BACK;
  4319. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4320. result->src[0] = a;
  4321. result->src[1] = b;
  4322. return result;
  4323. }
  4324. struct ggml_tensor * ggml_soft_max_back(
  4325. struct ggml_context * ctx,
  4326. struct ggml_tensor * a,
  4327. struct ggml_tensor * b) {
  4328. return ggml_soft_max_back_impl(ctx, a, b, false);
  4329. }
  4330. struct ggml_tensor * ggml_soft_max_back_inplace(
  4331. struct ggml_context * ctx,
  4332. struct ggml_tensor * a,
  4333. struct ggml_tensor * b) {
  4334. return ggml_soft_max_back_impl(ctx, a, b, true);
  4335. }
  4336. // ggml_rope
  4337. static struct ggml_tensor * ggml_rope_impl(
  4338. struct ggml_context * ctx,
  4339. struct ggml_tensor * a,
  4340. struct ggml_tensor * b,
  4341. int n_dims,
  4342. int mode,
  4343. int n_ctx,
  4344. int n_orig_ctx,
  4345. float freq_base,
  4346. float freq_scale,
  4347. float ext_factor,
  4348. float attn_factor,
  4349. float beta_fast,
  4350. float beta_slow,
  4351. float xpos_base,
  4352. bool xpos_down,
  4353. bool inplace) {
  4354. GGML_ASSERT(ggml_is_vector(b));
  4355. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4356. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4357. bool is_node = false;
  4358. if (a->grad) {
  4359. is_node = true;
  4360. }
  4361. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4362. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4363. memcpy(params + 5, &freq_base, sizeof(float));
  4364. memcpy(params + 6, &freq_scale, sizeof(float));
  4365. memcpy(params + 7, &ext_factor, sizeof(float));
  4366. memcpy(params + 8, &attn_factor, sizeof(float));
  4367. memcpy(params + 9, &beta_fast, sizeof(float));
  4368. memcpy(params + 10, &beta_slow, sizeof(float));
  4369. memcpy(params + 11, &xpos_base, sizeof(float));
  4370. memcpy(params + 12, &xpos_down, sizeof(bool));
  4371. ggml_set_op_params(result, params, sizeof(params));
  4372. result->op = GGML_OP_ROPE;
  4373. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4374. result->src[0] = a;
  4375. result->src[1] = b;
  4376. return result;
  4377. }
  4378. struct ggml_tensor * ggml_rope(
  4379. struct ggml_context * ctx,
  4380. struct ggml_tensor * a,
  4381. struct ggml_tensor * b,
  4382. int n_dims,
  4383. int mode,
  4384. int n_ctx) {
  4385. return ggml_rope_impl(
  4386. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4387. );
  4388. }
  4389. struct ggml_tensor * ggml_rope_inplace(
  4390. struct ggml_context * ctx,
  4391. struct ggml_tensor * a,
  4392. struct ggml_tensor * b,
  4393. int n_dims,
  4394. int mode,
  4395. int n_ctx) {
  4396. return ggml_rope_impl(
  4397. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4398. );
  4399. }
  4400. struct ggml_tensor * ggml_rope_custom(
  4401. struct ggml_context * ctx,
  4402. struct ggml_tensor * a,
  4403. struct ggml_tensor * b,
  4404. int n_dims,
  4405. int mode,
  4406. int n_ctx,
  4407. int n_orig_ctx,
  4408. float freq_base,
  4409. float freq_scale,
  4410. float ext_factor,
  4411. float attn_factor,
  4412. float beta_fast,
  4413. float beta_slow) {
  4414. return ggml_rope_impl(
  4415. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4416. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4417. );
  4418. }
  4419. struct ggml_tensor * ggml_rope_custom_inplace(
  4420. struct ggml_context * ctx,
  4421. struct ggml_tensor * a,
  4422. struct ggml_tensor * b,
  4423. int n_dims,
  4424. int mode,
  4425. int n_ctx,
  4426. int n_orig_ctx,
  4427. float freq_base,
  4428. float freq_scale,
  4429. float ext_factor,
  4430. float attn_factor,
  4431. float beta_fast,
  4432. float beta_slow) {
  4433. return ggml_rope_impl(
  4434. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4435. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4436. );
  4437. }
  4438. struct ggml_tensor * ggml_rope_xpos_inplace(
  4439. struct ggml_context * ctx,
  4440. struct ggml_tensor * a,
  4441. struct ggml_tensor * b,
  4442. int n_dims,
  4443. float base,
  4444. bool down) {
  4445. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4446. }
  4447. // ggml_rope_back
  4448. struct ggml_tensor * ggml_rope_back(
  4449. struct ggml_context * ctx,
  4450. struct ggml_tensor * a,
  4451. struct ggml_tensor * b,
  4452. int n_dims,
  4453. int mode,
  4454. int n_ctx,
  4455. int n_orig_ctx,
  4456. float freq_base,
  4457. float freq_scale,
  4458. float ext_factor,
  4459. float attn_factor,
  4460. float beta_fast,
  4461. float beta_slow,
  4462. float xpos_base,
  4463. bool xpos_down) {
  4464. GGML_ASSERT(ggml_is_vector(b));
  4465. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4466. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4467. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4468. bool is_node = false;
  4469. if (a->grad) {
  4470. is_node = false; // TODO: implement backward
  4471. }
  4472. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4473. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4474. memcpy(params + 5, &freq_base, sizeof(float));
  4475. memcpy(params + 6, &freq_scale, sizeof(float));
  4476. memcpy(params + 7, &ext_factor, sizeof(float));
  4477. memcpy(params + 8, &attn_factor, sizeof(float));
  4478. memcpy(params + 9, &beta_fast, sizeof(float));
  4479. memcpy(params + 10, &beta_slow, sizeof(float));
  4480. memcpy(params + 11, &xpos_base, sizeof(float));
  4481. memcpy(params + 12, &xpos_down, sizeof(bool));
  4482. ggml_set_op_params(result, params, sizeof(params));
  4483. result->op = GGML_OP_ROPE_BACK;
  4484. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4485. result->src[0] = a;
  4486. result->src[1] = b;
  4487. return result;
  4488. }
  4489. // ggml_alibi
  4490. struct ggml_tensor * ggml_alibi(
  4491. struct ggml_context * ctx,
  4492. struct ggml_tensor * a,
  4493. int n_past,
  4494. int n_head,
  4495. float bias_max) {
  4496. GGML_ASSERT(n_past >= 0);
  4497. bool is_node = false;
  4498. if (a->grad) {
  4499. GGML_ASSERT(false); // TODO: implement backward
  4500. is_node = true;
  4501. }
  4502. // TODO: when implement backward, fix this:
  4503. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4504. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4505. int32_t op_params[3] = { n_past, n_head };
  4506. memcpy(op_params + 2, &bias_max, sizeof(float));
  4507. ggml_set_op_params(result, op_params, sizeof(op_params));
  4508. result->op = GGML_OP_ALIBI;
  4509. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4510. result->src[0] = a;
  4511. return result;
  4512. }
  4513. // ggml_clamp
  4514. struct ggml_tensor * ggml_clamp(
  4515. struct ggml_context * ctx,
  4516. struct ggml_tensor * a,
  4517. float min,
  4518. float max) {
  4519. bool is_node = false;
  4520. if (a->grad) {
  4521. GGML_ASSERT(false); // TODO: implement backward
  4522. is_node = true;
  4523. }
  4524. // TODO: when implement backward, fix this:
  4525. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4526. float params[] = { min, max };
  4527. ggml_set_op_params(result, params, sizeof(params));
  4528. result->op = GGML_OP_CLAMP;
  4529. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4530. result->src[0] = a;
  4531. return result;
  4532. }
  4533. // ggml_conv_1d
  4534. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4535. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4536. }
  4537. GGML_API struct ggml_tensor * ggml_conv_1d(
  4538. struct ggml_context * ctx,
  4539. struct ggml_tensor * a,
  4540. struct ggml_tensor * b,
  4541. int s0,
  4542. int p0,
  4543. int d0) {
  4544. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4545. struct ggml_tensor * result =
  4546. ggml_mul_mat(ctx,
  4547. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4548. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4549. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4550. return result;
  4551. }
  4552. // ggml_conv_1d_ph
  4553. struct ggml_tensor* ggml_conv_1d_ph(
  4554. struct ggml_context * ctx,
  4555. struct ggml_tensor * a,
  4556. struct ggml_tensor * b,
  4557. int s,
  4558. int d) {
  4559. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4560. }
  4561. // ggml_conv_transpose_1d
  4562. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4563. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4564. }
  4565. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4566. struct ggml_context * ctx,
  4567. struct ggml_tensor * a,
  4568. struct ggml_tensor * b,
  4569. int s0,
  4570. int p0,
  4571. int d0) {
  4572. GGML_ASSERT(ggml_is_matrix(b));
  4573. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4574. GGML_ASSERT(a->ne[3] == 1);
  4575. GGML_ASSERT(p0 == 0);
  4576. GGML_ASSERT(d0 == 1);
  4577. bool is_node = false;
  4578. if (a->grad || b->grad) {
  4579. GGML_ASSERT(false); // TODO: implement backward
  4580. is_node = true;
  4581. }
  4582. const int64_t ne[4] = {
  4583. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4584. a->ne[1], b->ne[2], 1,
  4585. };
  4586. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4587. int32_t params[] = { s0, p0, d0 };
  4588. ggml_set_op_params(result, params, sizeof(params));
  4589. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4590. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4591. result->src[0] = a;
  4592. result->src[1] = b;
  4593. return result;
  4594. }
  4595. // ggml_conv_depthwise
  4596. struct ggml_tensor * ggml_conv_depthwise_2d(
  4597. struct ggml_context * ctx,
  4598. struct ggml_tensor * a,
  4599. struct ggml_tensor * b,
  4600. int s0,
  4601. int s1,
  4602. int p0,
  4603. int p1,
  4604. int d0,
  4605. int d1) {
  4606. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4607. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4608. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4609. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  4610. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4611. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4612. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  4613. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4614. return result;
  4615. }
  4616. // ggml_conv_2d
  4617. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4618. // a: [OC,IC, KH, KW]
  4619. // b: [N, IC, IH, IW]
  4620. // result: [N, OH, OW, IC*KH*KW]
  4621. struct ggml_tensor * ggml_im2col(
  4622. struct ggml_context * ctx,
  4623. struct ggml_tensor * a,
  4624. struct ggml_tensor * b,
  4625. int s0,
  4626. int s1,
  4627. int p0,
  4628. int p1,
  4629. int d0,
  4630. int d1,
  4631. bool is_2D,
  4632. enum ggml_type dst_type) {
  4633. if(is_2D) {
  4634. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4635. } else {
  4636. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4637. }
  4638. bool is_node = false;
  4639. if (a->grad || b->grad) {
  4640. GGML_ASSERT(false); // TODO: implement backward
  4641. is_node = true;
  4642. }
  4643. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4644. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4645. const int64_t ne[4] = {
  4646. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4647. OW,
  4648. is_2D ? OH : b->ne[2],
  4649. is_2D ? b->ne[3] : 1,
  4650. };
  4651. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  4652. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4653. ggml_set_op_params(result, params, sizeof(params));
  4654. result->op = GGML_OP_IM2COL;
  4655. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4656. result->src[0] = a;
  4657. result->src[1] = b;
  4658. return result;
  4659. }
  4660. // a: [OC,IC, KH, KW]
  4661. // b: [N, IC, IH, IW]
  4662. // result: [N, OC, OH, OW]
  4663. struct ggml_tensor * ggml_conv_2d(
  4664. struct ggml_context * ctx,
  4665. struct ggml_tensor * a,
  4666. struct ggml_tensor * b,
  4667. int s0,
  4668. int s1,
  4669. int p0,
  4670. int p1,
  4671. int d0,
  4672. int d1) {
  4673. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  4674. struct ggml_tensor * result =
  4675. ggml_mul_mat(ctx,
  4676. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4677. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4678. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  4679. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  4680. return result;
  4681. }
  4682. // ggml_conv_2d_sk_p0
  4683. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4684. struct ggml_context * ctx,
  4685. struct ggml_tensor * a,
  4686. struct ggml_tensor * b) {
  4687. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4688. }
  4689. // ggml_conv_2d_s1_ph
  4690. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4691. struct ggml_context * ctx,
  4692. struct ggml_tensor * a,
  4693. struct ggml_tensor * b) {
  4694. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4695. }
  4696. // ggml_conv_transpose_2d_p0
  4697. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4698. return (ins - 1) * s - 2 * p + ks;
  4699. }
  4700. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4701. struct ggml_context * ctx,
  4702. struct ggml_tensor * a,
  4703. struct ggml_tensor * b,
  4704. int stride) {
  4705. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4706. bool is_node = false;
  4707. if (a->grad || b->grad) {
  4708. GGML_ASSERT(false); // TODO: implement backward
  4709. is_node = true;
  4710. }
  4711. const int64_t ne[4] = {
  4712. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4713. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4714. a->ne[2], b->ne[3],
  4715. };
  4716. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4717. ggml_set_op_params_i32(result, 0, stride);
  4718. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4719. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4720. result->src[0] = a;
  4721. result->src[1] = b;
  4722. return result;
  4723. }
  4724. // ggml_pool_*
  4725. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4726. return (ins + 2 * p - ks) / s + 1;
  4727. }
  4728. // ggml_pool_1d
  4729. struct ggml_tensor * ggml_pool_1d(
  4730. struct ggml_context * ctx,
  4731. struct ggml_tensor * a,
  4732. enum ggml_op_pool op,
  4733. int k0,
  4734. int s0,
  4735. int p0) {
  4736. bool is_node = false;
  4737. if (a->grad) {
  4738. GGML_ASSERT(false); // TODO: implement backward
  4739. is_node = true;
  4740. }
  4741. const int64_t ne[2] = {
  4742. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4743. a->ne[1],
  4744. };
  4745. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4746. int32_t params[] = { op, k0, s0, p0 };
  4747. ggml_set_op_params(result, params, sizeof(params));
  4748. result->op = GGML_OP_POOL_1D;
  4749. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4750. result->src[0] = a;
  4751. return result;
  4752. }
  4753. // ggml_pool_2d
  4754. struct ggml_tensor * ggml_pool_2d(
  4755. struct ggml_context * ctx,
  4756. struct ggml_tensor * a,
  4757. enum ggml_op_pool op,
  4758. int k0,
  4759. int k1,
  4760. int s0,
  4761. int s1,
  4762. float p0,
  4763. float p1) {
  4764. bool is_node = false;
  4765. if (a->grad) {
  4766. GGML_ASSERT(false); // TODO: implement backward
  4767. is_node = true;
  4768. }
  4769. struct ggml_tensor * result;
  4770. const int64_t ne[3] = {
  4771. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4772. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4773. a->ne[2],
  4774. };
  4775. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4776. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4777. ggml_set_op_params(result, params, sizeof(params));
  4778. result->op = GGML_OP_POOL_2D;
  4779. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4780. result->src[0] = a;
  4781. return result;
  4782. }
  4783. // ggml_upscale
  4784. static struct ggml_tensor * ggml_upscale_impl(
  4785. struct ggml_context * ctx,
  4786. struct ggml_tensor * a,
  4787. int scale_factor) {
  4788. bool is_node = false;
  4789. if (a->grad) {
  4790. GGML_ASSERT(false); // TODO: implement backward
  4791. is_node = true;
  4792. }
  4793. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4794. a->ne[0] * scale_factor,
  4795. a->ne[1] * scale_factor,
  4796. a->ne[2], a->ne[3]);
  4797. result->op = GGML_OP_UPSCALE;
  4798. result->op_params[0] = scale_factor;
  4799. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4800. result->src[0] = a;
  4801. return result;
  4802. }
  4803. struct ggml_tensor * ggml_pad(
  4804. struct ggml_context * ctx,
  4805. struct ggml_tensor * a,
  4806. int p0, int p1, int p2, int p3) {
  4807. bool is_node = false;
  4808. if (a->grad) {
  4809. GGML_ASSERT(false); // TODO: implement backward
  4810. is_node = true;
  4811. }
  4812. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4813. a->ne[0] + p0,
  4814. a->ne[1] + p1,
  4815. a->ne[2] + p2,
  4816. a->ne[3] + p3);
  4817. result->op = GGML_OP_PAD;
  4818. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4819. result->src[0] = a;
  4820. return result;
  4821. }
  4822. struct ggml_tensor * ggml_upscale(
  4823. struct ggml_context * ctx,
  4824. struct ggml_tensor * a,
  4825. int scale_factor) {
  4826. return ggml_upscale_impl(ctx, a, scale_factor);
  4827. }
  4828. // ggml_argsort
  4829. struct ggml_tensor * ggml_argsort(
  4830. struct ggml_context * ctx,
  4831. struct ggml_tensor * a,
  4832. enum ggml_sort_order order) {
  4833. bool is_node = false;
  4834. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4835. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4836. result->op = GGML_OP_ARGSORT;
  4837. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4838. result->src[0] = a;
  4839. return result;
  4840. }
  4841. // ggml_top_k
  4842. struct ggml_tensor * ggml_top_k(
  4843. struct ggml_context * ctx,
  4844. struct ggml_tensor * a,
  4845. int k) {
  4846. GGML_ASSERT(a->ne[0] >= k);
  4847. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  4848. result = ggml_view_4d(ctx, result,
  4849. k, result->ne[1], result->ne[2], result->ne[3],
  4850. result->nb[1], result->nb[2], result->nb[3],
  4851. 0);
  4852. return result;
  4853. }
  4854. // ggml_flash_attn
  4855. struct ggml_tensor * ggml_flash_attn(
  4856. struct ggml_context * ctx,
  4857. struct ggml_tensor * q,
  4858. struct ggml_tensor * k,
  4859. struct ggml_tensor * v,
  4860. bool masked) {
  4861. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4862. // TODO: check if vT can be multiplied by (k*qT)
  4863. bool is_node = false;
  4864. if (q->grad || k->grad || v->grad) {
  4865. is_node = true;
  4866. }
  4867. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4868. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  4869. int32_t t = masked ? 1 : 0;
  4870. ggml_set_op_params(result, &t, sizeof(t));
  4871. result->op = GGML_OP_FLASH_ATTN;
  4872. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4873. result->src[0] = q;
  4874. result->src[1] = k;
  4875. result->src[2] = v;
  4876. return result;
  4877. }
  4878. // ggml_flash_ff
  4879. struct ggml_tensor * ggml_flash_ff(
  4880. struct ggml_context * ctx,
  4881. struct ggml_tensor * a,
  4882. struct ggml_tensor * b0,
  4883. struct ggml_tensor * b1,
  4884. struct ggml_tensor * c0,
  4885. struct ggml_tensor * c1) {
  4886. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4887. // TODO: more checks
  4888. bool is_node = false;
  4889. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4890. is_node = true;
  4891. }
  4892. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4893. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  4894. result->op = GGML_OP_FLASH_FF;
  4895. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4896. result->src[0] = a;
  4897. result->src[1] = b0;
  4898. result->src[2] = b1;
  4899. result->src[3] = c0;
  4900. result->src[4] = c1;
  4901. return result;
  4902. }
  4903. // ggml_flash_attn_back
  4904. struct ggml_tensor * ggml_flash_attn_back(
  4905. struct ggml_context * ctx,
  4906. struct ggml_tensor * q,
  4907. struct ggml_tensor * k,
  4908. struct ggml_tensor * v,
  4909. struct ggml_tensor * d,
  4910. bool masked) {
  4911. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4912. // TODO: check if vT can be multiplied by (k*qT)
  4913. // d shape [D,N,ne2,ne3]
  4914. // q shape [D,N,ne2,ne3]
  4915. // k shape [D,M,kvne2,ne3]
  4916. // v shape [M,D,kvne2,ne3]
  4917. const int64_t D = q->ne[0];
  4918. const int64_t N = q->ne[1];
  4919. const int64_t M = k->ne[1];
  4920. const int64_t ne2 = q->ne[2];
  4921. const int64_t ne3 = q->ne[3];
  4922. const int64_t kvne2 = k->ne[2];
  4923. GGML_ASSERT(k->ne[0] == D);
  4924. GGML_ASSERT(v->ne[0] == M);
  4925. GGML_ASSERT(v->ne[1] == D);
  4926. GGML_ASSERT(d->ne[0] == D);
  4927. GGML_ASSERT(d->ne[1] == N);
  4928. GGML_ASSERT(k->ne[2] == kvne2);
  4929. GGML_ASSERT(k->ne[3] == ne3);
  4930. GGML_ASSERT(v->ne[2] == kvne2);
  4931. GGML_ASSERT(v->ne[3] == ne3);
  4932. GGML_ASSERT(d->ne[2] == ne2);
  4933. GGML_ASSERT(d->ne[3] == ne3);
  4934. GGML_ASSERT(ne2 % kvne2 == 0);
  4935. bool is_node = false;
  4936. if (q->grad || k->grad || v->grad) {
  4937. // when using this operation (in backwards pass) these grads are set.
  4938. // we don't want to create (big) grad of our result, so is_node is false.
  4939. is_node = false;
  4940. }
  4941. // store gradients of q, k and v as continuous tensors concatenated in result.
  4942. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4943. const int64_t elem_q = ggml_nelements(q);
  4944. const int64_t elem_k = ggml_nelements(k);
  4945. const int64_t elem_v = ggml_nelements(v);
  4946. enum ggml_type result_type = GGML_TYPE_F32;
  4947. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4948. const size_t tsize = ggml_type_size(result_type);
  4949. const size_t offs_q = 0;
  4950. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4951. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4952. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4953. const size_t nelements = (end + tsize - 1)/tsize;
  4954. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4955. int32_t masked_i = masked ? 1 : 0;
  4956. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4957. result->op = GGML_OP_FLASH_ATTN_BACK;
  4958. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4959. result->src[0] = q;
  4960. result->src[1] = k;
  4961. result->src[2] = v;
  4962. result->src[3] = d;
  4963. return result;
  4964. }
  4965. // ggml_win_part
  4966. struct ggml_tensor * ggml_win_part(
  4967. struct ggml_context * ctx,
  4968. struct ggml_tensor * a,
  4969. int w) {
  4970. GGML_ASSERT(a->ne[3] == 1);
  4971. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4972. bool is_node = false;
  4973. if (a->grad) {
  4974. GGML_ASSERT(false); // TODO: implement backward
  4975. is_node = true;
  4976. }
  4977. // padding
  4978. const int px = (w - a->ne[1]%w)%w;
  4979. const int py = (w - a->ne[2]%w)%w;
  4980. const int npx = (px + a->ne[1])/w;
  4981. const int npy = (py + a->ne[2])/w;
  4982. const int np = npx*npy;
  4983. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4984. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4985. int32_t params[] = { npx, npy, w };
  4986. ggml_set_op_params(result, params, sizeof(params));
  4987. result->op = GGML_OP_WIN_PART;
  4988. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4989. result->src[0] = a;
  4990. return result;
  4991. }
  4992. // ggml_win_unpart
  4993. struct ggml_tensor * ggml_win_unpart(
  4994. struct ggml_context * ctx,
  4995. struct ggml_tensor * a,
  4996. int w0,
  4997. int h0,
  4998. int w) {
  4999. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5000. bool is_node = false;
  5001. if (a->grad) {
  5002. GGML_ASSERT(false); // TODO: implement backward
  5003. is_node = true;
  5004. }
  5005. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5006. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5007. int32_t params[] = { w };
  5008. ggml_set_op_params(result, params, sizeof(params));
  5009. result->op = GGML_OP_WIN_UNPART;
  5010. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5011. result->src[0] = a;
  5012. return result;
  5013. }
  5014. // ggml_get_rel_pos
  5015. struct ggml_tensor * ggml_get_rel_pos(
  5016. struct ggml_context * ctx,
  5017. struct ggml_tensor * a,
  5018. int qh,
  5019. int kh) {
  5020. GGML_ASSERT(qh == kh);
  5021. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5022. bool is_node = false;
  5023. if (a->grad) {
  5024. GGML_ASSERT(false); // TODO: implement backward
  5025. is_node = true;
  5026. }
  5027. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5028. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5029. result->op = GGML_OP_GET_REL_POS;
  5030. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5031. result->src[0] = a;
  5032. return result;
  5033. }
  5034. // ggml_add_rel_pos
  5035. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5036. struct ggml_context * ctx,
  5037. struct ggml_tensor * a,
  5038. struct ggml_tensor * pw,
  5039. struct ggml_tensor * ph,
  5040. bool inplace) {
  5041. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5042. GGML_ASSERT(ggml_is_contiguous(a));
  5043. GGML_ASSERT(ggml_is_contiguous(pw));
  5044. GGML_ASSERT(ggml_is_contiguous(ph));
  5045. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5046. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5047. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5048. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5049. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5050. bool is_node = false;
  5051. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5052. is_node = true;
  5053. }
  5054. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5055. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5056. result->op = GGML_OP_ADD_REL_POS;
  5057. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5058. result->src[0] = a;
  5059. result->src[1] = pw;
  5060. result->src[2] = ph;
  5061. return result;
  5062. }
  5063. struct ggml_tensor * ggml_add_rel_pos(
  5064. struct ggml_context * ctx,
  5065. struct ggml_tensor * a,
  5066. struct ggml_tensor * pw,
  5067. struct ggml_tensor * ph) {
  5068. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5069. }
  5070. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5071. struct ggml_context * ctx,
  5072. struct ggml_tensor * a,
  5073. struct ggml_tensor * pw,
  5074. struct ggml_tensor * ph) {
  5075. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5076. }
  5077. // gmml_unary
  5078. static struct ggml_tensor * ggml_unary_impl(
  5079. struct ggml_context * ctx,
  5080. struct ggml_tensor * a,
  5081. enum ggml_unary_op op,
  5082. bool inplace) {
  5083. bool is_node = false;
  5084. if (!inplace && (a->grad)) {
  5085. is_node = true;
  5086. }
  5087. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5088. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5089. result->op = GGML_OP_UNARY;
  5090. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5091. result->src[0] = a;
  5092. return result;
  5093. }
  5094. struct ggml_tensor * ggml_unary(
  5095. struct ggml_context * ctx,
  5096. struct ggml_tensor * a,
  5097. enum ggml_unary_op op) {
  5098. return ggml_unary_impl(ctx, a, op, false);
  5099. }
  5100. struct ggml_tensor * ggml_unary_inplace(
  5101. struct ggml_context * ctx,
  5102. struct ggml_tensor * a,
  5103. enum ggml_unary_op op) {
  5104. return ggml_unary_impl(ctx, a, op, true);
  5105. }
  5106. // ggml_map_unary
  5107. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5108. struct ggml_context * ctx,
  5109. struct ggml_tensor * a,
  5110. const ggml_unary_op_f32_t fun,
  5111. bool inplace) {
  5112. bool is_node = false;
  5113. if (!inplace && a->grad) {
  5114. is_node = true;
  5115. }
  5116. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5117. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5118. result->op = GGML_OP_MAP_UNARY;
  5119. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5120. result->src[0] = a;
  5121. return result;
  5122. }
  5123. struct ggml_tensor * ggml_map_unary_f32(
  5124. struct ggml_context * ctx,
  5125. struct ggml_tensor * a,
  5126. const ggml_unary_op_f32_t fun) {
  5127. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5128. }
  5129. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5130. struct ggml_context * ctx,
  5131. struct ggml_tensor * a,
  5132. const ggml_unary_op_f32_t fun) {
  5133. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5134. }
  5135. // ggml_map_binary
  5136. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5137. struct ggml_context * ctx,
  5138. struct ggml_tensor * a,
  5139. struct ggml_tensor * b,
  5140. const ggml_binary_op_f32_t fun,
  5141. bool inplace) {
  5142. GGML_ASSERT(ggml_are_same_shape(a, b));
  5143. bool is_node = false;
  5144. if (!inplace && (a->grad || b->grad)) {
  5145. is_node = true;
  5146. }
  5147. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5148. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5149. result->op = GGML_OP_MAP_BINARY;
  5150. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5151. result->src[0] = a;
  5152. result->src[1] = b;
  5153. return result;
  5154. }
  5155. struct ggml_tensor * ggml_map_binary_f32(
  5156. struct ggml_context * ctx,
  5157. struct ggml_tensor * a,
  5158. struct ggml_tensor * b,
  5159. const ggml_binary_op_f32_t fun) {
  5160. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5161. }
  5162. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5163. struct ggml_context * ctx,
  5164. struct ggml_tensor * a,
  5165. struct ggml_tensor * b,
  5166. const ggml_binary_op_f32_t fun) {
  5167. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5168. }
  5169. // ggml_map_custom1_f32
  5170. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5171. struct ggml_context * ctx,
  5172. struct ggml_tensor * a,
  5173. const ggml_custom1_op_f32_t fun,
  5174. bool inplace) {
  5175. bool is_node = false;
  5176. if (!inplace && a->grad) {
  5177. is_node = true;
  5178. }
  5179. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5180. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5181. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5182. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5183. result->src[0] = a;
  5184. return result;
  5185. }
  5186. struct ggml_tensor * ggml_map_custom1_f32(
  5187. struct ggml_context * ctx,
  5188. struct ggml_tensor * a,
  5189. const ggml_custom1_op_f32_t fun) {
  5190. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5191. }
  5192. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5193. struct ggml_context * ctx,
  5194. struct ggml_tensor * a,
  5195. const ggml_custom1_op_f32_t fun) {
  5196. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5197. }
  5198. // ggml_map_custom2_f32
  5199. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5200. struct ggml_context * ctx,
  5201. struct ggml_tensor * a,
  5202. struct ggml_tensor * b,
  5203. const ggml_custom2_op_f32_t fun,
  5204. bool inplace) {
  5205. bool is_node = false;
  5206. if (!inplace && (a->grad || b->grad)) {
  5207. is_node = true;
  5208. }
  5209. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5210. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5211. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5212. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5213. result->src[0] = a;
  5214. result->src[1] = b;
  5215. return result;
  5216. }
  5217. struct ggml_tensor * ggml_map_custom2_f32(
  5218. struct ggml_context * ctx,
  5219. struct ggml_tensor * a,
  5220. struct ggml_tensor * b,
  5221. const ggml_custom2_op_f32_t fun) {
  5222. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5223. }
  5224. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5225. struct ggml_context * ctx,
  5226. struct ggml_tensor * a,
  5227. struct ggml_tensor * b,
  5228. const ggml_custom2_op_f32_t fun) {
  5229. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5230. }
  5231. // ggml_map_custom3_f32
  5232. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5233. struct ggml_context * ctx,
  5234. struct ggml_tensor * a,
  5235. struct ggml_tensor * b,
  5236. struct ggml_tensor * c,
  5237. const ggml_custom3_op_f32_t fun,
  5238. bool inplace) {
  5239. bool is_node = false;
  5240. if (!inplace && (a->grad || b->grad || c->grad)) {
  5241. is_node = true;
  5242. }
  5243. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5244. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5245. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5246. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5247. result->src[0] = a;
  5248. result->src[1] = b;
  5249. result->src[2] = c;
  5250. return result;
  5251. }
  5252. struct ggml_tensor * ggml_map_custom3_f32(
  5253. struct ggml_context * ctx,
  5254. struct ggml_tensor * a,
  5255. struct ggml_tensor * b,
  5256. struct ggml_tensor * c,
  5257. const ggml_custom3_op_f32_t fun) {
  5258. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5259. }
  5260. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5261. struct ggml_context * ctx,
  5262. struct ggml_tensor * a,
  5263. struct ggml_tensor * b,
  5264. struct ggml_tensor * c,
  5265. const ggml_custom3_op_f32_t fun) {
  5266. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5267. }
  5268. // ggml_map_custom1
  5269. struct ggml_map_custom1_op_params {
  5270. ggml_custom1_op_t fun;
  5271. int n_tasks;
  5272. void * userdata;
  5273. };
  5274. static struct ggml_tensor * ggml_map_custom1_impl(
  5275. struct ggml_context * ctx,
  5276. struct ggml_tensor * a,
  5277. const ggml_custom1_op_t fun,
  5278. int n_tasks,
  5279. void * userdata,
  5280. bool inplace) {
  5281. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5282. bool is_node = false;
  5283. if (!inplace && a->grad) {
  5284. is_node = true;
  5285. }
  5286. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5287. struct ggml_map_custom1_op_params params = {
  5288. /*.fun =*/ fun,
  5289. /*.n_tasks =*/ n_tasks,
  5290. /*.userdata =*/ userdata
  5291. };
  5292. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5293. result->op = GGML_OP_MAP_CUSTOM1;
  5294. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5295. result->src[0] = a;
  5296. return result;
  5297. }
  5298. struct ggml_tensor * ggml_map_custom1(
  5299. struct ggml_context * ctx,
  5300. struct ggml_tensor * a,
  5301. const ggml_custom1_op_t fun,
  5302. int n_tasks,
  5303. void * userdata) {
  5304. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5305. }
  5306. struct ggml_tensor * ggml_map_custom1_inplace(
  5307. struct ggml_context * ctx,
  5308. struct ggml_tensor * a,
  5309. const ggml_custom1_op_t fun,
  5310. int n_tasks,
  5311. void * userdata) {
  5312. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5313. }
  5314. // ggml_map_custom2
  5315. struct ggml_map_custom2_op_params {
  5316. ggml_custom2_op_t fun;
  5317. int n_tasks;
  5318. void * userdata;
  5319. };
  5320. static struct ggml_tensor * ggml_map_custom2_impl(
  5321. struct ggml_context * ctx,
  5322. struct ggml_tensor * a,
  5323. struct ggml_tensor * b,
  5324. const ggml_custom2_op_t fun,
  5325. int n_tasks,
  5326. void * userdata,
  5327. bool inplace) {
  5328. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5329. bool is_node = false;
  5330. if (!inplace && (a->grad || b->grad)) {
  5331. is_node = true;
  5332. }
  5333. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5334. struct ggml_map_custom2_op_params params = {
  5335. /*.fun =*/ fun,
  5336. /*.n_tasks =*/ n_tasks,
  5337. /*.userdata =*/ userdata
  5338. };
  5339. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5340. result->op = GGML_OP_MAP_CUSTOM2;
  5341. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5342. result->src[0] = a;
  5343. result->src[1] = b;
  5344. return result;
  5345. }
  5346. struct ggml_tensor * ggml_map_custom2(
  5347. struct ggml_context * ctx,
  5348. struct ggml_tensor * a,
  5349. struct ggml_tensor * b,
  5350. const ggml_custom2_op_t fun,
  5351. int n_tasks,
  5352. void * userdata) {
  5353. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5354. }
  5355. struct ggml_tensor * ggml_map_custom2_inplace(
  5356. struct ggml_context * ctx,
  5357. struct ggml_tensor * a,
  5358. struct ggml_tensor * b,
  5359. const ggml_custom2_op_t fun,
  5360. int n_tasks,
  5361. void * userdata) {
  5362. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5363. }
  5364. // ggml_map_custom3
  5365. struct ggml_map_custom3_op_params {
  5366. ggml_custom3_op_t fun;
  5367. int n_tasks;
  5368. void * userdata;
  5369. };
  5370. static struct ggml_tensor * ggml_map_custom3_impl(
  5371. struct ggml_context * ctx,
  5372. struct ggml_tensor * a,
  5373. struct ggml_tensor * b,
  5374. struct ggml_tensor * c,
  5375. const ggml_custom3_op_t fun,
  5376. int n_tasks,
  5377. void * userdata,
  5378. bool inplace) {
  5379. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5380. bool is_node = false;
  5381. if (!inplace && (a->grad || b->grad || c->grad)) {
  5382. is_node = true;
  5383. }
  5384. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5385. struct ggml_map_custom3_op_params params = {
  5386. /*.fun =*/ fun,
  5387. /*.n_tasks =*/ n_tasks,
  5388. /*.userdata =*/ userdata
  5389. };
  5390. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5391. result->op = GGML_OP_MAP_CUSTOM3;
  5392. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5393. result->src[0] = a;
  5394. result->src[1] = b;
  5395. result->src[2] = c;
  5396. return result;
  5397. }
  5398. struct ggml_tensor * ggml_map_custom3(
  5399. struct ggml_context * ctx,
  5400. struct ggml_tensor * a,
  5401. struct ggml_tensor * b,
  5402. struct ggml_tensor * c,
  5403. const ggml_custom3_op_t fun,
  5404. int n_tasks,
  5405. void * userdata) {
  5406. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5407. }
  5408. struct ggml_tensor * ggml_map_custom3_inplace(
  5409. struct ggml_context * ctx,
  5410. struct ggml_tensor * a,
  5411. struct ggml_tensor * b,
  5412. struct ggml_tensor * c,
  5413. const ggml_custom3_op_t fun,
  5414. int n_tasks,
  5415. void * userdata) {
  5416. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5417. }
  5418. // ggml_cross_entropy_loss
  5419. struct ggml_tensor * ggml_cross_entropy_loss(
  5420. struct ggml_context * ctx,
  5421. struct ggml_tensor * a,
  5422. struct ggml_tensor * b) {
  5423. GGML_ASSERT(ggml_are_same_shape(a, b));
  5424. bool is_node = false;
  5425. if (a->grad || b->grad) {
  5426. is_node = true;
  5427. }
  5428. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5429. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5430. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5431. result->src[0] = a;
  5432. result->src[1] = b;
  5433. return result;
  5434. }
  5435. // ggml_cross_entropy_loss_back
  5436. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5437. struct ggml_context * ctx,
  5438. struct ggml_tensor * a,
  5439. struct ggml_tensor * b,
  5440. struct ggml_tensor * c) {
  5441. GGML_ASSERT(ggml_are_same_shape(a, b));
  5442. GGML_ASSERT(ggml_is_scalar(c));
  5443. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5444. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5445. result->grad = NULL;
  5446. result->src[0] = a;
  5447. result->src[1] = b;
  5448. result->src[2] = c;
  5449. return result;
  5450. }
  5451. ////////////////////////////////////////////////////////////////////////////////
  5452. void ggml_set_param(
  5453. struct ggml_context * ctx,
  5454. struct ggml_tensor * tensor) {
  5455. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  5456. GGML_ASSERT(tensor->grad == NULL);
  5457. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5458. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5459. }
  5460. // ggml_compute_forward_dup
  5461. static void ggml_compute_forward_dup_same_cont(
  5462. const struct ggml_compute_params * params,
  5463. struct ggml_tensor * dst) {
  5464. const struct ggml_tensor * src0 = dst->src[0];
  5465. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5466. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5467. GGML_ASSERT(src0->type == dst->type);
  5468. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5469. return;
  5470. }
  5471. const size_t nb00 = src0->nb[0];
  5472. const size_t nb0 = dst->nb[0];
  5473. const int ith = params->ith; // thread index
  5474. const int nth = params->nth; // number of threads
  5475. // parallelize by elements
  5476. const int ne = ggml_nelements(dst);
  5477. const int dr = (ne + nth - 1) / nth;
  5478. const int ie0 = dr * ith;
  5479. const int ie1 = MIN(ie0 + dr, ne);
  5480. if (ie0 < ie1) {
  5481. memcpy(
  5482. ((char *) dst->data + ie0*nb0),
  5483. ((char *) src0->data + ie0*nb00),
  5484. (ie1 - ie0) * ggml_type_size(src0->type));
  5485. }
  5486. }
  5487. static void ggml_compute_forward_dup_f16(
  5488. const struct ggml_compute_params * params,
  5489. struct ggml_tensor * dst) {
  5490. const struct ggml_tensor * src0 = dst->src[0];
  5491. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5492. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5493. return;
  5494. }
  5495. GGML_TENSOR_UNARY_OP_LOCALS
  5496. const int ith = params->ith; // thread index
  5497. const int nth = params->nth; // number of threads
  5498. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5499. ggml_compute_forward_dup_same_cont(params, dst);
  5500. return;
  5501. }
  5502. // parallelize by rows
  5503. const int nr = ne01;
  5504. // number of rows per thread
  5505. const int dr = (nr + nth - 1) / nth;
  5506. // row range for this thread
  5507. const int ir0 = dr * ith;
  5508. const int ir1 = MIN(ir0 + dr, nr);
  5509. if (src0->type == dst->type &&
  5510. ne00 == ne0 &&
  5511. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5512. // copy by rows
  5513. const size_t rs = ne00*nb00;
  5514. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5515. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5516. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5517. memcpy(
  5518. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5519. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5520. rs);
  5521. }
  5522. }
  5523. }
  5524. return;
  5525. }
  5526. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5527. if (ggml_is_contiguous(dst)) {
  5528. if (nb00 == sizeof(ggml_fp16_t)) {
  5529. if (dst->type == GGML_TYPE_F16) {
  5530. size_t id = 0;
  5531. const size_t rs = ne00 * nb00;
  5532. char * dst_ptr = (char *) dst->data;
  5533. for (int i03 = 0; i03 < ne03; i03++) {
  5534. for (int i02 = 0; i02 < ne02; i02++) {
  5535. id += rs * ir0;
  5536. for (int i01 = ir0; i01 < ir1; i01++) {
  5537. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5538. memcpy(dst_ptr + id, src0_ptr, rs);
  5539. id += rs;
  5540. }
  5541. id += rs * (ne01 - ir1);
  5542. }
  5543. }
  5544. } else if (dst->type == GGML_TYPE_F32) {
  5545. size_t id = 0;
  5546. float * dst_ptr = (float *) dst->data;
  5547. for (int i03 = 0; i03 < ne03; i03++) {
  5548. for (int i02 = 0; i02 < ne02; i02++) {
  5549. id += ne00 * ir0;
  5550. for (int i01 = ir0; i01 < ir1; i01++) {
  5551. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5552. for (int i00 = 0; i00 < ne00; i00++) {
  5553. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5554. id++;
  5555. }
  5556. }
  5557. id += ne00 * (ne01 - ir1);
  5558. }
  5559. }
  5560. } else if (type_traits[dst->type].from_float) {
  5561. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5562. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5563. size_t id = 0;
  5564. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5565. char * dst_ptr = (char *) dst->data;
  5566. for (int i03 = 0; i03 < ne03; i03++) {
  5567. for (int i02 = 0; i02 < ne02; i02++) {
  5568. id += rs * ir0;
  5569. for (int i01 = ir0; i01 < ir1; i01++) {
  5570. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5571. for (int i00 = 0; i00 < ne00; i00++) {
  5572. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5573. }
  5574. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5575. id += rs;
  5576. }
  5577. id += rs * (ne01 - ir1);
  5578. }
  5579. }
  5580. } else {
  5581. GGML_ASSERT(false); // TODO: implement
  5582. }
  5583. } else {
  5584. //printf("%s: this is not optimal - fix me\n", __func__);
  5585. if (dst->type == GGML_TYPE_F32) {
  5586. size_t id = 0;
  5587. float * dst_ptr = (float *) dst->data;
  5588. for (int i03 = 0; i03 < ne03; i03++) {
  5589. for (int i02 = 0; i02 < ne02; i02++) {
  5590. id += ne00 * ir0;
  5591. for (int i01 = ir0; i01 < ir1; i01++) {
  5592. for (int i00 = 0; i00 < ne00; i00++) {
  5593. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5594. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5595. id++;
  5596. }
  5597. }
  5598. id += ne00 * (ne01 - ir1);
  5599. }
  5600. }
  5601. } else if (dst->type == GGML_TYPE_F16) {
  5602. size_t id = 0;
  5603. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5604. for (int i03 = 0; i03 < ne03; i03++) {
  5605. for (int i02 = 0; i02 < ne02; i02++) {
  5606. id += ne00 * ir0;
  5607. for (int i01 = ir0; i01 < ir1; i01++) {
  5608. for (int i00 = 0; i00 < ne00; i00++) {
  5609. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5610. dst_ptr[id] = *src0_ptr;
  5611. id++;
  5612. }
  5613. }
  5614. id += ne00 * (ne01 - ir1);
  5615. }
  5616. }
  5617. } else {
  5618. GGML_ASSERT(false); // TODO: implement
  5619. }
  5620. }
  5621. return;
  5622. }
  5623. // dst counters
  5624. int64_t i10 = 0;
  5625. int64_t i11 = 0;
  5626. int64_t i12 = 0;
  5627. int64_t i13 = 0;
  5628. if (dst->type == GGML_TYPE_F16) {
  5629. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5630. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5631. i10 += ne00 * ir0;
  5632. while (i10 >= ne0) {
  5633. i10 -= ne0;
  5634. if (++i11 == ne1) {
  5635. i11 = 0;
  5636. if (++i12 == ne2) {
  5637. i12 = 0;
  5638. if (++i13 == ne3) {
  5639. i13 = 0;
  5640. }
  5641. }
  5642. }
  5643. }
  5644. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5645. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5646. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5647. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5648. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5649. if (++i10 == ne00) {
  5650. i10 = 0;
  5651. if (++i11 == ne01) {
  5652. i11 = 0;
  5653. if (++i12 == ne02) {
  5654. i12 = 0;
  5655. if (++i13 == ne03) {
  5656. i13 = 0;
  5657. }
  5658. }
  5659. }
  5660. }
  5661. }
  5662. }
  5663. i10 += ne00 * (ne01 - ir1);
  5664. while (i10 >= ne0) {
  5665. i10 -= ne0;
  5666. if (++i11 == ne1) {
  5667. i11 = 0;
  5668. if (++i12 == ne2) {
  5669. i12 = 0;
  5670. if (++i13 == ne3) {
  5671. i13 = 0;
  5672. }
  5673. }
  5674. }
  5675. }
  5676. }
  5677. }
  5678. } else if (dst->type == GGML_TYPE_F32) {
  5679. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5680. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5681. i10 += ne00 * ir0;
  5682. while (i10 >= ne0) {
  5683. i10 -= ne0;
  5684. if (++i11 == ne1) {
  5685. i11 = 0;
  5686. if (++i12 == ne2) {
  5687. i12 = 0;
  5688. if (++i13 == ne3) {
  5689. i13 = 0;
  5690. }
  5691. }
  5692. }
  5693. }
  5694. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5695. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5696. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5697. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5698. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5699. if (++i10 == ne0) {
  5700. i10 = 0;
  5701. if (++i11 == ne1) {
  5702. i11 = 0;
  5703. if (++i12 == ne2) {
  5704. i12 = 0;
  5705. if (++i13 == ne3) {
  5706. i13 = 0;
  5707. }
  5708. }
  5709. }
  5710. }
  5711. }
  5712. }
  5713. i10 += ne00 * (ne01 - ir1);
  5714. while (i10 >= ne0) {
  5715. i10 -= ne0;
  5716. if (++i11 == ne1) {
  5717. i11 = 0;
  5718. if (++i12 == ne2) {
  5719. i12 = 0;
  5720. if (++i13 == ne3) {
  5721. i13 = 0;
  5722. }
  5723. }
  5724. }
  5725. }
  5726. }
  5727. }
  5728. } else {
  5729. GGML_ASSERT(false); // TODO: implement
  5730. }
  5731. }
  5732. static void ggml_compute_forward_dup_f32(
  5733. const struct ggml_compute_params * params,
  5734. struct ggml_tensor * dst) {
  5735. const struct ggml_tensor * src0 = dst->src[0];
  5736. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5737. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5738. return;
  5739. }
  5740. GGML_TENSOR_UNARY_OP_LOCALS
  5741. const int ith = params->ith; // thread index
  5742. const int nth = params->nth; // number of threads
  5743. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5744. ggml_compute_forward_dup_same_cont(params, dst);
  5745. return;
  5746. }
  5747. // parallelize by rows
  5748. const int nr = ne01;
  5749. // number of rows per thread
  5750. const int dr = (nr + nth - 1) / nth;
  5751. // row range for this thread
  5752. const int ir0 = dr * ith;
  5753. const int ir1 = MIN(ir0 + dr, nr);
  5754. if (src0->type == dst->type &&
  5755. ne00 == ne0 &&
  5756. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5757. // copy by rows
  5758. const size_t rs = ne00*nb00;
  5759. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5760. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5761. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5762. memcpy(
  5763. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5764. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5765. rs);
  5766. }
  5767. }
  5768. }
  5769. return;
  5770. }
  5771. if (ggml_is_contiguous(dst)) {
  5772. // TODO: simplify
  5773. if (nb00 == sizeof(float)) {
  5774. if (dst->type == GGML_TYPE_F32) {
  5775. size_t id = 0;
  5776. const size_t rs = ne00 * nb00;
  5777. char * dst_ptr = (char *) dst->data;
  5778. for (int i03 = 0; i03 < ne03; i03++) {
  5779. for (int i02 = 0; i02 < ne02; i02++) {
  5780. id += rs * ir0;
  5781. for (int i01 = ir0; i01 < ir1; i01++) {
  5782. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5783. memcpy(dst_ptr + id, src0_ptr, rs);
  5784. id += rs;
  5785. }
  5786. id += rs * (ne01 - ir1);
  5787. }
  5788. }
  5789. } else if (type_traits[dst->type].from_float) {
  5790. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5791. size_t id = 0;
  5792. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5793. char * dst_ptr = (char *) dst->data;
  5794. for (int i03 = 0; i03 < ne03; i03++) {
  5795. for (int i02 = 0; i02 < ne02; i02++) {
  5796. id += rs * ir0;
  5797. for (int i01 = ir0; i01 < ir1; i01++) {
  5798. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5799. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5800. id += rs;
  5801. }
  5802. id += rs * (ne01 - ir1);
  5803. }
  5804. }
  5805. } else {
  5806. GGML_ASSERT(false); // TODO: implement
  5807. }
  5808. } else {
  5809. //printf("%s: this is not optimal - fix me\n", __func__);
  5810. if (dst->type == GGML_TYPE_F32) {
  5811. size_t id = 0;
  5812. float * dst_ptr = (float *) dst->data;
  5813. for (int i03 = 0; i03 < ne03; i03++) {
  5814. for (int i02 = 0; i02 < ne02; i02++) {
  5815. id += ne00 * ir0;
  5816. for (int i01 = ir0; i01 < ir1; i01++) {
  5817. for (int i00 = 0; i00 < ne00; i00++) {
  5818. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5819. dst_ptr[id] = *src0_ptr;
  5820. id++;
  5821. }
  5822. }
  5823. id += ne00 * (ne01 - ir1);
  5824. }
  5825. }
  5826. } else if (dst->type == GGML_TYPE_F16) {
  5827. size_t id = 0;
  5828. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5829. for (int i03 = 0; i03 < ne03; i03++) {
  5830. for (int i02 = 0; i02 < ne02; i02++) {
  5831. id += ne00 * ir0;
  5832. for (int i01 = ir0; i01 < ir1; i01++) {
  5833. for (int i00 = 0; i00 < ne00; i00++) {
  5834. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5835. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5836. id++;
  5837. }
  5838. }
  5839. id += ne00 * (ne01 - ir1);
  5840. }
  5841. }
  5842. } else {
  5843. GGML_ASSERT(false); // TODO: implement
  5844. }
  5845. }
  5846. return;
  5847. }
  5848. // dst counters
  5849. int64_t i10 = 0;
  5850. int64_t i11 = 0;
  5851. int64_t i12 = 0;
  5852. int64_t i13 = 0;
  5853. if (dst->type == GGML_TYPE_F32) {
  5854. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5855. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5856. i10 += ne00 * ir0;
  5857. while (i10 >= ne0) {
  5858. i10 -= ne0;
  5859. if (++i11 == ne1) {
  5860. i11 = 0;
  5861. if (++i12 == ne2) {
  5862. i12 = 0;
  5863. if (++i13 == ne3) {
  5864. i13 = 0;
  5865. }
  5866. }
  5867. }
  5868. }
  5869. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5870. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5871. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5872. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5873. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5874. if (++i10 == ne0) {
  5875. i10 = 0;
  5876. if (++i11 == ne1) {
  5877. i11 = 0;
  5878. if (++i12 == ne2) {
  5879. i12 = 0;
  5880. if (++i13 == ne3) {
  5881. i13 = 0;
  5882. }
  5883. }
  5884. }
  5885. }
  5886. }
  5887. }
  5888. i10 += ne00 * (ne01 - ir1);
  5889. while (i10 >= ne0) {
  5890. i10 -= ne0;
  5891. if (++i11 == ne1) {
  5892. i11 = 0;
  5893. if (++i12 == ne2) {
  5894. i12 = 0;
  5895. if (++i13 == ne3) {
  5896. i13 = 0;
  5897. }
  5898. }
  5899. }
  5900. }
  5901. }
  5902. }
  5903. } else if (dst->type == GGML_TYPE_F16) {
  5904. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5905. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5906. i10 += ne00 * ir0;
  5907. while (i10 >= ne0) {
  5908. i10 -= ne0;
  5909. if (++i11 == ne1) {
  5910. i11 = 0;
  5911. if (++i12 == ne2) {
  5912. i12 = 0;
  5913. if (++i13 == ne3) {
  5914. i13 = 0;
  5915. }
  5916. }
  5917. }
  5918. }
  5919. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5920. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5921. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5922. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5923. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5924. if (++i10 == ne0) {
  5925. i10 = 0;
  5926. if (++i11 == ne1) {
  5927. i11 = 0;
  5928. if (++i12 == ne2) {
  5929. i12 = 0;
  5930. if (++i13 == ne3) {
  5931. i13 = 0;
  5932. }
  5933. }
  5934. }
  5935. }
  5936. }
  5937. }
  5938. i10 += ne00 * (ne01 - ir1);
  5939. while (i10 >= ne0) {
  5940. i10 -= ne0;
  5941. if (++i11 == ne1) {
  5942. i11 = 0;
  5943. if (++i12 == ne2) {
  5944. i12 = 0;
  5945. if (++i13 == ne3) {
  5946. i13 = 0;
  5947. }
  5948. }
  5949. }
  5950. }
  5951. }
  5952. }
  5953. } else {
  5954. GGML_ASSERT(false); // TODO: implement
  5955. }
  5956. }
  5957. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  5958. static void ggml_compute_forward_dup_bytes(
  5959. const struct ggml_compute_params * params,
  5960. struct ggml_tensor * dst) {
  5961. const struct ggml_tensor * src0 = dst->src[0];
  5962. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5963. GGML_ASSERT(src0->type == dst->type);
  5964. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5965. return;
  5966. }
  5967. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  5968. ggml_compute_forward_dup_same_cont(params, dst);
  5969. return;
  5970. }
  5971. GGML_TENSOR_UNARY_OP_LOCALS;
  5972. const size_t type_size = ggml_type_size(src0->type);
  5973. const int ith = params->ith; // thread index
  5974. const int nth = params->nth; // number of threads
  5975. // parallelize by rows
  5976. const int nr = ne01;
  5977. // number of rows per thread
  5978. const int dr = (nr + nth - 1) / nth;
  5979. // row range for this thread
  5980. const int ir0 = dr * ith;
  5981. const int ir1 = MIN(ir0 + dr, nr);
  5982. if (src0->type == dst->type &&
  5983. ne00 == ne0 &&
  5984. nb00 == type_size && nb0 == type_size) {
  5985. // copy by rows
  5986. const size_t rs = ne00 * type_size;
  5987. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5988. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5989. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5990. memcpy(
  5991. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5992. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5993. rs);
  5994. }
  5995. }
  5996. }
  5997. return;
  5998. }
  5999. if (ggml_is_contiguous(dst)) {
  6000. size_t id = 0;
  6001. char * dst_ptr = (char *) dst->data;
  6002. const size_t rs = ne00 * type_size;
  6003. if (nb00 == type_size) {
  6004. // src0 is contigous on first dimension, copy by rows
  6005. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6006. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6007. id += rs * ir0;
  6008. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6009. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6010. memcpy(dst_ptr + id, src0_ptr, rs);
  6011. id += rs;
  6012. }
  6013. id += rs * (ne01 - ir1);
  6014. }
  6015. }
  6016. } else {
  6017. //printf("%s: this is not optimal - fix me\n", __func__);
  6018. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6019. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6020. id += rs * ir0;
  6021. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6022. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6023. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  6024. memcpy(dst_ptr + id, src0_ptr, type_size);
  6025. id += type_size;
  6026. }
  6027. }
  6028. id += rs * (ne01 - ir1);
  6029. }
  6030. }
  6031. }
  6032. return;
  6033. }
  6034. // dst counters
  6035. int64_t i10 = 0;
  6036. int64_t i11 = 0;
  6037. int64_t i12 = 0;
  6038. int64_t i13 = 0;
  6039. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6040. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6041. i10 += ne00 * ir0;
  6042. while (i10 >= ne0) {
  6043. i10 -= ne0;
  6044. if (++i11 == ne1) {
  6045. i11 = 0;
  6046. if (++i12 == ne2) {
  6047. i12 = 0;
  6048. if (++i13 == ne3) {
  6049. i13 = 0;
  6050. }
  6051. }
  6052. }
  6053. }
  6054. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6055. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6056. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6057. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6058. memcpy(dst_ptr, src0_ptr, type_size);
  6059. if (++i10 == ne0) {
  6060. i10 = 0;
  6061. if (++i11 == ne1) {
  6062. i11 = 0;
  6063. if (++i12 == ne2) {
  6064. i12 = 0;
  6065. if (++i13 == ne3) {
  6066. i13 = 0;
  6067. }
  6068. }
  6069. }
  6070. }
  6071. }
  6072. }
  6073. i10 += ne00 * (ne01 - ir1);
  6074. while (i10 >= ne0) {
  6075. i10 -= ne0;
  6076. if (++i11 == ne1) {
  6077. i11 = 0;
  6078. if (++i12 == ne2) {
  6079. i12 = 0;
  6080. if (++i13 == ne3) {
  6081. i13 = 0;
  6082. }
  6083. }
  6084. }
  6085. }
  6086. }
  6087. }
  6088. }
  6089. static void ggml_compute_forward_dup(
  6090. const struct ggml_compute_params * params,
  6091. struct ggml_tensor * dst) {
  6092. const struct ggml_tensor * src0 = dst->src[0];
  6093. if (src0->type == dst->type) {
  6094. ggml_compute_forward_dup_bytes(params, dst);
  6095. return;
  6096. }
  6097. switch (src0->type) {
  6098. case GGML_TYPE_F16:
  6099. {
  6100. ggml_compute_forward_dup_f16(params, dst);
  6101. } break;
  6102. case GGML_TYPE_F32:
  6103. {
  6104. ggml_compute_forward_dup_f32(params, dst);
  6105. } break;
  6106. default:
  6107. {
  6108. GGML_ASSERT(false);
  6109. } break;
  6110. }
  6111. }
  6112. // ggml_compute_forward_add
  6113. static void ggml_compute_forward_add_f32(
  6114. const struct ggml_compute_params * params,
  6115. struct ggml_tensor * dst) {
  6116. const struct ggml_tensor * src0 = dst->src[0];
  6117. const struct ggml_tensor * src1 = dst->src[1];
  6118. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6119. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6120. return;
  6121. }
  6122. const int ith = params->ith;
  6123. const int nth = params->nth;
  6124. #ifdef GGML_USE_CLBLAST
  6125. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  6126. // TODO: OpenCL kernel support full broadcast
  6127. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6128. if (ith == 0) {
  6129. ggml_cl_add(src0, src1, dst);
  6130. }
  6131. return;
  6132. }
  6133. #endif
  6134. const int nr = ggml_nrows(src0);
  6135. GGML_TENSOR_BINARY_OP_LOCALS
  6136. GGML_ASSERT( nb0 == sizeof(float));
  6137. GGML_ASSERT(nb00 == sizeof(float));
  6138. // rows per thread
  6139. const int dr = (nr + nth - 1)/nth;
  6140. // row range for this thread
  6141. const int ir0 = dr*ith;
  6142. const int ir1 = MIN(ir0 + dr, nr);
  6143. if (nb10 == sizeof(float)) {
  6144. for (int ir = ir0; ir < ir1; ++ir) {
  6145. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6146. const int64_t i03 = ir/(ne02*ne01);
  6147. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6148. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6149. const int64_t i13 = i03 % ne13;
  6150. const int64_t i12 = i02 % ne12;
  6151. const int64_t i11 = i01 % ne11;
  6152. const int64_t nr0 = ne00 / ne10;
  6153. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6154. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6155. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6156. for (int64_t r = 0; r < nr0; ++r) {
  6157. #ifdef GGML_USE_ACCELERATE
  6158. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6159. #else
  6160. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6161. #endif
  6162. }
  6163. }
  6164. } else {
  6165. // src1 is not contiguous
  6166. for (int ir = ir0; ir < ir1; ++ir) {
  6167. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6168. const int64_t i03 = ir/(ne02*ne01);
  6169. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6170. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6171. const int64_t i13 = i03 % ne13;
  6172. const int64_t i12 = i02 % ne12;
  6173. const int64_t i11 = i01 % ne11;
  6174. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6175. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6176. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6177. const int64_t i10 = i0 % ne10;
  6178. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6179. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6180. }
  6181. }
  6182. }
  6183. }
  6184. static void ggml_compute_forward_add_f16_f32(
  6185. const struct ggml_compute_params * params,
  6186. struct ggml_tensor * dst) {
  6187. const struct ggml_tensor * src0 = dst->src[0];
  6188. const struct ggml_tensor * src1 = dst->src[1];
  6189. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6190. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6191. return;
  6192. }
  6193. const int ith = params->ith;
  6194. const int nth = params->nth;
  6195. const int nr = ggml_nrows(src0);
  6196. GGML_TENSOR_BINARY_OP_LOCALS
  6197. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6198. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6199. if (dst->type == GGML_TYPE_F32) {
  6200. GGML_ASSERT( nb0 == sizeof(float));
  6201. }
  6202. else {
  6203. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6204. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6205. }
  6206. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6207. // rows per thread
  6208. const int dr = (nr + nth - 1)/nth;
  6209. // row range for this thread
  6210. const int ir0 = dr*ith;
  6211. const int ir1 = MIN(ir0 + dr, nr);
  6212. if (nb10 == sizeof(float)) {
  6213. if (dst->type == GGML_TYPE_F16) {
  6214. for (int ir = ir0; ir < ir1; ++ir) {
  6215. // src0, src1 and dst are same shape => same indices
  6216. const int i3 = ir/(ne2*ne1);
  6217. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6218. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6219. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6220. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6221. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6222. for (int i = 0; i < ne0; i++) {
  6223. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6224. }
  6225. }
  6226. } else {
  6227. for (int ir = ir0; ir < ir1; ++ir) {
  6228. // src0, src1 and dst are same shape => same indices
  6229. const int i3 = ir/(ne2*ne1);
  6230. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6231. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6232. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6233. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6234. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6235. for (int i = 0; i < ne0; i++) {
  6236. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6237. }
  6238. }
  6239. }
  6240. }
  6241. else {
  6242. // src1 is not contiguous
  6243. GGML_ASSERT(false);
  6244. }
  6245. }
  6246. static void ggml_compute_forward_add_f16_f16(
  6247. const struct ggml_compute_params * params,
  6248. struct ggml_tensor * dst) {
  6249. const struct ggml_tensor * src0 = dst->src[0];
  6250. const struct ggml_tensor * src1 = dst->src[1];
  6251. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6252. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6253. return;
  6254. }
  6255. const int ith = params->ith;
  6256. const int nth = params->nth;
  6257. const int nr = ggml_nrows(src0);
  6258. GGML_TENSOR_BINARY_OP_LOCALS
  6259. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6260. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6261. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6262. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6263. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6264. // rows per thread
  6265. const int dr = (nr + nth - 1)/nth;
  6266. // row range for this thread
  6267. const int ir0 = dr*ith;
  6268. const int ir1 = MIN(ir0 + dr, nr);
  6269. if (nb10 == sizeof(ggml_fp16_t)) {
  6270. for (int ir = ir0; ir < ir1; ++ir) {
  6271. // src0, src1 and dst are same shape => same indices
  6272. const int i3 = ir/(ne2*ne1);
  6273. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6274. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6275. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6276. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6277. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6278. for (int i = 0; i < ne0; i++) {
  6279. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6280. }
  6281. }
  6282. }
  6283. else {
  6284. // src1 is not contiguous
  6285. GGML_ASSERT(false);
  6286. }
  6287. }
  6288. static void ggml_compute_forward_add_q_f32(
  6289. const struct ggml_compute_params * params,
  6290. struct ggml_tensor * dst) {
  6291. const struct ggml_tensor * src0 = dst->src[0];
  6292. const struct ggml_tensor * src1 = dst->src[1];
  6293. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6294. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6295. return;
  6296. }
  6297. const int nr = ggml_nrows(src0);
  6298. GGML_TENSOR_BINARY_OP_LOCALS
  6299. const int ith = params->ith;
  6300. const int nth = params->nth;
  6301. const enum ggml_type type = src0->type;
  6302. const enum ggml_type dtype = dst->type;
  6303. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6304. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6305. // we don't support permuted src0 or src1
  6306. GGML_ASSERT(nb00 == ggml_type_size(type));
  6307. GGML_ASSERT(nb10 == sizeof(float));
  6308. // dst cannot be transposed or permuted
  6309. GGML_ASSERT(nb0 <= nb1);
  6310. GGML_ASSERT(nb1 <= nb2);
  6311. GGML_ASSERT(nb2 <= nb3);
  6312. GGML_ASSERT(ggml_is_quantized(src0->type));
  6313. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6314. // rows per thread
  6315. const int dr = (nr + nth - 1)/nth;
  6316. // row range for this thread
  6317. const int ir0 = dr*ith;
  6318. const int ir1 = MIN(ir0 + dr, nr);
  6319. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6320. for (int ir = ir0; ir < ir1; ++ir) {
  6321. // src0 indices
  6322. const int i03 = ir/(ne02*ne01);
  6323. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6324. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6325. // src1 and dst are same shape as src0 => same indices
  6326. const int i13 = i03;
  6327. const int i12 = i02;
  6328. const int i11 = i01;
  6329. const int i3 = i03;
  6330. const int i2 = i02;
  6331. const int i1 = i01;
  6332. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6333. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6334. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6335. assert(ne00 % 32 == 0);
  6336. // unquantize row from src0 to temp buffer
  6337. dequantize_row_q(src0_row, wdata, ne00);
  6338. // add src1
  6339. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6340. // quantize row to dst
  6341. if (quantize_row_q != NULL) {
  6342. quantize_row_q(wdata, dst_row, ne00);
  6343. } else {
  6344. memcpy(dst_row, wdata, ne0*nb0);
  6345. }
  6346. }
  6347. }
  6348. static void ggml_compute_forward_add(
  6349. const struct ggml_compute_params * params,
  6350. struct ggml_tensor * dst) {
  6351. const struct ggml_tensor * src0 = dst->src[0];
  6352. const struct ggml_tensor * src1 = dst->src[1];
  6353. switch (src0->type) {
  6354. case GGML_TYPE_F32:
  6355. {
  6356. if (src1->type == GGML_TYPE_F32) {
  6357. ggml_compute_forward_add_f32(params, dst);
  6358. }
  6359. else {
  6360. GGML_ASSERT(false);
  6361. }
  6362. } break;
  6363. case GGML_TYPE_F16:
  6364. {
  6365. if (src1->type == GGML_TYPE_F16) {
  6366. ggml_compute_forward_add_f16_f16(params, dst);
  6367. }
  6368. else if (src1->type == GGML_TYPE_F32) {
  6369. ggml_compute_forward_add_f16_f32(params, dst);
  6370. }
  6371. else {
  6372. GGML_ASSERT(false);
  6373. }
  6374. } break;
  6375. case GGML_TYPE_Q4_0:
  6376. case GGML_TYPE_Q4_1:
  6377. case GGML_TYPE_Q5_0:
  6378. case GGML_TYPE_Q5_1:
  6379. case GGML_TYPE_Q8_0:
  6380. case GGML_TYPE_Q2_K:
  6381. case GGML_TYPE_Q3_K:
  6382. case GGML_TYPE_Q4_K:
  6383. case GGML_TYPE_Q5_K:
  6384. case GGML_TYPE_Q6_K:
  6385. case GGML_TYPE_IQ2_XXS:
  6386. case GGML_TYPE_IQ2_XS:
  6387. case GGML_TYPE_IQ3_XXS:
  6388. case GGML_TYPE_IQ1_S:
  6389. case GGML_TYPE_IQ4_NL:
  6390. case GGML_TYPE_IQ4_XS:
  6391. case GGML_TYPE_IQ3_S:
  6392. case GGML_TYPE_IQ2_S:
  6393. {
  6394. ggml_compute_forward_add_q_f32(params, dst);
  6395. } break;
  6396. default:
  6397. {
  6398. GGML_ASSERT(false);
  6399. } break;
  6400. }
  6401. }
  6402. // ggml_compute_forward_add1
  6403. static void ggml_compute_forward_add1_f32(
  6404. const struct ggml_compute_params * params,
  6405. struct ggml_tensor * dst) {
  6406. const struct ggml_tensor * src0 = dst->src[0];
  6407. const struct ggml_tensor * src1 = dst->src[1];
  6408. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6409. GGML_ASSERT(ggml_is_scalar(src1));
  6410. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6411. return;
  6412. }
  6413. const int ith = params->ith;
  6414. const int nth = params->nth;
  6415. const int nr = ggml_nrows(src0);
  6416. GGML_TENSOR_UNARY_OP_LOCALS
  6417. GGML_ASSERT( nb0 == sizeof(float));
  6418. GGML_ASSERT(nb00 == sizeof(float));
  6419. // rows per thread
  6420. const int dr = (nr + nth - 1)/nth;
  6421. // row range for this thread
  6422. const int ir0 = dr*ith;
  6423. const int ir1 = MIN(ir0 + dr, nr);
  6424. for (int ir = ir0; ir < ir1; ++ir) {
  6425. // src0 and dst are same shape => same indices
  6426. const int i3 = ir/(ne2*ne1);
  6427. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6428. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6429. #ifdef GGML_USE_ACCELERATE
  6430. UNUSED(ggml_vec_add1_f32);
  6431. vDSP_vadd(
  6432. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6433. (float *) ((char *) src1->data), 0,
  6434. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6435. ne0);
  6436. #else
  6437. ggml_vec_add1_f32(ne0,
  6438. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6439. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6440. *(float *) src1->data);
  6441. #endif
  6442. }
  6443. }
  6444. static void ggml_compute_forward_add1_f16_f32(
  6445. const struct ggml_compute_params * params,
  6446. struct ggml_tensor * dst) {
  6447. const struct ggml_tensor * src0 = dst->src[0];
  6448. const struct ggml_tensor * src1 = dst->src[1];
  6449. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6450. GGML_ASSERT(ggml_is_scalar(src1));
  6451. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6452. return;
  6453. }
  6454. // scalar to add
  6455. const float v = *(float *) src1->data;
  6456. const int ith = params->ith;
  6457. const int nth = params->nth;
  6458. const int nr = ggml_nrows(src0);
  6459. GGML_TENSOR_UNARY_OP_LOCALS
  6460. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6461. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6462. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6463. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6464. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6465. // rows per thread
  6466. const int dr = (nr + nth - 1)/nth;
  6467. // row range for this thread
  6468. const int ir0 = dr*ith;
  6469. const int ir1 = MIN(ir0 + dr, nr);
  6470. for (int ir = ir0; ir < ir1; ++ir) {
  6471. // src0 and dst are same shape => same indices
  6472. const int i3 = ir/(ne2*ne1);
  6473. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6474. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6475. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6476. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6477. for (int i = 0; i < ne0; i++) {
  6478. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6479. }
  6480. }
  6481. }
  6482. static void ggml_compute_forward_add1_f16_f16(
  6483. const struct ggml_compute_params * params,
  6484. struct ggml_tensor * dst) {
  6485. const struct ggml_tensor * src0 = dst->src[0];
  6486. const struct ggml_tensor * src1 = dst->src[1];
  6487. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6488. GGML_ASSERT(ggml_is_scalar(src1));
  6489. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6490. return;
  6491. }
  6492. // scalar to add
  6493. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6494. const int ith = params->ith;
  6495. const int nth = params->nth;
  6496. const int nr = ggml_nrows(src0);
  6497. GGML_TENSOR_UNARY_OP_LOCALS
  6498. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6499. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6500. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6501. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6502. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6503. // rows per thread
  6504. const int dr = (nr + nth - 1)/nth;
  6505. // row range for this thread
  6506. const int ir0 = dr*ith;
  6507. const int ir1 = MIN(ir0 + dr, nr);
  6508. for (int ir = ir0; ir < ir1; ++ir) {
  6509. // src0 and dst are same shape => same indices
  6510. const int i3 = ir/(ne2*ne1);
  6511. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6512. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6513. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6514. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6515. for (int i = 0; i < ne0; i++) {
  6516. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6517. }
  6518. }
  6519. }
  6520. static void ggml_compute_forward_add1_q_f32(
  6521. const struct ggml_compute_params * params,
  6522. struct ggml_tensor * dst) {
  6523. const struct ggml_tensor * src0 = dst->src[0];
  6524. const struct ggml_tensor * src1 = dst->src[1];
  6525. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6526. GGML_ASSERT(ggml_is_scalar(src1));
  6527. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6528. return;
  6529. }
  6530. // scalar to add
  6531. const float v = *(float *) src1->data;
  6532. const int ith = params->ith;
  6533. const int nth = params->nth;
  6534. const int nr = ggml_nrows(src0);
  6535. GGML_TENSOR_UNARY_OP_LOCALS
  6536. const enum ggml_type type = src0->type;
  6537. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6538. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6539. // we don't support permuted src0
  6540. GGML_ASSERT(nb00 == ggml_type_size(type));
  6541. // dst cannot be transposed or permuted
  6542. GGML_ASSERT(nb0 <= nb1);
  6543. GGML_ASSERT(nb1 <= nb2);
  6544. GGML_ASSERT(nb2 <= nb3);
  6545. GGML_ASSERT(ggml_is_quantized(src0->type));
  6546. GGML_ASSERT(dst->type == src0->type);
  6547. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6548. // rows per thread
  6549. const int dr = (nr + nth - 1)/nth;
  6550. // row range for this thread
  6551. const int ir0 = dr*ith;
  6552. const int ir1 = MIN(ir0 + dr, nr);
  6553. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6554. for (int ir = ir0; ir < ir1; ++ir) {
  6555. // src0 and dst are same shape => same indices
  6556. const int i3 = ir/(ne2*ne1);
  6557. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6558. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6559. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6560. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6561. assert(ne0 % 32 == 0);
  6562. // unquantize row from src0 to temp buffer
  6563. dequantize_row_q(src0_row, wdata, ne0);
  6564. // add src1
  6565. ggml_vec_acc1_f32(ne0, wdata, v);
  6566. // quantize row to dst
  6567. quantize_row_q(wdata, dst_row, ne0);
  6568. }
  6569. }
  6570. static void ggml_compute_forward_add1(
  6571. const struct ggml_compute_params * params,
  6572. struct ggml_tensor * dst) {
  6573. const struct ggml_tensor * src0 = dst->src[0];
  6574. const struct ggml_tensor * src1 = dst->src[1];
  6575. switch (src0->type) {
  6576. case GGML_TYPE_F32:
  6577. {
  6578. ggml_compute_forward_add1_f32(params, dst);
  6579. } break;
  6580. case GGML_TYPE_F16:
  6581. {
  6582. if (src1->type == GGML_TYPE_F16) {
  6583. ggml_compute_forward_add1_f16_f16(params, dst);
  6584. }
  6585. else if (src1->type == GGML_TYPE_F32) {
  6586. ggml_compute_forward_add1_f16_f32(params, dst);
  6587. }
  6588. else {
  6589. GGML_ASSERT(false);
  6590. }
  6591. } break;
  6592. case GGML_TYPE_Q4_0:
  6593. case GGML_TYPE_Q4_1:
  6594. case GGML_TYPE_Q5_0:
  6595. case GGML_TYPE_Q5_1:
  6596. case GGML_TYPE_Q8_0:
  6597. case GGML_TYPE_Q8_1:
  6598. case GGML_TYPE_Q2_K:
  6599. case GGML_TYPE_Q3_K:
  6600. case GGML_TYPE_Q4_K:
  6601. case GGML_TYPE_Q5_K:
  6602. case GGML_TYPE_Q6_K:
  6603. case GGML_TYPE_IQ2_XXS:
  6604. case GGML_TYPE_IQ2_XS:
  6605. case GGML_TYPE_IQ3_XXS:
  6606. case GGML_TYPE_IQ1_S:
  6607. case GGML_TYPE_IQ4_NL:
  6608. case GGML_TYPE_IQ4_XS:
  6609. case GGML_TYPE_IQ3_S:
  6610. case GGML_TYPE_IQ2_S:
  6611. {
  6612. ggml_compute_forward_add1_q_f32(params, dst);
  6613. } break;
  6614. default:
  6615. {
  6616. GGML_ASSERT(false);
  6617. } break;
  6618. }
  6619. }
  6620. // ggml_compute_forward_acc
  6621. static void ggml_compute_forward_acc_f32(
  6622. const struct ggml_compute_params * params,
  6623. struct ggml_tensor * dst) {
  6624. const struct ggml_tensor * src0 = dst->src[0];
  6625. const struct ggml_tensor * src1 = dst->src[1];
  6626. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6627. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6628. // view src0 and dst with these strides and data offset inbytes during acc
  6629. // nb0 is implicitly element_size because src0 and dst are contiguous
  6630. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6631. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6632. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6633. size_t offset = ((int32_t *) dst->op_params)[3];
  6634. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6635. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  6636. if (params->ith != 0) {
  6637. return;
  6638. }
  6639. // memcpy needs to be synchronized across threads to avoid race conditions.
  6640. // => do it in INIT phase
  6641. memcpy(
  6642. ((char *) dst->data),
  6643. ((char *) src0->data),
  6644. ggml_nbytes(dst));
  6645. }
  6646. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6647. return;
  6648. }
  6649. const int ith = params->ith;
  6650. const int nth = params->nth;
  6651. const int nr = ggml_nrows(src1);
  6652. const int nc = src1->ne[0];
  6653. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6654. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6655. // src0 and dst as viewed during acc
  6656. const size_t nb0 = ggml_element_size(src0);
  6657. const size_t nb00 = nb0;
  6658. const size_t nb01 = nb1;
  6659. const size_t nb02 = nb2;
  6660. const size_t nb03 = nb3;
  6661. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6662. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6663. GGML_ASSERT(nb10 == sizeof(float));
  6664. // rows per thread
  6665. const int dr = (nr + nth - 1)/nth;
  6666. // row range for this thread
  6667. const int ir0 = dr*ith;
  6668. const int ir1 = MIN(ir0 + dr, nr);
  6669. for (int ir = ir0; ir < ir1; ++ir) {
  6670. // src0 and dst are viewed with shape of src1 and offset
  6671. // => same indices
  6672. const int i3 = ir/(ne12*ne11);
  6673. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6674. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6675. #ifdef GGML_USE_ACCELERATE
  6676. vDSP_vadd(
  6677. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6678. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6679. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6680. #else
  6681. ggml_vec_add_f32(nc,
  6682. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6683. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6684. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6685. #endif
  6686. }
  6687. }
  6688. static void ggml_compute_forward_acc(
  6689. const struct ggml_compute_params * params,
  6690. struct ggml_tensor * dst) {
  6691. const struct ggml_tensor * src0 = dst->src[0];
  6692. switch (src0->type) {
  6693. case GGML_TYPE_F32:
  6694. {
  6695. ggml_compute_forward_acc_f32(params, dst);
  6696. } break;
  6697. case GGML_TYPE_F16:
  6698. case GGML_TYPE_Q4_0:
  6699. case GGML_TYPE_Q4_1:
  6700. case GGML_TYPE_Q5_0:
  6701. case GGML_TYPE_Q5_1:
  6702. case GGML_TYPE_Q8_0:
  6703. case GGML_TYPE_Q8_1:
  6704. case GGML_TYPE_Q2_K:
  6705. case GGML_TYPE_Q3_K:
  6706. case GGML_TYPE_Q4_K:
  6707. case GGML_TYPE_Q5_K:
  6708. case GGML_TYPE_Q6_K:
  6709. case GGML_TYPE_IQ2_XXS:
  6710. case GGML_TYPE_IQ2_XS:
  6711. case GGML_TYPE_IQ3_XXS:
  6712. case GGML_TYPE_IQ1_S:
  6713. case GGML_TYPE_IQ4_NL:
  6714. case GGML_TYPE_IQ4_XS:
  6715. case GGML_TYPE_IQ3_S:
  6716. case GGML_TYPE_IQ2_S:
  6717. default:
  6718. {
  6719. GGML_ASSERT(false);
  6720. } break;
  6721. }
  6722. }
  6723. // ggml_compute_forward_sub
  6724. static void ggml_compute_forward_sub_f32(
  6725. const struct ggml_compute_params * params,
  6726. struct ggml_tensor * dst) {
  6727. const struct ggml_tensor * src0 = dst->src[0];
  6728. const struct ggml_tensor * src1 = dst->src[1];
  6729. assert(params->ith == 0);
  6730. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6731. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6732. return;
  6733. }
  6734. const int nr = ggml_nrows(src0);
  6735. GGML_TENSOR_BINARY_OP_LOCALS
  6736. GGML_ASSERT( nb0 == sizeof(float));
  6737. GGML_ASSERT(nb00 == sizeof(float));
  6738. if (nb10 == sizeof(float)) {
  6739. for (int ir = 0; ir < nr; ++ir) {
  6740. // src0, src1 and dst are same shape => same indices
  6741. const int i3 = ir/(ne2*ne1);
  6742. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6743. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6744. #ifdef GGML_USE_ACCELERATE
  6745. vDSP_vsub(
  6746. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6747. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6748. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6749. ne0);
  6750. #else
  6751. ggml_vec_sub_f32(ne0,
  6752. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6753. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6754. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6755. #endif
  6756. // }
  6757. // }
  6758. }
  6759. } else {
  6760. // src1 is not contiguous
  6761. for (int ir = 0; ir < nr; ++ir) {
  6762. // src0, src1 and dst are same shape => same indices
  6763. const int i3 = ir/(ne2*ne1);
  6764. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6765. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6766. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6767. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6768. for (int i0 = 0; i0 < ne0; i0++) {
  6769. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6770. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6771. }
  6772. }
  6773. }
  6774. }
  6775. static void ggml_compute_forward_sub(
  6776. const struct ggml_compute_params * params,
  6777. struct ggml_tensor * dst) {
  6778. const struct ggml_tensor * src0 = dst->src[0];
  6779. switch (src0->type) {
  6780. case GGML_TYPE_F32:
  6781. {
  6782. ggml_compute_forward_sub_f32(params, dst);
  6783. } break;
  6784. default:
  6785. {
  6786. GGML_ASSERT(false);
  6787. } break;
  6788. }
  6789. }
  6790. // ggml_compute_forward_mul
  6791. static void ggml_compute_forward_mul_f32(
  6792. const struct ggml_compute_params * params,
  6793. struct ggml_tensor * dst) {
  6794. const struct ggml_tensor * src0 = dst->src[0];
  6795. const struct ggml_tensor * src1 = dst->src[1];
  6796. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6797. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6798. return;
  6799. }
  6800. const int ith = params->ith;
  6801. const int nth = params->nth;
  6802. #if defined(GGML_USE_CLBLAST)
  6803. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  6804. // TODO: OpenCL kernel support full broadcast
  6805. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6806. if (ith == 0) {
  6807. ggml_cl_mul(src0, src1, dst);
  6808. }
  6809. return;
  6810. }
  6811. #endif
  6812. const int64_t nr = ggml_nrows(src0);
  6813. GGML_TENSOR_BINARY_OP_LOCALS
  6814. GGML_ASSERT( nb0 == sizeof(float));
  6815. GGML_ASSERT(nb00 == sizeof(float));
  6816. if (nb10 == sizeof(float)) {
  6817. for (int64_t ir = ith; ir < nr; ir += nth) {
  6818. // src0 and dst are same shape => same indices
  6819. const int64_t i03 = ir/(ne02*ne01);
  6820. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6821. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6822. const int64_t i13 = i03 % ne13;
  6823. const int64_t i12 = i02 % ne12;
  6824. const int64_t i11 = i01 % ne11;
  6825. const int64_t nr0 = ne00 / ne10;
  6826. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6827. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6828. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6829. for (int64_t r = 0 ; r < nr0; ++r) {
  6830. #ifdef GGML_USE_ACCELERATE
  6831. UNUSED(ggml_vec_mul_f32);
  6832. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6833. #else
  6834. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6835. #endif
  6836. }
  6837. }
  6838. } else {
  6839. // src1 is not contiguous
  6840. for (int64_t ir = ith; ir < nr; ir += nth) {
  6841. // src0 and dst are same shape => same indices
  6842. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6843. const int64_t i03 = ir/(ne02*ne01);
  6844. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6845. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6846. const int64_t i13 = i03 % ne13;
  6847. const int64_t i12 = i02 % ne12;
  6848. const int64_t i11 = i01 % ne11;
  6849. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6850. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6851. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6852. const int64_t i10 = i0 % ne10;
  6853. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6854. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6855. }
  6856. }
  6857. }
  6858. }
  6859. static void ggml_compute_forward_mul(
  6860. const struct ggml_compute_params * params,
  6861. struct ggml_tensor * dst) {
  6862. const struct ggml_tensor * src0 = dst->src[0];
  6863. const struct ggml_tensor * src1 = dst->src[1];
  6864. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6865. switch (src0->type) {
  6866. case GGML_TYPE_F32:
  6867. {
  6868. ggml_compute_forward_mul_f32(params, dst);
  6869. } break;
  6870. default:
  6871. {
  6872. GGML_ASSERT(false);
  6873. } break;
  6874. }
  6875. }
  6876. // ggml_compute_forward_div
  6877. static void ggml_compute_forward_div_f32(
  6878. const struct ggml_compute_params * params,
  6879. struct ggml_tensor * dst) {
  6880. const struct ggml_tensor * src0 = dst->src[0];
  6881. const struct ggml_tensor * src1 = dst->src[1];
  6882. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6883. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6884. return;
  6885. }
  6886. const int ith = params->ith;
  6887. const int nth = params->nth;
  6888. const int64_t nr = ggml_nrows(src0);
  6889. GGML_TENSOR_BINARY_OP_LOCALS
  6890. GGML_ASSERT( nb0 == sizeof(float));
  6891. GGML_ASSERT(nb00 == sizeof(float));
  6892. if (nb10 == sizeof(float)) {
  6893. for (int64_t ir = ith; ir < nr; ir += nth) {
  6894. // src0 and dst are same shape => same indices
  6895. const int64_t i03 = ir/(ne02*ne01);
  6896. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6897. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6898. const int64_t i13 = i03 % ne13;
  6899. const int64_t i12 = i02 % ne12;
  6900. const int64_t i11 = i01 % ne11;
  6901. const int64_t nr0 = ne00 / ne10;
  6902. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6903. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6904. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6905. for (int64_t r = 0; r < nr0; ++r) {
  6906. #ifdef GGML_USE_ACCELERATE
  6907. UNUSED(ggml_vec_div_f32);
  6908. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  6909. #else
  6910. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6911. #endif
  6912. }
  6913. }
  6914. } else {
  6915. // src1 is not contiguous
  6916. for (int64_t ir = ith; ir < nr; ir += nth) {
  6917. // src0 and dst are same shape => same indices
  6918. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6919. const int64_t i03 = ir/(ne02*ne01);
  6920. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6921. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6922. const int64_t i13 = i03 % ne13;
  6923. const int64_t i12 = i02 % ne12;
  6924. const int64_t i11 = i01 % ne11;
  6925. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6926. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6927. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6928. const int64_t i10 = i0 % ne10;
  6929. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6930. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6931. }
  6932. }
  6933. }
  6934. }
  6935. static void ggml_compute_forward_div(
  6936. const struct ggml_compute_params * params,
  6937. struct ggml_tensor * dst) {
  6938. const struct ggml_tensor * src0 = dst->src[0];
  6939. switch (src0->type) {
  6940. case GGML_TYPE_F32:
  6941. {
  6942. ggml_compute_forward_div_f32(params, dst);
  6943. } break;
  6944. default:
  6945. {
  6946. GGML_ASSERT(false);
  6947. } break;
  6948. }
  6949. }
  6950. // ggml_compute_forward_sqr
  6951. static void ggml_compute_forward_sqr_f32(
  6952. const struct ggml_compute_params * params,
  6953. struct ggml_tensor * dst) {
  6954. const struct ggml_tensor * src0 = dst->src[0];
  6955. assert(params->ith == 0);
  6956. assert(ggml_are_same_shape(src0, dst));
  6957. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6958. return;
  6959. }
  6960. const int n = ggml_nrows(src0);
  6961. const int nc = src0->ne[0];
  6962. assert( dst->nb[0] == sizeof(float));
  6963. assert(src0->nb[0] == sizeof(float));
  6964. for (int i = 0; i < n; i++) {
  6965. ggml_vec_sqr_f32(nc,
  6966. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6967. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6968. }
  6969. }
  6970. static void ggml_compute_forward_sqr(
  6971. const struct ggml_compute_params * params,
  6972. struct ggml_tensor * dst) {
  6973. const struct ggml_tensor * src0 = dst->src[0];
  6974. switch (src0->type) {
  6975. case GGML_TYPE_F32:
  6976. {
  6977. ggml_compute_forward_sqr_f32(params, dst);
  6978. } break;
  6979. default:
  6980. {
  6981. GGML_ASSERT(false);
  6982. } break;
  6983. }
  6984. }
  6985. // ggml_compute_forward_sqrt
  6986. static void ggml_compute_forward_sqrt_f32(
  6987. const struct ggml_compute_params * params,
  6988. struct ggml_tensor * dst) {
  6989. const struct ggml_tensor * src0 = dst->src[0];
  6990. assert(params->ith == 0);
  6991. assert(ggml_are_same_shape(src0, dst));
  6992. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6993. return;
  6994. }
  6995. const int n = ggml_nrows(src0);
  6996. const int nc = src0->ne[0];
  6997. assert( dst->nb[0] == sizeof(float));
  6998. assert(src0->nb[0] == sizeof(float));
  6999. for (int i = 0; i < n; i++) {
  7000. ggml_vec_sqrt_f32(nc,
  7001. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7002. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7003. }
  7004. }
  7005. static void ggml_compute_forward_sqrt(
  7006. const struct ggml_compute_params * params,
  7007. struct ggml_tensor * dst) {
  7008. const struct ggml_tensor * src0 = dst->src[0];
  7009. switch (src0->type) {
  7010. case GGML_TYPE_F32:
  7011. {
  7012. ggml_compute_forward_sqrt_f32(params, dst);
  7013. } break;
  7014. default:
  7015. {
  7016. GGML_ASSERT(false);
  7017. } break;
  7018. }
  7019. }
  7020. // ggml_compute_forward_log
  7021. static void ggml_compute_forward_log_f32(
  7022. const struct ggml_compute_params * params,
  7023. struct ggml_tensor * dst) {
  7024. const struct ggml_tensor * src0 = dst->src[0];
  7025. GGML_ASSERT(params->ith == 0);
  7026. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7027. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7028. return;
  7029. }
  7030. const int n = ggml_nrows(src0);
  7031. const int nc = src0->ne[0];
  7032. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7033. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7034. for (int i = 0; i < n; i++) {
  7035. ggml_vec_log_f32(nc,
  7036. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7037. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7038. }
  7039. }
  7040. static void ggml_compute_forward_log(
  7041. const struct ggml_compute_params * params,
  7042. struct ggml_tensor * dst) {
  7043. const struct ggml_tensor * src0 = dst->src[0];
  7044. switch (src0->type) {
  7045. case GGML_TYPE_F32:
  7046. {
  7047. ggml_compute_forward_log_f32(params, dst);
  7048. } break;
  7049. default:
  7050. {
  7051. GGML_ASSERT(false);
  7052. } break;
  7053. }
  7054. }
  7055. // ggml_compute_forward_sum
  7056. static void ggml_compute_forward_sum_f32(
  7057. const struct ggml_compute_params * params,
  7058. struct ggml_tensor * dst) {
  7059. const struct ggml_tensor * src0 = dst->src[0];
  7060. assert(params->ith == 0);
  7061. assert(ggml_is_scalar(dst));
  7062. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7063. return;
  7064. }
  7065. assert(ggml_is_scalar(dst));
  7066. assert(src0->nb[0] == sizeof(float));
  7067. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7068. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7069. ggml_float sum = 0;
  7070. ggml_float row_sum = 0;
  7071. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7072. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7073. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7074. ggml_vec_sum_f32_ggf(ne00,
  7075. &row_sum,
  7076. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7077. sum += row_sum;
  7078. }
  7079. }
  7080. }
  7081. ((float *) dst->data)[0] = sum;
  7082. }
  7083. static void ggml_compute_forward_sum_f16(
  7084. const struct ggml_compute_params * params,
  7085. struct ggml_tensor * dst) {
  7086. const struct ggml_tensor * src0 = dst->src[0];
  7087. assert(params->ith == 0);
  7088. assert(ggml_is_scalar(dst));
  7089. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7090. return;
  7091. }
  7092. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7093. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7094. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7095. float sum = 0;
  7096. float row_sum = 0;
  7097. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7098. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7099. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7100. ggml_vec_sum_f16_ggf(ne00,
  7101. &row_sum,
  7102. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7103. sum += row_sum;
  7104. }
  7105. }
  7106. }
  7107. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7108. }
  7109. static void ggml_compute_forward_sum(
  7110. const struct ggml_compute_params * params,
  7111. struct ggml_tensor * dst) {
  7112. const struct ggml_tensor * src0 = dst->src[0];
  7113. switch (src0->type) {
  7114. case GGML_TYPE_F32:
  7115. {
  7116. ggml_compute_forward_sum_f32(params, dst);
  7117. } break;
  7118. case GGML_TYPE_F16:
  7119. {
  7120. ggml_compute_forward_sum_f16(params, dst);
  7121. } break;
  7122. default:
  7123. {
  7124. GGML_ASSERT(false);
  7125. } break;
  7126. }
  7127. }
  7128. // ggml_compute_forward_sum_rows
  7129. static void ggml_compute_forward_sum_rows_f32(
  7130. const struct ggml_compute_params * params,
  7131. struct ggml_tensor * dst) {
  7132. const struct ggml_tensor * src0 = dst->src[0];
  7133. GGML_ASSERT(params->ith == 0);
  7134. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7135. return;
  7136. }
  7137. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7138. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7139. GGML_TENSOR_UNARY_OP_LOCALS
  7140. GGML_ASSERT(ne0 == 1);
  7141. GGML_ASSERT(ne1 == ne01);
  7142. GGML_ASSERT(ne2 == ne02);
  7143. GGML_ASSERT(ne3 == ne03);
  7144. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7145. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7146. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7147. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7148. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7149. float row_sum = 0;
  7150. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7151. dst_row[0] = row_sum;
  7152. }
  7153. }
  7154. }
  7155. }
  7156. static void ggml_compute_forward_sum_rows(
  7157. const struct ggml_compute_params * params,
  7158. struct ggml_tensor * dst) {
  7159. const struct ggml_tensor * src0 = dst->src[0];
  7160. switch (src0->type) {
  7161. case GGML_TYPE_F32:
  7162. {
  7163. ggml_compute_forward_sum_rows_f32(params, dst);
  7164. } break;
  7165. default:
  7166. {
  7167. GGML_ASSERT(false);
  7168. } break;
  7169. }
  7170. }
  7171. // ggml_compute_forward_mean
  7172. static void ggml_compute_forward_mean_f32(
  7173. const struct ggml_compute_params * params,
  7174. struct ggml_tensor * dst) {
  7175. const struct ggml_tensor * src0 = dst->src[0];
  7176. assert(params->ith == 0);
  7177. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7178. return;
  7179. }
  7180. assert(src0->nb[0] == sizeof(float));
  7181. GGML_TENSOR_UNARY_OP_LOCALS
  7182. assert(ne0 == 1);
  7183. assert(ne1 == ne01);
  7184. assert(ne2 == ne02);
  7185. assert(ne3 == ne03);
  7186. UNUSED(ne0);
  7187. UNUSED(ne1);
  7188. UNUSED(ne2);
  7189. UNUSED(ne3);
  7190. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7191. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7192. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7193. ggml_vec_sum_f32(ne00,
  7194. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7195. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7196. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7197. }
  7198. }
  7199. }
  7200. }
  7201. static void ggml_compute_forward_mean(
  7202. const struct ggml_compute_params * params,
  7203. struct ggml_tensor * dst) {
  7204. const struct ggml_tensor * src0 = dst->src[0];
  7205. switch (src0->type) {
  7206. case GGML_TYPE_F32:
  7207. {
  7208. ggml_compute_forward_mean_f32(params, dst);
  7209. } break;
  7210. default:
  7211. {
  7212. GGML_ASSERT(false);
  7213. } break;
  7214. }
  7215. }
  7216. // ggml_compute_forward_argmax
  7217. static void ggml_compute_forward_argmax_f32(
  7218. const struct ggml_compute_params * params,
  7219. struct ggml_tensor * dst) {
  7220. const struct ggml_tensor * src0 = dst->src[0];
  7221. assert(params->ith == 0);
  7222. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7223. return;
  7224. }
  7225. assert(src0->nb[0] == sizeof(float));
  7226. assert(dst->nb[0] == sizeof(float));
  7227. const int64_t ne00 = src0->ne[0];
  7228. const int64_t ne01 = src0->ne[1];
  7229. const size_t nb01 = src0->nb[1];
  7230. const size_t nb0 = dst->nb[0];
  7231. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7232. float * src = (float *) ((char *) src0->data + i1*nb01);
  7233. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7234. int v = 0;
  7235. ggml_vec_argmax_f32(ne00, &v, src);
  7236. dst_[0] = v;
  7237. }
  7238. }
  7239. static void ggml_compute_forward_argmax(
  7240. const struct ggml_compute_params * params,
  7241. struct ggml_tensor * dst) {
  7242. const struct ggml_tensor * src0 = dst->src[0];
  7243. switch (src0->type) {
  7244. case GGML_TYPE_F32:
  7245. {
  7246. ggml_compute_forward_argmax_f32(params, dst);
  7247. } break;
  7248. default:
  7249. {
  7250. GGML_ASSERT(false);
  7251. } break;
  7252. }
  7253. }
  7254. // ggml_compute_forward_repeat
  7255. static void ggml_compute_forward_repeat_f32(
  7256. const struct ggml_compute_params * params,
  7257. struct ggml_tensor * dst) {
  7258. const struct ggml_tensor * src0 = dst->src[0];
  7259. GGML_ASSERT(params->ith == 0);
  7260. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7261. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7262. return;
  7263. }
  7264. GGML_TENSOR_UNARY_OP_LOCALS
  7265. // guaranteed to be an integer due to the check in ggml_can_repeat
  7266. const int nr0 = (int)(ne0/ne00);
  7267. const int nr1 = (int)(ne1/ne01);
  7268. const int nr2 = (int)(ne2/ne02);
  7269. const int nr3 = (int)(ne3/ne03);
  7270. // TODO: support for transposed / permuted tensors
  7271. GGML_ASSERT(nb0 == sizeof(float));
  7272. GGML_ASSERT(nb00 == sizeof(float));
  7273. // TODO: maybe this is not optimal?
  7274. for (int i3 = 0; i3 < nr3; i3++) {
  7275. for (int k3 = 0; k3 < ne03; k3++) {
  7276. for (int i2 = 0; i2 < nr2; i2++) {
  7277. for (int k2 = 0; k2 < ne02; k2++) {
  7278. for (int i1 = 0; i1 < nr1; i1++) {
  7279. for (int k1 = 0; k1 < ne01; k1++) {
  7280. for (int i0 = 0; i0 < nr0; i0++) {
  7281. ggml_vec_cpy_f32(ne00,
  7282. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7283. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7284. }
  7285. }
  7286. }
  7287. }
  7288. }
  7289. }
  7290. }
  7291. }
  7292. static void ggml_compute_forward_repeat_f16(
  7293. const struct ggml_compute_params * params,
  7294. struct ggml_tensor * dst) {
  7295. const struct ggml_tensor * src0 = dst->src[0];
  7296. GGML_ASSERT(params->ith == 0);
  7297. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7298. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7299. return;
  7300. }
  7301. GGML_TENSOR_UNARY_OP_LOCALS
  7302. // guaranteed to be an integer due to the check in ggml_can_repeat
  7303. const int nr0 = (int)(ne0/ne00);
  7304. const int nr1 = (int)(ne1/ne01);
  7305. const int nr2 = (int)(ne2/ne02);
  7306. const int nr3 = (int)(ne3/ne03);
  7307. // TODO: support for transposed / permuted tensors
  7308. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7309. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7310. // TODO: maybe this is not optimal?
  7311. for (int i3 = 0; i3 < nr3; i3++) {
  7312. for (int k3 = 0; k3 < ne03; k3++) {
  7313. for (int i2 = 0; i2 < nr2; i2++) {
  7314. for (int k2 = 0; k2 < ne02; k2++) {
  7315. for (int i1 = 0; i1 < nr1; i1++) {
  7316. for (int k1 = 0; k1 < ne01; k1++) {
  7317. for (int i0 = 0; i0 < nr0; i0++) {
  7318. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7319. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7320. // ggml_vec_cpy_f16(ne00, y, x)
  7321. for (int i = 0; i < ne00; ++i) {
  7322. y[i] = x[i];
  7323. }
  7324. }
  7325. }
  7326. }
  7327. }
  7328. }
  7329. }
  7330. }
  7331. }
  7332. static void ggml_compute_forward_repeat(
  7333. const struct ggml_compute_params * params,
  7334. struct ggml_tensor * dst) {
  7335. const struct ggml_tensor * src0 = dst->src[0];
  7336. switch (src0->type) {
  7337. case GGML_TYPE_F16:
  7338. case GGML_TYPE_I16:
  7339. {
  7340. ggml_compute_forward_repeat_f16(params, dst);
  7341. } break;
  7342. case GGML_TYPE_F32:
  7343. case GGML_TYPE_I32:
  7344. {
  7345. ggml_compute_forward_repeat_f32(params, dst);
  7346. } break;
  7347. default:
  7348. {
  7349. GGML_ASSERT(false);
  7350. } break;
  7351. }
  7352. }
  7353. // ggml_compute_forward_repeat_back
  7354. static void ggml_compute_forward_repeat_back_f32(
  7355. const struct ggml_compute_params * params,
  7356. struct ggml_tensor * dst) {
  7357. const struct ggml_tensor * src0 = dst->src[0];
  7358. GGML_ASSERT(params->ith == 0);
  7359. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7360. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7361. return;
  7362. }
  7363. GGML_TENSOR_UNARY_OP_LOCALS
  7364. // guaranteed to be an integer due to the check in ggml_can_repeat
  7365. const int nr0 = (int)(ne00/ne0);
  7366. const int nr1 = (int)(ne01/ne1);
  7367. const int nr2 = (int)(ne02/ne2);
  7368. const int nr3 = (int)(ne03/ne3);
  7369. // TODO: support for transposed / permuted tensors
  7370. GGML_ASSERT(nb0 == sizeof(float));
  7371. GGML_ASSERT(nb00 == sizeof(float));
  7372. if (ggml_is_contiguous(dst)) {
  7373. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7374. } else {
  7375. for (int k3 = 0; k3 < ne3; k3++) {
  7376. for (int k2 = 0; k2 < ne2; k2++) {
  7377. for (int k1 = 0; k1 < ne1; k1++) {
  7378. ggml_vec_set_f32(ne0,
  7379. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7380. 0);
  7381. }
  7382. }
  7383. }
  7384. }
  7385. // TODO: maybe this is not optimal?
  7386. for (int i3 = 0; i3 < nr3; i3++) {
  7387. for (int k3 = 0; k3 < ne3; k3++) {
  7388. for (int i2 = 0; i2 < nr2; i2++) {
  7389. for (int k2 = 0; k2 < ne2; k2++) {
  7390. for (int i1 = 0; i1 < nr1; i1++) {
  7391. for (int k1 = 0; k1 < ne1; k1++) {
  7392. for (int i0 = 0; i0 < nr0; i0++) {
  7393. ggml_vec_acc_f32(ne0,
  7394. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7395. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7396. }
  7397. }
  7398. }
  7399. }
  7400. }
  7401. }
  7402. }
  7403. }
  7404. static void ggml_compute_forward_repeat_back(
  7405. const struct ggml_compute_params * params,
  7406. struct ggml_tensor * dst) {
  7407. const struct ggml_tensor * src0 = dst->src[0];
  7408. switch (src0->type) {
  7409. case GGML_TYPE_F32:
  7410. {
  7411. ggml_compute_forward_repeat_back_f32(params, dst);
  7412. } break;
  7413. default:
  7414. {
  7415. GGML_ASSERT(false);
  7416. } break;
  7417. }
  7418. }
  7419. // ggml_compute_forward_concat
  7420. static void ggml_compute_forward_concat_f32(
  7421. const struct ggml_compute_params * params,
  7422. struct ggml_tensor * dst) {
  7423. const struct ggml_tensor * src0 = dst->src[0];
  7424. const struct ggml_tensor * src1 = dst->src[1];
  7425. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7426. return;
  7427. }
  7428. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7429. const int ith = params->ith;
  7430. const int nth = params->nth;
  7431. GGML_TENSOR_BINARY_OP_LOCALS
  7432. // TODO: support for transposed / permuted tensors
  7433. GGML_ASSERT(nb0 == sizeof(float));
  7434. GGML_ASSERT(nb00 == sizeof(float));
  7435. GGML_ASSERT(nb10 == sizeof(float));
  7436. for (int i3 = 0; i3 < ne3; i3++) {
  7437. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7438. if (i2 < ne02) { // src0
  7439. for (int i1 = 0; i1 < ne1; i1++) {
  7440. for (int i0 = 0; i0 < ne0; i0++) {
  7441. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7442. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7443. *y = *x;
  7444. }
  7445. }
  7446. } // src1
  7447. else {
  7448. for (int i1 = 0; i1 < ne1; i1++) {
  7449. for (int i0 = 0; i0 < ne0; i0++) {
  7450. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7451. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7452. *y = *x;
  7453. }
  7454. }
  7455. }
  7456. }
  7457. }
  7458. }
  7459. static void ggml_compute_forward_concat(
  7460. const struct ggml_compute_params* params,
  7461. struct ggml_tensor* dst) {
  7462. const struct ggml_tensor * src0 = dst->src[0];
  7463. switch (src0->type) {
  7464. case GGML_TYPE_F32:
  7465. case GGML_TYPE_I32:
  7466. {
  7467. ggml_compute_forward_concat_f32(params, dst);
  7468. } break;
  7469. default:
  7470. {
  7471. GGML_ASSERT(false);
  7472. } break;
  7473. }
  7474. }
  7475. // ggml_compute_forward_abs
  7476. static void ggml_compute_forward_abs_f32(
  7477. const struct ggml_compute_params * params,
  7478. struct ggml_tensor * dst) {
  7479. const struct ggml_tensor * src0 = dst->src[0];
  7480. assert(params->ith == 0);
  7481. assert(ggml_are_same_shape(src0, dst));
  7482. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7483. return;
  7484. }
  7485. const int n = ggml_nrows(src0);
  7486. const int nc = src0->ne[0];
  7487. assert(dst->nb[0] == sizeof(float));
  7488. assert(src0->nb[0] == sizeof(float));
  7489. for (int i = 0; i < n; i++) {
  7490. ggml_vec_abs_f32(nc,
  7491. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7492. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7493. }
  7494. }
  7495. static void ggml_compute_forward_abs(
  7496. const struct ggml_compute_params * params,
  7497. struct ggml_tensor * dst) {
  7498. const struct ggml_tensor * src0 = dst->src[0];
  7499. switch (src0->type) {
  7500. case GGML_TYPE_F32:
  7501. {
  7502. ggml_compute_forward_abs_f32(params, dst);
  7503. } break;
  7504. default:
  7505. {
  7506. GGML_ASSERT(false);
  7507. } break;
  7508. }
  7509. }
  7510. // ggml_compute_forward_sgn
  7511. static void ggml_compute_forward_sgn_f32(
  7512. const struct ggml_compute_params * params,
  7513. struct ggml_tensor * dst) {
  7514. const struct ggml_tensor * src0 = dst->src[0];
  7515. assert(params->ith == 0);
  7516. assert(ggml_are_same_shape(src0, dst));
  7517. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7518. return;
  7519. }
  7520. const int n = ggml_nrows(src0);
  7521. const int nc = src0->ne[0];
  7522. assert(dst->nb[0] == sizeof(float));
  7523. assert(src0->nb[0] == sizeof(float));
  7524. for (int i = 0; i < n; i++) {
  7525. ggml_vec_sgn_f32(nc,
  7526. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7527. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7528. }
  7529. }
  7530. static void ggml_compute_forward_sgn(
  7531. const struct ggml_compute_params * params,
  7532. struct ggml_tensor * dst) {
  7533. const struct ggml_tensor * src0 = dst->src[0];
  7534. switch (src0->type) {
  7535. case GGML_TYPE_F32:
  7536. {
  7537. ggml_compute_forward_sgn_f32(params, dst);
  7538. } break;
  7539. default:
  7540. {
  7541. GGML_ASSERT(false);
  7542. } break;
  7543. }
  7544. }
  7545. // ggml_compute_forward_neg
  7546. static void ggml_compute_forward_neg_f32(
  7547. const struct ggml_compute_params * params,
  7548. struct ggml_tensor * dst) {
  7549. const struct ggml_tensor * src0 = dst->src[0];
  7550. assert(params->ith == 0);
  7551. assert(ggml_are_same_shape(src0, dst));
  7552. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7553. return;
  7554. }
  7555. const int n = ggml_nrows(src0);
  7556. const int nc = src0->ne[0];
  7557. assert(dst->nb[0] == sizeof(float));
  7558. assert(src0->nb[0] == sizeof(float));
  7559. for (int i = 0; i < n; i++) {
  7560. ggml_vec_neg_f32(nc,
  7561. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7562. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7563. }
  7564. }
  7565. static void ggml_compute_forward_neg(
  7566. const struct ggml_compute_params * params,
  7567. struct ggml_tensor * dst) {
  7568. const struct ggml_tensor * src0 = dst->src[0];
  7569. switch (src0->type) {
  7570. case GGML_TYPE_F32:
  7571. {
  7572. ggml_compute_forward_neg_f32(params, dst);
  7573. } break;
  7574. default:
  7575. {
  7576. GGML_ASSERT(false);
  7577. } break;
  7578. }
  7579. }
  7580. // ggml_compute_forward_step
  7581. static void ggml_compute_forward_step_f32(
  7582. const struct ggml_compute_params * params,
  7583. struct ggml_tensor * dst) {
  7584. const struct ggml_tensor * src0 = dst->src[0];
  7585. assert(params->ith == 0);
  7586. assert(ggml_are_same_shape(src0, dst));
  7587. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7588. return;
  7589. }
  7590. const int n = ggml_nrows(src0);
  7591. const int nc = src0->ne[0];
  7592. assert(dst->nb[0] == sizeof(float));
  7593. assert(src0->nb[0] == sizeof(float));
  7594. for (int i = 0; i < n; i++) {
  7595. ggml_vec_step_f32(nc,
  7596. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7597. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7598. }
  7599. }
  7600. static void ggml_compute_forward_step(
  7601. const struct ggml_compute_params * params,
  7602. struct ggml_tensor * dst) {
  7603. const struct ggml_tensor * src0 = dst->src[0];
  7604. switch (src0->type) {
  7605. case GGML_TYPE_F32:
  7606. {
  7607. ggml_compute_forward_step_f32(params, dst);
  7608. } break;
  7609. default:
  7610. {
  7611. GGML_ASSERT(false);
  7612. } break;
  7613. }
  7614. }
  7615. // ggml_compute_forward_tanh
  7616. static void ggml_compute_forward_tanh_f32(
  7617. const struct ggml_compute_params * params,
  7618. struct ggml_tensor * dst) {
  7619. const struct ggml_tensor * src0 = dst->src[0];
  7620. assert(params->ith == 0);
  7621. assert(ggml_are_same_shape(src0, dst));
  7622. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7623. return;
  7624. }
  7625. const int n = ggml_nrows(src0);
  7626. const int nc = src0->ne[0];
  7627. assert(dst->nb[0] == sizeof(float));
  7628. assert(src0->nb[0] == sizeof(float));
  7629. for (int i = 0; i < n; i++) {
  7630. ggml_vec_tanh_f32(nc,
  7631. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7632. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7633. }
  7634. }
  7635. static void ggml_compute_forward_tanh(
  7636. const struct ggml_compute_params * params,
  7637. struct ggml_tensor * dst) {
  7638. const struct ggml_tensor * src0 = dst->src[0];
  7639. switch (src0->type) {
  7640. case GGML_TYPE_F32:
  7641. {
  7642. ggml_compute_forward_tanh_f32(params, dst);
  7643. } break;
  7644. default:
  7645. {
  7646. GGML_ASSERT(false);
  7647. } break;
  7648. }
  7649. }
  7650. // ggml_compute_forward_elu
  7651. static void ggml_compute_forward_elu_f32(
  7652. const struct ggml_compute_params * params,
  7653. struct ggml_tensor * dst) {
  7654. const struct ggml_tensor * src0 = dst->src[0];
  7655. assert(params->ith == 0);
  7656. assert(ggml_are_same_shape(src0, dst));
  7657. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7658. return;
  7659. }
  7660. const int n = ggml_nrows(src0);
  7661. const int nc = src0->ne[0];
  7662. assert(dst->nb[0] == sizeof(float));
  7663. assert(src0->nb[0] == sizeof(float));
  7664. for (int i = 0; i < n; i++) {
  7665. ggml_vec_elu_f32(nc,
  7666. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7667. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7668. }
  7669. }
  7670. static void ggml_compute_forward_elu(
  7671. const struct ggml_compute_params * params,
  7672. struct ggml_tensor * dst) {
  7673. const struct ggml_tensor * src0 = dst->src[0];
  7674. switch (src0->type) {
  7675. case GGML_TYPE_F32:
  7676. {
  7677. ggml_compute_forward_elu_f32(params, dst);
  7678. } break;
  7679. default:
  7680. {
  7681. GGML_ASSERT(false);
  7682. } break;
  7683. }
  7684. }
  7685. // ggml_compute_forward_relu
  7686. static void ggml_compute_forward_relu_f32(
  7687. const struct ggml_compute_params * params,
  7688. struct ggml_tensor * dst) {
  7689. const struct ggml_tensor * src0 = dst->src[0];
  7690. assert(params->ith == 0);
  7691. assert(ggml_are_same_shape(src0, dst));
  7692. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7693. return;
  7694. }
  7695. const int n = ggml_nrows(src0);
  7696. const int nc = src0->ne[0];
  7697. assert(dst->nb[0] == sizeof(float));
  7698. assert(src0->nb[0] == sizeof(float));
  7699. for (int i = 0; i < n; i++) {
  7700. ggml_vec_relu_f32(nc,
  7701. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7702. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7703. }
  7704. }
  7705. static void ggml_compute_forward_relu(
  7706. const struct ggml_compute_params * params,
  7707. struct ggml_tensor * dst) {
  7708. const struct ggml_tensor * src0 = dst->src[0];
  7709. switch (src0->type) {
  7710. case GGML_TYPE_F32:
  7711. {
  7712. ggml_compute_forward_relu_f32(params, dst);
  7713. } break;
  7714. default:
  7715. {
  7716. GGML_ASSERT(false);
  7717. } break;
  7718. }
  7719. }
  7720. // ggml_compute_forward_gelu
  7721. static void ggml_compute_forward_gelu_f32(
  7722. const struct ggml_compute_params * params,
  7723. struct ggml_tensor * dst) {
  7724. const struct ggml_tensor * src0 = dst->src[0];
  7725. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7726. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7727. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7728. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7729. return;
  7730. }
  7731. const int ith = params->ith;
  7732. const int nth = params->nth;
  7733. const int nc = src0->ne[0];
  7734. const int nr = ggml_nrows(src0);
  7735. // rows per thread
  7736. const int dr = (nr + nth - 1)/nth;
  7737. // row range for this thread
  7738. const int ir0 = dr*ith;
  7739. const int ir1 = MIN(ir0 + dr, nr);
  7740. for (int i1 = ir0; i1 < ir1; i1++) {
  7741. ggml_vec_gelu_f32(nc,
  7742. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7743. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7744. #ifndef NDEBUG
  7745. for (int k = 0; k < nc; k++) {
  7746. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7747. UNUSED(x);
  7748. assert(!isnan(x));
  7749. assert(!isinf(x));
  7750. }
  7751. #endif
  7752. }
  7753. }
  7754. static void ggml_compute_forward_gelu(
  7755. const struct ggml_compute_params * params,
  7756. struct ggml_tensor * dst) {
  7757. const struct ggml_tensor * src0 = dst->src[0];
  7758. switch (src0->type) {
  7759. case GGML_TYPE_F32:
  7760. {
  7761. ggml_compute_forward_gelu_f32(params, dst);
  7762. } break;
  7763. default:
  7764. {
  7765. GGML_ASSERT(false);
  7766. } break;
  7767. }
  7768. }
  7769. // ggml_compute_forward_gelu_quick
  7770. static void ggml_compute_forward_gelu_quick_f32(
  7771. const struct ggml_compute_params * params,
  7772. struct ggml_tensor * dst) {
  7773. const struct ggml_tensor * src0 = dst->src[0];
  7774. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7775. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7776. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7777. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7778. return;
  7779. }
  7780. const int ith = params->ith;
  7781. const int nth = params->nth;
  7782. const int nc = src0->ne[0];
  7783. const int nr = ggml_nrows(src0);
  7784. // rows per thread
  7785. const int dr = (nr + nth - 1)/nth;
  7786. // row range for this thread
  7787. const int ir0 = dr*ith;
  7788. const int ir1 = MIN(ir0 + dr, nr);
  7789. for (int i1 = ir0; i1 < ir1; i1++) {
  7790. ggml_vec_gelu_quick_f32(nc,
  7791. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7792. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7793. #ifndef NDEBUG
  7794. for (int k = 0; k < nc; k++) {
  7795. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7796. UNUSED(x);
  7797. assert(!isnan(x));
  7798. assert(!isinf(x));
  7799. }
  7800. #endif
  7801. }
  7802. }
  7803. static void ggml_compute_forward_gelu_quick(
  7804. const struct ggml_compute_params * params,
  7805. struct ggml_tensor * dst) {
  7806. const struct ggml_tensor * src0 = dst->src[0];
  7807. switch (src0->type) {
  7808. case GGML_TYPE_F32:
  7809. {
  7810. ggml_compute_forward_gelu_quick_f32(params, dst);
  7811. } break;
  7812. default:
  7813. {
  7814. GGML_ASSERT(false);
  7815. } break;
  7816. }
  7817. }
  7818. // ggml_compute_forward_silu
  7819. static void ggml_compute_forward_silu_f32(
  7820. const struct ggml_compute_params * params,
  7821. struct ggml_tensor * dst) {
  7822. const struct ggml_tensor * src0 = dst->src[0];
  7823. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7824. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7825. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7826. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7827. return;
  7828. }
  7829. const int ith = params->ith;
  7830. const int nth = params->nth;
  7831. const int nc = src0->ne[0];
  7832. const int nr = ggml_nrows(src0);
  7833. // rows per thread
  7834. const int dr = (nr + nth - 1)/nth;
  7835. // row range for this thread
  7836. const int ir0 = dr*ith;
  7837. const int ir1 = MIN(ir0 + dr, nr);
  7838. for (int i1 = ir0; i1 < ir1; i1++) {
  7839. ggml_vec_silu_f32(nc,
  7840. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7841. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7842. #ifndef NDEBUG
  7843. for (int k = 0; k < nc; k++) {
  7844. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7845. UNUSED(x);
  7846. assert(!isnan(x));
  7847. assert(!isinf(x));
  7848. }
  7849. #endif
  7850. }
  7851. }
  7852. static void ggml_compute_forward_silu(
  7853. const struct ggml_compute_params * params,
  7854. struct ggml_tensor * dst) {
  7855. const struct ggml_tensor * src0 = dst->src[0];
  7856. switch (src0->type) {
  7857. case GGML_TYPE_F32:
  7858. {
  7859. ggml_compute_forward_silu_f32(params, dst);
  7860. } break;
  7861. default:
  7862. {
  7863. GGML_ASSERT(false);
  7864. } break;
  7865. }
  7866. }
  7867. // ggml_compute_forward_leaky_relu
  7868. static void ggml_compute_forward_leaky_relu_f32(
  7869. const struct ggml_compute_params * params,
  7870. struct ggml_tensor * dst) {
  7871. const struct ggml_tensor * src0 = dst->src[0];
  7872. assert(params->ith == 0);
  7873. assert(ggml_are_same_shape(src0, dst));
  7874. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7875. return;
  7876. }
  7877. const int n = ggml_nrows(src0);
  7878. const int nc = src0->ne[0];
  7879. float negative_slope;
  7880. memcpy(&negative_slope, dst->op_params, sizeof(float));
  7881. assert(dst->nb[0] == sizeof(float));
  7882. assert(src0->nb[0] == sizeof(float));
  7883. for (int i = 0; i < n; i++) {
  7884. ggml_vec_leaky_relu_f32(nc,
  7885. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7886. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  7887. }
  7888. }
  7889. static void ggml_compute_forward_leaky_relu(
  7890. const struct ggml_compute_params * params,
  7891. struct ggml_tensor * dst) {
  7892. const struct ggml_tensor * src0 = dst->src[0];
  7893. switch (src0->type) {
  7894. case GGML_TYPE_F32:
  7895. {
  7896. ggml_compute_forward_leaky_relu_f32(params, dst);
  7897. } break;
  7898. default:
  7899. {
  7900. GGML_ASSERT(false);
  7901. } break;
  7902. }
  7903. }
  7904. // ggml_compute_forward_silu_back
  7905. static void ggml_compute_forward_silu_back_f32(
  7906. const struct ggml_compute_params * params,
  7907. struct ggml_tensor * dst) {
  7908. const struct ggml_tensor * src0 = dst->src[0];
  7909. const struct ggml_tensor * grad = dst->src[1];
  7910. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7911. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7912. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7913. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7914. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7915. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7916. return;
  7917. }
  7918. const int ith = params->ith;
  7919. const int nth = params->nth;
  7920. const int nc = src0->ne[0];
  7921. const int nr = ggml_nrows(src0);
  7922. // rows per thread
  7923. const int dr = (nr + nth - 1)/nth;
  7924. // row range for this thread
  7925. const int ir0 = dr*ith;
  7926. const int ir1 = MIN(ir0 + dr, nr);
  7927. for (int i1 = ir0; i1 < ir1; i1++) {
  7928. ggml_vec_silu_backward_f32(nc,
  7929. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7930. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7931. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7932. #ifndef NDEBUG
  7933. for (int k = 0; k < nc; k++) {
  7934. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7935. UNUSED(x);
  7936. assert(!isnan(x));
  7937. assert(!isinf(x));
  7938. }
  7939. #endif
  7940. }
  7941. }
  7942. static void ggml_compute_forward_silu_back(
  7943. const struct ggml_compute_params * params,
  7944. struct ggml_tensor * dst) {
  7945. const struct ggml_tensor * src0 = dst->src[0];
  7946. switch (src0->type) {
  7947. case GGML_TYPE_F32:
  7948. {
  7949. ggml_compute_forward_silu_back_f32(params, dst);
  7950. } break;
  7951. default:
  7952. {
  7953. GGML_ASSERT(false);
  7954. } break;
  7955. }
  7956. }
  7957. static void ggml_compute_forward_hardswish_f32(
  7958. const struct ggml_compute_params * params,
  7959. struct ggml_tensor * dst) {
  7960. const struct ggml_tensor * src0 = dst->src[0];
  7961. assert(params->ith == 0);
  7962. assert(ggml_are_same_shape(src0, dst));
  7963. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7964. return;
  7965. }
  7966. const int n = ggml_nrows(src0);
  7967. const int nc = src0->ne[0];
  7968. assert(dst->nb[0] == sizeof(float));
  7969. assert(src0->nb[0] == sizeof(float));
  7970. for (int i = 0; i < n; i++) {
  7971. ggml_vec_hardswish_f32(nc,
  7972. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7973. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7974. }
  7975. }
  7976. static void ggml_compute_forward_hardswish(
  7977. const struct ggml_compute_params * params,
  7978. struct ggml_tensor * dst) {
  7979. const struct ggml_tensor * src0 = dst->src[0];
  7980. switch (src0->type) {
  7981. case GGML_TYPE_F32:
  7982. {
  7983. ggml_compute_forward_hardswish_f32(params, dst);
  7984. } break;
  7985. default:
  7986. {
  7987. GGML_ASSERT(false);
  7988. } break;
  7989. }
  7990. }
  7991. static void ggml_compute_forward_hardsigmoid_f32(
  7992. const struct ggml_compute_params * params,
  7993. struct ggml_tensor * dst) {
  7994. const struct ggml_tensor * src0 = dst->src[0];
  7995. assert(params->ith == 0);
  7996. assert(ggml_are_same_shape(src0, dst));
  7997. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7998. return;
  7999. }
  8000. const int n = ggml_nrows(src0);
  8001. const int nc = src0->ne[0];
  8002. assert(dst->nb[0] == sizeof(float));
  8003. assert(src0->nb[0] == sizeof(float));
  8004. for (int i = 0; i < n; i++) {
  8005. ggml_vec_hardsigmoid_f32(nc,
  8006. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8007. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8008. }
  8009. }
  8010. static void ggml_compute_forward_hardsigmoid(
  8011. const struct ggml_compute_params * params,
  8012. struct ggml_tensor * dst) {
  8013. const struct ggml_tensor * src0 = dst->src[0];
  8014. switch (src0->type) {
  8015. case GGML_TYPE_F32:
  8016. {
  8017. ggml_compute_forward_hardsigmoid_f32(params, dst);
  8018. } break;
  8019. default:
  8020. {
  8021. GGML_ASSERT(false);
  8022. } break;
  8023. }
  8024. }
  8025. // ggml_compute_forward_norm
  8026. static void ggml_compute_forward_norm_f32(
  8027. const struct ggml_compute_params * params,
  8028. struct ggml_tensor * dst) {
  8029. const struct ggml_tensor * src0 = dst->src[0];
  8030. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8031. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8032. return;
  8033. }
  8034. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8035. const int ith = params->ith;
  8036. const int nth = params->nth;
  8037. GGML_TENSOR_UNARY_OP_LOCALS
  8038. float eps;
  8039. memcpy(&eps, dst->op_params, sizeof(float));
  8040. GGML_ASSERT(eps > 0.0f);
  8041. // TODO: optimize
  8042. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8043. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8044. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8045. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8046. ggml_float sum = 0.0;
  8047. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8048. sum += (ggml_float)x[i00];
  8049. }
  8050. float mean = sum/ne00;
  8051. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8052. ggml_float sum2 = 0.0;
  8053. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8054. float v = x[i00] - mean;
  8055. y[i00] = v;
  8056. sum2 += (ggml_float)(v*v);
  8057. }
  8058. float variance = sum2/ne00;
  8059. const float scale = 1.0f/sqrtf(variance + eps);
  8060. ggml_vec_scale_f32(ne00, y, scale);
  8061. }
  8062. }
  8063. }
  8064. }
  8065. static void ggml_compute_forward_norm(
  8066. const struct ggml_compute_params * params,
  8067. struct ggml_tensor * dst) {
  8068. const struct ggml_tensor * src0 = dst->src[0];
  8069. switch (src0->type) {
  8070. case GGML_TYPE_F32:
  8071. {
  8072. ggml_compute_forward_norm_f32(params, dst);
  8073. } break;
  8074. default:
  8075. {
  8076. GGML_ASSERT(false);
  8077. } break;
  8078. }
  8079. }
  8080. // ggml_compute_forward_group_rms_norm
  8081. static void ggml_compute_forward_rms_norm_f32(
  8082. const struct ggml_compute_params * params,
  8083. struct ggml_tensor * dst) {
  8084. const struct ggml_tensor * src0 = dst->src[0];
  8085. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8086. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8087. return;
  8088. }
  8089. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8090. const int ith = params->ith;
  8091. const int nth = params->nth;
  8092. GGML_TENSOR_UNARY_OP_LOCALS
  8093. float eps;
  8094. memcpy(&eps, dst->op_params, sizeof(float));
  8095. GGML_ASSERT(eps > 0.0f);
  8096. // TODO: optimize
  8097. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8098. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8099. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8100. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8101. ggml_float sum = 0.0;
  8102. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8103. sum += (ggml_float)(x[i00] * x[i00]);
  8104. }
  8105. const float mean = sum/ne00;
  8106. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8107. memcpy(y, x, ne00 * sizeof(float));
  8108. // for (int i00 = 0; i00 < ne00; i00++) {
  8109. // y[i00] = x[i00];
  8110. // }
  8111. const float scale = 1.0f/sqrtf(mean + eps);
  8112. ggml_vec_scale_f32(ne00, y, scale);
  8113. }
  8114. }
  8115. }
  8116. }
  8117. static void ggml_compute_forward_rms_norm(
  8118. const struct ggml_compute_params * params,
  8119. struct ggml_tensor * dst) {
  8120. const struct ggml_tensor * src0 = dst->src[0];
  8121. switch (src0->type) {
  8122. case GGML_TYPE_F32:
  8123. {
  8124. ggml_compute_forward_rms_norm_f32(params, dst);
  8125. } break;
  8126. default:
  8127. {
  8128. GGML_ASSERT(false);
  8129. } break;
  8130. }
  8131. }
  8132. static void ggml_compute_forward_rms_norm_back_f32(
  8133. const struct ggml_compute_params * params,
  8134. struct ggml_tensor * dst) {
  8135. const struct ggml_tensor * src0 = dst->src[0];
  8136. const struct ggml_tensor * src1 = dst->src[1];
  8137. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8138. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8139. return;
  8140. }
  8141. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8142. const int ith = params->ith;
  8143. const int nth = params->nth;
  8144. GGML_TENSOR_BINARY_OP_LOCALS
  8145. float eps;
  8146. memcpy(&eps, dst->op_params, sizeof(float));
  8147. // TODO: optimize
  8148. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8149. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8150. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8151. // src1 is same shape as src0 => same indices
  8152. const int64_t i11 = i01;
  8153. const int64_t i12 = i02;
  8154. const int64_t i13 = i03;
  8155. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8156. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8157. ggml_float sum_xx = 0.0;
  8158. ggml_float sum_xdz = 0.0;
  8159. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8160. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8161. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8162. }
  8163. //const float mean = (float)(sum_xx)/ne00;
  8164. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8165. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8166. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8167. // we could cache rms from forward pass to improve performance.
  8168. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8169. //const float rms = sqrtf(mean_eps);
  8170. const float rrms = 1.0f / sqrtf(mean_eps);
  8171. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8172. {
  8173. // z = rms_norm(x)
  8174. //
  8175. // rms_norm(src0) =
  8176. // scale(
  8177. // src0,
  8178. // div(
  8179. // 1,
  8180. // sqrt(
  8181. // add(
  8182. // scale(
  8183. // sum(
  8184. // sqr(
  8185. // src0)),
  8186. // (1.0/N)),
  8187. // eps))));
  8188. // postorder:
  8189. // ## op args grad
  8190. // 00 param src0 grad[#00]
  8191. // 01 const 1
  8192. // 02 sqr (#00) grad[#02]
  8193. // 03 sum (#02) grad[#03]
  8194. // 04 const 1/N
  8195. // 05 scale (#03, #04) grad[#05]
  8196. // 06 const eps
  8197. // 07 add (#05, #06) grad[#07]
  8198. // 08 sqrt (#07) grad[#08]
  8199. // 09 div (#01,#08) grad[#09]
  8200. // 10 scale (#00,#09) grad[#10]
  8201. //
  8202. // backward pass, given grad[#10]
  8203. // #10: scale
  8204. // grad[#00] += scale(grad[#10],#09)
  8205. // grad[#09] += sum(mul(grad[#10],#00))
  8206. // #09: div
  8207. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8208. // #08: sqrt
  8209. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8210. // #07: add
  8211. // grad[#05] += grad[#07]
  8212. // #05: scale
  8213. // grad[#03] += scale(grad[#05],#04)
  8214. // #03: sum
  8215. // grad[#02] += repeat(grad[#03], #02)
  8216. // #02:
  8217. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8218. //
  8219. // substitute and simplify:
  8220. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8221. // grad[#02] = repeat(grad[#03], #02)
  8222. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8223. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8224. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8225. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8226. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8227. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8228. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8229. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8230. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8231. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8232. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8233. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8234. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8235. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8236. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8237. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8238. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8239. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8240. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8241. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8242. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8243. // a = b*c + d*e
  8244. // a = b*c*f/f + d*e*f/f
  8245. // a = (b*c*f + d*e*f)*(1/f)
  8246. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8247. // a = (b + d*e/c)*c
  8248. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8249. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8250. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8251. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8252. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8253. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8254. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8255. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8256. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8257. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8258. }
  8259. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8260. // post-order:
  8261. // dx := x
  8262. // dx := scale(dx,-mean_xdz/mean_eps)
  8263. // dx := add(dx, dz)
  8264. // dx := scale(dx, rrms)
  8265. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8266. ggml_vec_cpy_f32 (ne00, dx, x);
  8267. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8268. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8269. ggml_vec_acc_f32 (ne00, dx, dz);
  8270. ggml_vec_scale_f32(ne00, dx, rrms);
  8271. }
  8272. }
  8273. }
  8274. }
  8275. static void ggml_compute_forward_rms_norm_back(
  8276. const struct ggml_compute_params * params,
  8277. struct ggml_tensor * dst) {
  8278. const struct ggml_tensor * src0 = dst->src[0];
  8279. switch (src0->type) {
  8280. case GGML_TYPE_F32:
  8281. {
  8282. ggml_compute_forward_rms_norm_back_f32(params, dst);
  8283. } break;
  8284. default:
  8285. {
  8286. GGML_ASSERT(false);
  8287. } break;
  8288. }
  8289. }
  8290. // ggml_compute_forward_group_norm
  8291. static void ggml_compute_forward_group_norm_f32(
  8292. const struct ggml_compute_params * params,
  8293. struct ggml_tensor * dst) {
  8294. const struct ggml_tensor * src0 = dst->src[0];
  8295. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8296. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8297. return;
  8298. }
  8299. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8300. const int ith = params->ith;
  8301. const int nth = params->nth;
  8302. GGML_TENSOR_UNARY_OP_LOCALS
  8303. const float eps = 1e-6f; // TODO: make this a parameter
  8304. // TODO: optimize
  8305. int n_channels = src0->ne[2];
  8306. int n_groups = dst->op_params[0];
  8307. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8308. for (int i = ith; i < n_groups; i+=nth) {
  8309. int start = i * n_channels_per_group;
  8310. int end = start + n_channels_per_group;
  8311. if (end > n_channels) {
  8312. end = n_channels;
  8313. }
  8314. int step = end - start;
  8315. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8316. ggml_float sum = 0.0;
  8317. for (int64_t i02 = start; i02 < end; i02++) {
  8318. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8319. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8320. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8321. sum += (ggml_float)x[i00];
  8322. }
  8323. }
  8324. }
  8325. float mean = sum / (ne00 * ne01 * step);
  8326. ggml_float sum2 = 0.0;
  8327. for (int64_t i02 = start; i02 < end; i02++) {
  8328. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8329. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8330. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8331. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8332. float v = x[i00] - mean;
  8333. y[i00] = v;
  8334. sum2 += (ggml_float)(v * v);
  8335. }
  8336. }
  8337. }
  8338. float variance = sum2 / (ne00 * ne01 * step);
  8339. const float scale = 1.0f / sqrtf(variance + eps);
  8340. for (int64_t i02 = start; i02 < end; i02++) {
  8341. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8342. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8343. ggml_vec_scale_f32(ne00, y, scale);
  8344. }
  8345. }
  8346. }
  8347. }
  8348. }
  8349. static void ggml_compute_forward_group_norm(
  8350. const struct ggml_compute_params * params,
  8351. struct ggml_tensor * dst) {
  8352. const struct ggml_tensor * src0 = dst->src[0];
  8353. switch (src0->type) {
  8354. case GGML_TYPE_F32:
  8355. {
  8356. ggml_compute_forward_group_norm_f32(params, dst);
  8357. } break;
  8358. default:
  8359. {
  8360. GGML_ASSERT(false);
  8361. } break;
  8362. }
  8363. }
  8364. // ggml_compute_forward_mul_mat
  8365. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8366. // helper function to determine if it is better to use BLAS or not
  8367. // for large matrices, BLAS is faster
  8368. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8369. const struct ggml_tensor * src0 = dst->src[0];
  8370. const struct ggml_tensor * src1 = dst->src[1];
  8371. //const int64_t ne00 = src0->ne[0];
  8372. //const int64_t ne01 = src0->ne[1];
  8373. const int64_t ne10 = src1->ne[0];
  8374. const int64_t ne0 = dst->ne[0];
  8375. const int64_t ne1 = dst->ne[1];
  8376. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8377. // all the experts for each batch element and the processing would become incredibly slow
  8378. // TODO: find the optimal values for these
  8379. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8380. ggml_is_contiguous(src0) &&
  8381. ggml_is_contiguous(src1) &&
  8382. //src0->type == GGML_TYPE_F32 &&
  8383. src1->type == GGML_TYPE_F32 &&
  8384. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8385. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8386. return true;
  8387. }
  8388. return false;
  8389. }
  8390. #endif
  8391. static void ggml_compute_forward_mul_mat(
  8392. const struct ggml_compute_params * params,
  8393. struct ggml_tensor * dst) {
  8394. const struct ggml_tensor * src0 = dst->src[0];
  8395. const struct ggml_tensor * src1 = dst->src[1];
  8396. int64_t t0 = ggml_perf_time_us();
  8397. UNUSED(t0);
  8398. GGML_TENSOR_BINARY_OP_LOCALS
  8399. const int ith = params->ith;
  8400. const int nth = params->nth;
  8401. const enum ggml_type type = src0->type;
  8402. const bool src1_cont = ggml_is_contiguous(src1);
  8403. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8404. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8405. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8406. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  8407. GGML_ASSERT(ne0 == ne01);
  8408. GGML_ASSERT(ne1 == ne11);
  8409. GGML_ASSERT(ne2 == ne12);
  8410. GGML_ASSERT(ne3 == ne13);
  8411. // we don't support permuted src0 or src1
  8412. GGML_ASSERT(nb00 == ggml_type_size(type));
  8413. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8414. // dst cannot be transposed or permuted
  8415. GGML_ASSERT(nb0 == sizeof(float));
  8416. GGML_ASSERT(nb0 <= nb1);
  8417. GGML_ASSERT(nb1 <= nb2);
  8418. GGML_ASSERT(nb2 <= nb3);
  8419. // broadcast factors
  8420. const int64_t r2 = ne12/ne02;
  8421. const int64_t r3 = ne13/ne03;
  8422. // nb01 >= nb00 - src0 is not transposed
  8423. // compute by src0 rows
  8424. #if defined(GGML_USE_CLBLAST)
  8425. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8426. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  8427. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8428. }
  8429. return;
  8430. }
  8431. #endif
  8432. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8433. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8434. const int64_t ne_plane = ne01*ne00;
  8435. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8436. UNUSED(desired_wsize);
  8437. if (params->type == GGML_TASK_TYPE_INIT) {
  8438. if (type != GGML_TYPE_F32) {
  8439. assert(params->wsize >= desired_wsize);
  8440. // parallelize by src0 rows
  8441. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8442. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8443. // broadcast src0 into src1 across 2nd,3rd dimension
  8444. const int64_t i03 = i13/r3;
  8445. const int64_t i02 = i12/r2;
  8446. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8447. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8448. ggml_to_float_t const to_float = type_traits[type].to_float;
  8449. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8450. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8451. }
  8452. }
  8453. }
  8454. }
  8455. return;
  8456. }
  8457. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8458. return;
  8459. }
  8460. // perform sgemm, parallelization controlled by blas lib
  8461. if (ith != 0) {
  8462. return;
  8463. }
  8464. //const int64_t tgemm0 = ggml_perf_time_us();
  8465. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8466. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8467. const int64_t i03 = i13/r3;
  8468. const int64_t i02 = i12/r2;
  8469. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8470. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8471. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8472. if (type != GGML_TYPE_F32) {
  8473. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8474. }
  8475. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8476. ne1, ne01, ne10,
  8477. 1.0f, y, ne10,
  8478. x, ne00,
  8479. 0.0f, d, ne01);
  8480. }
  8481. }
  8482. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8483. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8484. return;
  8485. }
  8486. #endif
  8487. if (params->type == GGML_TASK_TYPE_INIT) {
  8488. if (ith != 0) {
  8489. return;
  8490. }
  8491. if (src1->type != vec_dot_type) {
  8492. char * wdata = params->wdata;
  8493. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8494. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8495. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8496. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8497. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8498. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8499. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8500. wdata += row_size;
  8501. }
  8502. }
  8503. }
  8504. }
  8505. return;
  8506. }
  8507. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8508. return;
  8509. }
  8510. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8511. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8512. const int64_t nr0 = ne01; // src0 rows
  8513. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8514. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8515. // distribute the thread work across the inner or outer loop based on which one is larger
  8516. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8517. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8518. const int64_t ith0 = ith % nth0;
  8519. const int64_t ith1 = ith / nth0;
  8520. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8521. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8522. const int64_t ir010 = dr0*ith0;
  8523. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8524. const int64_t ir110 = dr1*ith1;
  8525. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8526. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8527. // threads with no work simply yield (not sure if it helps)
  8528. if (ir010 >= ir011 || ir110 >= ir111) {
  8529. sched_yield();
  8530. return;
  8531. }
  8532. assert(ne12 % ne02 == 0);
  8533. assert(ne13 % ne03 == 0);
  8534. // block-tiling attempt
  8535. const int64_t blck_0 = 16;
  8536. const int64_t blck_1 = 16;
  8537. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  8538. int64_t nrc = vec_dot_num_rows;
  8539. // TODO: currently the mmla kernels support only even numbered rows/cols.
  8540. // this check can be removed once they are extended to support odd numbered rows/cols too
  8541. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  8542. nrc = 1;
  8543. }
  8544. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  8545. // attempt to reduce false-sharing (does not seem to make a difference)
  8546. // 16 * 2, accounting for mmla kernels
  8547. float tmp[32];
  8548. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8549. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8550. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  8551. const int64_t i13 = (ir1/(ne12*ne1));
  8552. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8553. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8554. // broadcast src0 into src1
  8555. const int64_t i03 = i13/r3;
  8556. const int64_t i02 = i12/r2;
  8557. const int64_t i1 = i11;
  8558. const int64_t i2 = i12;
  8559. const int64_t i3 = i13;
  8560. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8561. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8562. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8563. // the original src1 data pointer, so we should index using the indices directly
  8564. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8565. const char * src1_col = (const char *) wdata +
  8566. (src1_cont || src1->type != vec_dot_type
  8567. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8568. : (i11*nb11 + i12*nb12 + i13*nb13));
  8569. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8570. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8571. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8572. //}
  8573. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  8574. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  8575. }
  8576. for (int cn = 0; cn < nrc; ++cn) {
  8577. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8578. }
  8579. }
  8580. }
  8581. }
  8582. }
  8583. // ggml_compute_forward_mul_mat_id
  8584. static void ggml_compute_forward_mul_mat_id(
  8585. const struct ggml_compute_params * params,
  8586. struct ggml_tensor * dst) {
  8587. const struct ggml_tensor * ids = dst->src[0];
  8588. const struct ggml_tensor * src1 = dst->src[1];
  8589. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8590. GGML_TENSOR_BINARY_OP_LOCALS
  8591. const int ith = params->ith;
  8592. const int nth = params->nth;
  8593. const enum ggml_type type = src0->type;
  8594. const bool src1_cont = ggml_is_contiguous(src1);
  8595. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8596. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8597. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8598. GGML_ASSERT(ne0 == ne01);
  8599. GGML_ASSERT(ne1 == ne11);
  8600. GGML_ASSERT(ne2 == ne12);
  8601. GGML_ASSERT(ne3 == ne13);
  8602. // we don't support permuted src0 or src1
  8603. GGML_ASSERT(nb00 == ggml_type_size(type));
  8604. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8605. // dst cannot be transposed or permuted
  8606. GGML_ASSERT(nb0 == sizeof(float));
  8607. GGML_ASSERT(nb0 <= nb1);
  8608. GGML_ASSERT(nb1 <= nb2);
  8609. GGML_ASSERT(nb2 <= nb3);
  8610. // broadcast factors
  8611. const int64_t r2 = ne12/ne02;
  8612. const int64_t r3 = ne13/ne03;
  8613. // row groups
  8614. const int id = ggml_get_op_params_i32(dst, 0);
  8615. const int n_as = ggml_get_op_params_i32(dst, 1);
  8616. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8617. (char *) params->wdata :
  8618. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8619. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8620. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8621. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8622. if (params->type == GGML_TASK_TYPE_INIT) {
  8623. if (ith != 0) {
  8624. return;
  8625. }
  8626. char * wdata = params->wdata;
  8627. if (src1->type != vec_dot_type) {
  8628. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8629. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8630. assert(src1->type == GGML_TYPE_F32);
  8631. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8632. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8633. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8634. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8635. wdata += row_size;
  8636. }
  8637. }
  8638. }
  8639. }
  8640. // initialize matrix_row_counts
  8641. GGML_ASSERT(wdata == wdata_src1_end);
  8642. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8643. // group rows by src0 matrix
  8644. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8645. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8646. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8647. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8648. matrix_row_counts[row_id] += 1;
  8649. }
  8650. return;
  8651. }
  8652. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8653. return;
  8654. }
  8655. // compute each matrix multiplication in sequence
  8656. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8657. const int64_t cne1 = matrix_row_counts[cur_a];
  8658. if (cne1 == 0) {
  8659. continue;
  8660. }
  8661. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8662. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8663. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8664. const int64_t nr0 = ne01; // src0 rows
  8665. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8666. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8667. // distribute the thread work across the inner or outer loop based on which one is larger
  8668. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8669. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8670. const int64_t ith0 = ith % nth0;
  8671. const int64_t ith1 = ith / nth0;
  8672. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8673. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8674. const int64_t ir010 = dr0*ith0;
  8675. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8676. const int64_t ir110 = dr1*ith1;
  8677. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8678. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8679. // threads with no work simply yield (not sure if it helps)
  8680. if (ir010 >= ir011 || ir110 >= ir111) {
  8681. sched_yield();
  8682. continue;
  8683. }
  8684. assert(ne12 % ne02 == 0);
  8685. assert(ne13 % ne03 == 0);
  8686. // block-tiling attempt
  8687. const int64_t blck_0 = 16;
  8688. const int64_t blck_1 = 16;
  8689. // attempt to reduce false-sharing (does not seem to make a difference)
  8690. float tmp[16];
  8691. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8692. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8693. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8694. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8695. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8696. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8697. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8698. // broadcast src0 into src1
  8699. const int64_t i03 = i13/r3;
  8700. const int64_t i02 = i12/r2;
  8701. const int64_t i1 = i11;
  8702. const int64_t i2 = i12;
  8703. const int64_t i3 = i13;
  8704. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8705. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8706. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8707. // the original src1 data pointer, so we should index using the indices directly
  8708. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8709. const char * src1_col = (const char *) wdata +
  8710. (src1_cont || src1->type != vec_dot_type
  8711. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8712. : (i11*nb11 + i12*nb12 + i13*nb13));
  8713. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8714. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8715. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8716. //}
  8717. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8718. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_row + ir0*nb01, 0, src1_col, 0, 1);
  8719. }
  8720. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8721. }
  8722. }
  8723. }
  8724. }
  8725. #undef MMID_MATRIX_ROW
  8726. }
  8727. // ggml_compute_forward_out_prod
  8728. static void ggml_compute_forward_out_prod_f32(
  8729. const struct ggml_compute_params * params,
  8730. struct ggml_tensor * dst) {
  8731. const struct ggml_tensor * src0 = dst->src[0];
  8732. const struct ggml_tensor * src1 = dst->src[1];
  8733. // int64_t t0 = ggml_perf_time_us();
  8734. // UNUSED(t0);
  8735. GGML_TENSOR_BINARY_OP_LOCALS
  8736. const int ith = params->ith;
  8737. const int nth = params->nth;
  8738. GGML_ASSERT(ne0 == ne00);
  8739. GGML_ASSERT(ne1 == ne10);
  8740. GGML_ASSERT(ne2 == ne02);
  8741. GGML_ASSERT(ne02 == ne12);
  8742. GGML_ASSERT(ne3 == ne13);
  8743. GGML_ASSERT(ne03 == ne13);
  8744. // we don't support permuted src0 or src1
  8745. GGML_ASSERT(nb00 == sizeof(float));
  8746. // dst cannot be transposed or permuted
  8747. GGML_ASSERT(nb0 == sizeof(float));
  8748. // GGML_ASSERT(nb0 <= nb1);
  8749. // GGML_ASSERT(nb1 <= nb2);
  8750. // GGML_ASSERT(nb2 <= nb3);
  8751. // nb01 >= nb00 - src0 is not transposed
  8752. // compute by src0 rows
  8753. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8754. // TODO: #if defined(GGML_USE_CLBLAST)
  8755. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8756. bool use_blas = ggml_is_matrix(src0) &&
  8757. ggml_is_matrix(src1) &&
  8758. ggml_is_contiguous(src0) &&
  8759. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8760. #endif
  8761. if (params->type == GGML_TASK_TYPE_INIT) {
  8762. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8763. if (use_blas) {
  8764. return;
  8765. }
  8766. #endif
  8767. if (ith != 0) {
  8768. return;
  8769. }
  8770. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8771. return;
  8772. }
  8773. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8774. return;
  8775. }
  8776. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8777. if (use_blas) {
  8778. if (params->ith != 0) { // All threads other than the first do no work.
  8779. return;
  8780. }
  8781. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8782. // src0: (k,n)
  8783. // src1: (k,m)
  8784. // dst: (m,n)
  8785. //
  8786. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8787. // Also expressed as (major,minor)
  8788. // a: (m,k): so src1 transposed
  8789. // b: (k,n): so src0
  8790. // c: (m,n)
  8791. //
  8792. // However, if ggml_is_transposed(src1) is true, then
  8793. // src1->data already contains a transposed version, so sgemm mustn't
  8794. // transpose it further.
  8795. int n = src0->ne[0];
  8796. int k = src0->ne[1];
  8797. int m = src1->ne[0];
  8798. int transposeA, lda;
  8799. if (!ggml_is_transposed(src1)) {
  8800. transposeA = CblasTrans;
  8801. lda = m;
  8802. } else {
  8803. transposeA = CblasNoTrans;
  8804. lda = k;
  8805. }
  8806. float * a = (float *) ((char *) src1->data);
  8807. float * b = (float *) ((char *) src0->data);
  8808. float * c = (float *) ((char *) dst->data);
  8809. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8810. return;
  8811. }
  8812. #endif
  8813. // dst[:,:,:,:] = 0
  8814. // for i2,i3:
  8815. // for i1:
  8816. // for i01:
  8817. // for i0:
  8818. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8819. // parallelize by last three dimensions
  8820. // total rows in dst
  8821. const int64_t nr = ne1*ne2*ne3;
  8822. // rows per thread
  8823. const int64_t dr = (nr + nth - 1)/nth;
  8824. // row range for this thread
  8825. const int64_t ir0 = dr*ith;
  8826. const int64_t ir1 = MIN(ir0 + dr, nr);
  8827. // block-tiling attempt
  8828. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8829. const int64_t blck_1 = 16;
  8830. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8831. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8832. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8833. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8834. for (int64_t ir = bir; ir < bir1; ++ir) {
  8835. // dst indices
  8836. const int64_t i3 = ir/(ne2*ne1);
  8837. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8838. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8839. const int64_t i02 = i2;
  8840. const int64_t i03 = i3;
  8841. //const int64_t i10 = i1;
  8842. const int64_t i12 = i2;
  8843. const int64_t i13 = i3;
  8844. #if GGML_VEC_MAD_UNROLL > 2
  8845. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8846. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8847. const int64_t i11 = i01;
  8848. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8849. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8850. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8851. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8852. }
  8853. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8854. const int64_t i11 = i01;
  8855. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8856. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8857. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8858. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8859. }
  8860. #else
  8861. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8862. const int64_t i11 = i01;
  8863. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8864. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8865. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8866. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8867. }
  8868. #endif
  8869. }
  8870. }
  8871. }
  8872. //int64_t t1 = ggml_perf_time_us();
  8873. //static int64_t acc = 0;
  8874. //acc += t1 - t0;
  8875. //if (t1 - t0 > 10) {
  8876. // printf("\n");
  8877. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8878. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8879. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8880. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8881. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8882. //}
  8883. }
  8884. static void ggml_compute_forward_out_prod_q_f32(
  8885. const struct ggml_compute_params * params,
  8886. struct ggml_tensor * dst) {
  8887. const struct ggml_tensor * src0 = dst->src[0];
  8888. const struct ggml_tensor * src1 = dst->src[1];
  8889. // int64_t t0 = ggml_perf_time_us();
  8890. // UNUSED(t0);
  8891. GGML_TENSOR_BINARY_OP_LOCALS;
  8892. const int ith = params->ith;
  8893. const int nth = params->nth;
  8894. const enum ggml_type type = src0->type;
  8895. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8896. GGML_ASSERT(ne02 == ne12);
  8897. GGML_ASSERT(ne03 == ne13);
  8898. GGML_ASSERT(ne2 == ne12);
  8899. GGML_ASSERT(ne3 == ne13);
  8900. // we don't support permuted src0 dim0
  8901. GGML_ASSERT(nb00 == ggml_type_size(type));
  8902. // dst dim0 cannot be transposed or permuted
  8903. GGML_ASSERT(nb0 == sizeof(float));
  8904. // GGML_ASSERT(nb0 <= nb1);
  8905. // GGML_ASSERT(nb1 <= nb2);
  8906. // GGML_ASSERT(nb2 <= nb3);
  8907. GGML_ASSERT(ne0 == ne00);
  8908. GGML_ASSERT(ne1 == ne10);
  8909. GGML_ASSERT(ne2 == ne02);
  8910. GGML_ASSERT(ne3 == ne03);
  8911. // nb01 >= nb00 - src0 is not transposed
  8912. // compute by src0 rows
  8913. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8914. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8915. if (params->type == GGML_TASK_TYPE_INIT) {
  8916. if (ith != 0) {
  8917. return;
  8918. }
  8919. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8920. return;
  8921. }
  8922. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8923. return;
  8924. }
  8925. // parallelize by last three dimensions
  8926. // total rows in dst
  8927. const int64_t nr = ne1*ne2*ne3;
  8928. // rows per thread
  8929. const int64_t dr = (nr + nth - 1)/nth;
  8930. // row range for this thread
  8931. const int64_t ir0 = dr*ith;
  8932. const int64_t ir1 = MIN(ir0 + dr, nr);
  8933. // dst[:,:,:,:] = 0
  8934. // for i2,i3:
  8935. // for i1:
  8936. // for i01:
  8937. // for i0:
  8938. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8939. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8940. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8941. // dst indices
  8942. const int64_t i3 = ir/(ne2*ne1);
  8943. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8944. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8945. const int64_t i02 = i2;
  8946. const int64_t i03 = i3;
  8947. //const int64_t i10 = i1;
  8948. const int64_t i12 = i2;
  8949. const int64_t i13 = i3;
  8950. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8951. const int64_t i11 = i01;
  8952. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8953. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8954. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8955. dequantize_row_q(s0, wdata, ne0);
  8956. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8957. }
  8958. }
  8959. //int64_t t1 = ggml_perf_time_us();
  8960. //static int64_t acc = 0;
  8961. //acc += t1 - t0;
  8962. //if (t1 - t0 > 10) {
  8963. // printf("\n");
  8964. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8965. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8966. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8967. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8968. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8969. //}
  8970. }
  8971. static void ggml_compute_forward_out_prod(
  8972. const struct ggml_compute_params * params,
  8973. struct ggml_tensor * dst) {
  8974. const struct ggml_tensor * src0 = dst->src[0];
  8975. switch (src0->type) {
  8976. case GGML_TYPE_Q4_0:
  8977. case GGML_TYPE_Q4_1:
  8978. case GGML_TYPE_Q5_0:
  8979. case GGML_TYPE_Q5_1:
  8980. case GGML_TYPE_Q8_0:
  8981. case GGML_TYPE_Q2_K:
  8982. case GGML_TYPE_Q3_K:
  8983. case GGML_TYPE_Q4_K:
  8984. case GGML_TYPE_Q5_K:
  8985. case GGML_TYPE_Q6_K:
  8986. case GGML_TYPE_IQ2_XXS:
  8987. case GGML_TYPE_IQ2_XS:
  8988. case GGML_TYPE_IQ3_XXS:
  8989. case GGML_TYPE_IQ1_S:
  8990. case GGML_TYPE_IQ4_NL:
  8991. case GGML_TYPE_IQ4_XS:
  8992. case GGML_TYPE_IQ3_S:
  8993. case GGML_TYPE_IQ2_S:
  8994. {
  8995. ggml_compute_forward_out_prod_q_f32(params, dst);
  8996. } break;
  8997. case GGML_TYPE_F16:
  8998. {
  8999. GGML_ASSERT(false); // todo
  9000. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  9001. } break;
  9002. case GGML_TYPE_F32:
  9003. {
  9004. ggml_compute_forward_out_prod_f32(params, dst);
  9005. } break;
  9006. default:
  9007. {
  9008. GGML_ASSERT(false);
  9009. } break;
  9010. }
  9011. }
  9012. // ggml_compute_forward_scale
  9013. static void ggml_compute_forward_scale_f32(
  9014. const struct ggml_compute_params * params,
  9015. struct ggml_tensor * dst) {
  9016. const struct ggml_tensor * src0 = dst->src[0];
  9017. GGML_ASSERT(ggml_is_contiguous(src0));
  9018. GGML_ASSERT(ggml_is_contiguous(dst));
  9019. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9020. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9021. return;
  9022. }
  9023. // scale factor
  9024. float v;
  9025. memcpy(&v, dst->op_params, sizeof(float));
  9026. const int ith = params->ith;
  9027. const int nth = params->nth;
  9028. const int nc = src0->ne[0];
  9029. const int nr = ggml_nrows(src0);
  9030. // rows per thread
  9031. const int dr = (nr + nth - 1)/nth;
  9032. // row range for this thread
  9033. const int ir0 = dr*ith;
  9034. const int ir1 = MIN(ir0 + dr, nr);
  9035. const size_t nb01 = src0->nb[1];
  9036. const size_t nb1 = dst->nb[1];
  9037. for (int i1 = ir0; i1 < ir1; i1++) {
  9038. if (dst->data != src0->data) {
  9039. // src0 is same shape as dst => same indices
  9040. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9041. }
  9042. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9043. }
  9044. }
  9045. static void ggml_compute_forward_scale(
  9046. const struct ggml_compute_params * params,
  9047. struct ggml_tensor * dst) {
  9048. const struct ggml_tensor * src0 = dst->src[0];
  9049. switch (src0->type) {
  9050. case GGML_TYPE_F32:
  9051. {
  9052. ggml_compute_forward_scale_f32(params, dst);
  9053. } break;
  9054. default:
  9055. {
  9056. GGML_ASSERT(false);
  9057. } break;
  9058. }
  9059. }
  9060. // ggml_compute_forward_set
  9061. static void ggml_compute_forward_set_f32(
  9062. const struct ggml_compute_params * params,
  9063. struct ggml_tensor * dst) {
  9064. const struct ggml_tensor * src0 = dst->src[0];
  9065. const struct ggml_tensor * src1 = dst->src[1];
  9066. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9067. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9068. // view src0 and dst with these strides and data offset inbytes during set
  9069. // nb0 is implicitly element_size because src0 and dst are contiguous
  9070. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9071. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9072. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9073. size_t offset = ((int32_t *) dst->op_params)[3];
  9074. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9075. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9076. if (params->ith != 0) {
  9077. return;
  9078. }
  9079. // memcpy needs to be synchronized across threads to avoid race conditions.
  9080. // => do it in INIT phase
  9081. memcpy(
  9082. ((char *) dst->data),
  9083. ((char *) src0->data),
  9084. ggml_nbytes(dst));
  9085. }
  9086. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9087. return;
  9088. }
  9089. const int ith = params->ith;
  9090. const int nth = params->nth;
  9091. const int nr = ggml_nrows(src1);
  9092. const int nc = src1->ne[0];
  9093. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  9094. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  9095. // src0 and dst as viewed during set
  9096. const size_t nb0 = ggml_element_size(src0);
  9097. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9098. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9099. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9100. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9101. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9102. GGML_ASSERT(nb10 == sizeof(float));
  9103. // rows per thread
  9104. const int dr = (nr + nth - 1)/nth;
  9105. // row range for this thread
  9106. const int ir0 = dr*ith;
  9107. const int ir1 = MIN(ir0 + dr, nr);
  9108. for (int ir = ir0; ir < ir1; ++ir) {
  9109. // src0 and dst are viewed with shape of src1 and offset
  9110. // => same indices
  9111. const int i3 = ir/(ne12*ne11);
  9112. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9113. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9114. ggml_vec_cpy_f32(nc,
  9115. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9116. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9117. }
  9118. }
  9119. static void ggml_compute_forward_set(
  9120. const struct ggml_compute_params * params,
  9121. struct ggml_tensor * dst) {
  9122. const struct ggml_tensor * src0 = dst->src[0];
  9123. switch (src0->type) {
  9124. case GGML_TYPE_F32:
  9125. {
  9126. ggml_compute_forward_set_f32(params, dst);
  9127. } break;
  9128. case GGML_TYPE_F16:
  9129. case GGML_TYPE_Q4_0:
  9130. case GGML_TYPE_Q4_1:
  9131. case GGML_TYPE_Q5_0:
  9132. case GGML_TYPE_Q5_1:
  9133. case GGML_TYPE_Q8_0:
  9134. case GGML_TYPE_Q8_1:
  9135. case GGML_TYPE_Q2_K:
  9136. case GGML_TYPE_Q3_K:
  9137. case GGML_TYPE_Q4_K:
  9138. case GGML_TYPE_Q5_K:
  9139. case GGML_TYPE_Q6_K:
  9140. case GGML_TYPE_IQ2_XXS:
  9141. case GGML_TYPE_IQ2_XS:
  9142. case GGML_TYPE_IQ3_XXS:
  9143. case GGML_TYPE_IQ1_S:
  9144. case GGML_TYPE_IQ4_NL:
  9145. case GGML_TYPE_IQ4_XS:
  9146. case GGML_TYPE_IQ3_S:
  9147. case GGML_TYPE_IQ2_S:
  9148. default:
  9149. {
  9150. GGML_ASSERT(false);
  9151. } break;
  9152. }
  9153. }
  9154. // ggml_compute_forward_cpy
  9155. static void ggml_compute_forward_cpy(
  9156. const struct ggml_compute_params * params,
  9157. struct ggml_tensor * dst) {
  9158. ggml_compute_forward_dup(params, dst);
  9159. }
  9160. // ggml_compute_forward_cont
  9161. static void ggml_compute_forward_cont(
  9162. const struct ggml_compute_params * params,
  9163. struct ggml_tensor * dst) {
  9164. ggml_compute_forward_dup(params, dst);
  9165. }
  9166. // ggml_compute_forward_reshape
  9167. static void ggml_compute_forward_reshape(
  9168. const struct ggml_compute_params * params,
  9169. struct ggml_tensor * dst) {
  9170. // NOP
  9171. UNUSED(params);
  9172. UNUSED(dst);
  9173. }
  9174. // ggml_compute_forward_view
  9175. static void ggml_compute_forward_view(
  9176. const struct ggml_compute_params * params,
  9177. const struct ggml_tensor * dst) {
  9178. // NOP
  9179. UNUSED(params);
  9180. UNUSED(dst);
  9181. }
  9182. // ggml_compute_forward_permute
  9183. static void ggml_compute_forward_permute(
  9184. const struct ggml_compute_params * params,
  9185. const struct ggml_tensor * dst) {
  9186. // NOP
  9187. UNUSED(params);
  9188. UNUSED(dst);
  9189. }
  9190. // ggml_compute_forward_transpose
  9191. static void ggml_compute_forward_transpose(
  9192. const struct ggml_compute_params * params,
  9193. const struct ggml_tensor * dst) {
  9194. // NOP
  9195. UNUSED(params);
  9196. UNUSED(dst);
  9197. }
  9198. // ggml_compute_forward_get_rows
  9199. static void ggml_compute_forward_get_rows_q(
  9200. const struct ggml_compute_params * params,
  9201. struct ggml_tensor * dst) {
  9202. const struct ggml_tensor * src0 = dst->src[0];
  9203. const struct ggml_tensor * src1 = dst->src[1];
  9204. assert(params->ith == 0);
  9205. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9206. return;
  9207. }
  9208. GGML_TENSOR_BINARY_OP_LOCALS
  9209. const int64_t nc = ne00;
  9210. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9211. const enum ggml_type type = src0->type;
  9212. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9213. assert(ne0 == nc);
  9214. assert(ne02 == ne11);
  9215. assert(nb00 == ggml_type_size(type));
  9216. assert(ggml_nrows(dst) == nr);
  9217. // TODO: multi-thread
  9218. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9219. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9220. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9221. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9222. dequantize_row_q(
  9223. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9224. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9225. }
  9226. }
  9227. }
  9228. }
  9229. static void ggml_compute_forward_get_rows_f16(
  9230. const struct ggml_compute_params * params,
  9231. struct ggml_tensor * dst) {
  9232. const struct ggml_tensor * src0 = dst->src[0];
  9233. const struct ggml_tensor * src1 = dst->src[1];
  9234. assert(params->ith == 0);
  9235. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9236. return;
  9237. }
  9238. GGML_TENSOR_BINARY_OP_LOCALS
  9239. const int64_t nc = ne00;
  9240. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9241. assert(ne0 == nc);
  9242. assert(ne02 == ne11);
  9243. assert(nb00 == sizeof(ggml_fp16_t));
  9244. assert(ggml_nrows(dst) == nr);
  9245. // TODO: multi-thread
  9246. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9247. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9248. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9249. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9250. ggml_fp16_to_fp32_row(
  9251. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9252. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9253. }
  9254. }
  9255. }
  9256. }
  9257. static void ggml_compute_forward_get_rows_f32(
  9258. const struct ggml_compute_params * params,
  9259. struct ggml_tensor * dst) {
  9260. const struct ggml_tensor * src0 = dst->src[0];
  9261. const struct ggml_tensor * src1 = dst->src[1];
  9262. assert(params->ith == 0);
  9263. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9264. return;
  9265. }
  9266. GGML_TENSOR_BINARY_OP_LOCALS
  9267. const int64_t nc = ne00;
  9268. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9269. assert(ne0 == nc);
  9270. assert(ne02 == ne11);
  9271. assert(nb00 == sizeof(float));
  9272. assert(ggml_nrows(dst) == nr);
  9273. // TODO: multi-thread
  9274. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9275. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9276. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9277. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9278. ggml_vec_cpy_f32(nc,
  9279. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9280. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9281. }
  9282. }
  9283. }
  9284. }
  9285. static void ggml_compute_forward_get_rows(
  9286. const struct ggml_compute_params * params,
  9287. struct ggml_tensor * dst) {
  9288. const struct ggml_tensor * src0 = dst->src[0];
  9289. switch (src0->type) {
  9290. case GGML_TYPE_Q4_0:
  9291. case GGML_TYPE_Q4_1:
  9292. case GGML_TYPE_Q5_0:
  9293. case GGML_TYPE_Q5_1:
  9294. case GGML_TYPE_Q8_0:
  9295. case GGML_TYPE_Q8_1:
  9296. case GGML_TYPE_Q2_K:
  9297. case GGML_TYPE_Q3_K:
  9298. case GGML_TYPE_Q4_K:
  9299. case GGML_TYPE_Q5_K:
  9300. case GGML_TYPE_Q6_K:
  9301. case GGML_TYPE_IQ2_XXS:
  9302. case GGML_TYPE_IQ2_XS:
  9303. case GGML_TYPE_IQ3_XXS:
  9304. case GGML_TYPE_IQ1_S:
  9305. case GGML_TYPE_IQ4_NL:
  9306. case GGML_TYPE_IQ4_XS:
  9307. case GGML_TYPE_IQ3_S:
  9308. case GGML_TYPE_IQ2_S:
  9309. {
  9310. ggml_compute_forward_get_rows_q(params, dst);
  9311. } break;
  9312. case GGML_TYPE_F16:
  9313. {
  9314. ggml_compute_forward_get_rows_f16(params, dst);
  9315. } break;
  9316. case GGML_TYPE_F32:
  9317. case GGML_TYPE_I32:
  9318. {
  9319. ggml_compute_forward_get_rows_f32(params, dst);
  9320. } break;
  9321. default:
  9322. {
  9323. GGML_ASSERT(false);
  9324. } break;
  9325. }
  9326. //static bool first = true;
  9327. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9328. //if (first) {
  9329. // first = false;
  9330. //} else {
  9331. // for (int k = 0; k < dst->ne[1]; ++k) {
  9332. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9333. // for (int i = 0; i < 16; ++i) {
  9334. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9335. // }
  9336. // printf("\n");
  9337. // }
  9338. // printf("\n");
  9339. // }
  9340. // printf("\n");
  9341. // exit(0);
  9342. //}
  9343. }
  9344. // ggml_compute_forward_get_rows_back
  9345. static void ggml_compute_forward_get_rows_back_f32_f16(
  9346. const struct ggml_compute_params * params,
  9347. struct ggml_tensor * dst) {
  9348. const struct ggml_tensor * src0 = dst->src[0];
  9349. const struct ggml_tensor * src1 = dst->src[1];
  9350. GGML_ASSERT(params->ith == 0);
  9351. GGML_ASSERT(ggml_is_contiguous(dst));
  9352. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9353. if (params->type == GGML_TASK_TYPE_INIT) {
  9354. if (params->ith != 0) {
  9355. return;
  9356. }
  9357. memset(dst->data, 0, ggml_nbytes(dst));
  9358. }
  9359. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9360. return;
  9361. }
  9362. const int nc = src0->ne[0];
  9363. const int nr = ggml_nelements(src1);
  9364. GGML_ASSERT( dst->ne[0] == nc);
  9365. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9366. for (int i = 0; i < nr; ++i) {
  9367. const int r = ((int32_t *) src1->data)[i];
  9368. for (int j = 0; j < nc; ++j) {
  9369. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9370. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9371. }
  9372. }
  9373. }
  9374. static void ggml_compute_forward_get_rows_back_f32(
  9375. const struct ggml_compute_params * params,
  9376. struct ggml_tensor * dst) {
  9377. const struct ggml_tensor * src0 = dst->src[0];
  9378. const struct ggml_tensor * src1 = dst->src[1];
  9379. GGML_ASSERT(params->ith == 0);
  9380. GGML_ASSERT(ggml_is_contiguous(dst));
  9381. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9382. if (params->type == GGML_TASK_TYPE_INIT) {
  9383. if (params->ith != 0) {
  9384. return;
  9385. }
  9386. memset(dst->data, 0, ggml_nbytes(dst));
  9387. }
  9388. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9389. return;
  9390. }
  9391. const int nc = src0->ne[0];
  9392. const int nr = ggml_nelements(src1);
  9393. GGML_ASSERT( dst->ne[0] == nc);
  9394. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9395. for (int i = 0; i < nr; ++i) {
  9396. const int r = ((int32_t *) src1->data)[i];
  9397. ggml_vec_add_f32(nc,
  9398. (float *) ((char *) dst->data + r*dst->nb[1]),
  9399. (float *) ((char *) dst->data + r*dst->nb[1]),
  9400. (float *) ((char *) src0->data + i*src0->nb[1]));
  9401. }
  9402. }
  9403. static void ggml_compute_forward_get_rows_back(
  9404. const struct ggml_compute_params * params,
  9405. struct ggml_tensor * dst) {
  9406. const struct ggml_tensor * src0 = dst->src[0];
  9407. switch (src0->type) {
  9408. case GGML_TYPE_F16:
  9409. {
  9410. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  9411. } break;
  9412. case GGML_TYPE_F32:
  9413. {
  9414. ggml_compute_forward_get_rows_back_f32(params, dst);
  9415. } break;
  9416. default:
  9417. {
  9418. GGML_ASSERT(false);
  9419. } break;
  9420. }
  9421. //static bool first = true;
  9422. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9423. //if (first) {
  9424. // first = false;
  9425. //} else {
  9426. // for (int k = 0; k < dst->ne[1]; ++k) {
  9427. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9428. // for (int i = 0; i < 16; ++i) {
  9429. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9430. // }
  9431. // printf("\n");
  9432. // }
  9433. // printf("\n");
  9434. // }
  9435. // printf("\n");
  9436. // exit(0);
  9437. //}
  9438. }
  9439. // ggml_compute_forward_diag
  9440. static void ggml_compute_forward_diag_f32(
  9441. const struct ggml_compute_params * params,
  9442. struct ggml_tensor * dst) {
  9443. const struct ggml_tensor * src0 = dst->src[0];
  9444. GGML_ASSERT(params->ith == 0);
  9445. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9446. return;
  9447. }
  9448. // TODO: handle transposed/permuted matrices
  9449. GGML_TENSOR_UNARY_OP_LOCALS
  9450. GGML_ASSERT(ne00 == ne0);
  9451. GGML_ASSERT(ne00 == ne1);
  9452. GGML_ASSERT(ne01 == 1);
  9453. GGML_ASSERT(ne02 == ne2);
  9454. GGML_ASSERT(ne03 == ne3);
  9455. GGML_ASSERT(nb00 == sizeof(float));
  9456. GGML_ASSERT(nb0 == sizeof(float));
  9457. for (int i3 = 0; i3 < ne3; i3++) {
  9458. for (int i2 = 0; i2 < ne2; i2++) {
  9459. for (int i1 = 0; i1 < ne1; i1++) {
  9460. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9461. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9462. for (int i0 = 0; i0 < i1; i0++) {
  9463. d[i0] = 0;
  9464. }
  9465. d[i1] = s[i1];
  9466. for (int i0 = i1+1; i0 < ne0; i0++) {
  9467. d[i0] = 0;
  9468. }
  9469. }
  9470. }
  9471. }
  9472. }
  9473. static void ggml_compute_forward_diag(
  9474. const struct ggml_compute_params * params,
  9475. struct ggml_tensor * dst) {
  9476. const struct ggml_tensor * src0 = dst->src[0];
  9477. switch (src0->type) {
  9478. case GGML_TYPE_F32:
  9479. {
  9480. ggml_compute_forward_diag_f32(params, dst);
  9481. } break;
  9482. default:
  9483. {
  9484. GGML_ASSERT(false);
  9485. } break;
  9486. }
  9487. }
  9488. // ggml_compute_forward_diag_mask_inf
  9489. static void ggml_compute_forward_diag_mask_f32(
  9490. const struct ggml_compute_params * params,
  9491. struct ggml_tensor * dst,
  9492. const float value) {
  9493. const struct ggml_tensor * src0 = dst->src[0];
  9494. const int ith = params->ith;
  9495. const int nth = params->nth;
  9496. const int n_past = ((int32_t *) dst->op_params)[0];
  9497. const bool inplace = src0->data == dst->data;
  9498. GGML_ASSERT(n_past >= 0);
  9499. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9500. if (ith != 0) {
  9501. return;
  9502. }
  9503. // memcpy needs to be synchronized across threads to avoid race conditions.
  9504. // => do it in INIT phase
  9505. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9506. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9507. memcpy(
  9508. ((char *) dst->data),
  9509. ((char *) src0->data),
  9510. ggml_nbytes(dst));
  9511. }
  9512. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9513. return;
  9514. }
  9515. // TODO: handle transposed/permuted matrices
  9516. const int n = ggml_nrows(src0);
  9517. const int nc = src0->ne[0];
  9518. const int nr = src0->ne[1];
  9519. const int nz = n/nr;
  9520. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9521. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9522. for (int k = 0; k < nz; k++) {
  9523. for (int j = ith; j < nr; j += nth) {
  9524. for (int i = n_past; i < nc; i++) {
  9525. if (i > n_past + j) {
  9526. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9527. }
  9528. }
  9529. }
  9530. }
  9531. }
  9532. static void ggml_compute_forward_diag_mask_inf(
  9533. const struct ggml_compute_params * params,
  9534. struct ggml_tensor * dst) {
  9535. const struct ggml_tensor * src0 = dst->src[0];
  9536. switch (src0->type) {
  9537. case GGML_TYPE_F32:
  9538. {
  9539. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  9540. } break;
  9541. default:
  9542. {
  9543. GGML_ASSERT(false);
  9544. } break;
  9545. }
  9546. }
  9547. static void ggml_compute_forward_diag_mask_zero(
  9548. const struct ggml_compute_params * params,
  9549. struct ggml_tensor * dst) {
  9550. const struct ggml_tensor * src0 = dst->src[0];
  9551. switch (src0->type) {
  9552. case GGML_TYPE_F32:
  9553. {
  9554. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  9555. } break;
  9556. default:
  9557. {
  9558. GGML_ASSERT(false);
  9559. } break;
  9560. }
  9561. }
  9562. // ggml_compute_forward_soft_max
  9563. static void ggml_compute_forward_soft_max_f32(
  9564. const struct ggml_compute_params * params,
  9565. struct ggml_tensor * dst) {
  9566. const struct ggml_tensor * src0 = dst->src[0];
  9567. const struct ggml_tensor * src1 = dst->src[1];
  9568. const struct ggml_tensor * src2 = dst->src[2];
  9569. assert(ggml_is_contiguous(dst));
  9570. assert(ggml_are_same_shape(src0, dst));
  9571. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9572. return;
  9573. }
  9574. float scale = 1.0f;
  9575. float max_bias = 0.0f;
  9576. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9577. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  9578. // TODO: handle transposed/permuted matrices
  9579. const int ith = params->ith;
  9580. const int nth = params->nth;
  9581. GGML_TENSOR_UNARY_OP_LOCALS
  9582. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9583. // TODO: is this supposed to be ceil instead of floor?
  9584. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  9585. const uint32_t n_head_kv = ne02;
  9586. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head_kv));
  9587. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  9588. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  9589. const int nc = src0->ne[0];
  9590. const int nr = ggml_nrows(src0);
  9591. // rows per thread
  9592. const int dr = (nr + nth - 1)/nth;
  9593. // row range for this thread
  9594. const int ir0 = dr*ith;
  9595. const int ir1 = MIN(ir0 + dr, nr);
  9596. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9597. // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching
  9598. float * pos = src2 ? (float *) src2->data : src0->data;
  9599. for (int i1 = ir0; i1 < ir1; i1++) {
  9600. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9601. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9602. // broadcast the mask across rows
  9603. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9604. ggml_vec_cpy_f32 (nc, wp, sp);
  9605. ggml_vec_scale_f32(nc, wp, scale);
  9606. if (mp) {
  9607. ggml_vec_acc_f32(nc, wp, mp);
  9608. }
  9609. // ALiBi bias
  9610. if (max_bias > 0.0f) {
  9611. const uint32_t h = (i1/ne01)%ne02; // head
  9612. const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1);
  9613. for (int i = 0; i < nc; i++) {
  9614. wp[i] = wp[i] + slope*pos[i];
  9615. }
  9616. }
  9617. #ifndef NDEBUG
  9618. for (int i = 0; i < nc; ++i) {
  9619. //printf("p[%d] = %f\n", i, p[i]);
  9620. assert(!isnan(wp[i]));
  9621. }
  9622. #endif
  9623. float max = -INFINITY;
  9624. ggml_vec_max_f32(nc, &max, wp);
  9625. ggml_float sum = 0.0;
  9626. uint16_t scvt;
  9627. for (int i = 0; i < nc; i++) {
  9628. if (wp[i] == -INFINITY) {
  9629. dp[i] = 0.0f;
  9630. } else {
  9631. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9632. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9633. memcpy(&scvt, &s, sizeof(scvt));
  9634. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9635. sum += (ggml_float)val;
  9636. dp[i] = val;
  9637. }
  9638. }
  9639. assert(sum > 0.0);
  9640. sum = 1.0/sum;
  9641. ggml_vec_scale_f32(nc, dp, sum);
  9642. #ifndef NDEBUG
  9643. for (int i = 0; i < nc; ++i) {
  9644. assert(!isnan(dp[i]));
  9645. assert(!isinf(dp[i]));
  9646. }
  9647. #endif
  9648. }
  9649. }
  9650. static void ggml_compute_forward_soft_max(
  9651. const struct ggml_compute_params * params,
  9652. struct ggml_tensor * dst) {
  9653. const struct ggml_tensor * src0 = dst->src[0];
  9654. switch (src0->type) {
  9655. case GGML_TYPE_F32:
  9656. {
  9657. ggml_compute_forward_soft_max_f32(params, dst);
  9658. } break;
  9659. default:
  9660. {
  9661. GGML_ASSERT(false);
  9662. } break;
  9663. }
  9664. }
  9665. // ggml_compute_forward_soft_max_back
  9666. static void ggml_compute_forward_soft_max_back_f32(
  9667. const struct ggml_compute_params * params,
  9668. struct ggml_tensor * dst) {
  9669. const struct ggml_tensor * src0 = dst->src[0];
  9670. const struct ggml_tensor * src1 = dst->src[1];
  9671. GGML_ASSERT(ggml_is_contiguous(src0));
  9672. GGML_ASSERT(ggml_is_contiguous(src1));
  9673. GGML_ASSERT(ggml_is_contiguous(dst));
  9674. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9675. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9676. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9677. return;
  9678. }
  9679. // TODO: handle transposed/permuted matrices
  9680. const int ith = params->ith;
  9681. const int nth = params->nth;
  9682. const int nc = src0->ne[0];
  9683. const int nr = ggml_nrows(src0);
  9684. // rows per thread
  9685. const int dr = (nr + nth - 1)/nth;
  9686. // row range for this thread
  9687. const int ir0 = dr*ith;
  9688. const int ir1 = MIN(ir0 + dr, nr);
  9689. for (int i1 = ir0; i1 < ir1; i1++) {
  9690. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9691. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9692. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9693. #ifndef NDEBUG
  9694. for (int i = 0; i < nc; ++i) {
  9695. //printf("p[%d] = %f\n", i, p[i]);
  9696. assert(!isnan(dy[i]));
  9697. assert(!isnan(y[i]));
  9698. }
  9699. #endif
  9700. // Jii = yi - yi*yi
  9701. // Jij = -yi*yj
  9702. // J = diag(y)-y.T*y
  9703. // dx = J * dy
  9704. // dxk = sum_i(Jki * dyi)
  9705. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9706. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9707. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9708. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9709. // dxk = -yk * dot(y, dy) + yk*dyk
  9710. // dxk = yk * (- dot(y, dy) + dyk)
  9711. // dxk = yk * (dyk - dot(y, dy))
  9712. //
  9713. // post-order:
  9714. // dot_y_dy := dot(y, dy)
  9715. // dx := dy
  9716. // dx := dx - dot_y_dy
  9717. // dx := dx * y
  9718. // linear runtime, no additional memory
  9719. float dot_y_dy = 0;
  9720. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  9721. ggml_vec_cpy_f32 (nc, dx, dy);
  9722. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9723. ggml_vec_mul_f32 (nc, dx, dx, y);
  9724. #ifndef NDEBUG
  9725. for (int i = 0; i < nc; ++i) {
  9726. assert(!isnan(dx[i]));
  9727. assert(!isinf(dx[i]));
  9728. }
  9729. #endif
  9730. }
  9731. }
  9732. static void ggml_compute_forward_soft_max_back(
  9733. const struct ggml_compute_params * params,
  9734. struct ggml_tensor * dst) {
  9735. const struct ggml_tensor * src0 = dst->src[0];
  9736. switch (src0->type) {
  9737. case GGML_TYPE_F32:
  9738. {
  9739. ggml_compute_forward_soft_max_back_f32(params, dst);
  9740. } break;
  9741. default:
  9742. {
  9743. GGML_ASSERT(false);
  9744. } break;
  9745. }
  9746. }
  9747. // ggml_compute_forward_alibi
  9748. static void ggml_compute_forward_alibi_f32(
  9749. const struct ggml_compute_params * params,
  9750. struct ggml_tensor * dst) {
  9751. const struct ggml_tensor * src0 = dst->src[0];
  9752. assert(params->ith == 0);
  9753. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9754. return;
  9755. }
  9756. //const int n_past = ((int32_t *) dst->op_params)[0];
  9757. const int n_head = ((int32_t *) dst->op_params)[1];
  9758. float max_bias;
  9759. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9760. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9761. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  9762. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  9763. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9764. const int64_t n = ggml_nrows(src0);
  9765. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9766. const size_t nb0 = src0->nb[0];
  9767. const size_t nb1 = src0->nb[1];
  9768. const size_t nb2 = src0->nb[2];
  9769. //const int nb3 = src0->nb[3];
  9770. GGML_ASSERT(nb0 == sizeof(float));
  9771. GGML_ASSERT(n_head == ne2);
  9772. // add alibi to src0 (KQ_scaled)
  9773. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9774. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9775. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9776. for (int64_t k = 0; k < ne2_ne3; k++) {
  9777. // TODO: k*nb2 or k*nb3
  9778. float m_k;
  9779. if (k < n_heads_log2_floor) {
  9780. m_k = powf(m0, k + 1);
  9781. } else {
  9782. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9783. }
  9784. for (int64_t i = 0; i < ne0; i++) {
  9785. for (int64_t j = 0; j < ne1; j++) {
  9786. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9787. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9788. pdst[0] = i * m_k + src[0];
  9789. }
  9790. }
  9791. }
  9792. }
  9793. static void ggml_compute_forward_alibi_f16(
  9794. const struct ggml_compute_params * params,
  9795. struct ggml_tensor * dst) {
  9796. const struct ggml_tensor * src0 = dst->src[0];
  9797. assert(params->ith == 0);
  9798. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9799. return;
  9800. }
  9801. //const int n_past = ((int32_t *) dst->op_params)[0];
  9802. const int n_head = ((int32_t *) dst->op_params)[1];
  9803. float max_bias;
  9804. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9805. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9806. const int ne1 = src0->ne[1]; // seq_len_without_past
  9807. const int ne2 = src0->ne[2]; // n_head -> this is k
  9808. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9809. const int n = ggml_nrows(src0);
  9810. const int ne2_ne3 = n/ne1; // ne2*ne3
  9811. const int nb0 = src0->nb[0];
  9812. const int nb1 = src0->nb[1];
  9813. const int nb2 = src0->nb[2];
  9814. //const int nb3 = src0->nb[3];
  9815. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9816. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9817. GGML_ASSERT(n_head == ne2);
  9818. // add alibi to src0 (KQ_scaled)
  9819. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9820. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9821. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9822. for (int k = 0; k < ne2_ne3; k++) {
  9823. // TODO: k*nb2 or k*nb3
  9824. float m_k;
  9825. if (k < n_heads_log2_floor) {
  9826. m_k = powf(m0, k + 1);
  9827. } else {
  9828. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9829. }
  9830. for (int i = 0; i < ne0; i++) {
  9831. for (int j = 0; j < ne1; j++) {
  9832. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9833. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9834. // we return F32
  9835. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9836. }
  9837. }
  9838. }
  9839. }
  9840. static void ggml_compute_forward_alibi(
  9841. const struct ggml_compute_params * params,
  9842. struct ggml_tensor * dst) {
  9843. const struct ggml_tensor * src0 = dst->src[0];
  9844. switch (src0->type) {
  9845. case GGML_TYPE_F16:
  9846. {
  9847. ggml_compute_forward_alibi_f16(params, dst);
  9848. } break;
  9849. case GGML_TYPE_F32:
  9850. {
  9851. ggml_compute_forward_alibi_f32(params, dst);
  9852. } break;
  9853. case GGML_TYPE_Q4_0:
  9854. case GGML_TYPE_Q4_1:
  9855. case GGML_TYPE_Q5_0:
  9856. case GGML_TYPE_Q5_1:
  9857. case GGML_TYPE_Q8_0:
  9858. case GGML_TYPE_Q8_1:
  9859. case GGML_TYPE_Q2_K:
  9860. case GGML_TYPE_Q3_K:
  9861. case GGML_TYPE_Q4_K:
  9862. case GGML_TYPE_Q5_K:
  9863. case GGML_TYPE_Q6_K:
  9864. case GGML_TYPE_IQ2_XXS:
  9865. case GGML_TYPE_IQ2_XS:
  9866. case GGML_TYPE_IQ3_XXS:
  9867. case GGML_TYPE_IQ1_S:
  9868. case GGML_TYPE_IQ4_NL:
  9869. case GGML_TYPE_IQ4_XS:
  9870. case GGML_TYPE_IQ3_S:
  9871. case GGML_TYPE_IQ2_S:
  9872. case GGML_TYPE_Q8_K:
  9873. case GGML_TYPE_I8:
  9874. case GGML_TYPE_I16:
  9875. case GGML_TYPE_I32:
  9876. case GGML_TYPE_COUNT:
  9877. {
  9878. GGML_ASSERT(false);
  9879. } break;
  9880. }
  9881. }
  9882. // ggml_compute_forward_clamp
  9883. static void ggml_compute_forward_clamp_f32(
  9884. const struct ggml_compute_params * params,
  9885. struct ggml_tensor * dst) {
  9886. const struct ggml_tensor * src0 = dst->src[0];
  9887. assert(params->ith == 0);
  9888. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9889. return;
  9890. }
  9891. float min;
  9892. float max;
  9893. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9894. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9895. const int ith = params->ith;
  9896. const int nth = params->nth;
  9897. const int n = ggml_nrows(src0);
  9898. const int nc = src0->ne[0];
  9899. const size_t nb00 = src0->nb[0];
  9900. const size_t nb01 = src0->nb[1];
  9901. const size_t nb0 = dst->nb[0];
  9902. const size_t nb1 = dst->nb[1];
  9903. GGML_ASSERT( nb0 == sizeof(float));
  9904. GGML_ASSERT(nb00 == sizeof(float));
  9905. for (int j = ith; j < n; j += nth) {
  9906. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9907. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9908. for (int i = 0; i < nc; i++) {
  9909. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9910. }
  9911. }
  9912. }
  9913. static void ggml_compute_forward_clamp(
  9914. const struct ggml_compute_params * params,
  9915. struct ggml_tensor * dst) {
  9916. const struct ggml_tensor * src0 = dst->src[0];
  9917. switch (src0->type) {
  9918. case GGML_TYPE_F32:
  9919. {
  9920. ggml_compute_forward_clamp_f32(params, dst);
  9921. } break;
  9922. case GGML_TYPE_F16:
  9923. case GGML_TYPE_Q4_0:
  9924. case GGML_TYPE_Q4_1:
  9925. case GGML_TYPE_Q5_0:
  9926. case GGML_TYPE_Q5_1:
  9927. case GGML_TYPE_Q8_0:
  9928. case GGML_TYPE_Q8_1:
  9929. case GGML_TYPE_Q2_K:
  9930. case GGML_TYPE_Q3_K:
  9931. case GGML_TYPE_Q4_K:
  9932. case GGML_TYPE_Q5_K:
  9933. case GGML_TYPE_Q6_K:
  9934. case GGML_TYPE_IQ2_XXS:
  9935. case GGML_TYPE_IQ2_XS:
  9936. case GGML_TYPE_IQ3_XXS:
  9937. case GGML_TYPE_IQ1_S:
  9938. case GGML_TYPE_IQ4_NL:
  9939. case GGML_TYPE_IQ4_XS:
  9940. case GGML_TYPE_IQ3_S:
  9941. case GGML_TYPE_IQ2_S:
  9942. case GGML_TYPE_Q8_K:
  9943. case GGML_TYPE_I8:
  9944. case GGML_TYPE_I16:
  9945. case GGML_TYPE_I32:
  9946. case GGML_TYPE_COUNT:
  9947. {
  9948. GGML_ASSERT(false);
  9949. } break;
  9950. }
  9951. }
  9952. // ggml_compute_forward_rope
  9953. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  9954. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  9955. return 1 - MIN(1, MAX(0, y));
  9956. }
  9957. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  9958. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  9959. static void rope_yarn(
  9960. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  9961. float * cos_theta, float * sin_theta
  9962. ) {
  9963. // Get n-d rotational scaling corrected for extrapolation
  9964. float theta_interp = freq_scale * theta_extrap;
  9965. float theta = theta_interp;
  9966. if (ext_factor != 0.0f) {
  9967. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  9968. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9969. // Get n-d magnitude scaling corrected for interpolation
  9970. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9971. }
  9972. *cos_theta = cosf(theta) * mscale;
  9973. *sin_theta = sinf(theta) * mscale;
  9974. }
  9975. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9976. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9977. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9978. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9979. }
  9980. static void ggml_rope_cache_init(
  9981. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  9982. float * cache, float sin_sign, float theta_scale
  9983. ) {
  9984. float theta = theta_base;
  9985. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9986. rope_yarn(
  9987. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  9988. );
  9989. cache[i0 + 1] *= sin_sign;
  9990. theta *= theta_scale;
  9991. }
  9992. }
  9993. GGML_CALL void ggml_rope_yarn_corr_dims(
  9994. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9995. ) {
  9996. // start and end correction dims
  9997. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  9998. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  9999. dims[0] = MAX(0, start);
  10000. dims[1] = MIN(n_dims - 1, end);
  10001. }
  10002. static void ggml_compute_forward_rope_f32(
  10003. const struct ggml_compute_params * params,
  10004. struct ggml_tensor * dst,
  10005. const bool forward) {
  10006. const struct ggml_tensor * src0 = dst->src[0];
  10007. const struct ggml_tensor * src1 = dst->src[1];
  10008. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10009. return;
  10010. }
  10011. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10012. // these two only relevant for xPos RoPE:
  10013. float xpos_base;
  10014. bool xpos_down;
  10015. //const int n_past = ((int32_t *) dst->op_params)[0];
  10016. const int n_dims = ((int32_t *) dst->op_params)[1];
  10017. const int mode = ((int32_t *) dst->op_params)[2];
  10018. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10019. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10020. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10021. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10022. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10023. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10024. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10025. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10026. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  10027. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  10028. GGML_TENSOR_UNARY_OP_LOCALS
  10029. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10030. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10031. GGML_ASSERT(nb00 == sizeof(float));
  10032. const int ith = params->ith;
  10033. const int nth = params->nth;
  10034. const int nr = ggml_nrows(dst);
  10035. GGML_ASSERT(n_dims <= ne0);
  10036. GGML_ASSERT(n_dims % 2 == 0);
  10037. // rows per thread
  10038. const int dr = (nr + nth - 1)/nth;
  10039. // row range for this thread
  10040. const int ir0 = dr*ith;
  10041. const int ir1 = MIN(ir0 + dr, nr);
  10042. // row index used to determine which thread to use
  10043. int ir = 0;
  10044. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10045. const float inv_ndims = -1.f/n_dims;
  10046. float corr_dims[2];
  10047. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10048. const bool is_neox = mode & 2;
  10049. const bool is_glm = mode & 4;
  10050. // backward process uses inverse rotation by cos and sin.
  10051. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10052. // this essentially just switches the sign of sin.
  10053. const float sin_sign = forward ? 1.0f : -1.0f;
  10054. const int32_t * pos = (const int32_t *) src1->data;
  10055. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10056. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10057. const int64_t p = pos[i2];
  10058. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10059. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10060. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10061. }
  10062. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10063. if (ir++ < ir0) continue;
  10064. if (ir > ir1) break;
  10065. float theta_base = (float)p;
  10066. if (is_glm) {
  10067. theta_base = MIN(p, n_ctx - 2);
  10068. float block_theta = MAX(p - (n_ctx - 2), 0);
  10069. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10070. const float cos_theta = cosf(theta_base);
  10071. const float sin_theta = sinf(theta_base) * sin_sign;
  10072. const float cos_block_theta = cosf(block_theta);
  10073. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10074. theta_base *= theta_scale;
  10075. block_theta *= theta_scale;
  10076. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10077. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10078. const float x0 = src[0];
  10079. const float x1 = src[n_dims/2];
  10080. const float x2 = src[n_dims];
  10081. const float x3 = src[n_dims/2*3];
  10082. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10083. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10084. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10085. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10086. }
  10087. } else if (!is_neox) {
  10088. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10089. const float cos_theta = cache[i0 + 0];
  10090. const float sin_theta = cache[i0 + 1];
  10091. // zeta scaling for xPos only:
  10092. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10093. if (xpos_down) zeta = 1.0f / zeta;
  10094. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10095. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10096. const float x0 = src[0];
  10097. const float x1 = src[1];
  10098. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10099. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10100. }
  10101. } else {
  10102. // TODO: this might be wrong for ne0 != n_dims - need double check
  10103. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10104. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10105. theta_base *= freq_scale;
  10106. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10107. if (ic < n_dims) {
  10108. const int64_t ib = 0;
  10109. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10110. float cur_rot = inv_ndims * ic - ib;
  10111. float cos_theta, sin_theta;
  10112. rope_yarn(
  10113. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10114. &cos_theta, &sin_theta
  10115. );
  10116. sin_theta *= sin_sign;
  10117. theta_base *= theta_scale;
  10118. const int64_t i0 = ib*n_dims + ic/2;
  10119. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10120. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10121. const float x0 = src[0];
  10122. const float x1 = src[n_dims/2];
  10123. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10124. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10125. } else {
  10126. const int64_t i0 = ic;
  10127. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10128. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10129. dst_data[0] = src[0];
  10130. dst_data[1] = src[1];
  10131. }
  10132. }
  10133. }
  10134. }
  10135. }
  10136. }
  10137. }
  10138. static void ggml_compute_forward_rope_f16(
  10139. const struct ggml_compute_params * params,
  10140. struct ggml_tensor * dst,
  10141. const bool forward) {
  10142. const struct ggml_tensor * src0 = dst->src[0];
  10143. const struct ggml_tensor * src1 = dst->src[1];
  10144. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10145. return;
  10146. }
  10147. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10148. //const int n_past = ((int32_t *) dst->op_params)[0];
  10149. const int n_dims = ((int32_t *) dst->op_params)[1];
  10150. const int mode = ((int32_t *) dst->op_params)[2];
  10151. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10152. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10153. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10154. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10155. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10156. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10157. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10158. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10159. GGML_TENSOR_UNARY_OP_LOCALS
  10160. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10161. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10162. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10163. const int ith = params->ith;
  10164. const int nth = params->nth;
  10165. const int nr = ggml_nrows(dst);
  10166. GGML_ASSERT(n_dims <= ne0);
  10167. GGML_ASSERT(n_dims % 2 == 0);
  10168. // rows per thread
  10169. const int dr = (nr + nth - 1)/nth;
  10170. // row range for this thread
  10171. const int ir0 = dr*ith;
  10172. const int ir1 = MIN(ir0 + dr, nr);
  10173. // row index used to determine which thread to use
  10174. int ir = 0;
  10175. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10176. const float inv_ndims = -1.f/n_dims;
  10177. float corr_dims[2];
  10178. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10179. const bool is_neox = mode & 2;
  10180. const bool is_glm = mode & 4;
  10181. // backward process uses inverse rotation by cos and sin.
  10182. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10183. // this essentially just switches the sign of sin.
  10184. const float sin_sign = forward ? 1.0f : -1.0f;
  10185. const int32_t * pos = (const int32_t *) src1->data;
  10186. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10187. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10188. const int64_t p = pos[i2];
  10189. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10190. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10191. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10192. }
  10193. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10194. if (ir++ < ir0) continue;
  10195. if (ir > ir1) break;
  10196. float theta_base = (float)p;
  10197. if (is_glm) {
  10198. theta_base = MIN(p, n_ctx - 2);
  10199. float block_theta = MAX(p - (n_ctx - 2), 0);
  10200. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10201. const float cos_theta = cosf(theta_base);
  10202. const float sin_theta = sinf(theta_base) * sin_sign;
  10203. const float cos_block_theta = cosf(block_theta);
  10204. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10205. theta_base *= theta_scale;
  10206. block_theta *= theta_scale;
  10207. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10208. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10209. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10210. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10211. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10212. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10213. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10214. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10215. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10216. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10217. }
  10218. } else if (!is_neox) {
  10219. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10220. const float cos_theta = cache[i0 + 0];
  10221. const float sin_theta = cache[i0 + 1];
  10222. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10223. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10224. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10225. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10226. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10227. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10228. }
  10229. } else {
  10230. // TODO: this might be wrong for ne0 != n_dims - need double check
  10231. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10232. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10233. theta_base *= freq_scale;
  10234. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10235. if (ic < n_dims) {
  10236. const int64_t ib = 0;
  10237. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10238. float cur_rot = inv_ndims * ic - ib;
  10239. float cos_theta, sin_theta;
  10240. rope_yarn(
  10241. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10242. &cos_theta, &sin_theta
  10243. );
  10244. sin_theta *= sin_sign;
  10245. theta_base *= theta_scale;
  10246. const int64_t i0 = ib*n_dims + ic/2;
  10247. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10248. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10249. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10250. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10251. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10252. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10253. } else {
  10254. const int64_t i0 = ic;
  10255. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10256. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10257. dst_data[0] = src[0];
  10258. dst_data[1] = src[1];
  10259. }
  10260. }
  10261. }
  10262. }
  10263. }
  10264. }
  10265. }
  10266. static void ggml_compute_forward_rope(
  10267. const struct ggml_compute_params * params,
  10268. struct ggml_tensor * dst) {
  10269. const struct ggml_tensor * src0 = dst->src[0];
  10270. switch (src0->type) {
  10271. case GGML_TYPE_F16:
  10272. {
  10273. ggml_compute_forward_rope_f16(params, dst, true);
  10274. } break;
  10275. case GGML_TYPE_F32:
  10276. {
  10277. ggml_compute_forward_rope_f32(params, dst, true);
  10278. } break;
  10279. default:
  10280. {
  10281. GGML_ASSERT(false);
  10282. } break;
  10283. }
  10284. }
  10285. // ggml_compute_forward_rope_back
  10286. static void ggml_compute_forward_rope_back(
  10287. const struct ggml_compute_params * params,
  10288. struct ggml_tensor * dst) {
  10289. const struct ggml_tensor * src0 = dst->src[0];
  10290. switch (src0->type) {
  10291. case GGML_TYPE_F16:
  10292. {
  10293. ggml_compute_forward_rope_f16(params, dst, false);
  10294. } break;
  10295. case GGML_TYPE_F32:
  10296. {
  10297. ggml_compute_forward_rope_f32(params, dst, false);
  10298. } break;
  10299. default:
  10300. {
  10301. GGML_ASSERT(false);
  10302. } break;
  10303. }
  10304. }
  10305. // ggml_compute_forward_conv_transpose_1d
  10306. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10307. const struct ggml_compute_params * params,
  10308. struct ggml_tensor * dst) {
  10309. const struct ggml_tensor * src0 = dst->src[0];
  10310. const struct ggml_tensor * src1 = dst->src[1];
  10311. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10312. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10313. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10314. int64_t t0 = ggml_perf_time_us();
  10315. UNUSED(t0);
  10316. GGML_TENSOR_BINARY_OP_LOCALS
  10317. const int ith = params->ith;
  10318. const int nth = params->nth;
  10319. const int nk = ne00*ne01*ne02;
  10320. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10321. GGML_ASSERT(nb10 == sizeof(float));
  10322. if (params->type == GGML_TASK_TYPE_INIT) {
  10323. if (ith != 0) {
  10324. return;
  10325. }
  10326. memset(params->wdata, 0, params->wsize);
  10327. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10328. {
  10329. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10330. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10331. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10332. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10333. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10334. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10335. dst_data[i00*ne02 + i02] = src[i00];
  10336. }
  10337. }
  10338. }
  10339. }
  10340. // permute source data (src1) from (L x Cin) to (Cin x L)
  10341. {
  10342. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10343. ggml_fp16_t * dst_data = wdata;
  10344. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10345. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10346. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10347. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10348. }
  10349. }
  10350. }
  10351. // need to zero dst since we are accumulating into it
  10352. memset(dst->data, 0, ggml_nbytes(dst));
  10353. return;
  10354. }
  10355. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10356. return;
  10357. }
  10358. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10359. // total rows in dst
  10360. const int nr = ne1;
  10361. // rows per thread
  10362. const int dr = (nr + nth - 1)/nth;
  10363. // row range for this thread
  10364. const int ir0 = dr*ith;
  10365. const int ir1 = MIN(ir0 + dr, nr);
  10366. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10367. ggml_fp16_t * const wdata_src = wdata + nk;
  10368. for (int i1 = ir0; i1 < ir1; i1++) {
  10369. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10370. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10371. for (int i10 = 0; i10 < ne10; i10++) {
  10372. const int i1n = i10*ne11;
  10373. for (int i00 = 0; i00 < ne00; i00++) {
  10374. float v = 0;
  10375. ggml_vec_dot_f16(ne02, &v, 0,
  10376. (ggml_fp16_t *) wdata_src + i1n, 0,
  10377. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  10378. dst_data[i10*s0 + i00] += v;
  10379. }
  10380. }
  10381. }
  10382. }
  10383. static void ggml_compute_forward_conv_transpose_1d_f32(
  10384. const struct ggml_compute_params * params,
  10385. struct ggml_tensor * dst) {
  10386. const struct ggml_tensor * src0 = dst->src[0];
  10387. const struct ggml_tensor * src1 = dst->src[1];
  10388. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10389. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10390. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10391. int64_t t0 = ggml_perf_time_us();
  10392. UNUSED(t0);
  10393. GGML_TENSOR_BINARY_OP_LOCALS
  10394. const int ith = params->ith;
  10395. const int nth = params->nth;
  10396. const int nk = ne00*ne01*ne02;
  10397. GGML_ASSERT(nb00 == sizeof(float));
  10398. GGML_ASSERT(nb10 == sizeof(float));
  10399. if (params->type == GGML_TASK_TYPE_INIT) {
  10400. if (ith != 0) {
  10401. return;
  10402. }
  10403. memset(params->wdata, 0, params->wsize);
  10404. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10405. {
  10406. float * const wdata = (float *) params->wdata + 0;
  10407. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10408. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10409. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10410. float * dst_data = wdata + i01*ne00*ne02;
  10411. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10412. dst_data[i00*ne02 + i02] = src[i00];
  10413. }
  10414. }
  10415. }
  10416. }
  10417. // prepare source data (src1)
  10418. {
  10419. float * const wdata = (float *) params->wdata + nk;
  10420. float * dst_data = wdata;
  10421. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10422. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10423. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10424. dst_data[i10*ne11 + i11] = src[i10];
  10425. }
  10426. }
  10427. }
  10428. // need to zero dst since we are accumulating into it
  10429. memset(dst->data, 0, ggml_nbytes(dst));
  10430. return;
  10431. }
  10432. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10433. return;
  10434. }
  10435. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10436. // total rows in dst
  10437. const int nr = ne1;
  10438. // rows per thread
  10439. const int dr = (nr + nth - 1)/nth;
  10440. // row range for this thread
  10441. const int ir0 = dr*ith;
  10442. const int ir1 = MIN(ir0 + dr, nr);
  10443. float * const wdata = (float *) params->wdata + 0;
  10444. float * const wdata_src = wdata + nk;
  10445. for (int i1 = ir0; i1 < ir1; i1++) {
  10446. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10447. float * wdata_kernel = wdata + i1*ne02*ne00;
  10448. for (int i10 = 0; i10 < ne10; i10++) {
  10449. const int i1n = i10*ne11;
  10450. for (int i00 = 0; i00 < ne00; i00++) {
  10451. float v = 0;
  10452. ggml_vec_dot_f32(ne02, &v, 0,
  10453. wdata_src + i1n, 0,
  10454. wdata_kernel + i00*ne02, 0, 1);
  10455. dst_data[i10*s0 + i00] += v;
  10456. }
  10457. }
  10458. }
  10459. }
  10460. static void ggml_compute_forward_conv_transpose_1d(
  10461. const struct ggml_compute_params * params,
  10462. struct ggml_tensor * dst) {
  10463. const struct ggml_tensor * src0 = dst->src[0];
  10464. switch (src0->type) {
  10465. case GGML_TYPE_F16:
  10466. {
  10467. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  10468. } break;
  10469. case GGML_TYPE_F32:
  10470. {
  10471. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  10472. } break;
  10473. default:
  10474. {
  10475. GGML_ASSERT(false);
  10476. } break;
  10477. }
  10478. }
  10479. // src0: kernel [OC, IC, KH, KW]
  10480. // src1: image [N, IC, IH, IW]
  10481. // dst: result [N, OH, OW, IC*KH*KW]
  10482. static void ggml_compute_forward_im2col_f32(
  10483. const struct ggml_compute_params * params,
  10484. struct ggml_tensor * dst) {
  10485. const struct ggml_tensor * src0 = dst->src[0];
  10486. const struct ggml_tensor * src1 = dst->src[1];
  10487. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10488. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10489. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10490. int64_t t0 = ggml_perf_time_us();
  10491. UNUSED(t0);
  10492. GGML_TENSOR_BINARY_OP_LOCALS;
  10493. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10494. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10495. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10496. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10497. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10498. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10499. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10500. const int ith = params->ith;
  10501. const int nth = params->nth;
  10502. const int64_t N = is_2D ? ne13 : ne12;
  10503. const int64_t IC = is_2D ? ne12 : ne11;
  10504. const int64_t IH = is_2D ? ne11 : 1;
  10505. const int64_t IW = ne10;
  10506. const int64_t KH = is_2D ? ne01 : 1;
  10507. const int64_t KW = ne00;
  10508. const int64_t OH = is_2D ? ne2 : 1;
  10509. const int64_t OW = ne1;
  10510. int ofs0 = is_2D ? nb13 : nb12;
  10511. int ofs1 = is_2D ? nb12 : nb11;
  10512. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10513. GGML_ASSERT(nb10 == sizeof(float));
  10514. if (params->type == GGML_TASK_TYPE_INIT) {
  10515. return;
  10516. }
  10517. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10518. return;
  10519. }
  10520. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10521. {
  10522. float * const wdata = (float *) dst->data;
  10523. for (int64_t in = 0; in < N; in++) {
  10524. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10525. for (int64_t iow = 0; iow < OW; iow++) {
  10526. for (int64_t iic = ith; iic < IC; iic += nth) {
  10527. // micro kernel
  10528. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10529. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10530. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10531. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10532. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10533. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10534. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10535. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10536. } else {
  10537. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  10538. }
  10539. }
  10540. }
  10541. }
  10542. }
  10543. }
  10544. }
  10545. }
  10546. }
  10547. // src0: kernel [OC, IC, KH, KW]
  10548. // src1: image [N, IC, IH, IW]
  10549. // dst: result [N, OH, OW, IC*KH*KW]
  10550. static void ggml_compute_forward_im2col_f16(
  10551. const struct ggml_compute_params * params,
  10552. struct ggml_tensor * dst) {
  10553. const struct ggml_tensor * src0 = dst->src[0];
  10554. const struct ggml_tensor * src1 = dst->src[1];
  10555. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10556. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10557. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10558. int64_t t0 = ggml_perf_time_us();
  10559. UNUSED(t0);
  10560. GGML_TENSOR_BINARY_OP_LOCALS;
  10561. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10562. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10563. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10564. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10565. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10566. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10567. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10568. const int ith = params->ith;
  10569. const int nth = params->nth;
  10570. const int64_t N = is_2D ? ne13 : ne12;
  10571. const int64_t IC = is_2D ? ne12 : ne11;
  10572. const int64_t IH = is_2D ? ne11 : 1;
  10573. const int64_t IW = ne10;
  10574. const int64_t KH = is_2D ? ne01 : 1;
  10575. const int64_t KW = ne00;
  10576. const int64_t OH = is_2D ? ne2 : 1;
  10577. const int64_t OW = ne1;
  10578. int ofs0 = is_2D ? nb13 : nb12;
  10579. int ofs1 = is_2D ? nb12 : nb11;
  10580. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10581. GGML_ASSERT(nb10 == sizeof(float));
  10582. if (params->type == GGML_TASK_TYPE_INIT) {
  10583. return;
  10584. }
  10585. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10586. return;
  10587. }
  10588. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10589. {
  10590. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10591. for (int64_t in = 0; in < N; in++) {
  10592. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10593. for (int64_t iow = 0; iow < OW; iow++) {
  10594. for (int64_t iic = ith; iic < IC; iic += nth) {
  10595. // micro kernel
  10596. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10597. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10598. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10599. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10600. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10601. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10602. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10603. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10604. } else {
  10605. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10606. }
  10607. }
  10608. }
  10609. }
  10610. }
  10611. }
  10612. }
  10613. }
  10614. }
  10615. static void ggml_compute_forward_im2col(
  10616. const struct ggml_compute_params * params,
  10617. struct ggml_tensor * dst) {
  10618. switch (dst->type) {
  10619. case GGML_TYPE_F16:
  10620. {
  10621. ggml_compute_forward_im2col_f16(params, dst);
  10622. } break;
  10623. case GGML_TYPE_F32:
  10624. {
  10625. ggml_compute_forward_im2col_f32(params, dst);
  10626. } break;
  10627. default:
  10628. {
  10629. GGML_ASSERT(false);
  10630. } break;
  10631. }
  10632. }
  10633. // ggml_compute_forward_conv_transpose_2d
  10634. static void ggml_compute_forward_conv_transpose_2d(
  10635. const struct ggml_compute_params * params,
  10636. struct ggml_tensor * dst) {
  10637. const struct ggml_tensor * src0 = dst->src[0];
  10638. const struct ggml_tensor * src1 = dst->src[1];
  10639. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10640. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10641. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10642. int64_t t0 = ggml_perf_time_us();
  10643. UNUSED(t0);
  10644. GGML_TENSOR_BINARY_OP_LOCALS
  10645. const int ith = params->ith;
  10646. const int nth = params->nth;
  10647. const int nk = ne00*ne01*ne02*ne03;
  10648. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10649. GGML_ASSERT(nb10 == sizeof(float));
  10650. if (params->type == GGML_TASK_TYPE_INIT) {
  10651. if (ith != 0) {
  10652. return;
  10653. }
  10654. memset(params->wdata, 0, params->wsize);
  10655. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10656. {
  10657. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10658. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10659. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10660. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10661. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10662. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10663. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10664. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10665. }
  10666. }
  10667. }
  10668. }
  10669. }
  10670. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10671. {
  10672. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10673. for (int i12 = 0; i12 < ne12; i12++) {
  10674. for (int i11 = 0; i11 < ne11; i11++) {
  10675. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10676. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10677. for (int i10 = 0; i10 < ne10; i10++) {
  10678. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10679. }
  10680. }
  10681. }
  10682. }
  10683. memset(dst->data, 0, ggml_nbytes(dst));
  10684. return;
  10685. }
  10686. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10687. return;
  10688. }
  10689. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10690. // total patches in dst
  10691. const int np = ne2;
  10692. // patches per thread
  10693. const int dp = (np + nth - 1)/nth;
  10694. // patch range for this thread
  10695. const int ip0 = dp*ith;
  10696. const int ip1 = MIN(ip0 + dp, np);
  10697. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10698. ggml_fp16_t * const wdata_src = wdata + nk;
  10699. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10700. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10701. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10702. for (int i11 = 0; i11 < ne11; i11++) {
  10703. for (int i10 = 0; i10 < ne10; i10++) {
  10704. const int i1n = i11*ne10*ne12 + i10*ne12;
  10705. for (int i01 = 0; i01 < ne01; i01++) {
  10706. for (int i00 = 0; i00 < ne00; i00++) {
  10707. float v = 0;
  10708. ggml_vec_dot_f16(ne03, &v, 0,
  10709. wdata_src + i1n, 0,
  10710. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  10711. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10712. }
  10713. }
  10714. }
  10715. }
  10716. }
  10717. }
  10718. // ggml_compute_forward_pool_1d_sk_p0
  10719. static void ggml_compute_forward_pool_1d_sk_p0(
  10720. const struct ggml_compute_params * params,
  10721. const enum ggml_op_pool op,
  10722. const int k,
  10723. struct ggml_tensor * dst) {
  10724. const struct ggml_tensor * src = dst->src[0];
  10725. assert(src->type == GGML_TYPE_F32);
  10726. assert(params->ith == 0);
  10727. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10728. return;
  10729. }
  10730. const char * cdata = (const char *)src->data;
  10731. const char * const data_end = cdata + ggml_nbytes(src);
  10732. float * drow = (float *)dst->data;
  10733. const int64_t rs = dst->ne[0];
  10734. while (cdata < data_end) {
  10735. const float * const srow = (const float *)cdata;
  10736. int j = 0;
  10737. for (int64_t i = 0; i < rs; ++i) {
  10738. switch (op) {
  10739. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10740. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10741. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10742. }
  10743. for (int ki = 0; ki < k; ++ki) {
  10744. switch (op) {
  10745. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10746. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10747. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10748. }
  10749. ++j;
  10750. }
  10751. switch (op) {
  10752. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10753. case GGML_OP_POOL_MAX: break;
  10754. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10755. }
  10756. }
  10757. cdata += src->nb[1];
  10758. drow += rs;
  10759. }
  10760. }
  10761. // ggml_compute_forward_pool_1d
  10762. static void ggml_compute_forward_pool_1d(
  10763. const struct ggml_compute_params * params,
  10764. struct ggml_tensor * dst) {
  10765. const int32_t * opts = (const int32_t *)dst->op_params;
  10766. enum ggml_op_pool op = opts[0];
  10767. const int k0 = opts[1];
  10768. const int s0 = opts[2];
  10769. const int p0 = opts[3];
  10770. GGML_ASSERT(p0 == 0); // padding not supported
  10771. GGML_ASSERT(k0 == s0); // only s = k supported
  10772. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  10773. }
  10774. // ggml_compute_forward_pool_2d
  10775. static void ggml_compute_forward_pool_2d(
  10776. const struct ggml_compute_params * params,
  10777. struct ggml_tensor * dst) {
  10778. const struct ggml_tensor * src = dst->src[0];
  10779. GGML_ASSERT(src->type == GGML_TYPE_F32);
  10780. GGML_ASSERT(params->ith == 0);
  10781. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10782. return;
  10783. }
  10784. const int32_t * opts = (const int32_t *)dst->op_params;
  10785. enum ggml_op_pool op = opts[0];
  10786. const int k0 = opts[1];
  10787. const int k1 = opts[2];
  10788. const int s0 = opts[3];
  10789. const int s1 = opts[4];
  10790. const int p0 = opts[5];
  10791. const int p1 = opts[6];
  10792. const char * cdata = (const char*)src->data;
  10793. const char * const data_end = cdata + ggml_nbytes(src);
  10794. const int64_t px = dst->ne[0];
  10795. const int64_t py = dst->ne[1];
  10796. const int64_t pa = px * py;
  10797. float * dplane = (float *)dst->data;
  10798. const int ka = k0 * k1;
  10799. const int offset0 = -p0;
  10800. const int offset1 = -p1;
  10801. while (cdata < data_end) {
  10802. for (int oy = 0; oy < py; ++oy) {
  10803. float * const drow = dplane + oy * px;
  10804. for (int ox = 0; ox < px; ++ox) {
  10805. float * const out = drow + ox;
  10806. switch (op) {
  10807. case GGML_OP_POOL_AVG: *out = 0; break;
  10808. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10809. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10810. }
  10811. const int ix = offset0 + ox * s0;
  10812. const int iy = offset1 + oy * s1;
  10813. for (int ky = 0; ky < k1; ++ky) {
  10814. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  10815. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10816. for (int kx = 0; kx < k0; ++kx) {
  10817. int j = ix + kx;
  10818. if (j < 0 || j >= src->ne[0]) continue;
  10819. switch (op) {
  10820. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10821. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10822. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10823. }
  10824. }
  10825. }
  10826. switch (op) {
  10827. case GGML_OP_POOL_AVG: *out /= ka; break;
  10828. case GGML_OP_POOL_MAX: break;
  10829. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10830. }
  10831. }
  10832. }
  10833. cdata += src->nb[2];
  10834. dplane += pa;
  10835. }
  10836. }
  10837. // ggml_compute_forward_upscale
  10838. static void ggml_compute_forward_upscale_f32(
  10839. const struct ggml_compute_params * params,
  10840. struct ggml_tensor * dst) {
  10841. const struct ggml_tensor * src0 = dst->src[0];
  10842. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10843. return;
  10844. }
  10845. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10846. const int ith = params->ith;
  10847. const int nth = params->nth;
  10848. GGML_TENSOR_UNARY_OP_LOCALS
  10849. const int scale_factor = dst->op_params[0];
  10850. // TODO: optimize
  10851. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10852. const int64_t i03 = i3;
  10853. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  10854. const int64_t i02 = i2;
  10855. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10856. const int64_t i01 = i1 / scale_factor;
  10857. for (int64_t i0 = 0; i0 < ne0; i0++) {
  10858. const int64_t i00 = i0 / scale_factor;
  10859. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  10860. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  10861. *y = *x;
  10862. }
  10863. }
  10864. }
  10865. }
  10866. }
  10867. static void ggml_compute_forward_upscale(
  10868. const struct ggml_compute_params * params,
  10869. struct ggml_tensor * dst) {
  10870. const struct ggml_tensor * src0 = dst->src[0];
  10871. switch (src0->type) {
  10872. case GGML_TYPE_F32:
  10873. {
  10874. ggml_compute_forward_upscale_f32(params, dst);
  10875. } break;
  10876. default:
  10877. {
  10878. GGML_ASSERT(false);
  10879. } break;
  10880. }
  10881. }
  10882. // ggml_compute_forward_pad
  10883. static void ggml_compute_forward_pad_f32(
  10884. const struct ggml_compute_params * params,
  10885. struct ggml_tensor * dst) {
  10886. const struct ggml_tensor * src0 = dst->src[0];
  10887. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10888. return;
  10889. }
  10890. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10891. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10892. const int ith = params->ith;
  10893. const int nth = params->nth;
  10894. GGML_TENSOR_UNARY_OP_LOCALS
  10895. float * dst_ptr = (float *) dst->data;
  10896. // TODO: optimize
  10897. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10898. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  10899. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10900. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  10901. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  10902. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10903. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  10904. dst_ptr[dst_idx] = *src_ptr;
  10905. } else {
  10906. dst_ptr[dst_idx] = 0;
  10907. }
  10908. }
  10909. }
  10910. }
  10911. }
  10912. }
  10913. static void ggml_compute_forward_pad(
  10914. const struct ggml_compute_params * params,
  10915. struct ggml_tensor * dst) {
  10916. const struct ggml_tensor * src0 = dst->src[0];
  10917. switch (src0->type) {
  10918. case GGML_TYPE_F32:
  10919. {
  10920. ggml_compute_forward_pad_f32(params, dst);
  10921. } break;
  10922. default:
  10923. {
  10924. GGML_ASSERT(false);
  10925. } break;
  10926. }
  10927. }
  10928. // ggml_compute_forward_argsort
  10929. static void ggml_compute_forward_argsort_f32(
  10930. const struct ggml_compute_params * params,
  10931. struct ggml_tensor * dst) {
  10932. const struct ggml_tensor * src0 = dst->src[0];
  10933. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10934. return;
  10935. }
  10936. GGML_TENSOR_UNARY_OP_LOCALS
  10937. GGML_ASSERT(nb0 == sizeof(float));
  10938. const int ith = params->ith;
  10939. const int nth = params->nth;
  10940. const int64_t nr = ggml_nrows(src0);
  10941. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  10942. for (int64_t i = ith; i < nr; i += nth) {
  10943. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  10944. const float * src_data = (float *)((char *) src0->data + i*nb01);
  10945. for (int64_t j = 0; j < ne0; j++) {
  10946. dst_data[j] = j;
  10947. }
  10948. // C doesn't have a functional sort, so we do a bubble sort instead
  10949. for (int64_t j = 0; j < ne0; j++) {
  10950. for (int64_t k = j + 1; k < ne0; k++) {
  10951. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  10952. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  10953. int32_t tmp = dst_data[j];
  10954. dst_data[j] = dst_data[k];
  10955. dst_data[k] = tmp;
  10956. }
  10957. }
  10958. }
  10959. }
  10960. }
  10961. static void ggml_compute_forward_argsort(
  10962. const struct ggml_compute_params * params,
  10963. struct ggml_tensor * dst) {
  10964. const struct ggml_tensor * src0 = dst->src[0];
  10965. switch (src0->type) {
  10966. case GGML_TYPE_F32:
  10967. {
  10968. ggml_compute_forward_argsort_f32(params, dst);
  10969. } break;
  10970. default:
  10971. {
  10972. GGML_ASSERT(false);
  10973. } break;
  10974. }
  10975. }
  10976. // ggml_compute_forward_flash_attn
  10977. static void ggml_compute_forward_flash_attn_f32(
  10978. const struct ggml_compute_params * params,
  10979. const bool masked,
  10980. struct ggml_tensor * dst) {
  10981. const struct ggml_tensor * q = dst->src[0];
  10982. const struct ggml_tensor * k = dst->src[1];
  10983. const struct ggml_tensor * v = dst->src[2];
  10984. int64_t t0 = ggml_perf_time_us();
  10985. UNUSED(t0);
  10986. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10987. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10988. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10989. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10990. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10991. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10992. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10993. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10994. const int ith = params->ith;
  10995. const int nth = params->nth;
  10996. const int64_t D = neq0;
  10997. const int64_t N = neq1;
  10998. const int64_t P = nek1 - N;
  10999. const int64_t M = P + N;
  11000. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11001. GGML_ASSERT(ne0 == D);
  11002. GGML_ASSERT(ne1 == N);
  11003. GGML_ASSERT(P >= 0);
  11004. GGML_ASSERT(nbq0 == sizeof(float));
  11005. GGML_ASSERT(nbk0 == sizeof(float));
  11006. GGML_ASSERT(nbv0 == sizeof(float));
  11007. GGML_ASSERT(neq0 == D);
  11008. GGML_ASSERT(nek0 == D);
  11009. GGML_ASSERT(nev1 == D);
  11010. GGML_ASSERT(neq1 == N);
  11011. GGML_ASSERT(nek1 == N + P);
  11012. GGML_ASSERT(nev1 == D);
  11013. // dst cannot be transposed or permuted
  11014. GGML_ASSERT(nb0 == sizeof(float));
  11015. GGML_ASSERT(nb0 <= nb1);
  11016. GGML_ASSERT(nb1 <= nb2);
  11017. GGML_ASSERT(nb2 <= nb3);
  11018. if (params->type == GGML_TASK_TYPE_INIT) {
  11019. return;
  11020. }
  11021. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11022. return;
  11023. }
  11024. // parallelize by q rows using ggml_vec_dot_f32
  11025. // total rows in q
  11026. const int nr = neq1*neq2*neq3;
  11027. // rows per thread
  11028. const int dr = (nr + nth - 1)/nth;
  11029. // row range for this thread
  11030. const int ir0 = dr*ith;
  11031. const int ir1 = MIN(ir0 + dr, nr);
  11032. const float scale = 1.0f/sqrtf(D);
  11033. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11034. for (int ir = ir0; ir < ir1; ++ir) {
  11035. // q indices
  11036. const int iq3 = ir/(neq2*neq1);
  11037. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11038. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11039. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11040. for (int i = M; i < Mup; ++i) {
  11041. S[i] = -INFINITY;
  11042. }
  11043. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11044. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11045. // k indices
  11046. const int ik3 = iq3;
  11047. const int ik2 = iq2 % nek2;
  11048. const int ik1 = ic;
  11049. // S indices
  11050. const int i1 = ik1;
  11051. ggml_vec_dot_f32(neq0,
  11052. S + i1, 0,
  11053. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11054. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11055. }
  11056. // scale
  11057. ggml_vec_scale_f32(masked_begin, S, scale);
  11058. for (int64_t i = masked_begin; i < M; i++) {
  11059. S[i] = -INFINITY;
  11060. }
  11061. // softmax
  11062. // exclude known -INF S[..] values from max and loop
  11063. // dont forget to set their SW values to zero
  11064. {
  11065. float max = -INFINITY;
  11066. ggml_vec_max_f32(masked_begin, &max, S);
  11067. ggml_float sum = 0.0;
  11068. {
  11069. #ifdef GGML_SOFT_MAX_ACCELERATE
  11070. max = -max;
  11071. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11072. vvexpf(S, S, &Mup);
  11073. ggml_vec_sum_f32(Mup, &sum, S);
  11074. #else
  11075. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11076. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11077. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11078. if (i >= masked_begin) {
  11079. break;
  11080. }
  11081. float * SS = S + i;
  11082. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11083. if (i + j >= masked_begin) {
  11084. break;
  11085. } else if (SS[j] == -INFINITY) {
  11086. SS[j] = 0.0f;
  11087. } else {
  11088. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11089. const float val = expf(SS[j] - max);
  11090. #else
  11091. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11092. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11093. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11094. #endif
  11095. sump[j] += (ggml_float)val;
  11096. SS[j] = val;
  11097. }
  11098. }
  11099. }
  11100. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11101. sum += sump[i];
  11102. }
  11103. #endif
  11104. }
  11105. assert(sum > 0.0);
  11106. sum = 1.0/sum;
  11107. ggml_vec_scale_f32(masked_begin, S, sum);
  11108. #ifndef NDEBUG
  11109. for (int i = 0; i < masked_begin; ++i) {
  11110. assert(!isnan(S[i]));
  11111. assert(!isinf(S[i]));
  11112. }
  11113. #endif
  11114. }
  11115. for (int64_t ic = 0; ic < nev1; ++ic) {
  11116. // dst indices
  11117. const int i1 = iq1;
  11118. const int i2 = iq2;
  11119. const int i3 = iq3;
  11120. // v indices
  11121. const int iv2 = iq2 % nev2;
  11122. const int iv3 = iq3;
  11123. ggml_vec_dot_f32(masked_begin,
  11124. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11125. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11126. S, 0, 1);
  11127. }
  11128. }
  11129. }
  11130. static void ggml_compute_forward_flash_attn_f16(
  11131. const struct ggml_compute_params * params,
  11132. const bool masked,
  11133. struct ggml_tensor * dst) {
  11134. const struct ggml_tensor * q = dst->src[0];
  11135. const struct ggml_tensor * k = dst->src[1];
  11136. const struct ggml_tensor * v = dst->src[2];
  11137. int64_t t0 = ggml_perf_time_us();
  11138. UNUSED(t0);
  11139. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11140. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11141. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11142. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11143. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11144. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11145. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11146. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11147. const int ith = params->ith;
  11148. const int nth = params->nth;
  11149. const int64_t D = neq0;
  11150. const int64_t N = neq1;
  11151. const int64_t P = nek1 - N;
  11152. const int64_t M = P + N;
  11153. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11154. GGML_ASSERT(ne0 == D);
  11155. GGML_ASSERT(ne1 == N);
  11156. GGML_ASSERT(P >= 0);
  11157. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11158. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11159. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11160. GGML_ASSERT(neq0 == D);
  11161. GGML_ASSERT(nek0 == D);
  11162. GGML_ASSERT(nev1 == D);
  11163. GGML_ASSERT(neq1 == N);
  11164. GGML_ASSERT(nek1 == N + P);
  11165. GGML_ASSERT(nev1 == D);
  11166. // dst cannot be transposed or permuted
  11167. GGML_ASSERT(nb0 == sizeof(float));
  11168. GGML_ASSERT(nb0 <= nb1);
  11169. GGML_ASSERT(nb1 <= nb2);
  11170. GGML_ASSERT(nb2 <= nb3);
  11171. if (params->type == GGML_TASK_TYPE_INIT) {
  11172. return;
  11173. }
  11174. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11175. return;
  11176. }
  11177. // parallelize by q rows using ggml_vec_dot_f32
  11178. // total rows in q
  11179. const int nr = neq1*neq2*neq3;
  11180. // rows per thread
  11181. const int dr = (nr + nth - 1)/nth;
  11182. // row range for this thread
  11183. const int ir0 = dr*ith;
  11184. const int ir1 = MIN(ir0 + dr, nr);
  11185. const float scale = 1.0f/sqrtf(D);
  11186. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11187. for (int ir = ir0; ir < ir1; ++ir) {
  11188. // q indices
  11189. const int iq3 = ir/(neq2*neq1);
  11190. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11191. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11192. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11193. for (int i = M; i < Mup; ++i) {
  11194. S[i] = -INFINITY;
  11195. }
  11196. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11197. for (int64_t ic = 0; ic < nek1; ++ic) {
  11198. // k indices
  11199. const int ik3 = iq3;
  11200. const int ik2 = iq2 % nek2;
  11201. const int ik1 = ic;
  11202. // S indices
  11203. const int i1 = ik1;
  11204. ggml_vec_dot_f16(neq0,
  11205. S + i1, 0,
  11206. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11207. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11208. }
  11209. } else {
  11210. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11211. // k indices
  11212. const int ik3 = iq3;
  11213. const int ik2 = iq2 % nek2;
  11214. const int ik1 = ic;
  11215. // S indices
  11216. const int i1 = ik1;
  11217. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11218. S + i1,
  11219. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11220. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11221. }
  11222. }
  11223. // scale
  11224. ggml_vec_scale_f32(nek1, S, scale);
  11225. if (masked) {
  11226. for (int64_t i = P; i < M; i++) {
  11227. if (i > P + iq1) {
  11228. S[i] = -INFINITY;
  11229. }
  11230. }
  11231. }
  11232. // softmax
  11233. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  11234. // dont forget to set their S values to zero
  11235. {
  11236. float max = -INFINITY;
  11237. ggml_vec_max_f32(M, &max, S);
  11238. ggml_float sum = 0.0;
  11239. {
  11240. #ifdef GGML_SOFT_MAX_ACCELERATE
  11241. max = -max;
  11242. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11243. vvexpf(S, S, &Mup);
  11244. ggml_vec_sum_f32(Mup, &sum, S);
  11245. #else
  11246. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11247. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11248. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11249. float * SS = S + i;
  11250. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11251. if (SS[j] == -INFINITY) {
  11252. SS[j] = 0.0f;
  11253. } else {
  11254. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11255. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11256. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11257. sump[j] += (ggml_float)val;
  11258. SS[j] = val;
  11259. }
  11260. }
  11261. }
  11262. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11263. sum += sump[i];
  11264. }
  11265. #endif
  11266. }
  11267. assert(sum > 0.0);
  11268. sum = 1.0/sum;
  11269. ggml_vec_scale_f32(M, S, sum);
  11270. #ifndef NDEBUG
  11271. for (int i = 0; i < M; ++i) {
  11272. assert(!isnan(S[i]));
  11273. assert(!isinf(S[i]));
  11274. }
  11275. #endif
  11276. }
  11277. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11278. for (int64_t i = 0; i < M; i++) {
  11279. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11280. }
  11281. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  11282. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11283. for (int64_t ic = 0; ic < nev1; ++ic) {
  11284. // dst indices
  11285. const int i1 = iq1;
  11286. const int i2 = iq2;
  11287. const int i3 = iq3;
  11288. // v indices
  11289. const int iv2 = iq2 % nev2;
  11290. const int iv3 = iq3;
  11291. ggml_vec_dot_f16(nev0,
  11292. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11293. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11294. S16, 0, 1);
  11295. }
  11296. } else {
  11297. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11298. // dst indices
  11299. const int i1 = iq1;
  11300. const int i2 = iq2;
  11301. const int i3 = iq3;
  11302. // v indices
  11303. const int iv2 = iq2 % nev2;
  11304. const int iv3 = iq3;
  11305. ggml_vec_dot_f16_unroll(nev0, nbv1,
  11306. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11307. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11308. S16);
  11309. }
  11310. }
  11311. }
  11312. }
  11313. static void ggml_compute_forward_flash_attn(
  11314. const struct ggml_compute_params * params,
  11315. const bool masked,
  11316. struct ggml_tensor * dst) {
  11317. const struct ggml_tensor * q = dst->src[0];
  11318. switch (q->type) {
  11319. case GGML_TYPE_F16:
  11320. {
  11321. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  11322. } break;
  11323. case GGML_TYPE_F32:
  11324. {
  11325. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  11326. } break;
  11327. default:
  11328. {
  11329. GGML_ASSERT(false);
  11330. } break;
  11331. }
  11332. }
  11333. // ggml_compute_forward_flash_ff
  11334. static void ggml_compute_forward_flash_ff_f16(
  11335. const struct ggml_compute_params * params,
  11336. struct ggml_tensor * dst) {
  11337. const struct ggml_tensor * a = dst->src[0]; // F16
  11338. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  11339. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  11340. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  11341. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  11342. int64_t t0 = ggml_perf_time_us();
  11343. UNUSED(t0);
  11344. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11345. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11346. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11347. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11348. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11349. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11350. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11351. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11352. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11353. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11354. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11355. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11356. const int ith = params->ith;
  11357. const int nth = params->nth;
  11358. const int64_t D = nea0;
  11359. //const int64_t N = nea1;
  11360. const int64_t M = neb01;
  11361. GGML_ASSERT(ne0 == nea0);
  11362. GGML_ASSERT(ne1 == nea1);
  11363. GGML_ASSERT(ne2 == nea2);
  11364. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11365. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11366. GGML_ASSERT(nbb10 == sizeof(float));
  11367. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11368. GGML_ASSERT(nbc10 == sizeof(float));
  11369. GGML_ASSERT(neb00 == D);
  11370. GGML_ASSERT(neb01 == M);
  11371. GGML_ASSERT(neb10 == M);
  11372. GGML_ASSERT(neb11 == 1);
  11373. GGML_ASSERT(nec00 == M);
  11374. GGML_ASSERT(nec01 == D);
  11375. GGML_ASSERT(nec10 == D);
  11376. GGML_ASSERT(nec11 == 1);
  11377. // dst cannot be transposed or permuted
  11378. GGML_ASSERT(nb0 == sizeof(float));
  11379. GGML_ASSERT(nb0 <= nb1);
  11380. GGML_ASSERT(nb1 <= nb2);
  11381. GGML_ASSERT(nb2 <= nb3);
  11382. if (params->type == GGML_TASK_TYPE_INIT) {
  11383. return;
  11384. }
  11385. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11386. return;
  11387. }
  11388. // parallelize by a rows using ggml_vec_dot_f32
  11389. // total rows in a
  11390. const int nr = nea1*nea2*nea3;
  11391. // rows per thread
  11392. const int dr = (nr + nth - 1)/nth;
  11393. // row range for this thread
  11394. const int ir0 = dr*ith;
  11395. const int ir1 = MIN(ir0 + dr, nr);
  11396. for (int ir = ir0; ir < ir1; ++ir) {
  11397. // a indices
  11398. const int ia3 = ir/(nea2*nea1);
  11399. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11400. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11401. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11402. for (int64_t ic = 0; ic < neb01; ++ic) {
  11403. // b0 indices
  11404. const int ib03 = ia3;
  11405. const int ib02 = ia2;
  11406. const int ib01 = ic;
  11407. // S indices
  11408. const int i1 = ib01;
  11409. ggml_vec_dot_f16(nea0,
  11410. S + i1, 0,
  11411. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  11412. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  11413. }
  11414. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11415. //ggml_vec_gelu_f32(neb01, S, S);
  11416. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11417. for (int64_t i = 0; i < M; i++) {
  11418. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11419. }
  11420. ggml_vec_gelu_f16(neb01, S16, S16);
  11421. {
  11422. // dst indices
  11423. const int i1 = ia1;
  11424. const int i2 = ia2;
  11425. const int i3 = ia3;
  11426. for (int64_t ic = 0; ic < nec01; ++ic) {
  11427. ggml_vec_dot_f16(neb01,
  11428. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11429. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  11430. S16, 0, 1);
  11431. }
  11432. ggml_vec_add_f32(nec01,
  11433. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11434. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11435. (float *) c1->data);
  11436. }
  11437. }
  11438. }
  11439. static void ggml_compute_forward_flash_ff(
  11440. const struct ggml_compute_params * params,
  11441. struct ggml_tensor * dst) {
  11442. const struct ggml_tensor * b0 = dst->src[1];
  11443. switch (b0->type) {
  11444. case GGML_TYPE_F16:
  11445. {
  11446. ggml_compute_forward_flash_ff_f16(params, dst);
  11447. } break;
  11448. case GGML_TYPE_F32:
  11449. {
  11450. GGML_ASSERT(false); // TODO
  11451. } break;
  11452. default:
  11453. {
  11454. GGML_ASSERT(false);
  11455. } break;
  11456. }
  11457. }
  11458. // ggml_compute_forward_flash_attn_back
  11459. static void ggml_compute_forward_flash_attn_back_f32(
  11460. const struct ggml_compute_params * params,
  11461. const bool masked,
  11462. struct ggml_tensor * dst) {
  11463. const struct ggml_tensor * q = dst->src[0];
  11464. const struct ggml_tensor * k = dst->src[1];
  11465. const struct ggml_tensor * v = dst->src[2];
  11466. const struct ggml_tensor * d = dst->src[3];
  11467. int64_t t0 = ggml_perf_time_us();
  11468. UNUSED(t0);
  11469. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11470. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11471. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11472. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11473. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11474. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11475. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11476. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11477. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11478. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11479. const int ith = params->ith;
  11480. const int nth = params->nth;
  11481. const int64_t D = neq0;
  11482. const int64_t N = neq1;
  11483. const int64_t P = nek1 - N;
  11484. const int64_t M = P + N;
  11485. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11486. const int mxDM = MAX(D, Mup);
  11487. // GGML_ASSERT(ne0 == D);
  11488. // GGML_ASSERT(ne1 == N);
  11489. GGML_ASSERT(P >= 0);
  11490. GGML_ASSERT(nbq0 == sizeof(float));
  11491. GGML_ASSERT(nbk0 == sizeof(float));
  11492. GGML_ASSERT(nbv0 == sizeof(float));
  11493. GGML_ASSERT(neq0 == D);
  11494. GGML_ASSERT(nek0 == D);
  11495. GGML_ASSERT(nev1 == D);
  11496. GGML_ASSERT(ned0 == D);
  11497. GGML_ASSERT(neq1 == N);
  11498. GGML_ASSERT(nek1 == N + P);
  11499. GGML_ASSERT(nev1 == D);
  11500. GGML_ASSERT(ned1 == N);
  11501. // dst cannot be transposed or permuted
  11502. GGML_ASSERT(nb0 == sizeof(float));
  11503. GGML_ASSERT(nb0 <= nb1);
  11504. GGML_ASSERT(nb1 <= nb2);
  11505. GGML_ASSERT(nb2 <= nb3);
  11506. if (params->type == GGML_TASK_TYPE_INIT) {
  11507. if (ith == 0) {
  11508. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11509. }
  11510. return;
  11511. }
  11512. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11513. return;
  11514. }
  11515. const int64_t elem_q = ggml_nelements(q);
  11516. const int64_t elem_k = ggml_nelements(k);
  11517. enum ggml_type result_type = dst->type;
  11518. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11519. const size_t tsize = ggml_type_size(result_type);
  11520. const size_t offs_q = 0;
  11521. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11522. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11523. void * grad_q = (char *) dst->data;
  11524. void * grad_k = (char *) dst->data + offs_k;
  11525. void * grad_v = (char *) dst->data + offs_v;
  11526. const size_t nbgq1 = nb0*neq0;
  11527. const size_t nbgq2 = nb0*neq0*neq1;
  11528. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11529. const size_t nbgk1 = nb0*nek0;
  11530. const size_t nbgk2 = nb0*nek0*nek1;
  11531. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11532. const size_t nbgv1 = nb0*nev0;
  11533. const size_t nbgv2 = nb0*nev0*nev1;
  11534. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11535. // parallelize by k rows using ggml_vec_dot_f32
  11536. // total rows in k
  11537. const int nr = nek2*nek3;
  11538. // rows per thread
  11539. const int dr = (nr + nth - 1)/nth;
  11540. // row range for this thread
  11541. const int ir0 = dr*ith;
  11542. const int ir1 = MIN(ir0 + dr, nr);
  11543. const float scale = 1.0f/sqrtf(D);
  11544. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11545. // how often k2 (and v2) is repeated in q2
  11546. int nrep = neq2/nek2;
  11547. for (int ir = ir0; ir < ir1; ++ir) {
  11548. // q indices
  11549. const int ik3 = ir/(nek2);
  11550. const int ik2 = ir - ik3*nek2;
  11551. const int iq3 = ik3;
  11552. const int id3 = ik3;
  11553. const int iv3 = ik3;
  11554. const int iv2 = ik2;
  11555. for (int irep = 0; irep < nrep; ++irep) {
  11556. const int iq2 = ik2 + irep*nek2;
  11557. const int id2 = iq2;
  11558. // (ik2 + irep*nek2) % nek2 == ik2
  11559. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11560. const int id1 = iq1;
  11561. // not sure about CACHE_LINE_SIZE_F32..
  11562. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11563. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11564. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11565. for (int i = M; i < Mup; ++i) {
  11566. S[i] = -INFINITY;
  11567. }
  11568. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11569. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11570. // k indices
  11571. const int ik1 = ic;
  11572. // S indices
  11573. const int i1 = ik1;
  11574. ggml_vec_dot_f32(neq0,
  11575. S + i1, 0,
  11576. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11577. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11578. }
  11579. // scale
  11580. ggml_vec_scale_f32(masked_begin, S, scale);
  11581. for (int64_t i = masked_begin; i < M; i++) {
  11582. S[i] = -INFINITY;
  11583. }
  11584. // softmax
  11585. // exclude known -INF S[..] values from max and loop
  11586. // dont forget to set their SM values to zero
  11587. {
  11588. float max = -INFINITY;
  11589. ggml_vec_max_f32(masked_begin, &max, S);
  11590. ggml_float sum = 0.0;
  11591. {
  11592. #ifdef GGML_SOFT_MAX_ACCELERATE
  11593. max = -max;
  11594. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11595. vvexpf(SM, SM, &Mup);
  11596. ggml_vec_sum_f32(Mup, &sum, SM);
  11597. #else
  11598. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11599. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11600. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11601. if (i >= masked_begin) {
  11602. break;
  11603. }
  11604. float * SR = S + i;
  11605. float * SW = SM + i;
  11606. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11607. if (i + j >= masked_begin) {
  11608. break;
  11609. } else if (SR[j] == -INFINITY) {
  11610. SW[j] = 0.0f;
  11611. } else {
  11612. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11613. const float val = expf(SR[j] - max);
  11614. #else
  11615. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11616. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11617. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11618. #endif
  11619. sump[j] += (ggml_float)val;
  11620. SW[j] = val;
  11621. }
  11622. }
  11623. }
  11624. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11625. sum += sump[i];
  11626. }
  11627. #endif
  11628. }
  11629. assert(sum > 0.0);
  11630. sum = 1.0/sum;
  11631. ggml_vec_scale_f32(masked_begin, SM, sum);
  11632. }
  11633. // step-by-step explanation
  11634. {
  11635. // forward-process shape grads from backward process
  11636. // parallel_for ik2,ik3:
  11637. // for irep:
  11638. // iq2 = ik2 + irep*nek2
  11639. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11640. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11641. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11642. // for iq1:
  11643. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11644. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11645. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11646. // S0 = -Inf [D,1,1,1]
  11647. // ~S1[i] = dot(kcur[:D,i], qcur)
  11648. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11649. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11650. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11651. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11652. // ~S5[i] = dot(vcur[:,i], S4)
  11653. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11654. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11655. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11656. // dst backward-/ grad[dst] = d
  11657. //
  11658. // output gradients with their dependencies:
  11659. //
  11660. // grad[kcur] = grad[S1].T @ qcur
  11661. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11662. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11663. // grad[S4] = grad[S5] @ vcur
  11664. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11665. // grad[qcur] = grad[S1] @ kcur
  11666. // grad[vcur] = grad[S5].T @ S4
  11667. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11668. //
  11669. // in post-order:
  11670. //
  11671. // S1 = qcur @ kcur.T
  11672. // S2 = S1 * scale
  11673. // S3 = diag_mask_inf(S2, P)
  11674. // S4 = softmax(S3)
  11675. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11676. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11677. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11678. // grad[qcur] = grad[S1] @ kcur
  11679. // grad[kcur] = grad[S1].T @ qcur
  11680. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11681. //
  11682. // using less variables (SM=S4):
  11683. //
  11684. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11685. // SM = softmax(S)
  11686. // S = d[:D,iq1,iq2,iq3] @ vcur
  11687. // dot_SM_gradSM = dot(SM, S)
  11688. // S = SM * (S - dot(SM, S))
  11689. // S = diag_mask_zero(S, P) * scale
  11690. //
  11691. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11692. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11693. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11694. }
  11695. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11696. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11697. // for ic:
  11698. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11699. // exclude known future zero S[..] values from operation
  11700. ggml_vec_set_f32(masked_begin, S, 0);
  11701. for (int64_t ic = 0; ic < D; ++ic) {
  11702. ggml_vec_mad_f32(masked_begin,
  11703. S,
  11704. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11705. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11706. }
  11707. // S = SM * (S - dot(SM, S))
  11708. float dot_SM_gradSM = 0;
  11709. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  11710. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11711. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11712. // S = diag_mask_zero(S, P) * scale
  11713. // already done by above ggml_vec_set_f32
  11714. // exclude known zero S[..] values from operation
  11715. ggml_vec_scale_f32(masked_begin, S, scale);
  11716. // S shape [M,1]
  11717. // SM shape [M,1]
  11718. // kcur shape [D,M]
  11719. // qcur shape [D,1]
  11720. // vcur shape [M,D]
  11721. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11722. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11723. // for ic:
  11724. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11725. // exclude known zero S[..] values from loop
  11726. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11727. ggml_vec_mad_f32(D,
  11728. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11729. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11730. S[ic]);
  11731. }
  11732. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11733. // for ic:
  11734. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11735. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11736. // exclude known zero S[..] values from loop
  11737. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11738. ggml_vec_mad_f32(D,
  11739. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11740. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11741. S[ic]);
  11742. }
  11743. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11744. // for ic:
  11745. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11746. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11747. // exclude known zero SM[..] values from mad
  11748. for (int64_t ic = 0; ic < D; ++ic) {
  11749. ggml_vec_mad_f32(masked_begin,
  11750. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11751. SM,
  11752. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11753. }
  11754. }
  11755. }
  11756. }
  11757. }
  11758. static void ggml_compute_forward_flash_attn_back(
  11759. const struct ggml_compute_params * params,
  11760. const bool masked,
  11761. struct ggml_tensor * dst) {
  11762. const struct ggml_tensor * q = dst->src[0];
  11763. switch (q->type) {
  11764. case GGML_TYPE_F32:
  11765. {
  11766. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  11767. } break;
  11768. default:
  11769. {
  11770. GGML_ASSERT(false);
  11771. } break;
  11772. }
  11773. }
  11774. // ggml_compute_forward_win_part
  11775. static void ggml_compute_forward_win_part_f32(
  11776. const struct ggml_compute_params * params,
  11777. struct ggml_tensor * dst) {
  11778. const struct ggml_tensor * src0 = dst->src[0];
  11779. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11780. return;
  11781. }
  11782. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11783. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11784. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11785. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11786. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11787. assert(ne00 == ne0);
  11788. assert(ne3 == nep0*nep1);
  11789. // TODO: optimize / multi-thread
  11790. for (int py = 0; py < nep1; ++py) {
  11791. for (int px = 0; px < nep0; ++px) {
  11792. const int64_t i3 = py*nep0 + px;
  11793. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11794. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11795. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11796. const int64_t i02 = py*w + i2;
  11797. const int64_t i01 = px*w + i1;
  11798. const int64_t i00 = i0;
  11799. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11800. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11801. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11802. ((float *) dst->data)[i] = 0.0f;
  11803. } else {
  11804. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11805. }
  11806. }
  11807. }
  11808. }
  11809. }
  11810. }
  11811. }
  11812. static void ggml_compute_forward_win_part(
  11813. const struct ggml_compute_params * params,
  11814. struct ggml_tensor * dst) {
  11815. const struct ggml_tensor * src0 = dst->src[0];
  11816. switch (src0->type) {
  11817. case GGML_TYPE_F32:
  11818. {
  11819. ggml_compute_forward_win_part_f32(params, dst);
  11820. } break;
  11821. default:
  11822. {
  11823. GGML_ASSERT(false);
  11824. } break;
  11825. }
  11826. }
  11827. // ggml_compute_forward_win_unpart
  11828. static void ggml_compute_forward_win_unpart_f32(
  11829. const struct ggml_compute_params * params,
  11830. struct ggml_tensor * dst) {
  11831. const struct ggml_tensor * src0 = dst->src[0];
  11832. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11833. return;
  11834. }
  11835. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11836. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11837. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11838. // padding
  11839. const int px = (w - ne1%w)%w;
  11840. //const int py = (w - ne2%w)%w;
  11841. const int npx = (px + ne1)/w;
  11842. //const int npy = (py + ne2)/w;
  11843. assert(ne0 == ne00);
  11844. // TODO: optimize / multi-thread
  11845. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11846. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11847. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11848. const int ip2 = i2/w;
  11849. const int ip1 = i1/w;
  11850. const int64_t i02 = i2%w;
  11851. const int64_t i01 = i1%w;
  11852. const int64_t i00 = i0;
  11853. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11854. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11855. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11856. }
  11857. }
  11858. }
  11859. }
  11860. static void ggml_compute_forward_win_unpart(
  11861. const struct ggml_compute_params * params,
  11862. struct ggml_tensor * dst) {
  11863. const struct ggml_tensor * src0 = dst->src[0];
  11864. switch (src0->type) {
  11865. case GGML_TYPE_F32:
  11866. {
  11867. ggml_compute_forward_win_unpart_f32(params, dst);
  11868. } break;
  11869. default:
  11870. {
  11871. GGML_ASSERT(false);
  11872. } break;
  11873. }
  11874. }
  11875. //gmml_compute_forward_unary
  11876. static void ggml_compute_forward_unary(
  11877. const struct ggml_compute_params * params,
  11878. struct ggml_tensor * dst) {
  11879. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11880. switch (op) {
  11881. case GGML_UNARY_OP_ABS:
  11882. {
  11883. ggml_compute_forward_abs(params, dst);
  11884. } break;
  11885. case GGML_UNARY_OP_SGN:
  11886. {
  11887. ggml_compute_forward_sgn(params, dst);
  11888. } break;
  11889. case GGML_UNARY_OP_NEG:
  11890. {
  11891. ggml_compute_forward_neg(params, dst);
  11892. } break;
  11893. case GGML_UNARY_OP_STEP:
  11894. {
  11895. ggml_compute_forward_step(params, dst);
  11896. } break;
  11897. case GGML_UNARY_OP_TANH:
  11898. {
  11899. ggml_compute_forward_tanh(params, dst);
  11900. } break;
  11901. case GGML_UNARY_OP_ELU:
  11902. {
  11903. ggml_compute_forward_elu(params, dst);
  11904. } break;
  11905. case GGML_UNARY_OP_RELU:
  11906. {
  11907. ggml_compute_forward_relu(params, dst);
  11908. } break;
  11909. case GGML_UNARY_OP_GELU:
  11910. {
  11911. ggml_compute_forward_gelu(params, dst);
  11912. } break;
  11913. case GGML_UNARY_OP_GELU_QUICK:
  11914. {
  11915. ggml_compute_forward_gelu_quick(params, dst);
  11916. } break;
  11917. case GGML_UNARY_OP_SILU:
  11918. {
  11919. ggml_compute_forward_silu(params, dst);
  11920. } break;
  11921. case GGML_UNARY_OP_HARDSWISH:
  11922. {
  11923. ggml_compute_forward_hardswish(params, dst);
  11924. } break;
  11925. case GGML_UNARY_OP_HARDSIGMOID:
  11926. {
  11927. ggml_compute_forward_hardsigmoid(params, dst);
  11928. } break;
  11929. default:
  11930. {
  11931. GGML_ASSERT(false);
  11932. } break;
  11933. }
  11934. }
  11935. // ggml_compute_forward_get_rel_pos
  11936. static void ggml_compute_forward_get_rel_pos_f16(
  11937. const struct ggml_compute_params * params,
  11938. struct ggml_tensor * dst) {
  11939. const struct ggml_tensor * src0 = dst->src[0];
  11940. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11941. return;
  11942. }
  11943. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11944. GGML_TENSOR_UNARY_OP_LOCALS
  11945. const int64_t w = ne1;
  11946. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11947. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11948. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11949. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11950. const int64_t pos = (w - i1 - 1) + i2;
  11951. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11952. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11953. }
  11954. }
  11955. }
  11956. }
  11957. static void ggml_compute_forward_get_rel_pos(
  11958. const struct ggml_compute_params * params,
  11959. struct ggml_tensor * dst) {
  11960. const struct ggml_tensor * src0 = dst->src[0];
  11961. switch (src0->type) {
  11962. case GGML_TYPE_F16:
  11963. {
  11964. ggml_compute_forward_get_rel_pos_f16(params, dst);
  11965. } break;
  11966. default:
  11967. {
  11968. GGML_ASSERT(false);
  11969. } break;
  11970. }
  11971. }
  11972. // ggml_compute_forward_add_rel_pos
  11973. static void ggml_compute_forward_add_rel_pos_f32(
  11974. const struct ggml_compute_params * params,
  11975. struct ggml_tensor * dst) {
  11976. const struct ggml_tensor * src0 = dst->src[0];
  11977. const struct ggml_tensor * src1 = dst->src[1];
  11978. const struct ggml_tensor * src2 = dst->src[2];
  11979. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11980. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  11981. if (params->ith != 0) {
  11982. return;
  11983. }
  11984. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11985. return;
  11986. }
  11987. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11988. return;
  11989. }
  11990. int64_t t0 = ggml_perf_time_us();
  11991. UNUSED(t0);
  11992. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11993. float * src1_data = (float *) src1->data;
  11994. float * src2_data = (float *) src2->data;
  11995. float * dst_data = (float *) dst->data;
  11996. const int64_t ne10 = src1->ne[0];
  11997. const int64_t ne11 = src1->ne[1];
  11998. const int64_t ne12 = src1->ne[2];
  11999. const int64_t ne13 = src1->ne[3];
  12000. const int ith = params->ith;
  12001. const int nth = params->nth;
  12002. // total patches in dst
  12003. const int np = ne13;
  12004. // patches per thread
  12005. const int dp = (np + nth - 1)/nth;
  12006. // patch range for this thread
  12007. const int ip0 = dp*ith;
  12008. const int ip1 = MIN(ip0 + dp, np);
  12009. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12010. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12011. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12012. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12013. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12014. const int64_t jp0 = jp1 + i10;
  12015. const float src1_e = src1_data[jp0];
  12016. const float src2_e = src2_data[jp0];
  12017. const int64_t jdh = jp0 * ne10;
  12018. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12019. for (int64_t j = 0; j < ne10; ++j) {
  12020. dst_data[jdh + j ] += src2_e;
  12021. dst_data[jdw + j*ne10] += src1_e;
  12022. }
  12023. }
  12024. }
  12025. }
  12026. }
  12027. }
  12028. static void ggml_compute_forward_add_rel_pos(
  12029. const struct ggml_compute_params * params,
  12030. struct ggml_tensor * dst) {
  12031. const struct ggml_tensor * src0 = dst->src[0];
  12032. switch (src0->type) {
  12033. case GGML_TYPE_F32:
  12034. {
  12035. ggml_compute_forward_add_rel_pos_f32(params, dst);
  12036. } break;
  12037. default:
  12038. {
  12039. GGML_ASSERT(false);
  12040. } break;
  12041. }
  12042. }
  12043. // ggml_compute_forward_map_unary
  12044. static void ggml_compute_forward_map_unary_f32(
  12045. const struct ggml_compute_params * params,
  12046. struct ggml_tensor * dst,
  12047. const ggml_unary_op_f32_t fun) {
  12048. const struct ggml_tensor * src0 = dst->src[0];
  12049. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12050. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12051. return;
  12052. }
  12053. const int n = ggml_nrows(src0);
  12054. const int nc = src0->ne[0];
  12055. assert( dst->nb[0] == sizeof(float));
  12056. assert(src0->nb[0] == sizeof(float));
  12057. for (int i = 0; i < n; i++) {
  12058. fun(nc,
  12059. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12060. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12061. }
  12062. }
  12063. static void ggml_compute_forward_map_unary(
  12064. const struct ggml_compute_params * params,
  12065. struct ggml_tensor * dst,
  12066. const ggml_unary_op_f32_t fun) {
  12067. const struct ggml_tensor * src0 = dst->src[0];
  12068. switch (src0->type) {
  12069. case GGML_TYPE_F32:
  12070. {
  12071. ggml_compute_forward_map_unary_f32(params, dst, fun);
  12072. } break;
  12073. default:
  12074. {
  12075. GGML_ASSERT(false);
  12076. } break;
  12077. }
  12078. }
  12079. // ggml_compute_forward_map_binary
  12080. static void ggml_compute_forward_map_binary_f32(
  12081. const struct ggml_compute_params * params,
  12082. struct ggml_tensor * dst,
  12083. const ggml_binary_op_f32_t fun) {
  12084. const struct ggml_tensor * src0 = dst->src[0];
  12085. const struct ggml_tensor * src1 = dst->src[1];
  12086. assert(params->ith == 0);
  12087. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12088. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12089. return;
  12090. }
  12091. const int n = ggml_nrows(src0);
  12092. const int nc = src0->ne[0];
  12093. assert( dst->nb[0] == sizeof(float));
  12094. assert(src0->nb[0] == sizeof(float));
  12095. assert(src1->nb[0] == sizeof(float));
  12096. for (int i = 0; i < n; i++) {
  12097. fun(nc,
  12098. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12099. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12100. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12101. }
  12102. }
  12103. static void ggml_compute_forward_map_binary(
  12104. const struct ggml_compute_params * params,
  12105. struct ggml_tensor * dst,
  12106. const ggml_binary_op_f32_t fun) {
  12107. const struct ggml_tensor * src0 = dst->src[0];
  12108. switch (src0->type) {
  12109. case GGML_TYPE_F32:
  12110. {
  12111. ggml_compute_forward_map_binary_f32(params, dst, fun);
  12112. } break;
  12113. default:
  12114. {
  12115. GGML_ASSERT(false);
  12116. } break;
  12117. }
  12118. }
  12119. // ggml_compute_forward_map_custom1
  12120. static void ggml_compute_forward_map_custom1_f32(
  12121. const struct ggml_compute_params * params,
  12122. struct ggml_tensor * dst,
  12123. const ggml_custom1_op_f32_t fun) {
  12124. const struct ggml_tensor * a = dst->src[0];
  12125. assert(params->ith == 0);
  12126. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12127. return;
  12128. }
  12129. fun(dst, a);
  12130. }
  12131. // ggml_compute_forward_map_custom2
  12132. static void ggml_compute_forward_map_custom2_f32(
  12133. const struct ggml_compute_params * params,
  12134. struct ggml_tensor * dst,
  12135. const ggml_custom2_op_f32_t fun) {
  12136. const struct ggml_tensor * a = dst->src[0];
  12137. const struct ggml_tensor * b = dst->src[1];
  12138. assert(params->ith == 0);
  12139. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12140. return;
  12141. }
  12142. fun(dst, a, b);
  12143. }
  12144. // ggml_compute_forward_map_custom3
  12145. static void ggml_compute_forward_map_custom3_f32(
  12146. const struct ggml_compute_params * params,
  12147. struct ggml_tensor * dst,
  12148. const ggml_custom3_op_f32_t fun) {
  12149. const struct ggml_tensor * a = dst->src[0];
  12150. const struct ggml_tensor * b = dst->src[1];
  12151. const struct ggml_tensor * c = dst->src[1];
  12152. assert(params->ith == 0);
  12153. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12154. return;
  12155. }
  12156. fun(dst, a, b, c);
  12157. }
  12158. // ggml_compute_forward_map_custom1
  12159. static void ggml_compute_forward_map_custom1(
  12160. const struct ggml_compute_params * params,
  12161. struct ggml_tensor * dst) {
  12162. const struct ggml_tensor * a = dst->src[0];
  12163. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12164. return;
  12165. }
  12166. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  12167. p->fun(dst, a, params->ith, params->nth, p->userdata);
  12168. }
  12169. // ggml_compute_forward_map_custom2
  12170. static void ggml_compute_forward_map_custom2(
  12171. const struct ggml_compute_params * params,
  12172. struct ggml_tensor * dst) {
  12173. const struct ggml_tensor * a = dst->src[0];
  12174. const struct ggml_tensor * b = dst->src[1];
  12175. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12176. return;
  12177. }
  12178. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  12179. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  12180. }
  12181. // ggml_compute_forward_map_custom3
  12182. static void ggml_compute_forward_map_custom3(
  12183. const struct ggml_compute_params * params,
  12184. struct ggml_tensor * dst) {
  12185. const struct ggml_tensor * a = dst->src[0];
  12186. const struct ggml_tensor * b = dst->src[1];
  12187. const struct ggml_tensor * c = dst->src[2];
  12188. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12189. return;
  12190. }
  12191. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  12192. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  12193. }
  12194. // ggml_compute_forward_cross_entropy_loss
  12195. static void ggml_compute_forward_cross_entropy_loss_f32(
  12196. const struct ggml_compute_params * params,
  12197. struct ggml_tensor * dst) {
  12198. const struct ggml_tensor * src0 = dst->src[0];
  12199. const struct ggml_tensor * src1 = dst->src[1];
  12200. GGML_ASSERT(ggml_is_contiguous(src0));
  12201. GGML_ASSERT(ggml_is_contiguous(src1));
  12202. GGML_ASSERT(ggml_is_scalar(dst));
  12203. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12204. const int ith = params->ith;
  12205. const int nth = params->nth;
  12206. float * sums = (float *) params->wdata;
  12207. // TODO: handle transposed/permuted matrices
  12208. const int nc = src0->ne[0];
  12209. const int nr = ggml_nrows(src0);
  12210. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12211. if (params->type == GGML_TASK_TYPE_INIT) {
  12212. if (ith == 0) {
  12213. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12214. }
  12215. return;
  12216. }
  12217. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12218. if (ith == 0) {
  12219. float * dp = (float *) dst->data;
  12220. ggml_vec_sum_f32(nth, dp, sums);
  12221. dp[0] *= -1.0f / (float) nr;
  12222. }
  12223. return;
  12224. }
  12225. const double eps = 1e-9;
  12226. // rows per thread
  12227. const int dr = (nr + nth - 1)/nth;
  12228. // row range for this thread
  12229. const int ir0 = dr*ith;
  12230. const int ir1 = MIN(ir0 + dr, nr);
  12231. for (int i1 = ir0; i1 < ir1; i1++) {
  12232. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12233. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12234. float * st = ((float *) params->wdata) + nth + ith*nc;
  12235. #ifndef NDEBUG
  12236. for (int i = 0; i < nc; ++i) {
  12237. //printf("p[%d] = %f\n", i, p[i]);
  12238. assert(!isnan(s0[i]));
  12239. assert(!isnan(s1[i]));
  12240. }
  12241. #endif
  12242. // soft_max
  12243. ggml_float sum = 0.0;
  12244. {
  12245. float max = -INFINITY;
  12246. ggml_vec_max_f32(nc, &max, s0);
  12247. uint16_t scvt; UNUSED(scvt);
  12248. for (int i = 0; i < nc; i++) {
  12249. if (s0[i] == -INFINITY) {
  12250. st[i] = 0.0f;
  12251. } else {
  12252. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12253. const float s = s0[i] - max;
  12254. const float val = expf(s);
  12255. #else
  12256. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12257. memcpy(&scvt, &s, sizeof(scvt));
  12258. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12259. #endif
  12260. sum += (ggml_float)val;
  12261. st[i] = val;
  12262. }
  12263. }
  12264. assert(sum > 0.0);
  12265. // sum = 1.0/sum;
  12266. }
  12267. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12268. sum = (1.0 - eps) / sum;
  12269. ggml_vec_scale_f32(nc, st, sum);
  12270. ggml_vec_add1_f32(nc, st, st, eps);
  12271. ggml_vec_log_f32(nc, st, st);
  12272. ggml_vec_mul_f32(nc, st, st, s1);
  12273. float st_sum = 0;
  12274. ggml_vec_sum_f32(nc, &st_sum, st);
  12275. sums[ith] += st_sum;
  12276. #ifndef NDEBUG
  12277. for (int i = 0; i < nc; ++i) {
  12278. assert(!isnan(st[i]));
  12279. assert(!isinf(st[i]));
  12280. }
  12281. #endif
  12282. }
  12283. }
  12284. static void ggml_compute_forward_cross_entropy_loss(
  12285. const struct ggml_compute_params * params,
  12286. struct ggml_tensor * dst) {
  12287. const struct ggml_tensor * src0 = dst->src[0];
  12288. switch (src0->type) {
  12289. case GGML_TYPE_F32:
  12290. {
  12291. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  12292. } break;
  12293. default:
  12294. {
  12295. GGML_ASSERT(false);
  12296. } break;
  12297. }
  12298. }
  12299. // ggml_compute_forward_cross_entropy_loss_back
  12300. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12301. const struct ggml_compute_params * params,
  12302. struct ggml_tensor * dst) {
  12303. const struct ggml_tensor * src0 = dst->src[0];
  12304. const struct ggml_tensor * src1 = dst->src[1];
  12305. const struct ggml_tensor * opt0 = dst->src[2];
  12306. GGML_ASSERT(ggml_is_contiguous(dst));
  12307. GGML_ASSERT(ggml_is_contiguous(src0));
  12308. GGML_ASSERT(ggml_is_contiguous(src1));
  12309. GGML_ASSERT(ggml_is_contiguous(opt0));
  12310. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12311. const int64_t ith = params->ith;
  12312. const int64_t nth = params->nth;
  12313. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12314. return;
  12315. }
  12316. const double eps = 1e-9;
  12317. // TODO: handle transposed/permuted matrices
  12318. const int64_t nc = src0->ne[0];
  12319. const int64_t nr = ggml_nrows(src0);
  12320. // rows per thread
  12321. const int64_t dr = (nr + nth - 1)/nth;
  12322. // row range for this thread
  12323. const int64_t ir0 = dr*ith;
  12324. const int64_t ir1 = MIN(ir0 + dr, nr);
  12325. float * d = (float *) opt0->data;
  12326. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12327. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12328. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12329. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12330. #ifndef NDEBUG
  12331. for (int i = 0; i < nc; ++i) {
  12332. //printf("p[%d] = %f\n", i, p[i]);
  12333. assert(!isnan(s0[i]));
  12334. assert(!isnan(s1[i]));
  12335. }
  12336. #endif
  12337. // soft_max
  12338. ggml_float sum = 0.0;
  12339. {
  12340. float max = -INFINITY;
  12341. ggml_vec_max_f32(nc, &max, s0);
  12342. uint16_t scvt; UNUSED(scvt);
  12343. for (int i = 0; i < nc; i++) {
  12344. if (s0[i] == -INFINITY) {
  12345. ds0[i] = 0.0f;
  12346. } else {
  12347. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12348. const float s = s0[i] - max;
  12349. const float val = expf(s);
  12350. #else
  12351. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12352. memcpy(&scvt, &s, sizeof(scvt));
  12353. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12354. #endif
  12355. sum += (ggml_float)val;
  12356. ds0[i] = val;
  12357. }
  12358. }
  12359. assert(sum > 0.0);
  12360. sum = (1.0 - eps)/sum;
  12361. }
  12362. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12363. ggml_vec_scale_f32(nc, ds0, sum);
  12364. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12365. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12366. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12367. #ifndef NDEBUG
  12368. for (int i = 0; i < nc; ++i) {
  12369. assert(!isnan(ds0[i]));
  12370. assert(!isinf(ds0[i]));
  12371. }
  12372. #endif
  12373. }
  12374. }
  12375. static void ggml_compute_forward_cross_entropy_loss_back(
  12376. const struct ggml_compute_params * params,
  12377. struct ggml_tensor * dst) {
  12378. const struct ggml_tensor * src0 = dst->src[0];
  12379. switch (src0->type) {
  12380. case GGML_TYPE_F32:
  12381. {
  12382. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  12383. } break;
  12384. default:
  12385. {
  12386. GGML_ASSERT(false);
  12387. } break;
  12388. }
  12389. }
  12390. /////////////////////////////////
  12391. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12392. GGML_ASSERT(params);
  12393. if (tensor->op == GGML_OP_NONE) {
  12394. return;
  12395. }
  12396. #ifdef GGML_USE_CUBLAS
  12397. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12398. if (skip_cpu) {
  12399. return;
  12400. }
  12401. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
  12402. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
  12403. #elif defined(GGML_USE_VULKAN)
  12404. const bool skip_cpu = ggml_vk_compute_forward_cpu_assist(params, tensor);
  12405. #ifdef GGML_VULKAN_CHECK_RESULTS
  12406. if (skip_cpu) {
  12407. ggml_vk_check_results_1_cpu_assist(params, tensor);
  12408. }
  12409. #endif
  12410. if (skip_cpu) {
  12411. return;
  12412. }
  12413. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
  12414. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
  12415. #endif // GGML_USE_CUBLAS
  12416. #ifdef GGML_USE_SYCL
  12417. bool skip_cpu = ggml_sycl_compute_forward(params, tensor);
  12418. if (skip_cpu) {
  12419. return;
  12420. }
  12421. #endif // GGML_USE_SYCL
  12422. switch (tensor->op) {
  12423. case GGML_OP_DUP:
  12424. {
  12425. ggml_compute_forward_dup(params, tensor);
  12426. } break;
  12427. case GGML_OP_ADD:
  12428. {
  12429. ggml_compute_forward_add(params, tensor);
  12430. } break;
  12431. case GGML_OP_ADD1:
  12432. {
  12433. ggml_compute_forward_add1(params, tensor);
  12434. } break;
  12435. case GGML_OP_ACC:
  12436. {
  12437. ggml_compute_forward_acc(params, tensor);
  12438. } break;
  12439. case GGML_OP_SUB:
  12440. {
  12441. ggml_compute_forward_sub(params, tensor);
  12442. } break;
  12443. case GGML_OP_MUL:
  12444. {
  12445. ggml_compute_forward_mul(params, tensor);
  12446. } break;
  12447. case GGML_OP_DIV:
  12448. {
  12449. ggml_compute_forward_div(params, tensor);
  12450. } break;
  12451. case GGML_OP_SQR:
  12452. {
  12453. ggml_compute_forward_sqr(params, tensor);
  12454. } break;
  12455. case GGML_OP_SQRT:
  12456. {
  12457. ggml_compute_forward_sqrt(params, tensor);
  12458. } break;
  12459. case GGML_OP_LOG:
  12460. {
  12461. ggml_compute_forward_log(params, tensor);
  12462. } break;
  12463. case GGML_OP_SUM:
  12464. {
  12465. ggml_compute_forward_sum(params, tensor);
  12466. } break;
  12467. case GGML_OP_SUM_ROWS:
  12468. {
  12469. ggml_compute_forward_sum_rows(params, tensor);
  12470. } break;
  12471. case GGML_OP_MEAN:
  12472. {
  12473. ggml_compute_forward_mean(params, tensor);
  12474. } break;
  12475. case GGML_OP_ARGMAX:
  12476. {
  12477. ggml_compute_forward_argmax(params, tensor);
  12478. } break;
  12479. case GGML_OP_REPEAT:
  12480. {
  12481. ggml_compute_forward_repeat(params, tensor);
  12482. } break;
  12483. case GGML_OP_REPEAT_BACK:
  12484. {
  12485. ggml_compute_forward_repeat_back(params, tensor);
  12486. } break;
  12487. case GGML_OP_CONCAT:
  12488. {
  12489. ggml_compute_forward_concat(params, tensor);
  12490. } break;
  12491. case GGML_OP_SILU_BACK:
  12492. {
  12493. ggml_compute_forward_silu_back(params, tensor);
  12494. } break;
  12495. case GGML_OP_NORM:
  12496. {
  12497. ggml_compute_forward_norm(params, tensor);
  12498. } break;
  12499. case GGML_OP_RMS_NORM:
  12500. {
  12501. ggml_compute_forward_rms_norm(params, tensor);
  12502. } break;
  12503. case GGML_OP_RMS_NORM_BACK:
  12504. {
  12505. ggml_compute_forward_rms_norm_back(params, tensor);
  12506. } break;
  12507. case GGML_OP_GROUP_NORM:
  12508. {
  12509. ggml_compute_forward_group_norm(params, tensor);
  12510. } break;
  12511. case GGML_OP_MUL_MAT:
  12512. {
  12513. ggml_compute_forward_mul_mat(params, tensor);
  12514. } break;
  12515. case GGML_OP_MUL_MAT_ID:
  12516. {
  12517. ggml_compute_forward_mul_mat_id(params, tensor);
  12518. } break;
  12519. case GGML_OP_OUT_PROD:
  12520. {
  12521. ggml_compute_forward_out_prod(params, tensor);
  12522. } break;
  12523. case GGML_OP_SCALE:
  12524. {
  12525. ggml_compute_forward_scale(params, tensor);
  12526. } break;
  12527. case GGML_OP_SET:
  12528. {
  12529. ggml_compute_forward_set(params, tensor);
  12530. } break;
  12531. case GGML_OP_CPY:
  12532. {
  12533. ggml_compute_forward_cpy(params, tensor);
  12534. } break;
  12535. case GGML_OP_CONT:
  12536. {
  12537. ggml_compute_forward_cont(params, tensor);
  12538. } break;
  12539. case GGML_OP_RESHAPE:
  12540. {
  12541. ggml_compute_forward_reshape(params, tensor);
  12542. } break;
  12543. case GGML_OP_VIEW:
  12544. {
  12545. ggml_compute_forward_view(params, tensor);
  12546. } break;
  12547. case GGML_OP_PERMUTE:
  12548. {
  12549. ggml_compute_forward_permute(params, tensor);
  12550. } break;
  12551. case GGML_OP_TRANSPOSE:
  12552. {
  12553. ggml_compute_forward_transpose(params, tensor);
  12554. } break;
  12555. case GGML_OP_GET_ROWS:
  12556. {
  12557. ggml_compute_forward_get_rows(params, tensor);
  12558. } break;
  12559. case GGML_OP_GET_ROWS_BACK:
  12560. {
  12561. ggml_compute_forward_get_rows_back(params, tensor);
  12562. } break;
  12563. case GGML_OP_DIAG:
  12564. {
  12565. ggml_compute_forward_diag(params, tensor);
  12566. } break;
  12567. case GGML_OP_DIAG_MASK_INF:
  12568. {
  12569. ggml_compute_forward_diag_mask_inf(params, tensor);
  12570. } break;
  12571. case GGML_OP_DIAG_MASK_ZERO:
  12572. {
  12573. ggml_compute_forward_diag_mask_zero(params, tensor);
  12574. } break;
  12575. case GGML_OP_SOFT_MAX:
  12576. {
  12577. ggml_compute_forward_soft_max(params, tensor);
  12578. } break;
  12579. case GGML_OP_SOFT_MAX_BACK:
  12580. {
  12581. ggml_compute_forward_soft_max_back(params, tensor);
  12582. } break;
  12583. case GGML_OP_ROPE:
  12584. {
  12585. ggml_compute_forward_rope(params, tensor);
  12586. } break;
  12587. case GGML_OP_ROPE_BACK:
  12588. {
  12589. ggml_compute_forward_rope_back(params, tensor);
  12590. } break;
  12591. case GGML_OP_ALIBI:
  12592. {
  12593. ggml_compute_forward_alibi(params, tensor);
  12594. } break;
  12595. case GGML_OP_CLAMP:
  12596. {
  12597. ggml_compute_forward_clamp(params, tensor);
  12598. } break;
  12599. case GGML_OP_CONV_TRANSPOSE_1D:
  12600. {
  12601. ggml_compute_forward_conv_transpose_1d(params, tensor);
  12602. } break;
  12603. case GGML_OP_IM2COL:
  12604. {
  12605. ggml_compute_forward_im2col(params, tensor);
  12606. } break;
  12607. case GGML_OP_CONV_TRANSPOSE_2D:
  12608. {
  12609. ggml_compute_forward_conv_transpose_2d(params, tensor);
  12610. } break;
  12611. case GGML_OP_POOL_1D:
  12612. {
  12613. ggml_compute_forward_pool_1d(params, tensor);
  12614. } break;
  12615. case GGML_OP_POOL_2D:
  12616. {
  12617. ggml_compute_forward_pool_2d(params, tensor);
  12618. } break;
  12619. case GGML_OP_UPSCALE:
  12620. {
  12621. ggml_compute_forward_upscale(params, tensor);
  12622. } break;
  12623. case GGML_OP_PAD:
  12624. {
  12625. ggml_compute_forward_pad(params, tensor);
  12626. } break;
  12627. case GGML_OP_ARGSORT:
  12628. {
  12629. ggml_compute_forward_argsort(params, tensor);
  12630. } break;
  12631. case GGML_OP_LEAKY_RELU:
  12632. {
  12633. ggml_compute_forward_leaky_relu(params, tensor);
  12634. } break;
  12635. case GGML_OP_FLASH_ATTN:
  12636. {
  12637. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12638. GGML_ASSERT(t == 0 || t == 1);
  12639. const bool masked = t != 0;
  12640. ggml_compute_forward_flash_attn(params, masked, tensor);
  12641. } break;
  12642. case GGML_OP_FLASH_FF:
  12643. {
  12644. ggml_compute_forward_flash_ff(params, tensor);
  12645. } break;
  12646. case GGML_OP_FLASH_ATTN_BACK:
  12647. {
  12648. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12649. GGML_ASSERT(t == 0 || t == 1);
  12650. bool masked = t != 0;
  12651. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  12652. } break;
  12653. case GGML_OP_WIN_PART:
  12654. {
  12655. ggml_compute_forward_win_part(params, tensor);
  12656. } break;
  12657. case GGML_OP_WIN_UNPART:
  12658. {
  12659. ggml_compute_forward_win_unpart(params, tensor);
  12660. } break;
  12661. case GGML_OP_UNARY:
  12662. {
  12663. ggml_compute_forward_unary(params, tensor);
  12664. } break;
  12665. case GGML_OP_GET_REL_POS:
  12666. {
  12667. ggml_compute_forward_get_rel_pos(params, tensor);
  12668. } break;
  12669. case GGML_OP_ADD_REL_POS:
  12670. {
  12671. ggml_compute_forward_add_rel_pos(params, tensor);
  12672. } break;
  12673. case GGML_OP_MAP_UNARY:
  12674. {
  12675. ggml_unary_op_f32_t fun;
  12676. memcpy(&fun, tensor->op_params, sizeof(fun));
  12677. ggml_compute_forward_map_unary(params, tensor, fun);
  12678. }
  12679. break;
  12680. case GGML_OP_MAP_BINARY:
  12681. {
  12682. ggml_binary_op_f32_t fun;
  12683. memcpy(&fun, tensor->op_params, sizeof(fun));
  12684. ggml_compute_forward_map_binary(params, tensor, fun);
  12685. }
  12686. break;
  12687. case GGML_OP_MAP_CUSTOM1_F32:
  12688. {
  12689. ggml_custom1_op_f32_t fun;
  12690. memcpy(&fun, tensor->op_params, sizeof(fun));
  12691. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  12692. }
  12693. break;
  12694. case GGML_OP_MAP_CUSTOM2_F32:
  12695. {
  12696. ggml_custom2_op_f32_t fun;
  12697. memcpy(&fun, tensor->op_params, sizeof(fun));
  12698. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  12699. }
  12700. break;
  12701. case GGML_OP_MAP_CUSTOM3_F32:
  12702. {
  12703. ggml_custom3_op_f32_t fun;
  12704. memcpy(&fun, tensor->op_params, sizeof(fun));
  12705. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  12706. }
  12707. break;
  12708. case GGML_OP_MAP_CUSTOM1:
  12709. {
  12710. ggml_compute_forward_map_custom1(params, tensor);
  12711. }
  12712. break;
  12713. case GGML_OP_MAP_CUSTOM2:
  12714. {
  12715. ggml_compute_forward_map_custom2(params, tensor);
  12716. }
  12717. break;
  12718. case GGML_OP_MAP_CUSTOM3:
  12719. {
  12720. ggml_compute_forward_map_custom3(params, tensor);
  12721. }
  12722. break;
  12723. case GGML_OP_CROSS_ENTROPY_LOSS:
  12724. {
  12725. ggml_compute_forward_cross_entropy_loss(params, tensor);
  12726. }
  12727. break;
  12728. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12729. {
  12730. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  12731. }
  12732. break;
  12733. case GGML_OP_NONE:
  12734. {
  12735. // nop
  12736. } break;
  12737. case GGML_OP_COUNT:
  12738. {
  12739. GGML_ASSERT(false);
  12740. } break;
  12741. }
  12742. }
  12743. ////////////////////////////////////////////////////////////////////////////////
  12744. static size_t ggml_hash_size(size_t min_sz) {
  12745. // next primes after powers of two
  12746. static const size_t primes[] = {
  12747. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  12748. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  12749. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  12750. 16777259, 33554467, 67108879, 134217757, 268435459,
  12751. 536870923, 1073741827, 2147483659
  12752. };
  12753. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  12754. // find the smallest prime that is larger or equal to min_sz
  12755. size_t l = 0;
  12756. size_t r = n_primes;
  12757. while (l < r) {
  12758. size_t m = (l + r)/2;
  12759. if (primes[m] < min_sz) {
  12760. l = m + 1;
  12761. } else {
  12762. r = m;
  12763. }
  12764. }
  12765. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  12766. return sz;
  12767. }
  12768. static size_t ggml_hash(const void * p) {
  12769. return (size_t)p;
  12770. }
  12771. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12772. size_t h = ggml_hash(key) % hash_set.size;
  12773. // linear probing
  12774. size_t i = h;
  12775. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  12776. i = (i + 1) % hash_set.size;
  12777. if (i == h) {
  12778. // visited all hash table entries -> not found
  12779. return GGML_HASHTABLE_FULL;
  12780. }
  12781. }
  12782. return i;
  12783. }
  12784. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12785. size_t i = ggml_hash_find(hash_set, key);
  12786. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  12787. }
  12788. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12789. size_t i = ggml_hash_find(hash_set, key);
  12790. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12791. if (hash_set.keys[i] == key) {
  12792. return GGML_HASHTABLE_ALREADY_EXISTS;
  12793. }
  12794. // insert
  12795. GGML_ASSERT(hash_set.keys[i] == NULL);
  12796. hash_set.keys[i] = key;
  12797. return i;
  12798. }
  12799. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12800. size_t i = ggml_hash_find(hash_set, key);
  12801. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12802. hash_set.keys[i] = key;
  12803. return i;
  12804. }
  12805. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  12806. size = ggml_hash_size(size);
  12807. struct ggml_hash_set result;
  12808. result.size = size;
  12809. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  12810. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  12811. return result;
  12812. }
  12813. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  12814. GGML_FREE(hash_set.keys);
  12815. }
  12816. struct hash_map {
  12817. struct ggml_hash_set set;
  12818. struct ggml_tensor ** vals;
  12819. };
  12820. static struct hash_map * ggml_new_hash_map(size_t size) {
  12821. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  12822. result->set = ggml_hash_set_new(size);
  12823. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  12824. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  12825. return result;
  12826. }
  12827. static void ggml_hash_map_free(struct hash_map * map) {
  12828. ggml_hash_set_free(map->set);
  12829. GGML_FREE(map->vals);
  12830. GGML_FREE(map);
  12831. }
  12832. // gradient checkpointing
  12833. static struct ggml_tensor * ggml_recompute_graph_node(
  12834. struct ggml_context * ctx,
  12835. struct ggml_cgraph * graph,
  12836. struct hash_map * replacements,
  12837. struct ggml_tensor * node) {
  12838. if (node == NULL) {
  12839. return NULL;
  12840. }
  12841. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  12842. return node;
  12843. }
  12844. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  12845. return node;
  12846. }
  12847. int count_children = 0;
  12848. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12849. if (node->src[k]) {
  12850. ++count_children;
  12851. }
  12852. }
  12853. if (count_children == 0) {
  12854. return node;
  12855. }
  12856. size_t i = ggml_hash_find(replacements->set, node);
  12857. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  12858. if (replacements->set.keys[i] == node) {
  12859. return replacements->vals[i];
  12860. }
  12861. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  12862. // insert clone into replacements
  12863. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  12864. replacements->set.keys[i] = node;
  12865. replacements->vals[i] = clone;
  12866. clone->op = node->op;
  12867. clone->grad = node->grad;
  12868. clone->flags = node->flags;
  12869. clone->extra = node->extra;
  12870. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12871. clone->nb[k] = node->nb[k];
  12872. }
  12873. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12874. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12875. }
  12876. if (node->view_src != NULL) {
  12877. clone->data = (node->view_src->data == NULL)
  12878. ? NULL // view_src not yet allocated
  12879. : (char *) node->view_src->data // view_src already allocated
  12880. + node->view_offs;
  12881. clone->view_src = node->view_src;
  12882. clone->view_offs = node->view_offs;
  12883. }
  12884. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12885. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12886. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12887. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12888. return clone;
  12889. }
  12890. void ggml_build_backward_gradient_checkpointing(
  12891. struct ggml_context * ctx,
  12892. struct ggml_cgraph * gf,
  12893. struct ggml_cgraph * gb,
  12894. struct ggml_cgraph * gb_tmp,
  12895. struct ggml_tensor * * checkpoints,
  12896. int n_checkpoints) {
  12897. ggml_graph_cpy(gf, gb_tmp);
  12898. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12899. if (n_checkpoints <= 0) {
  12900. ggml_graph_cpy(gb_tmp, gb);
  12901. return;
  12902. }
  12903. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  12904. // insert checkpoints in replacements
  12905. for (int i = 0; i < n_checkpoints; ++i) {
  12906. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  12907. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  12908. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  12909. replacements->set.keys[k] = checkpoints[i];
  12910. replacements->vals[k] = checkpoints[i];
  12911. }
  12912. ggml_graph_cpy(gf, gb);
  12913. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12914. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12915. // by recomputing them from checkpoints
  12916. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12917. struct ggml_tensor * node = gb_tmp->nodes[i];
  12918. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12919. // insert new tensors recomputing src, reusing already made replacements,
  12920. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12921. // recurse for input tensors,
  12922. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  12923. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12924. }
  12925. // insert rewritten backward node with replacements made into resulting backward graph gb
  12926. ggml_build_forward_expand(gb, node);
  12927. }
  12928. ggml_hash_map_free(replacements);
  12929. }
  12930. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12931. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12932. if (ggml_hash_contains(zero_table, a)) {
  12933. return b;
  12934. } else {
  12935. return ggml_add_impl(ctx, a, b, false);
  12936. }
  12937. }
  12938. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  12939. if (ggml_hash_contains(zero_table, a)) {
  12940. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  12941. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12942. } else {
  12943. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12944. }
  12945. }
  12946. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12947. if (ggml_hash_contains(zero_table, a)) {
  12948. return ggml_repeat(ctx, b, a);
  12949. } else {
  12950. return ggml_add1_impl(ctx, a, b, false);
  12951. }
  12952. }
  12953. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12954. if (ggml_hash_contains(zero_table, a)) {
  12955. return ggml_neg(ctx, b);
  12956. } else {
  12957. return ggml_sub_impl(ctx, a, b, false);
  12958. }
  12959. }
  12960. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  12961. struct ggml_tensor * src0 = tensor->src[0];
  12962. struct ggml_tensor * src1 = tensor->src[1];
  12963. switch (tensor->op) {
  12964. case GGML_OP_DUP:
  12965. {
  12966. if (src0->grad) {
  12967. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12968. }
  12969. } break;
  12970. case GGML_OP_ADD:
  12971. {
  12972. if (src0->grad) {
  12973. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12974. }
  12975. if (src1->grad) {
  12976. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12977. }
  12978. } break;
  12979. case GGML_OP_ADD1:
  12980. {
  12981. if (src0->grad) {
  12982. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12983. }
  12984. if (src1->grad) {
  12985. src1->grad = ggml_add_or_set(ctx,
  12986. src1->grad,
  12987. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12988. zero_table);
  12989. }
  12990. } break;
  12991. case GGML_OP_ACC:
  12992. {
  12993. if (src0->grad) {
  12994. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12995. }
  12996. if (src1->grad) {
  12997. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12998. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12999. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13000. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13001. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  13002. tensor->grad,
  13003. src1->grad->ne[0],
  13004. src1->grad->ne[1],
  13005. src1->grad->ne[2],
  13006. src1->grad->ne[3],
  13007. nb1, nb2, nb3, offset);
  13008. src1->grad =
  13009. ggml_add_or_set(ctx,
  13010. src1->grad,
  13011. ggml_reshape(ctx,
  13012. ggml_cont(ctx, tensor_grad_view),
  13013. src1->grad),
  13014. zero_table);
  13015. }
  13016. } break;
  13017. case GGML_OP_SUB:
  13018. {
  13019. if (src0->grad) {
  13020. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13021. }
  13022. if (src1->grad) {
  13023. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13024. }
  13025. } break;
  13026. case GGML_OP_MUL:
  13027. {
  13028. if (src0->grad) {
  13029. src0->grad =
  13030. ggml_add_or_set(ctx,
  13031. src0->grad,
  13032. ggml_mul(ctx, src1, tensor->grad),
  13033. zero_table);
  13034. }
  13035. if (src1->grad) {
  13036. src1->grad =
  13037. ggml_add_or_set(ctx,
  13038. src1->grad,
  13039. ggml_mul(ctx, src0, tensor->grad),
  13040. zero_table);
  13041. }
  13042. } break;
  13043. case GGML_OP_DIV:
  13044. {
  13045. if (src0->grad) {
  13046. src0->grad =
  13047. ggml_add_or_set(ctx,
  13048. src0->grad,
  13049. ggml_div(ctx, tensor->grad, src1),
  13050. zero_table);
  13051. }
  13052. if (src1->grad) {
  13053. src1->grad =
  13054. ggml_sub_or_set(ctx,
  13055. src1->grad,
  13056. ggml_mul(ctx,
  13057. tensor->grad,
  13058. ggml_div(ctx, tensor, src1)),
  13059. zero_table);
  13060. }
  13061. } break;
  13062. case GGML_OP_SQR:
  13063. {
  13064. if (src0->grad) {
  13065. src0->grad =
  13066. ggml_add_or_set(ctx,
  13067. src0->grad,
  13068. ggml_scale(ctx,
  13069. ggml_mul(ctx, src0, tensor->grad),
  13070. 2.0f),
  13071. zero_table);
  13072. }
  13073. } break;
  13074. case GGML_OP_SQRT:
  13075. {
  13076. if (src0->grad) {
  13077. src0->grad =
  13078. ggml_add_or_set(ctx,
  13079. src0->grad,
  13080. ggml_scale(ctx,
  13081. ggml_div(ctx,
  13082. tensor->grad,
  13083. tensor),
  13084. 0.5f),
  13085. zero_table);
  13086. }
  13087. } break;
  13088. case GGML_OP_LOG:
  13089. {
  13090. if (src0->grad) {
  13091. src0->grad =
  13092. ggml_add_or_set(ctx,
  13093. src0->grad,
  13094. ggml_div(ctx,
  13095. tensor->grad,
  13096. src0),
  13097. zero_table);
  13098. }
  13099. } break;
  13100. case GGML_OP_SUM:
  13101. {
  13102. if (src0->grad) {
  13103. src0->grad =
  13104. ggml_add1_or_set(ctx,
  13105. src0->grad,
  13106. tensor->grad,
  13107. zero_table);
  13108. }
  13109. } break;
  13110. case GGML_OP_SUM_ROWS:
  13111. {
  13112. if (src0->grad) {
  13113. src0->grad =
  13114. ggml_add_or_set(ctx,
  13115. src0->grad,
  13116. ggml_repeat(ctx,
  13117. tensor->grad,
  13118. src0->grad),
  13119. zero_table);
  13120. }
  13121. } break;
  13122. case GGML_OP_MEAN:
  13123. case GGML_OP_ARGMAX:
  13124. {
  13125. GGML_ASSERT(false); // TODO: implement
  13126. } break;
  13127. case GGML_OP_REPEAT:
  13128. {
  13129. // necessary for llama
  13130. if (src0->grad) {
  13131. src0->grad = ggml_add_or_set(ctx,
  13132. src0->grad,
  13133. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13134. zero_table);
  13135. }
  13136. } break;
  13137. case GGML_OP_REPEAT_BACK:
  13138. {
  13139. if (src0->grad) {
  13140. // TODO: test this
  13141. src0->grad = ggml_add_or_set(ctx,
  13142. src0->grad,
  13143. ggml_repeat(ctx, tensor->grad, src0->grad),
  13144. zero_table);
  13145. }
  13146. } break;
  13147. case GGML_OP_CONCAT:
  13148. {
  13149. GGML_ASSERT(false); // TODO: implement
  13150. } break;
  13151. case GGML_OP_SILU_BACK:
  13152. {
  13153. GGML_ASSERT(false); // TODO: not implemented
  13154. } break;
  13155. case GGML_OP_NORM:
  13156. {
  13157. GGML_ASSERT(false); // TODO: not implemented
  13158. } break;
  13159. case GGML_OP_RMS_NORM:
  13160. {
  13161. // necessary for llama
  13162. if (src0->grad) {
  13163. float eps;
  13164. memcpy(&eps, tensor->op_params, sizeof(float));
  13165. src0->grad = ggml_add_or_set(ctx,
  13166. src0->grad,
  13167. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13168. zero_table);
  13169. }
  13170. } break;
  13171. case GGML_OP_RMS_NORM_BACK:
  13172. {
  13173. GGML_ASSERT(false); // TODO: not implemented
  13174. } break;
  13175. case GGML_OP_GROUP_NORM:
  13176. {
  13177. GGML_ASSERT(false); // TODO: not implemented
  13178. } break;
  13179. case GGML_OP_MUL_MAT:
  13180. {
  13181. // https://cs231n.github.io/optimization-2/#staged
  13182. // # forward pass
  13183. // s0 = np.random.randn(5, 10)
  13184. // s1 = np.random.randn(10, 3)
  13185. // t = s0.dot(s1)
  13186. // # now suppose we had the gradient on t from above in the circuit
  13187. // dt = np.random.randn(*t.shape) # same shape as t
  13188. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13189. // ds1 = t.T.dot(dt)
  13190. // tensor.shape [m,p,qq,rr]
  13191. // src0.shape [n,m,q1,r1]
  13192. // src1.shape [n,p,qq,rr]
  13193. // necessary for llama
  13194. if (src0->grad) {
  13195. struct ggml_tensor * s1_tg =
  13196. ggml_out_prod(ctx, // [n,m,qq,rr]
  13197. src1, // [n,p,qq,rr]
  13198. tensor->grad); // [m,p,qq,rr]
  13199. const int64_t qq = s1_tg->ne[2];
  13200. const int64_t rr = s1_tg->ne[3];
  13201. const int64_t q1 = src0->ne[2];
  13202. const int64_t r1 = src0->ne[3];
  13203. const bool ne2_broadcasted = qq > q1;
  13204. const bool ne3_broadcasted = rr > r1;
  13205. if (ne2_broadcasted || ne3_broadcasted) {
  13206. // sum broadcast repetitions of s1_tg into shape of src0
  13207. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  13208. }
  13209. src0->grad =
  13210. ggml_add_or_set(ctx,
  13211. src0->grad, // [n,m,q1,r1]
  13212. s1_tg, // [n,m,q1,r1]
  13213. zero_table);
  13214. }
  13215. if (src1->grad) {
  13216. src1->grad =
  13217. ggml_add_or_set(ctx,
  13218. src1->grad, // [n,p,qq,rr]
  13219. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  13220. // ggml_cont(ctx, // [m,n,q1,r1]
  13221. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  13222. // tensor->grad), // [m,p,qq,rr]
  13223. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13224. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13225. // // and then use ggml_out_prod
  13226. ggml_out_prod(ctx, // [n,p,qq,rr]
  13227. src0, // [n,m,q1,r1]
  13228. ggml_transpose(ctx, // [p,m,qq,rr]
  13229. tensor->grad)), // [m,p,qq,rr]
  13230. zero_table);
  13231. }
  13232. } break;
  13233. case GGML_OP_MUL_MAT_ID:
  13234. {
  13235. GGML_ASSERT(false); // TODO: not implemented
  13236. } break;
  13237. case GGML_OP_OUT_PROD:
  13238. {
  13239. GGML_ASSERT(false); // TODO: not implemented
  13240. } break;
  13241. case GGML_OP_SCALE:
  13242. {
  13243. // necessary for llama
  13244. if (src0->grad) {
  13245. float s;
  13246. memcpy(&s, tensor->op_params, sizeof(float));
  13247. src0->grad =
  13248. ggml_add_or_set(ctx,
  13249. src0->grad,
  13250. ggml_scale_impl(ctx, tensor->grad, s, false),
  13251. zero_table);
  13252. }
  13253. } break;
  13254. case GGML_OP_SET:
  13255. {
  13256. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13257. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13258. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13259. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13260. struct ggml_tensor * tensor_grad_view = NULL;
  13261. if (src0->grad || src1->grad) {
  13262. GGML_ASSERT(src0->type == tensor->type);
  13263. GGML_ASSERT(tensor->grad->type == tensor->type);
  13264. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13265. tensor_grad_view = ggml_view_4d(ctx,
  13266. tensor->grad,
  13267. src1->grad->ne[0],
  13268. src1->grad->ne[1],
  13269. src1->grad->ne[2],
  13270. src1->grad->ne[3],
  13271. nb1, nb2, nb3, offset);
  13272. }
  13273. if (src0->grad) {
  13274. src0->grad = ggml_add_or_set(ctx,
  13275. src0->grad,
  13276. ggml_acc_impl(ctx,
  13277. tensor->grad,
  13278. ggml_neg(ctx, tensor_grad_view),
  13279. nb1, nb2, nb3, offset, false),
  13280. zero_table);
  13281. }
  13282. if (src1->grad) {
  13283. src1->grad =
  13284. ggml_add_or_set(ctx,
  13285. src1->grad,
  13286. ggml_reshape(ctx,
  13287. ggml_cont(ctx, tensor_grad_view),
  13288. src1->grad),
  13289. zero_table);
  13290. }
  13291. } break;
  13292. case GGML_OP_CPY:
  13293. {
  13294. // necessary for llama
  13295. // cpy overwrites value of src1 by src0 and returns view(src1)
  13296. // the overwriting is mathematically equivalent to:
  13297. // tensor = src0 * 1 + src1 * 0
  13298. if (src0->grad) {
  13299. // dsrc0 = dtensor * 1
  13300. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13301. }
  13302. if (src1->grad) {
  13303. // dsrc1 = dtensor * 0 -> noop
  13304. }
  13305. } break;
  13306. case GGML_OP_CONT:
  13307. {
  13308. // same as cpy
  13309. if (src0->grad) {
  13310. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13311. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13312. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13313. }
  13314. } break;
  13315. case GGML_OP_RESHAPE:
  13316. {
  13317. // necessary for llama
  13318. if (src0->grad) {
  13319. src0->grad =
  13320. ggml_add_or_set(ctx, src0->grad,
  13321. ggml_reshape(ctx,
  13322. ggml_is_contiguous(tensor->grad)
  13323. ? tensor->grad
  13324. : ggml_cont(ctx, tensor->grad),
  13325. src0->grad),
  13326. zero_table);
  13327. }
  13328. } break;
  13329. case GGML_OP_VIEW:
  13330. {
  13331. // necessary for llama
  13332. if (src0->grad) {
  13333. size_t offset;
  13334. memcpy(&offset, tensor->op_params, sizeof(offset));
  13335. size_t nb1 = tensor->nb[1];
  13336. size_t nb2 = tensor->nb[2];
  13337. size_t nb3 = tensor->nb[3];
  13338. if (src0->type != src0->grad->type) {
  13339. // gradient is typically F32, but src0 could be other type
  13340. size_t ng = ggml_element_size(src0->grad);
  13341. size_t n0 = ggml_element_size(src0);
  13342. GGML_ASSERT(offset % n0 == 0);
  13343. GGML_ASSERT(nb1 % n0 == 0);
  13344. GGML_ASSERT(nb2 % n0 == 0);
  13345. GGML_ASSERT(nb3 % n0 == 0);
  13346. offset = (offset / n0) * ng;
  13347. nb1 = (nb1 / n0) * ng;
  13348. nb2 = (nb2 / n0) * ng;
  13349. nb3 = (nb3 / n0) * ng;
  13350. }
  13351. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  13352. }
  13353. } break;
  13354. case GGML_OP_PERMUTE:
  13355. {
  13356. // necessary for llama
  13357. if (src0->grad) {
  13358. int32_t * axes = (int32_t *) tensor->op_params;
  13359. int axis0 = axes[0] & 0x3;
  13360. int axis1 = axes[1] & 0x3;
  13361. int axis2 = axes[2] & 0x3;
  13362. int axis3 = axes[3] & 0x3;
  13363. int axes_backward[4] = {0,0,0,0};
  13364. axes_backward[axis0] = 0;
  13365. axes_backward[axis1] = 1;
  13366. axes_backward[axis2] = 2;
  13367. axes_backward[axis3] = 3;
  13368. src0->grad =
  13369. ggml_add_or_set(ctx, src0->grad,
  13370. ggml_permute(ctx,
  13371. tensor->grad,
  13372. axes_backward[0],
  13373. axes_backward[1],
  13374. axes_backward[2],
  13375. axes_backward[3]),
  13376. zero_table);
  13377. }
  13378. } break;
  13379. case GGML_OP_TRANSPOSE:
  13380. {
  13381. // necessary for llama
  13382. if (src0->grad) {
  13383. src0->grad =
  13384. ggml_add_or_set(ctx, src0->grad,
  13385. ggml_transpose(ctx, tensor->grad),
  13386. zero_table);
  13387. }
  13388. } break;
  13389. case GGML_OP_GET_ROWS:
  13390. {
  13391. // necessary for llama (only for tokenizer)
  13392. if (src0->grad) {
  13393. src0->grad =
  13394. ggml_add_or_set(ctx, src0->grad,
  13395. // last ggml_get_rows_back argument src0->grad is only
  13396. // necessary to setup correct output shape
  13397. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13398. zero_table);
  13399. }
  13400. if (src1->grad) {
  13401. // noop
  13402. }
  13403. } break;
  13404. case GGML_OP_GET_ROWS_BACK:
  13405. {
  13406. GGML_ASSERT(false); // TODO: not implemented
  13407. } break;
  13408. case GGML_OP_DIAG:
  13409. {
  13410. GGML_ASSERT(false); // TODO: not implemented
  13411. } break;
  13412. case GGML_OP_DIAG_MASK_INF:
  13413. {
  13414. // necessary for llama
  13415. if (src0->grad) {
  13416. const int n_past = ((int32_t *) tensor->op_params)[0];
  13417. src0->grad =
  13418. ggml_add_or_set(ctx, src0->grad,
  13419. /* ggml_diag_mask_inf_impl() shouldn't be here */
  13420. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  13421. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13422. zero_table);
  13423. }
  13424. } break;
  13425. case GGML_OP_DIAG_MASK_ZERO:
  13426. {
  13427. // necessary for llama
  13428. if (src0->grad) {
  13429. const int n_past = ((int32_t *) tensor->op_params)[0];
  13430. src0->grad =
  13431. ggml_add_or_set(ctx, src0->grad,
  13432. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13433. zero_table);
  13434. }
  13435. } break;
  13436. case GGML_OP_SOFT_MAX:
  13437. {
  13438. // necessary for llama
  13439. if (src0->grad) {
  13440. src0->grad =
  13441. ggml_add_or_set(ctx, src0->grad,
  13442. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13443. zero_table);
  13444. }
  13445. } break;
  13446. case GGML_OP_SOFT_MAX_BACK:
  13447. {
  13448. GGML_ASSERT(false); // TODO: not implemented
  13449. } break;
  13450. case GGML_OP_ROPE:
  13451. {
  13452. // necessary for llama
  13453. if (src0->grad) {
  13454. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13455. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13456. const int mode = ((int32_t *) tensor->op_params)[2];
  13457. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13458. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13459. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13460. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13461. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13462. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13463. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13464. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13465. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13466. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13467. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13468. src0->grad = ggml_add_or_set(ctx,
  13469. src0->grad,
  13470. ggml_rope_back(ctx,
  13471. tensor->grad,
  13472. src1,
  13473. n_dims,
  13474. mode,
  13475. n_ctx,
  13476. n_orig_ctx,
  13477. freq_base,
  13478. freq_scale,
  13479. ext_factor,
  13480. attn_factor,
  13481. beta_fast,
  13482. beta_slow,
  13483. xpos_base,
  13484. xpos_down),
  13485. zero_table);
  13486. }
  13487. } break;
  13488. case GGML_OP_ROPE_BACK:
  13489. {
  13490. if (src0->grad) {
  13491. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13492. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13493. const int mode = ((int32_t *) tensor->op_params)[2];
  13494. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13495. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13496. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13497. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13498. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13499. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13500. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13501. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13502. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13503. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13504. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13505. src0->grad = ggml_add_or_set(ctx,
  13506. src0->grad,
  13507. ggml_rope_impl(ctx,
  13508. tensor->grad,
  13509. src1,
  13510. n_dims,
  13511. mode,
  13512. n_ctx,
  13513. n_orig_ctx,
  13514. freq_base,
  13515. freq_scale,
  13516. ext_factor,
  13517. attn_factor,
  13518. beta_fast,
  13519. beta_slow,
  13520. xpos_base,
  13521. xpos_down,
  13522. false),
  13523. zero_table);
  13524. }
  13525. } break;
  13526. case GGML_OP_ALIBI:
  13527. {
  13528. GGML_ASSERT(false); // TODO: not implemented
  13529. } break;
  13530. case GGML_OP_CLAMP:
  13531. {
  13532. GGML_ASSERT(false); // TODO: not implemented
  13533. } break;
  13534. case GGML_OP_CONV_TRANSPOSE_1D:
  13535. {
  13536. GGML_ASSERT(false); // TODO: not implemented
  13537. } break;
  13538. case GGML_OP_IM2COL:
  13539. {
  13540. GGML_ASSERT(false); // TODO: not implemented
  13541. } break;
  13542. case GGML_OP_CONV_TRANSPOSE_2D:
  13543. {
  13544. GGML_ASSERT(false); // TODO: not implemented
  13545. } break;
  13546. case GGML_OP_POOL_1D:
  13547. {
  13548. GGML_ASSERT(false); // TODO: not implemented
  13549. } break;
  13550. case GGML_OP_POOL_2D:
  13551. {
  13552. GGML_ASSERT(false); // TODO: not implemented
  13553. } break;
  13554. case GGML_OP_UPSCALE:
  13555. {
  13556. GGML_ASSERT(false); // TODO: not implemented
  13557. } break;
  13558. case GGML_OP_PAD:
  13559. {
  13560. GGML_ASSERT(false); // TODO: not implemented
  13561. } break;
  13562. case GGML_OP_ARGSORT:
  13563. {
  13564. GGML_ASSERT(false); // TODO: not implemented
  13565. } break;
  13566. case GGML_OP_LEAKY_RELU:
  13567. {
  13568. GGML_ASSERT(false); // TODO: not implemented
  13569. } break;
  13570. case GGML_OP_FLASH_ATTN:
  13571. {
  13572. struct ggml_tensor * flash_grad = NULL;
  13573. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13574. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13575. GGML_ASSERT(t == 0 || t == 1);
  13576. bool masked = t != 0;
  13577. flash_grad =
  13578. ggml_flash_attn_back(ctx,
  13579. src0,
  13580. src1,
  13581. tensor->src[2],
  13582. tensor->grad,
  13583. masked);
  13584. }
  13585. struct ggml_tensor * src2 = tensor->src[2];
  13586. const int64_t elem_q = ggml_nelements(src0);
  13587. const int64_t elem_k = ggml_nelements(src1);
  13588. const int64_t elem_v = ggml_nelements(src2);
  13589. enum ggml_type result_type = flash_grad->type;
  13590. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13591. const size_t tsize = ggml_type_size(result_type);
  13592. const size_t offs_q = 0;
  13593. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13594. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13595. if (src0->grad) {
  13596. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  13597. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  13598. src0->grad = ggml_add_or_set(ctx,
  13599. src0->grad,
  13600. grad_q,
  13601. zero_table);
  13602. }
  13603. if (src1->grad) {
  13604. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  13605. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  13606. src1->grad = ggml_add_or_set(ctx,
  13607. src1->grad,
  13608. grad_k,
  13609. zero_table);
  13610. }
  13611. if (src2->grad) {
  13612. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  13613. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  13614. src2->grad = ggml_add_or_set(ctx,
  13615. src2->grad,
  13616. grad_v,
  13617. zero_table);
  13618. }
  13619. } break;
  13620. case GGML_OP_FLASH_FF:
  13621. {
  13622. GGML_ASSERT(false); // not supported
  13623. } break;
  13624. case GGML_OP_FLASH_ATTN_BACK:
  13625. {
  13626. GGML_ASSERT(false); // not supported
  13627. } break;
  13628. case GGML_OP_WIN_PART:
  13629. case GGML_OP_WIN_UNPART:
  13630. case GGML_OP_UNARY:
  13631. {
  13632. switch (ggml_get_unary_op(tensor)) {
  13633. case GGML_UNARY_OP_ABS:
  13634. {
  13635. if (src0->grad) {
  13636. src0->grad =
  13637. ggml_add_or_set(ctx,
  13638. src0->grad,
  13639. ggml_mul(ctx,
  13640. ggml_sgn(ctx, src0),
  13641. tensor->grad),
  13642. zero_table);
  13643. }
  13644. } break;
  13645. case GGML_UNARY_OP_SGN:
  13646. {
  13647. if (src0->grad) {
  13648. // noop
  13649. }
  13650. } break;
  13651. case GGML_UNARY_OP_NEG:
  13652. {
  13653. if (src0->grad) {
  13654. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13655. }
  13656. } break;
  13657. case GGML_UNARY_OP_STEP:
  13658. {
  13659. if (src0->grad) {
  13660. // noop
  13661. }
  13662. } break;
  13663. case GGML_UNARY_OP_TANH:
  13664. {
  13665. GGML_ASSERT(false); // TODO: not implemented
  13666. } break;
  13667. case GGML_UNARY_OP_ELU:
  13668. {
  13669. GGML_ASSERT(false); // TODO: not implemented
  13670. } break;
  13671. case GGML_UNARY_OP_RELU:
  13672. {
  13673. if (src0->grad) {
  13674. src0->grad = ggml_add_or_set(ctx,
  13675. src0->grad,
  13676. ggml_mul(ctx,
  13677. ggml_step(ctx, src0),
  13678. tensor->grad),
  13679. zero_table);
  13680. }
  13681. } break;
  13682. case GGML_UNARY_OP_GELU:
  13683. {
  13684. GGML_ASSERT(false); // TODO: not implemented
  13685. } break;
  13686. case GGML_UNARY_OP_GELU_QUICK:
  13687. {
  13688. GGML_ASSERT(false); // TODO: not implemented
  13689. } break;
  13690. case GGML_UNARY_OP_SILU:
  13691. {
  13692. // necessary for llama
  13693. if (src0->grad) {
  13694. src0->grad = ggml_add_or_set(ctx,
  13695. src0->grad,
  13696. ggml_silu_back(ctx, src0, tensor->grad),
  13697. zero_table);
  13698. }
  13699. } break;
  13700. default:
  13701. GGML_ASSERT(false);
  13702. }
  13703. } break;
  13704. case GGML_OP_GET_REL_POS:
  13705. case GGML_OP_ADD_REL_POS:
  13706. case GGML_OP_MAP_UNARY:
  13707. case GGML_OP_MAP_BINARY:
  13708. case GGML_OP_MAP_CUSTOM1_F32:
  13709. case GGML_OP_MAP_CUSTOM2_F32:
  13710. case GGML_OP_MAP_CUSTOM3_F32:
  13711. case GGML_OP_MAP_CUSTOM1:
  13712. case GGML_OP_MAP_CUSTOM2:
  13713. case GGML_OP_MAP_CUSTOM3:
  13714. {
  13715. GGML_ASSERT(false); // not supported
  13716. } break;
  13717. case GGML_OP_CROSS_ENTROPY_LOSS:
  13718. {
  13719. if (src0->grad) {
  13720. src0->grad = ggml_add_or_set(ctx,
  13721. src0->grad,
  13722. ggml_cross_entropy_loss_back(ctx,
  13723. src0,
  13724. src1,
  13725. tensor->grad),
  13726. zero_table);
  13727. }
  13728. } break;
  13729. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13730. {
  13731. GGML_ASSERT(false); // not supported
  13732. } break;
  13733. case GGML_OP_NONE:
  13734. {
  13735. // nop
  13736. } break;
  13737. case GGML_OP_COUNT:
  13738. {
  13739. GGML_ASSERT(false);
  13740. } break;
  13741. }
  13742. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13743. if (tensor->src[i] && tensor->src[i]->grad) {
  13744. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13745. }
  13746. }
  13747. }
  13748. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13749. if (node->grad == NULL) {
  13750. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13751. // it can also happen during forward pass, if the user performs computations with constants
  13752. if (node->op != GGML_OP_NONE) {
  13753. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13754. }
  13755. }
  13756. // check if already visited
  13757. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  13758. return;
  13759. }
  13760. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13761. const int k =
  13762. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13763. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13764. /* unknown order, just fall back to using i*/ i;
  13765. if (node->src[k]) {
  13766. ggml_visit_parents(cgraph, node->src[k]);
  13767. }
  13768. }
  13769. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13770. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13771. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  13772. if (strlen(node->name) == 0) {
  13773. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13774. }
  13775. cgraph->leafs[cgraph->n_leafs] = node;
  13776. cgraph->n_leafs++;
  13777. } else {
  13778. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  13779. if (strlen(node->name) == 0) {
  13780. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13781. }
  13782. cgraph->nodes[cgraph->n_nodes] = node;
  13783. if (cgraph->grads) {
  13784. cgraph->grads[cgraph->n_nodes] = node->grad;
  13785. }
  13786. cgraph->n_nodes++;
  13787. }
  13788. }
  13789. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13790. if (!expand) {
  13791. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  13792. ggml_graph_clear(cgraph);
  13793. }
  13794. const int n0 = cgraph->n_nodes;
  13795. UNUSED(n0);
  13796. ggml_visit_parents(cgraph, tensor);
  13797. const int n_new = cgraph->n_nodes - n0;
  13798. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13799. if (n_new > 0) {
  13800. // the last added node should always be starting point
  13801. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13802. }
  13803. }
  13804. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13805. ggml_build_forward_impl(cgraph, tensor, true);
  13806. }
  13807. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13808. GGML_ASSERT(gf->n_nodes > 0);
  13809. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13810. if (keep) {
  13811. for (int i = 0; i < gf->n_nodes; i++) {
  13812. struct ggml_tensor * node = gf->nodes[i];
  13813. if (node->grad) {
  13814. node->grad = ggml_dup_tensor(ctx, node);
  13815. gf->grads[i] = node->grad;
  13816. }
  13817. }
  13818. }
  13819. // remember original gradients which start with zero values
  13820. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  13821. for (int i = 0; i < gf->n_nodes; i++) {
  13822. if (gf->grads[i]) {
  13823. ggml_hash_insert(zero_table, gf->grads[i]);
  13824. }
  13825. }
  13826. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13827. struct ggml_tensor * node = gf->nodes[i];
  13828. // inplace operations to add gradients are not created by ggml_compute_backward
  13829. // use allocator to automatically make inplace operations
  13830. if (node->grad) {
  13831. ggml_compute_backward(ctx, node, zero_table);
  13832. }
  13833. }
  13834. for (int i = 0; i < gf->n_nodes; i++) {
  13835. struct ggml_tensor * node = gf->nodes[i];
  13836. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  13837. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13838. ggml_build_forward_expand(gb, node->grad);
  13839. }
  13840. }
  13841. ggml_hash_set_free(zero_table);
  13842. }
  13843. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  13844. size_t nbytes = sizeof(struct ggml_cgraph);
  13845. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  13846. if (grads) {
  13847. nbytes += size * sizeof(struct ggml_tensor *); // grads
  13848. }
  13849. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  13850. return nbytes;
  13851. }
  13852. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  13853. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  13854. }
  13855. size_t ggml_graph_overhead(void) {
  13856. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  13857. }
  13858. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  13859. const size_t obj_size = ggml_graph_nbytes(size, grads);
  13860. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  13861. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13862. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  13863. size_t hash_size = ggml_hash_size(size * 2);
  13864. struct ggml_tensor ** nodes_ptr = data_start;
  13865. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  13866. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  13867. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  13868. // check that we allocated the correct amount of memory
  13869. assert(obj_size == (size_t) (
  13870. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  13871. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  13872. *cgraph = (struct ggml_cgraph) {
  13873. /*.size =*/ size,
  13874. /*.n_nodes =*/ 0,
  13875. /*.n_leafs =*/ 0,
  13876. /*.nodes =*/ nodes_ptr,
  13877. /*.grads =*/ grads_ptr,
  13878. /*.leafs =*/ leafs_ptr,
  13879. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  13880. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13881. /*.perf_runs =*/ 0,
  13882. /*.perf_cycles =*/ 0,
  13883. /*.perf_time_us =*/ 0,
  13884. };
  13885. return cgraph;
  13886. }
  13887. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13888. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  13889. }
  13890. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  13891. struct ggml_cgraph cgraph = {
  13892. /*.size =*/ 0,
  13893. /*.n_nodes =*/ i1 - i0,
  13894. /*.n_leafs =*/ 0,
  13895. /*.nodes =*/ cgraph0->nodes + i0,
  13896. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  13897. /*.leafs =*/ NULL,
  13898. /*.hash_table =*/ { 0, NULL },
  13899. /*.order =*/ cgraph0->order,
  13900. /*.perf_runs =*/ 0,
  13901. /*.perf_cycles =*/ 0,
  13902. /*.perf_time_us =*/ 0,
  13903. };
  13904. return cgraph;
  13905. }
  13906. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  13907. GGML_ASSERT(dst->size >= src->n_leafs);
  13908. GGML_ASSERT(dst->size >= src->n_nodes);
  13909. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  13910. dst->n_leafs = src->n_leafs;
  13911. dst->n_nodes = src->n_nodes;
  13912. dst->order = src->order;
  13913. for (int i = 0; i < src->n_leafs; ++i) {
  13914. dst->leafs[i] = src->leafs[i];
  13915. }
  13916. for (int i = 0; i < src->n_nodes; ++i) {
  13917. dst->nodes[i] = src->nodes[i];
  13918. }
  13919. if (src->grads) {
  13920. GGML_ASSERT(dst->grads != NULL);
  13921. for (int i = 0; i < src->n_nodes; ++i) {
  13922. dst->grads[i] = src->grads[i];
  13923. }
  13924. }
  13925. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  13926. if (src->visited_hash_table.keys[i]) {
  13927. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  13928. }
  13929. }
  13930. }
  13931. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13932. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  13933. ggml_graph_cpy(cgraph, result);
  13934. return result;
  13935. }
  13936. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13937. GGML_ASSERT(cgraph->grads != NULL);
  13938. for (int i = 0; i < cgraph->n_nodes; i++) {
  13939. struct ggml_tensor * grad = cgraph->grads[i];
  13940. if (grad) {
  13941. ggml_set_zero(grad);
  13942. }
  13943. }
  13944. }
  13945. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  13946. cgraph->n_leafs = 0;
  13947. cgraph->n_nodes = 0;
  13948. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  13949. }
  13950. //
  13951. // thread data
  13952. //
  13953. // synchronization is done via busy loops
  13954. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13955. //
  13956. #ifdef __APPLE__
  13957. //#include <os/lock.h>
  13958. //
  13959. //typedef os_unfair_lock ggml_lock_t;
  13960. //
  13961. //#define ggml_lock_init(x) UNUSED(x)
  13962. //#define ggml_lock_destroy(x) UNUSED(x)
  13963. //#define ggml_lock_lock os_unfair_lock_lock
  13964. //#define ggml_lock_unlock os_unfair_lock_unlock
  13965. //
  13966. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13967. typedef int ggml_lock_t;
  13968. #define ggml_lock_init(x) UNUSED(x)
  13969. #define ggml_lock_destroy(x) UNUSED(x)
  13970. #define ggml_lock_lock(x) UNUSED(x)
  13971. #define ggml_lock_unlock(x) UNUSED(x)
  13972. #define GGML_LOCK_INITIALIZER 0
  13973. typedef pthread_t ggml_thread_t;
  13974. #define ggml_thread_create pthread_create
  13975. #define ggml_thread_join pthread_join
  13976. #else
  13977. //typedef pthread_spinlock_t ggml_lock_t;
  13978. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13979. //#define ggml_lock_destroy pthread_spin_destroy
  13980. //#define ggml_lock_lock pthread_spin_lock
  13981. //#define ggml_lock_unlock pthread_spin_unlock
  13982. typedef int ggml_lock_t;
  13983. #define ggml_lock_init(x) UNUSED(x)
  13984. #define ggml_lock_destroy(x) UNUSED(x)
  13985. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13986. #define ggml_lock_lock(x) _mm_pause()
  13987. #else
  13988. #define ggml_lock_lock(x) UNUSED(x)
  13989. #endif
  13990. #define ggml_lock_unlock(x) UNUSED(x)
  13991. #define GGML_LOCK_INITIALIZER 0
  13992. typedef pthread_t ggml_thread_t;
  13993. #define ggml_thread_create pthread_create
  13994. #define ggml_thread_join pthread_join
  13995. #endif
  13996. // Android's libc implementation "bionic" does not support setting affinity
  13997. #if defined(__gnu_linux__)
  13998. static void set_numa_thread_affinity(int thread_n) {
  13999. if (!ggml_is_numa()) {
  14000. return;
  14001. }
  14002. int node_num;
  14003. int rv;
  14004. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14005. switch(g_state.numa.numa_strategy) {
  14006. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  14007. // run thread on node_num thread_n / (threads per node)
  14008. node_num = thread_n % g_state.numa.n_nodes;
  14009. break;
  14010. case GGML_NUMA_STRATEGY_ISOLATE:
  14011. // run thread on current_node
  14012. node_num = g_state.numa.current_node;
  14013. break;
  14014. case GGML_NUMA_STRATEGY_NUMACTL:
  14015. // use the cpuset that numactl gave us
  14016. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  14017. if (rv) {
  14018. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  14019. }
  14020. return;
  14021. default:
  14022. return;
  14023. }
  14024. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  14025. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14026. CPU_ZERO_S(setsize, cpus);
  14027. for (size_t i = 0; i < node->n_cpus; ++i) {
  14028. CPU_SET_S(node->cpus[i], setsize, cpus);
  14029. }
  14030. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14031. if (rv) {
  14032. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14033. }
  14034. CPU_FREE(cpus);
  14035. }
  14036. static void clear_numa_thread_affinity(void) {
  14037. if (!ggml_is_numa()) {
  14038. return;
  14039. }
  14040. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14041. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14042. CPU_ZERO_S(setsize, cpus);
  14043. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  14044. CPU_SET_S(i, setsize, cpus);
  14045. }
  14046. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14047. if (rv) {
  14048. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14049. }
  14050. CPU_FREE(cpus);
  14051. }
  14052. #else
  14053. // TODO: Windows etc.
  14054. // (the linux implementation may also work on BSD, someone should test)
  14055. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  14056. static void clear_numa_thread_affinity(void) {}
  14057. #endif
  14058. struct ggml_compute_state_shared {
  14059. const struct ggml_cgraph * cgraph;
  14060. const struct ggml_cplan * cplan;
  14061. int64_t perf_node_start_cycles;
  14062. int64_t perf_node_start_time_us;
  14063. const int n_threads;
  14064. // synchronization primitives
  14065. atomic_int n_active; // num active threads
  14066. atomic_int node_n; // active graph node
  14067. atomic_int node_task; // active graph node task phase
  14068. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  14069. void * abort_callback_data;
  14070. };
  14071. struct ggml_compute_state {
  14072. ggml_thread_t thrd;
  14073. int ith;
  14074. struct ggml_compute_state_shared * shared;
  14075. };
  14076. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14077. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14078. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14079. node->perf_runs++;
  14080. node->perf_cycles += cycles_cur;
  14081. node->perf_time_us += time_us_cur;
  14082. }
  14083. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  14084. int n_tasks = 0;
  14085. switch (node->op) {
  14086. case GGML_OP_CPY:
  14087. case GGML_OP_DUP:
  14088. case GGML_OP_ADD:
  14089. case GGML_OP_ADD1:
  14090. case GGML_OP_ACC:
  14091. {
  14092. n_tasks = n_threads;
  14093. } break;
  14094. case GGML_OP_SUB:
  14095. case GGML_OP_SQR:
  14096. case GGML_OP_SQRT:
  14097. case GGML_OP_LOG:
  14098. case GGML_OP_SUM:
  14099. case GGML_OP_SUM_ROWS:
  14100. case GGML_OP_MEAN:
  14101. case GGML_OP_ARGMAX:
  14102. case GGML_OP_REPEAT:
  14103. case GGML_OP_REPEAT_BACK:
  14104. case GGML_OP_LEAKY_RELU:
  14105. {
  14106. n_tasks = 1;
  14107. } break;
  14108. case GGML_OP_UNARY:
  14109. switch (ggml_get_unary_op(node)) {
  14110. case GGML_UNARY_OP_ABS:
  14111. case GGML_UNARY_OP_SGN:
  14112. case GGML_UNARY_OP_NEG:
  14113. case GGML_UNARY_OP_STEP:
  14114. case GGML_UNARY_OP_TANH:
  14115. case GGML_UNARY_OP_ELU:
  14116. case GGML_UNARY_OP_RELU:
  14117. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  14118. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  14119. {
  14120. n_tasks = 1;
  14121. } break;
  14122. case GGML_UNARY_OP_GELU:
  14123. case GGML_UNARY_OP_GELU_QUICK:
  14124. case GGML_UNARY_OP_SILU:
  14125. {
  14126. n_tasks = n_threads;
  14127. } break;
  14128. default:
  14129. GGML_ASSERT(false);
  14130. }
  14131. break;
  14132. case GGML_OP_SILU_BACK:
  14133. case GGML_OP_MUL:
  14134. case GGML_OP_DIV:
  14135. case GGML_OP_NORM:
  14136. case GGML_OP_RMS_NORM:
  14137. case GGML_OP_RMS_NORM_BACK:
  14138. case GGML_OP_GROUP_NORM:
  14139. case GGML_OP_CONCAT:
  14140. {
  14141. n_tasks = n_threads;
  14142. } break;
  14143. case GGML_OP_MUL_MAT:
  14144. {
  14145. n_tasks = n_threads;
  14146. // TODO: use different scheduling for different matrix sizes
  14147. //const int nr0 = ggml_nrows(node->src[0]);
  14148. //const int nr1 = ggml_nrows(node->src[1]);
  14149. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14150. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14151. } break;
  14152. case GGML_OP_MUL_MAT_ID:
  14153. {
  14154. n_tasks = n_threads;
  14155. } break;
  14156. case GGML_OP_OUT_PROD:
  14157. {
  14158. n_tasks = n_threads;
  14159. } break;
  14160. case GGML_OP_SCALE:
  14161. case GGML_OP_SET:
  14162. case GGML_OP_CONT:
  14163. case GGML_OP_RESHAPE:
  14164. case GGML_OP_VIEW:
  14165. case GGML_OP_PERMUTE:
  14166. case GGML_OP_TRANSPOSE:
  14167. case GGML_OP_GET_ROWS:
  14168. case GGML_OP_GET_ROWS_BACK:
  14169. case GGML_OP_DIAG:
  14170. {
  14171. n_tasks = 1;
  14172. } break;
  14173. case GGML_OP_DIAG_MASK_ZERO:
  14174. case GGML_OP_DIAG_MASK_INF:
  14175. case GGML_OP_SOFT_MAX_BACK:
  14176. case GGML_OP_ROPE:
  14177. case GGML_OP_ROPE_BACK:
  14178. case GGML_OP_ADD_REL_POS:
  14179. {
  14180. n_tasks = n_threads;
  14181. } break;
  14182. case GGML_OP_ALIBI:
  14183. {
  14184. n_tasks = 1; //TODO
  14185. } break;
  14186. case GGML_OP_CLAMP:
  14187. {
  14188. n_tasks = 1; //TODO
  14189. } break;
  14190. case GGML_OP_SOFT_MAX:
  14191. {
  14192. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  14193. } break;
  14194. case GGML_OP_CONV_TRANSPOSE_1D:
  14195. {
  14196. n_tasks = n_threads;
  14197. } break;
  14198. case GGML_OP_IM2COL:
  14199. {
  14200. n_tasks = n_threads;
  14201. } break;
  14202. case GGML_OP_CONV_TRANSPOSE_2D:
  14203. {
  14204. n_tasks = n_threads;
  14205. } break;
  14206. case GGML_OP_POOL_1D:
  14207. case GGML_OP_POOL_2D:
  14208. {
  14209. n_tasks = 1;
  14210. } break;
  14211. case GGML_OP_UPSCALE:
  14212. {
  14213. n_tasks = n_threads;
  14214. } break;
  14215. case GGML_OP_PAD:
  14216. {
  14217. n_tasks = n_threads;
  14218. } break;
  14219. case GGML_OP_ARGSORT:
  14220. {
  14221. n_tasks = n_threads;
  14222. } break;
  14223. case GGML_OP_FLASH_ATTN:
  14224. {
  14225. n_tasks = n_threads;
  14226. } break;
  14227. case GGML_OP_FLASH_FF:
  14228. {
  14229. n_tasks = n_threads;
  14230. } break;
  14231. case GGML_OP_FLASH_ATTN_BACK:
  14232. {
  14233. n_tasks = n_threads;
  14234. } break;
  14235. case GGML_OP_WIN_PART:
  14236. case GGML_OP_WIN_UNPART:
  14237. case GGML_OP_GET_REL_POS:
  14238. case GGML_OP_MAP_UNARY:
  14239. case GGML_OP_MAP_BINARY:
  14240. case GGML_OP_MAP_CUSTOM1_F32:
  14241. case GGML_OP_MAP_CUSTOM2_F32:
  14242. case GGML_OP_MAP_CUSTOM3_F32:
  14243. {
  14244. n_tasks = 1;
  14245. } break;
  14246. case GGML_OP_MAP_CUSTOM1:
  14247. {
  14248. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  14249. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14250. n_tasks = n_threads;
  14251. } else {
  14252. n_tasks = MIN(p->n_tasks, n_threads);
  14253. }
  14254. } break;
  14255. case GGML_OP_MAP_CUSTOM2:
  14256. {
  14257. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  14258. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14259. n_tasks = n_threads;
  14260. } else {
  14261. n_tasks = MIN(p->n_tasks, n_threads);
  14262. }
  14263. } break;
  14264. case GGML_OP_MAP_CUSTOM3:
  14265. {
  14266. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  14267. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14268. n_tasks = n_threads;
  14269. } else {
  14270. n_tasks = MIN(p->n_tasks, n_threads);
  14271. }
  14272. } break;
  14273. case GGML_OP_CROSS_ENTROPY_LOSS:
  14274. {
  14275. n_tasks = n_threads;
  14276. } break;
  14277. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14278. {
  14279. n_tasks = n_threads;
  14280. } break;
  14281. case GGML_OP_NONE:
  14282. {
  14283. n_tasks = 1;
  14284. } break;
  14285. case GGML_OP_COUNT:
  14286. {
  14287. GGML_ASSERT(false);
  14288. } break;
  14289. default:
  14290. {
  14291. fprintf(stderr, "%s: op not implemented: ", __func__);
  14292. if (node->op < GGML_OP_COUNT) {
  14293. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  14294. } else {
  14295. fprintf(stderr, "%d\n", node->op);
  14296. }
  14297. GGML_ASSERT(false);
  14298. } break;
  14299. }
  14300. assert(n_tasks > 0);
  14301. return n_tasks;
  14302. }
  14303. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  14304. // wait for other threads to finish
  14305. const int last_node_n = * node_n;
  14306. while (true) {
  14307. if (do_yield) {
  14308. sched_yield();
  14309. }
  14310. * node_n = atomic_load(&state->shared->node_n);
  14311. if (* node_n != last_node_n) break;
  14312. }
  14313. }
  14314. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  14315. // wait for other threads to finish
  14316. const int last_task_phase = * task_phase;
  14317. while (true) {
  14318. if (do_yield) {
  14319. sched_yield();
  14320. }
  14321. * task_phase = atomic_load(&state->shared->node_task);
  14322. if (* task_phase != last_task_phase) break;
  14323. }
  14324. }
  14325. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14326. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14327. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14328. const struct ggml_cplan * cplan = state->shared->cplan;
  14329. const int n_threads = state->shared->n_threads;
  14330. set_numa_thread_affinity(state->ith);
  14331. int node_n = -1;
  14332. int task_phase = GGML_TASK_TYPE_FINALIZE;
  14333. while (true) {
  14334. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14335. state->shared->node_n += 1;
  14336. return (thread_ret_t) GGML_EXIT_ABORTED;
  14337. }
  14338. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14339. // all other threads are finished and spinning
  14340. // do finalize and init here so we don't have synchronize again
  14341. struct ggml_compute_params params = {
  14342. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  14343. /*.ith =*/ 0,
  14344. /*.nth =*/ 0,
  14345. /*.wsize =*/ cplan->work_size,
  14346. /*.wdata =*/ cplan->work_data,
  14347. };
  14348. if (node_n != -1) {
  14349. /* FINALIZE */
  14350. struct ggml_tensor * node = cgraph->nodes[node_n];
  14351. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14352. params.nth = ggml_get_n_tasks(node, n_threads);
  14353. ggml_compute_forward(&params, node);
  14354. }
  14355. ggml_graph_compute_perf_stats_node(node, state->shared);
  14356. }
  14357. // distribute new work or execute it direct if 1T
  14358. while (++node_n < cgraph->n_nodes) {
  14359. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14360. struct ggml_tensor * node = cgraph->nodes[node_n];
  14361. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14362. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14363. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14364. params.nth = n_tasks;
  14365. if (n_tasks == 1) {
  14366. /* INIT */
  14367. if (GGML_OP_HAS_INIT[node->op]) {
  14368. params.type = GGML_TASK_TYPE_INIT;
  14369. ggml_compute_forward(&params, node);
  14370. }
  14371. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14372. // they do something more efficient than spinning (?)
  14373. params.type = GGML_TASK_TYPE_COMPUTE;
  14374. ggml_compute_forward(&params, node);
  14375. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14376. params.type = GGML_TASK_TYPE_FINALIZE;
  14377. ggml_compute_forward(&params, node);
  14378. }
  14379. ggml_graph_compute_perf_stats_node(node, state->shared);
  14380. } else {
  14381. break;
  14382. }
  14383. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14384. break;
  14385. }
  14386. }
  14387. task_phase = GGML_TASK_TYPE_INIT;
  14388. atomic_store(&state->shared->n_active, n_threads);
  14389. atomic_store(&state->shared->node_n, node_n);
  14390. atomic_store(&state->shared->node_task, task_phase);
  14391. } else {
  14392. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  14393. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14394. }
  14395. // check if we should stop
  14396. if (node_n >= cgraph->n_nodes) break;
  14397. /* INIT & COMPUTE */
  14398. struct ggml_tensor * node = cgraph->nodes[node_n];
  14399. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14400. struct ggml_compute_params params = {
  14401. /*.type =*/ GGML_TASK_TYPE_INIT,
  14402. /*.ith =*/ state->ith,
  14403. /*.nth =*/ n_tasks,
  14404. /*.wsize =*/ cplan->work_size,
  14405. /*.wdata =*/ cplan->work_data,
  14406. };
  14407. if (state->ith < n_tasks) {
  14408. if (GGML_OP_HAS_INIT[node->op]) {
  14409. ggml_compute_forward(&params, node);
  14410. }
  14411. }
  14412. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14413. task_phase = GGML_TASK_TYPE_COMPUTE;
  14414. atomic_store(&state->shared->n_active, n_threads);
  14415. atomic_store(&state->shared->node_task, task_phase);
  14416. }
  14417. else {
  14418. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  14419. // depending on the workload and the operating system.
  14420. // since it is not clear what is the best approach, it should potentially become user-configurable
  14421. // ref: https://github.com/ggerganov/ggml/issues/291
  14422. // UPD: adding the do_yield flag seems to resolve the issue universally
  14423. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  14424. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  14425. }
  14426. if (state->ith < n_tasks) {
  14427. params.type = GGML_TASK_TYPE_COMPUTE;
  14428. ggml_compute_forward(&params, node);
  14429. }
  14430. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14431. task_phase = GGML_TASK_TYPE_FINALIZE;
  14432. atomic_store(&state->shared->n_active, n_threads);
  14433. atomic_store(&state->shared->node_task, task_phase);
  14434. }
  14435. else {
  14436. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14437. }
  14438. }
  14439. return GGML_EXIT_SUCCESS;
  14440. }
  14441. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  14442. if (n_threads <= 0) {
  14443. n_threads = GGML_DEFAULT_N_THREADS;
  14444. }
  14445. size_t work_size = 0;
  14446. struct ggml_cplan cplan;
  14447. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14448. int max_tasks = 1;
  14449. // thread scheduling for the different operations + work buffer size estimation
  14450. for (int i = 0; i < cgraph->n_nodes; i++) {
  14451. struct ggml_tensor * node = cgraph->nodes[i];
  14452. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14453. max_tasks = MAX(max_tasks, n_tasks);
  14454. size_t cur = 0;
  14455. switch (node->op) {
  14456. case GGML_OP_CPY:
  14457. case GGML_OP_DUP:
  14458. {
  14459. if (ggml_is_quantized(node->type)) {
  14460. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14461. }
  14462. } break;
  14463. case GGML_OP_ADD:
  14464. case GGML_OP_ADD1:
  14465. {
  14466. if (ggml_is_quantized(node->src[0]->type)) {
  14467. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14468. }
  14469. } break;
  14470. case GGML_OP_ACC:
  14471. {
  14472. if (ggml_is_quantized(node->src[0]->type)) {
  14473. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  14474. }
  14475. } break;
  14476. case GGML_OP_MUL_MAT:
  14477. {
  14478. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  14479. #if defined(GGML_USE_CLBLAST)
  14480. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  14481. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  14482. } else
  14483. #endif
  14484. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14485. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  14486. if (node->src[0]->type != GGML_TYPE_F32) {
  14487. // here we need memory for fully dequantized matrix from src0
  14488. // take into account that src0 can be broadcasted into src1[2,3]
  14489. cur = ggml_type_size(GGML_TYPE_F32)
  14490. * node->src[0]->ne[0]*node->src[0]->ne[1]
  14491. * node->src[1]->ne[2]*node->src[1]->ne[3];
  14492. }
  14493. } else
  14494. #endif
  14495. if (node->src[1]->type != vec_dot_type) {
  14496. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  14497. }
  14498. } break;
  14499. case GGML_OP_MUL_MAT_ID:
  14500. {
  14501. cur = 0;
  14502. const struct ggml_tensor * src0 = node->src[2];
  14503. const struct ggml_tensor * src1 = node->src[1];
  14504. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  14505. if (src1->type != vec_dot_type) {
  14506. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  14507. }
  14508. const int n_as = ggml_get_op_params_i32(node, 1);
  14509. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  14510. cur += n_as * sizeof(int64_t); // matrix_row_counts
  14511. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  14512. } break;
  14513. case GGML_OP_OUT_PROD:
  14514. {
  14515. if (ggml_is_quantized(node->src[0]->type)) {
  14516. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14517. }
  14518. } break;
  14519. case GGML_OP_SOFT_MAX:
  14520. case GGML_OP_ROPE:
  14521. {
  14522. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14523. } break;
  14524. case GGML_OP_CONV_TRANSPOSE_1D:
  14525. {
  14526. GGML_ASSERT(node->src[0]->ne[3] == 1);
  14527. GGML_ASSERT(node->src[1]->ne[2] == 1);
  14528. GGML_ASSERT(node->src[1]->ne[3] == 1);
  14529. const int64_t ne00 = node->src[0]->ne[0]; // K
  14530. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  14531. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  14532. const int64_t ne10 = node->src[1]->ne[0]; // L
  14533. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  14534. if (node->src[0]->type == GGML_TYPE_F16 &&
  14535. node->src[1]->type == GGML_TYPE_F32) {
  14536. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  14537. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  14538. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14539. node->src[1]->type == GGML_TYPE_F32) {
  14540. cur += sizeof(float)*ne00*ne01*ne02;
  14541. cur += sizeof(float)*ne10*ne11;
  14542. } else {
  14543. GGML_ASSERT(false);
  14544. }
  14545. } break;
  14546. case GGML_OP_CONV_TRANSPOSE_2D:
  14547. {
  14548. const int64_t ne00 = node->src[0]->ne[0]; // W
  14549. const int64_t ne01 = node->src[0]->ne[1]; // H
  14550. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  14551. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  14552. const int64_t ne10 = node->src[1]->ne[0]; // W
  14553. const int64_t ne11 = node->src[1]->ne[1]; // H
  14554. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  14555. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  14556. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  14557. } break;
  14558. case GGML_OP_FLASH_ATTN:
  14559. {
  14560. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14561. if (node->src[1]->type == GGML_TYPE_F32) {
  14562. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14563. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14564. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14565. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14566. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14567. }
  14568. } break;
  14569. case GGML_OP_FLASH_FF:
  14570. {
  14571. if (node->src[1]->type == GGML_TYPE_F32) {
  14572. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14573. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14574. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14575. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14576. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14577. }
  14578. } break;
  14579. case GGML_OP_FLASH_ATTN_BACK:
  14580. {
  14581. const int64_t D = node->src[0]->ne[0];
  14582. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14583. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  14584. if (node->src[1]->type == GGML_TYPE_F32) {
  14585. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14586. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14587. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14588. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14589. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14590. }
  14591. } break;
  14592. case GGML_OP_CROSS_ENTROPY_LOSS:
  14593. {
  14594. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  14595. } break;
  14596. case GGML_OP_COUNT:
  14597. {
  14598. GGML_ASSERT(false);
  14599. } break;
  14600. default:
  14601. break;
  14602. }
  14603. work_size = MAX(work_size, cur);
  14604. }
  14605. if (work_size > 0) {
  14606. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  14607. }
  14608. cplan.n_threads = MIN(max_tasks, n_threads);
  14609. cplan.work_size = work_size;
  14610. cplan.work_data = NULL;
  14611. return cplan;
  14612. }
  14613. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  14614. {
  14615. GGML_ASSERT(cplan);
  14616. GGML_ASSERT(cplan->n_threads > 0);
  14617. if (cplan->work_size > 0) {
  14618. GGML_ASSERT(cplan->work_data);
  14619. }
  14620. }
  14621. #ifdef GGML_USE_VULKAN
  14622. for (int i = 0; i < cgraph->n_nodes; i++) {
  14623. ggml_vk_preallocate_buffers_graph_cpu_assist(cgraph->nodes[i]);
  14624. }
  14625. ggml_vk_preallocate_buffers_cpu_assist();
  14626. for (int i = 0; i < cgraph->n_nodes; i++) {
  14627. ggml_vk_build_graph_cpu_assist(cgraph->nodes[i], i == cgraph->n_nodes - 1);
  14628. }
  14629. #endif
  14630. const int n_threads = cplan->n_threads;
  14631. struct ggml_compute_state_shared state_shared = {
  14632. /*.cgraph =*/ cgraph,
  14633. /*.cgraph_plan =*/ cplan,
  14634. /*.perf_node_start_cycles =*/ 0,
  14635. /*.perf_node_start_time_us =*/ 0,
  14636. /*.n_threads =*/ n_threads,
  14637. /*.n_active =*/ n_threads,
  14638. /*.node_n =*/ -1,
  14639. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  14640. /*.abort_callback =*/ NULL,
  14641. /*.abort_callback_data =*/ NULL,
  14642. };
  14643. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14644. // create thread pool
  14645. if (n_threads > 1) {
  14646. for (int j = 1; j < n_threads; ++j) {
  14647. workers[j] = (struct ggml_compute_state) {
  14648. .thrd = 0,
  14649. .ith = j,
  14650. .shared = &state_shared,
  14651. };
  14652. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14653. GGML_ASSERT(rc == 0);
  14654. UNUSED(rc);
  14655. }
  14656. }
  14657. workers[0].ith = 0;
  14658. workers[0].shared = &state_shared;
  14659. const int64_t perf_start_cycles = ggml_perf_cycles();
  14660. const int64_t perf_start_time_us = ggml_perf_time_us();
  14661. // this is a work thread too
  14662. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14663. // don't leave affinity set on the main thread
  14664. clear_numa_thread_affinity();
  14665. // join or kill thread pool
  14666. if (n_threads > 1) {
  14667. for (int j = 1; j < n_threads; j++) {
  14668. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14669. GGML_ASSERT(rc == 0);
  14670. }
  14671. }
  14672. #ifdef GGML_USE_VULKAN
  14673. ggml_vk_graph_cleanup_cpu_assist();
  14674. #endif
  14675. // performance stats (graph)
  14676. {
  14677. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14678. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14679. cgraph->perf_runs++;
  14680. cgraph->perf_cycles += perf_cycles_cur;
  14681. cgraph->perf_time_us += perf_time_us_cur;
  14682. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14683. __func__, cgraph->perf_runs,
  14684. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14685. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14686. (double) perf_time_us_cur / 1000.0,
  14687. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14688. }
  14689. return compute_status;
  14690. }
  14691. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14692. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14693. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  14694. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14695. ggml_graph_compute(cgraph, &cplan);
  14696. }
  14697. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14698. for (int i = 0; i < cgraph->n_leafs; i++) {
  14699. struct ggml_tensor * leaf = cgraph->leafs[i];
  14700. if (strcmp(leaf->name, name) == 0) {
  14701. return leaf;
  14702. }
  14703. }
  14704. for (int i = 0; i < cgraph->n_nodes; i++) {
  14705. struct ggml_tensor * node = cgraph->nodes[i];
  14706. if (strcmp(node->name, name) == 0) {
  14707. return node;
  14708. }
  14709. }
  14710. return NULL;
  14711. }
  14712. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14713. const int64_t * ne = tensor->ne;
  14714. const size_t * nb = tensor->nb;
  14715. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14716. ggml_type_name(tensor->type),
  14717. ggml_op_name (tensor->op),
  14718. ggml_n_dims(tensor),
  14719. ne[0], ne[1], ne[2], ne[3],
  14720. nb[0], nb[1], nb[2], nb[3],
  14721. tensor->data,
  14722. tensor->name);
  14723. }
  14724. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14725. const int64_t * ne = tensor->ne;
  14726. const size_t * nb = tensor->nb;
  14727. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14728. arg,
  14729. ggml_type_name(tensor->type),
  14730. ggml_op_name (tensor->op),
  14731. ggml_n_dims(tensor),
  14732. ne[0], ne[1], ne[2], ne[3],
  14733. nb[0], nb[1], nb[2], nb[3],
  14734. tensor->data,
  14735. tensor->name);
  14736. }
  14737. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14738. uint64_t size_eval = 0;
  14739. // compute size of intermediate results
  14740. // TODO: does not take into account scratch buffers !!!!
  14741. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14742. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14743. }
  14744. // print
  14745. {
  14746. FILE * fout = stdout;
  14747. fprintf(fout, "\n");
  14748. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14749. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14750. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14751. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14752. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14753. // header
  14754. fprintf(fout, "\n");
  14755. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14756. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14757. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14758. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14759. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14760. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14761. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14762. }
  14763. // header
  14764. fprintf(fout, "\n");
  14765. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14766. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14767. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14768. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14769. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14770. if (cgraph->nodes[i]->src[j]) {
  14771. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14772. }
  14773. }
  14774. fprintf(fout, "\n");
  14775. }
  14776. fprintf(fout, "\n");
  14777. }
  14778. // write binary data
  14779. {
  14780. FILE * fout = fopen(fname, "wb");
  14781. if (!fout) {
  14782. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14783. return;
  14784. }
  14785. // header
  14786. {
  14787. const uint32_t magic = GGML_FILE_MAGIC;
  14788. const uint32_t version = GGML_FILE_VERSION;
  14789. const uint32_t n_leafs = cgraph->n_leafs;
  14790. const uint32_t n_nodes = cgraph->n_nodes;
  14791. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14792. fwrite(&version, sizeof(uint32_t), 1, fout);
  14793. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14794. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  14795. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14796. }
  14797. // leafs
  14798. {
  14799. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14800. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14801. const uint32_t type = tensor->type;
  14802. const uint32_t op = tensor->op;
  14803. fwrite(&type, sizeof(uint32_t), 1, fout);
  14804. fwrite(&op, sizeof(uint32_t), 1, fout);
  14805. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14806. const uint64_t ne = tensor->ne[j];
  14807. const uint64_t nb = tensor->nb[j];
  14808. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14809. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14810. }
  14811. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14812. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14813. // dump the data
  14814. // TODO: pad this to 32 byte boundary
  14815. {
  14816. const size_t size = ggml_nbytes(tensor);
  14817. fwrite(tensor->data, sizeof(char), size, fout);
  14818. }
  14819. }
  14820. }
  14821. // nodes
  14822. {
  14823. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14824. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14825. const uint32_t type = tensor->type;
  14826. const uint32_t op = tensor->op;
  14827. fwrite(&type, sizeof(uint32_t), 1, fout);
  14828. fwrite(&op, sizeof(uint32_t), 1, fout);
  14829. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14830. const uint64_t ne = tensor->ne[j];
  14831. const uint64_t nb = tensor->nb[j];
  14832. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14833. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14834. }
  14835. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14836. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14837. // output the op arguments
  14838. {
  14839. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14840. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14841. args[j] = tensor->src[j];
  14842. }
  14843. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14844. if (args[j]) {
  14845. int32_t idx = -1;
  14846. // check if leaf
  14847. {
  14848. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14849. if (args[j] == cgraph->leafs[k]) {
  14850. idx = k;
  14851. break;
  14852. }
  14853. }
  14854. }
  14855. // check if node
  14856. if (idx == -1) {
  14857. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14858. if (args[j] == cgraph->nodes[k]) {
  14859. idx = cgraph->n_leafs + k;
  14860. break;
  14861. }
  14862. }
  14863. }
  14864. if (idx == -1) {
  14865. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14866. fclose(fout);
  14867. return;
  14868. }
  14869. fwrite(&idx, sizeof(int32_t), 1, fout);
  14870. } else {
  14871. const int32_t nul = -1;
  14872. fwrite(&nul, sizeof(int32_t), 1, fout);
  14873. }
  14874. }
  14875. }
  14876. }
  14877. }
  14878. fclose(fout);
  14879. }
  14880. }
  14881. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14882. assert(*ctx_data == NULL);
  14883. assert(*ctx_eval == NULL);
  14884. struct ggml_cgraph * result = NULL;
  14885. struct ggml_tensor * data = NULL;
  14886. // read file into data
  14887. {
  14888. FILE * fin = fopen(fname, "rb");
  14889. if (!fin) {
  14890. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14891. return result;
  14892. }
  14893. size_t fsize = 0;
  14894. fseek(fin, 0, SEEK_END);
  14895. fsize = ftell(fin);
  14896. fseek(fin, 0, SEEK_SET);
  14897. // create the data context
  14898. {
  14899. const size_t overhead = 1*ggml_tensor_overhead();
  14900. struct ggml_init_params params = {
  14901. .mem_size = fsize + overhead,
  14902. .mem_buffer = NULL,
  14903. .no_alloc = false,
  14904. };
  14905. *ctx_data = ggml_init(params);
  14906. if (!*ctx_data) {
  14907. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14908. fclose(fin);
  14909. return result;
  14910. }
  14911. }
  14912. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14913. {
  14914. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14915. if (ret != fsize) {
  14916. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14917. fclose(fin);
  14918. return result;
  14919. }
  14920. }
  14921. fclose(fin);
  14922. }
  14923. // populate result
  14924. {
  14925. char * ptr = (char *) data->data;
  14926. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14927. if (magic != GGML_FILE_MAGIC) {
  14928. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14929. return result;
  14930. }
  14931. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14932. if (version != GGML_FILE_VERSION) {
  14933. fprintf(stderr, "%s: invalid version number\n", __func__);
  14934. return result;
  14935. }
  14936. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14937. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14938. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14939. const int graph_size = MAX(n_leafs, n_nodes);
  14940. // create the data context
  14941. {
  14942. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  14943. struct ggml_init_params params = {
  14944. .mem_size = size_eval + overhead,
  14945. .mem_buffer = NULL,
  14946. .no_alloc = true,
  14947. };
  14948. *ctx_eval = ggml_init(params);
  14949. if (!*ctx_eval) {
  14950. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14951. return result;
  14952. }
  14953. }
  14954. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  14955. result->n_leafs = n_leafs;
  14956. result->n_nodes = n_nodes;
  14957. // leafs
  14958. {
  14959. uint32_t type;
  14960. uint32_t op;
  14961. for (uint32_t i = 0; i < n_leafs; ++i) {
  14962. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14963. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14964. int64_t ne[GGML_MAX_DIMS];
  14965. size_t nb[GGML_MAX_DIMS];
  14966. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14967. uint64_t ne_cur;
  14968. uint64_t nb_cur;
  14969. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14970. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14971. ne[j] = ne_cur;
  14972. nb[j] = nb_cur;
  14973. }
  14974. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14975. tensor->op = (enum ggml_op) op;
  14976. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14977. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14978. tensor->data = (void *) ptr;
  14979. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14980. tensor->nb[j] = nb[j];
  14981. }
  14982. result->leafs[i] = tensor;
  14983. ptr += ggml_nbytes(tensor);
  14984. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14985. }
  14986. }
  14987. ggml_set_no_alloc(*ctx_eval, false);
  14988. // nodes
  14989. {
  14990. uint32_t type;
  14991. uint32_t op;
  14992. for (uint32_t i = 0; i < n_nodes; ++i) {
  14993. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14994. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14995. enum ggml_op eop = (enum ggml_op) op;
  14996. int64_t ne[GGML_MAX_DIMS];
  14997. size_t nb[GGML_MAX_DIMS];
  14998. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14999. uint64_t ne_cur;
  15000. uint64_t nb_cur;
  15001. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15002. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15003. ne[j] = ne_cur;
  15004. nb[j] = nb_cur;
  15005. }
  15006. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  15007. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  15008. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  15009. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15010. // parse args
  15011. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15012. const int32_t arg_idx = ptr_arg_idx[j];
  15013. if (arg_idx == -1) {
  15014. continue;
  15015. }
  15016. if (arg_idx < result->n_leafs) {
  15017. args[j] = result->leafs[arg_idx];
  15018. } else {
  15019. args[j] = result->nodes[arg_idx - result->n_leafs];
  15020. }
  15021. }
  15022. // create the tensor
  15023. // "view" operations are handled differently
  15024. // TODO: handle inplace ops - currently a copy is always made
  15025. struct ggml_tensor * tensor = NULL;
  15026. switch (eop) {
  15027. // TODO: implement other view ops
  15028. case GGML_OP_RESHAPE:
  15029. {
  15030. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  15031. } break;
  15032. case GGML_OP_VIEW:
  15033. {
  15034. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15035. size_t offs;
  15036. memcpy(&offs, ptr_op_params, sizeof(offs));
  15037. tensor->data = ((char *) tensor->data) + offs;
  15038. } break;
  15039. case GGML_OP_TRANSPOSE:
  15040. {
  15041. tensor = ggml_transpose(*ctx_eval, args[0]);
  15042. } break;
  15043. case GGML_OP_PERMUTE:
  15044. {
  15045. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15046. } break;
  15047. default:
  15048. {
  15049. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15050. tensor->op = eop;
  15051. } break;
  15052. }
  15053. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15054. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15055. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15056. tensor->nb[j] = nb[j];
  15057. }
  15058. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15059. tensor->src[j] = args[j];
  15060. }
  15061. result->nodes[i] = tensor;
  15062. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15063. }
  15064. }
  15065. }
  15066. return result;
  15067. }
  15068. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15069. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15070. GGML_PRINT("=== GRAPH ===\n");
  15071. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15072. for (int i = 0; i < cgraph->n_nodes; i++) {
  15073. struct ggml_tensor * node = cgraph->nodes[i];
  15074. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15075. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15076. i,
  15077. node->ne[0], node->ne[1], node->ne[2],
  15078. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15079. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15080. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15081. (double) node->perf_time_us / 1000.0,
  15082. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15083. }
  15084. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15085. for (int i = 0; i < cgraph->n_leafs; i++) {
  15086. struct ggml_tensor * node = cgraph->leafs[i];
  15087. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  15088. i,
  15089. node->ne[0], node->ne[1],
  15090. ggml_op_name(node->op),
  15091. ggml_get_name(node));
  15092. }
  15093. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15094. if (perf_total_per_op_us[i] == 0) {
  15095. continue;
  15096. }
  15097. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15098. }
  15099. GGML_PRINT("========================================\n");
  15100. }
  15101. // check if node is part of the graph
  15102. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15103. if (cgraph == NULL) {
  15104. return true;
  15105. }
  15106. for (int i = 0; i < cgraph->n_nodes; i++) {
  15107. if (cgraph->nodes[i] == node) {
  15108. return true;
  15109. }
  15110. }
  15111. return false;
  15112. }
  15113. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15114. for (int i = 0; i < cgraph->n_nodes; i++) {
  15115. struct ggml_tensor * parent = cgraph->nodes[i];
  15116. if (parent->grad == node) {
  15117. return parent;
  15118. }
  15119. }
  15120. return NULL;
  15121. }
  15122. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15123. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15124. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15125. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15126. gparent0 ? (void *) gparent0 : (void *) parent,
  15127. gparent0 ? "g" : "x",
  15128. gparent ? (void *) gparent : (void *) node,
  15129. gparent ? "g" : "x",
  15130. gparent ? "empty" : "vee",
  15131. gparent ? "dashed" : "solid",
  15132. label);
  15133. }
  15134. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15135. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15136. (void *) parent, "x",
  15137. (void *) node, "x",
  15138. label);
  15139. }
  15140. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15141. char color[16];
  15142. FILE * fp = fopen(filename, "w");
  15143. GGML_ASSERT(fp);
  15144. fprintf(fp, "digraph G {\n");
  15145. fprintf(fp, " newrank = true;\n");
  15146. fprintf(fp, " rankdir = LR;\n");
  15147. for (int i = 0; i < gb->n_nodes; i++) {
  15148. struct ggml_tensor * node = gb->nodes[i];
  15149. if (ggml_graph_get_parent(gb, node) != NULL) {
  15150. continue;
  15151. }
  15152. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15153. snprintf(color, sizeof(color), "yellow");
  15154. } else if (node->grad) {
  15155. if (ggml_graph_find(gf, node)) {
  15156. snprintf(color, sizeof(color), "green");
  15157. } else {
  15158. snprintf(color, sizeof(color), "lightblue");
  15159. }
  15160. } else {
  15161. snprintf(color, sizeof(color), "white");
  15162. }
  15163. fprintf(fp, " \"%p\" [ "
  15164. "style = filled; fillcolor = %s; shape = record; "
  15165. "label=\"",
  15166. (void *) node, color);
  15167. if (strlen(node->name) > 0) {
  15168. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15169. } else {
  15170. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15171. }
  15172. if (ggml_is_matrix(node)) {
  15173. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15174. } else {
  15175. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15176. }
  15177. if (node->grad) {
  15178. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15179. } else {
  15180. fprintf(fp, "\"; ]\n");
  15181. }
  15182. }
  15183. for (int i = 0; i < gb->n_leafs; i++) {
  15184. struct ggml_tensor * node = gb->leafs[i];
  15185. snprintf(color, sizeof(color), "pink");
  15186. fprintf(fp, " \"%p\" [ "
  15187. "style = filled; fillcolor = %s; shape = record; "
  15188. "label=\"<x>",
  15189. (void *) node, color);
  15190. if (strlen(node->name) > 0) {
  15191. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15192. } else {
  15193. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15194. }
  15195. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15196. if (ggml_nelements(node) < 5) {
  15197. fprintf(fp, " | (");
  15198. for (int j = 0; j < ggml_nelements(node); j++) {
  15199. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15200. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15201. }
  15202. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15203. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15204. }
  15205. else {
  15206. fprintf(fp, "#");
  15207. }
  15208. if (j < ggml_nelements(node) - 1) {
  15209. fprintf(fp, ", ");
  15210. }
  15211. }
  15212. fprintf(fp, ")");
  15213. }
  15214. fprintf(fp, "\"; ]\n");
  15215. }
  15216. for (int i = 0; i < gb->n_nodes; i++) {
  15217. struct ggml_tensor * node = gb->nodes[i];
  15218. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15219. if (node->src[j]) {
  15220. char label[16];
  15221. snprintf(label, sizeof(label), "src %d", j);
  15222. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15223. }
  15224. }
  15225. }
  15226. for (int i = 0; i < gb->n_leafs; i++) {
  15227. struct ggml_tensor * node = gb->leafs[i];
  15228. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15229. if (node->src[j]) {
  15230. char label[16];
  15231. snprintf(label, sizeof(label), "src %d", j);
  15232. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15233. }
  15234. }
  15235. }
  15236. fprintf(fp, "}\n");
  15237. fclose(fp);
  15238. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15239. }
  15240. ////////////////////////////////////////////////////////////////////////////////
  15241. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15242. int i = 0;
  15243. for (int p = 0; p < np; ++p) {
  15244. const int64_t ne = ggml_nelements(ps[p]) ;
  15245. // TODO: add function to set tensor from array
  15246. for (int64_t j = 0; j < ne; ++j) {
  15247. ggml_set_f32_1d(ps[p], j, x[i++]);
  15248. }
  15249. }
  15250. }
  15251. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15252. int i = 0;
  15253. for (int p = 0; p < np; ++p) {
  15254. const int64_t ne = ggml_nelements(ps[p]) ;
  15255. // TODO: add function to get all elements at once
  15256. for (int64_t j = 0; j < ne; ++j) {
  15257. x[i++] = ggml_get_f32_1d(ps[p], j);
  15258. }
  15259. }
  15260. }
  15261. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15262. int64_t i = 0;
  15263. for (int p = 0; p < np; ++p) {
  15264. const int64_t ne = ggml_nelements(ps[p]) ;
  15265. // TODO: add function to get all elements at once
  15266. for (int64_t j = 0; j < ne; ++j) {
  15267. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15268. }
  15269. }
  15270. }
  15271. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  15272. int64_t i = 0;
  15273. for (int p = 0; p < np; ++p) {
  15274. const int64_t ne = ggml_nelements(ps[p]) ;
  15275. // TODO: add function to get all elements at once
  15276. for (int64_t j = 0; j < ne; ++j) {
  15277. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  15278. }
  15279. }
  15280. }
  15281. //
  15282. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  15283. //
  15284. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  15285. //
  15286. static enum ggml_opt_result ggml_opt_adam(
  15287. struct ggml_context * ctx,
  15288. struct ggml_opt_context * opt,
  15289. struct ggml_opt_params params,
  15290. struct ggml_tensor * f,
  15291. struct ggml_cgraph * gf,
  15292. struct ggml_cgraph * gb,
  15293. ggml_opt_callback callback,
  15294. void * callback_data) {
  15295. GGML_ASSERT(ggml_is_scalar(f));
  15296. // these will store the parameters we want to optimize
  15297. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15298. int np = 0;
  15299. int64_t nx = 0;
  15300. for (int i = 0; i < gf->n_nodes; ++i) {
  15301. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15302. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15303. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15304. ps[np++] = gf->nodes[i];
  15305. nx += ggml_nelements(gf->nodes[i]);
  15306. }
  15307. }
  15308. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15309. int iter = opt->iter;
  15310. ggml_opt_init(opt->ctx, opt, params, nx);
  15311. opt->iter = iter;
  15312. }
  15313. // constants
  15314. float sched = params.adam.sched;
  15315. const float alpha = params.adam.alpha;
  15316. const float decay = params.adam.decay * alpha;
  15317. const float beta1 = params.adam.beta1;
  15318. const float beta2 = params.adam.beta2;
  15319. const float eps = params.adam.eps;
  15320. const float gclip = params.adam.gclip;
  15321. const int decay_min_ndim = params.adam.decay_min_ndim;
  15322. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15323. const float accum_norm = 1.0f / (float) n_accum;
  15324. float * g = opt->adam.g->data; // gradients
  15325. float * m = opt->adam.m->data; // first moment
  15326. float * v = opt->adam.v->data; // second moment
  15327. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15328. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15329. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15330. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15331. bool cancel = false;
  15332. // compute the function value
  15333. float fx = 0;
  15334. ggml_set_zero(opt->adam.g);
  15335. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15336. if (callback) {
  15337. callback(callback_data, accum_step, &sched, &cancel);
  15338. if (cancel) {
  15339. return GGML_OPT_RESULT_CANCEL;
  15340. }
  15341. }
  15342. // ggml_graph_reset (gf);
  15343. ggml_set_f32 (f->grad, 1.0f);
  15344. ggml_graph_compute(gb, &cplan);
  15345. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15346. fx += ggml_get_f32_1d(f, 0);
  15347. }
  15348. fx *= accum_norm;
  15349. opt->adam.fx_prev = fx;
  15350. opt->adam.fx_best = opt->adam.fx_prev;
  15351. if (pf) {
  15352. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15353. }
  15354. opt->loss_before = opt->adam.fx_prev;
  15355. opt->loss_after = opt->adam.fx_prev;
  15356. // initialize
  15357. if (opt->just_initialized) {
  15358. opt->adam.n_no_improvement = 0;
  15359. opt->just_initialized = false;
  15360. }
  15361. float * fx_best = &opt->adam.fx_best;
  15362. float * fx_prev = &opt->adam.fx_prev;
  15363. int * n_no_improvement = &opt->adam.n_no_improvement;
  15364. int iter0 = opt->iter;
  15365. // run the optimizer
  15366. for (int t = 0; t < params.adam.n_iter; ++t) {
  15367. opt->iter = iter0 + t + 1;
  15368. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15369. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15370. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15371. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15372. for (int i = 0; i < np; ++i) {
  15373. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15374. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15375. }
  15376. const int64_t t_start_wall = ggml_time_us();
  15377. const int64_t t_start_cpu = ggml_cycles();
  15378. UNUSED(t_start_wall);
  15379. UNUSED(t_start_cpu);
  15380. {
  15381. float gnorm = 1.0f;
  15382. if (gclip > 0.0f) {
  15383. // gradient clipping
  15384. ggml_float sum = 0.0;
  15385. for (int64_t i = 0; i < nx; ++i) {
  15386. sum += (ggml_float)(g[i]*g[i]);
  15387. }
  15388. ggml_float norm = sqrt(sum);
  15389. if (norm > (ggml_float) gclip) {
  15390. gnorm = (float) ((ggml_float) gclip / norm);
  15391. }
  15392. }
  15393. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  15394. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  15395. int64_t i = 0;
  15396. for (int p = 0; p < np; ++p) {
  15397. const int64_t ne = ggml_nelements(ps[p]);
  15398. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  15399. for (int64_t j = 0; j < ne; ++j) {
  15400. float x = ggml_get_f32_1d(ps[p], j);
  15401. float g_ = g[i]*gnorm;
  15402. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  15403. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  15404. float mh = m[i]*beta1h;
  15405. float vh = v[i]*beta2h;
  15406. vh = sqrtf(vh) + eps;
  15407. x = x*(1.0f - p_decay) - mh/vh;
  15408. ggml_set_f32_1d(ps[p], j, x);
  15409. ++i;
  15410. }
  15411. }
  15412. }
  15413. fx = 0;
  15414. ggml_set_zero(opt->adam.g);
  15415. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15416. if (callback) {
  15417. callback(callback_data, accum_step, &sched, &cancel);
  15418. if (cancel) {
  15419. return GGML_OPT_RESULT_CANCEL;;
  15420. }
  15421. }
  15422. // ggml_graph_reset (gf);
  15423. ggml_set_f32 (f->grad, 1.0f);
  15424. ggml_graph_compute(gb, &cplan);
  15425. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15426. fx += ggml_get_f32_1d(f, 0);
  15427. }
  15428. fx *= accum_norm;
  15429. opt->loss_after = fx;
  15430. // check convergence
  15431. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15432. GGML_PRINT_DEBUG("converged\n");
  15433. return GGML_OPT_RESULT_OK;
  15434. }
  15435. // delta-based convergence test
  15436. if (pf != NULL) {
  15437. // need at least params.past iterations to start checking for convergence
  15438. if (params.past <= iter0 + t) {
  15439. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15440. if (fabsf(rate) < params.delta) {
  15441. return GGML_OPT_RESULT_OK;
  15442. }
  15443. }
  15444. pf[(iter0 + t)%params.past] = fx;
  15445. }
  15446. // check for improvement
  15447. if (params.max_no_improvement > 0) {
  15448. if (fx_best[0] > fx) {
  15449. fx_best[0] = fx;
  15450. n_no_improvement[0] = 0;
  15451. } else {
  15452. ++n_no_improvement[0];
  15453. if (n_no_improvement[0] >= params.max_no_improvement) {
  15454. return GGML_OPT_RESULT_OK;
  15455. }
  15456. }
  15457. }
  15458. fx_prev[0] = fx;
  15459. {
  15460. const int64_t t_end_cpu = ggml_cycles();
  15461. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  15462. UNUSED(t_end_cpu);
  15463. const int64_t t_end_wall = ggml_time_us();
  15464. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  15465. UNUSED(t_end_wall);
  15466. }
  15467. }
  15468. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  15469. }
  15470. //
  15471. // L-BFGS
  15472. //
  15473. // the L-BFGS implementation below is based on the following implementation:
  15474. //
  15475. // https://github.com/chokkan/liblbfgs
  15476. //
  15477. struct ggml_lbfgs_iteration_data {
  15478. float alpha;
  15479. float ys;
  15480. float * s;
  15481. float * y;
  15482. };
  15483. static enum ggml_opt_result linesearch_backtracking(
  15484. const struct ggml_opt_params * params,
  15485. int nx,
  15486. float * x,
  15487. float * fx,
  15488. float * g,
  15489. float * d,
  15490. float * step,
  15491. const float * xp,
  15492. struct ggml_tensor * f,
  15493. struct ggml_cgraph * gb,
  15494. struct ggml_cplan * cplan,
  15495. const int np,
  15496. struct ggml_tensor * ps[],
  15497. bool * cancel,
  15498. ggml_opt_callback callback,
  15499. void * callback_data) {
  15500. int count = 0;
  15501. float width = 0.0f;
  15502. float dg = 0.0f;
  15503. float finit = 0.0f;
  15504. float dginit = 0.0f;
  15505. float dgtest = 0.0f;
  15506. const float dec = 0.5f;
  15507. const float inc = 2.1f;
  15508. const int n_accum = MAX(1, params->n_gradient_accumulation);
  15509. const float accum_norm = 1.0f / (float) n_accum;
  15510. if (*step <= 0.f) {
  15511. return GGML_LINESEARCH_INVALID_PARAMETERS;
  15512. }
  15513. // compute the initial gradient in the search direction
  15514. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  15515. // make sure that d points to a descent direction
  15516. if (0 < dginit) {
  15517. return GGML_LINESEARCH_FAIL;
  15518. }
  15519. // initialize local variables
  15520. finit = *fx;
  15521. dgtest = params->lbfgs.ftol*dginit;
  15522. while (true) {
  15523. ggml_vec_cpy_f32(nx, x, xp);
  15524. ggml_vec_mad_f32(nx, x, d, *step);
  15525. // evaluate the function and gradient values
  15526. {
  15527. ggml_opt_set_params(np, ps, x);
  15528. *fx = 0;
  15529. memset(g, 0, sizeof(float)*nx);
  15530. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15531. if (callback) {
  15532. // LBFG-S does not support learning rate -> ignore learning schedule
  15533. float sched = 0;
  15534. callback(callback_data, accum_step, &sched, cancel);
  15535. if (*cancel) {
  15536. return GGML_OPT_RESULT_CANCEL;
  15537. }
  15538. }
  15539. // ggml_graph_reset (gf);
  15540. ggml_set_f32 (f->grad, 1.0f);
  15541. ggml_graph_compute(gb, cplan);
  15542. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15543. *fx += ggml_get_f32_1d(f, 0);
  15544. }
  15545. *fx *= accum_norm;
  15546. }
  15547. ++count;
  15548. if (*fx > finit + (*step)*dgtest) {
  15549. width = dec;
  15550. } else {
  15551. // Armijo condition is satisfied
  15552. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  15553. return count;
  15554. }
  15555. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  15556. // check the Wolfe condition
  15557. if (dg < params->lbfgs.wolfe * dginit) {
  15558. width = inc;
  15559. } else {
  15560. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  15561. // regular Wolfe conditions
  15562. return count;
  15563. }
  15564. if(dg > -params->lbfgs.wolfe*dginit) {
  15565. width = dec;
  15566. } else {
  15567. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  15568. return count;
  15569. }
  15570. }
  15571. }
  15572. if (*step < params->lbfgs.min_step) {
  15573. return GGML_LINESEARCH_MINIMUM_STEP;
  15574. }
  15575. if (*step > params->lbfgs.max_step) {
  15576. return GGML_LINESEARCH_MAXIMUM_STEP;
  15577. }
  15578. if (params->lbfgs.max_linesearch <= count) {
  15579. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  15580. }
  15581. (*step) *= width;
  15582. }
  15583. GGML_ASSERT(false && "line search failed");
  15584. return GGML_LINESEARCH_FAIL;
  15585. }
  15586. static enum ggml_opt_result ggml_opt_lbfgs(
  15587. struct ggml_context * ctx,
  15588. struct ggml_opt_context * opt,
  15589. struct ggml_opt_params params,
  15590. struct ggml_tensor * f,
  15591. struct ggml_cgraph * gf,
  15592. struct ggml_cgraph * gb,
  15593. ggml_opt_callback callback,
  15594. void * callback_data) {
  15595. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  15596. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  15597. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  15598. return GGML_OPT_RESULT_INVALID_WOLFE;
  15599. }
  15600. }
  15601. const int m = params.lbfgs.m;
  15602. // these will store the parameters we want to optimize
  15603. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15604. int np = 0;
  15605. int nx = 0;
  15606. for (int i = 0; i < gf->n_nodes; ++i) {
  15607. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15608. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15609. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15610. ps[np++] = gf->nodes[i];
  15611. nx += ggml_nelements(gf->nodes[i]);
  15612. }
  15613. }
  15614. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15615. int iter = opt->iter;
  15616. ggml_opt_init(ctx, opt, params, nx);
  15617. opt->iter = iter;
  15618. }
  15619. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15620. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15621. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15622. float * x = opt->lbfgs.x->data; // current parameters
  15623. float * xp = opt->lbfgs.xp->data; // previous parameters
  15624. float * g = opt->lbfgs.g->data; // current gradient
  15625. float * gp = opt->lbfgs.gp->data; // previous gradient
  15626. float * d = opt->lbfgs.d->data; // search direction
  15627. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15628. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15629. const float accum_norm = 1.0f / (float) n_accum;
  15630. float fx = 0.0f; // cost function value
  15631. float xnorm = 0.0f; // ||x||
  15632. float gnorm = 0.0f; // ||g||
  15633. // initialize x from the graph nodes
  15634. ggml_opt_get_params(np, ps, x);
  15635. // the L-BFGS memory
  15636. float * lm_alpha = opt->lbfgs.lmal->data;
  15637. float * lm_ys = opt->lbfgs.lmys->data;
  15638. float * lm_s = opt->lbfgs.lms->data;
  15639. float * lm_y = opt->lbfgs.lmy->data;
  15640. bool cancel = false;
  15641. // evaluate the function value and its gradient
  15642. {
  15643. ggml_opt_set_params(np, ps, x);
  15644. fx = 0;
  15645. memset(g, 0, sizeof(float)*nx);
  15646. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15647. if (callback) {
  15648. // LBFG-S does not support learning rate -> ignore learning schedule
  15649. float sched = 0;
  15650. callback(callback_data, accum_step, &sched, &cancel);
  15651. if (cancel) {
  15652. return GGML_OPT_RESULT_CANCEL;
  15653. }
  15654. }
  15655. // ggml_graph_reset (gf);
  15656. ggml_set_f32 (f->grad, 1.0f);
  15657. ggml_graph_compute(gb, &cplan);
  15658. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15659. fx += ggml_get_f32_1d(f, 0);
  15660. }
  15661. fx *= accum_norm;
  15662. opt->loss_before = fx;
  15663. opt->loss_after = fx;
  15664. }
  15665. // search direction = -gradient
  15666. ggml_vec_neg_f32(nx, d, g);
  15667. // ||x||, ||g||
  15668. ggml_vec_norm_f32(nx, &xnorm, x);
  15669. ggml_vec_norm_f32(nx, &gnorm, g);
  15670. if (xnorm < 1.0f) {
  15671. xnorm = 1.0f;
  15672. }
  15673. // already optimized
  15674. if (gnorm/xnorm <= params.lbfgs.eps) {
  15675. return GGML_OPT_RESULT_OK;
  15676. }
  15677. if (opt->just_initialized) {
  15678. if (pf) {
  15679. pf[0] = fx;
  15680. }
  15681. opt->lbfgs.fx_best = fx;
  15682. // initial step
  15683. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15684. opt->lbfgs.j = 0;
  15685. opt->lbfgs.k = 1;
  15686. opt->lbfgs.end = 0;
  15687. opt->lbfgs.n_no_improvement = 0;
  15688. opt->just_initialized = false;
  15689. }
  15690. float * fx_best = &opt->lbfgs.fx_best;
  15691. float * step = &opt->lbfgs.step;
  15692. int * j = &opt->lbfgs.j;
  15693. int * k = &opt->lbfgs.k;
  15694. int * end = &opt->lbfgs.end;
  15695. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15696. int ls = 0;
  15697. int bound = 0;
  15698. float ys = 0.0f;
  15699. float yy = 0.0f;
  15700. float beta = 0.0f;
  15701. int it = 0;
  15702. while (true) {
  15703. // store the current position and gradient vectors
  15704. ggml_vec_cpy_f32(nx, xp, x);
  15705. ggml_vec_cpy_f32(nx, gp, g);
  15706. // TODO: instead of passing &cancel here, use the return code of the linesearch
  15707. // to determine if the optimization should be cancelled
  15708. // this is a simple change, but not doing this atm, since I don't have a nice
  15709. // way to test and don't want to break something with so many changes lined up
  15710. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  15711. if (cancel) {
  15712. return GGML_OPT_RESULT_CANCEL;
  15713. }
  15714. if (ls < 0) {
  15715. // linesearch failed - go back to the previous point and return
  15716. ggml_vec_cpy_f32(nx, x, xp);
  15717. ggml_vec_cpy_f32(nx, g, gp);
  15718. return ls;
  15719. }
  15720. opt->loss_after = fx;
  15721. ggml_vec_norm_f32(nx, &xnorm, x);
  15722. ggml_vec_norm_f32(nx, &gnorm, g);
  15723. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15724. if (xnorm < 1.0f) {
  15725. xnorm = 1.0f;
  15726. }
  15727. if (gnorm/xnorm <= params.lbfgs.eps) {
  15728. // converged
  15729. return GGML_OPT_RESULT_OK;
  15730. }
  15731. // delta-based convergence test
  15732. if (pf != NULL) {
  15733. // need at least params.past iterations to start checking for convergence
  15734. if (params.past <= k[0]) {
  15735. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15736. if (fabsf(rate) < params.delta) {
  15737. return GGML_OPT_RESULT_OK;
  15738. }
  15739. }
  15740. pf[k[0]%params.past] = fx;
  15741. }
  15742. // check for improvement
  15743. if (params.max_no_improvement > 0) {
  15744. if (fx < fx_best[0]) {
  15745. fx_best[0] = fx;
  15746. n_no_improvement[0] = 0;
  15747. } else {
  15748. n_no_improvement[0]++;
  15749. if (n_no_improvement[0] >= params.max_no_improvement) {
  15750. return GGML_OPT_RESULT_OK;
  15751. }
  15752. }
  15753. }
  15754. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15755. // reached the maximum number of iterations
  15756. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  15757. }
  15758. // update vectors s and y:
  15759. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15760. // y_{k+1} = g_{k+1} - g_{k}.
  15761. //
  15762. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15763. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15764. // compute scalars ys and yy:
  15765. // ys = y^t \cdot s -> 1 / \rho.
  15766. // yy = y^t \cdot y.
  15767. //
  15768. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  15769. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  15770. lm_ys[end[0]] = ys;
  15771. // find new search direction
  15772. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15773. bound = (m <= k[0]) ? m : k[0];
  15774. k[0]++;
  15775. it++;
  15776. end[0] = (end[0] + 1)%m;
  15777. // initialize search direction with -g
  15778. ggml_vec_neg_f32(nx, d, g);
  15779. j[0] = end[0];
  15780. for (int i = 0; i < bound; ++i) {
  15781. j[0] = (j[0] + m - 1) % m;
  15782. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15783. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  15784. lm_alpha[j[0]] /= lm_ys[j[0]];
  15785. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15786. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15787. }
  15788. ggml_vec_scale_f32(nx, d, ys/yy);
  15789. for (int i = 0; i < bound; ++i) {
  15790. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15791. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  15792. beta /= lm_ys[j[0]];
  15793. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15794. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15795. j[0] = (j[0] + 1)%m;
  15796. }
  15797. step[0] = 1.0;
  15798. }
  15799. GGML_ASSERT(false && "lbfgs failed");
  15800. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  15801. }
  15802. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15803. struct ggml_opt_params result;
  15804. switch (type) {
  15805. case GGML_OPT_TYPE_ADAM:
  15806. {
  15807. result = (struct ggml_opt_params) {
  15808. .type = GGML_OPT_TYPE_ADAM,
  15809. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15810. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  15811. .past = 0,
  15812. .delta = 1e-5f,
  15813. .max_no_improvement = 100,
  15814. .print_forward_graph = true,
  15815. .print_backward_graph = true,
  15816. .n_gradient_accumulation = 1,
  15817. .adam = {
  15818. .n_iter = 10000,
  15819. .sched = 1.000f,
  15820. .decay = 0.0f,
  15821. .decay_min_ndim = 2,
  15822. .alpha = 0.001f,
  15823. .beta1 = 0.9f,
  15824. .beta2 = 0.999f,
  15825. .eps = 1e-8f,
  15826. .eps_f = 1e-5f,
  15827. .eps_g = 1e-3f,
  15828. .gclip = 0.0f,
  15829. },
  15830. };
  15831. } break;
  15832. case GGML_OPT_TYPE_LBFGS:
  15833. {
  15834. result = (struct ggml_opt_params) {
  15835. .type = GGML_OPT_TYPE_LBFGS,
  15836. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15837. .n_threads = 1,
  15838. .past = 0,
  15839. .delta = 1e-5f,
  15840. .max_no_improvement = 0,
  15841. .print_forward_graph = true,
  15842. .print_backward_graph = true,
  15843. .n_gradient_accumulation = 1,
  15844. .lbfgs = {
  15845. .m = 6,
  15846. .n_iter = 100,
  15847. .max_linesearch = 20,
  15848. .eps = 1e-5f,
  15849. .ftol = 1e-4f,
  15850. .wolfe = 0.9f,
  15851. .min_step = 1e-20f,
  15852. .max_step = 1e+20f,
  15853. .linesearch = GGML_LINESEARCH_DEFAULT,
  15854. },
  15855. };
  15856. } break;
  15857. }
  15858. return result;
  15859. }
  15860. GGML_API void ggml_opt_init(
  15861. struct ggml_context * ctx,
  15862. struct ggml_opt_context * opt,
  15863. struct ggml_opt_params params,
  15864. int64_t nx) {
  15865. opt->ctx = ctx;
  15866. opt->params = params;
  15867. opt->iter = 0;
  15868. opt->nx = nx;
  15869. opt->just_initialized = true;
  15870. if (opt->ctx == NULL) {
  15871. struct ggml_init_params ctx_opt_params;
  15872. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  15873. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  15874. if (opt->params.past > 0) {
  15875. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15876. }
  15877. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  15878. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  15879. if (opt->params.past > 0) {
  15880. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15881. }
  15882. }
  15883. ctx_opt_params.mem_buffer = NULL;
  15884. ctx_opt_params.no_alloc = false;
  15885. opt->ctx = ggml_init(ctx_opt_params);
  15886. }
  15887. switch (opt->params.type) {
  15888. case GGML_OPT_TYPE_ADAM:
  15889. {
  15890. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15891. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15892. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15893. opt->adam.pf = params.past > 0
  15894. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15895. : NULL;
  15896. ggml_set_zero(opt->adam.m);
  15897. ggml_set_zero(opt->adam.v);
  15898. if (opt->adam.pf) {
  15899. ggml_set_zero(opt->adam.pf);
  15900. }
  15901. } break;
  15902. case GGML_OPT_TYPE_LBFGS:
  15903. {
  15904. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15905. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15906. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15907. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15908. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15909. opt->lbfgs.pf = params.past > 0
  15910. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15911. : NULL;
  15912. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15913. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15914. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15915. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15916. ggml_set_zero(opt->lbfgs.x);
  15917. ggml_set_zero(opt->lbfgs.xp);
  15918. ggml_set_zero(opt->lbfgs.g);
  15919. ggml_set_zero(opt->lbfgs.gp);
  15920. ggml_set_zero(opt->lbfgs.d);
  15921. if (opt->lbfgs.pf) {
  15922. ggml_set_zero(opt->lbfgs.pf);
  15923. }
  15924. ggml_set_zero(opt->lbfgs.lmal);
  15925. ggml_set_zero(opt->lbfgs.lmys);
  15926. ggml_set_zero(opt->lbfgs.lms);
  15927. ggml_set_zero(opt->lbfgs.lmy);
  15928. } break;
  15929. }
  15930. }
  15931. enum ggml_opt_result ggml_opt(
  15932. struct ggml_context * ctx,
  15933. struct ggml_opt_params params,
  15934. struct ggml_tensor * f) {
  15935. bool free_ctx = false;
  15936. if (ctx == NULL) {
  15937. struct ggml_init_params params_ctx = {
  15938. .mem_size = 16*1024*1024,
  15939. .mem_buffer = NULL,
  15940. .no_alloc = false,
  15941. };
  15942. ctx = ggml_init(params_ctx);
  15943. if (ctx == NULL) {
  15944. return GGML_OPT_RESULT_NO_CONTEXT;
  15945. }
  15946. free_ctx = true;
  15947. }
  15948. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  15949. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15950. ggml_opt_init(ctx, opt, params, 0);
  15951. result = ggml_opt_resume(ctx, opt, f);
  15952. if (free_ctx) {
  15953. ggml_free(ctx);
  15954. }
  15955. return result;
  15956. }
  15957. enum ggml_opt_result ggml_opt_resume(
  15958. struct ggml_context * ctx,
  15959. struct ggml_opt_context * opt,
  15960. struct ggml_tensor * f) {
  15961. // build forward + backward compute graphs
  15962. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  15963. ggml_build_forward_expand(gf, f);
  15964. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  15965. ggml_build_backward_expand(ctx, gf, gb, true);
  15966. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15967. }
  15968. enum ggml_opt_result ggml_opt_resume_g(
  15969. struct ggml_context * ctx,
  15970. struct ggml_opt_context * opt,
  15971. struct ggml_tensor * f,
  15972. struct ggml_cgraph * gf,
  15973. struct ggml_cgraph * gb,
  15974. ggml_opt_callback callback,
  15975. void * callback_data) {
  15976. // build forward + backward compute graphs
  15977. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  15978. switch (opt->params.type) {
  15979. case GGML_OPT_TYPE_ADAM:
  15980. {
  15981. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15982. } break;
  15983. case GGML_OPT_TYPE_LBFGS:
  15984. {
  15985. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15986. } break;
  15987. }
  15988. if (opt->params.print_forward_graph) {
  15989. ggml_graph_print (gf);
  15990. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15991. }
  15992. if (opt->params.print_backward_graph) {
  15993. ggml_graph_print (gb);
  15994. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15995. }
  15996. return result;
  15997. }
  15998. ////////////////////////////////////////////////////////////////////////////////
  15999. void ggml_set_input(struct ggml_tensor * tensor) {
  16000. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  16001. }
  16002. void ggml_set_output(struct ggml_tensor * tensor) {
  16003. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  16004. }
  16005. ////////////////////////////////////////////////////////////////////////////////
  16006. void ggml_quantize_init(enum ggml_type type) {
  16007. ggml_critical_section_start();
  16008. switch (type) {
  16009. case GGML_TYPE_IQ2_XXS:
  16010. case GGML_TYPE_IQ2_XS:
  16011. case GGML_TYPE_IQ2_S:
  16012. case GGML_TYPE_IQ1_S: iq2xs_init_impl(type); break;
  16013. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  16014. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  16015. default: // nothing
  16016. break;
  16017. }
  16018. ggml_critical_section_end();
  16019. }
  16020. void ggml_quantize_free(void) {
  16021. ggml_critical_section_start();
  16022. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  16023. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  16024. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  16025. iq3xs_free_impl(256);
  16026. ggml_critical_section_end();
  16027. }
  16028. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16029. assert(k % QK4_0 == 0);
  16030. const int nb = k / QK4_0;
  16031. for (int b = 0; b < n; b += k) {
  16032. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  16033. quantize_row_q4_0_reference(src + b, y, k);
  16034. for (int i = 0; i < nb; i++) {
  16035. for (int j = 0; j < QK4_0; j += 2) {
  16036. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  16037. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  16038. hist[vi0]++;
  16039. hist[vi1]++;
  16040. }
  16041. }
  16042. }
  16043. return (n/QK4_0*sizeof(block_q4_0));
  16044. }
  16045. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  16046. assert(k % QK4_1 == 0);
  16047. const int nb = k / QK4_1;
  16048. for (int b = 0; b < n; b += k) {
  16049. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  16050. quantize_row_q4_1_reference(src + b, y, k);
  16051. for (int i = 0; i < nb; i++) {
  16052. for (int j = 0; j < QK4_1; j += 2) {
  16053. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  16054. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  16055. hist[vi0]++;
  16056. hist[vi1]++;
  16057. }
  16058. }
  16059. }
  16060. return (n/QK4_1*sizeof(block_q4_1));
  16061. }
  16062. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16063. assert(k % QK5_0 == 0);
  16064. const int nb = k / QK5_0;
  16065. for (int b = 0; b < n; b += k) {
  16066. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  16067. quantize_row_q5_0_reference(src + b, y, k);
  16068. for (int i = 0; i < nb; i++) {
  16069. uint32_t qh;
  16070. memcpy(&qh, &y[i].qh, sizeof(qh));
  16071. for (int j = 0; j < QK5_0; j += 2) {
  16072. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  16073. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  16074. // cast to 16 bins
  16075. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  16076. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  16077. hist[vi0]++;
  16078. hist[vi1]++;
  16079. }
  16080. }
  16081. }
  16082. return (n/QK5_0*sizeof(block_q5_0));
  16083. }
  16084. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  16085. assert(k % QK5_1 == 0);
  16086. const int nb = k / QK5_1;
  16087. for (int b = 0; b < n; b += k) {
  16088. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  16089. quantize_row_q5_1_reference(src + b, y, k);
  16090. for (int i = 0; i < nb; i++) {
  16091. uint32_t qh;
  16092. memcpy(&qh, &y[i].qh, sizeof(qh));
  16093. for (int j = 0; j < QK5_1; j += 2) {
  16094. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  16095. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  16096. // cast to 16 bins
  16097. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  16098. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  16099. hist[vi0]++;
  16100. hist[vi1]++;
  16101. }
  16102. }
  16103. }
  16104. return (n/QK5_1*sizeof(block_q5_1));
  16105. }
  16106. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16107. assert(k % QK8_0 == 0);
  16108. const int nb = k / QK8_0;
  16109. for (int b = 0; b < n; b += k) {
  16110. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  16111. quantize_row_q8_0_reference(src + b, y, k);
  16112. for (int i = 0; i < nb; i++) {
  16113. for (int j = 0; j < QK8_0; ++j) {
  16114. const int8_t vi = y[i].qs[j];
  16115. hist[vi/16 + 8]++;
  16116. }
  16117. }
  16118. }
  16119. return (n/QK8_0*sizeof(block_q8_0));
  16120. }
  16121. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  16122. return
  16123. type == GGML_TYPE_IQ2_XXS ||
  16124. type == GGML_TYPE_IQ2_XS ||
  16125. type == GGML_TYPE_IQ1_S;
  16126. }
  16127. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start,
  16128. int nrows, int n_per_row, int64_t * hist, const float * imatrix) {
  16129. ggml_quantize_init(type); // this is noop if already initialized
  16130. size_t result = 0;
  16131. int n = nrows * n_per_row;
  16132. switch (type) {
  16133. case GGML_TYPE_Q4_0:
  16134. {
  16135. GGML_ASSERT(start % QK4_0 == 0);
  16136. GGML_ASSERT(start % n_per_row == 0);
  16137. size_t start_row = start / n_per_row;
  16138. size_t row_size = ggml_row_size(type, n_per_row);
  16139. result = quantize_q4_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16140. GGML_ASSERT(result == row_size * nrows);
  16141. } break;
  16142. case GGML_TYPE_Q4_1:
  16143. {
  16144. GGML_ASSERT(start % QK4_1 == 0);
  16145. GGML_ASSERT(start % n_per_row == 0);
  16146. size_t start_row = start / n_per_row;
  16147. size_t row_size = ggml_row_size(type, n_per_row);
  16148. result = quantize_q4_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16149. GGML_ASSERT(result == row_size * nrows);
  16150. } break;
  16151. case GGML_TYPE_Q5_0:
  16152. {
  16153. GGML_ASSERT(start % QK5_0 == 0);
  16154. GGML_ASSERT(start % n_per_row == 0);
  16155. size_t start_row = start / n_per_row;
  16156. size_t row_size = ggml_row_size(type, n_per_row);
  16157. result = quantize_q5_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16158. GGML_ASSERT(result == row_size * nrows);
  16159. } break;
  16160. case GGML_TYPE_Q5_1:
  16161. {
  16162. GGML_ASSERT(start % QK5_1 == 0);
  16163. GGML_ASSERT(start % n_per_row == 0);
  16164. size_t start_row = start / n_per_row;
  16165. size_t row_size = ggml_row_size(type, n_per_row);
  16166. result = quantize_q5_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16167. GGML_ASSERT(result == row_size * nrows);
  16168. } break;
  16169. case GGML_TYPE_Q8_0:
  16170. {
  16171. GGML_ASSERT(start % QK8_0 == 0);
  16172. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  16173. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  16174. } break;
  16175. case GGML_TYPE_Q2_K:
  16176. {
  16177. GGML_ASSERT(start % QK_K == 0);
  16178. GGML_ASSERT(start % n_per_row == 0);
  16179. size_t start_row = start / n_per_row;
  16180. size_t row_size = ggml_row_size(type, n_per_row);
  16181. result = quantize_q2_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16182. GGML_ASSERT(result == row_size * nrows);
  16183. } break;
  16184. case GGML_TYPE_Q3_K:
  16185. {
  16186. GGML_ASSERT(start % QK_K == 0);
  16187. GGML_ASSERT(start % n_per_row == 0);
  16188. size_t start_row = start / n_per_row;
  16189. size_t row_size = ggml_row_size(type, n_per_row);
  16190. result = quantize_q3_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16191. GGML_ASSERT(result == row_size * nrows);
  16192. } break;
  16193. case GGML_TYPE_Q4_K:
  16194. {
  16195. GGML_ASSERT(start % QK_K == 0);
  16196. GGML_ASSERT(start % n_per_row == 0);
  16197. size_t start_row = start / n_per_row;
  16198. size_t row_size = ggml_row_size(type, n_per_row);
  16199. result = quantize_q4_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16200. GGML_ASSERT(result == row_size * nrows);
  16201. } break;
  16202. case GGML_TYPE_Q5_K:
  16203. {
  16204. GGML_ASSERT(start % QK_K == 0);
  16205. GGML_ASSERT(start % n_per_row == 0);
  16206. size_t start_row = start / n_per_row;
  16207. size_t row_size = ggml_row_size(type, n_per_row);
  16208. result = quantize_q5_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16209. GGML_ASSERT(result == row_size * nrows);
  16210. } break;
  16211. case GGML_TYPE_Q6_K:
  16212. {
  16213. GGML_ASSERT(start % QK_K == 0);
  16214. GGML_ASSERT(start % n_per_row == 0);
  16215. size_t start_row = start / n_per_row;
  16216. size_t row_size = ggml_row_size(type, n_per_row);
  16217. result = quantize_q6_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16218. GGML_ASSERT(result == row_size * nrows);
  16219. } break;
  16220. case GGML_TYPE_IQ2_XXS:
  16221. {
  16222. GGML_ASSERT(start % QK_K == 0);
  16223. GGML_ASSERT(start % n_per_row == 0);
  16224. GGML_ASSERT(imatrix);
  16225. size_t start_row = start / n_per_row;
  16226. size_t row_size = ggml_row_size(type, n_per_row);
  16227. result = quantize_iq2_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16228. GGML_ASSERT(result == row_size * nrows);
  16229. } break;
  16230. case GGML_TYPE_IQ2_XS:
  16231. {
  16232. GGML_ASSERT(start % QK_K == 0);
  16233. GGML_ASSERT(start % n_per_row == 0);
  16234. GGML_ASSERT(imatrix);
  16235. size_t start_row = start / n_per_row;
  16236. size_t row_size = ggml_row_size(type, n_per_row);
  16237. result = quantize_iq2_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16238. GGML_ASSERT(result == row_size * nrows);
  16239. } break;
  16240. case GGML_TYPE_IQ3_XXS:
  16241. {
  16242. GGML_ASSERT(start % QK_K == 0);
  16243. GGML_ASSERT(start % n_per_row == 0);
  16244. size_t start_row = start / n_per_row;
  16245. size_t row_size = ggml_row_size(type, n_per_row);
  16246. result = quantize_iq3_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16247. GGML_ASSERT(result == row_size * nrows);
  16248. } break;
  16249. case GGML_TYPE_IQ3_S:
  16250. {
  16251. GGML_ASSERT(start % QK_K == 0);
  16252. GGML_ASSERT(start % n_per_row == 0);
  16253. size_t start_row = start / n_per_row;
  16254. size_t row_size = ggml_row_size(type, n_per_row);
  16255. result = quantize_iq3_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16256. GGML_ASSERT(result == row_size * nrows);
  16257. } break;
  16258. case GGML_TYPE_IQ2_S:
  16259. {
  16260. GGML_ASSERT(start % QK_K == 0);
  16261. GGML_ASSERT(start % n_per_row == 0);
  16262. size_t start_row = start / n_per_row;
  16263. size_t row_size = ggml_row_size(type, n_per_row);
  16264. result = quantize_iq2_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16265. GGML_ASSERT(result == row_size * nrows);
  16266. } break;
  16267. case GGML_TYPE_IQ1_S:
  16268. {
  16269. GGML_ASSERT(start % QK_K == 0);
  16270. GGML_ASSERT(start % n_per_row == 0);
  16271. size_t start_row = start / n_per_row;
  16272. size_t row_size = ggml_row_size(type, n_per_row);
  16273. result = quantize_iq1_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16274. GGML_ASSERT(result == row_size * nrows);
  16275. } break;
  16276. case GGML_TYPE_IQ4_NL:
  16277. #if QK_K == 64
  16278. case GGML_TYPE_IQ4_XS:
  16279. #endif
  16280. {
  16281. GGML_ASSERT(start % QK4_NL == 0);
  16282. GGML_ASSERT(start % n_per_row == 0);
  16283. size_t start_row = start / n_per_row;
  16284. size_t row_size = ggml_row_size(type, n_per_row);
  16285. result = quantize_iq4_nl(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16286. GGML_ASSERT(result == row_size * nrows);
  16287. } break;
  16288. #if QK_K != 64
  16289. case GGML_TYPE_IQ4_XS:
  16290. {
  16291. GGML_ASSERT(start % QK_K == 0);
  16292. GGML_ASSERT(start % n_per_row == 0);
  16293. size_t start_row = start / n_per_row;
  16294. size_t row_size = ggml_row_size(type, n_per_row);
  16295. result = quantize_iq4_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16296. GGML_ASSERT(result == row_size * nrows);
  16297. } break;
  16298. #endif
  16299. case GGML_TYPE_F16:
  16300. {
  16301. size_t elemsize = sizeof(ggml_fp16_t);
  16302. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16303. result = n * elemsize;
  16304. } break;
  16305. case GGML_TYPE_F32:
  16306. {
  16307. size_t elemsize = sizeof(float);
  16308. result = n * elemsize;
  16309. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16310. } break;
  16311. default:
  16312. assert(false);
  16313. }
  16314. return result;
  16315. }
  16316. ////////////////////////////////////////////////////////////////////////////////
  16317. struct gguf_str {
  16318. uint64_t n; // GGUFv2
  16319. char * data;
  16320. };
  16321. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16322. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16323. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16324. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16325. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16326. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16327. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16328. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16329. [GGUF_TYPE_BOOL] = sizeof(bool),
  16330. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16331. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16332. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16333. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16334. [GGUF_TYPE_ARRAY] = 0, // undefined
  16335. };
  16336. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16337. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16338. [GGUF_TYPE_UINT8] = "u8",
  16339. [GGUF_TYPE_INT8] = "i8",
  16340. [GGUF_TYPE_UINT16] = "u16",
  16341. [GGUF_TYPE_INT16] = "i16",
  16342. [GGUF_TYPE_UINT32] = "u32",
  16343. [GGUF_TYPE_INT32] = "i32",
  16344. [GGUF_TYPE_FLOAT32] = "f32",
  16345. [GGUF_TYPE_BOOL] = "bool",
  16346. [GGUF_TYPE_STRING] = "str",
  16347. [GGUF_TYPE_ARRAY] = "arr",
  16348. [GGUF_TYPE_UINT64] = "u64",
  16349. [GGUF_TYPE_INT64] = "i64",
  16350. [GGUF_TYPE_FLOAT64] = "f64",
  16351. };
  16352. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16353. union gguf_value {
  16354. uint8_t uint8;
  16355. int8_t int8;
  16356. uint16_t uint16;
  16357. int16_t int16;
  16358. uint32_t uint32;
  16359. int32_t int32;
  16360. float float32;
  16361. uint64_t uint64;
  16362. int64_t int64;
  16363. double float64;
  16364. bool bool_;
  16365. struct gguf_str str;
  16366. struct {
  16367. enum gguf_type type;
  16368. uint64_t n; // GGUFv2
  16369. void * data;
  16370. } arr;
  16371. };
  16372. struct gguf_kv {
  16373. struct gguf_str key;
  16374. enum gguf_type type;
  16375. union gguf_value value;
  16376. };
  16377. struct gguf_header {
  16378. char magic[4];
  16379. uint32_t version;
  16380. uint64_t n_tensors; // GGUFv2
  16381. uint64_t n_kv; // GGUFv2
  16382. };
  16383. struct gguf_tensor_info {
  16384. struct gguf_str name;
  16385. uint32_t n_dims;
  16386. uint64_t ne[GGML_MAX_DIMS];
  16387. enum ggml_type type;
  16388. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16389. // for writing API
  16390. const void * data;
  16391. size_t size;
  16392. };
  16393. struct gguf_context {
  16394. struct gguf_header header;
  16395. struct gguf_kv * kv;
  16396. struct gguf_tensor_info * infos;
  16397. size_t alignment;
  16398. size_t offset; // offset of `data` from beginning of file
  16399. size_t size; // size of `data` in bytes
  16400. //uint8_t * padding;
  16401. void * data;
  16402. };
  16403. static size_t gguf_type_size(enum gguf_type type) {
  16404. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  16405. return GGUF_TYPE_SIZE[type];
  16406. }
  16407. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  16408. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  16409. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  16410. for (uint32_t i = 0; i < info->n_dims; ++i) {
  16411. GGML_ASSERT(info->ne[i] > 0);
  16412. }
  16413. // prevent overflow for total number of elements
  16414. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  16415. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  16416. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  16417. }
  16418. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16419. const size_t n = fread(dst, 1, size, file);
  16420. *offset += n;
  16421. return n == size;
  16422. }
  16423. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  16424. p->n = 0;
  16425. p->data = NULL;
  16426. bool ok = true;
  16427. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  16428. // early exit if string length is invalid, prevents from integer overflow
  16429. if (p->n == SIZE_MAX) {
  16430. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  16431. return false;
  16432. }
  16433. p->data = GGML_CALLOC(p->n + 1, 1);
  16434. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16435. return ok;
  16436. }
  16437. struct gguf_context * gguf_init_empty(void) {
  16438. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16439. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  16440. ctx->header.version = GGUF_VERSION;
  16441. ctx->header.n_tensors = 0;
  16442. ctx->header.n_kv = 0;
  16443. ctx->kv = NULL;
  16444. ctx->infos = NULL;
  16445. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16446. ctx->offset = 0;
  16447. ctx->size = 0;
  16448. ctx->data = NULL;
  16449. return ctx;
  16450. }
  16451. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16452. FILE * file = fopen(fname, "rb");
  16453. if (!file) {
  16454. return NULL;
  16455. }
  16456. // offset from start of file
  16457. size_t offset = 0;
  16458. char magic[4];
  16459. // check the magic before making allocations
  16460. {
  16461. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16462. for (uint32_t i = 0; i < sizeof(magic); i++) {
  16463. if (magic[i] != GGUF_MAGIC[i]) {
  16464. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  16465. fclose(file);
  16466. return NULL;
  16467. }
  16468. }
  16469. }
  16470. bool ok = true;
  16471. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16472. // read the header
  16473. {
  16474. strncpy(ctx->header.magic, magic, 4);
  16475. ctx->kv = NULL;
  16476. ctx->infos = NULL;
  16477. ctx->data = NULL;
  16478. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16479. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16480. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16481. if (ctx->header.version == 1) {
  16482. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16483. fclose(file);
  16484. gguf_free(ctx);
  16485. return NULL;
  16486. }
  16487. // sanity-checks to prevent from integer/buffer overflows
  16488. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  16489. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  16490. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  16491. if (!ok) {
  16492. fprintf(stderr, "%s: failed to read header\n", __func__);
  16493. fclose(file);
  16494. gguf_free(ctx);
  16495. return NULL;
  16496. }
  16497. }
  16498. // read the kv pairs
  16499. {
  16500. ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  16501. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16502. struct gguf_kv * kv = &ctx->kv[i];
  16503. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16504. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16505. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16506. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16507. switch (kv->type) {
  16508. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16509. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16510. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16511. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16512. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16513. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16514. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16515. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16516. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16517. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16518. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16519. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16520. case GGUF_TYPE_ARRAY:
  16521. {
  16522. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16523. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16524. switch (kv->value.arr.type) {
  16525. case GGUF_TYPE_UINT8:
  16526. case GGUF_TYPE_INT8:
  16527. case GGUF_TYPE_UINT16:
  16528. case GGUF_TYPE_INT16:
  16529. case GGUF_TYPE_UINT32:
  16530. case GGUF_TYPE_INT32:
  16531. case GGUF_TYPE_FLOAT32:
  16532. case GGUF_TYPE_UINT64:
  16533. case GGUF_TYPE_INT64:
  16534. case GGUF_TYPE_FLOAT64:
  16535. case GGUF_TYPE_BOOL:
  16536. {
  16537. // prevent from integer overflow in the malloc below
  16538. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  16539. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16540. fclose(file);
  16541. gguf_free(ctx);
  16542. return NULL;
  16543. }
  16544. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  16545. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  16546. } break;
  16547. case GGUF_TYPE_STRING:
  16548. {
  16549. // prevent from integer overflow in the malloc below
  16550. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  16551. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16552. fclose(file);
  16553. gguf_free(ctx);
  16554. return NULL;
  16555. }
  16556. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
  16557. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16558. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16559. }
  16560. } break;
  16561. case GGUF_TYPE_ARRAY:
  16562. default: GGML_ASSERT(false && "invalid type"); break;
  16563. }
  16564. } break;
  16565. default: GGML_ASSERT(false && "invalid type");
  16566. }
  16567. if (!ok) {
  16568. break;
  16569. }
  16570. }
  16571. if (!ok) {
  16572. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16573. fclose(file);
  16574. gguf_free(ctx);
  16575. return NULL;
  16576. }
  16577. }
  16578. // read the tensor infos
  16579. {
  16580. ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16581. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16582. struct gguf_tensor_info * info = &ctx->infos[i];
  16583. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16584. info->ne[j] = 1;
  16585. }
  16586. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16587. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16588. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  16589. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16590. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16591. }
  16592. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16593. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16594. gguf_tensor_info_sanitize(info);
  16595. if (!ok) {
  16596. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16597. fclose(file);
  16598. gguf_free(ctx);
  16599. return NULL;
  16600. }
  16601. }
  16602. }
  16603. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16604. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16605. if (alignment_idx != -1) {
  16606. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  16607. }
  16608. // we require the data section to be aligned, so take into account any padding
  16609. {
  16610. const size_t offset_pad = offset % ctx->alignment;
  16611. if (offset_pad != 0) {
  16612. offset += ctx->alignment - offset_pad;
  16613. fseek(file, offset, SEEK_SET);
  16614. }
  16615. }
  16616. // store the current file offset - this is where the data section starts
  16617. ctx->offset = offset;
  16618. // compute the total size of the data section, taking into account the alignment
  16619. {
  16620. ctx->size = 0;
  16621. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16622. struct gguf_tensor_info * info = &ctx->infos[i];
  16623. const int64_t ne =
  16624. (int64_t) info->ne[0] *
  16625. (int64_t) info->ne[1] *
  16626. (int64_t) info->ne[2] *
  16627. (int64_t) info->ne[3];
  16628. if (ne % ggml_blck_size(info->type) != 0) {
  16629. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  16630. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  16631. fclose(file);
  16632. gguf_free(ctx);
  16633. return NULL;
  16634. }
  16635. const size_t size_cur = ggml_row_size(info->type, ne);
  16636. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  16637. }
  16638. }
  16639. // load the tensor data only if requested
  16640. if (params.ctx != NULL) {
  16641. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  16642. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  16643. // the ggml_tensor structs to the appropriate locations in the binary blob
  16644. // compute the exact size needed for the new ggml_context
  16645. const size_t mem_size =
  16646. params.no_alloc ?
  16647. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  16648. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  16649. struct ggml_init_params pdata = {
  16650. .mem_size = mem_size,
  16651. .mem_buffer = NULL,
  16652. .no_alloc = params.no_alloc,
  16653. };
  16654. *params.ctx = ggml_init(pdata);
  16655. struct ggml_context * ctx_data = *params.ctx;
  16656. struct ggml_tensor * data = NULL;
  16657. if (!params.no_alloc) {
  16658. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  16659. ok = ok && data != NULL;
  16660. // read the binary blob with the tensor data
  16661. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  16662. if (!ok) {
  16663. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  16664. fclose(file);
  16665. ggml_free(ctx_data);
  16666. gguf_free(ctx);
  16667. return NULL;
  16668. }
  16669. ctx->data = data->data;
  16670. }
  16671. ggml_set_no_alloc(ctx_data, true);
  16672. // create the tensors
  16673. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16674. const int64_t ne[GGML_MAX_DIMS] = {
  16675. ctx->infos[i].ne[0],
  16676. ctx->infos[i].ne[1],
  16677. ctx->infos[i].ne[2],
  16678. ctx->infos[i].ne[3],
  16679. };
  16680. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  16681. ok = ok && cur != NULL;
  16682. ggml_set_name(cur, ctx->infos[i].name.data);
  16683. if (!ok) {
  16684. break;
  16685. }
  16686. // point the data member to the appropriate location in the binary blob using the tensor infos
  16687. if (!params.no_alloc) {
  16688. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  16689. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  16690. }
  16691. }
  16692. if (!ok) {
  16693. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  16694. fclose(file);
  16695. ggml_free(ctx_data);
  16696. gguf_free(ctx);
  16697. return NULL;
  16698. }
  16699. ggml_set_no_alloc(ctx_data, params.no_alloc);
  16700. }
  16701. fclose(file);
  16702. return ctx;
  16703. }
  16704. void gguf_free(struct gguf_context * ctx) {
  16705. if (ctx == NULL) {
  16706. return;
  16707. }
  16708. if (ctx->kv) {
  16709. // free string memory - not great..
  16710. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16711. struct gguf_kv * kv = &ctx->kv[i];
  16712. if (kv->key.data) {
  16713. GGML_FREE(kv->key.data);
  16714. }
  16715. if (kv->type == GGUF_TYPE_STRING) {
  16716. if (kv->value.str.data) {
  16717. GGML_FREE(kv->value.str.data);
  16718. }
  16719. }
  16720. if (kv->type == GGUF_TYPE_ARRAY) {
  16721. if (kv->value.arr.data) {
  16722. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16723. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16724. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16725. if (str->data) {
  16726. GGML_FREE(str->data);
  16727. }
  16728. }
  16729. }
  16730. GGML_FREE(kv->value.arr.data);
  16731. }
  16732. }
  16733. }
  16734. GGML_FREE(ctx->kv);
  16735. }
  16736. if (ctx->infos) {
  16737. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16738. struct gguf_tensor_info * info = &ctx->infos[i];
  16739. if (info->name.data) {
  16740. GGML_FREE(info->name.data);
  16741. }
  16742. }
  16743. GGML_FREE(ctx->infos);
  16744. }
  16745. GGML_ALIGNED_FREE(ctx);
  16746. }
  16747. const char * gguf_type_name(enum gguf_type type) {
  16748. return GGUF_TYPE_NAME[type];
  16749. }
  16750. int gguf_get_version(const struct gguf_context * ctx) {
  16751. return ctx->header.version;
  16752. }
  16753. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  16754. return ctx->alignment;
  16755. }
  16756. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  16757. return ctx->offset;
  16758. }
  16759. void * gguf_get_data(const struct gguf_context * ctx) {
  16760. return ctx->data;
  16761. }
  16762. int gguf_get_n_kv(const struct gguf_context * ctx) {
  16763. return ctx->header.n_kv;
  16764. }
  16765. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  16766. // return -1 if key not found
  16767. int keyfound = -1;
  16768. const int n_kv = gguf_get_n_kv(ctx);
  16769. for (int i = 0; i < n_kv; ++i) {
  16770. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  16771. keyfound = i;
  16772. break;
  16773. }
  16774. }
  16775. return keyfound;
  16776. }
  16777. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  16778. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16779. return ctx->kv[key_id].key.data;
  16780. }
  16781. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  16782. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16783. return ctx->kv[key_id].type;
  16784. }
  16785. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  16786. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16787. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16788. return ctx->kv[key_id].value.arr.type;
  16789. }
  16790. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  16791. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16792. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16793. return ctx->kv[key_id].value.arr.data;
  16794. }
  16795. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  16796. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16797. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16798. struct gguf_kv * kv = &ctx->kv[key_id];
  16799. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  16800. return str->data;
  16801. }
  16802. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  16803. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16804. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16805. return ctx->kv[key_id].value.arr.n;
  16806. }
  16807. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  16808. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16809. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  16810. return ctx->kv[key_id].value.uint8;
  16811. }
  16812. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  16813. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16814. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  16815. return ctx->kv[key_id].value.int8;
  16816. }
  16817. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  16818. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16819. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  16820. return ctx->kv[key_id].value.uint16;
  16821. }
  16822. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  16823. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16824. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  16825. return ctx->kv[key_id].value.int16;
  16826. }
  16827. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  16828. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16829. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  16830. return ctx->kv[key_id].value.uint32;
  16831. }
  16832. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  16833. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16834. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  16835. return ctx->kv[key_id].value.int32;
  16836. }
  16837. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  16838. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16839. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  16840. return ctx->kv[key_id].value.float32;
  16841. }
  16842. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  16843. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16844. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  16845. return ctx->kv[key_id].value.uint64;
  16846. }
  16847. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  16848. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16849. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  16850. return ctx->kv[key_id].value.int64;
  16851. }
  16852. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  16853. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16854. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  16855. return ctx->kv[key_id].value.float64;
  16856. }
  16857. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  16858. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16859. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  16860. return ctx->kv[key_id].value.bool_;
  16861. }
  16862. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  16863. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16864. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  16865. return ctx->kv[key_id].value.str.data;
  16866. }
  16867. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  16868. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16869. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  16870. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  16871. return &ctx->kv[key_id].value;
  16872. }
  16873. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  16874. return ctx->header.n_tensors;
  16875. }
  16876. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  16877. // return -1 if tensor not found
  16878. int tensorfound = -1;
  16879. const int n_tensors = gguf_get_n_tensors(ctx);
  16880. for (int i = 0; i < n_tensors; ++i) {
  16881. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16882. tensorfound = i;
  16883. break;
  16884. }
  16885. }
  16886. return tensorfound;
  16887. }
  16888. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  16889. return ctx->infos[i].offset;
  16890. }
  16891. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  16892. return ctx->infos[i].name.data;
  16893. }
  16894. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  16895. return ctx->infos[i].type;
  16896. }
  16897. // returns the index
  16898. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16899. const int idx = gguf_find_key(ctx, key);
  16900. if (idx >= 0) {
  16901. return idx;
  16902. }
  16903. const int n_kv = gguf_get_n_kv(ctx);
  16904. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16905. ctx->kv[n_kv].key.n = strlen(key);
  16906. ctx->kv[n_kv].key.data = strdup(key);
  16907. ctx->header.n_kv++;
  16908. return n_kv;
  16909. }
  16910. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16911. const int idx = gguf_get_or_add_key(ctx, key);
  16912. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16913. ctx->kv[idx].value.uint8 = val;
  16914. }
  16915. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16916. const int idx = gguf_get_or_add_key(ctx, key);
  16917. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16918. ctx->kv[idx].value.int8 = val;
  16919. }
  16920. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16921. const int idx = gguf_get_or_add_key(ctx, key);
  16922. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16923. ctx->kv[idx].value.uint16 = val;
  16924. }
  16925. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16926. const int idx = gguf_get_or_add_key(ctx, key);
  16927. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16928. ctx->kv[idx].value.int16 = val;
  16929. }
  16930. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16931. const int idx = gguf_get_or_add_key(ctx, key);
  16932. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16933. ctx->kv[idx].value.uint32 = val;
  16934. }
  16935. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16936. const int idx = gguf_get_or_add_key(ctx, key);
  16937. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16938. ctx->kv[idx].value.int32 = val;
  16939. }
  16940. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16941. const int idx = gguf_get_or_add_key(ctx, key);
  16942. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16943. ctx->kv[idx].value.float32 = val;
  16944. }
  16945. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16946. const int idx = gguf_get_or_add_key(ctx, key);
  16947. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16948. ctx->kv[idx].value.uint64 = val;
  16949. }
  16950. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16951. const int idx = gguf_get_or_add_key(ctx, key);
  16952. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16953. ctx->kv[idx].value.int64 = val;
  16954. }
  16955. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16956. const int idx = gguf_get_or_add_key(ctx, key);
  16957. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16958. ctx->kv[idx].value.float64 = val;
  16959. }
  16960. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16961. const int idx = gguf_get_or_add_key(ctx, key);
  16962. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16963. ctx->kv[idx].value.bool_ = val;
  16964. }
  16965. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16966. const int idx = gguf_get_or_add_key(ctx, key);
  16967. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16968. ctx->kv[idx].value.str.n = strlen(val);
  16969. ctx->kv[idx].value.str.data = strdup(val);
  16970. }
  16971. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16972. const int idx = gguf_get_or_add_key(ctx, key);
  16973. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16974. ctx->kv[idx].value.arr.type = type;
  16975. ctx->kv[idx].value.arr.n = n;
  16976. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
  16977. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  16978. }
  16979. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16980. const int idx = gguf_get_or_add_key(ctx, key);
  16981. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16982. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16983. ctx->kv[idx].value.arr.n = n;
  16984. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
  16985. for (int i = 0; i < n; i++) {
  16986. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16987. str->n = strlen(data[i]);
  16988. str->data = strdup(data[i]);
  16989. }
  16990. }
  16991. // set or add KV pairs from another context
  16992. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16993. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16994. switch (src->kv[i].type) {
  16995. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16996. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16997. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16998. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16999. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  17000. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  17001. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  17002. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  17003. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  17004. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  17005. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  17006. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  17007. case GGUF_TYPE_ARRAY:
  17008. {
  17009. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  17010. const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
  17011. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  17012. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  17013. }
  17014. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  17015. GGML_FREE((void *)data);
  17016. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  17017. GGML_ASSERT(false && "nested arrays not supported");
  17018. } else {
  17019. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  17020. }
  17021. } break;
  17022. default: GGML_ASSERT(false && "invalid type"); break;
  17023. }
  17024. }
  17025. }
  17026. void gguf_add_tensor(
  17027. struct gguf_context * ctx,
  17028. const struct ggml_tensor * tensor) {
  17029. const int idx = ctx->header.n_tensors;
  17030. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  17031. ctx->infos[idx].name.n = strlen(tensor->name);
  17032. ctx->infos[idx].name.data = strdup(tensor->name);
  17033. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  17034. ctx->infos[idx].ne[i] = 1;
  17035. }
  17036. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  17037. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  17038. ctx->infos[idx].ne[i] = tensor->ne[i];
  17039. }
  17040. ctx->infos[idx].type = tensor->type;
  17041. ctx->infos[idx].offset = 0;
  17042. ctx->infos[idx].data = tensor->data;
  17043. ctx->infos[idx].size = ggml_nbytes(tensor);
  17044. if (ctx->header.n_tensors > 0) {
  17045. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  17046. }
  17047. ctx->header.n_tensors++;
  17048. }
  17049. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  17050. const int idx = gguf_find_tensor(ctx, name);
  17051. if (idx < 0) {
  17052. GGML_ASSERT(false && "tensor not found");
  17053. }
  17054. ctx->infos[idx].type = type;
  17055. }
  17056. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  17057. const int idx = gguf_find_tensor(ctx, name);
  17058. if (idx < 0) {
  17059. GGML_ASSERT(false && "tensor not found");
  17060. }
  17061. ctx->infos[idx].data = data;
  17062. ctx->infos[idx].size = size;
  17063. // update offsets
  17064. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  17065. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  17066. }
  17067. }
  17068. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  17069. // fwrite(&val->n, sizeof(val->n), 1, file);
  17070. // fwrite(val->data, sizeof(char), val->n, file);
  17071. //}
  17072. //
  17073. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  17074. // fwrite(val, sizeof(char), size, file);
  17075. //}
  17076. struct gguf_buf {
  17077. void * data;
  17078. size_t size;
  17079. size_t offset;
  17080. };
  17081. static struct gguf_buf gguf_buf_init(size_t size) {
  17082. struct gguf_buf buf = {
  17083. /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
  17084. /*buf.size =*/ size,
  17085. /*buf.offset =*/ 0,
  17086. };
  17087. return buf;
  17088. }
  17089. static void gguf_buf_free(struct gguf_buf buf) {
  17090. if (buf.data) {
  17091. GGML_FREE(buf.data);
  17092. }
  17093. }
  17094. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  17095. if (buf->offset + size > buf->size) {
  17096. buf->size = 1.5*(buf->offset + size);
  17097. if (buf->data) {
  17098. buf->data = realloc(buf->data, buf->size);
  17099. }
  17100. }
  17101. }
  17102. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17103. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17104. if (buf->data) {
  17105. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17106. }
  17107. buf->offset += sizeof(val->n);
  17108. if (buf->data) {
  17109. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17110. }
  17111. buf->offset += val->n;
  17112. }
  17113. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17114. gguf_buf_grow(buf, el_size);
  17115. if (buf->data) {
  17116. memcpy((char *) buf->data + buf->offset, val, el_size);
  17117. }
  17118. buf->offset += el_size;
  17119. }
  17120. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17121. // write header
  17122. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17123. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17124. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17125. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17126. // write key-value pairs
  17127. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17128. struct gguf_kv * kv = &ctx->kv[i];
  17129. gguf_bwrite_str(buf, &kv->key);
  17130. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17131. switch (kv->type) {
  17132. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17133. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17134. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17135. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17136. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17137. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17138. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17139. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17140. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17141. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17142. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17143. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17144. case GGUF_TYPE_ARRAY:
  17145. {
  17146. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17147. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17148. switch (kv->value.arr.type) {
  17149. case GGUF_TYPE_UINT8:
  17150. case GGUF_TYPE_INT8:
  17151. case GGUF_TYPE_UINT16:
  17152. case GGUF_TYPE_INT16:
  17153. case GGUF_TYPE_UINT32:
  17154. case GGUF_TYPE_INT32:
  17155. case GGUF_TYPE_FLOAT32:
  17156. case GGUF_TYPE_UINT64:
  17157. case GGUF_TYPE_INT64:
  17158. case GGUF_TYPE_FLOAT64:
  17159. case GGUF_TYPE_BOOL:
  17160. {
  17161. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17162. } break;
  17163. case GGUF_TYPE_STRING:
  17164. {
  17165. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17166. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17167. }
  17168. } break;
  17169. case GGUF_TYPE_ARRAY:
  17170. default: GGML_ASSERT(false && "invalid type"); break;
  17171. }
  17172. } break;
  17173. default: GGML_ASSERT(false && "invalid type");
  17174. }
  17175. }
  17176. // write tensor infos
  17177. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17178. struct gguf_tensor_info * info = &ctx->infos[i];
  17179. gguf_bwrite_str(buf, &info->name);
  17180. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17181. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17182. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17183. }
  17184. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17185. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17186. }
  17187. // we require the data section to be aligned, so take into account any padding
  17188. {
  17189. const size_t offset = buf->offset;
  17190. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17191. if (offset_pad != offset) {
  17192. uint8_t pad = 0;
  17193. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17194. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17195. }
  17196. }
  17197. }
  17198. if (only_meta) {
  17199. return;
  17200. }
  17201. size_t offset = 0;
  17202. // write tensor data
  17203. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17204. struct gguf_tensor_info * info = &ctx->infos[i];
  17205. const size_t size = info->size;
  17206. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17207. gguf_bwrite_el(buf, info->data, size);
  17208. if (size_pad != size) {
  17209. uint8_t pad = 0;
  17210. for (size_t j = 0; j < size_pad - size; ++j) {
  17211. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17212. }
  17213. }
  17214. GGML_ASSERT(offset == info->offset);
  17215. offset += size_pad;
  17216. }
  17217. }
  17218. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17219. FILE * file = fopen(fname, "wb");
  17220. if (!file) {
  17221. GGML_ASSERT(false && "failed to open file for writing");
  17222. }
  17223. struct gguf_buf buf = gguf_buf_init(16*1024);
  17224. gguf_write_to_buf(ctx, &buf, only_meta);
  17225. fwrite(buf.data, 1, buf.offset, file);
  17226. gguf_buf_free(buf);
  17227. fclose(file);
  17228. }
  17229. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17230. // no allocs - only compute size
  17231. struct gguf_buf buf = gguf_buf_init(0);
  17232. gguf_write_to_buf(ctx, &buf, true);
  17233. return buf.offset;
  17234. }
  17235. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17236. struct gguf_buf buf = gguf_buf_init(16*1024);
  17237. gguf_write_to_buf(ctx, &buf, true);
  17238. memcpy(data, buf.data, buf.offset);
  17239. gguf_buf_free(buf);
  17240. }
  17241. ////////////////////////////////////////////////////////////////////////////////
  17242. int ggml_cpu_has_avx(void) {
  17243. #if defined(__AVX__)
  17244. return 1;
  17245. #else
  17246. return 0;
  17247. #endif
  17248. }
  17249. int ggml_cpu_has_avx_vnni(void) {
  17250. #if defined(__AVXVNNI__)
  17251. return 1;
  17252. #else
  17253. return 0;
  17254. #endif
  17255. }
  17256. int ggml_cpu_has_avx2(void) {
  17257. #if defined(__AVX2__)
  17258. return 1;
  17259. #else
  17260. return 0;
  17261. #endif
  17262. }
  17263. int ggml_cpu_has_avx512(void) {
  17264. #if defined(__AVX512F__)
  17265. return 1;
  17266. #else
  17267. return 0;
  17268. #endif
  17269. }
  17270. int ggml_cpu_has_avx512_vbmi(void) {
  17271. #if defined(__AVX512VBMI__)
  17272. return 1;
  17273. #else
  17274. return 0;
  17275. #endif
  17276. }
  17277. int ggml_cpu_has_avx512_vnni(void) {
  17278. #if defined(__AVX512VNNI__)
  17279. return 1;
  17280. #else
  17281. return 0;
  17282. #endif
  17283. }
  17284. int ggml_cpu_has_fma(void) {
  17285. #if defined(__FMA__)
  17286. return 1;
  17287. #else
  17288. return 0;
  17289. #endif
  17290. }
  17291. int ggml_cpu_has_neon(void) {
  17292. #if defined(__ARM_NEON)
  17293. return 1;
  17294. #else
  17295. return 0;
  17296. #endif
  17297. }
  17298. int ggml_cpu_has_arm_fma(void) {
  17299. #if defined(__ARM_FEATURE_FMA)
  17300. return 1;
  17301. #else
  17302. return 0;
  17303. #endif
  17304. }
  17305. int ggml_cpu_has_metal(void) {
  17306. #if defined(GGML_USE_METAL)
  17307. return 1;
  17308. #else
  17309. return 0;
  17310. #endif
  17311. }
  17312. int ggml_cpu_has_f16c(void) {
  17313. #if defined(__F16C__)
  17314. return 1;
  17315. #else
  17316. return 0;
  17317. #endif
  17318. }
  17319. int ggml_cpu_has_fp16_va(void) {
  17320. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17321. return 1;
  17322. #else
  17323. return 0;
  17324. #endif
  17325. }
  17326. int ggml_cpu_has_wasm_simd(void) {
  17327. #if defined(__wasm_simd128__)
  17328. return 1;
  17329. #else
  17330. return 0;
  17331. #endif
  17332. }
  17333. int ggml_cpu_has_blas(void) {
  17334. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  17335. return 1;
  17336. #else
  17337. return 0;
  17338. #endif
  17339. }
  17340. int ggml_cpu_has_cublas(void) {
  17341. #if defined(GGML_USE_CUBLAS)
  17342. return 1;
  17343. #else
  17344. return 0;
  17345. #endif
  17346. }
  17347. int ggml_cpu_has_clblast(void) {
  17348. #if defined(GGML_USE_CLBLAST)
  17349. return 1;
  17350. #else
  17351. return 0;
  17352. #endif
  17353. }
  17354. int ggml_cpu_has_vulkan(void) {
  17355. #if defined(GGML_USE_VULKAN)
  17356. return 1;
  17357. #else
  17358. return 0;
  17359. #endif
  17360. }
  17361. int ggml_cpu_has_kompute(void) {
  17362. #if defined(GGML_USE_KOMPUTE)
  17363. return 1;
  17364. #else
  17365. return 0;
  17366. #endif
  17367. }
  17368. int ggml_cpu_has_sycl(void) {
  17369. #if defined(GGML_USE_SYCL)
  17370. return 1;
  17371. #else
  17372. return 0;
  17373. #endif
  17374. }
  17375. int ggml_cpu_has_gpublas(void) {
  17376. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  17377. ggml_cpu_has_sycl();
  17378. }
  17379. int ggml_cpu_has_sse3(void) {
  17380. #if defined(__SSE3__)
  17381. return 1;
  17382. #else
  17383. return 0;
  17384. #endif
  17385. }
  17386. int ggml_cpu_has_ssse3(void) {
  17387. #if defined(__SSSE3__)
  17388. return 1;
  17389. #else
  17390. return 0;
  17391. #endif
  17392. }
  17393. int ggml_cpu_has_vsx(void) {
  17394. #if defined(__POWER9_VECTOR__)
  17395. return 1;
  17396. #else
  17397. return 0;
  17398. #endif
  17399. }
  17400. int ggml_cpu_has_matmul_int8(void) {
  17401. #if defined(__ARM_FEATURE_MATMUL_INT8)
  17402. return 1;
  17403. #else
  17404. return 0;
  17405. #endif
  17406. }
  17407. ////////////////////////////////////////////////////////////////////////////////