ggml.c 520 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #include "ggml-quants-k.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. // if C99 - static_assert is noop
  22. // ref: https://stackoverflow.com/a/53923785/4039976
  23. #ifndef static_assert
  24. #define static_assert(cond, msg) struct global_scope_noop_trick
  25. #endif
  26. #if defined(_WIN32)
  27. #include <windows.h>
  28. typedef volatile LONG atomic_int;
  29. typedef atomic_int atomic_bool;
  30. static void atomic_store(atomic_int* ptr, LONG val) {
  31. InterlockedExchange(ptr, val);
  32. }
  33. static LONG atomic_load(atomic_int* ptr) {
  34. return InterlockedCompareExchange(ptr, 0, 0);
  35. }
  36. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  37. return InterlockedExchangeAdd(ptr, inc);
  38. }
  39. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  40. return atomic_fetch_add(ptr, -(dec));
  41. }
  42. typedef HANDLE pthread_t;
  43. typedef DWORD thread_ret_t;
  44. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  45. (void) unused;
  46. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  47. if (handle == NULL)
  48. {
  49. return EAGAIN;
  50. }
  51. *out = handle;
  52. return 0;
  53. }
  54. static int pthread_join(pthread_t thread, void* unused) {
  55. (void) unused;
  56. return (int) WaitForSingleObject(thread, INFINITE);
  57. }
  58. static int sched_yield (void) {
  59. Sleep (0);
  60. return 0;
  61. }
  62. #else
  63. #include <pthread.h>
  64. #include <stdatomic.h>
  65. typedef void* thread_ret_t;
  66. #endif
  67. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  68. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  69. #ifndef __FMA__
  70. #define __FMA__
  71. #endif
  72. #ifndef __F16C__
  73. #define __F16C__
  74. #endif
  75. #ifndef __SSE3__
  76. #define __SSE3__
  77. #endif
  78. #endif
  79. #ifdef __HAIKU__
  80. #define static_assert(cond, msg) _Static_assert(cond, msg)
  81. #endif
  82. /*#define GGML_PERF*/
  83. #define GGML_DEBUG 0
  84. #define GGML_GELU_FP16
  85. #define GGML_SILU_FP16
  86. #define GGML_SOFT_MAX_UNROLL 4
  87. #define GGML_VEC_DOT_UNROLL 2
  88. #ifdef GGML_USE_ACCELERATE
  89. // uncomment to use vDSP for soft max computation
  90. // note: not sure if it is actually faster
  91. //#define GGML_SOFT_MAX_ACCELERATE
  92. #endif
  93. #if UINTPTR_MAX == 0xFFFFFFFF
  94. #define GGML_MEM_ALIGN 4
  95. #else
  96. #define GGML_MEM_ALIGN 16
  97. #endif
  98. #if defined(_MSC_VER) || defined(__MINGW32__)
  99. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  100. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  101. #else
  102. inline static void* ggml_aligned_malloc(size_t size) {
  103. void* aligned_memory = NULL;
  104. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  105. if (result != 0) {
  106. // Handle allocation failure
  107. return NULL;
  108. }
  109. return aligned_memory;
  110. }
  111. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  112. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  113. #endif
  114. #define UNUSED(x) (void)(x)
  115. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  116. #if defined(GGML_USE_ACCELERATE)
  117. #include <Accelerate/Accelerate.h>
  118. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  119. #include "ggml-opencl.h"
  120. #endif
  121. #elif defined(GGML_USE_OPENBLAS)
  122. #include <cblas.h>
  123. #elif defined(GGML_USE_CUBLAS)
  124. #include "ggml-cuda.h"
  125. #elif defined(GGML_USE_CLBLAST)
  126. #include "ggml-opencl.h"
  127. #endif
  128. #undef MIN
  129. #undef MAX
  130. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  131. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  132. // floating point type used to accumulate sums
  133. typedef double ggml_float;
  134. // 16-bit float
  135. // on Arm, we use __fp16
  136. // on x86, we use uint16_t
  137. #ifdef __ARM_NEON
  138. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  139. //
  140. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  141. //
  142. #include <arm_neon.h>
  143. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  144. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  145. #define GGML_FP16_TO_FP32(x) ((float) (x))
  146. #define GGML_FP32_TO_FP16(x) (x)
  147. #else
  148. #ifdef __wasm_simd128__
  149. #include <wasm_simd128.h>
  150. #else
  151. #ifdef __POWER9_VECTOR__
  152. #include <altivec.h>
  153. #undef bool
  154. #define bool _Bool
  155. #else
  156. #if defined(_MSC_VER) || defined(__MINGW32__)
  157. #include <intrin.h>
  158. #else
  159. #if !defined(__riscv)
  160. #include <immintrin.h>
  161. #endif
  162. #endif
  163. #endif
  164. #endif
  165. #ifdef __F16C__
  166. #ifdef _MSC_VER
  167. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  168. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  169. #else
  170. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  171. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  172. #endif
  173. #elif defined(__POWER9_VECTOR__)
  174. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  175. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  176. /* the inline asm below is about 12% faster than the lookup method */
  177. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  178. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  179. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  180. register float f;
  181. register double d;
  182. __asm__(
  183. "mtfprd %0,%2\n"
  184. "xscvhpdp %0,%0\n"
  185. "frsp %1,%0\n" :
  186. /* temp */ "=d"(d),
  187. /* out */ "=f"(f):
  188. /* in */ "r"(h));
  189. return f;
  190. }
  191. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  192. register double d;
  193. register ggml_fp16_t r;
  194. __asm__( /* xscvdphp can work on double or single precision */
  195. "xscvdphp %0,%2\n"
  196. "mffprd %1,%0\n" :
  197. /* temp */ "=d"(d),
  198. /* out */ "=r"(r):
  199. /* in */ "f"(f));
  200. return r;
  201. }
  202. #else
  203. // FP16 <-> FP32
  204. // ref: https://github.com/Maratyszcza/FP16
  205. static inline float fp32_from_bits(uint32_t w) {
  206. union {
  207. uint32_t as_bits;
  208. float as_value;
  209. } fp32;
  210. fp32.as_bits = w;
  211. return fp32.as_value;
  212. }
  213. static inline uint32_t fp32_to_bits(float f) {
  214. union {
  215. float as_value;
  216. uint32_t as_bits;
  217. } fp32;
  218. fp32.as_value = f;
  219. return fp32.as_bits;
  220. }
  221. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  222. const uint32_t w = (uint32_t) h << 16;
  223. const uint32_t sign = w & UINT32_C(0x80000000);
  224. const uint32_t two_w = w + w;
  225. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  226. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  227. const float exp_scale = 0x1.0p-112f;
  228. #else
  229. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  230. #endif
  231. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  232. const uint32_t magic_mask = UINT32_C(126) << 23;
  233. const float magic_bias = 0.5f;
  234. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  235. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  236. const uint32_t result = sign |
  237. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  238. return fp32_from_bits(result);
  239. }
  240. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  241. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  242. const float scale_to_inf = 0x1.0p+112f;
  243. const float scale_to_zero = 0x1.0p-110f;
  244. #else
  245. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  246. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  247. #endif
  248. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  249. const uint32_t w = fp32_to_bits(f);
  250. const uint32_t shl1_w = w + w;
  251. const uint32_t sign = w & UINT32_C(0x80000000);
  252. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  253. if (bias < UINT32_C(0x71000000)) {
  254. bias = UINT32_C(0x71000000);
  255. }
  256. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  257. const uint32_t bits = fp32_to_bits(base);
  258. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  259. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  260. const uint32_t nonsign = exp_bits + mantissa_bits;
  261. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  262. }
  263. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  264. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  265. #endif // __F16C__
  266. #endif // __ARM_NEON
  267. //
  268. // global data
  269. //
  270. // precomputed gelu table for f16 (128 KB)
  271. static ggml_fp16_t table_gelu_f16[1 << 16];
  272. // precomputed silu table for f16 (128 KB)
  273. static ggml_fp16_t table_silu_f16[1 << 16];
  274. // precomputed exp table for f16 (128 KB)
  275. static ggml_fp16_t table_exp_f16[1 << 16];
  276. // precomputed f32 table for f16 (256 KB)
  277. static float table_f32_f16[1 << 16];
  278. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  279. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  280. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  281. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  282. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  283. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  284. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  285. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  286. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  287. // precomputed tables for expanding 8bits to 8 bytes:
  288. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  289. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  290. #endif
  291. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  292. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  293. // This is also true for POWER9.
  294. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  295. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  296. uint16_t s;
  297. memcpy(&s, &f, sizeof(uint16_t));
  298. return table_f32_f16[s];
  299. }
  300. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  301. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  302. #endif
  303. // note: do not use these inside ggml.c
  304. // these are meant to be used via the ggml.h API
  305. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  306. return (float) GGML_FP16_TO_FP32(x);
  307. }
  308. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  309. return GGML_FP32_TO_FP16(x);
  310. }
  311. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  312. for (size_t i = 0; i < n; i++) {
  313. y[i] = GGML_FP16_TO_FP32(x[i]);
  314. }
  315. }
  316. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  317. size_t i = 0;
  318. #if defined(__F16C__)
  319. for (; i + 7 < n; i += 8) {
  320. __m256 x_vec = _mm256_loadu_ps(x + i);
  321. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  322. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  323. }
  324. for(; i + 3 < n; i += 4) {
  325. __m128 x_vec = _mm_loadu_ps(x + i);
  326. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  327. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  328. }
  329. #endif
  330. for (; i < n; i++) {
  331. y[i] = GGML_FP32_TO_FP16(x[i]);
  332. }
  333. }
  334. //
  335. // timing
  336. //
  337. #if defined(_MSC_VER) || defined(__MINGW32__)
  338. static int64_t timer_freq, timer_start;
  339. void ggml_time_init(void) {
  340. LARGE_INTEGER t;
  341. QueryPerformanceFrequency(&t);
  342. timer_freq = t.QuadPart;
  343. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  344. // and the uptime is high enough.
  345. // We subtract the program start time to reduce the likelihood of that happening.
  346. QueryPerformanceCounter(&t);
  347. timer_start = t.QuadPart;
  348. }
  349. int64_t ggml_time_ms(void) {
  350. LARGE_INTEGER t;
  351. QueryPerformanceCounter(&t);
  352. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  353. }
  354. int64_t ggml_time_us(void) {
  355. LARGE_INTEGER t;
  356. QueryPerformanceCounter(&t);
  357. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  358. }
  359. #else
  360. void ggml_time_init(void) {}
  361. int64_t ggml_time_ms(void) {
  362. struct timespec ts;
  363. clock_gettime(CLOCK_MONOTONIC, &ts);
  364. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  365. }
  366. int64_t ggml_time_us(void) {
  367. struct timespec ts;
  368. clock_gettime(CLOCK_MONOTONIC, &ts);
  369. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  370. }
  371. #endif
  372. int64_t ggml_cycles(void) {
  373. return clock();
  374. }
  375. int64_t ggml_cycles_per_ms(void) {
  376. return CLOCKS_PER_SEC/1000;
  377. }
  378. #ifdef GGML_PERF
  379. #define ggml_perf_time_ms() ggml_time_ms()
  380. #define ggml_perf_time_us() ggml_time_us()
  381. #define ggml_perf_cycles() ggml_cycles()
  382. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  383. #else
  384. #define ggml_perf_time_ms() 0
  385. #define ggml_perf_time_us() 0
  386. #define ggml_perf_cycles() 0
  387. #define ggml_perf_cycles_per_ms() 0
  388. #endif
  389. //
  390. // cache line
  391. //
  392. #if defined(__cpp_lib_hardware_interference_size)
  393. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  394. #else
  395. #if defined(__POWER9_VECTOR__)
  396. #define CACHE_LINE_SIZE 128
  397. #else
  398. #define CACHE_LINE_SIZE 64
  399. #endif
  400. #endif
  401. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  402. //
  403. // quantization
  404. //
  405. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  406. // multiply int8_t, add results pairwise twice
  407. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  408. // Get absolute values of x vectors
  409. const __m128i ax = _mm_sign_epi8(x, x);
  410. // Sign the values of the y vectors
  411. const __m128i sy = _mm_sign_epi8(y, x);
  412. // Perform multiplication and create 16-bit values
  413. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  414. const __m128i ones = _mm_set1_epi16(1);
  415. return _mm_madd_epi16(ones, dot);
  416. }
  417. #if __AVX__ || __AVX2__ || __AVX512F__
  418. // horizontally add 8 floats
  419. static inline float hsum_float_8(const __m256 x) {
  420. __m128 res = _mm256_extractf128_ps(x, 1);
  421. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  422. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  423. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  424. return _mm_cvtss_f32(res);
  425. }
  426. // horizontally add 8 int32_t
  427. static inline int hsum_i32_8(const __m256i a) {
  428. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  429. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  430. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  431. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  432. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  433. }
  434. // horizontally add 4 int32_t
  435. static inline int hsum_i32_4(const __m128i a) {
  436. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  437. const __m128i sum64 = _mm_add_epi32(hi64, a);
  438. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  439. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  440. }
  441. #if defined(__AVX2__) || defined(__AVX512F__)
  442. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  443. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  444. uint32_t x32;
  445. memcpy(&x32, x, sizeof(uint32_t));
  446. const __m256i shuf_mask = _mm256_set_epi64x(
  447. 0x0303030303030303, 0x0202020202020202,
  448. 0x0101010101010101, 0x0000000000000000);
  449. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  450. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  451. bytes = _mm256_or_si256(bytes, bit_mask);
  452. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  453. }
  454. // Unpack 32 4-bit fields into 32 bytes
  455. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  456. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  457. {
  458. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  459. const __m256i bytes = _mm256_set_m128i(_mm_srli_epi16(tmp, 4), tmp);
  460. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  461. return _mm256_and_si256(lowMask, bytes);
  462. }
  463. // add int16_t pairwise and return as float vector
  464. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  465. const __m256i ones = _mm256_set1_epi16(1);
  466. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  467. return _mm256_cvtepi32_ps(summed_pairs);
  468. }
  469. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  470. #if __AVXVNNI__
  471. const __m256i zero = _mm256_setzero_si256();
  472. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  473. return _mm256_cvtepi32_ps(summed_pairs);
  474. #else
  475. // Perform multiplication and create 16-bit values
  476. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  477. return sum_i16_pairs_float(dot);
  478. #endif
  479. }
  480. // multiply int8_t, add results pairwise twice and return as float vector
  481. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  482. #if __AVXVNNIINT8__
  483. const __m256i zero = _mm256_setzero_si256();
  484. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  485. return _mm256_cvtepi32_ps(summed_pairs);
  486. #else
  487. // Get absolute values of x vectors
  488. const __m256i ax = _mm256_sign_epi8(x, x);
  489. // Sign the values of the y vectors
  490. const __m256i sy = _mm256_sign_epi8(y, x);
  491. return mul_sum_us8_pairs_float(ax, sy);
  492. #endif
  493. }
  494. static inline __m128i packNibbles( __m256i bytes )
  495. {
  496. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  497. #if __AVX512F__
  498. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  499. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  500. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  501. #else
  502. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  503. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  504. __m256i low = _mm256_and_si256( lowByte, bytes );
  505. high = _mm256_srli_epi16( high, 4 );
  506. bytes = _mm256_or_si256( low, high );
  507. // Compress uint16_t lanes into bytes
  508. __m128i r0 = _mm256_castsi256_si128( bytes );
  509. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  510. return _mm_packus_epi16( r0, r1 );
  511. #endif
  512. }
  513. #elif defined(__AVX__)
  514. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  515. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  516. uint32_t x32;
  517. memcpy(&x32, x, sizeof(uint32_t));
  518. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  519. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  520. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  521. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  522. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  523. bytesl = _mm_or_si128(bytesl, bit_mask);
  524. bytesh = _mm_or_si128(bytesh, bit_mask);
  525. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  526. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  527. return _mm256_set_m128i(bytesh, bytesl);
  528. }
  529. // Unpack 32 4-bit fields into 32 bytes
  530. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  531. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  532. {
  533. // Load 16 bytes from memory
  534. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  535. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  536. const __m128i lowMask = _mm_set1_epi8(0xF);
  537. tmpl = _mm_and_si128(lowMask, tmpl);
  538. tmph = _mm_and_si128(lowMask, tmph);
  539. return _mm256_set_m128i(tmph, tmpl);
  540. }
  541. // add int16_t pairwise and return as float vector
  542. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  543. const __m128i ones = _mm_set1_epi16(1);
  544. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  545. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  546. const __m256i summed_pairs = _mm256_set_m128i(summed_pairsh, summed_pairsl);
  547. return _mm256_cvtepi32_ps(summed_pairs);
  548. }
  549. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  550. const __m128i axl = _mm256_castsi256_si128(ax);
  551. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  552. const __m128i syl = _mm256_castsi256_si128(sy);
  553. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  554. // Perform multiplication and create 16-bit values
  555. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  556. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  557. return sum_i16_pairs_float(doth, dotl);
  558. }
  559. // multiply int8_t, add results pairwise twice and return as float vector
  560. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  561. const __m128i xl = _mm256_castsi256_si128(x);
  562. const __m128i xh = _mm256_extractf128_si256(x, 1);
  563. const __m128i yl = _mm256_castsi256_si128(y);
  564. const __m128i yh = _mm256_extractf128_si256(y, 1);
  565. // Get absolute values of x vectors
  566. const __m128i axl = _mm_sign_epi8(xl, xl);
  567. const __m128i axh = _mm_sign_epi8(xh, xh);
  568. // Sign the values of the y vectors
  569. const __m128i syl = _mm_sign_epi8(yl, xl);
  570. const __m128i syh = _mm_sign_epi8(yh, xh);
  571. // Perform multiplication and create 16-bit values
  572. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  573. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  574. return sum_i16_pairs_float(doth, dotl);
  575. }
  576. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  577. {
  578. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  579. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  580. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  581. __m128i low = _mm_and_si128( lowByte, bytes1 );
  582. high = _mm_srli_epi16( high, 4 );
  583. bytes1 = _mm_or_si128( low, high );
  584. high = _mm_andnot_si128( lowByte, bytes2 );
  585. low = _mm_and_si128( lowByte, bytes2 );
  586. high = _mm_srli_epi16( high, 4 );
  587. bytes2 = _mm_or_si128( low, high );
  588. return _mm_packus_epi16( bytes1, bytes2);
  589. }
  590. #endif
  591. #elif defined(__SSSE3__)
  592. // horizontally add 4x4 floats
  593. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  594. __m128 res_0 =_mm_hadd_ps(a, b);
  595. __m128 res_1 =_mm_hadd_ps(c, d);
  596. __m128 res =_mm_hadd_ps(res_0, res_1);
  597. res =_mm_hadd_ps(res, res);
  598. res =_mm_hadd_ps(res, res);
  599. return _mm_cvtss_f32(res);
  600. }
  601. #endif // __AVX__ || __AVX2__ || __AVX512F__
  602. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  603. #if defined(__ARM_NEON)
  604. #if !defined(__aarch64__)
  605. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  606. return
  607. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  608. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  609. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  610. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  611. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  612. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  613. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  614. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  615. }
  616. inline static int16_t vaddvq_s8(int8x16_t v) {
  617. return
  618. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  619. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  620. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  621. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  622. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  623. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  624. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  625. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  626. }
  627. inline static int32_t vaddvq_s16(int16x8_t v) {
  628. return
  629. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  630. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  631. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  632. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  633. }
  634. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  635. return
  636. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  637. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  638. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  639. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  640. }
  641. inline static int32_t vaddvq_s32(int32x4_t v) {
  642. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  643. }
  644. inline static float vaddvq_f32(float32x4_t v) {
  645. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  646. }
  647. inline static float vminvq_f32(float32x4_t v) {
  648. return
  649. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  650. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  651. }
  652. inline static float vmaxvq_f32(float32x4_t v) {
  653. return
  654. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  655. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  656. }
  657. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  658. int32x4_t res;
  659. res[0] = roundf(vgetq_lane_f32(v, 0));
  660. res[1] = roundf(vgetq_lane_f32(v, 1));
  661. res[2] = roundf(vgetq_lane_f32(v, 2));
  662. res[3] = roundf(vgetq_lane_f32(v, 3));
  663. return res;
  664. }
  665. #endif
  666. #endif
  667. #define QK4_0 32
  668. typedef struct {
  669. ggml_fp16_t d; // delta
  670. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  671. } block_q4_0;
  672. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  673. #define QK4_1 32
  674. typedef struct {
  675. ggml_fp16_t d; // delta
  676. ggml_fp16_t m; // min
  677. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  678. } block_q4_1;
  679. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  680. #define QK5_0 32
  681. typedef struct {
  682. ggml_fp16_t d; // delta
  683. uint8_t qh[4]; // 5-th bit of quants
  684. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  685. } block_q5_0;
  686. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  687. #define QK5_1 32
  688. typedef struct {
  689. ggml_fp16_t d; // delta
  690. ggml_fp16_t m; // min
  691. uint8_t qh[4]; // 5-th bit of quants
  692. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  693. } block_q5_1;
  694. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  695. #define QK8_0 32
  696. typedef struct {
  697. ggml_fp16_t d; // delta
  698. int8_t qs[QK8_0]; // quants
  699. } block_q8_0;
  700. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  701. #define QK8_1 32
  702. typedef struct {
  703. float d; // delta
  704. float s; // d * sum(qs[i])
  705. int8_t qs[QK8_1]; // quants
  706. } block_q8_1;
  707. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  708. // reference implementation for deterministic creation of model files
  709. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  710. static const int qk = QK4_0;
  711. assert(k % qk == 0);
  712. const int nb = k / qk;
  713. for (int i = 0; i < nb; i++) {
  714. float amax = 0.0f; // absolute max
  715. float max = 0.0f;
  716. for (int j = 0; j < qk; j++) {
  717. const float v = x[i*qk + j];
  718. if (amax < fabsf(v)) {
  719. amax = fabsf(v);
  720. max = v;
  721. }
  722. }
  723. const float d = max / -8;
  724. const float id = d ? 1.0f/d : 0.0f;
  725. y[i].d = GGML_FP32_TO_FP16(d);
  726. for (int j = 0; j < qk/2; ++j) {
  727. const float x0 = x[i*qk + 0 + j]*id;
  728. const float x1 = x[i*qk + qk/2 + j]*id;
  729. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  730. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  731. y[i].qs[j] = xi0;
  732. y[i].qs[j] |= xi1 << 4;
  733. }
  734. }
  735. }
  736. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  737. quantize_row_q4_0_reference(x, y, k);
  738. }
  739. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  740. const int qk = QK4_1;
  741. assert(k % qk == 0);
  742. const int nb = k / qk;
  743. for (int i = 0; i < nb; i++) {
  744. float min = FLT_MAX;
  745. float max = -FLT_MAX;
  746. for (int j = 0; j < qk; j++) {
  747. const float v = x[i*qk + j];
  748. if (v < min) min = v;
  749. if (v > max) max = v;
  750. }
  751. const float d = (max - min) / ((1 << 4) - 1);
  752. const float id = d ? 1.0f/d : 0.0f;
  753. y[i].d = GGML_FP32_TO_FP16(d);
  754. y[i].m = GGML_FP32_TO_FP16(min);
  755. for (int j = 0; j < qk/2; ++j) {
  756. const float x0 = (x[i*qk + 0 + j] - min)*id;
  757. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  758. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  759. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  760. y[i].qs[j] = xi0;
  761. y[i].qs[j] |= xi1 << 4;
  762. }
  763. }
  764. }
  765. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  766. quantize_row_q4_1_reference(x, y, k);
  767. }
  768. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  769. static const int qk = QK5_0;
  770. assert(k % qk == 0);
  771. const int nb = k / qk;
  772. for (int i = 0; i < nb; i++) {
  773. float amax = 0.0f; // absolute max
  774. float max = 0.0f;
  775. for (int j = 0; j < qk; j++) {
  776. const float v = x[i*qk + j];
  777. if (amax < fabsf(v)) {
  778. amax = fabsf(v);
  779. max = v;
  780. }
  781. }
  782. const float d = max / -16;
  783. const float id = d ? 1.0f/d : 0.0f;
  784. y[i].d = GGML_FP32_TO_FP16(d);
  785. uint32_t qh = 0;
  786. for (int j = 0; j < qk/2; ++j) {
  787. const float x0 = x[i*qk + 0 + j]*id;
  788. const float x1 = x[i*qk + qk/2 + j]*id;
  789. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  790. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  791. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  792. // get the 5-th bit and store it in qh at the right position
  793. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  794. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  795. }
  796. memcpy(&y[i].qh, &qh, sizeof(qh));
  797. }
  798. }
  799. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  800. quantize_row_q5_0_reference(x, y, k);
  801. }
  802. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  803. const int qk = QK5_1;
  804. assert(k % qk == 0);
  805. const int nb = k / qk;
  806. for (int i = 0; i < nb; i++) {
  807. float min = FLT_MAX;
  808. float max = -FLT_MAX;
  809. for (int j = 0; j < qk; j++) {
  810. const float v = x[i*qk + j];
  811. if (v < min) min = v;
  812. if (v > max) max = v;
  813. }
  814. const float d = (max - min) / ((1 << 5) - 1);
  815. const float id = d ? 1.0f/d : 0.0f;
  816. y[i].d = GGML_FP32_TO_FP16(d);
  817. y[i].m = GGML_FP32_TO_FP16(min);
  818. uint32_t qh = 0;
  819. for (int j = 0; j < qk/2; ++j) {
  820. const float x0 = (x[i*qk + 0 + j] - min)*id;
  821. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  822. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  823. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  824. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  825. // get the 5-th bit and store it in qh at the right position
  826. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  827. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  828. }
  829. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  830. }
  831. }
  832. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  833. quantize_row_q5_1_reference(x, y, k);
  834. }
  835. // reference implementation for deterministic creation of model files
  836. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  837. assert(k % QK8_0 == 0);
  838. const int nb = k / QK8_0;
  839. for (int i = 0; i < nb; i++) {
  840. float amax = 0.0f; // absolute max
  841. for (int j = 0; j < QK8_0; j++) {
  842. const float v = x[i*QK8_0 + j];
  843. amax = MAX(amax, fabsf(v));
  844. }
  845. const float d = amax / ((1 << 7) - 1);
  846. const float id = d ? 1.0f/d : 0.0f;
  847. y[i].d = GGML_FP32_TO_FP16(d);
  848. for (int j = 0; j < QK8_0; ++j) {
  849. const float x0 = x[i*QK8_0 + j]*id;
  850. y[i].qs[j] = roundf(x0);
  851. }
  852. }
  853. }
  854. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  855. assert(QK8_0 == 32);
  856. assert(k % QK8_0 == 0);
  857. const int nb = k / QK8_0;
  858. block_q8_0 * restrict y = vy;
  859. #if defined(__ARM_NEON)
  860. for (int i = 0; i < nb; i++) {
  861. float32x4_t srcv [8];
  862. float32x4_t asrcv[8];
  863. float32x4_t amaxv[8];
  864. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  865. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  866. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  867. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  868. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  869. const float amax = vmaxvq_f32(amaxv[0]);
  870. const float d = amax / ((1 << 7) - 1);
  871. const float id = d ? 1.0f/d : 0.0f;
  872. y[i].d = GGML_FP32_TO_FP16(d);
  873. for (int j = 0; j < 8; j++) {
  874. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  875. const int32x4_t vi = vcvtnq_s32_f32(v);
  876. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  877. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  878. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  879. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  880. }
  881. }
  882. #elif defined(__wasm_simd128__)
  883. for (int i = 0; i < nb; i++) {
  884. v128_t srcv [8];
  885. v128_t asrcv[8];
  886. v128_t amaxv[8];
  887. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  888. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  889. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  890. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  891. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  892. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  893. wasm_f32x4_extract_lane(amaxv[0], 1)),
  894. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  895. wasm_f32x4_extract_lane(amaxv[0], 3)));
  896. const float d = amax / ((1 << 7) - 1);
  897. const float id = d ? 1.0f/d : 0.0f;
  898. y[i].d = GGML_FP32_TO_FP16(d);
  899. for (int j = 0; j < 8; j++) {
  900. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  901. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  902. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  903. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  904. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  905. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  906. }
  907. }
  908. #elif defined(__AVX2__) || defined(__AVX__)
  909. for (int i = 0; i < nb; i++) {
  910. // Load elements into 4 AVX vectors
  911. __m256 v0 = _mm256_loadu_ps( x );
  912. __m256 v1 = _mm256_loadu_ps( x + 8 );
  913. __m256 v2 = _mm256_loadu_ps( x + 16 );
  914. __m256 v3 = _mm256_loadu_ps( x + 24 );
  915. x += 32;
  916. // Compute max(abs(e)) for the block
  917. const __m256 signBit = _mm256_set1_ps( -0.0f );
  918. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  919. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  920. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  921. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  922. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  923. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  924. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  925. const float maxScalar = _mm_cvtss_f32( max4 );
  926. // Quantize these floats
  927. const float d = maxScalar / 127.f;
  928. y[i].d = GGML_FP32_TO_FP16(d);
  929. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  930. const __m256 mul = _mm256_set1_ps( id );
  931. // Apply the multiplier
  932. v0 = _mm256_mul_ps( v0, mul );
  933. v1 = _mm256_mul_ps( v1, mul );
  934. v2 = _mm256_mul_ps( v2, mul );
  935. v3 = _mm256_mul_ps( v3, mul );
  936. // Round to nearest integer
  937. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  938. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  939. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  940. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  941. // Convert floats to integers
  942. __m256i i0 = _mm256_cvtps_epi32( v0 );
  943. __m256i i1 = _mm256_cvtps_epi32( v1 );
  944. __m256i i2 = _mm256_cvtps_epi32( v2 );
  945. __m256i i3 = _mm256_cvtps_epi32( v3 );
  946. #if defined(__AVX2__)
  947. // Convert int32 to int16
  948. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  949. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  950. // Convert int16 to int8
  951. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  952. // We got our precious signed bytes, but the order is now wrong
  953. // These AVX2 pack instructions process 16-byte pieces independently
  954. // The following instruction is fixing the order
  955. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  956. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  957. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  958. #else
  959. // Since we don't have in AVX some necessary functions,
  960. // we split the registers in half and call AVX2 analogs from SSE
  961. __m128i ni0 = _mm256_castsi256_si128( i0 );
  962. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  963. __m128i ni2 = _mm256_castsi256_si128( i1 );
  964. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  965. __m128i ni4 = _mm256_castsi256_si128( i2 );
  966. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  967. __m128i ni6 = _mm256_castsi256_si128( i3 );
  968. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  969. // Convert int32 to int16
  970. ni0 = _mm_packs_epi32( ni0, ni1 );
  971. ni2 = _mm_packs_epi32( ni2, ni3 );
  972. ni4 = _mm_packs_epi32( ni4, ni5 );
  973. ni6 = _mm_packs_epi32( ni6, ni7 );
  974. // Convert int16 to int8
  975. ni0 = _mm_packs_epi16( ni0, ni2 );
  976. ni4 = _mm_packs_epi16( ni4, ni6 );
  977. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  978. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  979. #endif
  980. }
  981. #else
  982. // scalar
  983. quantize_row_q8_0_reference(x, y, k);
  984. #endif
  985. }
  986. // reference implementation for deterministic creation of model files
  987. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  988. assert(QK8_1 == 32);
  989. assert(k % QK8_1 == 0);
  990. const int nb = k / QK8_1;
  991. for (int i = 0; i < nb; i++) {
  992. float amax = 0.0f; // absolute max
  993. for (int j = 0; j < QK8_1; j++) {
  994. const float v = x[i*QK8_1 + j];
  995. amax = MAX(amax, fabsf(v));
  996. }
  997. const float d = amax / ((1 << 7) - 1);
  998. const float id = d ? 1.0f/d : 0.0f;
  999. y[i].d = d;
  1000. int sum = 0;
  1001. for (int j = 0; j < QK8_1/2; ++j) {
  1002. const float v0 = x[i*QK8_1 + j]*id;
  1003. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1004. y[i].qs[ j] = roundf(v0);
  1005. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1006. sum += y[i].qs[ j];
  1007. sum += y[i].qs[QK8_1/2 + j];
  1008. }
  1009. y[i].s = sum*d;
  1010. }
  1011. }
  1012. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1013. assert(k % QK8_1 == 0);
  1014. const int nb = k / QK8_1;
  1015. block_q8_1 * restrict y = vy;
  1016. #if defined(__ARM_NEON)
  1017. for (int i = 0; i < nb; i++) {
  1018. float32x4_t srcv [8];
  1019. float32x4_t asrcv[8];
  1020. float32x4_t amaxv[8];
  1021. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1022. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1023. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1024. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1025. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1026. const float amax = vmaxvq_f32(amaxv[0]);
  1027. const float d = amax / ((1 << 7) - 1);
  1028. const float id = d ? 1.0f/d : 0.0f;
  1029. y[i].d = d;
  1030. int32x4_t accv = vdupq_n_s32(0);
  1031. for (int j = 0; j < 8; j++) {
  1032. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1033. const int32x4_t vi = vcvtnq_s32_f32(v);
  1034. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1035. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1036. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1037. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1038. accv = vaddq_s32(accv, vi);
  1039. }
  1040. y[i].s = d * vaddvq_s32(accv);
  1041. }
  1042. #elif defined(__wasm_simd128__)
  1043. for (int i = 0; i < nb; i++) {
  1044. v128_t srcv [8];
  1045. v128_t asrcv[8];
  1046. v128_t amaxv[8];
  1047. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1048. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1049. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1050. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1051. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1052. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1053. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1054. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1055. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1056. const float d = amax / ((1 << 7) - 1);
  1057. const float id = d ? 1.0f/d : 0.0f;
  1058. y[i].d = d;
  1059. v128_t accv = wasm_i32x4_splat(0);
  1060. for (int j = 0; j < 8; j++) {
  1061. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1062. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1063. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1064. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1065. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1066. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1067. accv = wasm_i32x4_add(accv, vi);
  1068. }
  1069. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1070. wasm_i32x4_extract_lane(accv, 1) +
  1071. wasm_i32x4_extract_lane(accv, 2) +
  1072. wasm_i32x4_extract_lane(accv, 3));
  1073. }
  1074. #elif defined(__AVX2__) || defined(__AVX__)
  1075. for (int i = 0; i < nb; i++) {
  1076. // Load elements into 4 AVX vectors
  1077. __m256 v0 = _mm256_loadu_ps( x );
  1078. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1079. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1080. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1081. x += 32;
  1082. // Compute max(abs(e)) for the block
  1083. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1084. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1085. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1086. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1087. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1088. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1089. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1090. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1091. const float maxScalar = _mm_cvtss_f32( max4 );
  1092. // Quantize these floats
  1093. const float d = maxScalar / 127.f;
  1094. y[i].d = d;
  1095. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1096. const __m256 mul = _mm256_set1_ps( id );
  1097. // Apply the multiplier
  1098. v0 = _mm256_mul_ps( v0, mul );
  1099. v1 = _mm256_mul_ps( v1, mul );
  1100. v2 = _mm256_mul_ps( v2, mul );
  1101. v3 = _mm256_mul_ps( v3, mul );
  1102. // Round to nearest integer
  1103. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1104. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1105. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1106. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1107. // Convert floats to integers
  1108. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1109. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1110. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1111. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1112. #if defined(__AVX2__)
  1113. // Compute the sum of the quants and set y[i].s
  1114. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1115. // Convert int32 to int16
  1116. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1117. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1118. // Convert int16 to int8
  1119. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1120. // We got our precious signed bytes, but the order is now wrong
  1121. // These AVX2 pack instructions process 16-byte pieces independently
  1122. // The following instruction is fixing the order
  1123. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1124. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1125. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1126. #else
  1127. // Since we don't have in AVX some necessary functions,
  1128. // we split the registers in half and call AVX2 analogs from SSE
  1129. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1130. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1131. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1132. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1133. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1134. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1135. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1136. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1137. // Compute the sum of the quants and set y[i].s
  1138. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1139. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1140. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1141. // Convert int32 to int16
  1142. ni0 = _mm_packs_epi32( ni0, ni1 );
  1143. ni2 = _mm_packs_epi32( ni2, ni3 );
  1144. ni4 = _mm_packs_epi32( ni4, ni5 );
  1145. ni6 = _mm_packs_epi32( ni6, ni7 );
  1146. // Convert int16 to int8
  1147. ni0 = _mm_packs_epi16( ni0, ni2 );
  1148. ni4 = _mm_packs_epi16( ni4, ni6 );
  1149. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1150. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1151. #endif
  1152. }
  1153. #else
  1154. // scalar
  1155. quantize_row_q8_1_reference(x, y, k);
  1156. #endif
  1157. }
  1158. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1159. static const int qk = QK4_0;
  1160. assert(k % qk == 0);
  1161. const int nb = k / qk;
  1162. for (int i = 0; i < nb; i++) {
  1163. const float d = GGML_FP16_TO_FP32(x[i].d);
  1164. for (int j = 0; j < qk/2; ++j) {
  1165. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1166. const int x1 = (x[i].qs[j] >> 4) - 8;
  1167. y[i*qk + j + 0 ] = x0*d;
  1168. y[i*qk + j + qk/2] = x1*d;
  1169. }
  1170. }
  1171. }
  1172. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1173. static const int qk = QK4_1;
  1174. assert(k % qk == 0);
  1175. const int nb = k / qk;
  1176. for (int i = 0; i < nb; i++) {
  1177. const float d = GGML_FP16_TO_FP32(x[i].d);
  1178. const float m = GGML_FP16_TO_FP32(x[i].m);
  1179. for (int j = 0; j < qk/2; ++j) {
  1180. const int x0 = (x[i].qs[j] & 0x0F);
  1181. const int x1 = (x[i].qs[j] >> 4);
  1182. y[i*qk + j + 0 ] = x0*d + m;
  1183. y[i*qk + j + qk/2] = x1*d + m;
  1184. }
  1185. }
  1186. }
  1187. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1188. static const int qk = QK5_0;
  1189. assert(k % qk == 0);
  1190. const int nb = k / qk;
  1191. for (int i = 0; i < nb; i++) {
  1192. const float d = GGML_FP16_TO_FP32(x[i].d);
  1193. uint32_t qh;
  1194. memcpy(&qh, x[i].qh, sizeof(qh));
  1195. for (int j = 0; j < qk/2; ++j) {
  1196. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1197. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1198. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1199. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1200. y[i*qk + j + 0 ] = x0*d;
  1201. y[i*qk + j + qk/2] = x1*d;
  1202. }
  1203. }
  1204. }
  1205. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1206. static const int qk = QK5_1;
  1207. assert(k % qk == 0);
  1208. const int nb = k / qk;
  1209. for (int i = 0; i < nb; i++) {
  1210. const float d = GGML_FP16_TO_FP32(x[i].d);
  1211. const float m = GGML_FP16_TO_FP32(x[i].m);
  1212. uint32_t qh;
  1213. memcpy(&qh, x[i].qh, sizeof(qh));
  1214. for (int j = 0; j < qk/2; ++j) {
  1215. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1216. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1217. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1218. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1219. y[i*qk + j + 0 ] = x0*d + m;
  1220. y[i*qk + j + qk/2] = x1*d + m;
  1221. }
  1222. }
  1223. }
  1224. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1225. static const int qk = QK8_0;
  1226. assert(k % qk == 0);
  1227. const int nb = k / qk;
  1228. const block_q8_0 * restrict x = vx;
  1229. for (int i = 0; i < nb; i++) {
  1230. const float d = GGML_FP16_TO_FP32(x[i].d);
  1231. for (int j = 0; j < qk; ++j) {
  1232. y[i*qk + j] = x[i].qs[j]*d;
  1233. }
  1234. }
  1235. }
  1236. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1237. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1238. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1239. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1240. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1241. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1242. [GGML_TYPE_Q4_0] = {
  1243. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0,
  1244. .quantize_row_q = quantize_row_q4_0,
  1245. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1246. .quantize_row_q_dot = quantize_row_q8_0,
  1247. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1248. .vec_dot_type = GGML_TYPE_Q8_0,
  1249. },
  1250. [GGML_TYPE_Q4_1] = {
  1251. .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1,
  1252. .quantize_row_q = quantize_row_q4_1,
  1253. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1254. .quantize_row_q_dot = quantize_row_q8_1,
  1255. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1256. .vec_dot_type = GGML_TYPE_Q8_1,
  1257. },
  1258. [GGML_TYPE_Q5_0] = {
  1259. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0,
  1260. .quantize_row_q = quantize_row_q5_0,
  1261. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1262. .quantize_row_q_dot = quantize_row_q8_0,
  1263. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1264. .vec_dot_type = GGML_TYPE_Q8_0,
  1265. },
  1266. [GGML_TYPE_Q5_1] = {
  1267. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1,
  1268. .quantize_row_q = quantize_row_q5_1,
  1269. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1270. .quantize_row_q_dot = quantize_row_q8_1,
  1271. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1272. .vec_dot_type = GGML_TYPE_Q8_1,
  1273. },
  1274. [GGML_TYPE_Q8_0] = {
  1275. .dequantize_row_q = dequantize_row_q8_0,
  1276. .quantize_row_q = quantize_row_q8_0,
  1277. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1278. .quantize_row_q_dot = quantize_row_q8_0,
  1279. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1280. .vec_dot_type = GGML_TYPE_Q8_0,
  1281. },
  1282. [GGML_TYPE_Q8_1] = {
  1283. .dequantize_row_q = NULL, // TODO
  1284. .quantize_row_q = quantize_row_q8_1,
  1285. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1286. .quantize_row_q_dot = quantize_row_q8_1,
  1287. .vec_dot_q = NULL, // TODO
  1288. .vec_dot_type = GGML_TYPE_Q8_1,
  1289. },
  1290. [GGML_TYPE_Q2_K] = {
  1291. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q2_k,
  1292. .quantize_row_q = quantize_row_q2_k,
  1293. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q2_k_reference,
  1294. .quantize_row_q_dot = quantize_row_q8_k,
  1295. .vec_dot_q = ggml_vec_dot_q2_k_q8_k,
  1296. .vec_dot_type = GGML_TYPE_Q8_K,
  1297. },
  1298. [GGML_TYPE_Q3_K] = {
  1299. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q3_k,
  1300. .quantize_row_q = quantize_row_q3_k,
  1301. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q3_k_reference,
  1302. .quantize_row_q_dot = quantize_row_q8_k,
  1303. .vec_dot_q = ggml_vec_dot_q3_k_q8_k,
  1304. .vec_dot_type = GGML_TYPE_Q8_K,
  1305. },
  1306. [GGML_TYPE_Q4_K] = {
  1307. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_k,
  1308. .quantize_row_q = quantize_row_q4_k,
  1309. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_k_reference,
  1310. .quantize_row_q_dot = quantize_row_q8_k,
  1311. .vec_dot_q = ggml_vec_dot_q4_k_q8_k,
  1312. .vec_dot_type = GGML_TYPE_Q8_K,
  1313. },
  1314. [GGML_TYPE_Q5_K] = {
  1315. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_k,
  1316. .quantize_row_q = quantize_row_q5_k,
  1317. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_k_reference,
  1318. .quantize_row_q_dot = quantize_row_q8_k,
  1319. .vec_dot_q = ggml_vec_dot_q5_k_q8_k,
  1320. .vec_dot_type = GGML_TYPE_Q8_K,
  1321. },
  1322. [GGML_TYPE_Q6_K] = {
  1323. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q6_k,
  1324. .quantize_row_q = quantize_row_q6_k,
  1325. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q6_k_reference,
  1326. .quantize_row_q_dot = quantize_row_q8_k,
  1327. .vec_dot_q = ggml_vec_dot_q6_k_q8_k,
  1328. .vec_dot_type = GGML_TYPE_Q8_K,
  1329. },
  1330. };
  1331. // For internal test use
  1332. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1333. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1334. return quantize_fns[i];
  1335. }
  1336. //
  1337. // simd mappings
  1338. //
  1339. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1340. // we then implement the fundamental computation operations below using only these macros
  1341. // adding support for new architectures requires to define the corresponding SIMD macros
  1342. //
  1343. // GGML_F32_STEP / GGML_F16_STEP
  1344. // number of elements to process in a single step
  1345. //
  1346. // GGML_F32_EPR / GGML_F16_EPR
  1347. // number of elements to fit in a single register
  1348. //
  1349. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1350. #define GGML_SIMD
  1351. // F32 NEON
  1352. #define GGML_F32_STEP 16
  1353. #define GGML_F32_EPR 4
  1354. #define GGML_F32x4 float32x4_t
  1355. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1356. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1357. #define GGML_F32x4_LOAD vld1q_f32
  1358. #define GGML_F32x4_STORE vst1q_f32
  1359. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1360. #define GGML_F32x4_ADD vaddq_f32
  1361. #define GGML_F32x4_MUL vmulq_f32
  1362. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1363. #define GGML_F32x4_REDUCE(res, x) \
  1364. { \
  1365. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1366. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1367. } \
  1368. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1369. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1370. } \
  1371. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1372. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1373. } \
  1374. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1375. }
  1376. #define GGML_F32_VEC GGML_F32x4
  1377. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1378. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1379. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1380. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1381. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1382. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1383. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1384. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1385. // F16 NEON
  1386. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1387. #define GGML_F16_STEP 32
  1388. #define GGML_F16_EPR 8
  1389. #define GGML_F16x8 float16x8_t
  1390. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1391. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1392. #define GGML_F16x8_LOAD vld1q_f16
  1393. #define GGML_F16x8_STORE vst1q_f16
  1394. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1395. #define GGML_F16x8_ADD vaddq_f16
  1396. #define GGML_F16x8_MUL vmulq_f16
  1397. #define GGML_F16x8_REDUCE(res, x) \
  1398. { \
  1399. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1400. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1401. } \
  1402. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1403. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1404. } \
  1405. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1406. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1407. } \
  1408. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1409. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1410. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1411. }
  1412. #define GGML_F16_VEC GGML_F16x8
  1413. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1414. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1415. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1416. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1417. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1418. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1419. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1420. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1421. #else
  1422. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1423. // and take advantage of the vcvt_ functions to convert to/from FP16
  1424. #define GGML_F16_STEP 16
  1425. #define GGML_F16_EPR 4
  1426. #define GGML_F32Cx4 float32x4_t
  1427. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1428. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1429. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1430. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1431. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1432. #define GGML_F32Cx4_ADD vaddq_f32
  1433. #define GGML_F32Cx4_MUL vmulq_f32
  1434. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1435. #define GGML_F16_VEC GGML_F32Cx4
  1436. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1437. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1438. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1439. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1440. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1441. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1442. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1443. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1444. #endif
  1445. #elif defined(__AVX__)
  1446. #define GGML_SIMD
  1447. // F32 AVX
  1448. #define GGML_F32_STEP 32
  1449. #define GGML_F32_EPR 8
  1450. #define GGML_F32x8 __m256
  1451. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1452. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1453. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1454. #define GGML_F32x8_STORE _mm256_storeu_ps
  1455. #if defined(__FMA__)
  1456. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1457. #else
  1458. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1459. #endif
  1460. #define GGML_F32x8_ADD _mm256_add_ps
  1461. #define GGML_F32x8_MUL _mm256_mul_ps
  1462. #define GGML_F32x8_REDUCE(res, x) \
  1463. { \
  1464. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1465. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1466. } \
  1467. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1468. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1469. } \
  1470. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1471. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1472. } \
  1473. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1474. _mm256_extractf128_ps(x[0], 1)); \
  1475. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1476. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1477. }
  1478. // TODO: is this optimal ?
  1479. #define GGML_F32_VEC GGML_F32x8
  1480. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1481. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1482. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1483. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1484. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1485. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1486. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1487. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1488. // F16 AVX
  1489. #define GGML_F16_STEP 32
  1490. #define GGML_F16_EPR 8
  1491. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1492. #define GGML_F32Cx8 __m256
  1493. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1494. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1495. #if defined(__F16C__)
  1496. // the _mm256_cvt intrinsics require F16C
  1497. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1498. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1499. #else
  1500. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1501. float tmp[8];
  1502. for (int i = 0; i < 8; i++) {
  1503. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1504. }
  1505. return _mm256_loadu_ps(tmp);
  1506. }
  1507. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1508. float arr[8];
  1509. _mm256_storeu_ps(arr, y);
  1510. for (int i = 0; i < 8; i++)
  1511. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1512. }
  1513. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1514. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1515. #endif
  1516. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1517. #define GGML_F32Cx8_ADD _mm256_add_ps
  1518. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1519. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1520. #define GGML_F16_VEC GGML_F32Cx8
  1521. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1522. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1523. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1524. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1525. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1526. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1527. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1528. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1529. #elif defined(__POWER9_VECTOR__)
  1530. #define GGML_SIMD
  1531. // F32 POWER9
  1532. #define GGML_F32_STEP 32
  1533. #define GGML_F32_EPR 4
  1534. #define GGML_F32x4 vector float
  1535. #define GGML_F32x4_ZERO 0.0f
  1536. #define GGML_F32x4_SET1 vec_splats
  1537. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1538. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1539. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1540. #define GGML_F32x4_ADD vec_add
  1541. #define GGML_F32x4_MUL vec_mul
  1542. #define GGML_F32x4_REDUCE(res, x) \
  1543. { \
  1544. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1545. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1546. } \
  1547. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1548. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1549. } \
  1550. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1551. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1552. } \
  1553. res = vec_extract(x[0], 0) + \
  1554. vec_extract(x[0], 1) + \
  1555. vec_extract(x[0], 2) + \
  1556. vec_extract(x[0], 3); \
  1557. }
  1558. #define GGML_F32_VEC GGML_F32x4
  1559. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1560. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1561. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1562. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1563. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1564. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1565. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1566. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1567. // F16 POWER9
  1568. #define GGML_F16_STEP GGML_F32_STEP
  1569. #define GGML_F16_EPR GGML_F32_EPR
  1570. #define GGML_F16_VEC GGML_F32x4
  1571. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1572. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1573. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1574. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1575. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1576. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1577. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1578. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1579. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1580. #define GGML_F16_VEC_STORE(p, r, i) \
  1581. if (i & 0x1) \
  1582. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1583. r[i - GGML_ENDIAN_BYTE(0)]), \
  1584. 0, p - GGML_F16_EPR)
  1585. #elif defined(__wasm_simd128__)
  1586. #define GGML_SIMD
  1587. // F32 WASM
  1588. #define GGML_F32_STEP 16
  1589. #define GGML_F32_EPR 4
  1590. #define GGML_F32x4 v128_t
  1591. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1592. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1593. #define GGML_F32x4_LOAD wasm_v128_load
  1594. #define GGML_F32x4_STORE wasm_v128_store
  1595. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1596. #define GGML_F32x4_ADD wasm_f32x4_add
  1597. #define GGML_F32x4_MUL wasm_f32x4_mul
  1598. #define GGML_F32x4_REDUCE(res, x) \
  1599. { \
  1600. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1601. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1602. } \
  1603. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1604. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1605. } \
  1606. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1607. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1608. } \
  1609. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1610. wasm_f32x4_extract_lane(x[0], 1) + \
  1611. wasm_f32x4_extract_lane(x[0], 2) + \
  1612. wasm_f32x4_extract_lane(x[0], 3); \
  1613. }
  1614. #define GGML_F32_VEC GGML_F32x4
  1615. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1616. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1617. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1618. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1619. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1620. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1621. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1622. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1623. // F16 WASM
  1624. #define GGML_F16_STEP 16
  1625. #define GGML_F16_EPR 4
  1626. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1627. float tmp[4];
  1628. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1629. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1630. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1631. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1632. return wasm_v128_load(tmp);
  1633. }
  1634. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1635. float tmp[4];
  1636. wasm_v128_store(tmp, x);
  1637. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1638. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1639. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1640. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1641. }
  1642. #define GGML_F16x4 v128_t
  1643. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1644. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1645. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1646. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1647. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1648. #define GGML_F16x4_ADD wasm_f32x4_add
  1649. #define GGML_F16x4_MUL wasm_f32x4_mul
  1650. #define GGML_F16x4_REDUCE(res, x) \
  1651. { \
  1652. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1653. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1654. } \
  1655. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1656. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1657. } \
  1658. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1659. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1660. } \
  1661. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1662. wasm_f32x4_extract_lane(x[0], 1) + \
  1663. wasm_f32x4_extract_lane(x[0], 2) + \
  1664. wasm_f32x4_extract_lane(x[0], 3); \
  1665. }
  1666. #define GGML_F16_VEC GGML_F16x4
  1667. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1668. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1669. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1670. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1671. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1672. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1673. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1674. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1675. #elif defined(__SSE3__)
  1676. #define GGML_SIMD
  1677. // F32 SSE
  1678. #define GGML_F32_STEP 32
  1679. #define GGML_F32_EPR 4
  1680. #define GGML_F32x4 __m128
  1681. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1682. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1683. #define GGML_F32x4_LOAD _mm_loadu_ps
  1684. #define GGML_F32x4_STORE _mm_storeu_ps
  1685. #if defined(__FMA__)
  1686. // TODO: Does this work?
  1687. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1688. #else
  1689. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1690. #endif
  1691. #define GGML_F32x4_ADD _mm_add_ps
  1692. #define GGML_F32x4_MUL _mm_mul_ps
  1693. #define GGML_F32x4_REDUCE(res, x) \
  1694. { \
  1695. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1696. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1697. } \
  1698. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1699. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1700. } \
  1701. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1702. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1703. } \
  1704. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1705. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1706. }
  1707. // TODO: is this optimal ?
  1708. #define GGML_F32_VEC GGML_F32x4
  1709. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1710. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1711. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1712. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1713. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1714. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1715. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1716. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1717. // F16 SSE
  1718. #define GGML_F16_STEP 32
  1719. #define GGML_F16_EPR 4
  1720. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1721. float tmp[4];
  1722. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1723. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1724. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1725. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1726. return _mm_loadu_ps(tmp);
  1727. }
  1728. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1729. float arr[4];
  1730. _mm_storeu_ps(arr, y);
  1731. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1732. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1733. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1734. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1735. }
  1736. #define GGML_F32Cx4 __m128
  1737. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1738. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1739. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1740. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1741. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1742. #define GGML_F32Cx4_ADD _mm_add_ps
  1743. #define GGML_F32Cx4_MUL _mm_mul_ps
  1744. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1745. #define GGML_F16_VEC GGML_F32Cx4
  1746. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1747. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1748. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1749. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1750. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1751. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1752. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1753. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1754. #endif
  1755. // GGML_F32_ARR / GGML_F16_ARR
  1756. // number of registers to use per step
  1757. #ifdef GGML_SIMD
  1758. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1759. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1760. #endif
  1761. //
  1762. // fundamental operations
  1763. //
  1764. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1765. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1766. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1767. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1768. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1769. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1770. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1771. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1772. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1773. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1774. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1775. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1776. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1777. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1778. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1779. #ifdef GGML_SIMD
  1780. float sumf = 0.0f;
  1781. const int np = (n & ~(GGML_F32_STEP - 1));
  1782. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1783. GGML_F32_VEC ax[GGML_F32_ARR];
  1784. GGML_F32_VEC ay[GGML_F32_ARR];
  1785. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1786. for (int j = 0; j < GGML_F32_ARR; j++) {
  1787. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1788. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1789. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1790. }
  1791. }
  1792. // reduce sum0..sum3 to sum0
  1793. GGML_F32_VEC_REDUCE(sumf, sum);
  1794. // leftovers
  1795. for (int i = np; i < n; ++i) {
  1796. sumf += x[i]*y[i];
  1797. }
  1798. #else
  1799. // scalar
  1800. ggml_float sumf = 0.0;
  1801. for (int i = 0; i < n; ++i) {
  1802. sumf += (ggml_float)(x[i]*y[i]);
  1803. }
  1804. #endif
  1805. *s = sumf;
  1806. }
  1807. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1808. ggml_float sumf = 0.0;
  1809. #if defined(GGML_SIMD)
  1810. const int np = (n & ~(GGML_F16_STEP - 1));
  1811. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1812. GGML_F16_VEC ax[GGML_F16_ARR];
  1813. GGML_F16_VEC ay[GGML_F16_ARR];
  1814. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1815. for (int j = 0; j < GGML_F16_ARR; j++) {
  1816. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1817. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1818. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1819. }
  1820. }
  1821. // reduce sum0..sum3 to sum0
  1822. GGML_F16_VEC_REDUCE(sumf, sum);
  1823. // leftovers
  1824. for (int i = np; i < n; ++i) {
  1825. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1826. }
  1827. #else
  1828. for (int i = 0; i < n; ++i) {
  1829. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1830. }
  1831. #endif
  1832. *s = sumf;
  1833. }
  1834. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1835. const int qk = QK8_0;
  1836. const int nb = n / qk;
  1837. assert(n % qk == 0);
  1838. assert(nb % 2 == 0);
  1839. const block_q4_0 * restrict x = vx;
  1840. const block_q8_0 * restrict y = vy;
  1841. #if defined(__ARM_NEON)
  1842. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1843. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1844. for (int i = 0; i < nb; i += 2) {
  1845. const block_q4_0 * restrict x0 = &x[i + 0];
  1846. const block_q4_0 * restrict x1 = &x[i + 1];
  1847. const block_q8_0 * restrict y0 = &y[i + 0];
  1848. const block_q8_0 * restrict y1 = &y[i + 1];
  1849. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1850. const int8x16_t s8b = vdupq_n_s8(0x8);
  1851. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1852. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1853. // 4-bit -> 8-bit
  1854. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1855. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1856. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1857. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1858. // sub 8
  1859. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1860. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1861. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1862. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1863. // load y
  1864. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1865. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1866. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1867. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1868. #if defined(__ARM_FEATURE_DOTPROD)
  1869. // dot product into int32x4_t
  1870. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1871. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1872. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1873. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1874. #else
  1875. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1876. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1877. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1878. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1879. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1880. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  1881. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  1882. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  1883. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1884. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1885. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1886. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1887. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1888. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1889. #endif
  1890. }
  1891. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1892. #elif defined(__AVX2__)
  1893. // Initialize accumulator with zeros
  1894. __m256 acc = _mm256_setzero_ps();
  1895. // Main loop
  1896. for (int i = 0; i < nb; ++i) {
  1897. /* Compute combined scale for the block */
  1898. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1899. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1900. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1901. const __m256i off = _mm256_set1_epi8( 8 );
  1902. bx = _mm256_sub_epi8( bx, off );
  1903. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1904. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  1905. /* Multiply q with scale and accumulate */
  1906. acc = _mm256_fmadd_ps( d, q, acc );
  1907. }
  1908. *s = hsum_float_8(acc);
  1909. #elif defined(__AVX__)
  1910. // Initialize accumulator with zeros
  1911. __m256 acc = _mm256_setzero_ps();
  1912. // Main loop
  1913. for (int i = 0; i < nb; ++i) {
  1914. // Compute combined scale for the block
  1915. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1916. const __m128i lowMask = _mm_set1_epi8(0xF);
  1917. const __m128i off = _mm_set1_epi8(8);
  1918. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  1919. __m128i bx = _mm_and_si128(lowMask, tmp);
  1920. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  1921. bx = _mm_sub_epi8(bx, off);
  1922. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  1923. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  1924. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1925. bx = _mm_sub_epi8(bx, off);
  1926. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  1927. // Convert int32_t to float
  1928. __m256 p = _mm256_cvtepi32_ps(_mm256_set_m128i(i32_0, i32_1));
  1929. // Apply the scale, and accumulate
  1930. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1931. }
  1932. *s = hsum_float_8(acc);
  1933. #elif defined(__SSSE3__)
  1934. // set constants
  1935. const __m128i lowMask = _mm_set1_epi8(0xF);
  1936. const __m128i off = _mm_set1_epi8(8);
  1937. // Initialize accumulator with zeros
  1938. __m128 acc_0 = _mm_setzero_ps();
  1939. __m128 acc_1 = _mm_setzero_ps();
  1940. __m128 acc_2 = _mm_setzero_ps();
  1941. __m128 acc_3 = _mm_setzero_ps();
  1942. // First round without accumulation
  1943. {
  1944. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  1945. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  1946. // Compute combined scale for the block 0 and 1
  1947. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  1948. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  1949. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1950. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  1951. bx_0 = _mm_sub_epi8(bx_0, off);
  1952. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1953. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1954. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  1955. bx_1 = _mm_sub_epi8(bx_1, off);
  1956. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1957. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  1958. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  1959. // Compute combined scale for the block 2 and 3
  1960. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  1961. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  1962. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1963. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  1964. bx_2 = _mm_sub_epi8(bx_2, off);
  1965. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1966. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1967. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  1968. bx_3 = _mm_sub_epi8(bx_3, off);
  1969. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1970. // Convert int32_t to float
  1971. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1972. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1973. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1974. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1975. // Apply the scale
  1976. acc_0 = _mm_mul_ps( d_0_1, p0 );
  1977. acc_1 = _mm_mul_ps( d_0_1, p1 );
  1978. acc_2 = _mm_mul_ps( d_2_3, p2 );
  1979. acc_3 = _mm_mul_ps( d_2_3, p3 );
  1980. }
  1981. // Main loop
  1982. for (int i = 2; i < nb; i+=2) {
  1983. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  1984. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  1985. // Compute combined scale for the block 0 and 1
  1986. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1987. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  1988. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1989. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  1990. bx_0 = _mm_sub_epi8(bx_0, off);
  1991. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1992. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1993. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1994. bx_1 = _mm_sub_epi8(bx_1, off);
  1995. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1996. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  1997. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  1998. // Compute combined scale for the block 2 and 3
  1999. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2000. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2001. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2002. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2003. bx_2 = _mm_sub_epi8(bx_2, off);
  2004. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2005. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2006. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2007. bx_3 = _mm_sub_epi8(bx_3, off);
  2008. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2009. // Convert int32_t to float
  2010. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2011. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2012. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2013. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2014. // Apply the scale
  2015. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2016. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2017. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2018. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2019. // Acummulate
  2020. acc_0 = _mm_add_ps(p0_d, acc_0);
  2021. acc_1 = _mm_add_ps(p1_d, acc_1);
  2022. acc_2 = _mm_add_ps(p2_d, acc_2);
  2023. acc_3 = _mm_add_ps(p3_d, acc_3);
  2024. }
  2025. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2026. #else
  2027. // scalar
  2028. float sumf = 0.0;
  2029. for (int i = 0; i < nb; i++) {
  2030. int sumi = 0;
  2031. for (int j = 0; j < qk/2; ++j) {
  2032. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2033. const int v1 = (x[i].qs[j] >> 4) - 8;
  2034. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2035. }
  2036. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2037. }
  2038. *s = sumf;
  2039. #endif
  2040. }
  2041. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2042. const int qk = QK8_1;
  2043. const int nb = n / qk;
  2044. assert(n % qk == 0);
  2045. assert(nb % 2 == 0);
  2046. const block_q4_1 * restrict x = vx;
  2047. const block_q8_1 * restrict y = vy;
  2048. // TODO: add WASM SIMD
  2049. #if defined(__ARM_NEON)
  2050. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2051. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2052. float summs = 0;
  2053. for (int i = 0; i < nb; i += 2) {
  2054. const block_q4_1 * restrict x0 = &x[i + 0];
  2055. const block_q4_1 * restrict x1 = &x[i + 1];
  2056. const block_q8_1 * restrict y0 = &y[i + 0];
  2057. const block_q8_1 * restrict y1 = &y[i + 1];
  2058. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2059. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2060. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2061. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2062. // 4-bit -> 8-bit
  2063. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2064. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2065. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2066. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2067. // load y
  2068. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2069. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2070. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2071. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2072. #if defined(__ARM_FEATURE_DOTPROD)
  2073. // dot product into int32x4_t
  2074. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2075. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2076. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2077. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2078. #else
  2079. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2080. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2081. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2082. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2083. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2084. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2085. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2086. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2087. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2088. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2089. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2090. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2091. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2092. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2093. #endif
  2094. }
  2095. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2096. #elif defined(__AVX2__) || defined(__AVX__)
  2097. // Initialize accumulator with zeros
  2098. __m256 acc = _mm256_setzero_ps();
  2099. float summs = 0;
  2100. // Main loop
  2101. for (int i = 0; i < nb; ++i) {
  2102. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2103. const float d1 = y[i].d;
  2104. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2105. const __m256 d0v = _mm256_set1_ps( d0 );
  2106. const __m256 d1v = _mm256_set1_ps( d1 );
  2107. // Compute combined scales
  2108. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2109. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2110. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2111. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2112. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2113. // Accumulate d0*d1*x*y
  2114. #if defined(__AVX2__)
  2115. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2116. #else
  2117. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2118. #endif
  2119. }
  2120. *s = hsum_float_8(acc) + summs;
  2121. #else
  2122. // scalar
  2123. float sumf = 0.0;
  2124. for (int i = 0; i < nb; i++) {
  2125. int sumi = 0;
  2126. for (int j = 0; j < qk/2; ++j) {
  2127. const int v0 = (x[i].qs[j] & 0x0F);
  2128. const int v1 = (x[i].qs[j] >> 4);
  2129. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2130. }
  2131. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2132. }
  2133. *s = sumf;
  2134. #endif
  2135. }
  2136. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2137. const int qk = QK8_0;
  2138. const int nb = n / qk;
  2139. assert(n % qk == 0);
  2140. assert(nb % 2 == 0);
  2141. assert(qk == QK5_0);
  2142. const block_q5_0 * restrict x = vx;
  2143. const block_q8_0 * restrict y = vy;
  2144. #if defined(__ARM_NEON)
  2145. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2146. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2147. uint32_t qh0;
  2148. uint32_t qh1;
  2149. uint64_t tmp0[4];
  2150. uint64_t tmp1[4];
  2151. for (int i = 0; i < nb; i += 2) {
  2152. const block_q5_0 * restrict x0 = &x[i];
  2153. const block_q5_0 * restrict x1 = &x[i + 1];
  2154. const block_q8_0 * restrict y0 = &y[i];
  2155. const block_q8_0 * restrict y1 = &y[i + 1];
  2156. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2157. // extract the 5th bit via lookup table ((!b) << 4)
  2158. memcpy(&qh0, x0->qh, sizeof(qh0));
  2159. memcpy(&qh1, x1->qh, sizeof(qh1));
  2160. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2161. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2162. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2163. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2164. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2165. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2166. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2167. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2168. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2169. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2170. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2171. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2172. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2173. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2174. // 4-bit -> 8-bit
  2175. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2176. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2177. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2178. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2179. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2180. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2181. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2182. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2183. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2184. // load y
  2185. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2186. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2187. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2188. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2189. #if defined(__ARM_FEATURE_DOTPROD)
  2190. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2191. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2192. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2193. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2194. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2195. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2196. #else
  2197. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2198. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2199. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2200. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2201. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2202. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2203. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2204. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2205. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2206. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2207. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2208. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2209. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2210. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2211. #endif
  2212. }
  2213. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2214. #elif defined(__wasm_simd128__)
  2215. v128_t sumv = wasm_f32x4_splat(0.0f);
  2216. uint32_t qh;
  2217. uint64_t tmp[4];
  2218. // TODO: check if unrolling this is better
  2219. for (int i = 0; i < nb; ++i) {
  2220. const block_q5_0 * restrict x0 = &x[i];
  2221. const block_q8_0 * restrict y0 = &y[i];
  2222. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2223. // extract the 5th bit
  2224. memcpy(&qh, x0->qh, sizeof(qh));
  2225. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2226. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2227. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2228. tmp[3] = table_b2b_1[(qh >> 24) ];
  2229. const v128_t qhl = wasm_v128_load(tmp + 0);
  2230. const v128_t qhh = wasm_v128_load(tmp + 2);
  2231. const v128_t v0 = wasm_v128_load(x0->qs);
  2232. // 4-bit -> 8-bit
  2233. const v128_t v0l = wasm_v128_and (v0, m4b);
  2234. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2235. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2236. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2237. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2238. // load y
  2239. const v128_t v1l = wasm_v128_load(y0->qs);
  2240. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2241. // int8x16 -> int16x8
  2242. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2243. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2244. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2245. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2246. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2247. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2248. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2249. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2250. // dot product
  2251. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2252. wasm_i32x4_add(
  2253. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2254. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2255. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2256. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2257. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2258. }
  2259. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2260. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2261. #elif defined(__AVX2__)
  2262. // Initialize accumulator with zeros
  2263. __m256 acc = _mm256_setzero_ps();
  2264. // Main loop
  2265. for (int i = 0; i < nb; i++) {
  2266. /* Compute combined scale for the block */
  2267. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2268. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2269. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2270. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2271. bx = _mm256_or_si256(bx, bxhi);
  2272. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2273. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2274. /* Multiply q with scale and accumulate */
  2275. acc = _mm256_fmadd_ps(d, q, acc);
  2276. }
  2277. *s = hsum_float_8(acc);
  2278. #elif defined(__AVX__)
  2279. // Initialize accumulator with zeros
  2280. __m256 acc = _mm256_setzero_ps();
  2281. __m128i mask = _mm_set1_epi8((char)0xF0);
  2282. // Main loop
  2283. for (int i = 0; i < nb; i++) {
  2284. /* Compute combined scale for the block */
  2285. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2286. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2287. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2288. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2289. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2290. bxhil = _mm_andnot_si128(bxhil, mask);
  2291. bxhih = _mm_andnot_si128(bxhih, mask);
  2292. __m128i bxl = _mm256_castsi256_si128(bx);
  2293. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2294. bxl = _mm_or_si128(bxl, bxhil);
  2295. bxh = _mm_or_si128(bxh, bxhih);
  2296. bx = _mm256_set_m128i(bxh, bxl);
  2297. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2298. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2299. /* Multiply q with scale and accumulate */
  2300. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2301. }
  2302. *s = hsum_float_8(acc);
  2303. #else
  2304. // scalar
  2305. float sumf = 0.0;
  2306. for (int i = 0; i < nb; i++) {
  2307. uint32_t qh;
  2308. memcpy(&qh, x[i].qh, sizeof(qh));
  2309. int sumi = 0;
  2310. for (int j = 0; j < qk/2; ++j) {
  2311. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2312. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2313. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2314. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2315. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2316. }
  2317. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2318. }
  2319. *s = sumf;
  2320. #endif
  2321. }
  2322. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2323. const int qk = QK8_1;
  2324. const int nb = n / qk;
  2325. assert(n % qk == 0);
  2326. assert(nb % 2 == 0);
  2327. assert(qk == QK5_1);
  2328. const block_q5_1 * restrict x = vx;
  2329. const block_q8_1 * restrict y = vy;
  2330. #if defined(__ARM_NEON)
  2331. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2332. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2333. float summs0 = 0.0f;
  2334. float summs1 = 0.0f;
  2335. uint32_t qh0;
  2336. uint32_t qh1;
  2337. uint64_t tmp0[4];
  2338. uint64_t tmp1[4];
  2339. for (int i = 0; i < nb; i += 2) {
  2340. const block_q5_1 * restrict x0 = &x[i];
  2341. const block_q5_1 * restrict x1 = &x[i + 1];
  2342. const block_q8_1 * restrict y0 = &y[i];
  2343. const block_q8_1 * restrict y1 = &y[i + 1];
  2344. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2345. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2346. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2347. // extract the 5th bit via lookup table ((b) << 4)
  2348. memcpy(&qh0, x0->qh, sizeof(qh0));
  2349. memcpy(&qh1, x1->qh, sizeof(qh1));
  2350. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2351. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2352. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2353. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2354. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2355. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2356. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2357. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2358. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2359. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2360. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2361. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2362. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2363. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2364. // 4-bit -> 8-bit
  2365. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2366. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2367. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2368. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2369. // add high bit
  2370. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2371. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2372. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2373. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2374. // load y
  2375. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2376. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2377. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2378. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2379. #if defined(__ARM_FEATURE_DOTPROD)
  2380. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2381. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2382. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2383. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2384. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2385. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2386. #else
  2387. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2388. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2389. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2390. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2391. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2392. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2393. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2394. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2395. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2396. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2397. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2398. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2399. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2400. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2401. #endif
  2402. }
  2403. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2404. #elif defined(__wasm_simd128__)
  2405. v128_t sumv = wasm_f32x4_splat(0.0f);
  2406. float summs = 0.0f;
  2407. uint32_t qh;
  2408. uint64_t tmp[4];
  2409. // TODO: check if unrolling this is better
  2410. for (int i = 0; i < nb; ++i) {
  2411. const block_q5_1 * restrict x0 = &x[i];
  2412. const block_q8_1 * restrict y0 = &y[i];
  2413. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2414. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2415. // extract the 5th bit
  2416. memcpy(&qh, x0->qh, sizeof(qh));
  2417. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2418. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2419. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2420. tmp[3] = table_b2b_0[(qh >> 24) ];
  2421. const v128_t qhl = wasm_v128_load(tmp + 0);
  2422. const v128_t qhh = wasm_v128_load(tmp + 2);
  2423. const v128_t v0 = wasm_v128_load(x0->qs);
  2424. // 4-bit -> 8-bit
  2425. const v128_t v0l = wasm_v128_and (v0, m4b);
  2426. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2427. // add high bit
  2428. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2429. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2430. // load y
  2431. const v128_t v1l = wasm_v128_load(y0->qs);
  2432. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2433. // int8x16 -> int16x8
  2434. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2435. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2436. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2437. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2438. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2439. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2440. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2441. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2442. // dot product
  2443. sumv = wasm_f32x4_add(sumv,
  2444. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2445. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2446. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2447. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2448. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2449. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2450. }
  2451. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2452. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2453. #elif defined(__AVX2__)
  2454. // Initialize accumulator with zeros
  2455. __m256 acc = _mm256_setzero_ps();
  2456. float summs = 0.0f;
  2457. // Main loop
  2458. for (int i = 0; i < nb; i++) {
  2459. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2460. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2461. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2462. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2463. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2464. bx = _mm256_or_si256(bx, bxhi);
  2465. const __m256 dy = _mm256_set1_ps(y[i].d);
  2466. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2467. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2468. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2469. }
  2470. *s = hsum_float_8(acc) + summs;
  2471. #elif defined(__AVX__)
  2472. // Initialize accumulator with zeros
  2473. __m256 acc = _mm256_setzero_ps();
  2474. __m128i mask = _mm_set1_epi8(0x10);
  2475. float summs = 0.0f;
  2476. // Main loop
  2477. for (int i = 0; i < nb; i++) {
  2478. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2479. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2480. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2481. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2482. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2483. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2484. bxhil = _mm_and_si128(bxhil, mask);
  2485. bxhih = _mm_and_si128(bxhih, mask);
  2486. __m128i bxl = _mm256_castsi256_si128(bx);
  2487. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2488. bxl = _mm_or_si128(bxl, bxhil);
  2489. bxh = _mm_or_si128(bxh, bxhih);
  2490. bx = _mm256_set_m128i(bxh, bxl);
  2491. const __m256 dy = _mm256_set1_ps(y[i].d);
  2492. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2493. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2494. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2495. }
  2496. *s = hsum_float_8(acc) + summs;
  2497. #else
  2498. // scalar
  2499. float sumf = 0.0;
  2500. for (int i = 0; i < nb; i++) {
  2501. uint32_t qh;
  2502. memcpy(&qh, x[i].qh, sizeof(qh));
  2503. int sumi = 0;
  2504. for (int j = 0; j < qk/2; ++j) {
  2505. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2506. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2507. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2508. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2509. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2510. }
  2511. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2512. }
  2513. *s = sumf;
  2514. #endif
  2515. }
  2516. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2517. const int qk = QK8_0;
  2518. const int nb = n / qk;
  2519. assert(n % qk == 0);
  2520. assert(nb % 2 == 0);
  2521. const block_q8_0 * restrict x = vx;
  2522. const block_q8_0 * restrict y = vy;
  2523. #if defined(__ARM_NEON)
  2524. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2525. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2526. for (int i = 0; i < nb; i += 2) {
  2527. const block_q8_0 * restrict x0 = &x[i + 0];
  2528. const block_q8_0 * restrict x1 = &x[i + 1];
  2529. const block_q8_0 * restrict y0 = &y[i + 0];
  2530. const block_q8_0 * restrict y1 = &y[i + 1];
  2531. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2532. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2533. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2534. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2535. // load y
  2536. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2537. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2538. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2539. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2540. #if defined(__ARM_FEATURE_DOTPROD)
  2541. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2542. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2543. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2544. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2545. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2546. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2547. #else
  2548. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2549. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2550. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2551. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2552. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2553. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2554. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2555. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2556. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2557. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2558. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2559. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2560. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2561. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2562. #endif
  2563. }
  2564. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2565. #elif defined(__AVX2__) || defined(__AVX__)
  2566. // Initialize accumulator with zeros
  2567. __m256 acc = _mm256_setzero_ps();
  2568. // Main loop
  2569. for (int i = 0; i < nb; ++i) {
  2570. // Compute combined scale for the block
  2571. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2572. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2573. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2574. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2575. // Multiply q with scale and accumulate
  2576. #if defined(__AVX2__)
  2577. acc = _mm256_fmadd_ps( d, q, acc );
  2578. #else
  2579. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2580. #endif
  2581. }
  2582. *s = hsum_float_8(acc);
  2583. #else
  2584. // scalar
  2585. float sumf = 0.0;
  2586. for (int i = 0; i < nb; i++) {
  2587. int sumi = 0;
  2588. for (int j = 0; j < qk; j++) {
  2589. sumi += x[i].qs[j]*y[i].qs[j];
  2590. }
  2591. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2592. }
  2593. *s = sumf;
  2594. #endif
  2595. }
  2596. // compute GGML_VEC_DOT_UNROLL dot products at once
  2597. // xs - x row stride in bytes
  2598. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2599. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2600. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2601. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2602. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2603. }
  2604. #if defined(GGML_SIMD)
  2605. const int np = (n & ~(GGML_F16_STEP - 1));
  2606. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2607. GGML_F16_VEC ax[GGML_F16_ARR];
  2608. GGML_F16_VEC ay[GGML_F16_ARR];
  2609. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2610. for (int j = 0; j < GGML_F16_ARR; j++) {
  2611. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2612. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2613. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2614. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2615. }
  2616. }
  2617. }
  2618. // reduce sum0..sum3 to sum0
  2619. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2620. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2621. }
  2622. // leftovers
  2623. for (int i = np; i < n; ++i) {
  2624. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2625. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2626. }
  2627. }
  2628. #else
  2629. for (int i = 0; i < n; ++i) {
  2630. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2631. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2632. }
  2633. }
  2634. #endif
  2635. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2636. s[i] = sumf[i];
  2637. }
  2638. }
  2639. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2640. #if defined(GGML_SIMD)
  2641. const int np = (n & ~(GGML_F32_STEP - 1));
  2642. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2643. GGML_F32_VEC ax[GGML_F32_ARR];
  2644. GGML_F32_VEC ay[GGML_F32_ARR];
  2645. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2646. for (int j = 0; j < GGML_F32_ARR; j++) {
  2647. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2648. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2649. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2650. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2651. }
  2652. }
  2653. // leftovers
  2654. for (int i = np; i < n; ++i) {
  2655. y[i] += x[i]*v;
  2656. }
  2657. #else
  2658. // scalar
  2659. for (int i = 0; i < n; ++i) {
  2660. y[i] += x[i]*v;
  2661. }
  2662. #endif
  2663. }
  2664. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2665. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2666. #if defined(GGML_SIMD)
  2667. const int np = (n & ~(GGML_F32_STEP - 1));
  2668. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2669. GGML_F32_VEC ay[GGML_F32_ARR];
  2670. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2671. for (int j = 0; j < GGML_F32_ARR; j++) {
  2672. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2673. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2674. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2675. }
  2676. }
  2677. // leftovers
  2678. for (int i = np; i < n; ++i) {
  2679. y[i] *= v;
  2680. }
  2681. #else
  2682. // scalar
  2683. for (int i = 0; i < n; ++i) {
  2684. y[i] *= v;
  2685. }
  2686. #endif
  2687. }
  2688. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2689. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2690. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2691. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2692. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2693. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2694. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2695. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2696. static const float GELU_COEF_A = 0.044715f;
  2697. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2698. inline static float ggml_gelu_f32(float x) {
  2699. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2700. }
  2701. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2702. const uint16_t * i16 = (const uint16_t *) x;
  2703. for (int i = 0; i < n; ++i) {
  2704. y[i] = table_gelu_f16[i16[i]];
  2705. }
  2706. }
  2707. #ifdef GGML_GELU_FP16
  2708. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2709. uint16_t t;
  2710. for (int i = 0; i < n; ++i) {
  2711. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2712. memcpy(&t, &fp16, sizeof(uint16_t));
  2713. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2714. }
  2715. }
  2716. #else
  2717. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2718. for (int i = 0; i < n; ++i) {
  2719. y[i] = ggml_gelu_f32(x[i]);
  2720. }
  2721. }
  2722. #endif
  2723. // Sigmoid Linear Unit (SiLU) function
  2724. inline static float ggml_silu_f32(float x) {
  2725. return x/(1.0f + expf(-x));
  2726. }
  2727. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2728. // const uint16_t * i16 = (const uint16_t *) x;
  2729. // for (int i = 0; i < n; ++i) {
  2730. // y[i] = table_silu_f16[i16[i]];
  2731. // }
  2732. //}
  2733. #ifdef GGML_SILU_FP16
  2734. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2735. uint16_t t;
  2736. for (int i = 0; i < n; ++i) {
  2737. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2738. memcpy(&t, &fp16, sizeof(uint16_t));
  2739. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2740. }
  2741. }
  2742. #else
  2743. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2744. for (int i = 0; i < n; ++i) {
  2745. y[i] = ggml_silu_f32(x[i]);
  2746. }
  2747. }
  2748. #endif
  2749. inline static float ggml_silu_backward_f32(float x, float dy) {
  2750. const float s = 1.0f/(1.0f + expf(-x));
  2751. return dy*s*(1.0f + x*(1.0f - s));
  2752. }
  2753. #ifdef GGML_SILU_FP16
  2754. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2755. for (int i = 0; i < n; ++i) {
  2756. // we did not use x[i] to compute forward silu but its f16 equivalent
  2757. // take derivative at f16 of x[i]:
  2758. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2759. float usedx = GGML_FP16_TO_FP32(fp16);
  2760. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2761. }
  2762. }
  2763. #else
  2764. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2765. for (int i = 0; i < n; ++i) {
  2766. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2767. }
  2768. }
  2769. #endif
  2770. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2771. #ifndef GGML_USE_ACCELERATE
  2772. ggml_float sum = 0.0;
  2773. for (int i = 0; i < n; ++i) {
  2774. sum += (ggml_float)x[i];
  2775. }
  2776. *s = sum;
  2777. #else
  2778. vDSP_sve(x, 1, s, n);
  2779. #endif
  2780. }
  2781. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2782. ggml_float sum = 0.0;
  2783. for (int i = 0; i < n; ++i) {
  2784. sum += (ggml_float)x[i];
  2785. }
  2786. *s = sum;
  2787. }
  2788. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2789. #ifndef GGML_USE_ACCELERATE
  2790. float max = -INFINITY;
  2791. for (int i = 0; i < n; ++i) {
  2792. max = MAX(max, x[i]);
  2793. }
  2794. *s = max;
  2795. #else
  2796. vDSP_maxv(x, 1, s, n);
  2797. #endif
  2798. }
  2799. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2800. ggml_vec_norm_f32(n, s, x);
  2801. *s = 1.f/(*s);
  2802. }
  2803. //
  2804. // logging
  2805. //
  2806. #if (GGML_DEBUG >= 1)
  2807. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2808. #else
  2809. #define GGML_PRINT_DEBUG(...)
  2810. #endif
  2811. #if (GGML_DEBUG >= 5)
  2812. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2813. #else
  2814. #define GGML_PRINT_DEBUG_5(...)
  2815. #endif
  2816. #if (GGML_DEBUG >= 10)
  2817. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2818. #else
  2819. #define GGML_PRINT_DEBUG_10(...)
  2820. #endif
  2821. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2822. //
  2823. // data types
  2824. //
  2825. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2826. [GGML_TYPE_F32] = 1,
  2827. [GGML_TYPE_F16] = 1,
  2828. [GGML_TYPE_Q4_0] = QK4_0,
  2829. [GGML_TYPE_Q4_1] = QK4_1,
  2830. [GGML_TYPE_Q5_0] = QK5_0,
  2831. [GGML_TYPE_Q5_1] = QK5_1,
  2832. [GGML_TYPE_Q8_0] = QK8_0,
  2833. [GGML_TYPE_Q8_1] = QK8_1,
  2834. [GGML_TYPE_Q2_K] = QK_K,
  2835. [GGML_TYPE_Q3_K] = QK_K,
  2836. [GGML_TYPE_Q4_K] = QK_K,
  2837. [GGML_TYPE_Q5_K] = QK_K,
  2838. [GGML_TYPE_Q6_K] = QK_K,
  2839. [GGML_TYPE_Q8_K] = QK_K,
  2840. [GGML_TYPE_I8] = 1,
  2841. [GGML_TYPE_I16] = 1,
  2842. [GGML_TYPE_I32] = 1,
  2843. };
  2844. static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
  2845. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2846. [GGML_TYPE_F32] = sizeof(float),
  2847. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2848. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2849. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2850. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2851. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2852. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2853. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2854. [GGML_TYPE_Q2_K] = sizeof(block_q2_k),
  2855. [GGML_TYPE_Q3_K] = sizeof(block_q3_k),
  2856. [GGML_TYPE_Q4_K] = sizeof(block_q4_k),
  2857. [GGML_TYPE_Q5_K] = sizeof(block_q5_k),
  2858. [GGML_TYPE_Q6_K] = sizeof(block_q6_k),
  2859. [GGML_TYPE_Q8_K] = sizeof(block_q8_k),
  2860. [GGML_TYPE_I8] = sizeof(int8_t),
  2861. [GGML_TYPE_I16] = sizeof(int16_t),
  2862. [GGML_TYPE_I32] = sizeof(int32_t),
  2863. };
  2864. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
  2865. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2866. [GGML_TYPE_F32] = "f32",
  2867. [GGML_TYPE_F16] = "f16",
  2868. [GGML_TYPE_Q4_0] = "q4_0",
  2869. [GGML_TYPE_Q4_1] = "q4_1",
  2870. [GGML_TYPE_Q5_0] = "q5_0",
  2871. [GGML_TYPE_Q5_1] = "q5_1",
  2872. [GGML_TYPE_Q8_0] = "q8_0",
  2873. [GGML_TYPE_Q8_1] = "q8_1",
  2874. [GGML_TYPE_Q2_K] = "q2_k",
  2875. [GGML_TYPE_Q3_K] = "q3_k",
  2876. [GGML_TYPE_Q4_K] = "q4_k",
  2877. [GGML_TYPE_Q5_K] = "q5_k",
  2878. [GGML_TYPE_Q6_K] = "q6_k",
  2879. [GGML_TYPE_Q8_K] = "q8_k",
  2880. [GGML_TYPE_I8] = "i8",
  2881. [GGML_TYPE_I16] = "i16",
  2882. [GGML_TYPE_I32] = "i32",
  2883. };
  2884. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
  2885. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2886. [GGML_TYPE_F32] = false,
  2887. [GGML_TYPE_F16] = false,
  2888. [GGML_TYPE_Q4_0] = true,
  2889. [GGML_TYPE_Q4_1] = true,
  2890. [GGML_TYPE_Q5_0] = true,
  2891. [GGML_TYPE_Q5_1] = true,
  2892. [GGML_TYPE_Q8_0] = true,
  2893. [GGML_TYPE_Q8_1] = true,
  2894. [GGML_TYPE_Q2_K] = true,
  2895. [GGML_TYPE_Q3_K] = true,
  2896. [GGML_TYPE_Q4_K] = true,
  2897. [GGML_TYPE_Q5_K] = true,
  2898. [GGML_TYPE_Q6_K] = true,
  2899. [GGML_TYPE_Q8_K] = true,
  2900. [GGML_TYPE_I8] = false,
  2901. [GGML_TYPE_I16] = false,
  2902. [GGML_TYPE_I32] = false,
  2903. };
  2904. static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
  2905. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2906. "NONE",
  2907. "DUP",
  2908. "ADD",
  2909. "ADD1",
  2910. "ACC",
  2911. "SUB",
  2912. "MUL",
  2913. "DIV",
  2914. "SQR",
  2915. "SQRT",
  2916. "LOG",
  2917. "SUM",
  2918. "SUM_ROWS",
  2919. "MEAN",
  2920. "REPEAT",
  2921. "ABS",
  2922. "SGN",
  2923. "NEG",
  2924. "STEP",
  2925. "RELU",
  2926. "GELU",
  2927. "SILU",
  2928. "SILU_BACK",
  2929. "NORM",
  2930. "RMS_NORM",
  2931. "RMS_NORM_BACK",
  2932. "MUL_MAT",
  2933. "SCALE",
  2934. "SET",
  2935. "CPY",
  2936. "CONT",
  2937. "RESHAPE",
  2938. "VIEW",
  2939. "PERMUTE",
  2940. "TRANSPOSE",
  2941. "GET_ROWS",
  2942. "GET_ROWS_BACK",
  2943. "DIAG",
  2944. "DIAG_MASK_INF",
  2945. "DIAG_MASK_ZERO",
  2946. "SOFT_MAX",
  2947. "ROPE",
  2948. "ROPE_BACK",
  2949. "ALIBI",
  2950. "CLAMP",
  2951. "CONV_1D_1S",
  2952. "CONV_1D_2S",
  2953. "FLASH_ATTN",
  2954. "FLASH_FF",
  2955. "MAP_UNARY",
  2956. "MAP_BINARY",
  2957. };
  2958. static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
  2959. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2960. "none",
  2961. "x",
  2962. "x+y",
  2963. "x+y",
  2964. "view(x,nb,offset)+=y->x",
  2965. "x-y",
  2966. "x*y",
  2967. "x/y",
  2968. "x^2",
  2969. "√x",
  2970. "log(x)",
  2971. "Σx",
  2972. "Σx_k",
  2973. "Σx/n",
  2974. "repeat(x)",
  2975. "abs(x)",
  2976. "sgn(x)",
  2977. "-x",
  2978. "step(x)",
  2979. "relu(x)",
  2980. "gelu(x)",
  2981. "silu(x)",
  2982. "silu_back(x)",
  2983. "norm(x)",
  2984. "rms_norm(x)",
  2985. "rms_norm_back(x)",
  2986. "X*Y",
  2987. "x*v",
  2988. "y-\\>view(x)",
  2989. "x-\\>y",
  2990. "cont(x)",
  2991. "reshape(x)",
  2992. "view(x)",
  2993. "permute(x)",
  2994. "transpose(x)",
  2995. "get_rows(x)",
  2996. "get_rows_back(x)",
  2997. "diag(x)",
  2998. "diag_mask_inf(x)",
  2999. "diag_mask_zero(x)",
  3000. "soft_max(x)",
  3001. "rope(x)",
  3002. "rope_back(x)",
  3003. "alibi(x)",
  3004. "clamp(x)",
  3005. "conv_1d_1s(x)",
  3006. "conv_1d_2s(x)",
  3007. "flash_attn(x)",
  3008. "flash_ff(x)",
  3009. "f(x)",
  3010. "f(x,y)",
  3011. };
  3012. static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
  3013. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3014. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3015. //
  3016. // ggml context
  3017. //
  3018. struct ggml_context {
  3019. size_t mem_size;
  3020. void * mem_buffer;
  3021. bool mem_buffer_owned;
  3022. bool no_alloc;
  3023. int n_objects;
  3024. struct ggml_object * objects_begin;
  3025. struct ggml_object * objects_end;
  3026. struct ggml_scratch scratch;
  3027. struct ggml_scratch scratch_save;
  3028. };
  3029. struct ggml_context_container {
  3030. bool used;
  3031. struct ggml_context context;
  3032. };
  3033. //
  3034. // compute types
  3035. //
  3036. enum ggml_task_type {
  3037. GGML_TASK_INIT = 0,
  3038. GGML_TASK_COMPUTE,
  3039. GGML_TASK_FINALIZE,
  3040. };
  3041. struct ggml_compute_params {
  3042. enum ggml_task_type type;
  3043. int ith, nth;
  3044. // work buffer for all threads
  3045. size_t wsize;
  3046. void * wdata;
  3047. };
  3048. //
  3049. // ggml state
  3050. //
  3051. struct ggml_state {
  3052. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3053. };
  3054. // global state
  3055. static struct ggml_state g_state;
  3056. static atomic_int g_state_barrier = 0;
  3057. // barrier via spin lock
  3058. inline static void ggml_critical_section_start(void) {
  3059. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3060. while (processing > 0) {
  3061. // wait for other threads to finish
  3062. atomic_fetch_sub(&g_state_barrier, 1);
  3063. sched_yield(); // TODO: reconsider this
  3064. processing = atomic_fetch_add(&g_state_barrier, 1);
  3065. }
  3066. }
  3067. // TODO: make this somehow automatically executed
  3068. // some sort of "sentry" mechanism
  3069. inline static void ggml_critical_section_end(void) {
  3070. atomic_fetch_sub(&g_state_barrier, 1);
  3071. }
  3072. ////////////////////////////////////////////////////////////////////////////////
  3073. void ggml_print_object(const struct ggml_object * obj) {
  3074. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3075. obj->offs, obj->size, (const void *) obj->next);
  3076. }
  3077. void ggml_print_objects(const struct ggml_context * ctx) {
  3078. struct ggml_object * obj = ctx->objects_begin;
  3079. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3080. while (obj != NULL) {
  3081. ggml_print_object(obj);
  3082. obj = obj->next;
  3083. }
  3084. GGML_PRINT("%s: --- end ---\n", __func__);
  3085. }
  3086. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3087. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3088. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3089. }
  3090. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3091. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3092. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3093. }
  3094. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3095. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3096. // this should handle cases where the tensor is not contiguous in memory
  3097. // probaby just:
  3098. //
  3099. // return tensor->ne[3]*tensor->nb[3]
  3100. //
  3101. // is enough, but just in case, adding the second part
  3102. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
  3103. }
  3104. int ggml_blck_size(enum ggml_type type) {
  3105. return GGML_BLCK_SIZE[type];
  3106. }
  3107. size_t ggml_type_size(enum ggml_type type) {
  3108. return GGML_TYPE_SIZE[type];
  3109. }
  3110. float ggml_type_sizef(enum ggml_type type) {
  3111. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3112. }
  3113. const char * ggml_type_name(enum ggml_type type) {
  3114. return GGML_TYPE_NAME[type];
  3115. }
  3116. const char * ggml_op_name(enum ggml_op op) {
  3117. return GGML_OP_NAME[op];
  3118. }
  3119. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3120. return GGML_TYPE_SIZE[tensor->type];
  3121. }
  3122. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3123. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3124. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3125. }
  3126. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3127. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3128. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3129. }
  3130. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3131. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3132. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3133. }
  3134. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3135. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3136. return
  3137. (t0->ne[0] == t1->ne[0]) &&
  3138. (t0->ne[2] == t1->ne[2]) &&
  3139. (t0->ne[3] == t1->ne[3]);
  3140. }
  3141. bool ggml_is_quantized(enum ggml_type type) {
  3142. return GGML_IS_QUANTIZED[type];
  3143. }
  3144. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3145. enum ggml_type wtype = GGML_TYPE_COUNT;
  3146. switch (ftype) {
  3147. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3148. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3149. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3150. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3151. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3152. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3153. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3154. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3155. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3156. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3157. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3158. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3159. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3160. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3161. }
  3162. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3163. return wtype;
  3164. }
  3165. size_t ggml_tensor_overhead(void) {
  3166. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE + 16;
  3167. }
  3168. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3169. return tensor->nb[0] > tensor->nb[1];
  3170. }
  3171. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3172. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3173. return
  3174. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3175. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3176. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3177. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3178. }
  3179. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3180. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3181. return
  3182. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3183. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3184. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3185. }
  3186. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3187. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3188. return
  3189. (t0->ne[0] == t1->ne[0] ) &&
  3190. (t0->ne[1] == t1->ne[1] ) &&
  3191. (t0->ne[2] == t1->ne[2] ) &&
  3192. (t0->ne[3] == t1->ne[3] );
  3193. }
  3194. // check if t1 can be represented as a repeatition of t0
  3195. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3196. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3197. return
  3198. (t1->ne[0]%t0->ne[0] == 0) &&
  3199. (t1->ne[1]%t0->ne[1] == 0) &&
  3200. (t1->ne[2]%t0->ne[2] == 0) &&
  3201. (t1->ne[3]%t0->ne[3] == 0);
  3202. }
  3203. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3204. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3205. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3206. }
  3207. static inline int ggml_up32(int n) {
  3208. return (n + 31) & ~31;
  3209. }
  3210. //static inline int ggml_up64(int n) {
  3211. // return (n + 63) & ~63;
  3212. //}
  3213. static inline int ggml_up(int n, int m) {
  3214. // assert m is a power of 2
  3215. GGML_ASSERT((m & (m - 1)) == 0);
  3216. return (n + m - 1) & ~(m - 1);
  3217. }
  3218. // assert that pointer is aligned to GGML_MEM_ALIGN
  3219. #define ggml_assert_aligned(ptr) \
  3220. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3221. ////////////////////////////////////////////////////////////////////////////////
  3222. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3223. // make this function thread safe
  3224. ggml_critical_section_start();
  3225. static bool is_first_call = true;
  3226. if (is_first_call) {
  3227. // initialize time system (required on Windows)
  3228. ggml_time_init();
  3229. // initialize GELU, SILU and EXP F32 tables
  3230. {
  3231. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3232. ggml_fp16_t ii;
  3233. for (int i = 0; i < (1 << 16); ++i) {
  3234. uint16_t ui = i;
  3235. memcpy(&ii, &ui, sizeof(ii));
  3236. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3237. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3238. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3239. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3240. }
  3241. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3242. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3243. }
  3244. // initialize g_state
  3245. {
  3246. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3247. g_state = (struct ggml_state) {
  3248. /*.contexts =*/ { { 0 } },
  3249. };
  3250. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3251. g_state.contexts[i].used = false;
  3252. }
  3253. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3254. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3255. }
  3256. #if defined(GGML_USE_CUBLAS)
  3257. ggml_init_cublas();
  3258. #elif defined(GGML_USE_CLBLAST)
  3259. ggml_cl_init();
  3260. #endif
  3261. is_first_call = false;
  3262. }
  3263. // find non-used context in g_state
  3264. struct ggml_context * ctx = NULL;
  3265. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3266. if (!g_state.contexts[i].used) {
  3267. g_state.contexts[i].used = true;
  3268. ctx = &g_state.contexts[i].context;
  3269. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3270. break;
  3271. }
  3272. }
  3273. if (ctx == NULL) {
  3274. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3275. ggml_critical_section_end();
  3276. return NULL;
  3277. }
  3278. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3279. *ctx = (struct ggml_context) {
  3280. /*.mem_size =*/ mem_size,
  3281. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3282. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3283. /*.no_alloc =*/ params.no_alloc,
  3284. /*.n_objects =*/ 0,
  3285. /*.objects_begin =*/ NULL,
  3286. /*.objects_end =*/ NULL,
  3287. /*.scratch =*/ { 0, 0, NULL, },
  3288. /*.scratch_save =*/ { 0, 0, NULL, },
  3289. };
  3290. GGML_ASSERT(ctx->mem_buffer != NULL);
  3291. ggml_assert_aligned(ctx->mem_buffer);
  3292. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3293. ggml_critical_section_end();
  3294. return ctx;
  3295. }
  3296. void ggml_free(struct ggml_context * ctx) {
  3297. // make this function thread safe
  3298. ggml_critical_section_start();
  3299. bool found = false;
  3300. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3301. if (&g_state.contexts[i].context == ctx) {
  3302. g_state.contexts[i].used = false;
  3303. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3304. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3305. if (ctx->mem_buffer_owned) {
  3306. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3307. }
  3308. found = true;
  3309. break;
  3310. }
  3311. }
  3312. if (!found) {
  3313. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3314. }
  3315. ggml_critical_section_end();
  3316. }
  3317. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3318. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3319. }
  3320. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3321. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3322. ctx->scratch = scratch;
  3323. return result;
  3324. }
  3325. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3326. ctx->no_alloc = no_alloc;
  3327. }
  3328. void * ggml_get_mem_buffer(struct ggml_context * ctx) {
  3329. return ctx->mem_buffer;
  3330. }
  3331. size_t ggml_get_mem_size(struct ggml_context * ctx) {
  3332. return ctx->mem_size;
  3333. }
  3334. // IMPORTANT:
  3335. // when creating "opt" tensors, always save and load the scratch buffer
  3336. // this is an error prone process, but it is necessary to support inplace
  3337. // operators when using scratch buffers
  3338. // TODO: implement a better way
  3339. void ggml_scratch_save(struct ggml_context * ctx) {
  3340. ctx->scratch_save = ctx->scratch;
  3341. ctx->scratch.data = NULL;
  3342. }
  3343. void ggml_scratch_load(struct ggml_context * ctx) {
  3344. ctx->scratch = ctx->scratch_save;
  3345. }
  3346. ////////////////////////////////////////////////////////////////////////////////
  3347. struct ggml_tensor * ggml_new_tensor_impl(
  3348. struct ggml_context * ctx,
  3349. enum ggml_type type,
  3350. int n_dims,
  3351. const int64_t* ne,
  3352. void* data) {
  3353. // always insert objects at the end of the context's memory pool
  3354. struct ggml_object * obj_cur = ctx->objects_end;
  3355. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3356. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3357. const size_t cur_end = cur_offs + cur_size;
  3358. size_t size_needed = 0;
  3359. if (data == NULL && !ctx->no_alloc) {
  3360. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3361. for (int i = 1; i < n_dims; i++) {
  3362. size_needed *= ne[i];
  3363. }
  3364. // align to GGML_MEM_ALIGN
  3365. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3366. }
  3367. char * const mem_buffer = ctx->mem_buffer;
  3368. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3369. if (ctx->scratch.data == NULL || data != NULL) {
  3370. size_needed += GGML_TENSOR_SIZE;
  3371. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3372. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3373. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3374. assert(false);
  3375. return NULL;
  3376. }
  3377. *obj_new = (struct ggml_object) {
  3378. .offs = cur_end + GGML_OBJECT_SIZE,
  3379. .size = size_needed,
  3380. .next = NULL,
  3381. };
  3382. } else {
  3383. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3384. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3385. __func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
  3386. assert(false);
  3387. return NULL;
  3388. }
  3389. if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
  3390. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3391. __func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
  3392. assert(false);
  3393. return NULL;
  3394. }
  3395. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3396. *obj_new = (struct ggml_object) {
  3397. .offs = cur_end + GGML_OBJECT_SIZE,
  3398. .size = GGML_TENSOR_SIZE,
  3399. .next = NULL,
  3400. };
  3401. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3402. ctx->scratch.offs += size_needed;
  3403. }
  3404. if (obj_cur != NULL) {
  3405. obj_cur->next = obj_new;
  3406. } else {
  3407. // this is the first object in this context
  3408. ctx->objects_begin = obj_new;
  3409. }
  3410. ctx->objects_end = obj_new;
  3411. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3412. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3413. ggml_assert_aligned(result);
  3414. *result = (struct ggml_tensor) {
  3415. /*.type =*/ type,
  3416. /*.backend =*/ GGML_BACKEND_CPU,
  3417. /*.n_dims =*/ n_dims,
  3418. /*.ne =*/ { 1, 1, 1, 1 },
  3419. /*.nb =*/ { 0, 0, 0, 0 },
  3420. /*.op =*/ GGML_OP_NONE,
  3421. /*.is_param =*/ false,
  3422. /*.grad =*/ NULL,
  3423. /*.src0 =*/ NULL,
  3424. /*.src1 =*/ NULL,
  3425. /*.opt =*/ { NULL },
  3426. /*.n_tasks =*/ 0,
  3427. /*.perf_runs =*/ 0,
  3428. /*.perf_cycles =*/ 0,
  3429. /*.perf_time_us =*/ 0,
  3430. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3431. /*.name =*/ { 0 },
  3432. /*.pad =*/ { 0 },
  3433. };
  3434. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3435. //ggml_assert_aligned(result->data);
  3436. for (int i = 0; i < n_dims; i++) {
  3437. result->ne[i] = ne[i];
  3438. }
  3439. result->nb[0] = GGML_TYPE_SIZE[type];
  3440. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3441. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3442. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3443. }
  3444. ctx->n_objects++;
  3445. return result;
  3446. }
  3447. struct ggml_tensor * ggml_new_tensor(
  3448. struct ggml_context * ctx,
  3449. enum ggml_type type,
  3450. int n_dims,
  3451. const int64_t * ne) {
  3452. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3453. }
  3454. struct ggml_tensor * ggml_new_tensor_1d(
  3455. struct ggml_context * ctx,
  3456. enum ggml_type type,
  3457. int64_t ne0) {
  3458. return ggml_new_tensor(ctx, type, 1, &ne0);
  3459. }
  3460. struct ggml_tensor * ggml_new_tensor_2d(
  3461. struct ggml_context * ctx,
  3462. enum ggml_type type,
  3463. int64_t ne0,
  3464. int64_t ne1) {
  3465. const int64_t ne[2] = { ne0, ne1 };
  3466. return ggml_new_tensor(ctx, type, 2, ne);
  3467. }
  3468. struct ggml_tensor * ggml_new_tensor_3d(
  3469. struct ggml_context * ctx,
  3470. enum ggml_type type,
  3471. int64_t ne0,
  3472. int64_t ne1,
  3473. int64_t ne2) {
  3474. const int64_t ne[3] = { ne0, ne1, ne2 };
  3475. return ggml_new_tensor(ctx, type, 3, ne);
  3476. }
  3477. struct ggml_tensor * ggml_new_tensor_4d(
  3478. struct ggml_context * ctx,
  3479. enum ggml_type type,
  3480. int64_t ne0,
  3481. int64_t ne1,
  3482. int64_t ne2,
  3483. int64_t ne3) {
  3484. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3485. return ggml_new_tensor(ctx, type, 4, ne);
  3486. }
  3487. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3488. ggml_scratch_save(ctx);
  3489. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3490. ggml_scratch_load(ctx);
  3491. ggml_set_i32(result, value);
  3492. return result;
  3493. }
  3494. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3495. ggml_scratch_save(ctx);
  3496. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3497. ggml_scratch_load(ctx);
  3498. ggml_set_f32(result, value);
  3499. return result;
  3500. }
  3501. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3502. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3503. }
  3504. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3505. memset(tensor->data, 0, ggml_nbytes(tensor));
  3506. return tensor;
  3507. }
  3508. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3509. const int n = ggml_nrows(tensor);
  3510. const int nc = tensor->ne[0];
  3511. const size_t n1 = tensor->nb[1];
  3512. char * const data = tensor->data;
  3513. switch (tensor->type) {
  3514. case GGML_TYPE_I8:
  3515. {
  3516. assert(tensor->nb[0] == sizeof(int8_t));
  3517. for (int i = 0; i < n; i++) {
  3518. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3519. }
  3520. } break;
  3521. case GGML_TYPE_I16:
  3522. {
  3523. assert(tensor->nb[0] == sizeof(int16_t));
  3524. for (int i = 0; i < n; i++) {
  3525. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3526. }
  3527. } break;
  3528. case GGML_TYPE_I32:
  3529. {
  3530. assert(tensor->nb[0] == sizeof(int32_t));
  3531. for (int i = 0; i < n; i++) {
  3532. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3533. }
  3534. } break;
  3535. case GGML_TYPE_F16:
  3536. {
  3537. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3538. for (int i = 0; i < n; i++) {
  3539. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3540. }
  3541. } break;
  3542. case GGML_TYPE_F32:
  3543. {
  3544. assert(tensor->nb[0] == sizeof(float));
  3545. for (int i = 0; i < n; i++) {
  3546. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3547. }
  3548. } break;
  3549. default:
  3550. {
  3551. GGML_ASSERT(false);
  3552. } break;
  3553. }
  3554. return tensor;
  3555. }
  3556. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3557. const int n = ggml_nrows(tensor);
  3558. const int nc = tensor->ne[0];
  3559. const size_t n1 = tensor->nb[1];
  3560. char * const data = tensor->data;
  3561. switch (tensor->type) {
  3562. case GGML_TYPE_I8:
  3563. {
  3564. assert(tensor->nb[0] == sizeof(int8_t));
  3565. for (int i = 0; i < n; i++) {
  3566. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3567. }
  3568. } break;
  3569. case GGML_TYPE_I16:
  3570. {
  3571. assert(tensor->nb[0] == sizeof(int16_t));
  3572. for (int i = 0; i < n; i++) {
  3573. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3574. }
  3575. } break;
  3576. case GGML_TYPE_I32:
  3577. {
  3578. assert(tensor->nb[0] == sizeof(int32_t));
  3579. for (int i = 0; i < n; i++) {
  3580. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3581. }
  3582. } break;
  3583. case GGML_TYPE_F16:
  3584. {
  3585. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3586. for (int i = 0; i < n; i++) {
  3587. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3588. }
  3589. } break;
  3590. case GGML_TYPE_F32:
  3591. {
  3592. assert(tensor->nb[0] == sizeof(float));
  3593. for (int i = 0; i < n; i++) {
  3594. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3595. }
  3596. } break;
  3597. default:
  3598. {
  3599. GGML_ASSERT(false);
  3600. } break;
  3601. }
  3602. return tensor;
  3603. }
  3604. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3605. switch (tensor->type) {
  3606. case GGML_TYPE_I8:
  3607. {
  3608. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3609. return ((int8_t *)(tensor->data))[i];
  3610. } break;
  3611. case GGML_TYPE_I16:
  3612. {
  3613. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3614. return ((int16_t *)(tensor->data))[i];
  3615. } break;
  3616. case GGML_TYPE_I32:
  3617. {
  3618. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3619. return ((int32_t *)(tensor->data))[i];
  3620. } break;
  3621. case GGML_TYPE_F16:
  3622. {
  3623. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3624. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3625. } break;
  3626. case GGML_TYPE_F32:
  3627. {
  3628. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3629. return ((float *)(tensor->data))[i];
  3630. } break;
  3631. default:
  3632. {
  3633. GGML_ASSERT(false);
  3634. } break;
  3635. }
  3636. return 0.0f;
  3637. }
  3638. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3639. switch (tensor->type) {
  3640. case GGML_TYPE_I8:
  3641. {
  3642. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3643. ((int8_t *)(tensor->data))[i] = value;
  3644. } break;
  3645. case GGML_TYPE_I16:
  3646. {
  3647. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3648. ((int16_t *)(tensor->data))[i] = value;
  3649. } break;
  3650. case GGML_TYPE_I32:
  3651. {
  3652. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3653. ((int32_t *)(tensor->data))[i] = value;
  3654. } break;
  3655. case GGML_TYPE_F16:
  3656. {
  3657. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3658. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3659. } break;
  3660. case GGML_TYPE_F32:
  3661. {
  3662. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3663. ((float *)(tensor->data))[i] = value;
  3664. } break;
  3665. default:
  3666. {
  3667. GGML_ASSERT(false);
  3668. } break;
  3669. }
  3670. }
  3671. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3672. switch (tensor->type) {
  3673. case GGML_TYPE_I8:
  3674. {
  3675. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3676. return ((int8_t *)(tensor->data))[i];
  3677. } break;
  3678. case GGML_TYPE_I16:
  3679. {
  3680. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3681. return ((int16_t *)(tensor->data))[i];
  3682. } break;
  3683. case GGML_TYPE_I32:
  3684. {
  3685. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3686. return ((int32_t *)(tensor->data))[i];
  3687. } break;
  3688. case GGML_TYPE_F16:
  3689. {
  3690. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3691. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3692. } break;
  3693. case GGML_TYPE_F32:
  3694. {
  3695. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3696. return ((float *)(tensor->data))[i];
  3697. } break;
  3698. default:
  3699. {
  3700. GGML_ASSERT(false);
  3701. } break;
  3702. }
  3703. return 0.0f;
  3704. }
  3705. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3706. switch (tensor->type) {
  3707. case GGML_TYPE_I8:
  3708. {
  3709. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3710. ((int8_t *)(tensor->data))[i] = value;
  3711. } break;
  3712. case GGML_TYPE_I16:
  3713. {
  3714. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3715. ((int16_t *)(tensor->data))[i] = value;
  3716. } break;
  3717. case GGML_TYPE_I32:
  3718. {
  3719. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3720. ((int32_t *)(tensor->data))[i] = value;
  3721. } break;
  3722. case GGML_TYPE_F16:
  3723. {
  3724. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3725. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3726. } break;
  3727. case GGML_TYPE_F32:
  3728. {
  3729. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3730. ((float *)(tensor->data))[i] = value;
  3731. } break;
  3732. default:
  3733. {
  3734. GGML_ASSERT(false);
  3735. } break;
  3736. }
  3737. }
  3738. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3739. return tensor->data;
  3740. }
  3741. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3742. assert(tensor->type == GGML_TYPE_F32);
  3743. return (float *)(tensor->data);
  3744. }
  3745. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3746. return tensor->name;
  3747. }
  3748. void ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3749. strncpy(tensor->name, name, sizeof(tensor->name));
  3750. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3751. }
  3752. struct ggml_tensor * ggml_view_tensor(
  3753. struct ggml_context * ctx,
  3754. const struct ggml_tensor * src) {
  3755. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3756. result->nb[0] = src->nb[0];
  3757. result->nb[1] = src->nb[1];
  3758. result->nb[2] = src->nb[2];
  3759. result->nb[3] = src->nb[3];
  3760. return result;
  3761. }
  3762. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3763. struct ggml_object * obj = ctx->objects_begin;
  3764. char * const mem_buffer = ctx->mem_buffer;
  3765. while (obj != NULL) {
  3766. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3767. if (strcmp(cur->name, name) == 0) {
  3768. return cur;
  3769. }
  3770. obj = obj->next;
  3771. }
  3772. return NULL;
  3773. }
  3774. ////////////////////////////////////////////////////////////////////////////////
  3775. // ggml_dup
  3776. struct ggml_tensor * ggml_dup_impl(
  3777. struct ggml_context * ctx,
  3778. struct ggml_tensor * a,
  3779. bool inplace) {
  3780. bool is_node = false;
  3781. if (!inplace && (a->grad)) {
  3782. is_node = true;
  3783. }
  3784. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3785. result->op = GGML_OP_DUP;
  3786. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3787. result->src0 = a;
  3788. result->src1 = NULL;
  3789. return result;
  3790. }
  3791. struct ggml_tensor * ggml_dup(
  3792. struct ggml_context * ctx,
  3793. struct ggml_tensor * a) {
  3794. return ggml_dup_impl(ctx, a, false);
  3795. }
  3796. struct ggml_tensor * ggml_dup_inplace(
  3797. struct ggml_context * ctx,
  3798. struct ggml_tensor * a) {
  3799. return ggml_dup_impl(ctx, a, true);
  3800. }
  3801. // ggml_add
  3802. struct ggml_tensor * ggml_add_impl(
  3803. struct ggml_context * ctx,
  3804. struct ggml_tensor * a,
  3805. struct ggml_tensor * b,
  3806. bool inplace) {
  3807. GGML_ASSERT(ggml_are_same_shape(a, b));
  3808. bool is_node = false;
  3809. if (!inplace && (a->grad || b->grad)) {
  3810. is_node = true;
  3811. }
  3812. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3813. result->op = GGML_OP_ADD;
  3814. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3815. result->src0 = a;
  3816. result->src1 = b;
  3817. return result;
  3818. }
  3819. struct ggml_tensor * ggml_add(
  3820. struct ggml_context * ctx,
  3821. struct ggml_tensor * a,
  3822. struct ggml_tensor * b) {
  3823. return ggml_add_impl(ctx, a, b, false);
  3824. }
  3825. struct ggml_tensor * ggml_add_inplace(
  3826. struct ggml_context * ctx,
  3827. struct ggml_tensor * a,
  3828. struct ggml_tensor * b) {
  3829. return ggml_add_impl(ctx, a, b, true);
  3830. }
  3831. // ggml_add1
  3832. struct ggml_tensor * ggml_add1_impl(
  3833. struct ggml_context * ctx,
  3834. struct ggml_tensor * a,
  3835. struct ggml_tensor * b,
  3836. bool inplace) {
  3837. GGML_ASSERT(ggml_is_scalar(b));
  3838. GGML_ASSERT(ggml_is_padded_1d(a));
  3839. bool is_node = false;
  3840. if (!inplace && (a->grad || b->grad)) {
  3841. is_node = true;
  3842. }
  3843. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3844. result->op = GGML_OP_ADD1;
  3845. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3846. result->src0 = a;
  3847. result->src1 = b;
  3848. return result;
  3849. }
  3850. struct ggml_tensor * ggml_add1(
  3851. struct ggml_context * ctx,
  3852. struct ggml_tensor * a,
  3853. struct ggml_tensor * b) {
  3854. return ggml_add1_impl(ctx, a, b, false);
  3855. }
  3856. struct ggml_tensor * ggml_add1_inplace(
  3857. struct ggml_context * ctx,
  3858. struct ggml_tensor * a,
  3859. struct ggml_tensor * b) {
  3860. return ggml_add1_impl(ctx, a, b, true);
  3861. }
  3862. // ggml_acc
  3863. struct ggml_tensor * ggml_acc_impl(
  3864. struct ggml_context * ctx,
  3865. struct ggml_tensor * a,
  3866. struct ggml_tensor * b,
  3867. size_t nb1,
  3868. size_t nb2,
  3869. size_t nb3,
  3870. size_t offset,
  3871. bool inplace) {
  3872. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3873. GGML_ASSERT(ggml_is_contiguous(a));
  3874. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3875. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3876. bool is_node = false;
  3877. if (!inplace && (a->grad || b->grad)) {
  3878. is_node = true;
  3879. }
  3880. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3881. ggml_scratch_save(ctx);
  3882. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  3883. ((int32_t *) c->data)[0] = nb1;
  3884. ((int32_t *) c->data)[1] = nb2;
  3885. ((int32_t *) c->data)[2] = nb3;
  3886. ((int32_t *) c->data)[3] = offset;
  3887. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  3888. ggml_scratch_load(ctx);
  3889. result->op = GGML_OP_ACC;
  3890. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3891. result->src0 = a;
  3892. result->src1 = b;
  3893. result->opt[0] = c;
  3894. return result;
  3895. }
  3896. struct ggml_tensor * ggml_acc(
  3897. struct ggml_context * ctx,
  3898. struct ggml_tensor * a,
  3899. struct ggml_tensor * b,
  3900. size_t nb1,
  3901. size_t nb2,
  3902. size_t nb3,
  3903. size_t offset) {
  3904. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3905. }
  3906. struct ggml_tensor * ggml_acc_inplace(
  3907. struct ggml_context * ctx,
  3908. struct ggml_tensor * a,
  3909. struct ggml_tensor * b,
  3910. size_t nb1,
  3911. size_t nb2,
  3912. size_t nb3,
  3913. size_t offset) {
  3914. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3915. }
  3916. // ggml_sub
  3917. struct ggml_tensor * ggml_sub_impl(
  3918. struct ggml_context * ctx,
  3919. struct ggml_tensor * a,
  3920. struct ggml_tensor * b,
  3921. bool inplace) {
  3922. GGML_ASSERT(ggml_are_same_shape(a, b));
  3923. bool is_node = false;
  3924. if (!inplace && (a->grad || b->grad)) {
  3925. is_node = true;
  3926. }
  3927. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3928. result->op = GGML_OP_SUB;
  3929. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3930. result->src0 = a;
  3931. result->src1 = b;
  3932. return result;
  3933. }
  3934. struct ggml_tensor * ggml_sub(
  3935. struct ggml_context * ctx,
  3936. struct ggml_tensor * a,
  3937. struct ggml_tensor * b) {
  3938. return ggml_sub_impl(ctx, a, b, false);
  3939. }
  3940. struct ggml_tensor * ggml_sub_inplace(
  3941. struct ggml_context * ctx,
  3942. struct ggml_tensor * a,
  3943. struct ggml_tensor * b) {
  3944. return ggml_sub_impl(ctx, a, b, true);
  3945. }
  3946. // ggml_mul
  3947. struct ggml_tensor * ggml_mul_impl(
  3948. struct ggml_context * ctx,
  3949. struct ggml_tensor * a,
  3950. struct ggml_tensor * b,
  3951. bool inplace) {
  3952. // TODO: support less-strict constraint
  3953. // GGML_ASSERT(ggml_can_repeat(b, a));
  3954. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3955. bool is_node = false;
  3956. if (!inplace && (a->grad || b->grad)) {
  3957. // TODO: support backward pass for broadcasting
  3958. GGML_ASSERT(ggml_are_same_shape(a, b));
  3959. is_node = true;
  3960. }
  3961. if (inplace) {
  3962. GGML_ASSERT(is_node == false);
  3963. }
  3964. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3965. result->op = GGML_OP_MUL;
  3966. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3967. result->src0 = a;
  3968. result->src1 = b;
  3969. return result;
  3970. }
  3971. struct ggml_tensor * ggml_mul(
  3972. struct ggml_context * ctx,
  3973. struct ggml_tensor * a,
  3974. struct ggml_tensor * b) {
  3975. return ggml_mul_impl(ctx, a, b, false);
  3976. }
  3977. struct ggml_tensor * ggml_mul_inplace(
  3978. struct ggml_context * ctx,
  3979. struct ggml_tensor * a,
  3980. struct ggml_tensor * b) {
  3981. return ggml_mul_impl(ctx, a, b, true);
  3982. }
  3983. // ggml_div
  3984. struct ggml_tensor * ggml_div_impl(
  3985. struct ggml_context * ctx,
  3986. struct ggml_tensor * a,
  3987. struct ggml_tensor * b,
  3988. bool inplace) {
  3989. GGML_ASSERT(ggml_are_same_shape(a, b));
  3990. bool is_node = false;
  3991. if (!inplace && (a->grad || b->grad)) {
  3992. is_node = true;
  3993. }
  3994. if (inplace) {
  3995. GGML_ASSERT(is_node == false);
  3996. }
  3997. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3998. result->op = GGML_OP_DIV;
  3999. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4000. result->src0 = a;
  4001. result->src1 = b;
  4002. return result;
  4003. }
  4004. struct ggml_tensor * ggml_div(
  4005. struct ggml_context * ctx,
  4006. struct ggml_tensor * a,
  4007. struct ggml_tensor * b) {
  4008. return ggml_div_impl(ctx, a, b, false);
  4009. }
  4010. struct ggml_tensor * ggml_div_inplace(
  4011. struct ggml_context * ctx,
  4012. struct ggml_tensor * a,
  4013. struct ggml_tensor * b) {
  4014. return ggml_div_impl(ctx, a, b, true);
  4015. }
  4016. // ggml_sqr
  4017. struct ggml_tensor * ggml_sqr_impl(
  4018. struct ggml_context * ctx,
  4019. struct ggml_tensor * a,
  4020. bool inplace) {
  4021. bool is_node = false;
  4022. if (!inplace && (a->grad)) {
  4023. is_node = true;
  4024. }
  4025. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4026. result->op = GGML_OP_SQR;
  4027. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4028. result->src0 = a;
  4029. result->src1 = NULL;
  4030. return result;
  4031. }
  4032. struct ggml_tensor * ggml_sqr(
  4033. struct ggml_context * ctx,
  4034. struct ggml_tensor * a) {
  4035. return ggml_sqr_impl(ctx, a, false);
  4036. }
  4037. struct ggml_tensor * ggml_sqr_inplace(
  4038. struct ggml_context * ctx,
  4039. struct ggml_tensor * a) {
  4040. return ggml_sqr_impl(ctx, a, true);
  4041. }
  4042. // ggml_sqrt
  4043. struct ggml_tensor * ggml_sqrt_impl(
  4044. struct ggml_context * ctx,
  4045. struct ggml_tensor * a,
  4046. bool inplace) {
  4047. bool is_node = false;
  4048. if (!inplace && (a->grad)) {
  4049. is_node = true;
  4050. }
  4051. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4052. result->op = GGML_OP_SQRT;
  4053. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4054. result->src0 = a;
  4055. result->src1 = NULL;
  4056. return result;
  4057. }
  4058. struct ggml_tensor * ggml_sqrt(
  4059. struct ggml_context * ctx,
  4060. struct ggml_tensor * a) {
  4061. return ggml_sqrt_impl(ctx, a, false);
  4062. }
  4063. struct ggml_tensor * ggml_sqrt_inplace(
  4064. struct ggml_context * ctx,
  4065. struct ggml_tensor * a) {
  4066. return ggml_sqrt_impl(ctx, a, true);
  4067. }
  4068. // ggml_log
  4069. struct ggml_tensor * ggml_log_impl(
  4070. struct ggml_context * ctx,
  4071. struct ggml_tensor * a,
  4072. bool inplace) {
  4073. bool is_node = false;
  4074. if (!inplace && (a->grad)) {
  4075. is_node = true;
  4076. }
  4077. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4078. result->op = GGML_OP_LOG;
  4079. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4080. result->src0 = a;
  4081. result->src1 = NULL;
  4082. return result;
  4083. }
  4084. struct ggml_tensor * ggml_log(
  4085. struct ggml_context * ctx,
  4086. struct ggml_tensor * a) {
  4087. return ggml_log_impl(ctx, a, false);
  4088. }
  4089. struct ggml_tensor * ggml_log_inplace(
  4090. struct ggml_context * ctx,
  4091. struct ggml_tensor * a) {
  4092. return ggml_log_impl(ctx, a, true);
  4093. }
  4094. // ggml_sum
  4095. struct ggml_tensor * ggml_sum(
  4096. struct ggml_context * ctx,
  4097. struct ggml_tensor * a) {
  4098. bool is_node = false;
  4099. if (a->grad) {
  4100. is_node = true;
  4101. }
  4102. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4103. result->op = GGML_OP_SUM;
  4104. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4105. result->src0 = a;
  4106. result->src1 = NULL;
  4107. return result;
  4108. }
  4109. // ggml_sum_rows
  4110. struct ggml_tensor * ggml_sum_rows(
  4111. struct ggml_context * ctx,
  4112. struct ggml_tensor * a) {
  4113. bool is_node = false;
  4114. if (a->grad) {
  4115. is_node = true;
  4116. }
  4117. int64_t ne[4] = {1,1,1,1};
  4118. for (int i=1; i<a->n_dims; ++i) {
  4119. ne[i] = a->ne[i];
  4120. }
  4121. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4122. result->op = GGML_OP_SUM_ROWS;
  4123. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4124. result->src0 = a;
  4125. result->src1 = NULL;
  4126. return result;
  4127. }
  4128. // ggml_mean
  4129. struct ggml_tensor * ggml_mean(
  4130. struct ggml_context * ctx,
  4131. struct ggml_tensor * a) {
  4132. bool is_node = false;
  4133. if (a->grad) {
  4134. GGML_ASSERT(false); // TODO: implement
  4135. is_node = true;
  4136. }
  4137. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4138. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4139. result->op = GGML_OP_MEAN;
  4140. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4141. result->src0 = a;
  4142. result->src1 = NULL;
  4143. return result;
  4144. }
  4145. // ggml_repeat
  4146. struct ggml_tensor * ggml_repeat(
  4147. struct ggml_context * ctx,
  4148. struct ggml_tensor * a,
  4149. struct ggml_tensor * b) {
  4150. GGML_ASSERT(ggml_can_repeat(a, b));
  4151. bool is_node = false;
  4152. if (a->grad) {
  4153. is_node = true;
  4154. }
  4155. if (ggml_are_same_shape(a, b) && !is_node) {
  4156. return a;
  4157. }
  4158. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4159. result->op = GGML_OP_REPEAT;
  4160. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4161. result->src0 = a;
  4162. result->src1 = b;
  4163. return result;
  4164. }
  4165. // ggml_abs
  4166. struct ggml_tensor * ggml_abs_impl(
  4167. struct ggml_context * ctx,
  4168. struct ggml_tensor * a,
  4169. bool inplace) {
  4170. bool is_node = false;
  4171. if (!inplace && (a->grad)) {
  4172. is_node = true;
  4173. }
  4174. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4175. result->op = GGML_OP_ABS;
  4176. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4177. result->src0 = a;
  4178. result->src1 = NULL;
  4179. return result;
  4180. }
  4181. struct ggml_tensor * ggml_abs(
  4182. struct ggml_context * ctx,
  4183. struct ggml_tensor * a) {
  4184. return ggml_abs_impl(ctx, a, false);
  4185. }
  4186. struct ggml_tensor * ggml_abs_inplace(
  4187. struct ggml_context * ctx,
  4188. struct ggml_tensor * a) {
  4189. return ggml_abs_impl(ctx, a, true);
  4190. }
  4191. // ggml_sgn
  4192. struct ggml_tensor * ggml_sgn_impl(
  4193. struct ggml_context * ctx,
  4194. struct ggml_tensor * a,
  4195. bool inplace) {
  4196. bool is_node = false;
  4197. if (!inplace && (a->grad)) {
  4198. is_node = true;
  4199. }
  4200. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4201. result->op = GGML_OP_SGN;
  4202. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4203. result->src0 = a;
  4204. result->src1 = NULL;
  4205. return result;
  4206. }
  4207. struct ggml_tensor * ggml_sgn(
  4208. struct ggml_context * ctx,
  4209. struct ggml_tensor * a) {
  4210. return ggml_sgn_impl(ctx, a, false);
  4211. }
  4212. struct ggml_tensor * ggml_sgn_inplace(
  4213. struct ggml_context * ctx,
  4214. struct ggml_tensor * a) {
  4215. return ggml_sgn_impl(ctx, a, true);
  4216. }
  4217. // ggml_neg
  4218. struct ggml_tensor * ggml_neg_impl(
  4219. struct ggml_context * ctx,
  4220. struct ggml_tensor * a,
  4221. bool inplace) {
  4222. bool is_node = false;
  4223. if (!inplace && (a->grad)) {
  4224. is_node = true;
  4225. }
  4226. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4227. result->op = GGML_OP_NEG;
  4228. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4229. result->src0 = a;
  4230. result->src1 = NULL;
  4231. return result;
  4232. }
  4233. struct ggml_tensor * ggml_neg(
  4234. struct ggml_context * ctx,
  4235. struct ggml_tensor * a) {
  4236. return ggml_neg_impl(ctx, a, false);
  4237. }
  4238. struct ggml_tensor * ggml_neg_inplace(
  4239. struct ggml_context * ctx,
  4240. struct ggml_tensor * a) {
  4241. return ggml_neg_impl(ctx, a, true);
  4242. }
  4243. // ggml_step
  4244. struct ggml_tensor * ggml_step_impl(
  4245. struct ggml_context * ctx,
  4246. struct ggml_tensor * a,
  4247. bool inplace) {
  4248. bool is_node = false;
  4249. if (!inplace && (a->grad)) {
  4250. is_node = true;
  4251. }
  4252. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4253. result->op = GGML_OP_STEP;
  4254. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4255. result->src0 = a;
  4256. result->src1 = NULL;
  4257. return result;
  4258. }
  4259. struct ggml_tensor * ggml_step(
  4260. struct ggml_context * ctx,
  4261. struct ggml_tensor * a) {
  4262. return ggml_step_impl(ctx, a, false);
  4263. }
  4264. struct ggml_tensor * ggml_step_inplace(
  4265. struct ggml_context * ctx,
  4266. struct ggml_tensor * a) {
  4267. return ggml_step_impl(ctx, a, true);
  4268. }
  4269. // ggml_relu
  4270. struct ggml_tensor * ggml_relu_impl(
  4271. struct ggml_context * ctx,
  4272. struct ggml_tensor * a,
  4273. bool inplace) {
  4274. bool is_node = false;
  4275. if (!inplace && (a->grad)) {
  4276. is_node = true;
  4277. }
  4278. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4279. result->op = GGML_OP_RELU;
  4280. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4281. result->src0 = a;
  4282. result->src1 = NULL;
  4283. return result;
  4284. }
  4285. struct ggml_tensor * ggml_relu(
  4286. struct ggml_context * ctx,
  4287. struct ggml_tensor * a) {
  4288. return ggml_relu_impl(ctx, a, false);
  4289. }
  4290. struct ggml_tensor * ggml_relu_inplace(
  4291. struct ggml_context * ctx,
  4292. struct ggml_tensor * a) {
  4293. return ggml_relu_impl(ctx, a, true);
  4294. }
  4295. // ggml_gelu
  4296. struct ggml_tensor * ggml_gelu_impl(
  4297. struct ggml_context * ctx,
  4298. struct ggml_tensor * a,
  4299. bool inplace) {
  4300. bool is_node = false;
  4301. if (!inplace && (a->grad)) {
  4302. is_node = true;
  4303. }
  4304. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4305. result->op = GGML_OP_GELU;
  4306. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4307. result->src0 = a;
  4308. result->src1 = NULL;
  4309. return result;
  4310. }
  4311. struct ggml_tensor * ggml_gelu(
  4312. struct ggml_context * ctx,
  4313. struct ggml_tensor * a) {
  4314. return ggml_gelu_impl(ctx, a, false);
  4315. }
  4316. struct ggml_tensor * ggml_gelu_inplace(
  4317. struct ggml_context * ctx,
  4318. struct ggml_tensor * a) {
  4319. return ggml_gelu_impl(ctx, a, true);
  4320. }
  4321. // ggml_silu
  4322. struct ggml_tensor * ggml_silu_impl(
  4323. struct ggml_context * ctx,
  4324. struct ggml_tensor * a,
  4325. bool inplace) {
  4326. bool is_node = false;
  4327. if (!inplace && (a->grad)) {
  4328. is_node = true;
  4329. }
  4330. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4331. result->op = GGML_OP_SILU;
  4332. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4333. result->src0 = a;
  4334. result->src1 = NULL;
  4335. return result;
  4336. }
  4337. struct ggml_tensor * ggml_silu(
  4338. struct ggml_context * ctx,
  4339. struct ggml_tensor * a) {
  4340. return ggml_silu_impl(ctx, a, false);
  4341. }
  4342. struct ggml_tensor * ggml_silu_inplace(
  4343. struct ggml_context * ctx,
  4344. struct ggml_tensor * a) {
  4345. return ggml_silu_impl(ctx, a, true);
  4346. }
  4347. // ggml_silu_back
  4348. struct ggml_tensor * ggml_silu_back(
  4349. struct ggml_context * ctx,
  4350. struct ggml_tensor * a,
  4351. struct ggml_tensor * b) {
  4352. bool is_node = false;
  4353. if (a->grad || b->grad) {
  4354. // TODO: implement backward
  4355. is_node = true;
  4356. }
  4357. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4358. result->op = GGML_OP_SILU_BACK;
  4359. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4360. result->src0 = a;
  4361. result->src1 = b;
  4362. return result;
  4363. }
  4364. // ggml_norm
  4365. struct ggml_tensor * ggml_norm_impl(
  4366. struct ggml_context * ctx,
  4367. struct ggml_tensor * a,
  4368. bool inplace) {
  4369. bool is_node = false;
  4370. if (!inplace && (a->grad)) {
  4371. GGML_ASSERT(false); // TODO: implement backward
  4372. is_node = true;
  4373. }
  4374. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4375. result->op = GGML_OP_NORM;
  4376. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4377. result->src0 = a;
  4378. result->src1 = NULL; // TODO: maybe store epsilon here?
  4379. return result;
  4380. }
  4381. struct ggml_tensor * ggml_norm(
  4382. struct ggml_context * ctx,
  4383. struct ggml_tensor * a) {
  4384. return ggml_norm_impl(ctx, a, false);
  4385. }
  4386. struct ggml_tensor * ggml_norm_inplace(
  4387. struct ggml_context * ctx,
  4388. struct ggml_tensor * a) {
  4389. return ggml_norm_impl(ctx, a, true);
  4390. }
  4391. struct ggml_tensor * ggml_rms_norm_impl(
  4392. struct ggml_context * ctx,
  4393. struct ggml_tensor * a,
  4394. bool inplace) {
  4395. bool is_node = false;
  4396. if (!inplace && (a->grad)) {
  4397. is_node = true;
  4398. }
  4399. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4400. result->op = GGML_OP_RMS_NORM;
  4401. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4402. result->src0 = a;
  4403. result->src1 = NULL; // TODO: maybe store epsilon here?
  4404. return result;
  4405. }
  4406. struct ggml_tensor * ggml_rms_norm(
  4407. struct ggml_context * ctx,
  4408. struct ggml_tensor * a) {
  4409. return ggml_rms_norm_impl(ctx, a, false);
  4410. }
  4411. struct ggml_tensor * ggml_rms_norm_inplace(
  4412. struct ggml_context * ctx,
  4413. struct ggml_tensor * a) {
  4414. return ggml_rms_norm_impl(ctx, a, true);
  4415. }
  4416. struct ggml_tensor * ggml_rms_norm_back(
  4417. struct ggml_context * ctx,
  4418. struct ggml_tensor * a,
  4419. struct ggml_tensor * b) {
  4420. bool is_node = false;
  4421. if (a->grad) {
  4422. // TODO: implement backward
  4423. is_node = true;
  4424. }
  4425. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4426. result->op = GGML_OP_RMS_NORM_BACK;
  4427. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4428. result->src0 = a;
  4429. result->src1 = b;
  4430. return result;
  4431. }
  4432. // ggml_mul_mat
  4433. struct ggml_tensor * ggml_mul_mat(
  4434. struct ggml_context * ctx,
  4435. struct ggml_tensor * a,
  4436. struct ggml_tensor * b) {
  4437. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4438. GGML_ASSERT(!ggml_is_transposed(a));
  4439. bool is_node = false;
  4440. if (a->grad || b->grad) {
  4441. is_node = true;
  4442. }
  4443. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4444. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4445. result->op = GGML_OP_MUL_MAT;
  4446. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4447. result->src0 = a;
  4448. result->src1 = b;
  4449. return result;
  4450. }
  4451. // ggml_scale
  4452. struct ggml_tensor * ggml_scale_impl(
  4453. struct ggml_context * ctx,
  4454. struct ggml_tensor * a,
  4455. struct ggml_tensor * b,
  4456. bool inplace) {
  4457. GGML_ASSERT(ggml_is_scalar(b));
  4458. GGML_ASSERT(ggml_is_padded_1d(a));
  4459. bool is_node = false;
  4460. if (!inplace && (a->grad || b->grad)) {
  4461. is_node = true;
  4462. }
  4463. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4464. result->op = GGML_OP_SCALE;
  4465. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4466. result->src0 = a;
  4467. result->src1 = b;
  4468. return result;
  4469. }
  4470. struct ggml_tensor * ggml_scale(
  4471. struct ggml_context * ctx,
  4472. struct ggml_tensor * a,
  4473. struct ggml_tensor * b) {
  4474. return ggml_scale_impl(ctx, a, b, false);
  4475. }
  4476. struct ggml_tensor * ggml_scale_inplace(
  4477. struct ggml_context * ctx,
  4478. struct ggml_tensor * a,
  4479. struct ggml_tensor * b) {
  4480. return ggml_scale_impl(ctx, a, b, true);
  4481. }
  4482. // ggml_set
  4483. struct ggml_tensor * ggml_set_impl(
  4484. struct ggml_context * ctx,
  4485. struct ggml_tensor * a,
  4486. struct ggml_tensor * b,
  4487. size_t nb1,
  4488. size_t nb2,
  4489. size_t nb3,
  4490. size_t offset,
  4491. bool inplace) {
  4492. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4493. bool is_node = false;
  4494. if (!inplace && (a->grad || b->grad)) {
  4495. is_node = true;
  4496. }
  4497. // make a view of the destination
  4498. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4499. ggml_scratch_save(ctx);
  4500. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4501. (( int32_t * ) c->data)[0] = nb1;
  4502. (( int32_t * ) c->data)[1] = nb2;
  4503. (( int32_t * ) c->data)[2] = nb3;
  4504. (( int32_t * ) c->data)[3] = offset;
  4505. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4506. ggml_scratch_load(ctx);
  4507. result->op = GGML_OP_SET;
  4508. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4509. result->src0 = a;
  4510. result->src1 = b;
  4511. result->opt[0] = c;
  4512. return result;
  4513. }
  4514. struct ggml_tensor * ggml_set(
  4515. struct ggml_context * ctx,
  4516. struct ggml_tensor * a,
  4517. struct ggml_tensor * b,
  4518. size_t nb1,
  4519. size_t nb2,
  4520. size_t nb3,
  4521. size_t offset) {
  4522. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4523. }
  4524. struct ggml_tensor * ggml_set_inplace(
  4525. struct ggml_context * ctx,
  4526. struct ggml_tensor * a,
  4527. struct ggml_tensor * b,
  4528. size_t nb1,
  4529. size_t nb2,
  4530. size_t nb3,
  4531. size_t offset) {
  4532. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4533. }
  4534. struct ggml_tensor * ggml_set_1d(
  4535. struct ggml_context * ctx,
  4536. struct ggml_tensor * a,
  4537. struct ggml_tensor * b,
  4538. size_t offset) {
  4539. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4540. }
  4541. struct ggml_tensor * ggml_set_1d_inplace(
  4542. struct ggml_context * ctx,
  4543. struct ggml_tensor * a,
  4544. struct ggml_tensor * b,
  4545. size_t offset) {
  4546. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4547. }
  4548. struct ggml_tensor * ggml_set_2d(
  4549. struct ggml_context * ctx,
  4550. struct ggml_tensor * a,
  4551. struct ggml_tensor * b,
  4552. size_t nb1,
  4553. size_t offset) {
  4554. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4555. }
  4556. struct ggml_tensor * ggml_set_2d_inplace(
  4557. struct ggml_context * ctx,
  4558. struct ggml_tensor * a,
  4559. struct ggml_tensor * b,
  4560. size_t nb1,
  4561. size_t offset) {
  4562. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4563. }
  4564. // ggml_cpy
  4565. struct ggml_tensor * ggml_cpy_impl(
  4566. struct ggml_context * ctx,
  4567. struct ggml_tensor * a,
  4568. struct ggml_tensor * b,
  4569. bool inplace) {
  4570. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4571. bool is_node = false;
  4572. if (!inplace && (a->grad || b->grad)) {
  4573. is_node = true;
  4574. }
  4575. // make a view of the destination
  4576. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4577. result->op = GGML_OP_CPY;
  4578. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4579. result->src0 = a;
  4580. result->src1 = b;
  4581. return result;
  4582. }
  4583. struct ggml_tensor * ggml_cpy(
  4584. struct ggml_context * ctx,
  4585. struct ggml_tensor * a,
  4586. struct ggml_tensor * b) {
  4587. return ggml_cpy_impl(ctx, a, b, false);
  4588. }
  4589. struct ggml_tensor * ggml_cpy_inplace(
  4590. struct ggml_context * ctx,
  4591. struct ggml_tensor * a,
  4592. struct ggml_tensor * b) {
  4593. return ggml_cpy_impl(ctx, a, b, true);
  4594. }
  4595. // ggml_cont
  4596. struct ggml_tensor * ggml_cont_impl(
  4597. struct ggml_context * ctx,
  4598. struct ggml_tensor * a,
  4599. bool inplace) {
  4600. bool is_node = false;
  4601. if (!inplace && a->grad) {
  4602. is_node = true;
  4603. }
  4604. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4605. result->op = GGML_OP_CONT;
  4606. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4607. result->src0 = a;
  4608. result->src1 = NULL;
  4609. return result;
  4610. }
  4611. struct ggml_tensor * ggml_cont(
  4612. struct ggml_context * ctx,
  4613. struct ggml_tensor * a) {
  4614. return ggml_cont_impl(ctx, a, false);
  4615. }
  4616. struct ggml_tensor * ggml_cont_inplace(
  4617. struct ggml_context * ctx,
  4618. struct ggml_tensor * a) {
  4619. return ggml_cont_impl(ctx, a, true);
  4620. }
  4621. // ggml_reshape
  4622. struct ggml_tensor * ggml_reshape(
  4623. struct ggml_context * ctx,
  4624. struct ggml_tensor * a,
  4625. struct ggml_tensor * b) {
  4626. GGML_ASSERT(ggml_is_contiguous(a));
  4627. GGML_ASSERT(ggml_is_contiguous(b));
  4628. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4629. bool is_node = false;
  4630. if (a->grad) {
  4631. is_node = true;
  4632. }
  4633. if (b->grad) {
  4634. // gradient propagation is not supported
  4635. //GGML_ASSERT(false);
  4636. }
  4637. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4638. result->op = GGML_OP_RESHAPE;
  4639. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4640. result->src0 = a;
  4641. result->src1 = NULL;
  4642. return result;
  4643. }
  4644. struct ggml_tensor * ggml_reshape_1d(
  4645. struct ggml_context * ctx,
  4646. struct ggml_tensor * a,
  4647. int64_t ne0) {
  4648. GGML_ASSERT(ggml_is_contiguous(a));
  4649. GGML_ASSERT(ggml_nelements(a) == ne0);
  4650. bool is_node = false;
  4651. if (a->grad) {
  4652. is_node = true;
  4653. }
  4654. const int64_t ne[1] = { ne0 };
  4655. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  4656. result->op = GGML_OP_RESHAPE;
  4657. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4658. result->src0 = a;
  4659. result->src1 = NULL;
  4660. return result;
  4661. }
  4662. struct ggml_tensor * ggml_reshape_2d(
  4663. struct ggml_context * ctx,
  4664. struct ggml_tensor * a,
  4665. int64_t ne0,
  4666. int64_t ne1) {
  4667. GGML_ASSERT(ggml_is_contiguous(a));
  4668. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4669. bool is_node = false;
  4670. if (a->grad) {
  4671. is_node = true;
  4672. }
  4673. const int64_t ne[2] = { ne0, ne1 };
  4674. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4675. result->op = GGML_OP_RESHAPE;
  4676. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4677. result->src0 = a;
  4678. result->src1 = NULL;
  4679. return result;
  4680. }
  4681. struct ggml_tensor * ggml_reshape_3d(
  4682. struct ggml_context * ctx,
  4683. struct ggml_tensor * a,
  4684. int64_t ne0,
  4685. int64_t ne1,
  4686. int64_t ne2) {
  4687. GGML_ASSERT(ggml_is_contiguous(a));
  4688. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4689. bool is_node = false;
  4690. if (a->grad) {
  4691. is_node = true;
  4692. }
  4693. const int64_t ne[3] = { ne0, ne1, ne2 };
  4694. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4695. result->op = GGML_OP_RESHAPE;
  4696. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4697. result->src0 = a;
  4698. result->src1 = NULL;
  4699. return result;
  4700. }
  4701. struct ggml_tensor * ggml_reshape_4d(
  4702. struct ggml_context * ctx,
  4703. struct ggml_tensor * a,
  4704. int64_t ne0,
  4705. int64_t ne1,
  4706. int64_t ne2,
  4707. int64_t ne3) {
  4708. GGML_ASSERT(ggml_is_contiguous(a));
  4709. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4710. bool is_node = false;
  4711. if (a->grad) {
  4712. is_node = true;
  4713. }
  4714. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4715. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  4716. result->op = GGML_OP_RESHAPE;
  4717. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4718. result->src0 = a;
  4719. result->src1 = NULL;
  4720. return result;
  4721. }
  4722. // ggml_view_1d
  4723. struct ggml_tensor * ggml_view_1d(
  4724. struct ggml_context * ctx,
  4725. struct ggml_tensor * a,
  4726. int64_t ne0,
  4727. size_t offset) {
  4728. bool is_node = false;
  4729. if (a->grad) {
  4730. is_node = true;
  4731. }
  4732. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4733. ggml_scratch_save(ctx);
  4734. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4735. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4736. ggml_scratch_load(ctx);
  4737. result->op = GGML_OP_VIEW;
  4738. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4739. result->src0 = a;
  4740. result->src1 = NULL;
  4741. result->opt[0] = offs;
  4742. if (is_node) {
  4743. memcpy(result->padding, &offset, sizeof(offset));
  4744. }
  4745. return result;
  4746. }
  4747. // ggml_view_2d
  4748. struct ggml_tensor * ggml_view_2d(
  4749. struct ggml_context * ctx,
  4750. struct ggml_tensor * a,
  4751. int64_t ne0,
  4752. int64_t ne1,
  4753. size_t nb1,
  4754. size_t offset) {
  4755. bool is_node = false;
  4756. if (a->grad) {
  4757. is_node = true;
  4758. }
  4759. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4760. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4761. ggml_scratch_save(ctx);
  4762. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4763. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4764. ggml_scratch_load(ctx);
  4765. result->nb[1] = nb1;
  4766. result->nb[2] = result->nb[1]*ne1;
  4767. result->nb[3] = result->nb[2];
  4768. result->op = GGML_OP_VIEW;
  4769. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4770. result->src0 = a;
  4771. result->src1 = NULL;
  4772. result->opt[0] = offs;
  4773. if (is_node) {
  4774. memcpy(result->padding, &offset, sizeof(offset));
  4775. }
  4776. return result;
  4777. }
  4778. // ggml_view_3d
  4779. struct ggml_tensor * ggml_view_3d(
  4780. struct ggml_context * ctx,
  4781. struct ggml_tensor * a,
  4782. int64_t ne0,
  4783. int64_t ne1,
  4784. int64_t ne2,
  4785. size_t nb1,
  4786. size_t nb2,
  4787. size_t offset) {
  4788. bool is_node = false;
  4789. if (a->grad) {
  4790. is_node = true;
  4791. }
  4792. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4793. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4794. ggml_scratch_save(ctx);
  4795. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4796. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4797. ggml_scratch_load(ctx);
  4798. result->nb[1] = nb1;
  4799. result->nb[2] = nb2;
  4800. result->nb[3] = result->nb[2]*ne2;
  4801. result->op = GGML_OP_VIEW;
  4802. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4803. result->src0 = a;
  4804. result->src1 = NULL;
  4805. result->opt[0] = offs;
  4806. if (is_node) {
  4807. memcpy(result->padding, &offset, sizeof(offset));
  4808. }
  4809. return result;
  4810. }
  4811. // ggml_view_4d
  4812. struct ggml_tensor * ggml_view_4d(
  4813. struct ggml_context * ctx,
  4814. struct ggml_tensor * a,
  4815. int64_t ne0,
  4816. int64_t ne1,
  4817. int64_t ne2,
  4818. int64_t ne3,
  4819. size_t nb1,
  4820. size_t nb2,
  4821. size_t nb3,
  4822. size_t offset) {
  4823. bool is_node = false;
  4824. if (a->grad) {
  4825. is_node = true;
  4826. }
  4827. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  4828. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  4829. ggml_scratch_save(ctx);
  4830. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4831. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4832. ggml_scratch_load(ctx);
  4833. result->nb[1] = nb1;
  4834. result->nb[2] = nb2;
  4835. result->nb[3] = nb3;
  4836. result->op = GGML_OP_VIEW;
  4837. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4838. result->src0 = a;
  4839. result->src1 = NULL;
  4840. result->opt[0] = offs;
  4841. if (is_node) {
  4842. memcpy(result->padding, &offset, sizeof(offset));
  4843. }
  4844. return result;
  4845. }
  4846. // ggml_permute
  4847. struct ggml_tensor * ggml_permute(
  4848. struct ggml_context * ctx,
  4849. struct ggml_tensor * a,
  4850. int axis0,
  4851. int axis1,
  4852. int axis2,
  4853. int axis3) {
  4854. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4855. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4856. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4857. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4858. GGML_ASSERT(axis0 != axis1);
  4859. GGML_ASSERT(axis0 != axis2);
  4860. GGML_ASSERT(axis0 != axis3);
  4861. GGML_ASSERT(axis1 != axis2);
  4862. GGML_ASSERT(axis1 != axis3);
  4863. GGML_ASSERT(axis2 != axis3);
  4864. bool is_node = false;
  4865. if (a->grad) {
  4866. is_node = true;
  4867. }
  4868. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4869. int ne[GGML_MAX_DIMS];
  4870. int nb[GGML_MAX_DIMS];
  4871. ne[axis0] = a->ne[0];
  4872. ne[axis1] = a->ne[1];
  4873. ne[axis2] = a->ne[2];
  4874. ne[axis3] = a->ne[3];
  4875. nb[axis0] = a->nb[0];
  4876. nb[axis1] = a->nb[1];
  4877. nb[axis2] = a->nb[2];
  4878. nb[axis3] = a->nb[3];
  4879. result->ne[0] = ne[0];
  4880. result->ne[1] = ne[1];
  4881. result->ne[2] = ne[2];
  4882. result->ne[3] = ne[3];
  4883. result->nb[0] = nb[0];
  4884. result->nb[1] = nb[1];
  4885. result->nb[2] = nb[2];
  4886. result->nb[3] = nb[3];
  4887. result->op = GGML_OP_PERMUTE;
  4888. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4889. result->src0 = a;
  4890. result->src1 = NULL;
  4891. if (is_node) {
  4892. result->padding[0] = axis0;
  4893. result->padding[1] = axis1;
  4894. result->padding[2] = axis2;
  4895. result->padding[3] = axis3;
  4896. }
  4897. return result;
  4898. }
  4899. // ggml_transpose
  4900. struct ggml_tensor * ggml_transpose(
  4901. struct ggml_context * ctx,
  4902. struct ggml_tensor * a) {
  4903. bool is_node = false;
  4904. if (a->grad) {
  4905. is_node = true;
  4906. }
  4907. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4908. result->ne[0] = a->ne[1];
  4909. result->ne[1] = a->ne[0];
  4910. result->nb[0] = a->nb[1];
  4911. result->nb[1] = a->nb[0];
  4912. result->op = GGML_OP_TRANSPOSE;
  4913. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4914. result->src0 = a;
  4915. result->src1 = NULL;
  4916. return result;
  4917. }
  4918. // ggml_get_rows
  4919. struct ggml_tensor * ggml_get_rows(
  4920. struct ggml_context * ctx,
  4921. struct ggml_tensor * a,
  4922. struct ggml_tensor * b) {
  4923. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4924. bool is_node = false;
  4925. if (a->grad || b->grad) {
  4926. is_node = true;
  4927. }
  4928. // TODO: implement non F32 return
  4929. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4930. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4931. result->op = GGML_OP_GET_ROWS;
  4932. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4933. result->src0 = a;
  4934. result->src1 = b;
  4935. return result;
  4936. }
  4937. // ggml_get_rows_back
  4938. struct ggml_tensor * ggml_get_rows_back(
  4939. struct ggml_context * ctx,
  4940. struct ggml_tensor * a,
  4941. struct ggml_tensor * b,
  4942. struct ggml_tensor * c) {
  4943. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4944. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4945. bool is_node = false;
  4946. if (a->grad || b->grad) {
  4947. is_node = true;
  4948. }
  4949. // TODO: implement non F32 return
  4950. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4951. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4952. result->op = GGML_OP_GET_ROWS_BACK;
  4953. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4954. result->src0 = a;
  4955. result->src1 = b;
  4956. result->opt[0] = c;
  4957. return result;
  4958. }
  4959. // ggml_diag
  4960. struct ggml_tensor * ggml_diag(
  4961. struct ggml_context * ctx,
  4962. struct ggml_tensor * a) {
  4963. GGML_ASSERT(a->ne[1] == 1);
  4964. bool is_node = false;
  4965. if (a->grad) {
  4966. is_node = true;
  4967. }
  4968. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4969. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  4970. result->op = GGML_OP_DIAG;
  4971. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4972. result->src0 = a;
  4973. result->src1 = NULL;
  4974. return result;
  4975. }
  4976. // ggml_diag_mask_inf
  4977. struct ggml_tensor * ggml_diag_mask_inf_impl(
  4978. struct ggml_context * ctx,
  4979. struct ggml_tensor * a,
  4980. int n_past,
  4981. bool inplace) {
  4982. bool is_node = false;
  4983. if (a->grad) {
  4984. is_node = true;
  4985. }
  4986. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4987. ggml_scratch_save(ctx);
  4988. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4989. ((int32_t *) b->data)[0] = n_past;
  4990. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  4991. ggml_scratch_load(ctx);
  4992. result->op = GGML_OP_DIAG_MASK_INF;
  4993. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4994. result->src0 = a;
  4995. result->src1 = b;
  4996. return result;
  4997. }
  4998. struct ggml_tensor * ggml_diag_mask_inf(
  4999. struct ggml_context * ctx,
  5000. struct ggml_tensor * a,
  5001. int n_past) {
  5002. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5003. }
  5004. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5005. struct ggml_context * ctx,
  5006. struct ggml_tensor * a,
  5007. int n_past) {
  5008. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5009. }
  5010. // ggml_diag_mask_zero
  5011. struct ggml_tensor * ggml_diag_mask_zero_impl(
  5012. struct ggml_context * ctx,
  5013. struct ggml_tensor * a,
  5014. int n_past,
  5015. bool inplace) {
  5016. bool is_node = false;
  5017. if (a->grad) {
  5018. is_node = true;
  5019. }
  5020. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5021. ggml_scratch_save(ctx);
  5022. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5023. ggml_set_name(b, "n_past, inplace");
  5024. ((int32_t *) b->data)[0] = n_past;
  5025. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5026. ggml_scratch_load(ctx);
  5027. result->op = GGML_OP_DIAG_MASK_ZERO;
  5028. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5029. result->src0 = a;
  5030. result->src1 = b;
  5031. return result;
  5032. }
  5033. struct ggml_tensor * ggml_diag_mask_zero(
  5034. struct ggml_context * ctx,
  5035. struct ggml_tensor * a,
  5036. int n_past) {
  5037. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5038. }
  5039. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5040. struct ggml_context * ctx,
  5041. struct ggml_tensor * a,
  5042. int n_past) {
  5043. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5044. }
  5045. // ggml_soft_max
  5046. struct ggml_tensor * ggml_soft_max_impl(
  5047. struct ggml_context * ctx,
  5048. struct ggml_tensor * a,
  5049. bool inplace) {
  5050. bool is_node = false;
  5051. if (a->grad) {
  5052. is_node = true;
  5053. }
  5054. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5055. result->op = GGML_OP_SOFT_MAX;
  5056. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5057. result->src0 = a;
  5058. result->src1 = NULL;
  5059. return result;
  5060. }
  5061. struct ggml_tensor * ggml_soft_max(
  5062. struct ggml_context * ctx,
  5063. struct ggml_tensor * a) {
  5064. return ggml_soft_max_impl(ctx, a, false);
  5065. }
  5066. struct ggml_tensor * ggml_soft_max_inplace(
  5067. struct ggml_context * ctx,
  5068. struct ggml_tensor * a) {
  5069. return ggml_soft_max_impl(ctx, a, true);
  5070. }
  5071. // ggml_rope
  5072. struct ggml_tensor * ggml_rope_impl(
  5073. struct ggml_context * ctx,
  5074. struct ggml_tensor * a,
  5075. int n_past,
  5076. int n_dims,
  5077. int mode,
  5078. bool inplace) {
  5079. GGML_ASSERT(n_past >= 0);
  5080. bool is_node = false;
  5081. if (!inplace && a->grad) {
  5082. is_node = true;
  5083. }
  5084. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5085. ggml_scratch_save(ctx);
  5086. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5087. ((int32_t *) b->data)[0] = n_past;
  5088. ((int32_t *) b->data)[1] = n_dims;
  5089. ((int32_t *) b->data)[2] = mode;
  5090. ggml_scratch_load(ctx);
  5091. result->op = GGML_OP_ROPE;
  5092. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5093. result->src0 = a;
  5094. result->src1 = b;
  5095. return result;
  5096. }
  5097. struct ggml_tensor * ggml_rope(
  5098. struct ggml_context * ctx,
  5099. struct ggml_tensor * a,
  5100. int n_past,
  5101. int n_dims,
  5102. int mode) {
  5103. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, false);
  5104. }
  5105. struct ggml_tensor * ggml_rope_inplace(
  5106. struct ggml_context * ctx,
  5107. struct ggml_tensor * a,
  5108. int n_past,
  5109. int n_dims,
  5110. int mode) {
  5111. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, true);
  5112. }
  5113. // ggml_rope_back
  5114. struct ggml_tensor * ggml_rope_back(
  5115. struct ggml_context * ctx,
  5116. struct ggml_tensor * a,
  5117. int n_past,
  5118. int n_dims,
  5119. int mode) {
  5120. GGML_ASSERT(n_past >= 0);
  5121. bool is_node = false;
  5122. if (a->grad) {
  5123. GGML_ASSERT(false); // TODO: implement backward
  5124. is_node = true;
  5125. }
  5126. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5127. ggml_scratch_save(ctx);
  5128. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5129. ggml_set_name(b, "n_past, n_dims, mode");
  5130. ((int32_t *) b->data)[0] = n_past;
  5131. ((int32_t *) b->data)[1] = n_dims;
  5132. ((int32_t *) b->data)[2] = mode;
  5133. ggml_scratch_load(ctx);
  5134. result->op = GGML_OP_ROPE_BACK;
  5135. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5136. result->src0 = a;
  5137. result->src1 = b;
  5138. return result;
  5139. }
  5140. // ggml_alibi
  5141. struct ggml_tensor * ggml_alibi(
  5142. struct ggml_context * ctx,
  5143. struct ggml_tensor * a,
  5144. int n_past,
  5145. int n_head,
  5146. float bias_max) {
  5147. GGML_ASSERT(n_past >= 0);
  5148. bool is_node = false;
  5149. if (a->grad) {
  5150. GGML_ASSERT(false); // TODO: implement backward
  5151. is_node = true;
  5152. }
  5153. // TODO: when implement backward, fix this:
  5154. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5155. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5156. ggml_scratch_save(ctx);
  5157. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5158. ((int32_t *) b->data)[0] = n_past;
  5159. ((int32_t *) b->data)[1] = n_head;
  5160. GGML_ASSERT(sizeof(float) == sizeof(int32_t));
  5161. (((float *) b->data)[2]) = bias_max;
  5162. ggml_scratch_load(ctx);
  5163. result->op = GGML_OP_ALIBI;
  5164. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5165. result->src0 = a;
  5166. result->src1 = b;
  5167. return result;
  5168. }
  5169. // ggml_clamp
  5170. struct ggml_tensor * ggml_clamp(
  5171. struct ggml_context * ctx,
  5172. struct ggml_tensor * a,
  5173. float min,
  5174. float max) {
  5175. bool is_node = false;
  5176. if (a->grad) {
  5177. GGML_ASSERT(false); // TODO: implement backward
  5178. is_node = true;
  5179. }
  5180. // TODO: when implement backward, fix this:
  5181. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5182. ggml_scratch_save(ctx);
  5183. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5184. ((float *) b->data)[0] = min;
  5185. ((float *) b->data)[1] = max;
  5186. ggml_scratch_load(ctx);
  5187. result->op = GGML_OP_CLAMP;
  5188. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5189. result->src0 = a;
  5190. result->src1 = b;
  5191. return result;
  5192. }
  5193. // ggml_conv_1d_1s
  5194. struct ggml_tensor * ggml_conv_1d_1s(
  5195. struct ggml_context * ctx,
  5196. struct ggml_tensor * a,
  5197. struct ggml_tensor * b) {
  5198. GGML_ASSERT(ggml_is_matrix(b));
  5199. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5200. GGML_ASSERT(a->ne[3] == 1);
  5201. bool is_node = false;
  5202. if (a->grad || b->grad) {
  5203. GGML_ASSERT(false); // TODO: implement backward
  5204. is_node = true;
  5205. }
  5206. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  5207. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5208. result->op = GGML_OP_CONV_1D_1S;
  5209. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5210. result->src0 = a;
  5211. result->src1 = b;
  5212. return result;
  5213. }
  5214. // ggml_conv_1d_2s
  5215. struct ggml_tensor * ggml_conv_1d_2s(
  5216. struct ggml_context * ctx,
  5217. struct ggml_tensor * a,
  5218. struct ggml_tensor * b) {
  5219. GGML_ASSERT(ggml_is_matrix(b));
  5220. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5221. GGML_ASSERT(a->ne[3] == 1);
  5222. bool is_node = false;
  5223. if (a->grad || b->grad) {
  5224. GGML_ASSERT(false); // TODO: implement backward
  5225. is_node = true;
  5226. }
  5227. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  5228. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5229. result->op = GGML_OP_CONV_1D_2S;
  5230. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5231. result->src0 = a;
  5232. result->src1 = b;
  5233. return result;
  5234. }
  5235. // ggml_flash_attn
  5236. struct ggml_tensor * ggml_flash_attn(
  5237. struct ggml_context * ctx,
  5238. struct ggml_tensor * q,
  5239. struct ggml_tensor * k,
  5240. struct ggml_tensor * v,
  5241. bool masked) {
  5242. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5243. // TODO: check if vT can be multiplied by (k*qT)
  5244. bool is_node = false;
  5245. if (q->grad || k->grad || v->grad) {
  5246. GGML_ASSERT(false); // TODO: implement backward
  5247. is_node = true;
  5248. }
  5249. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5250. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5251. result->op = GGML_OP_FLASH_ATTN;
  5252. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5253. result->src0 = q;
  5254. result->src1 = k;
  5255. result->opt[0] = v;
  5256. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  5257. return result;
  5258. }
  5259. // ggml_flash_ff
  5260. struct ggml_tensor * ggml_flash_ff(
  5261. struct ggml_context * ctx,
  5262. struct ggml_tensor * a,
  5263. struct ggml_tensor * b0,
  5264. struct ggml_tensor * b1,
  5265. struct ggml_tensor * c0,
  5266. struct ggml_tensor * c1) {
  5267. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5268. // TODO: more checks
  5269. bool is_node = false;
  5270. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5271. GGML_ASSERT(false); // TODO: implement backward
  5272. is_node = true;
  5273. }
  5274. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5275. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5276. result->op = GGML_OP_FLASH_FF;
  5277. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5278. result->src0 = a;
  5279. result->src1 = b0;
  5280. result->opt[0] = b1;
  5281. result->opt[1] = c0;
  5282. result->opt[2] = c1;
  5283. return result;
  5284. }
  5285. // ggml_map_unary
  5286. struct ggml_tensor * ggml_map_unary_impl_f32(
  5287. struct ggml_context * ctx,
  5288. struct ggml_tensor * a,
  5289. const ggml_unary_op_f32_t fun,
  5290. bool inplace) {
  5291. bool is_node = false;
  5292. if (!inplace && a->grad) {
  5293. is_node = true;
  5294. }
  5295. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5296. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5297. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5298. result->op = GGML_OP_MAP_UNARY;
  5299. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5300. result->src0 = a;
  5301. result->opt[0] = addr_tensor;
  5302. return result;
  5303. }
  5304. struct ggml_tensor * ggml_map_unary_f32(
  5305. struct ggml_context * ctx,
  5306. struct ggml_tensor * a,
  5307. const ggml_unary_op_f32_t fun) {
  5308. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5309. }
  5310. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5311. struct ggml_context * ctx,
  5312. struct ggml_tensor * a,
  5313. const ggml_unary_op_f32_t fun) {
  5314. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5315. }
  5316. // ggml_map_binary
  5317. struct ggml_tensor * ggml_map_binary_impl_f32(
  5318. struct ggml_context * ctx,
  5319. struct ggml_tensor * a,
  5320. struct ggml_tensor * b,
  5321. const ggml_binary_op_f32_t fun,
  5322. bool inplace) {
  5323. GGML_ASSERT(ggml_are_same_shape(a, b));
  5324. bool is_node = false;
  5325. if (!inplace && (a->grad || b->grad)) {
  5326. is_node = true;
  5327. }
  5328. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5329. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5330. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5331. result->op = GGML_OP_MAP_BINARY;
  5332. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5333. result->src0 = a;
  5334. result->src1 = b;
  5335. result->opt[0] = addr_tensor;
  5336. return result;
  5337. }
  5338. struct ggml_tensor * ggml_map_binary_f32(
  5339. struct ggml_context * ctx,
  5340. struct ggml_tensor * a,
  5341. struct ggml_tensor * b,
  5342. const ggml_binary_op_f32_t fun) {
  5343. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5344. }
  5345. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5346. struct ggml_context * ctx,
  5347. struct ggml_tensor * a,
  5348. struct ggml_tensor * b,
  5349. const ggml_binary_op_f32_t fun) {
  5350. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5351. }
  5352. ////////////////////////////////////////////////////////////////////////////////
  5353. void ggml_set_param(
  5354. struct ggml_context * ctx,
  5355. struct ggml_tensor * tensor) {
  5356. tensor->is_param = true;
  5357. GGML_ASSERT(tensor->grad == NULL);
  5358. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5359. }
  5360. // ggml_compute_forward_dup
  5361. static void ggml_compute_forward_dup_same_cont(
  5362. const struct ggml_compute_params * params,
  5363. const struct ggml_tensor * src0,
  5364. struct ggml_tensor * dst) {
  5365. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5366. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5367. GGML_ASSERT(src0->type == dst->type);
  5368. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5369. return;
  5370. }
  5371. const size_t nb00 = src0->nb[0];
  5372. const size_t nb0 = dst->nb[0];
  5373. const int ith = params->ith; // thread index
  5374. const int nth = params->nth; // number of threads
  5375. // parallelize by elements
  5376. const int ne = ggml_nelements(dst);
  5377. const int dr = (ne + nth - 1) / nth;
  5378. const int ie0 = dr * ith;
  5379. const int ie1 = MIN(ie0 + dr, ne);
  5380. if (ie0 < ie1) {
  5381. memcpy(
  5382. ((char *) dst->data + ie0*nb0),
  5383. ((char *) src0->data + ie0*nb00),
  5384. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5385. }
  5386. }
  5387. static void ggml_compute_forward_dup_f16(
  5388. const struct ggml_compute_params * params,
  5389. const struct ggml_tensor * src0,
  5390. struct ggml_tensor * dst) {
  5391. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5392. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5393. return;
  5394. }
  5395. const int64_t ne00 = src0->ne[0];
  5396. const int64_t ne01 = src0->ne[1];
  5397. const int64_t ne02 = src0->ne[2];
  5398. const int64_t ne03 = src0->ne[3];
  5399. const int64_t ne0 = dst->ne[0];
  5400. const int64_t ne1 = dst->ne[1];
  5401. const int64_t ne2 = dst->ne[2];
  5402. const int64_t ne3 = dst->ne[3];
  5403. const size_t nb00 = src0->nb[0];
  5404. const size_t nb01 = src0->nb[1];
  5405. const size_t nb02 = src0->nb[2];
  5406. const size_t nb03 = src0->nb[3];
  5407. const size_t nb0 = dst->nb[0];
  5408. const size_t nb1 = dst->nb[1];
  5409. const size_t nb2 = dst->nb[2];
  5410. const size_t nb3 = dst->nb[3];
  5411. const int ith = params->ith; // thread index
  5412. const int nth = params->nth; // number of threads
  5413. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5414. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5415. return;
  5416. }
  5417. // parallelize by rows
  5418. const int nr = ne01;
  5419. // number of rows per thread
  5420. const int dr = (nr + nth - 1) / nth;
  5421. // row range for this thread
  5422. const int ir0 = dr * ith;
  5423. const int ir1 = MIN(ir0 + dr, nr);
  5424. if (src0->type == dst->type &&
  5425. ne00 == ne0 &&
  5426. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5427. // copy by rows
  5428. const size_t rs = ne00*nb00;
  5429. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5430. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5431. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5432. memcpy(
  5433. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5434. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5435. rs);
  5436. }
  5437. }
  5438. }
  5439. return;
  5440. }
  5441. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5442. if (ggml_is_contiguous(dst)) {
  5443. if (nb00 == sizeof(ggml_fp16_t)) {
  5444. if (dst->type == GGML_TYPE_F16) {
  5445. size_t id = 0;
  5446. const size_t rs = ne00 * nb00;
  5447. char * dst_ptr = (char *) dst->data;
  5448. for (int i03 = 0; i03 < ne03; i03++) {
  5449. for (int i02 = 0; i02 < ne02; i02++) {
  5450. id += rs * ir0;
  5451. for (int i01 = ir0; i01 < ir1; i01++) {
  5452. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5453. memcpy(dst_ptr + id, src0_ptr, rs);
  5454. id += rs;
  5455. }
  5456. id += rs * (ne01 - ir1);
  5457. }
  5458. }
  5459. } else if (dst->type == GGML_TYPE_F32) {
  5460. size_t id = 0;
  5461. float * dst_ptr = (float *) dst->data;
  5462. for (int i03 = 0; i03 < ne03; i03++) {
  5463. for (int i02 = 0; i02 < ne02; i02++) {
  5464. id += ne00 * ir0;
  5465. for (int i01 = ir0; i01 < ir1; i01++) {
  5466. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5467. for (int i00 = 0; i00 < ne00; i00++) {
  5468. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5469. id++;
  5470. }
  5471. }
  5472. id += ne00 * (ne01 - ir1);
  5473. }
  5474. }
  5475. } else if (ggml_is_quantized(dst->type)) {
  5476. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5477. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5478. size_t id = 0;
  5479. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5480. char * dst_ptr = (char *) dst->data;
  5481. for (int i03 = 0; i03 < ne03; i03++) {
  5482. for (int i02 = 0; i02 < ne02; i02++) {
  5483. id += rs * ir0;
  5484. for (int i01 = ir0; i01 < ir1; i01++) {
  5485. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5486. for (int i00 = 0; i00 < ne00; i00++) {
  5487. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5488. }
  5489. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5490. id += rs;
  5491. }
  5492. id += rs * (ne01 - ir1);
  5493. }
  5494. }
  5495. } else {
  5496. GGML_ASSERT(false); // TODO: implement
  5497. }
  5498. } else {
  5499. //printf("%s: this is not optimal - fix me\n", __func__);
  5500. if (dst->type == GGML_TYPE_F32) {
  5501. size_t id = 0;
  5502. float * dst_ptr = (float *) dst->data;
  5503. for (int i03 = 0; i03 < ne03; i03++) {
  5504. for (int i02 = 0; i02 < ne02; i02++) {
  5505. id += ne00 * ir0;
  5506. for (int i01 = ir0; i01 < ir1; i01++) {
  5507. for (int i00 = 0; i00 < ne00; i00++) {
  5508. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5509. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5510. id++;
  5511. }
  5512. }
  5513. id += ne00 * (ne01 - ir1);
  5514. }
  5515. }
  5516. } else if (dst->type == GGML_TYPE_F16) {
  5517. size_t id = 0;
  5518. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5519. for (int i03 = 0; i03 < ne03; i03++) {
  5520. for (int i02 = 0; i02 < ne02; i02++) {
  5521. id += ne00 * ir0;
  5522. for (int i01 = ir0; i01 < ir1; i01++) {
  5523. for (int i00 = 0; i00 < ne00; i00++) {
  5524. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5525. dst_ptr[id] = *src0_ptr;
  5526. id++;
  5527. }
  5528. }
  5529. id += ne00 * (ne01 - ir1);
  5530. }
  5531. }
  5532. } else {
  5533. GGML_ASSERT(false); // TODO: implement
  5534. }
  5535. }
  5536. return;
  5537. }
  5538. // dst counters
  5539. int64_t i10 = 0;
  5540. int64_t i11 = 0;
  5541. int64_t i12 = 0;
  5542. int64_t i13 = 0;
  5543. if (dst->type == GGML_TYPE_F16) {
  5544. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5545. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5546. i10 += ne00 * ir0;
  5547. while (i10 >= ne0) {
  5548. i10 -= ne0;
  5549. if (++i11 == ne1) {
  5550. i11 = 0;
  5551. if (++i12 == ne2) {
  5552. i12 = 0;
  5553. if (++i13 == ne3) {
  5554. i13 = 0;
  5555. }
  5556. }
  5557. }
  5558. }
  5559. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5560. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5561. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5562. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5563. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5564. if (++i10 == ne00) {
  5565. i10 = 0;
  5566. if (++i11 == ne01) {
  5567. i11 = 0;
  5568. if (++i12 == ne02) {
  5569. i12 = 0;
  5570. if (++i13 == ne03) {
  5571. i13 = 0;
  5572. }
  5573. }
  5574. }
  5575. }
  5576. }
  5577. }
  5578. i10 += ne00 * (ne01 - ir1);
  5579. while (i10 >= ne0) {
  5580. i10 -= ne0;
  5581. if (++i11 == ne1) {
  5582. i11 = 0;
  5583. if (++i12 == ne2) {
  5584. i12 = 0;
  5585. if (++i13 == ne3) {
  5586. i13 = 0;
  5587. }
  5588. }
  5589. }
  5590. }
  5591. }
  5592. }
  5593. } else if (dst->type == GGML_TYPE_F32) {
  5594. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5595. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5596. i10 += ne00 * ir0;
  5597. while (i10 >= ne0) {
  5598. i10 -= ne0;
  5599. if (++i11 == ne1) {
  5600. i11 = 0;
  5601. if (++i12 == ne2) {
  5602. i12 = 0;
  5603. if (++i13 == ne3) {
  5604. i13 = 0;
  5605. }
  5606. }
  5607. }
  5608. }
  5609. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5610. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5611. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5612. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5613. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5614. if (++i10 == ne0) {
  5615. i10 = 0;
  5616. if (++i11 == ne1) {
  5617. i11 = 0;
  5618. if (++i12 == ne2) {
  5619. i12 = 0;
  5620. if (++i13 == ne3) {
  5621. i13 = 0;
  5622. }
  5623. }
  5624. }
  5625. }
  5626. }
  5627. }
  5628. i10 += ne00 * (ne01 - ir1);
  5629. while (i10 >= ne0) {
  5630. i10 -= ne0;
  5631. if (++i11 == ne1) {
  5632. i11 = 0;
  5633. if (++i12 == ne2) {
  5634. i12 = 0;
  5635. if (++i13 == ne3) {
  5636. i13 = 0;
  5637. }
  5638. }
  5639. }
  5640. }
  5641. }
  5642. }
  5643. } else {
  5644. GGML_ASSERT(false); // TODO: implement
  5645. }
  5646. }
  5647. static void ggml_compute_forward_dup_f32(
  5648. const struct ggml_compute_params * params,
  5649. const struct ggml_tensor * src0,
  5650. struct ggml_tensor * dst) {
  5651. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5652. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5653. return;
  5654. }
  5655. const int64_t ne00 = src0->ne[0];
  5656. const int64_t ne01 = src0->ne[1];
  5657. const int64_t ne02 = src0->ne[2];
  5658. const int64_t ne03 = src0->ne[3];
  5659. const int64_t ne0 = dst->ne[0];
  5660. const int64_t ne1 = dst->ne[1];
  5661. const int64_t ne2 = dst->ne[2];
  5662. const int64_t ne3 = dst->ne[3];
  5663. const size_t nb00 = src0->nb[0];
  5664. const size_t nb01 = src0->nb[1];
  5665. const size_t nb02 = src0->nb[2];
  5666. const size_t nb03 = src0->nb[3];
  5667. const size_t nb0 = dst->nb[0];
  5668. const size_t nb1 = dst->nb[1];
  5669. const size_t nb2 = dst->nb[2];
  5670. const size_t nb3 = dst->nb[3];
  5671. const int ith = params->ith; // thread index
  5672. const int nth = params->nth; // number of threads
  5673. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5674. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5675. return;
  5676. }
  5677. // parallelize by rows
  5678. const int nr = ne01;
  5679. // number of rows per thread
  5680. const int dr = (nr + nth - 1) / nth;
  5681. // row range for this thread
  5682. const int ir0 = dr * ith;
  5683. const int ir1 = MIN(ir0 + dr, nr);
  5684. if (src0->type == dst->type &&
  5685. ne00 == ne0 &&
  5686. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5687. // copy by rows
  5688. const size_t rs = ne00*nb00;
  5689. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5690. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5691. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5692. memcpy(
  5693. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5694. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5695. rs);
  5696. }
  5697. }
  5698. }
  5699. return;
  5700. }
  5701. if (ggml_is_contiguous(dst)) {
  5702. // TODO: simplify
  5703. if (nb00 == sizeof(float)) {
  5704. if (dst->type == GGML_TYPE_F32) {
  5705. size_t id = 0;
  5706. const size_t rs = ne00 * nb00;
  5707. char * dst_ptr = (char *) dst->data;
  5708. for (int i03 = 0; i03 < ne03; i03++) {
  5709. for (int i02 = 0; i02 < ne02; i02++) {
  5710. id += rs * ir0;
  5711. for (int i01 = ir0; i01 < ir1; i01++) {
  5712. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5713. memcpy(dst_ptr + id, src0_ptr, rs);
  5714. id += rs;
  5715. }
  5716. id += rs * (ne01 - ir1);
  5717. }
  5718. }
  5719. } else if (dst->type == GGML_TYPE_F16) {
  5720. size_t id = 0;
  5721. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5722. for (int i03 = 0; i03 < ne03; i03++) {
  5723. for (int i02 = 0; i02 < ne02; i02++) {
  5724. id += ne00 * ir0;
  5725. for (int i01 = ir0; i01 < ir1; i01++) {
  5726. for (int i00 = 0; i00 < ne00; i00++) {
  5727. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5728. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5729. id++;
  5730. }
  5731. }
  5732. id += ne00 * (ne01 - ir1);
  5733. }
  5734. }
  5735. } else if (ggml_is_quantized(dst->type)) {
  5736. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5737. size_t id = 0;
  5738. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5739. char * dst_ptr = (char *) dst->data;
  5740. for (int i03 = 0; i03 < ne03; i03++) {
  5741. for (int i02 = 0; i02 < ne02; i02++) {
  5742. id += rs * ir0;
  5743. for (int i01 = ir0; i01 < ir1; i01++) {
  5744. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5745. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5746. id += rs;
  5747. }
  5748. id += rs * (ne01 - ir1);
  5749. }
  5750. }
  5751. } else {
  5752. GGML_ASSERT(false); // TODO: implement
  5753. }
  5754. } else {
  5755. //printf("%s: this is not optimal - fix me\n", __func__);
  5756. if (dst->type == GGML_TYPE_F32) {
  5757. size_t id = 0;
  5758. float * dst_ptr = (float *) dst->data;
  5759. for (int i03 = 0; i03 < ne03; i03++) {
  5760. for (int i02 = 0; i02 < ne02; i02++) {
  5761. id += ne00 * ir0;
  5762. for (int i01 = ir0; i01 < ir1; i01++) {
  5763. for (int i00 = 0; i00 < ne00; i00++) {
  5764. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5765. dst_ptr[id] = *src0_ptr;
  5766. id++;
  5767. }
  5768. }
  5769. id += ne00 * (ne01 - ir1);
  5770. }
  5771. }
  5772. } else if (dst->type == GGML_TYPE_F16) {
  5773. size_t id = 0;
  5774. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5775. for (int i03 = 0; i03 < ne03; i03++) {
  5776. for (int i02 = 0; i02 < ne02; i02++) {
  5777. id += ne00 * ir0;
  5778. for (int i01 = ir0; i01 < ir1; i01++) {
  5779. for (int i00 = 0; i00 < ne00; i00++) {
  5780. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5781. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5782. id++;
  5783. }
  5784. }
  5785. id += ne00 * (ne01 - ir1);
  5786. }
  5787. }
  5788. } else {
  5789. GGML_ASSERT(false); // TODO: implement
  5790. }
  5791. }
  5792. return;
  5793. }
  5794. // dst counters
  5795. int64_t i10 = 0;
  5796. int64_t i11 = 0;
  5797. int64_t i12 = 0;
  5798. int64_t i13 = 0;
  5799. if (dst->type == GGML_TYPE_F32) {
  5800. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5801. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5802. i10 += ne00 * ir0;
  5803. while (i10 >= ne0) {
  5804. i10 -= ne0;
  5805. if (++i11 == ne1) {
  5806. i11 = 0;
  5807. if (++i12 == ne2) {
  5808. i12 = 0;
  5809. if (++i13 == ne3) {
  5810. i13 = 0;
  5811. }
  5812. }
  5813. }
  5814. }
  5815. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5816. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5817. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5818. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5819. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5820. if (++i10 == ne0) {
  5821. i10 = 0;
  5822. if (++i11 == ne1) {
  5823. i11 = 0;
  5824. if (++i12 == ne2) {
  5825. i12 = 0;
  5826. if (++i13 == ne3) {
  5827. i13 = 0;
  5828. }
  5829. }
  5830. }
  5831. }
  5832. }
  5833. }
  5834. i10 += ne00 * (ne01 - ir1);
  5835. while (i10 >= ne0) {
  5836. i10 -= ne0;
  5837. if (++i11 == ne1) {
  5838. i11 = 0;
  5839. if (++i12 == ne2) {
  5840. i12 = 0;
  5841. if (++i13 == ne3) {
  5842. i13 = 0;
  5843. }
  5844. }
  5845. }
  5846. }
  5847. }
  5848. }
  5849. } else if (dst->type == GGML_TYPE_F16) {
  5850. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5851. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5852. i10 += ne00 * ir0;
  5853. while (i10 >= ne0) {
  5854. i10 -= ne0;
  5855. if (++i11 == ne1) {
  5856. i11 = 0;
  5857. if (++i12 == ne2) {
  5858. i12 = 0;
  5859. if (++i13 == ne3) {
  5860. i13 = 0;
  5861. }
  5862. }
  5863. }
  5864. }
  5865. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5866. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5867. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5868. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5869. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5870. if (++i10 == ne0) {
  5871. i10 = 0;
  5872. if (++i11 == ne1) {
  5873. i11 = 0;
  5874. if (++i12 == ne2) {
  5875. i12 = 0;
  5876. if (++i13 == ne3) {
  5877. i13 = 0;
  5878. }
  5879. }
  5880. }
  5881. }
  5882. }
  5883. }
  5884. i10 += ne00 * (ne01 - ir1);
  5885. while (i10 >= ne0) {
  5886. i10 -= ne0;
  5887. if (++i11 == ne1) {
  5888. i11 = 0;
  5889. if (++i12 == ne2) {
  5890. i12 = 0;
  5891. if (++i13 == ne3) {
  5892. i13 = 0;
  5893. }
  5894. }
  5895. }
  5896. }
  5897. }
  5898. }
  5899. } else {
  5900. GGML_ASSERT(false); // TODO: implement
  5901. }
  5902. }
  5903. static void ggml_compute_forward_dup(
  5904. const struct ggml_compute_params * params,
  5905. const struct ggml_tensor * src0,
  5906. struct ggml_tensor * dst) {
  5907. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5908. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5909. return;
  5910. }
  5911. switch (src0->type) {
  5912. case GGML_TYPE_F16:
  5913. {
  5914. ggml_compute_forward_dup_f16(params, src0, dst);
  5915. } break;
  5916. case GGML_TYPE_F32:
  5917. {
  5918. ggml_compute_forward_dup_f32(params, src0, dst);
  5919. } break;
  5920. default:
  5921. {
  5922. GGML_ASSERT(false);
  5923. } break;
  5924. }
  5925. }
  5926. // ggml_compute_forward_add
  5927. static void ggml_compute_forward_add_f32(
  5928. const struct ggml_compute_params * params,
  5929. const struct ggml_tensor * src0,
  5930. const struct ggml_tensor * src1,
  5931. struct ggml_tensor * dst) {
  5932. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5933. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5934. return;
  5935. }
  5936. const int ith = params->ith;
  5937. const int nth = params->nth;
  5938. const int nr = ggml_nrows(src0);
  5939. const int64_t ne0 = src0->ne[0];
  5940. const int64_t ne1 = src0->ne[1];
  5941. const int64_t ne2 = src0->ne[2];
  5942. const size_t nb00 = src0->nb[0];
  5943. const size_t nb01 = src0->nb[1];
  5944. const size_t nb02 = src0->nb[2];
  5945. const size_t nb03 = src0->nb[3];
  5946. const size_t nb10 = src1->nb[0];
  5947. const size_t nb11 = src1->nb[1];
  5948. const size_t nb12 = src1->nb[2];
  5949. const size_t nb13 = src1->nb[3];
  5950. const size_t nb0 = dst->nb[0];
  5951. const size_t nb1 = dst->nb[1];
  5952. const size_t nb2 = dst->nb[2];
  5953. const size_t nb3 = dst->nb[3];
  5954. GGML_ASSERT( nb0 == sizeof(float));
  5955. GGML_ASSERT(nb00 == sizeof(float));
  5956. // rows per thread
  5957. const int dr = (nr + nth - 1)/nth;
  5958. // row range for this thread
  5959. const int ir0 = dr*ith;
  5960. const int ir1 = MIN(ir0 + dr, nr);
  5961. if (nb10 == sizeof(float)) {
  5962. for (int ir = ir0; ir < ir1; ++ir) {
  5963. // src0, src1 and dst are same shape => same indices
  5964. const int i3 = ir/(ne2*ne1);
  5965. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5966. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5967. #ifdef GGML_USE_ACCELERATE
  5968. vDSP_vadd(
  5969. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5970. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  5971. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5972. ne0);
  5973. #else
  5974. ggml_vec_add_f32(ne0,
  5975. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  5976. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  5977. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  5978. #endif
  5979. // }
  5980. // }
  5981. }
  5982. } else {
  5983. // src1 is not contiguous
  5984. for (int ir = ir0; ir < ir1; ++ir) {
  5985. // src0, src1 and dst are same shape => same indices
  5986. const int i3 = ir/(ne2*ne1);
  5987. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5988. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5989. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5990. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5991. for (int i0 = 0; i0 < ne0; i0++) {
  5992. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  5993. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5994. }
  5995. }
  5996. }
  5997. }
  5998. static void ggml_compute_forward_add_f16_f32(
  5999. const struct ggml_compute_params * params,
  6000. const struct ggml_tensor * src0,
  6001. const struct ggml_tensor * src1,
  6002. struct ggml_tensor * dst) {
  6003. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6004. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6005. return;
  6006. }
  6007. const int ith = params->ith;
  6008. const int nth = params->nth;
  6009. const int nr = ggml_nrows(src0);
  6010. const int64_t ne0 = src0->ne[0];
  6011. const int64_t ne1 = src0->ne[1];
  6012. const int64_t ne2 = src0->ne[2];
  6013. const size_t nb00 = src0->nb[0];
  6014. const size_t nb01 = src0->nb[1];
  6015. const size_t nb02 = src0->nb[2];
  6016. const size_t nb03 = src0->nb[3];
  6017. const size_t nb10 = src1->nb[0];
  6018. const size_t nb11 = src1->nb[1];
  6019. const size_t nb12 = src1->nb[2];
  6020. const size_t nb13 = src1->nb[3];
  6021. const size_t nb0 = dst->nb[0];
  6022. const size_t nb1 = dst->nb[1];
  6023. const size_t nb2 = dst->nb[2];
  6024. const size_t nb3 = dst->nb[3];
  6025. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6026. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6027. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6028. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6029. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6030. // rows per thread
  6031. const int dr = (nr + nth - 1)/nth;
  6032. // row range for this thread
  6033. const int ir0 = dr*ith;
  6034. const int ir1 = MIN(ir0 + dr, nr);
  6035. if (nb10 == sizeof(float)) {
  6036. for (int ir = ir0; ir < ir1; ++ir) {
  6037. // src0, src1 and dst are same shape => same indices
  6038. const int i3 = ir/(ne2*ne1);
  6039. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6040. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6041. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6042. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6043. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6044. for (int i = 0; i < ne0; i++) {
  6045. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6046. }
  6047. }
  6048. }
  6049. else {
  6050. // src1 is not contiguous
  6051. GGML_ASSERT(false);
  6052. }
  6053. }
  6054. static void ggml_compute_forward_add_f16_f16(
  6055. const struct ggml_compute_params * params,
  6056. const struct ggml_tensor * src0,
  6057. const struct ggml_tensor * src1,
  6058. struct ggml_tensor * dst) {
  6059. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6060. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6061. return;
  6062. }
  6063. const int ith = params->ith;
  6064. const int nth = params->nth;
  6065. const int nr = ggml_nrows(src0);
  6066. const int64_t ne0 = src0->ne[0];
  6067. const int64_t ne1 = src0->ne[1];
  6068. const int64_t ne2 = src0->ne[2];
  6069. const size_t nb00 = src0->nb[0];
  6070. const size_t nb01 = src0->nb[1];
  6071. const size_t nb02 = src0->nb[2];
  6072. const size_t nb03 = src0->nb[3];
  6073. const size_t nb10 = src1->nb[0];
  6074. const size_t nb11 = src1->nb[1];
  6075. const size_t nb12 = src1->nb[2];
  6076. const size_t nb13 = src1->nb[3];
  6077. const size_t nb0 = dst->nb[0];
  6078. const size_t nb1 = dst->nb[1];
  6079. const size_t nb2 = dst->nb[2];
  6080. const size_t nb3 = dst->nb[3];
  6081. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6082. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6083. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6084. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6085. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6086. // rows per thread
  6087. const int dr = (nr + nth - 1)/nth;
  6088. // row range for this thread
  6089. const int ir0 = dr*ith;
  6090. const int ir1 = MIN(ir0 + dr, nr);
  6091. if (nb10 == sizeof(ggml_fp16_t)) {
  6092. for (int ir = ir0; ir < ir1; ++ir) {
  6093. // src0, src1 and dst are same shape => same indices
  6094. const int i3 = ir/(ne2*ne1);
  6095. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6096. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6097. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6098. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6099. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6100. for (int i = 0; i < ne0; i++) {
  6101. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6102. }
  6103. }
  6104. }
  6105. else {
  6106. // src1 is not contiguous
  6107. GGML_ASSERT(false);
  6108. }
  6109. }
  6110. static void ggml_compute_forward_add_q_f32(
  6111. const struct ggml_compute_params * params,
  6112. const struct ggml_tensor * src0,
  6113. const struct ggml_tensor * src1,
  6114. struct ggml_tensor * dst) {
  6115. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6116. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6117. return;
  6118. }
  6119. const int nr = ggml_nrows(src0);
  6120. const int64_t ne00 = src0->ne[0];
  6121. const int64_t ne01 = src0->ne[1];
  6122. const int64_t ne02 = src0->ne[2];
  6123. //const int64_t ne03 = src0->ne[3];
  6124. const size_t nb00 = src0->nb[0];
  6125. const size_t nb01 = src0->nb[1];
  6126. const size_t nb02 = src0->nb[2];
  6127. const size_t nb03 = src0->nb[3];
  6128. const size_t nb10 = src1->nb[0];
  6129. const size_t nb11 = src1->nb[1];
  6130. const size_t nb12 = src1->nb[2];
  6131. const size_t nb13 = src1->nb[3];
  6132. const size_t nb0 = dst->nb[0];
  6133. const size_t nb1 = dst->nb[1];
  6134. const size_t nb2 = dst->nb[2];
  6135. const size_t nb3 = dst->nb[3];
  6136. const int ith = params->ith;
  6137. const int nth = params->nth;
  6138. const enum ggml_type type = src0->type;
  6139. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6140. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6141. // we don't support permuted src0 or src1
  6142. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6143. GGML_ASSERT(nb10 == sizeof(float));
  6144. // dst cannot be transposed or permuted
  6145. GGML_ASSERT(nb0 <= nb1);
  6146. GGML_ASSERT(nb1 <= nb2);
  6147. GGML_ASSERT(nb2 <= nb3);
  6148. GGML_ASSERT(ggml_is_quantized(src0->type));
  6149. GGML_ASSERT(dst->type == src0->type);
  6150. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6151. // rows per thread
  6152. const int dr = (nr + nth - 1)/nth;
  6153. // row range for this thread
  6154. const int ir0 = dr*ith;
  6155. const int ir1 = MIN(ir0 + dr, nr);
  6156. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6157. for (int ir = ir0; ir < ir1; ++ir) {
  6158. // src0 indices
  6159. const int i03 = ir/(ne02*ne01);
  6160. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6161. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6162. // src1 and dst are same shape as src0 => same indices
  6163. const int i13 = i03;
  6164. const int i12 = i02;
  6165. const int i11 = i01;
  6166. const int i3 = i03;
  6167. const int i2 = i02;
  6168. const int i1 = i01;
  6169. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6170. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6171. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  6172. assert(ne00 % 32 == 0);
  6173. // unquantize row from src0 to temp buffer
  6174. dequantize_row_q(src0_row, wdata, ne00);
  6175. // add src1
  6176. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6177. // quantize row to dst
  6178. quantize_row_q(wdata, dst_row, ne00);
  6179. }
  6180. }
  6181. static void ggml_compute_forward_add(
  6182. const struct ggml_compute_params * params,
  6183. const struct ggml_tensor * src0,
  6184. const struct ggml_tensor * src1,
  6185. struct ggml_tensor * dst) {
  6186. switch (src0->type) {
  6187. case GGML_TYPE_F32:
  6188. {
  6189. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6190. } break;
  6191. case GGML_TYPE_F16:
  6192. {
  6193. if (src1->type == GGML_TYPE_F16) {
  6194. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6195. }
  6196. else if (src1->type == GGML_TYPE_F32) {
  6197. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6198. }
  6199. else {
  6200. GGML_ASSERT(false);
  6201. }
  6202. } break;
  6203. case GGML_TYPE_Q4_0:
  6204. case GGML_TYPE_Q4_1:
  6205. case GGML_TYPE_Q5_0:
  6206. case GGML_TYPE_Q5_1:
  6207. case GGML_TYPE_Q8_0:
  6208. case GGML_TYPE_Q2_K:
  6209. case GGML_TYPE_Q3_K:
  6210. case GGML_TYPE_Q4_K:
  6211. case GGML_TYPE_Q5_K:
  6212. case GGML_TYPE_Q6_K:
  6213. {
  6214. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6215. } break;
  6216. default:
  6217. {
  6218. GGML_ASSERT(false);
  6219. } break;
  6220. }
  6221. }
  6222. // ggml_compute_forward_add1
  6223. static void ggml_compute_forward_add1_f32(
  6224. const struct ggml_compute_params * params,
  6225. const struct ggml_tensor * src0,
  6226. const struct ggml_tensor * src1,
  6227. struct ggml_tensor * dst) {
  6228. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6229. GGML_ASSERT(ggml_is_scalar(src1));
  6230. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6231. return;
  6232. }
  6233. const int ith = params->ith;
  6234. const int nth = params->nth;
  6235. const int nr = ggml_nrows(src0);
  6236. const int64_t ne0 = src0->ne[0];
  6237. const int64_t ne1 = src0->ne[1];
  6238. const int64_t ne2 = src0->ne[2];
  6239. const size_t nb00 = src0->nb[0];
  6240. const size_t nb01 = src0->nb[1];
  6241. const size_t nb02 = src0->nb[2];
  6242. const size_t nb03 = src0->nb[3];
  6243. const size_t nb0 = dst->nb[0];
  6244. const size_t nb1 = dst->nb[1];
  6245. const size_t nb2 = dst->nb[2];
  6246. const size_t nb3 = dst->nb[3];
  6247. GGML_ASSERT( nb0 == sizeof(float));
  6248. GGML_ASSERT(nb00 == sizeof(float));
  6249. // rows per thread
  6250. const int dr = (nr + nth - 1)/nth;
  6251. // row range for this thread
  6252. const int ir0 = dr*ith;
  6253. const int ir1 = MIN(ir0 + dr, nr);
  6254. for (int ir = ir0; ir < ir1; ++ir) {
  6255. // src0 and dst are same shape => same indices
  6256. const int i3 = ir/(ne2*ne1);
  6257. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6258. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6259. #ifdef GGML_USE_ACCELERATE
  6260. UNUSED(ggml_vec_add1_f32);
  6261. vDSP_vadd(
  6262. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6263. (float *) ((char *) src1->data), 0,
  6264. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6265. ne0);
  6266. #else
  6267. ggml_vec_add1_f32(ne0,
  6268. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6269. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6270. *(float *) src1->data);
  6271. #endif
  6272. }
  6273. }
  6274. static void ggml_compute_forward_add1_f16_f32(
  6275. const struct ggml_compute_params * params,
  6276. const struct ggml_tensor * src0,
  6277. const struct ggml_tensor * src1,
  6278. struct ggml_tensor * dst) {
  6279. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6280. GGML_ASSERT(ggml_is_scalar(src1));
  6281. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6282. return;
  6283. }
  6284. // scalar to add
  6285. const float v = *(float *) src1->data;
  6286. const int ith = params->ith;
  6287. const int nth = params->nth;
  6288. const int nr = ggml_nrows(src0);
  6289. const int64_t ne0 = src0->ne[0];
  6290. const int64_t ne1 = src0->ne[1];
  6291. const int64_t ne2 = src0->ne[2];
  6292. const size_t nb00 = src0->nb[0];
  6293. const size_t nb01 = src0->nb[1];
  6294. const size_t nb02 = src0->nb[2];
  6295. const size_t nb03 = src0->nb[3];
  6296. const size_t nb0 = dst->nb[0];
  6297. const size_t nb1 = dst->nb[1];
  6298. const size_t nb2 = dst->nb[2];
  6299. const size_t nb3 = dst->nb[3];
  6300. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6301. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6302. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6303. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6304. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6305. // rows per thread
  6306. const int dr = (nr + nth - 1)/nth;
  6307. // row range for this thread
  6308. const int ir0 = dr*ith;
  6309. const int ir1 = MIN(ir0 + dr, nr);
  6310. for (int ir = ir0; ir < ir1; ++ir) {
  6311. // src0 and dst are same shape => same indices
  6312. const int i3 = ir/(ne2*ne1);
  6313. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6314. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6315. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6316. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6317. for (int i = 0; i < ne0; i++) {
  6318. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6319. }
  6320. }
  6321. }
  6322. static void ggml_compute_forward_add1_f16_f16(
  6323. const struct ggml_compute_params * params,
  6324. const struct ggml_tensor * src0,
  6325. const struct ggml_tensor * src1,
  6326. struct ggml_tensor * dst) {
  6327. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6328. GGML_ASSERT(ggml_is_scalar(src1));
  6329. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6330. return;
  6331. }
  6332. // scalar to add
  6333. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6334. const int ith = params->ith;
  6335. const int nth = params->nth;
  6336. const int nr = ggml_nrows(src0);
  6337. const int64_t ne0 = src0->ne[0];
  6338. const int64_t ne1 = src0->ne[1];
  6339. const int64_t ne2 = src0->ne[2];
  6340. const size_t nb00 = src0->nb[0];
  6341. const size_t nb01 = src0->nb[1];
  6342. const size_t nb02 = src0->nb[2];
  6343. const size_t nb03 = src0->nb[3];
  6344. const size_t nb0 = dst->nb[0];
  6345. const size_t nb1 = dst->nb[1];
  6346. const size_t nb2 = dst->nb[2];
  6347. const size_t nb3 = dst->nb[3];
  6348. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6349. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6350. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6351. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6352. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6353. // rows per thread
  6354. const int dr = (nr + nth - 1)/nth;
  6355. // row range for this thread
  6356. const int ir0 = dr*ith;
  6357. const int ir1 = MIN(ir0 + dr, nr);
  6358. for (int ir = ir0; ir < ir1; ++ir) {
  6359. // src0 and dst are same shape => same indices
  6360. const int i3 = ir/(ne2*ne1);
  6361. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6362. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6363. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6364. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6365. for (int i = 0; i < ne0; i++) {
  6366. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6367. }
  6368. }
  6369. }
  6370. static void ggml_compute_forward_add1_q_f32(
  6371. const struct ggml_compute_params * params,
  6372. const struct ggml_tensor * src0,
  6373. const struct ggml_tensor * src1,
  6374. struct ggml_tensor * dst) {
  6375. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6376. GGML_ASSERT(ggml_is_scalar(src1));
  6377. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6378. return;
  6379. }
  6380. // scalar to add
  6381. const float v = *(float *) src1->data;
  6382. const int ith = params->ith;
  6383. const int nth = params->nth;
  6384. const int nr = ggml_nrows(src0);
  6385. const int64_t ne0 = src0->ne[0];
  6386. const int64_t ne1 = src0->ne[1];
  6387. const int64_t ne2 = src0->ne[2];
  6388. const size_t nb00 = src0->nb[0];
  6389. const size_t nb01 = src0->nb[1];
  6390. const size_t nb02 = src0->nb[2];
  6391. const size_t nb03 = src0->nb[3];
  6392. const size_t nb0 = dst->nb[0];
  6393. const size_t nb1 = dst->nb[1];
  6394. const size_t nb2 = dst->nb[2];
  6395. const size_t nb3 = dst->nb[3];
  6396. const enum ggml_type type = src0->type;
  6397. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6398. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6399. // we don't support permuted src0
  6400. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6401. // dst cannot be transposed or permuted
  6402. GGML_ASSERT(nb0 <= nb1);
  6403. GGML_ASSERT(nb1 <= nb2);
  6404. GGML_ASSERT(nb2 <= nb3);
  6405. GGML_ASSERT(ggml_is_quantized(src0->type));
  6406. GGML_ASSERT(dst->type == src0->type);
  6407. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6408. // rows per thread
  6409. const int dr = (nr + nth - 1)/nth;
  6410. // row range for this thread
  6411. const int ir0 = dr*ith;
  6412. const int ir1 = MIN(ir0 + dr, nr);
  6413. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6414. for (int ir = ir0; ir < ir1; ++ir) {
  6415. // src0 and dst are same shape => same indices
  6416. const int i3 = ir/(ne2*ne1);
  6417. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6418. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6419. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6420. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6421. assert(ne0 % 32 == 0);
  6422. // unquantize row from src0 to temp buffer
  6423. dequantize_row_q(src0_row, wdata, ne0);
  6424. // add src1
  6425. ggml_vec_acc1_f32(ne0, wdata, v);
  6426. // quantize row to dst
  6427. quantize_row_q(wdata, dst_row, ne0);
  6428. }
  6429. }
  6430. static void ggml_compute_forward_add1(
  6431. const struct ggml_compute_params * params,
  6432. const struct ggml_tensor * src0,
  6433. const struct ggml_tensor * src1,
  6434. struct ggml_tensor * dst) {
  6435. switch (src0->type) {
  6436. case GGML_TYPE_F32:
  6437. {
  6438. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6439. } break;
  6440. case GGML_TYPE_F16:
  6441. {
  6442. if (src1->type == GGML_TYPE_F16) {
  6443. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6444. }
  6445. else if (src1->type == GGML_TYPE_F32) {
  6446. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6447. }
  6448. else {
  6449. GGML_ASSERT(false);
  6450. }
  6451. } break;
  6452. case GGML_TYPE_Q4_0:
  6453. case GGML_TYPE_Q4_1:
  6454. case GGML_TYPE_Q5_0:
  6455. case GGML_TYPE_Q5_1:
  6456. case GGML_TYPE_Q8_0:
  6457. case GGML_TYPE_Q8_1:
  6458. case GGML_TYPE_Q2_K:
  6459. case GGML_TYPE_Q3_K:
  6460. case GGML_TYPE_Q4_K:
  6461. case GGML_TYPE_Q5_K:
  6462. case GGML_TYPE_Q6_K:
  6463. {
  6464. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6465. } break;
  6466. default:
  6467. {
  6468. GGML_ASSERT(false);
  6469. } break;
  6470. }
  6471. }
  6472. // ggml_compute_forward_acc
  6473. static void ggml_compute_forward_acc_f32(
  6474. const struct ggml_compute_params * params,
  6475. const struct ggml_tensor * src0,
  6476. const struct ggml_tensor * src1,
  6477. const struct ggml_tensor * opt0,
  6478. struct ggml_tensor * dst) {
  6479. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6480. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6481. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  6482. GGML_ASSERT(ggml_nelements(opt0) == 5);
  6483. // view src0 and dst with these strides and data offset inbytes during acc
  6484. // nb0 is implicitely element_size because src0 and dst are contiguous
  6485. size_t nb1 = ((int32_t *) opt0->data)[0];
  6486. size_t nb2 = ((int32_t *) opt0->data)[1];
  6487. size_t nb3 = ((int32_t *) opt0->data)[2];
  6488. size_t offset = ((int32_t *) opt0->data)[3];
  6489. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  6490. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6491. // memcpy needs to be synchronized across threads to avoid race conditions.
  6492. // => do it in INIT phase
  6493. memcpy(
  6494. ((char *) dst->data),
  6495. ((char *) src0->data),
  6496. ggml_nbytes(dst));
  6497. }
  6498. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6499. return;
  6500. }
  6501. const int ith = params->ith;
  6502. const int nth = params->nth;
  6503. const int nr = ggml_nrows(src1);
  6504. const int nc = src1->ne[0];
  6505. const int64_t ne10 = src1->ne[0];
  6506. const int64_t ne11 = src1->ne[1];
  6507. const int64_t ne12 = src1->ne[2];
  6508. const int64_t ne13 = src1->ne[3];
  6509. const size_t nb10 = src1->nb[0];
  6510. const size_t nb11 = src1->nb[1];
  6511. const size_t nb12 = src1->nb[2];
  6512. const size_t nb13 = src1->nb[3];
  6513. // src0 and dst as viewed during acc
  6514. const size_t nb0 = ggml_element_size(src0);
  6515. const size_t nb00 = nb0;
  6516. const size_t nb01 = nb1;
  6517. const size_t nb02 = nb2;
  6518. const size_t nb03 = nb3;
  6519. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6520. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6521. GGML_ASSERT(nb10 == sizeof(float));
  6522. // rows per thread
  6523. const int dr = (nr + nth - 1)/nth;
  6524. // row range for this thread
  6525. const int ir0 = dr*ith;
  6526. const int ir1 = MIN(ir0 + dr, nr);
  6527. for (int ir = ir0; ir < ir1; ++ir) {
  6528. // src0 and dst are viewed with shape of src1 and offset
  6529. // => same indices
  6530. const int i3 = ir/(ne12*ne11);
  6531. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6532. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6533. #ifdef GGML_USE_ACCELERATE
  6534. vDSP_vadd(
  6535. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6536. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6537. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6538. #else
  6539. ggml_vec_add_f32(nc,
  6540. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6541. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6542. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6543. #endif
  6544. }
  6545. }
  6546. static void ggml_compute_forward_acc(
  6547. const struct ggml_compute_params * params,
  6548. const struct ggml_tensor * src0,
  6549. const struct ggml_tensor * src1,
  6550. const struct ggml_tensor * opt0,
  6551. struct ggml_tensor * dst) {
  6552. switch (src0->type) {
  6553. case GGML_TYPE_F32:
  6554. {
  6555. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  6556. } break;
  6557. case GGML_TYPE_F16:
  6558. case GGML_TYPE_Q4_0:
  6559. case GGML_TYPE_Q4_1:
  6560. case GGML_TYPE_Q5_0:
  6561. case GGML_TYPE_Q5_1:
  6562. case GGML_TYPE_Q8_0:
  6563. case GGML_TYPE_Q8_1:
  6564. case GGML_TYPE_Q2_K:
  6565. case GGML_TYPE_Q3_K:
  6566. case GGML_TYPE_Q4_K:
  6567. case GGML_TYPE_Q5_K:
  6568. case GGML_TYPE_Q6_K:
  6569. default:
  6570. {
  6571. GGML_ASSERT(false);
  6572. } break;
  6573. }
  6574. }
  6575. // ggml_compute_forward_sub
  6576. static void ggml_compute_forward_sub_f32(
  6577. const struct ggml_compute_params * params,
  6578. const struct ggml_tensor * src0,
  6579. const struct ggml_tensor * src1,
  6580. struct ggml_tensor * dst) {
  6581. assert(params->ith == 0);
  6582. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6583. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6584. return;
  6585. }
  6586. const int nr = ggml_nrows(src0);
  6587. const int64_t ne0 = src0->ne[0];
  6588. const int64_t ne1 = src0->ne[1];
  6589. const int64_t ne2 = src0->ne[2];
  6590. const size_t nb00 = src0->nb[0];
  6591. const size_t nb01 = src0->nb[1];
  6592. const size_t nb02 = src0->nb[2];
  6593. const size_t nb03 = src0->nb[3];
  6594. const size_t nb10 = src1->nb[0];
  6595. const size_t nb11 = src1->nb[1];
  6596. const size_t nb12 = src1->nb[2];
  6597. const size_t nb13 = src1->nb[3];
  6598. const size_t nb0 = dst->nb[0];
  6599. const size_t nb1 = dst->nb[1];
  6600. const size_t nb2 = dst->nb[2];
  6601. const size_t nb3 = dst->nb[3];
  6602. GGML_ASSERT( nb0 == sizeof(float));
  6603. GGML_ASSERT(nb00 == sizeof(float));
  6604. if (nb10 == sizeof(float)) {
  6605. for (int ir = 0; ir < nr; ++ir) {
  6606. // src0, src1 and dst are same shape => same indices
  6607. const int i3 = ir/(ne2*ne1);
  6608. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6609. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6610. #ifdef GGML_USE_ACCELERATE
  6611. vDSP_vsub(
  6612. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6613. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6614. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6615. ne0);
  6616. #else
  6617. ggml_vec_sub_f32(ne0,
  6618. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6619. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6620. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6621. #endif
  6622. // }
  6623. // }
  6624. }
  6625. } else {
  6626. // src1 is not contiguous
  6627. for (int ir = 0; ir < nr; ++ir) {
  6628. // src0, src1 and dst are same shape => same indices
  6629. const int i3 = ir/(ne2*ne1);
  6630. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6631. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6632. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6633. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6634. for (int i0 = 0; i0 < ne0; i0++) {
  6635. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6636. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6637. }
  6638. }
  6639. }
  6640. }
  6641. static void ggml_compute_forward_sub(
  6642. const struct ggml_compute_params * params,
  6643. const struct ggml_tensor * src0,
  6644. const struct ggml_tensor * src1,
  6645. struct ggml_tensor * dst) {
  6646. switch (src0->type) {
  6647. case GGML_TYPE_F32:
  6648. {
  6649. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6650. } break;
  6651. default:
  6652. {
  6653. GGML_ASSERT(false);
  6654. } break;
  6655. }
  6656. }
  6657. // ggml_compute_forward_mul
  6658. static void ggml_compute_forward_mul_f32(
  6659. const struct ggml_compute_params * params,
  6660. const struct ggml_tensor * src0,
  6661. const struct ggml_tensor * src1,
  6662. struct ggml_tensor * dst) {
  6663. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6664. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6665. return;
  6666. }
  6667. const int ith = params->ith;
  6668. const int nth = params->nth;
  6669. #ifdef GGML_USE_CUBLAS
  6670. if (src1->backend == GGML_BACKEND_CUDA) {
  6671. if (ith == 0) {
  6672. ggml_cuda_mul(src0, src1, dst);
  6673. }
  6674. return;
  6675. }
  6676. #elif defined(GGML_USE_CLBLAST)
  6677. if (src1->backend == GGML_BACKEND_CL) {
  6678. if (ith == 0) {
  6679. ggml_cl_mul(src0, src1, dst);
  6680. }
  6681. return;
  6682. }
  6683. #endif
  6684. const int64_t nr = ggml_nrows(src0);
  6685. const int64_t ne00 = src0->ne[0];
  6686. const int64_t ne01 = src0->ne[1];
  6687. const int64_t ne02 = src0->ne[2];
  6688. const int64_t ne10 = src1->ne[0];
  6689. const int64_t ne11 = src1->ne[1];
  6690. const int64_t ne12 = src1->ne[2];
  6691. const int64_t ne13 = src1->ne[3];
  6692. const size_t nb00 = src0->nb[0];
  6693. const size_t nb01 = src0->nb[1];
  6694. const size_t nb02 = src0->nb[2];
  6695. const size_t nb03 = src0->nb[3];
  6696. const size_t nb10 = src1->nb[0];
  6697. const size_t nb11 = src1->nb[1];
  6698. const size_t nb12 = src1->nb[2];
  6699. const size_t nb13 = src1->nb[3];
  6700. const size_t nb0 = dst->nb[0];
  6701. const size_t nb1 = dst->nb[1];
  6702. const size_t nb2 = dst->nb[2];
  6703. const size_t nb3 = dst->nb[3];
  6704. GGML_ASSERT( nb0 == sizeof(float));
  6705. GGML_ASSERT(nb00 == sizeof(float));
  6706. GGML_ASSERT(ne00 == ne10);
  6707. if (nb10 == sizeof(float)) {
  6708. for (int64_t ir = ith; ir < nr; ir += nth) {
  6709. // src0 and dst are same shape => same indices
  6710. const int64_t i03 = ir/(ne02*ne01);
  6711. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6712. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6713. const int64_t i13 = i03 % ne13;
  6714. const int64_t i12 = i02 % ne12;
  6715. const int64_t i11 = i01 % ne11;
  6716. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6717. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6718. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6719. #ifdef GGML_USE_ACCELERATE
  6720. UNUSED(ggml_vec_mul_f32);
  6721. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6722. #else
  6723. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6724. #endif
  6725. // }
  6726. // }
  6727. }
  6728. } else {
  6729. // src1 is not contiguous
  6730. for (int64_t ir = ith; ir < nr; ir += nth) {
  6731. // src0 and dst are same shape => same indices
  6732. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6733. const int64_t i03 = ir/(ne02*ne01);
  6734. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6735. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6736. const int64_t i13 = i03 % ne13;
  6737. const int64_t i12 = i02 % ne12;
  6738. const int64_t i11 = i01 % ne11;
  6739. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6740. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6741. for (int64_t i0 = 0; i0 < ne00; i0++) {
  6742. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6743. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6744. }
  6745. }
  6746. }
  6747. }
  6748. static void ggml_compute_forward_mul(
  6749. const struct ggml_compute_params * params,
  6750. const struct ggml_tensor * src0,
  6751. const struct ggml_tensor * src1,
  6752. struct ggml_tensor * dst) {
  6753. switch (src0->type) {
  6754. case GGML_TYPE_F32:
  6755. {
  6756. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6757. } break;
  6758. default:
  6759. {
  6760. GGML_ASSERT(false);
  6761. } break;
  6762. }
  6763. }
  6764. // ggml_compute_forward_div
  6765. static void ggml_compute_forward_div_f32(
  6766. const struct ggml_compute_params * params,
  6767. const struct ggml_tensor * src0,
  6768. const struct ggml_tensor * src1,
  6769. struct ggml_tensor * dst) {
  6770. assert(params->ith == 0);
  6771. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6772. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6773. return;
  6774. }
  6775. const int nr = ggml_nrows(src0);
  6776. const int64_t ne0 = src0->ne[0];
  6777. const int64_t ne1 = src0->ne[1];
  6778. const int64_t ne2 = src0->ne[2];
  6779. const size_t nb00 = src0->nb[0];
  6780. const size_t nb01 = src0->nb[1];
  6781. const size_t nb02 = src0->nb[2];
  6782. const size_t nb03 = src0->nb[3];
  6783. const size_t nb10 = src1->nb[0];
  6784. const size_t nb11 = src1->nb[1];
  6785. const size_t nb12 = src1->nb[2];
  6786. const size_t nb13 = src1->nb[3];
  6787. const size_t nb0 = dst->nb[0];
  6788. const size_t nb1 = dst->nb[1];
  6789. const size_t nb2 = dst->nb[2];
  6790. const size_t nb3 = dst->nb[3];
  6791. GGML_ASSERT( nb0 == sizeof(float));
  6792. GGML_ASSERT(nb00 == sizeof(float));
  6793. if (nb10 == sizeof(float)) {
  6794. for (int ir = 0; ir < nr; ++ir) {
  6795. // src0, src1 and dst are same shape => same indices
  6796. const int i3 = ir/(ne2*ne1);
  6797. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6798. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6799. #ifdef GGML_USE_ACCELERATE
  6800. vDSP_vdiv(
  6801. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6802. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6803. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6804. ne0);
  6805. #else
  6806. ggml_vec_div_f32(ne0,
  6807. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6808. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6809. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6810. #endif
  6811. // }
  6812. // }
  6813. }
  6814. } else {
  6815. // src1 is not contiguous
  6816. for (int ir = 0; ir < nr; ++ir) {
  6817. // src0, src1 and dst are same shape => same indices
  6818. const int i3 = ir/(ne2*ne1);
  6819. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6820. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6821. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6822. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6823. for (int i0 = 0; i0 < ne0; i0++) {
  6824. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6825. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6826. }
  6827. }
  6828. }
  6829. }
  6830. static void ggml_compute_forward_div(
  6831. const struct ggml_compute_params * params,
  6832. const struct ggml_tensor * src0,
  6833. const struct ggml_tensor * src1,
  6834. struct ggml_tensor * dst) {
  6835. switch (src0->type) {
  6836. case GGML_TYPE_F32:
  6837. {
  6838. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6839. } break;
  6840. default:
  6841. {
  6842. GGML_ASSERT(false);
  6843. } break;
  6844. }
  6845. }
  6846. // ggml_compute_forward_sqr
  6847. static void ggml_compute_forward_sqr_f32(
  6848. const struct ggml_compute_params * params,
  6849. const struct ggml_tensor * src0,
  6850. struct ggml_tensor * dst) {
  6851. assert(params->ith == 0);
  6852. assert(ggml_are_same_shape(src0, dst));
  6853. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6854. return;
  6855. }
  6856. const int n = ggml_nrows(src0);
  6857. const int nc = src0->ne[0];
  6858. assert( dst->nb[0] == sizeof(float));
  6859. assert(src0->nb[0] == sizeof(float));
  6860. for (int i = 0; i < n; i++) {
  6861. ggml_vec_sqr_f32(nc,
  6862. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6863. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6864. }
  6865. }
  6866. static void ggml_compute_forward_sqr(
  6867. const struct ggml_compute_params * params,
  6868. const struct ggml_tensor * src0,
  6869. struct ggml_tensor * dst) {
  6870. switch (src0->type) {
  6871. case GGML_TYPE_F32:
  6872. {
  6873. ggml_compute_forward_sqr_f32(params, src0, dst);
  6874. } break;
  6875. default:
  6876. {
  6877. GGML_ASSERT(false);
  6878. } break;
  6879. }
  6880. }
  6881. // ggml_compute_forward_sqrt
  6882. static void ggml_compute_forward_sqrt_f32(
  6883. const struct ggml_compute_params * params,
  6884. const struct ggml_tensor * src0,
  6885. struct ggml_tensor * dst) {
  6886. assert(params->ith == 0);
  6887. assert(ggml_are_same_shape(src0, dst));
  6888. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6889. return;
  6890. }
  6891. const int n = ggml_nrows(src0);
  6892. const int nc = src0->ne[0];
  6893. assert( dst->nb[0] == sizeof(float));
  6894. assert(src0->nb[0] == sizeof(float));
  6895. for (int i = 0; i < n; i++) {
  6896. ggml_vec_sqrt_f32(nc,
  6897. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6898. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6899. }
  6900. }
  6901. static void ggml_compute_forward_sqrt(
  6902. const struct ggml_compute_params * params,
  6903. const struct ggml_tensor * src0,
  6904. struct ggml_tensor * dst) {
  6905. switch (src0->type) {
  6906. case GGML_TYPE_F32:
  6907. {
  6908. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6909. } break;
  6910. default:
  6911. {
  6912. GGML_ASSERT(false);
  6913. } break;
  6914. }
  6915. }
  6916. // ggml_compute_forward_log
  6917. static void ggml_compute_forward_log_f32(
  6918. const struct ggml_compute_params * params,
  6919. const struct ggml_tensor * src0,
  6920. struct ggml_tensor * dst) {
  6921. GGML_ASSERT(params->ith == 0);
  6922. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6923. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6924. return;
  6925. }
  6926. const int n = ggml_nrows(src0);
  6927. const int nc = src0->ne[0];
  6928. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6929. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6930. for (int i = 0; i < n; i++) {
  6931. ggml_vec_log_f32(nc,
  6932. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6933. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6934. }
  6935. }
  6936. static void ggml_compute_forward_log(
  6937. const struct ggml_compute_params * params,
  6938. const struct ggml_tensor * src0,
  6939. struct ggml_tensor * dst) {
  6940. switch (src0->type) {
  6941. case GGML_TYPE_F32:
  6942. {
  6943. ggml_compute_forward_log_f32(params, src0, dst);
  6944. } break;
  6945. default:
  6946. {
  6947. GGML_ASSERT(false);
  6948. } break;
  6949. }
  6950. }
  6951. // ggml_compute_forward_sum
  6952. static void ggml_compute_forward_sum_f32(
  6953. const struct ggml_compute_params * params,
  6954. const struct ggml_tensor * src0,
  6955. struct ggml_tensor * dst) {
  6956. assert(params->ith == 0);
  6957. assert(ggml_is_scalar(dst));
  6958. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6959. return;
  6960. }
  6961. assert(ggml_is_scalar(dst));
  6962. assert(src0->nb[0] == sizeof(float));
  6963. const int64_t ne00 = src0->ne[0];
  6964. const int64_t ne01 = src0->ne[1];
  6965. const int64_t ne02 = src0->ne[2];
  6966. const int64_t ne03 = src0->ne[3];
  6967. const size_t nb01 = src0->nb[1];
  6968. const size_t nb02 = src0->nb[2];
  6969. const size_t nb03 = src0->nb[3];
  6970. ggml_float sum = 0;
  6971. ggml_float row_sum = 0;
  6972. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6973. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6974. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6975. ggml_vec_sum_ggf(ne00,
  6976. &row_sum,
  6977. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6978. sum += row_sum;
  6979. }
  6980. }
  6981. }
  6982. ((float *) dst->data)[0] = sum;
  6983. }
  6984. static void ggml_compute_forward_sum(
  6985. const struct ggml_compute_params * params,
  6986. const struct ggml_tensor * src0,
  6987. struct ggml_tensor * dst) {
  6988. switch (src0->type) {
  6989. case GGML_TYPE_F32:
  6990. {
  6991. ggml_compute_forward_sum_f32(params, src0, dst);
  6992. } break;
  6993. default:
  6994. {
  6995. GGML_ASSERT(false);
  6996. } break;
  6997. }
  6998. }
  6999. // ggml_compute_forward_sum_rows
  7000. static void ggml_compute_forward_sum_rows_f32(
  7001. const struct ggml_compute_params * params,
  7002. const struct ggml_tensor * src0,
  7003. struct ggml_tensor * dst) {
  7004. GGML_ASSERT(params->ith == 0);
  7005. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7006. return;
  7007. }
  7008. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7009. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7010. const int64_t ne00 = src0->ne[0];
  7011. const int64_t ne01 = src0->ne[1];
  7012. const int64_t ne02 = src0->ne[2];
  7013. const int64_t ne03 = src0->ne[3];
  7014. const int64_t ne0 = dst->ne[0];
  7015. const int64_t ne1 = dst->ne[1];
  7016. const int64_t ne2 = dst->ne[2];
  7017. const int64_t ne3 = dst->ne[3];
  7018. GGML_ASSERT(ne0 == 1);
  7019. GGML_ASSERT(ne1 == ne01);
  7020. GGML_ASSERT(ne2 == ne02);
  7021. GGML_ASSERT(ne3 == ne03);
  7022. const size_t nb01 = src0->nb[1];
  7023. const size_t nb02 = src0->nb[2];
  7024. const size_t nb03 = src0->nb[3];
  7025. const size_t nb1 = dst->nb[1];
  7026. const size_t nb2 = dst->nb[2];
  7027. const size_t nb3 = dst->nb[3];
  7028. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7029. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7030. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7031. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7032. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7033. float row_sum = 0;
  7034. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7035. dst_row[0] = row_sum;
  7036. }
  7037. }
  7038. }
  7039. }
  7040. static void ggml_compute_forward_sum_rows(
  7041. const struct ggml_compute_params * params,
  7042. const struct ggml_tensor * src0,
  7043. struct ggml_tensor * dst) {
  7044. switch (src0->type) {
  7045. case GGML_TYPE_F32:
  7046. {
  7047. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7048. } break;
  7049. default:
  7050. {
  7051. GGML_ASSERT(false);
  7052. } break;
  7053. }
  7054. }
  7055. // ggml_compute_forward_mean
  7056. static void ggml_compute_forward_mean_f32(
  7057. const struct ggml_compute_params * params,
  7058. const struct ggml_tensor * src0,
  7059. struct ggml_tensor * dst) {
  7060. assert(params->ith == 0);
  7061. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7062. return;
  7063. }
  7064. assert(src0->nb[0] == sizeof(float));
  7065. const int64_t ne00 = src0->ne[0];
  7066. const int64_t ne01 = src0->ne[1];
  7067. const int64_t ne02 = src0->ne[2];
  7068. const int64_t ne03 = src0->ne[3];
  7069. const size_t nb01 = src0->nb[1];
  7070. const size_t nb02 = src0->nb[2];
  7071. const size_t nb03 = src0->nb[3];
  7072. const int64_t ne0 = dst->ne[0];
  7073. const int64_t ne1 = dst->ne[1];
  7074. const int64_t ne2 = dst->ne[2];
  7075. const int64_t ne3 = dst->ne[3];
  7076. assert(ne0 == 1);
  7077. assert(ne1 == ne01);
  7078. assert(ne2 == ne02);
  7079. assert(ne3 == ne03);
  7080. UNUSED(ne0);
  7081. UNUSED(ne1);
  7082. UNUSED(ne2);
  7083. UNUSED(ne3);
  7084. const size_t nb1 = dst->nb[1];
  7085. const size_t nb2 = dst->nb[2];
  7086. const size_t nb3 = dst->nb[3];
  7087. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7088. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7089. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7090. ggml_vec_sum_f32(ne00,
  7091. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7092. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7093. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7094. }
  7095. }
  7096. }
  7097. }
  7098. static void ggml_compute_forward_mean(
  7099. const struct ggml_compute_params * params,
  7100. const struct ggml_tensor * src0,
  7101. struct ggml_tensor * dst) {
  7102. switch (src0->type) {
  7103. case GGML_TYPE_F32:
  7104. {
  7105. ggml_compute_forward_mean_f32(params, src0, dst);
  7106. } break;
  7107. default:
  7108. {
  7109. GGML_ASSERT(false);
  7110. } break;
  7111. }
  7112. }
  7113. // ggml_compute_forward_repeat
  7114. static void ggml_compute_forward_repeat_f32(
  7115. const struct ggml_compute_params * params,
  7116. const struct ggml_tensor * src0,
  7117. struct ggml_tensor * dst) {
  7118. GGML_ASSERT(params->ith == 0);
  7119. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7120. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7121. return;
  7122. }
  7123. const int64_t ne0 = dst->ne[0];
  7124. const int64_t ne1 = dst->ne[1];
  7125. const int64_t ne2 = dst->ne[2];
  7126. const int64_t ne3 = dst->ne[3];
  7127. const int64_t ne00 = src0->ne[0];
  7128. const int64_t ne01 = src0->ne[1];
  7129. const int64_t ne02 = src0->ne[2];
  7130. const int64_t ne03 = src0->ne[3];
  7131. const size_t nb0 = dst->nb[0];
  7132. const size_t nb1 = dst->nb[1];
  7133. const size_t nb2 = dst->nb[2];
  7134. const size_t nb3 = dst->nb[3];
  7135. const size_t nb00 = src0->nb[0];
  7136. const size_t nb01 = src0->nb[1];
  7137. const size_t nb02 = src0->nb[2];
  7138. const size_t nb03 = src0->nb[3];
  7139. // guaranteed to be an integer due to the check in ggml_can_repeat
  7140. const int nr0 = (int)(ne0/ne00);
  7141. const int nr1 = (int)(ne1/ne01);
  7142. const int nr2 = (int)(ne2/ne02);
  7143. const int nr3 = (int)(ne3/ne03);
  7144. // TODO: support for transposed / permuted tensors
  7145. GGML_ASSERT(nb0 == sizeof(float));
  7146. GGML_ASSERT(nb00 == sizeof(float));
  7147. // TODO: maybe this is not optimal?
  7148. for (int i3 = 0; i3 < nr3; i3++) {
  7149. for (int k3 = 0; k3 < ne03; k3++) {
  7150. for (int i2 = 0; i2 < nr2; i2++) {
  7151. for (int k2 = 0; k2 < ne02; k2++) {
  7152. for (int i1 = 0; i1 < nr1; i1++) {
  7153. for (int k1 = 0; k1 < ne01; k1++) {
  7154. for (int i0 = 0; i0 < nr0; i0++) {
  7155. ggml_vec_cpy_f32(ne00,
  7156. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7157. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7158. }
  7159. }
  7160. }
  7161. }
  7162. }
  7163. }
  7164. }
  7165. }
  7166. static void ggml_compute_forward_repeat(
  7167. const struct ggml_compute_params * params,
  7168. const struct ggml_tensor * src0,
  7169. struct ggml_tensor * dst) {
  7170. switch (src0->type) {
  7171. case GGML_TYPE_F32:
  7172. {
  7173. ggml_compute_forward_repeat_f32(params, src0, dst);
  7174. } break;
  7175. default:
  7176. {
  7177. GGML_ASSERT(false);
  7178. } break;
  7179. }
  7180. }
  7181. // ggml_compute_forward_abs
  7182. static void ggml_compute_forward_abs_f32(
  7183. const struct ggml_compute_params * params,
  7184. const struct ggml_tensor * src0,
  7185. struct ggml_tensor * dst) {
  7186. assert(params->ith == 0);
  7187. assert(ggml_are_same_shape(src0, dst));
  7188. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7189. return;
  7190. }
  7191. const int n = ggml_nrows(src0);
  7192. const int nc = src0->ne[0];
  7193. assert(dst->nb[0] == sizeof(float));
  7194. assert(src0->nb[0] == sizeof(float));
  7195. for (int i = 0; i < n; i++) {
  7196. ggml_vec_abs_f32(nc,
  7197. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7198. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7199. }
  7200. }
  7201. static void ggml_compute_forward_abs(
  7202. const struct ggml_compute_params * params,
  7203. const struct ggml_tensor * src0,
  7204. struct ggml_tensor * dst) {
  7205. switch (src0->type) {
  7206. case GGML_TYPE_F32:
  7207. {
  7208. ggml_compute_forward_abs_f32(params, src0, dst);
  7209. } break;
  7210. default:
  7211. {
  7212. GGML_ASSERT(false);
  7213. } break;
  7214. }
  7215. }
  7216. // ggml_compute_forward_sgn
  7217. static void ggml_compute_forward_sgn_f32(
  7218. const struct ggml_compute_params * params,
  7219. const struct ggml_tensor * src0,
  7220. struct ggml_tensor * dst) {
  7221. assert(params->ith == 0);
  7222. assert(ggml_are_same_shape(src0, dst));
  7223. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7224. return;
  7225. }
  7226. const int n = ggml_nrows(src0);
  7227. const int nc = src0->ne[0];
  7228. assert(dst->nb[0] == sizeof(float));
  7229. assert(src0->nb[0] == sizeof(float));
  7230. for (int i = 0; i < n; i++) {
  7231. ggml_vec_sgn_f32(nc,
  7232. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7233. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7234. }
  7235. }
  7236. static void ggml_compute_forward_sgn(
  7237. const struct ggml_compute_params * params,
  7238. const struct ggml_tensor * src0,
  7239. struct ggml_tensor * dst) {
  7240. switch (src0->type) {
  7241. case GGML_TYPE_F32:
  7242. {
  7243. ggml_compute_forward_sgn_f32(params, src0, dst);
  7244. } break;
  7245. default:
  7246. {
  7247. GGML_ASSERT(false);
  7248. } break;
  7249. }
  7250. }
  7251. // ggml_compute_forward_neg
  7252. static void ggml_compute_forward_neg_f32(
  7253. const struct ggml_compute_params * params,
  7254. const struct ggml_tensor * src0,
  7255. struct ggml_tensor * dst) {
  7256. assert(params->ith == 0);
  7257. assert(ggml_are_same_shape(src0, dst));
  7258. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7259. return;
  7260. }
  7261. const int n = ggml_nrows(src0);
  7262. const int nc = src0->ne[0];
  7263. assert(dst->nb[0] == sizeof(float));
  7264. assert(src0->nb[0] == sizeof(float));
  7265. for (int i = 0; i < n; i++) {
  7266. ggml_vec_neg_f32(nc,
  7267. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7268. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7269. }
  7270. }
  7271. static void ggml_compute_forward_neg(
  7272. const struct ggml_compute_params * params,
  7273. const struct ggml_tensor * src0,
  7274. struct ggml_tensor * dst) {
  7275. switch (src0->type) {
  7276. case GGML_TYPE_F32:
  7277. {
  7278. ggml_compute_forward_neg_f32(params, src0, dst);
  7279. } break;
  7280. default:
  7281. {
  7282. GGML_ASSERT(false);
  7283. } break;
  7284. }
  7285. }
  7286. // ggml_compute_forward_step
  7287. static void ggml_compute_forward_step_f32(
  7288. const struct ggml_compute_params * params,
  7289. const struct ggml_tensor * src0,
  7290. struct ggml_tensor * dst) {
  7291. assert(params->ith == 0);
  7292. assert(ggml_are_same_shape(src0, dst));
  7293. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7294. return;
  7295. }
  7296. const int n = ggml_nrows(src0);
  7297. const int nc = src0->ne[0];
  7298. assert(dst->nb[0] == sizeof(float));
  7299. assert(src0->nb[0] == sizeof(float));
  7300. for (int i = 0; i < n; i++) {
  7301. ggml_vec_step_f32(nc,
  7302. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7303. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7304. }
  7305. }
  7306. static void ggml_compute_forward_step(
  7307. const struct ggml_compute_params * params,
  7308. const struct ggml_tensor * src0,
  7309. struct ggml_tensor * dst) {
  7310. switch (src0->type) {
  7311. case GGML_TYPE_F32:
  7312. {
  7313. ggml_compute_forward_step_f32(params, src0, dst);
  7314. } break;
  7315. default:
  7316. {
  7317. GGML_ASSERT(false);
  7318. } break;
  7319. }
  7320. }
  7321. // ggml_compute_forward_relu
  7322. static void ggml_compute_forward_relu_f32(
  7323. const struct ggml_compute_params * params,
  7324. const struct ggml_tensor * src0,
  7325. struct ggml_tensor * dst) {
  7326. assert(params->ith == 0);
  7327. assert(ggml_are_same_shape(src0, dst));
  7328. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7329. return;
  7330. }
  7331. const int n = ggml_nrows(src0);
  7332. const int nc = src0->ne[0];
  7333. assert(dst->nb[0] == sizeof(float));
  7334. assert(src0->nb[0] == sizeof(float));
  7335. for (int i = 0; i < n; i++) {
  7336. ggml_vec_relu_f32(nc,
  7337. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7338. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7339. }
  7340. }
  7341. static void ggml_compute_forward_relu(
  7342. const struct ggml_compute_params * params,
  7343. const struct ggml_tensor * src0,
  7344. struct ggml_tensor * dst) {
  7345. switch (src0->type) {
  7346. case GGML_TYPE_F32:
  7347. {
  7348. ggml_compute_forward_relu_f32(params, src0, dst);
  7349. } break;
  7350. default:
  7351. {
  7352. GGML_ASSERT(false);
  7353. } break;
  7354. }
  7355. }
  7356. // ggml_compute_forward_gelu
  7357. static void ggml_compute_forward_gelu_f32(
  7358. const struct ggml_compute_params * params,
  7359. const struct ggml_tensor * src0,
  7360. struct ggml_tensor * dst) {
  7361. GGML_ASSERT(ggml_is_contiguous(src0));
  7362. GGML_ASSERT(ggml_is_contiguous(dst));
  7363. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7364. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7365. return;
  7366. }
  7367. const int ith = params->ith;
  7368. const int nth = params->nth;
  7369. const int nc = src0->ne[0];
  7370. const int nr = ggml_nrows(src0);
  7371. // rows per thread
  7372. const int dr = (nr + nth - 1)/nth;
  7373. // row range for this thread
  7374. const int ir0 = dr*ith;
  7375. const int ir1 = MIN(ir0 + dr, nr);
  7376. for (int i1 = ir0; i1 < ir1; i1++) {
  7377. ggml_vec_gelu_f32(nc,
  7378. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7379. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7380. #ifndef NDEBUG
  7381. for (int k = 0; k < nc; k++) {
  7382. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7383. UNUSED(x);
  7384. assert(!isnan(x));
  7385. assert(!isinf(x));
  7386. }
  7387. #endif
  7388. }
  7389. }
  7390. static void ggml_compute_forward_gelu(
  7391. const struct ggml_compute_params * params,
  7392. const struct ggml_tensor * src0,
  7393. struct ggml_tensor * dst) {
  7394. switch (src0->type) {
  7395. case GGML_TYPE_F32:
  7396. {
  7397. ggml_compute_forward_gelu_f32(params, src0, dst);
  7398. } break;
  7399. default:
  7400. {
  7401. GGML_ASSERT(false);
  7402. } break;
  7403. }
  7404. //printf("XXXXXXXX gelu\n");
  7405. }
  7406. // ggml_compute_forward_silu
  7407. static void ggml_compute_forward_silu_f32(
  7408. const struct ggml_compute_params * params,
  7409. const struct ggml_tensor * src0,
  7410. struct ggml_tensor * dst) {
  7411. GGML_ASSERT(ggml_is_contiguous(src0));
  7412. GGML_ASSERT(ggml_is_contiguous(dst));
  7413. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7414. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7415. return;
  7416. }
  7417. const int ith = params->ith;
  7418. const int nth = params->nth;
  7419. const int nc = src0->ne[0];
  7420. const int nr = ggml_nrows(src0);
  7421. // rows per thread
  7422. const int dr = (nr + nth - 1)/nth;
  7423. // row range for this thread
  7424. const int ir0 = dr*ith;
  7425. const int ir1 = MIN(ir0 + dr, nr);
  7426. for (int i1 = ir0; i1 < ir1; i1++) {
  7427. ggml_vec_silu_f32(nc,
  7428. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7429. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7430. #ifndef NDEBUG
  7431. for (int k = 0; k < nc; k++) {
  7432. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7433. UNUSED(x);
  7434. assert(!isnan(x));
  7435. assert(!isinf(x));
  7436. }
  7437. #endif
  7438. }
  7439. }
  7440. static void ggml_compute_forward_silu(
  7441. const struct ggml_compute_params * params,
  7442. const struct ggml_tensor * src0,
  7443. struct ggml_tensor * dst) {
  7444. switch (src0->type) {
  7445. case GGML_TYPE_F32:
  7446. {
  7447. ggml_compute_forward_silu_f32(params, src0, dst);
  7448. } break;
  7449. default:
  7450. {
  7451. GGML_ASSERT(false);
  7452. } break;
  7453. }
  7454. }
  7455. // ggml_compute_forward_silu_back
  7456. static void ggml_compute_forward_silu_back_f32(
  7457. const struct ggml_compute_params * params,
  7458. const struct ggml_tensor * src0,
  7459. const struct ggml_tensor * grad,
  7460. struct ggml_tensor * dst) {
  7461. GGML_ASSERT(ggml_is_contiguous(grad));
  7462. GGML_ASSERT(ggml_is_contiguous(src0));
  7463. GGML_ASSERT(ggml_is_contiguous(dst));
  7464. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7465. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7466. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7467. return;
  7468. }
  7469. const int ith = params->ith;
  7470. const int nth = params->nth;
  7471. const int nc = src0->ne[0];
  7472. const int nr = ggml_nrows(src0);
  7473. // rows per thread
  7474. const int dr = (nr + nth - 1)/nth;
  7475. // row range for this thread
  7476. const int ir0 = dr*ith;
  7477. const int ir1 = MIN(ir0 + dr, nr);
  7478. for (int i1 = ir0; i1 < ir1; i1++) {
  7479. ggml_vec_silu_backward_f32(nc,
  7480. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7481. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7482. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7483. #ifndef NDEBUG
  7484. for (int k = 0; k < nc; k++) {
  7485. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7486. UNUSED(x);
  7487. assert(!isnan(x));
  7488. assert(!isinf(x));
  7489. }
  7490. #endif
  7491. }
  7492. }
  7493. static void ggml_compute_forward_silu_back(
  7494. const struct ggml_compute_params * params,
  7495. const struct ggml_tensor * src0,
  7496. const struct ggml_tensor * grad,
  7497. struct ggml_tensor * dst) {
  7498. switch (src0->type) {
  7499. case GGML_TYPE_F32:
  7500. {
  7501. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7502. } break;
  7503. default:
  7504. {
  7505. GGML_ASSERT(false);
  7506. } break;
  7507. }
  7508. }
  7509. // ggml_compute_forward_norm
  7510. static void ggml_compute_forward_norm_f32(
  7511. const struct ggml_compute_params * params,
  7512. const struct ggml_tensor * src0,
  7513. struct ggml_tensor * dst) {
  7514. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7515. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7516. return;
  7517. }
  7518. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7519. const int ith = params->ith;
  7520. const int nth = params->nth;
  7521. const int64_t ne00 = src0->ne[0];
  7522. const int64_t ne01 = src0->ne[1];
  7523. const int64_t ne02 = src0->ne[2];
  7524. const int64_t ne03 = src0->ne[3];
  7525. const size_t nb01 = src0->nb[1];
  7526. const size_t nb02 = src0->nb[2];
  7527. const size_t nb03 = src0->nb[3];
  7528. const size_t nb1 = dst->nb[1];
  7529. const size_t nb2 = dst->nb[2];
  7530. const size_t nb3 = dst->nb[3];
  7531. const float eps = 1e-5f; // TODO: make this a parameter
  7532. // TODO: optimize
  7533. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7534. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7535. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7536. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7537. ggml_float sum = 0.0;
  7538. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7539. sum += (ggml_float)x[i00];
  7540. }
  7541. float mean = sum/ne00;
  7542. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7543. ggml_float sum2 = 0.0;
  7544. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7545. float v = x[i00] - mean;
  7546. y[i00] = v;
  7547. sum2 += (ggml_float)(v*v);
  7548. }
  7549. float variance = sum2/ne00;
  7550. const float scale = 1.0f/sqrtf(variance + eps);
  7551. ggml_vec_scale_f32(ne00, y, scale);
  7552. }
  7553. }
  7554. }
  7555. }
  7556. static void ggml_compute_forward_norm(
  7557. const struct ggml_compute_params * params,
  7558. const struct ggml_tensor * src0,
  7559. struct ggml_tensor * dst) {
  7560. switch (src0->type) {
  7561. case GGML_TYPE_F32:
  7562. {
  7563. ggml_compute_forward_norm_f32(params, src0, dst);
  7564. } break;
  7565. default:
  7566. {
  7567. GGML_ASSERT(false);
  7568. } break;
  7569. }
  7570. }
  7571. static void ggml_compute_forward_rms_norm_f32(
  7572. const struct ggml_compute_params * params,
  7573. const struct ggml_tensor * src0,
  7574. struct ggml_tensor * dst) {
  7575. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7576. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7577. return;
  7578. }
  7579. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7580. const int ith = params->ith;
  7581. const int nth = params->nth;
  7582. const int64_t ne00 = src0->ne[0];
  7583. const int64_t ne01 = src0->ne[1];
  7584. const int64_t ne02 = src0->ne[2];
  7585. const int64_t ne03 = src0->ne[3];
  7586. const size_t nb01 = src0->nb[1];
  7587. const size_t nb02 = src0->nb[2];
  7588. const size_t nb03 = src0->nb[3];
  7589. const size_t nb1 = dst->nb[1];
  7590. const size_t nb2 = dst->nb[2];
  7591. const size_t nb3 = dst->nb[3];
  7592. const float eps = 1e-6f; // TODO: make this a parameter
  7593. // TODO: optimize
  7594. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7595. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7596. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7597. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7598. ggml_float sum = 0.0;
  7599. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7600. sum += (ggml_float)(x[i00] * x[i00]);
  7601. }
  7602. const float mean = sum/ne00;
  7603. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7604. memcpy(y, x, ne00 * sizeof(float));
  7605. // for (int i00 = 0; i00 < ne00; i00++) {
  7606. // y[i00] = x[i00];
  7607. // }
  7608. const float scale = 1.0f/sqrtf(mean + eps);
  7609. ggml_vec_scale_f32(ne00, y, scale);
  7610. }
  7611. }
  7612. }
  7613. }
  7614. static void ggml_compute_forward_rms_norm(
  7615. const struct ggml_compute_params * params,
  7616. const struct ggml_tensor * src0,
  7617. struct ggml_tensor * dst) {
  7618. switch (src0->type) {
  7619. case GGML_TYPE_F32:
  7620. {
  7621. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7622. } break;
  7623. default:
  7624. {
  7625. GGML_ASSERT(false);
  7626. } break;
  7627. }
  7628. }
  7629. static void ggml_compute_forward_rms_norm_back_f32(
  7630. const struct ggml_compute_params * params,
  7631. const struct ggml_tensor * src0,
  7632. const struct ggml_tensor * src1,
  7633. struct ggml_tensor * dst) {
  7634. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7635. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7636. return;
  7637. }
  7638. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7639. const int ith = params->ith;
  7640. const int nth = params->nth;
  7641. const int64_t ne00 = src0->ne[0];
  7642. const int64_t ne01 = src0->ne[1];
  7643. const int64_t ne02 = src0->ne[2];
  7644. const int64_t ne03 = src0->ne[3];
  7645. const size_t nb01 = src0->nb[1];
  7646. const size_t nb02 = src0->nb[2];
  7647. const size_t nb03 = src0->nb[3];
  7648. const size_t nb11 = src1->nb[1];
  7649. const size_t nb12 = src1->nb[2];
  7650. const size_t nb13 = src1->nb[3];
  7651. const size_t nb1 = dst->nb[1];
  7652. const size_t nb2 = dst->nb[2];
  7653. const size_t nb3 = dst->nb[3];
  7654. const float eps = 1e-6f; // TODO: make this a parameter
  7655. // TODO: optimize
  7656. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7657. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7658. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7659. // src1 is same shape as src0 => same indices
  7660. const int64_t i11 = i01;
  7661. const int64_t i12 = i02;
  7662. const int64_t i13 = i03;
  7663. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7664. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7665. ggml_float sum_xx = 0.0;
  7666. ggml_float sum_xdz = 0.0;
  7667. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7668. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7669. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7670. }
  7671. //const float mean = (float)(sum_xx)/ne00;
  7672. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7673. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7674. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7675. // we could cache rms from forward pass to improve performance.
  7676. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7677. //const float rms = sqrtf(mean_eps);
  7678. const float rrms = 1.0f / sqrtf(mean_eps);
  7679. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7680. {
  7681. // z = rms_norm(x)
  7682. //
  7683. // rms_norm(src0) =
  7684. // scale(
  7685. // src0,
  7686. // div(
  7687. // 1,
  7688. // sqrt(
  7689. // add(
  7690. // scale(
  7691. // sum(
  7692. // sqr(
  7693. // src0)),
  7694. // (1.0/N)),
  7695. // eps))));
  7696. // postorder:
  7697. // ## op args grad
  7698. // 00 param src0 grad[#00]
  7699. // 01 const 1
  7700. // 02 sqr (#00) grad[#02]
  7701. // 03 sum (#02) grad[#03]
  7702. // 04 const 1/N
  7703. // 05 scale (#03, #04) grad[#05]
  7704. // 06 const eps
  7705. // 07 add (#05, #06) grad[#07]
  7706. // 08 sqrt (#07) grad[#08]
  7707. // 09 div (#01,#08) grad[#09]
  7708. // 10 scale (#00,#09) grad[#10]
  7709. //
  7710. // backward pass, given grad[#10]
  7711. // #10: scale
  7712. // grad[#00] += scale(grad[#10],#09)
  7713. // grad[#09] += sum(mul(grad[#10],#00))
  7714. // #09: div
  7715. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7716. // #08: sqrt
  7717. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7718. // #07: add
  7719. // grad[#05] += grad[#07]
  7720. // #05: scale
  7721. // grad[#03] += scale(grad[#05],#04)
  7722. // #03: sum
  7723. // grad[#02] += repeat(grad[#03], #02)
  7724. // #02:
  7725. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7726. //
  7727. // substitute and simplify:
  7728. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7729. // grad[#02] = repeat(grad[#03], #02)
  7730. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7731. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7732. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7733. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7734. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7735. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7736. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7737. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7738. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7739. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7740. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7741. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7742. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7743. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7744. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7745. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7746. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7747. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7748. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7749. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7750. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7751. // a = b*c + d*e
  7752. // a = b*c*f/f + d*e*f/f
  7753. // a = (b*c*f + d*e*f)*(1/f)
  7754. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7755. // a = (b + d*e/c)*c
  7756. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7757. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7758. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7759. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7760. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7761. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7762. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7763. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7764. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7765. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7766. }
  7767. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7768. // post-order:
  7769. // dx := x
  7770. // dx := scale(dx,-mean_xdz/mean_eps)
  7771. // dx := add(dx, dz)
  7772. // dx := scale(dx, rrms)
  7773. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7774. ggml_vec_cpy_f32 (ne00, dx, x);
  7775. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7776. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7777. ggml_vec_acc_f32 (ne00, dx, dz);
  7778. ggml_vec_scale_f32(ne00, dx, rrms);
  7779. }
  7780. }
  7781. }
  7782. }
  7783. static void ggml_compute_forward_rms_norm_back(
  7784. const struct ggml_compute_params * params,
  7785. const struct ggml_tensor * src0,
  7786. const struct ggml_tensor * src1,
  7787. struct ggml_tensor * dst) {
  7788. switch (src0->type) {
  7789. case GGML_TYPE_F32:
  7790. {
  7791. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7792. } break;
  7793. default:
  7794. {
  7795. GGML_ASSERT(false);
  7796. } break;
  7797. }
  7798. }
  7799. // ggml_compute_forward_mul_mat
  7800. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7801. // helper function to determine if it is better to use BLAS or not
  7802. // for large matrices, BLAS is faster
  7803. static bool ggml_compute_forward_mul_mat_use_blas(
  7804. const struct ggml_tensor * src0,
  7805. const struct ggml_tensor * src1,
  7806. struct ggml_tensor * dst) {
  7807. //const int64_t ne00 = src0->ne[0];
  7808. //const int64_t ne01 = src0->ne[1];
  7809. const int64_t ne10 = src1->ne[0];
  7810. const int64_t ne0 = dst->ne[0];
  7811. const int64_t ne1 = dst->ne[1];
  7812. // TODO: find the optimal values for these
  7813. if (ggml_is_contiguous(src0) &&
  7814. ggml_is_contiguous(src1) &&
  7815. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7816. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7817. return true;
  7818. }
  7819. return false;
  7820. }
  7821. #endif
  7822. static void ggml_compute_forward_mul_mat_f32(
  7823. const struct ggml_compute_params * params,
  7824. const struct ggml_tensor * src0,
  7825. const struct ggml_tensor * src1,
  7826. struct ggml_tensor * dst) {
  7827. int64_t t0 = ggml_perf_time_us();
  7828. UNUSED(t0);
  7829. const int64_t ne00 = src0->ne[0];
  7830. const int64_t ne01 = src0->ne[1];
  7831. const int64_t ne02 = src0->ne[2];
  7832. const int64_t ne03 = src0->ne[3];
  7833. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7834. const int64_t ne10 = src1->ne[0];
  7835. #endif
  7836. const int64_t ne11 = src1->ne[1];
  7837. #ifndef NDEBUG
  7838. const int64_t ne12 = src1->ne[2];
  7839. const int64_t ne13 = src1->ne[3];
  7840. const int64_t ne0 = dst->ne[0];
  7841. const int64_t ne1 = dst->ne[1];
  7842. const int64_t ne2 = dst->ne[2];
  7843. const int64_t ne3 = dst->ne[3];
  7844. const int nb00 = src0->nb[0];
  7845. #endif
  7846. const int nb01 = src0->nb[1];
  7847. const int nb02 = src0->nb[2];
  7848. const int nb03 = src0->nb[3];
  7849. #ifndef NDEBUG
  7850. const int nb10 = src1->nb[0];
  7851. #endif
  7852. const int nb11 = src1->nb[1];
  7853. const int nb12 = src1->nb[2];
  7854. const int nb13 = src1->nb[3];
  7855. const int nb0 = dst->nb[0];
  7856. const int nb1 = dst->nb[1];
  7857. const int nb2 = dst->nb[2];
  7858. const int nb3 = dst->nb[3];
  7859. const int ith = params->ith;
  7860. const int nth = params->nth;
  7861. assert(ne02 == ne12);
  7862. assert(ne03 == ne13);
  7863. assert(ne2 == ne12);
  7864. assert(ne3 == ne13);
  7865. // we don't support permuted src0 or src1
  7866. assert(nb00 == sizeof(float));
  7867. assert(nb10 == sizeof(float));
  7868. // dst cannot be transposed or permuted
  7869. assert(nb0 == sizeof(float));
  7870. assert(nb0 <= nb1);
  7871. assert(nb1 <= nb2);
  7872. assert(nb2 <= nb3);
  7873. assert(ne0 == ne01);
  7874. assert(ne1 == ne11);
  7875. assert(ne2 == ne02);
  7876. assert(ne3 == ne03);
  7877. // nb01 >= nb00 - src0 is not transposed
  7878. // compute by src0 rows
  7879. #if defined(GGML_USE_CUBLAS)
  7880. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7881. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7882. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7883. }
  7884. return;
  7885. }
  7886. #elif defined(GGML_USE_CLBLAST)
  7887. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  7888. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7889. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7890. }
  7891. return;
  7892. }
  7893. #endif
  7894. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7895. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7896. if (params->ith != 0) {
  7897. return;
  7898. }
  7899. if (params->type == GGML_TASK_INIT) {
  7900. return;
  7901. }
  7902. if (params->type == GGML_TASK_FINALIZE) {
  7903. return;
  7904. }
  7905. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7906. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7907. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  7908. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7909. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7910. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7911. ne11, ne01, ne10,
  7912. 1.0f, y, ne10,
  7913. x, ne00,
  7914. 0.0f, d, ne01);
  7915. }
  7916. }
  7917. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7918. return;
  7919. }
  7920. #endif
  7921. if (params->type == GGML_TASK_INIT) {
  7922. return;
  7923. }
  7924. if (params->type == GGML_TASK_FINALIZE) {
  7925. return;
  7926. }
  7927. // parallelize by src0 rows using ggml_vec_dot_f32
  7928. // total rows in src0
  7929. const int nr = ne01*ne02*ne03;
  7930. // rows per thread
  7931. const int dr = (nr + nth - 1)/nth;
  7932. // row range for this thread
  7933. const int ir0 = dr*ith;
  7934. const int ir1 = MIN(ir0 + dr, nr);
  7935. for (int ir = ir0; ir < ir1; ++ir) {
  7936. // src0 indices
  7937. const int i03 = ir/(ne02*ne01);
  7938. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7939. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7940. for (int64_t ic = 0; ic < ne11; ++ic) {
  7941. // src1 indices
  7942. const int i13 = i03;
  7943. const int i12 = i02;
  7944. const int i11 = ic;
  7945. // dst indices
  7946. const int i0 = i01;
  7947. const int i1 = i11;
  7948. const int i2 = i02;
  7949. const int i3 = i03;
  7950. ggml_vec_dot_f32(ne00,
  7951. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7952. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  7953. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  7954. }
  7955. }
  7956. //int64_t t1 = ggml_perf_time_us();
  7957. //static int64_t acc = 0;
  7958. //acc += t1 - t0;
  7959. //if (t1 - t0 > 10) {
  7960. // printf("\n");
  7961. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7962. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7963. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7964. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  7965. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7966. //}
  7967. }
  7968. static void ggml_compute_forward_mul_mat_f16_f32(
  7969. const struct ggml_compute_params * params,
  7970. const struct ggml_tensor * src0,
  7971. const struct ggml_tensor * src1,
  7972. struct ggml_tensor * dst) {
  7973. int64_t t0 = ggml_perf_time_us();
  7974. UNUSED(t0);
  7975. const int64_t ne00 = src0->ne[0];
  7976. const int64_t ne01 = src0->ne[1];
  7977. const int64_t ne02 = src0->ne[2];
  7978. const int64_t ne03 = src0->ne[3];
  7979. const int64_t ne10 = src1->ne[0];
  7980. const int64_t ne11 = src1->ne[1];
  7981. const int64_t ne12 = src1->ne[2];
  7982. const int64_t ne13 = src1->ne[3];
  7983. const int64_t ne0 = dst->ne[0];
  7984. const int64_t ne1 = dst->ne[1];
  7985. const int64_t ne2 = dst->ne[2];
  7986. const int64_t ne3 = dst->ne[3];
  7987. //const int64_t ne = ne0*ne1*ne2*ne3;
  7988. const int nb00 = src0->nb[0];
  7989. const int nb01 = src0->nb[1];
  7990. const int nb02 = src0->nb[2];
  7991. const int nb03 = src0->nb[3];
  7992. const int nb10 = src1->nb[0];
  7993. const int nb11 = src1->nb[1];
  7994. const int nb12 = src1->nb[2];
  7995. const int nb13 = src1->nb[3];
  7996. const int nb0 = dst->nb[0];
  7997. const int nb1 = dst->nb[1];
  7998. const int nb2 = dst->nb[2];
  7999. const int nb3 = dst->nb[3];
  8000. const int ith = params->ith;
  8001. const int nth = params->nth;
  8002. GGML_ASSERT(ne02 == ne12);
  8003. GGML_ASSERT(ne03 == ne13);
  8004. GGML_ASSERT(ne2 == ne12);
  8005. GGML_ASSERT(ne3 == ne13);
  8006. // TODO: we don't support permuted src0
  8007. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8008. // dst cannot be transposed or permuted
  8009. GGML_ASSERT(nb0 == sizeof(float));
  8010. GGML_ASSERT(nb0 <= nb1);
  8011. GGML_ASSERT(nb1 <= nb2);
  8012. GGML_ASSERT(nb2 <= nb3);
  8013. GGML_ASSERT(ne0 == ne01);
  8014. GGML_ASSERT(ne1 == ne11);
  8015. GGML_ASSERT(ne2 == ne02);
  8016. GGML_ASSERT(ne3 == ne03);
  8017. // nb01 >= nb00 - src0 is not transposed
  8018. // compute by src0 rows
  8019. #if defined(GGML_USE_CUBLAS)
  8020. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  8021. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8022. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8023. }
  8024. return;
  8025. }
  8026. #elif defined(GGML_USE_CLBLAST)
  8027. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8028. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8029. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8030. }
  8031. return;
  8032. }
  8033. #endif
  8034. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8035. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8036. GGML_ASSERT(nb10 == sizeof(float));
  8037. if (params->ith != 0) {
  8038. return;
  8039. }
  8040. if (params->type == GGML_TASK_INIT) {
  8041. return;
  8042. }
  8043. if (params->type == GGML_TASK_FINALIZE) {
  8044. return;
  8045. }
  8046. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8047. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8048. float * const wdata = params->wdata;
  8049. {
  8050. size_t id = 0;
  8051. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8052. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  8053. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  8054. }
  8055. }
  8056. assert(id*sizeof(float) <= params->wsize);
  8057. }
  8058. const float * x = wdata;
  8059. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8060. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8061. // zT = y * xT
  8062. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8063. ne11, ne01, ne10,
  8064. 1.0f, y, ne10,
  8065. x, ne00,
  8066. 0.0f, d, ne01);
  8067. }
  8068. }
  8069. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  8070. return;
  8071. }
  8072. #endif
  8073. if (params->type == GGML_TASK_INIT) {
  8074. ggml_fp16_t * const wdata = params->wdata;
  8075. size_t id = 0;
  8076. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8077. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8078. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8079. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8080. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  8081. }
  8082. }
  8083. }
  8084. }
  8085. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  8086. return;
  8087. }
  8088. if (params->type == GGML_TASK_FINALIZE) {
  8089. return;
  8090. }
  8091. // fp16 -> half the size, so divide by 2
  8092. // TODO: do not support transposed src1
  8093. assert(nb10/2 == sizeof(ggml_fp16_t));
  8094. // parallelize by src0 rows using ggml_vec_dot_f16
  8095. // total rows in src0
  8096. const int nr = ne01*ne02*ne03;
  8097. // rows per thread
  8098. const int dr = (nr + nth - 1)/nth;
  8099. // row range for this thread
  8100. const int ir0 = dr*ith;
  8101. const int ir1 = MIN(ir0 + dr, nr);
  8102. ggml_fp16_t * wdata = params->wdata;
  8103. for (int ir = ir0; ir < ir1; ++ir) {
  8104. // src0 indices
  8105. const int i03 = ir/(ne02*ne01);
  8106. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8107. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8108. const int i13 = i03;
  8109. const int i12 = i02;
  8110. const int i0 = i01;
  8111. const int i2 = i02;
  8112. const int i3 = i03;
  8113. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8114. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  8115. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8116. for (int64_t ic = 0; ic < ne11; ++ic) {
  8117. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  8118. }
  8119. }
  8120. //int64_t t1 = ggml_time_us();
  8121. //static int64_t acc = 0;
  8122. //acc += t1 - t0;
  8123. //if (t1 - t0 > 10) {
  8124. // printf("\n");
  8125. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8126. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8127. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8128. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8129. //}
  8130. }
  8131. static void ggml_compute_forward_mul_mat_q_f32(
  8132. const struct ggml_compute_params * params,
  8133. const struct ggml_tensor * src0,
  8134. const struct ggml_tensor * src1,
  8135. struct ggml_tensor * dst) {
  8136. int64_t t0 = ggml_perf_time_us();
  8137. UNUSED(t0);
  8138. const int64_t ne00 = src0->ne[0];
  8139. const int64_t ne01 = src0->ne[1];
  8140. const int64_t ne02 = src0->ne[2];
  8141. const int64_t ne03 = src0->ne[3];
  8142. const int64_t ne10 = src1->ne[0];
  8143. const int64_t ne11 = src1->ne[1];
  8144. const int64_t ne12 = src1->ne[2];
  8145. const int64_t ne13 = src1->ne[3];
  8146. const int64_t ne0 = dst->ne[0];
  8147. const int64_t ne1 = dst->ne[1];
  8148. const int64_t ne2 = dst->ne[2];
  8149. const int64_t ne3 = dst->ne[3];
  8150. const int nb00 = src0->nb[0];
  8151. const int nb01 = src0->nb[1];
  8152. const int nb02 = src0->nb[2];
  8153. const int nb03 = src0->nb[3];
  8154. const int nb10 = src1->nb[0];
  8155. const int nb11 = src1->nb[1];
  8156. const int nb12 = src1->nb[2];
  8157. const int nb13 = src1->nb[3];
  8158. const int nb0 = dst->nb[0];
  8159. const int nb1 = dst->nb[1];
  8160. const int nb2 = dst->nb[2];
  8161. const int nb3 = dst->nb[3];
  8162. const int ith = params->ith;
  8163. const int nth = params->nth;
  8164. GGML_ASSERT(ne02 == ne12);
  8165. GGML_ASSERT(ne03 == ne13);
  8166. GGML_ASSERT(ne2 == ne12);
  8167. GGML_ASSERT(ne3 == ne13);
  8168. const enum ggml_type type = src0->type;
  8169. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  8170. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  8171. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  8172. // we don't support permuted src0 or src1
  8173. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  8174. GGML_ASSERT(nb10 == sizeof(float));
  8175. // dst cannot be transposed or permuted
  8176. GGML_ASSERT(nb0 == sizeof(float));
  8177. GGML_ASSERT(nb0 <= nb1);
  8178. GGML_ASSERT(nb1 <= nb2);
  8179. GGML_ASSERT(nb2 <= nb3);
  8180. GGML_ASSERT(ne0 == ne01);
  8181. GGML_ASSERT(ne1 == ne11);
  8182. GGML_ASSERT(ne2 == ne02);
  8183. GGML_ASSERT(ne3 == ne03);
  8184. // nb01 >= nb00 - src0 is not transposed
  8185. // compute by src0 rows
  8186. #if defined(GGML_USE_CUBLAS)
  8187. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  8188. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8189. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8190. }
  8191. return;
  8192. }
  8193. #elif defined(GGML_USE_CLBLAST)
  8194. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8195. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8196. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8197. }
  8198. return;
  8199. }
  8200. #endif
  8201. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8202. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8203. if (params->ith != 0) {
  8204. return;
  8205. }
  8206. if (params->type == GGML_TASK_INIT) {
  8207. return;
  8208. }
  8209. if (params->type == GGML_TASK_FINALIZE) {
  8210. return;
  8211. }
  8212. float * const wdata = params->wdata;
  8213. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8214. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8215. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8216. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8217. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8218. {
  8219. size_t id = 0;
  8220. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8221. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8222. id += ne00;
  8223. }
  8224. assert(id*sizeof(float) <= params->wsize);
  8225. }
  8226. const float * x = wdata;
  8227. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8228. ne11, ne01, ne10,
  8229. 1.0f, y, ne10,
  8230. x, ne00,
  8231. 0.0f, d, ne01);
  8232. }
  8233. }
  8234. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8235. return;
  8236. }
  8237. #endif
  8238. if (params->type == GGML_TASK_INIT) {
  8239. char * wdata = params->wdata;
  8240. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8241. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8242. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8243. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8244. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8245. wdata += row_size;
  8246. }
  8247. }
  8248. }
  8249. return;
  8250. }
  8251. if (params->type == GGML_TASK_FINALIZE) {
  8252. return;
  8253. }
  8254. // parallelize by src0 rows using ggml_vec_dot_q
  8255. // total rows in src0
  8256. const int nr = ne01*ne02*ne03;
  8257. // rows per thread
  8258. const int dr = (nr + nth - 1)/nth;
  8259. // row range for this thread
  8260. const int ir0 = dr*ith;
  8261. const int ir1 = MIN(ir0 + dr, nr);
  8262. void * wdata = params->wdata;
  8263. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8264. for (int ir = ir0; ir < ir1; ++ir) {
  8265. // src0 indices
  8266. const int i03 = ir/(ne02*ne01);
  8267. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8268. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8269. const int i13 = i03;
  8270. const int i12 = i02;
  8271. const int i0 = i01;
  8272. const int i2 = i02;
  8273. const int i3 = i03;
  8274. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8275. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  8276. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8277. assert(ne00 % 32 == 0);
  8278. for (int64_t ic = 0; ic < ne11; ++ic) {
  8279. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  8280. }
  8281. }
  8282. //int64_t t1 = ggml_time_us();
  8283. //static int64_t acc = 0;
  8284. //acc += t1 - t0;
  8285. //if (t1 - t0 > 10) {
  8286. // printf("\n");
  8287. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8288. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8289. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8290. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8291. //}
  8292. }
  8293. static void ggml_compute_forward_mul_mat(
  8294. const struct ggml_compute_params * params,
  8295. const struct ggml_tensor * src0,
  8296. const struct ggml_tensor * src1,
  8297. struct ggml_tensor * dst) {
  8298. switch (src0->type) {
  8299. case GGML_TYPE_Q4_0:
  8300. case GGML_TYPE_Q4_1:
  8301. case GGML_TYPE_Q5_0:
  8302. case GGML_TYPE_Q5_1:
  8303. case GGML_TYPE_Q8_0:
  8304. case GGML_TYPE_Q8_1:
  8305. case GGML_TYPE_Q2_K:
  8306. case GGML_TYPE_Q3_K:
  8307. case GGML_TYPE_Q4_K:
  8308. case GGML_TYPE_Q5_K:
  8309. case GGML_TYPE_Q6_K:
  8310. {
  8311. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  8312. } break;
  8313. case GGML_TYPE_F16:
  8314. {
  8315. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  8316. } break;
  8317. case GGML_TYPE_F32:
  8318. {
  8319. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  8320. } break;
  8321. default:
  8322. {
  8323. GGML_ASSERT(false);
  8324. } break;
  8325. }
  8326. }
  8327. // ggml_compute_forward_scale
  8328. static void ggml_compute_forward_scale_f32(
  8329. const struct ggml_compute_params * params,
  8330. const struct ggml_tensor * src0,
  8331. const struct ggml_tensor * src1,
  8332. struct ggml_tensor * dst) {
  8333. GGML_ASSERT(ggml_is_contiguous(src0));
  8334. GGML_ASSERT(ggml_is_contiguous(dst));
  8335. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8336. GGML_ASSERT(ggml_is_scalar(src1));
  8337. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8338. return;
  8339. }
  8340. // scale factor
  8341. const float v = *(float *) src1->data;
  8342. const int ith = params->ith;
  8343. const int nth = params->nth;
  8344. const int nc = src0->ne[0];
  8345. const int nr = ggml_nrows(src0);
  8346. // rows per thread
  8347. const int dr = (nr + nth - 1)/nth;
  8348. // row range for this thread
  8349. const int ir0 = dr*ith;
  8350. const int ir1 = MIN(ir0 + dr, nr);
  8351. const size_t nb01 = src0->nb[1];
  8352. const size_t nb1 = dst->nb[1];
  8353. for (int i1 = ir0; i1 < ir1; i1++) {
  8354. if (dst->data != src0->data) {
  8355. // src0 is same shape as dst => same indices
  8356. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8357. }
  8358. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8359. }
  8360. }
  8361. static void ggml_compute_forward_scale(
  8362. const struct ggml_compute_params * params,
  8363. const struct ggml_tensor * src0,
  8364. const struct ggml_tensor * src1,
  8365. struct ggml_tensor * dst) {
  8366. switch (src0->type) {
  8367. case GGML_TYPE_F32:
  8368. {
  8369. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8370. } break;
  8371. default:
  8372. {
  8373. GGML_ASSERT(false);
  8374. } break;
  8375. }
  8376. }
  8377. // ggml_compute_forward_set
  8378. static void ggml_compute_forward_set_f32(
  8379. const struct ggml_compute_params * params,
  8380. const struct ggml_tensor * src0,
  8381. const struct ggml_tensor * src1,
  8382. const struct ggml_tensor * opt0,
  8383. struct ggml_tensor * dst) {
  8384. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8385. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8386. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  8387. GGML_ASSERT(ggml_nelements(opt0) == 5);
  8388. // view src0 and dst with these strides and data offset inbytes during set
  8389. // nb0 is implicitely element_size because src0 and dst are contiguous
  8390. size_t nb1 = ((int32_t *) opt0->data)[0];
  8391. size_t nb2 = ((int32_t *) opt0->data)[1];
  8392. size_t nb3 = ((int32_t *) opt0->data)[2];
  8393. size_t offset = ((int32_t *) opt0->data)[3];
  8394. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  8395. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8396. // memcpy needs to be synchronized across threads to avoid race conditions.
  8397. // => do it in INIT phase
  8398. memcpy(
  8399. ((char *) dst->data),
  8400. ((char *) src0->data),
  8401. ggml_nbytes(dst));
  8402. }
  8403. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8404. return;
  8405. }
  8406. const int ith = params->ith;
  8407. const int nth = params->nth;
  8408. const int nr = ggml_nrows(src1);
  8409. const int nc = src1->ne[0];
  8410. const int64_t ne10 = src1->ne[0];
  8411. const int64_t ne11 = src1->ne[1];
  8412. const int64_t ne12 = src1->ne[2];
  8413. const int64_t ne13 = src1->ne[3];
  8414. const size_t nb10 = src1->nb[0];
  8415. const size_t nb11 = src1->nb[1];
  8416. const size_t nb12 = src1->nb[2];
  8417. const size_t nb13 = src1->nb[3];
  8418. // src0 and dst as viewed during set
  8419. const size_t nb0 = ggml_element_size(src0);
  8420. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8421. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8422. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8423. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8424. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 < ggml_nbytes(dst));
  8425. GGML_ASSERT(nb10 == sizeof(float));
  8426. // rows per thread
  8427. const int dr = (nr + nth - 1)/nth;
  8428. // row range for this thread
  8429. const int ir0 = dr*ith;
  8430. const int ir1 = MIN(ir0 + dr, nr);
  8431. for (int ir = ir0; ir < ir1; ++ir) {
  8432. // src0 and dst are viewed with shape of src1 and offset
  8433. // => same indices
  8434. const int i3 = ir/(ne12*ne11);
  8435. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8436. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8437. ggml_vec_cpy_f32(nc,
  8438. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8439. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8440. }
  8441. }
  8442. static void ggml_compute_forward_set(
  8443. const struct ggml_compute_params * params,
  8444. const struct ggml_tensor * src0,
  8445. const struct ggml_tensor * src1,
  8446. const struct ggml_tensor * opt0,
  8447. struct ggml_tensor * dst) {
  8448. switch (src0->type) {
  8449. case GGML_TYPE_F32:
  8450. {
  8451. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  8452. } break;
  8453. case GGML_TYPE_F16:
  8454. case GGML_TYPE_Q4_0:
  8455. case GGML_TYPE_Q4_1:
  8456. case GGML_TYPE_Q5_0:
  8457. case GGML_TYPE_Q5_1:
  8458. case GGML_TYPE_Q8_0:
  8459. case GGML_TYPE_Q8_1:
  8460. case GGML_TYPE_Q2_K:
  8461. case GGML_TYPE_Q3_K:
  8462. case GGML_TYPE_Q4_K:
  8463. case GGML_TYPE_Q5_K:
  8464. case GGML_TYPE_Q6_K:
  8465. default:
  8466. {
  8467. GGML_ASSERT(false);
  8468. } break;
  8469. }
  8470. }
  8471. // ggml_compute_forward_cpy
  8472. static void ggml_compute_forward_cpy(
  8473. const struct ggml_compute_params * params,
  8474. const struct ggml_tensor * src0,
  8475. struct ggml_tensor * dst) {
  8476. ggml_compute_forward_dup(params, src0, dst);
  8477. }
  8478. // ggml_compute_forward_cont
  8479. static void ggml_compute_forward_cont(
  8480. const struct ggml_compute_params * params,
  8481. const struct ggml_tensor * src0,
  8482. struct ggml_tensor * dst) {
  8483. ggml_compute_forward_dup(params, src0, dst);
  8484. }
  8485. // ggml_compute_forward_reshape
  8486. static void ggml_compute_forward_reshape(
  8487. const struct ggml_compute_params * params,
  8488. const struct ggml_tensor * src0,
  8489. struct ggml_tensor * dst) {
  8490. // NOP
  8491. UNUSED(params);
  8492. UNUSED(src0);
  8493. UNUSED(dst);
  8494. }
  8495. // ggml_compute_forward_view
  8496. static void ggml_compute_forward_view(
  8497. const struct ggml_compute_params * params,
  8498. const struct ggml_tensor * src0) {
  8499. // NOP
  8500. UNUSED(params);
  8501. UNUSED(src0);
  8502. }
  8503. // ggml_compute_forward_permute
  8504. static void ggml_compute_forward_permute(
  8505. const struct ggml_compute_params * params,
  8506. const struct ggml_tensor * src0) {
  8507. // NOP
  8508. UNUSED(params);
  8509. UNUSED(src0);
  8510. }
  8511. // ggml_compute_forward_transpose
  8512. static void ggml_compute_forward_transpose(
  8513. const struct ggml_compute_params * params,
  8514. const struct ggml_tensor * src0) {
  8515. // NOP
  8516. UNUSED(params);
  8517. UNUSED(src0);
  8518. }
  8519. // ggml_compute_forward_get_rows
  8520. static void ggml_compute_forward_get_rows_q(
  8521. const struct ggml_compute_params * params,
  8522. const struct ggml_tensor * src0,
  8523. const struct ggml_tensor * src1,
  8524. struct ggml_tensor * dst) {
  8525. assert(params->ith == 0);
  8526. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8527. return;
  8528. }
  8529. const int nc = src0->ne[0];
  8530. const int nr = ggml_nelements(src1);
  8531. const enum ggml_type type = src0->type;
  8532. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8533. assert( dst->ne[0] == nc);
  8534. assert( dst->ne[1] == nr);
  8535. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  8536. for (int i = 0; i < nr; ++i) {
  8537. const int r = ((int32_t *) src1->data)[i];
  8538. dequantize_row_q(
  8539. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8540. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8541. }
  8542. }
  8543. static void ggml_compute_forward_get_rows_f16(
  8544. const struct ggml_compute_params * params,
  8545. const struct ggml_tensor * src0,
  8546. const struct ggml_tensor * src1,
  8547. struct ggml_tensor * dst) {
  8548. assert(params->ith == 0);
  8549. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8550. return;
  8551. }
  8552. const int nc = src0->ne[0];
  8553. const int nr = ggml_nelements(src1);
  8554. assert( dst->ne[0] == nc);
  8555. assert( dst->ne[1] == nr);
  8556. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8557. for (int i = 0; i < nr; ++i) {
  8558. const int r = ((int32_t *) src1->data)[i];
  8559. for (int j = 0; j < nc; ++j) {
  8560. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8561. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8562. }
  8563. }
  8564. }
  8565. static void ggml_compute_forward_get_rows_f32(
  8566. const struct ggml_compute_params * params,
  8567. const struct ggml_tensor * src0,
  8568. const struct ggml_tensor * src1,
  8569. struct ggml_tensor * dst) {
  8570. assert(params->ith == 0);
  8571. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8572. return;
  8573. }
  8574. const int nc = src0->ne[0];
  8575. const int nr = ggml_nelements(src1);
  8576. assert( dst->ne[0] == nc);
  8577. assert( dst->ne[1] == nr);
  8578. assert(src0->nb[0] == sizeof(float));
  8579. for (int i = 0; i < nr; ++i) {
  8580. const int r = ((int32_t *) src1->data)[i];
  8581. ggml_vec_cpy_f32(nc,
  8582. (float *) ((char *) dst->data + i*dst->nb[1]),
  8583. (float *) ((char *) src0->data + r*src0->nb[1]));
  8584. }
  8585. }
  8586. static void ggml_compute_forward_get_rows(
  8587. const struct ggml_compute_params * params,
  8588. const struct ggml_tensor * src0,
  8589. const struct ggml_tensor * src1,
  8590. struct ggml_tensor * dst) {
  8591. switch (src0->type) {
  8592. case GGML_TYPE_Q4_0:
  8593. case GGML_TYPE_Q4_1:
  8594. case GGML_TYPE_Q5_0:
  8595. case GGML_TYPE_Q5_1:
  8596. case GGML_TYPE_Q8_0:
  8597. case GGML_TYPE_Q8_1:
  8598. case GGML_TYPE_Q2_K:
  8599. case GGML_TYPE_Q3_K:
  8600. case GGML_TYPE_Q4_K:
  8601. case GGML_TYPE_Q5_K:
  8602. case GGML_TYPE_Q6_K:
  8603. {
  8604. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8605. } break;
  8606. case GGML_TYPE_F16:
  8607. {
  8608. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8609. } break;
  8610. case GGML_TYPE_F32:
  8611. {
  8612. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8613. } break;
  8614. default:
  8615. {
  8616. GGML_ASSERT(false);
  8617. } break;
  8618. }
  8619. //static bool first = true;
  8620. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8621. //if (first) {
  8622. // first = false;
  8623. //} else {
  8624. // for (int k = 0; k < dst->ne[1]; ++k) {
  8625. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8626. // for (int i = 0; i < 16; ++i) {
  8627. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8628. // }
  8629. // printf("\n");
  8630. // }
  8631. // printf("\n");
  8632. // }
  8633. // printf("\n");
  8634. // exit(0);
  8635. //}
  8636. }
  8637. // ggml_compute_forward_get_rows_back
  8638. static void ggml_compute_forward_get_rows_back_f32_f16(
  8639. const struct ggml_compute_params * params,
  8640. const struct ggml_tensor * src0,
  8641. const struct ggml_tensor * src1,
  8642. const struct ggml_tensor * opt0,
  8643. struct ggml_tensor * dst) {
  8644. GGML_ASSERT(params->ith == 0);
  8645. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8646. GGML_ASSERT(ggml_is_contiguous(opt0));
  8647. GGML_ASSERT(ggml_is_contiguous(dst));
  8648. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8649. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8650. return;
  8651. }
  8652. const int nc = src0->ne[0];
  8653. const int nr = ggml_nelements(src1);
  8654. GGML_ASSERT( dst->ne[0] == nc);
  8655. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8656. for (int i = 0; i < nr; ++i) {
  8657. const int r = ((int32_t *) src1->data)[i];
  8658. for (int j = 0; j < nc; ++j) {
  8659. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8660. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8661. }
  8662. }
  8663. }
  8664. static void ggml_compute_forward_get_rows_back_f32(
  8665. const struct ggml_compute_params * params,
  8666. const struct ggml_tensor * src0,
  8667. const struct ggml_tensor * src1,
  8668. const struct ggml_tensor * opt0,
  8669. struct ggml_tensor * dst) {
  8670. GGML_ASSERT(params->ith == 0);
  8671. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8672. GGML_ASSERT(ggml_is_contiguous(opt0));
  8673. GGML_ASSERT(ggml_is_contiguous(dst));
  8674. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8675. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8676. return;
  8677. }
  8678. const int nc = src0->ne[0];
  8679. const int nr = ggml_nelements(src1);
  8680. GGML_ASSERT( dst->ne[0] == nc);
  8681. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8682. for (int i = 0; i < nr; ++i) {
  8683. const int r = ((int32_t *) src1->data)[i];
  8684. ggml_vec_add_f32(nc,
  8685. (float *) ((char *) dst->data + r*dst->nb[1]),
  8686. (float *) ((char *) dst->data + r*dst->nb[1]),
  8687. (float *) ((char *) src0->data + i*src0->nb[1]));
  8688. }
  8689. }
  8690. static void ggml_compute_forward_get_rows_back(
  8691. const struct ggml_compute_params * params,
  8692. const struct ggml_tensor * src0,
  8693. const struct ggml_tensor * src1,
  8694. const struct ggml_tensor * opt0,
  8695. struct ggml_tensor * dst) {
  8696. switch (src0->type) {
  8697. case GGML_TYPE_F16:
  8698. {
  8699. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  8700. } break;
  8701. case GGML_TYPE_F32:
  8702. {
  8703. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  8704. } break;
  8705. default:
  8706. {
  8707. GGML_ASSERT(false);
  8708. } break;
  8709. }
  8710. //static bool first = true;
  8711. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8712. //if (first) {
  8713. // first = false;
  8714. //} else {
  8715. // for (int k = 0; k < dst->ne[1]; ++k) {
  8716. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8717. // for (int i = 0; i < 16; ++i) {
  8718. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8719. // }
  8720. // printf("\n");
  8721. // }
  8722. // printf("\n");
  8723. // }
  8724. // printf("\n");
  8725. // exit(0);
  8726. //}
  8727. }
  8728. // ggml_compute_forward_diag
  8729. static void ggml_compute_forward_diag_f32(
  8730. const struct ggml_compute_params * params,
  8731. const struct ggml_tensor * src0,
  8732. struct ggml_tensor * dst) {
  8733. GGML_ASSERT(params->ith == 0);
  8734. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8735. return;
  8736. }
  8737. // TODO: handle transposed/permuted matrices
  8738. const int ne00 = src0->ne[0];
  8739. const int ne01 = src0->ne[1];
  8740. const int ne02 = src0->ne[2];
  8741. const int ne03 = src0->ne[3];
  8742. const int ne0 = dst->ne[0];
  8743. const int ne1 = dst->ne[1];
  8744. const int ne2 = dst->ne[2];
  8745. const int ne3 = dst->ne[3];
  8746. GGML_ASSERT(ne00 == ne0);
  8747. GGML_ASSERT(ne00 == ne1);
  8748. GGML_ASSERT(ne01 == 1);
  8749. GGML_ASSERT(ne02 == ne2);
  8750. GGML_ASSERT(ne03 == ne3);
  8751. const int nb00 = src0->nb[0];
  8752. //const int nb01 = src0->nb[1];
  8753. const int nb02 = src0->nb[2];
  8754. const int nb03 = src0->nb[3];
  8755. const int nb0 = dst->nb[0];
  8756. const int nb1 = dst->nb[1];
  8757. const int nb2 = dst->nb[2];
  8758. const int nb3 = dst->nb[3];
  8759. GGML_ASSERT(nb00 == sizeof(float));
  8760. GGML_ASSERT(nb0 == sizeof(float));
  8761. for (int i3 = 0; i3 < ne3; i3++) {
  8762. for (int i2 = 0; i2 < ne2; i2++) {
  8763. for (int i1 = 0; i1 < ne1; i1++) {
  8764. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8765. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  8766. for (int i0 = 0; i0 < i1; i0++) {
  8767. d[i0] = 0;
  8768. }
  8769. d[i1] = s[i1];
  8770. for (int i0 = i1+1; i0 < ne0; i0++) {
  8771. d[i0] = 0;
  8772. }
  8773. }
  8774. }
  8775. }
  8776. }
  8777. static void ggml_compute_forward_diag(
  8778. const struct ggml_compute_params * params,
  8779. const struct ggml_tensor * src0,
  8780. struct ggml_tensor * dst) {
  8781. switch (src0->type) {
  8782. case GGML_TYPE_F32:
  8783. {
  8784. ggml_compute_forward_diag_f32(params, src0, dst);
  8785. } break;
  8786. default:
  8787. {
  8788. GGML_ASSERT(false);
  8789. } break;
  8790. }
  8791. }
  8792. // ggml_compute_forward_diag_mask_inf
  8793. static void ggml_compute_forward_diag_mask_f32(
  8794. const struct ggml_compute_params * params,
  8795. const struct ggml_tensor * src0,
  8796. const struct ggml_tensor * src1,
  8797. struct ggml_tensor * dst,
  8798. const float value) {
  8799. assert(src1->type == GGML_TYPE_I32);
  8800. assert(ggml_nelements(src1) == 2);
  8801. const int ith = params->ith;
  8802. const int nth = params->nth;
  8803. const int n_past = ((int32_t *) src1->data)[0];
  8804. const bool inplace = (bool)((int32_t *) src1->data)[1];
  8805. assert(n_past >= 0);
  8806. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8807. // memcpy needs to be synchronized across threads to avoid race conditions.
  8808. // => do it in INIT phase
  8809. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  8810. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8811. memcpy(
  8812. ((char *) dst->data),
  8813. ((char *) src0->data),
  8814. ggml_nbytes(dst));
  8815. }
  8816. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8817. return;
  8818. }
  8819. // TODO: handle transposed/permuted matrices
  8820. const int n = ggml_nrows(src0);
  8821. const int nc = src0->ne[0];
  8822. const int nr = src0->ne[1];
  8823. const int nz = n/nr;
  8824. assert( dst->nb[0] == sizeof(float));
  8825. assert(src0->nb[0] == sizeof(float));
  8826. for (int k = 0; k < nz; k++) {
  8827. for (int j = ith; j < nr; j += nth) {
  8828. for (int i = n_past; i < nc; i++) {
  8829. if (i > n_past + j) {
  8830. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  8831. }
  8832. }
  8833. }
  8834. }
  8835. }
  8836. static void ggml_compute_forward_diag_mask_inf(
  8837. const struct ggml_compute_params * params,
  8838. const struct ggml_tensor * src0,
  8839. const struct ggml_tensor * src1,
  8840. struct ggml_tensor * dst) {
  8841. switch (src0->type) {
  8842. case GGML_TYPE_F32:
  8843. {
  8844. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  8845. } break;
  8846. default:
  8847. {
  8848. GGML_ASSERT(false);
  8849. } break;
  8850. }
  8851. }
  8852. static void ggml_compute_forward_diag_mask_zero(
  8853. const struct ggml_compute_params * params,
  8854. const struct ggml_tensor * src0,
  8855. const struct ggml_tensor * src1,
  8856. struct ggml_tensor * dst) {
  8857. switch (src0->type) {
  8858. case GGML_TYPE_F32:
  8859. {
  8860. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  8861. } break;
  8862. default:
  8863. {
  8864. GGML_ASSERT(false);
  8865. } break;
  8866. }
  8867. }
  8868. // ggml_compute_forward_soft_max
  8869. static void ggml_compute_forward_soft_max_f32(
  8870. const struct ggml_compute_params * params,
  8871. const struct ggml_tensor * src0,
  8872. struct ggml_tensor * dst) {
  8873. GGML_ASSERT(ggml_is_contiguous(src0));
  8874. GGML_ASSERT(ggml_is_contiguous(dst));
  8875. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8876. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8877. return;
  8878. }
  8879. // TODO: handle transposed/permuted matrices
  8880. const int ith = params->ith;
  8881. const int nth = params->nth;
  8882. const int nc = src0->ne[0];
  8883. const int nr = ggml_nrows(src0);
  8884. // rows per thread
  8885. const int dr = (nr + nth - 1)/nth;
  8886. // row range for this thread
  8887. const int ir0 = dr*ith;
  8888. const int ir1 = MIN(ir0 + dr, nr);
  8889. for (int i1 = ir0; i1 < ir1; i1++) {
  8890. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  8891. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  8892. #ifndef NDEBUG
  8893. for (int i = 0; i < nc; ++i) {
  8894. //printf("p[%d] = %f\n", i, p[i]);
  8895. assert(!isnan(sp[i]));
  8896. }
  8897. #endif
  8898. float max = -INFINITY;
  8899. ggml_vec_max_f32(nc, &max, sp);
  8900. ggml_float sum = 0.0;
  8901. uint16_t scvt;
  8902. for (int i = 0; i < nc; i++) {
  8903. if (sp[i] == -INFINITY) {
  8904. dp[i] = 0.0f;
  8905. } else {
  8906. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  8907. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  8908. memcpy(&scvt, &s, sizeof(scvt));
  8909. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  8910. sum += (ggml_float)val;
  8911. dp[i] = val;
  8912. }
  8913. }
  8914. assert(sum > 0.0);
  8915. sum = 1.0/sum;
  8916. ggml_vec_scale_f32(nc, dp, sum);
  8917. #ifndef NDEBUG
  8918. for (int i = 0; i < nc; ++i) {
  8919. assert(!isnan(dp[i]));
  8920. assert(!isinf(dp[i]));
  8921. }
  8922. #endif
  8923. }
  8924. }
  8925. static void ggml_compute_forward_soft_max(
  8926. const struct ggml_compute_params * params,
  8927. const struct ggml_tensor * src0,
  8928. struct ggml_tensor * dst) {
  8929. switch (src0->type) {
  8930. case GGML_TYPE_F32:
  8931. {
  8932. ggml_compute_forward_soft_max_f32(params, src0, dst);
  8933. } break;
  8934. default:
  8935. {
  8936. GGML_ASSERT(false);
  8937. } break;
  8938. }
  8939. }
  8940. // ggml_compute_forward_alibi
  8941. static void ggml_compute_forward_alibi_f32(
  8942. const struct ggml_compute_params * params,
  8943. const struct ggml_tensor * src0,
  8944. const struct ggml_tensor * src1,
  8945. struct ggml_tensor * dst) {
  8946. assert(params->ith == 0);
  8947. assert(src1->type == GGML_TYPE_I32);
  8948. assert(ggml_nelements(src1) == 3);
  8949. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8950. return;
  8951. }
  8952. const int n_past = ((int32_t *) src1->data)[0];
  8953. const int n_head = ((int32_t *) src1->data)[1];
  8954. const float max_bias = ((float *) src1->data)[2];
  8955. assert(n_past >= 0);
  8956. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8957. const int ne1 = src0->ne[1]; // seq_len_without_past
  8958. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8959. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8960. const int n = ggml_nrows(src0);
  8961. const int ne2_ne3 = n/ne1; // ne2*ne3
  8962. const int nb0 = src0->nb[0];
  8963. const int nb1 = src0->nb[1];
  8964. const int nb2 = src0->nb[2];
  8965. //const int nb3 = src0->nb[3];
  8966. assert(nb0 == sizeof(float));
  8967. assert(ne1 + n_past == ne0); (void) n_past;
  8968. // add alibi to src0 (KQ_scaled)
  8969. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8970. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8971. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8972. for (int i = 0; i < ne0; i++) {
  8973. for (int j = 0; j < ne1; j++) {
  8974. for (int k = 0; k < ne2_ne3; k++) {
  8975. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8976. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8977. // TODO: k*nb2 or k*nb3
  8978. float m_k;
  8979. if (k < n_heads_log2_floor) {
  8980. m_k = powf(m0, k + 1);
  8981. } else {
  8982. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8983. }
  8984. pdst[0] = (i-ne0+1) * m_k + src[0];
  8985. }
  8986. }
  8987. }
  8988. }
  8989. static void ggml_compute_forward_alibi_f16(
  8990. const struct ggml_compute_params * params,
  8991. const struct ggml_tensor * src0,
  8992. const struct ggml_tensor * src1,
  8993. struct ggml_tensor * dst) {
  8994. assert(params->ith == 0);
  8995. assert(src1->type == GGML_TYPE_I32);
  8996. assert(ggml_nelements(src1) == 3);
  8997. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8998. return;
  8999. }
  9000. const int n_past = ((int32_t *) src1->data)[0];
  9001. const int n_head = ((int32_t *) src1->data)[1];
  9002. const float max_bias = ((float *) src1->data)[2];
  9003. assert(n_past >= 0);
  9004. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9005. const int ne1 = src0->ne[1]; // seq_len_without_past
  9006. //const int ne2 = src0->ne[2]; // n_head -> this is k
  9007. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9008. const int n = ggml_nrows(src0);
  9009. const int ne2_ne3 = n/ne1; // ne2*ne3
  9010. const int nb0 = src0->nb[0];
  9011. const int nb1 = src0->nb[1];
  9012. const int nb2 = src0->nb[2];
  9013. //const int nb3 = src0->nb[3];
  9014. assert(nb0 == sizeof(ggml_fp16_t));
  9015. assert(ne1 + n_past == ne0); (void) n_past;
  9016. // add alibi to src0 (KQ_scaled)
  9017. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9018. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9019. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9020. for (int i = 0; i < ne0; i++) {
  9021. for (int j = 0; j < ne1; j++) {
  9022. for (int k = 0; k < ne2_ne3; k++) {
  9023. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9024. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9025. // TODO: k*nb2 or k*nb3
  9026. float m_k;
  9027. if (k < n_heads_log2_floor) {
  9028. m_k = powf(m0, k + 1);
  9029. } else {
  9030. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9031. }
  9032. // we return F32
  9033. pdst[0] = (i-ne0+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  9034. }
  9035. }
  9036. }
  9037. }
  9038. static void ggml_compute_forward_alibi(
  9039. const struct ggml_compute_params * params,
  9040. const struct ggml_tensor * src0,
  9041. const struct ggml_tensor * src1,
  9042. struct ggml_tensor * dst) {
  9043. switch (src0->type) {
  9044. case GGML_TYPE_F16:
  9045. {
  9046. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  9047. } break;
  9048. case GGML_TYPE_F32:
  9049. {
  9050. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  9051. } break;
  9052. case GGML_TYPE_Q4_0:
  9053. case GGML_TYPE_Q4_1:
  9054. case GGML_TYPE_Q5_0:
  9055. case GGML_TYPE_Q5_1:
  9056. case GGML_TYPE_Q8_0:
  9057. case GGML_TYPE_Q8_1:
  9058. case GGML_TYPE_Q2_K:
  9059. case GGML_TYPE_Q3_K:
  9060. case GGML_TYPE_Q4_K:
  9061. case GGML_TYPE_Q5_K:
  9062. case GGML_TYPE_Q6_K:
  9063. case GGML_TYPE_Q8_K:
  9064. case GGML_TYPE_I8:
  9065. case GGML_TYPE_I16:
  9066. case GGML_TYPE_I32:
  9067. case GGML_TYPE_COUNT:
  9068. {
  9069. GGML_ASSERT(false);
  9070. } break;
  9071. }
  9072. }
  9073. // ggml_compute_forward_clamp
  9074. static void ggml_compute_forward_clamp_f32(
  9075. const struct ggml_compute_params * params,
  9076. const struct ggml_tensor * src0,
  9077. const struct ggml_tensor * src1,
  9078. struct ggml_tensor * dst) {
  9079. assert(params->ith == 0);
  9080. assert(src1->type == GGML_TYPE_I32);
  9081. assert(ggml_nelements(src1) == 2);
  9082. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9083. return;
  9084. }
  9085. const int min = ((float *) src1->data)[0];
  9086. const int max = ((float *) src1->data)[1];
  9087. const int ith = params->ith;
  9088. const int nth = params->nth;
  9089. const int n = ggml_nrows(src0);
  9090. const int nc = src0->ne[0];
  9091. const size_t nb00 = src0->nb[0];
  9092. const size_t nb01 = src0->nb[1];
  9093. const size_t nb0 = dst->nb[0];
  9094. const size_t nb1 = dst->nb[1];
  9095. GGML_ASSERT( nb0 == sizeof(float));
  9096. GGML_ASSERT(nb00 == sizeof(float));
  9097. for (int j = ith; j < n; j += nth) {
  9098. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9099. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9100. for (int i = 0; i < nc; i++) {
  9101. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9102. }
  9103. }
  9104. }
  9105. static void ggml_compute_forward_clamp(
  9106. const struct ggml_compute_params * params,
  9107. const struct ggml_tensor * src0,
  9108. const struct ggml_tensor * src1,
  9109. struct ggml_tensor * dst) {
  9110. switch (src0->type) {
  9111. case GGML_TYPE_F32:
  9112. {
  9113. ggml_compute_forward_clamp_f32(params, src0, src1, dst);
  9114. } break;
  9115. case GGML_TYPE_F16:
  9116. case GGML_TYPE_Q4_0:
  9117. case GGML_TYPE_Q4_1:
  9118. case GGML_TYPE_Q5_0:
  9119. case GGML_TYPE_Q5_1:
  9120. case GGML_TYPE_Q8_0:
  9121. case GGML_TYPE_Q8_1:
  9122. case GGML_TYPE_Q2_K:
  9123. case GGML_TYPE_Q3_K:
  9124. case GGML_TYPE_Q4_K:
  9125. case GGML_TYPE_Q5_K:
  9126. case GGML_TYPE_Q6_K:
  9127. case GGML_TYPE_Q8_K:
  9128. case GGML_TYPE_I8:
  9129. case GGML_TYPE_I16:
  9130. case GGML_TYPE_I32:
  9131. case GGML_TYPE_COUNT:
  9132. {
  9133. GGML_ASSERT(false);
  9134. } break;
  9135. }
  9136. }
  9137. // ggml_compute_forward_rope
  9138. static void ggml_compute_forward_rope_f32(
  9139. const struct ggml_compute_params * params,
  9140. const struct ggml_tensor * src0,
  9141. const struct ggml_tensor * src1,
  9142. struct ggml_tensor * dst) {
  9143. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9144. GGML_ASSERT(ggml_nelements(src1) == 3);
  9145. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9146. return;
  9147. }
  9148. const int n_past = ((int32_t *) src1->data)[0];
  9149. const int n_dims = ((int32_t *) src1->data)[1];
  9150. const int mode = ((int32_t *) src1->data)[2];
  9151. assert(n_past >= 0);
  9152. const size_t nb00 = src0->nb[0];
  9153. const size_t nb01 = src0->nb[1];
  9154. const size_t nb02 = src0->nb[2];
  9155. const size_t nb03 = src0->nb[3];
  9156. const int64_t ne0 = dst->ne[0];
  9157. const int64_t ne1 = dst->ne[1];
  9158. const int64_t ne2 = dst->ne[2];
  9159. const int64_t ne3 = dst->ne[3];
  9160. const size_t nb0 = dst->nb[0];
  9161. const size_t nb1 = dst->nb[1];
  9162. const size_t nb2 = dst->nb[2];
  9163. const size_t nb3 = dst->nb[3];
  9164. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9165. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9166. GGML_ASSERT(nb00 == sizeof(float));
  9167. const int ith = params->ith;
  9168. const int nth = params->nth;
  9169. const int nr = ggml_nrows(dst);
  9170. GGML_ASSERT(n_dims <= ne0);
  9171. GGML_ASSERT(n_dims % 2 == 0);
  9172. // rows per thread
  9173. const int dr = (nr + nth - 1)/nth;
  9174. // row range for this thread
  9175. const int ir0 = dr*ith;
  9176. const int ir1 = MIN(ir0 + dr, nr);
  9177. // row index used to determine which thread to use
  9178. int ir = 0;
  9179. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9180. const bool is_neox = mode & 2;
  9181. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9182. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9183. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9184. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9185. if (ir++ < ir0) continue;
  9186. if (ir > ir1) break;
  9187. float theta = (float)p;
  9188. if (!is_neox) {
  9189. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9190. const float cos_theta = cosf(theta);
  9191. const float sin_theta = sinf(theta);
  9192. theta *= theta_scale;
  9193. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9194. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9195. const float x0 = src[0];
  9196. const float x1 = src[1];
  9197. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9198. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9199. }
  9200. } else {
  9201. // TODO: this is probably wrong, but I can't figure it out ..
  9202. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9203. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9204. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9205. const float cos_theta = cosf(theta);
  9206. const float sin_theta = sinf(theta);
  9207. theta *= theta_scale;
  9208. const int64_t i0 = ib*n_dims + ic/2;
  9209. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9210. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9211. const float x0 = src[0];
  9212. const float x1 = src[n_dims/2];
  9213. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9214. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9215. }
  9216. }
  9217. }
  9218. }
  9219. }
  9220. }
  9221. }
  9222. static void ggml_compute_forward_rope_f16(
  9223. const struct ggml_compute_params * params,
  9224. const struct ggml_tensor * src0,
  9225. const struct ggml_tensor * src1,
  9226. struct ggml_tensor * dst) {
  9227. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9228. GGML_ASSERT(ggml_nelements(src1) == 3);
  9229. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9230. return;
  9231. }
  9232. const int n_past = ((int32_t *) src1->data)[0];
  9233. const int n_dims = ((int32_t *) src1->data)[1];
  9234. const int mode = ((int32_t *) src1->data)[2];
  9235. assert(n_past >= 0);
  9236. const size_t nb00 = src0->nb[0];
  9237. const size_t nb01 = src0->nb[1];
  9238. const size_t nb02 = src0->nb[2];
  9239. const size_t nb03 = src0->nb[3];
  9240. const int64_t ne0 = dst->ne[0];
  9241. const int64_t ne1 = dst->ne[1];
  9242. const int64_t ne2 = dst->ne[2];
  9243. const int64_t ne3 = dst->ne[3];
  9244. const size_t nb0 = dst->nb[0];
  9245. const size_t nb1 = dst->nb[1];
  9246. const size_t nb2 = dst->nb[2];
  9247. const size_t nb3 = dst->nb[3];
  9248. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9249. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9250. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9251. const int ith = params->ith;
  9252. const int nth = params->nth;
  9253. const int nr = ggml_nrows(dst);
  9254. GGML_ASSERT(n_dims <= ne0);
  9255. GGML_ASSERT(n_dims % 2 == 0);
  9256. // rows per thread
  9257. const int dr = (nr + nth - 1)/nth;
  9258. // row range for this thread
  9259. const int ir0 = dr*ith;
  9260. const int ir1 = MIN(ir0 + dr, nr);
  9261. // row index used to determine which thread to use
  9262. int ir = 0;
  9263. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9264. const bool is_neox = mode & 2;
  9265. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9266. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9267. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9268. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9269. if (ir++ < ir0) continue;
  9270. if (ir > ir1) break;
  9271. float theta = (float)p;
  9272. if (!is_neox) {
  9273. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9274. const float cos_theta = cosf(theta);
  9275. const float sin_theta = sinf(theta);
  9276. theta *= theta_scale;
  9277. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9278. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9279. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9280. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9281. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9282. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9283. }
  9284. } else {
  9285. // TODO: this is probably wrong, but I can't figure it out ..
  9286. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9287. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9288. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9289. const float cos_theta = cosf(theta);
  9290. const float sin_theta = sinf(theta);
  9291. theta *= theta_scale;
  9292. const int64_t i0 = ib*n_dims + ic/2;
  9293. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9294. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9295. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9296. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9297. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9298. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9299. }
  9300. }
  9301. }
  9302. }
  9303. }
  9304. }
  9305. }
  9306. static void ggml_compute_forward_rope(
  9307. const struct ggml_compute_params * params,
  9308. const struct ggml_tensor * src0,
  9309. const struct ggml_tensor * src1,
  9310. struct ggml_tensor * dst) {
  9311. switch (src0->type) {
  9312. case GGML_TYPE_F16:
  9313. {
  9314. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  9315. } break;
  9316. case GGML_TYPE_F32:
  9317. {
  9318. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  9319. } break;
  9320. default:
  9321. {
  9322. GGML_ASSERT(false);
  9323. } break;
  9324. }
  9325. }
  9326. // ggml_compute_forward_rope_back
  9327. static void ggml_compute_forward_rope_back_f32(
  9328. const struct ggml_compute_params * params,
  9329. const struct ggml_tensor * src0,
  9330. const struct ggml_tensor * src1,
  9331. struct ggml_tensor * dst) {
  9332. assert(src1->type == GGML_TYPE_I32);
  9333. assert(ggml_nelements(src1) == 3);
  9334. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9335. return;
  9336. }
  9337. // y = rope(x, src1)
  9338. // dx = rope_back(dy, src1)
  9339. // src0 is dy, src1 contains options
  9340. const int n_past = ((int32_t *) src1->data)[0];
  9341. const int n_dims = ((int32_t *) src1->data)[1];
  9342. const int mode = ((int32_t *) src1->data)[2];
  9343. assert(n_past >= 0);
  9344. const size_t nb00 = src0->nb[0];
  9345. const size_t nb01 = src0->nb[1];
  9346. const size_t nb02 = src0->nb[2];
  9347. const size_t nb03 = src0->nb[3];
  9348. const int64_t ne0 = dst->ne[0];
  9349. const int64_t ne1 = dst->ne[1];
  9350. const int64_t ne2 = dst->ne[2];
  9351. const int64_t ne3 = dst->ne[3];
  9352. const size_t nb0 = dst->nb[0];
  9353. const size_t nb1 = dst->nb[1];
  9354. const size_t nb2 = dst->nb[2];
  9355. const size_t nb3 = dst->nb[3];
  9356. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9357. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9358. assert(nb0 == sizeof(float));
  9359. const int ith = params->ith;
  9360. const int nth = params->nth;
  9361. const int nr = ggml_nrows(dst);
  9362. // rows per thread
  9363. const int dr = (nr + nth - 1)/nth;
  9364. // row range for this thread
  9365. const int ir0 = dr*ith;
  9366. const int ir1 = MIN(ir0 + dr, nr);
  9367. // row index used to determine which thread to use
  9368. int ir = 0;
  9369. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9370. const bool is_neox = mode & 2;
  9371. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9372. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9373. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9374. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9375. if (ir++ < ir0) continue;
  9376. if (ir > ir1) break;
  9377. float theta = (float)p;
  9378. if (!is_neox) {
  9379. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9380. const float cos_theta = cosf(theta);
  9381. const float sin_theta = sinf(theta);
  9382. theta *= theta_scale;
  9383. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9384. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9385. const float dy0 = dy[0];
  9386. const float dy1 = dy[1];
  9387. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9388. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  9389. }
  9390. } else {
  9391. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9392. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9393. const float cos_theta = cosf(theta);
  9394. const float sin_theta = sinf(theta);
  9395. theta *= theta_scale;
  9396. const int64_t i0 = ib*n_dims + ic/2;
  9397. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9398. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9399. const float dy0 = dy[0];
  9400. const float dy1 = dy[n_dims/2];
  9401. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9402. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  9403. }
  9404. }
  9405. }
  9406. }
  9407. }
  9408. }
  9409. }
  9410. static void ggml_compute_forward_rope_back_f16(
  9411. const struct ggml_compute_params * params,
  9412. const struct ggml_tensor * src0,
  9413. const struct ggml_tensor * src1,
  9414. struct ggml_tensor * dst) {
  9415. assert(src1->type == GGML_TYPE_I32);
  9416. assert(ggml_nelements(src1) == 3);
  9417. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9418. return;
  9419. }
  9420. // y = rope(x, src1)
  9421. // dx = rope_back(dy, src1)
  9422. // src0 is dy, src1 contains options
  9423. const int n_past = ((int32_t *) src1->data)[0];
  9424. const int n_dims = ((int32_t *) src1->data)[1];
  9425. const int mode = ((int32_t *) src1->data)[2];
  9426. assert(n_past >= 0);
  9427. const size_t nb00 = src0->nb[0];
  9428. const size_t nb01 = src0->nb[1];
  9429. const size_t nb02 = src0->nb[2];
  9430. const size_t nb03 = src0->nb[3];
  9431. const int64_t ne0 = dst->ne[0];
  9432. const int64_t ne1 = dst->ne[1];
  9433. const int64_t ne2 = dst->ne[2];
  9434. const int64_t ne3 = dst->ne[3];
  9435. const size_t nb0 = dst->nb[0];
  9436. const size_t nb1 = dst->nb[1];
  9437. const size_t nb2 = dst->nb[2];
  9438. const size_t nb3 = dst->nb[3];
  9439. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9440. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9441. assert(nb0 == sizeof(ggml_fp16_t));
  9442. const int ith = params->ith;
  9443. const int nth = params->nth;
  9444. const int nr = ggml_nrows(dst);
  9445. // rows per thread
  9446. const int dr = (nr + nth - 1)/nth;
  9447. // row range for this thread
  9448. const int ir0 = dr*ith;
  9449. const int ir1 = MIN(ir0 + dr, nr);
  9450. // row index used to determine which thread to use
  9451. int ir = 0;
  9452. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9453. const bool is_neox = mode & 2;
  9454. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9455. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9456. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9457. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9458. if (ir++ < ir0) continue;
  9459. if (ir > ir1) break;
  9460. float theta = (float)p;
  9461. if (!is_neox) {
  9462. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9463. const float cos_theta = cosf(theta);
  9464. const float sin_theta = sinf(theta);
  9465. theta *= theta_scale;
  9466. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9467. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9468. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9469. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  9470. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9471. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9472. }
  9473. } else {
  9474. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9475. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9476. const float cos_theta = cosf(theta);
  9477. const float sin_theta = sinf(theta);
  9478. theta *= theta_scale;
  9479. const int64_t i0 = ib*n_dims + ic/2;
  9480. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9481. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9482. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9483. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  9484. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9485. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9486. }
  9487. }
  9488. }
  9489. }
  9490. }
  9491. }
  9492. }
  9493. static void ggml_compute_forward_rope_back(
  9494. const struct ggml_compute_params * params,
  9495. const struct ggml_tensor * src0,
  9496. const struct ggml_tensor * src1,
  9497. struct ggml_tensor * dst) {
  9498. switch (src0->type) {
  9499. case GGML_TYPE_F16:
  9500. {
  9501. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  9502. } break;
  9503. case GGML_TYPE_F32:
  9504. {
  9505. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  9506. } break;
  9507. default:
  9508. {
  9509. GGML_ASSERT(false);
  9510. } break;
  9511. }
  9512. }
  9513. // ggml_compute_forward_conv_1d_1s
  9514. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  9515. const struct ggml_compute_params * params,
  9516. const struct ggml_tensor * src0,
  9517. const struct ggml_tensor * src1,
  9518. struct ggml_tensor * dst) {
  9519. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9520. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9521. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9522. int64_t t0 = ggml_perf_time_us();
  9523. UNUSED(t0);
  9524. const int64_t ne00 = src0->ne[0];
  9525. const int64_t ne01 = src0->ne[1];
  9526. const int64_t ne02 = src0->ne[2];
  9527. //const int64_t ne03 = src0->ne[3];
  9528. const int64_t ne10 = src1->ne[0];
  9529. const int64_t ne11 = src1->ne[1];
  9530. //const int64_t ne12 = src1->ne[2];
  9531. //const int64_t ne13 = src1->ne[3];
  9532. //const int64_t ne0 = dst->ne[0];
  9533. //const int64_t ne1 = dst->ne[1];
  9534. //const int64_t ne2 = dst->ne[2];
  9535. //const int64_t ne3 = dst->ne[3];
  9536. //const int64_t ne = ne0*ne1*ne2*ne3;
  9537. const int nb00 = src0->nb[0];
  9538. const int nb01 = src0->nb[1];
  9539. const int nb02 = src0->nb[2];
  9540. //const int nb03 = src0->nb[3];
  9541. const int nb10 = src1->nb[0];
  9542. const int nb11 = src1->nb[1];
  9543. //const int nb12 = src1->nb[2];
  9544. //const int nb13 = src1->nb[3];
  9545. //const int nb0 = dst->nb[0];
  9546. const int nb1 = dst->nb[1];
  9547. //const int nb2 = dst->nb[2];
  9548. //const int nb3 = dst->nb[3];
  9549. const int ith = params->ith;
  9550. const int nth = params->nth;
  9551. const int nk = ne00;
  9552. const int nh = nk/2;
  9553. const int ew0 = ggml_up32(ne01);
  9554. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9555. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9556. GGML_ASSERT(nb10 == sizeof(float));
  9557. if (params->type == GGML_TASK_INIT) {
  9558. // TODO: fix this memset (wsize is overestimated)
  9559. memset(params->wdata, 0, params->wsize);
  9560. // prepare kernel data (src0)
  9561. {
  9562. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9563. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9564. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9565. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9566. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9567. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9568. dst_data[i00*ew0 + i01] = src[i00];
  9569. }
  9570. }
  9571. }
  9572. }
  9573. // prepare source data (src1)
  9574. {
  9575. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9576. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9577. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9578. ggml_fp16_t * dst_data = wdata;
  9579. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9580. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9581. }
  9582. }
  9583. }
  9584. return;
  9585. }
  9586. if (params->type == GGML_TASK_FINALIZE) {
  9587. return;
  9588. }
  9589. // total rows in dst
  9590. const int nr = ne02;
  9591. // rows per thread
  9592. const int dr = (nr + nth - 1)/nth;
  9593. // row range for this thread
  9594. const int ir0 = dr*ith;
  9595. const int ir1 = MIN(ir0 + dr, nr);
  9596. for (int i1 = ir0; i1 < ir1; i1++) {
  9597. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9598. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9599. dst_data[i0] = 0;
  9600. for (int k = -nh; k <= nh; k++) {
  9601. float v = 0.0f;
  9602. ggml_vec_dot_f16(ew0, &v,
  9603. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9604. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9605. dst_data[i0] += v;
  9606. }
  9607. }
  9608. }
  9609. }
  9610. static void ggml_compute_forward_conv_1d_1s_f32(
  9611. const struct ggml_compute_params * params,
  9612. const struct ggml_tensor * src0,
  9613. const struct ggml_tensor * src1,
  9614. struct ggml_tensor * dst) {
  9615. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9616. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9617. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9618. int64_t t0 = ggml_perf_time_us();
  9619. UNUSED(t0);
  9620. const int64_t ne00 = src0->ne[0];
  9621. const int64_t ne01 = src0->ne[1];
  9622. const int64_t ne02 = src0->ne[2];
  9623. //const int64_t ne03 = src0->ne[3];
  9624. const int64_t ne10 = src1->ne[0];
  9625. const int64_t ne11 = src1->ne[1];
  9626. //const int64_t ne12 = src1->ne[2];
  9627. //const int64_t ne13 = src1->ne[3];
  9628. //const int64_t ne0 = dst->ne[0];
  9629. //const int64_t ne1 = dst->ne[1];
  9630. //const int64_t ne2 = dst->ne[2];
  9631. //const int64_t ne3 = dst->ne[3];
  9632. //const int64_t ne = ne0*ne1*ne2*ne3;
  9633. const int nb00 = src0->nb[0];
  9634. const int nb01 = src0->nb[1];
  9635. const int nb02 = src0->nb[2];
  9636. //const int nb03 = src0->nb[3];
  9637. const int nb10 = src1->nb[0];
  9638. const int nb11 = src1->nb[1];
  9639. //const int nb12 = src1->nb[2];
  9640. //const int nb13 = src1->nb[3];
  9641. //const int nb0 = dst->nb[0];
  9642. const int nb1 = dst->nb[1];
  9643. //const int nb2 = dst->nb[2];
  9644. //const int nb3 = dst->nb[3];
  9645. const int ith = params->ith;
  9646. const int nth = params->nth;
  9647. const int nk = ne00;
  9648. const int nh = nk/2;
  9649. const int ew0 = ggml_up32(ne01);
  9650. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9651. GGML_ASSERT(nb00 == sizeof(float));
  9652. GGML_ASSERT(nb10 == sizeof(float));
  9653. if (params->type == GGML_TASK_INIT) {
  9654. // TODO: fix this memset (wsize is overestimated)
  9655. memset(params->wdata, 0, params->wsize);
  9656. // prepare kernel data (src0)
  9657. {
  9658. float * const wdata = (float *) params->wdata + 0;
  9659. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9660. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9661. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9662. float * dst_data = wdata + i02*ew0*ne00;
  9663. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9664. dst_data[i00*ew0 + i01] = src[i00];
  9665. }
  9666. }
  9667. }
  9668. }
  9669. // prepare source data (src1)
  9670. {
  9671. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9672. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9673. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9674. float * dst_data = wdata;
  9675. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9676. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9677. }
  9678. }
  9679. }
  9680. return;
  9681. }
  9682. if (params->type == GGML_TASK_FINALIZE) {
  9683. return;
  9684. }
  9685. // total rows in dst
  9686. const int nr = ne02;
  9687. // rows per thread
  9688. const int dr = (nr + nth - 1)/nth;
  9689. // row range for this thread
  9690. const int ir0 = dr*ith;
  9691. const int ir1 = MIN(ir0 + dr, nr);
  9692. for (int i1 = ir0; i1 < ir1; i1++) {
  9693. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9694. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9695. dst_data[i0] = 0;
  9696. for (int k = -nh; k <= nh; k++) {
  9697. float v = 0.0f;
  9698. ggml_vec_dot_f32(ew0, &v,
  9699. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9700. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9701. dst_data[i0] += v;
  9702. }
  9703. }
  9704. }
  9705. }
  9706. static void ggml_compute_forward_conv_1d_1s(
  9707. const struct ggml_compute_params * params,
  9708. const struct ggml_tensor * src0,
  9709. const struct ggml_tensor * src1,
  9710. struct ggml_tensor * dst) {
  9711. switch (src0->type) {
  9712. case GGML_TYPE_F16:
  9713. {
  9714. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  9715. } break;
  9716. case GGML_TYPE_F32:
  9717. {
  9718. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  9719. } break;
  9720. default:
  9721. {
  9722. GGML_ASSERT(false);
  9723. } break;
  9724. }
  9725. }
  9726. // ggml_compute_forward_conv_1d_2s
  9727. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  9728. const struct ggml_compute_params * params,
  9729. const struct ggml_tensor * src0,
  9730. const struct ggml_tensor * src1,
  9731. struct ggml_tensor * dst) {
  9732. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9733. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9734. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9735. int64_t t0 = ggml_perf_time_us();
  9736. UNUSED(t0);
  9737. const int64_t ne00 = src0->ne[0];
  9738. const int64_t ne01 = src0->ne[1];
  9739. const int64_t ne02 = src0->ne[2];
  9740. //const int64_t ne03 = src0->ne[3];
  9741. const int64_t ne10 = src1->ne[0];
  9742. const int64_t ne11 = src1->ne[1];
  9743. //const int64_t ne12 = src1->ne[2];
  9744. //const int64_t ne13 = src1->ne[3];
  9745. //const int64_t ne0 = dst->ne[0];
  9746. //const int64_t ne1 = dst->ne[1];
  9747. //const int64_t ne2 = dst->ne[2];
  9748. //const int64_t ne3 = dst->ne[3];
  9749. //const int64_t ne = ne0*ne1*ne2*ne3;
  9750. const int nb00 = src0->nb[0];
  9751. const int nb01 = src0->nb[1];
  9752. const int nb02 = src0->nb[2];
  9753. //const int nb03 = src0->nb[3];
  9754. const int nb10 = src1->nb[0];
  9755. const int nb11 = src1->nb[1];
  9756. //const int nb12 = src1->nb[2];
  9757. //const int nb13 = src1->nb[3];
  9758. //const int nb0 = dst->nb[0];
  9759. const int nb1 = dst->nb[1];
  9760. //const int nb2 = dst->nb[2];
  9761. //const int nb3 = dst->nb[3];
  9762. const int ith = params->ith;
  9763. const int nth = params->nth;
  9764. const int nk = ne00;
  9765. const int nh = nk/2;
  9766. const int ew0 = ggml_up32(ne01);
  9767. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9768. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9769. GGML_ASSERT(nb10 == sizeof(float));
  9770. if (params->type == GGML_TASK_INIT) {
  9771. // TODO: fix this memset (wsize is overestimated)
  9772. memset(params->wdata, 0, params->wsize);
  9773. // prepare kernel data (src0)
  9774. {
  9775. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9776. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9777. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9778. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9779. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9780. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9781. dst_data[i00*ew0 + i01] = src[i00];
  9782. }
  9783. }
  9784. }
  9785. }
  9786. // prepare source data (src1)
  9787. {
  9788. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9789. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9790. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9791. ggml_fp16_t * dst_data = wdata;
  9792. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9793. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9794. }
  9795. }
  9796. }
  9797. return;
  9798. }
  9799. if (params->type == GGML_TASK_FINALIZE) {
  9800. return;
  9801. }
  9802. // total rows in dst
  9803. const int nr = ne02;
  9804. // rows per thread
  9805. const int dr = (nr + nth - 1)/nth;
  9806. // row range for this thread
  9807. const int ir0 = dr*ith;
  9808. const int ir1 = MIN(ir0 + dr, nr);
  9809. for (int i1 = ir0; i1 < ir1; i1++) {
  9810. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9811. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9812. dst_data[i0/2] = 0;
  9813. for (int k = -nh; k <= nh; k++) {
  9814. float v = 0.0f;
  9815. ggml_vec_dot_f16(ew0, &v,
  9816. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9817. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9818. dst_data[i0/2] += v;
  9819. }
  9820. }
  9821. }
  9822. }
  9823. static void ggml_compute_forward_conv_1d_2s_f32(
  9824. const struct ggml_compute_params * params,
  9825. const struct ggml_tensor * src0,
  9826. const struct ggml_tensor * src1,
  9827. struct ggml_tensor * dst) {
  9828. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9829. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9830. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9831. int64_t t0 = ggml_perf_time_us();
  9832. UNUSED(t0);
  9833. const int64_t ne00 = src0->ne[0];
  9834. const int64_t ne01 = src0->ne[1];
  9835. const int64_t ne02 = src0->ne[2];
  9836. //const int64_t ne03 = src0->ne[3];
  9837. const int64_t ne10 = src1->ne[0];
  9838. const int64_t ne11 = src1->ne[1];
  9839. //const int64_t ne12 = src1->ne[2];
  9840. //const int64_t ne13 = src1->ne[3];
  9841. //const int64_t ne0 = dst->ne[0];
  9842. //const int64_t ne1 = dst->ne[1];
  9843. //const int64_t ne2 = dst->ne[2];
  9844. //const int64_t ne3 = dst->ne[3];
  9845. //const int64_t ne = ne0*ne1*ne2*ne3;
  9846. const int nb00 = src0->nb[0];
  9847. const int nb01 = src0->nb[1];
  9848. const int nb02 = src0->nb[2];
  9849. //const int nb03 = src0->nb[3];
  9850. const int nb10 = src1->nb[0];
  9851. const int nb11 = src1->nb[1];
  9852. //const int nb12 = src1->nb[2];
  9853. //const int nb13 = src1->nb[3];
  9854. //const int nb0 = dst->nb[0];
  9855. const int nb1 = dst->nb[1];
  9856. //const int nb2 = dst->nb[2];
  9857. //const int nb3 = dst->nb[3];
  9858. const int ith = params->ith;
  9859. const int nth = params->nth;
  9860. const int nk = ne00;
  9861. const int nh = nk/2;
  9862. const int ew0 = ggml_up32(ne01);
  9863. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9864. GGML_ASSERT(nb00 == sizeof(float));
  9865. GGML_ASSERT(nb10 == sizeof(float));
  9866. if (params->type == GGML_TASK_INIT) {
  9867. // TODO: fix this memset (wsize is overestimated)
  9868. memset(params->wdata, 0, params->wsize);
  9869. // prepare kernel data (src0)
  9870. {
  9871. float * const wdata = (float *) params->wdata + 0;
  9872. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9873. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9874. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9875. float * dst_data = wdata + i02*ew0*ne00;
  9876. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9877. dst_data[i00*ew0 + i01] = src[i00];
  9878. }
  9879. }
  9880. }
  9881. }
  9882. // prepare source data (src1)
  9883. {
  9884. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9885. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9886. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9887. float * dst_data = wdata;
  9888. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9889. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9890. }
  9891. }
  9892. }
  9893. return;
  9894. }
  9895. if (params->type == GGML_TASK_FINALIZE) {
  9896. return;
  9897. }
  9898. // total rows in dst
  9899. const int nr = ne02;
  9900. // rows per thread
  9901. const int dr = (nr + nth - 1)/nth;
  9902. // row range for this thread
  9903. const int ir0 = dr*ith;
  9904. const int ir1 = MIN(ir0 + dr, nr);
  9905. for (int i1 = ir0; i1 < ir1; i1++) {
  9906. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9907. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9908. dst_data[i0/2] = 0;
  9909. for (int k = -nh; k <= nh; k++) {
  9910. float v = 0.0f;
  9911. ggml_vec_dot_f32(ew0, &v,
  9912. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9913. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9914. dst_data[i0/2] += v;
  9915. }
  9916. }
  9917. }
  9918. }
  9919. static void ggml_compute_forward_conv_1d_2s(
  9920. const struct ggml_compute_params * params,
  9921. const struct ggml_tensor * src0,
  9922. const struct ggml_tensor * src1,
  9923. struct ggml_tensor * dst) {
  9924. switch (src0->type) {
  9925. case GGML_TYPE_F16:
  9926. {
  9927. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  9928. } break;
  9929. case GGML_TYPE_F32:
  9930. {
  9931. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  9932. } break;
  9933. default:
  9934. {
  9935. GGML_ASSERT(false);
  9936. } break;
  9937. }
  9938. }
  9939. // ggml_compute_forward_flash_attn
  9940. static void ggml_compute_forward_flash_attn_f32(
  9941. const struct ggml_compute_params * params,
  9942. const struct ggml_tensor * q,
  9943. const struct ggml_tensor * k,
  9944. const struct ggml_tensor * v,
  9945. const bool masked,
  9946. struct ggml_tensor * dst) {
  9947. int64_t t0 = ggml_perf_time_us();
  9948. UNUSED(t0);
  9949. const int64_t neq0 = q->ne[0];
  9950. const int64_t neq1 = q->ne[1];
  9951. const int64_t neq2 = q->ne[2];
  9952. const int64_t neq3 = q->ne[3];
  9953. const int64_t nek0 = k->ne[0];
  9954. const int64_t nek1 = k->ne[1];
  9955. //const int64_t nek2 = k->ne[2];
  9956. //const int64_t nek3 = k->ne[3];
  9957. //const int64_t nev0 = v->ne[0];
  9958. const int64_t nev1 = v->ne[1];
  9959. //const int64_t nev2 = v->ne[2];
  9960. //const int64_t nev3 = v->ne[3];
  9961. const int64_t ne0 = dst->ne[0];
  9962. const int64_t ne1 = dst->ne[1];
  9963. //const int64_t ne2 = dst->ne[2];
  9964. //const int64_t ne3 = dst->ne[3];
  9965. const int nbk0 = k->nb[0];
  9966. const int nbk1 = k->nb[1];
  9967. const int nbk2 = k->nb[2];
  9968. const int nbk3 = k->nb[3];
  9969. const int nbq0 = q->nb[0];
  9970. const int nbq1 = q->nb[1];
  9971. const int nbq2 = q->nb[2];
  9972. const int nbq3 = q->nb[3];
  9973. const int nbv0 = v->nb[0];
  9974. const int nbv1 = v->nb[1];
  9975. const int nbv2 = v->nb[2];
  9976. const int nbv3 = v->nb[3];
  9977. const int nb0 = dst->nb[0];
  9978. const int nb1 = dst->nb[1];
  9979. const int nb2 = dst->nb[2];
  9980. const int nb3 = dst->nb[3];
  9981. const int ith = params->ith;
  9982. const int nth = params->nth;
  9983. const int64_t D = neq0;
  9984. const int64_t N = neq1;
  9985. const int64_t P = nek1 - N;
  9986. const int64_t M = P + N;
  9987. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9988. GGML_ASSERT(ne0 == D);
  9989. GGML_ASSERT(ne1 == N);
  9990. GGML_ASSERT(P >= 0);
  9991. GGML_ASSERT(nbq0 == sizeof(float));
  9992. GGML_ASSERT(nbk0 == sizeof(float));
  9993. GGML_ASSERT(nbv0 == sizeof(float));
  9994. GGML_ASSERT(neq0 == D);
  9995. GGML_ASSERT(nek0 == D);
  9996. GGML_ASSERT(nev1 == D);
  9997. GGML_ASSERT(neq1 == N);
  9998. GGML_ASSERT(nek1 == N + P);
  9999. GGML_ASSERT(nev1 == D);
  10000. // dst cannot be transposed or permuted
  10001. GGML_ASSERT(nb0 == sizeof(float));
  10002. GGML_ASSERT(nb0 <= nb1);
  10003. GGML_ASSERT(nb1 <= nb2);
  10004. GGML_ASSERT(nb2 <= nb3);
  10005. if (params->type == GGML_TASK_INIT) {
  10006. return;
  10007. }
  10008. if (params->type == GGML_TASK_FINALIZE) {
  10009. return;
  10010. }
  10011. // parallelize by q rows using ggml_vec_dot_f32
  10012. // total rows in q
  10013. const int nr = neq1*neq2*neq3;
  10014. // rows per thread
  10015. const int dr = (nr + nth - 1)/nth;
  10016. // row range for this thread
  10017. const int ir0 = dr*ith;
  10018. const int ir1 = MIN(ir0 + dr, nr);
  10019. const float scale = 1.0f/sqrtf(D);
  10020. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10021. for (int ir = ir0; ir < ir1; ++ir) {
  10022. // q indices
  10023. const int iq3 = ir/(neq2*neq1);
  10024. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10025. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10026. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10027. for (int i = M; i < Mup; ++i) {
  10028. S[i] = -INFINITY;
  10029. }
  10030. for (int64_t ic = 0; ic < nek1; ++ic) {
  10031. // k indices
  10032. const int ik3 = iq3;
  10033. const int ik2 = iq2;
  10034. const int ik1 = ic;
  10035. // S indices
  10036. const int i1 = ik1;
  10037. ggml_vec_dot_f32(neq0,
  10038. S + i1,
  10039. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10040. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10041. }
  10042. // scale
  10043. ggml_vec_scale_f32(nek1, S, scale);
  10044. if (masked) {
  10045. for (int64_t i = P; i < M; i++) {
  10046. if (i > P + iq1) {
  10047. S[i] = -INFINITY;
  10048. }
  10049. }
  10050. }
  10051. // softmax
  10052. {
  10053. float max = -INFINITY;
  10054. ggml_vec_max_f32(M, &max, S);
  10055. ggml_float sum = 0.0;
  10056. {
  10057. #ifdef GGML_SOFT_MAX_ACCELERATE
  10058. max = -max;
  10059. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10060. vvexpf(S, S, &Mup);
  10061. ggml_vec_sum_f32(Mup, &sum, S);
  10062. #else
  10063. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10064. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10065. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10066. float * SS = S + i;
  10067. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10068. if (SS[j] == -INFINITY) {
  10069. SS[j] = 0.0f;
  10070. } else {
  10071. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10072. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10073. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10074. sump[j] += (ggml_float)val;
  10075. SS[j] = val;
  10076. }
  10077. }
  10078. }
  10079. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10080. sum += sump[i];
  10081. }
  10082. #endif
  10083. }
  10084. assert(sum > 0.0);
  10085. sum = 1.0/sum;
  10086. ggml_vec_scale_f32(M, S, sum);
  10087. #ifndef NDEBUG
  10088. for (int i = 0; i < M; ++i) {
  10089. assert(!isnan(S[i]));
  10090. assert(!isinf(S[i]));
  10091. }
  10092. #endif
  10093. }
  10094. for (int64_t ic = 0; ic < nev1; ++ic) {
  10095. // dst indices
  10096. const int i1 = iq1;
  10097. const int i2 = iq2;
  10098. const int i3 = iq3;
  10099. ggml_vec_dot_f32(nek1,
  10100. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10101. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10102. S);
  10103. }
  10104. }
  10105. }
  10106. static void ggml_compute_forward_flash_attn_f16(
  10107. const struct ggml_compute_params * params,
  10108. const struct ggml_tensor * q,
  10109. const struct ggml_tensor * k,
  10110. const struct ggml_tensor * v,
  10111. const bool masked,
  10112. struct ggml_tensor * dst) {
  10113. int64_t t0 = ggml_perf_time_us();
  10114. UNUSED(t0);
  10115. const int64_t neq0 = q->ne[0];
  10116. const int64_t neq1 = q->ne[1];
  10117. const int64_t neq2 = q->ne[2];
  10118. const int64_t neq3 = q->ne[3];
  10119. const int64_t nek0 = k->ne[0];
  10120. const int64_t nek1 = k->ne[1];
  10121. //const int64_t nek2 = k->ne[2];
  10122. //const int64_t nek3 = k->ne[3];
  10123. //const int64_t nev0 = v->ne[0];
  10124. const int64_t nev1 = v->ne[1];
  10125. //const int64_t nev2 = v->ne[2];
  10126. //const int64_t nev3 = v->ne[3];
  10127. const int64_t ne0 = dst->ne[0];
  10128. const int64_t ne1 = dst->ne[1];
  10129. //const int64_t ne2 = dst->ne[2];
  10130. //const int64_t ne3 = dst->ne[3];
  10131. const int nbk0 = k->nb[0];
  10132. const int nbk1 = k->nb[1];
  10133. const int nbk2 = k->nb[2];
  10134. const int nbk3 = k->nb[3];
  10135. const int nbq0 = q->nb[0];
  10136. const int nbq1 = q->nb[1];
  10137. const int nbq2 = q->nb[2];
  10138. const int nbq3 = q->nb[3];
  10139. const int nbv0 = v->nb[0];
  10140. const int nbv1 = v->nb[1];
  10141. const int nbv2 = v->nb[2];
  10142. const int nbv3 = v->nb[3];
  10143. const int nb0 = dst->nb[0];
  10144. const int nb1 = dst->nb[1];
  10145. const int nb2 = dst->nb[2];
  10146. const int nb3 = dst->nb[3];
  10147. const int ith = params->ith;
  10148. const int nth = params->nth;
  10149. const int64_t D = neq0;
  10150. const int64_t N = neq1;
  10151. const int64_t P = nek1 - N;
  10152. const int64_t M = P + N;
  10153. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10154. GGML_ASSERT(ne0 == D);
  10155. GGML_ASSERT(ne1 == N);
  10156. GGML_ASSERT(P >= 0);
  10157. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10158. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10159. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10160. GGML_ASSERT(neq0 == D);
  10161. GGML_ASSERT(nek0 == D);
  10162. GGML_ASSERT(nev1 == D);
  10163. GGML_ASSERT(neq1 == N);
  10164. GGML_ASSERT(nek1 == N + P);
  10165. GGML_ASSERT(nev1 == D);
  10166. // dst cannot be transposed or permuted
  10167. GGML_ASSERT(nb0 == sizeof(float));
  10168. GGML_ASSERT(nb0 <= nb1);
  10169. GGML_ASSERT(nb1 <= nb2);
  10170. GGML_ASSERT(nb2 <= nb3);
  10171. if (params->type == GGML_TASK_INIT) {
  10172. return;
  10173. }
  10174. if (params->type == GGML_TASK_FINALIZE) {
  10175. return;
  10176. }
  10177. // parallelize by q rows using ggml_vec_dot_f32
  10178. // total rows in q
  10179. const int nr = neq1*neq2*neq3;
  10180. // rows per thread
  10181. const int dr = (nr + nth - 1)/nth;
  10182. // row range for this thread
  10183. const int ir0 = dr*ith;
  10184. const int ir1 = MIN(ir0 + dr, nr);
  10185. const float scale = 1.0f/sqrtf(D);
  10186. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10187. for (int ir = ir0; ir < ir1; ++ir) {
  10188. // q indices
  10189. const int iq3 = ir/(neq2*neq1);
  10190. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10191. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10192. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10193. for (int i = M; i < Mup; ++i) {
  10194. S[i] = -INFINITY;
  10195. }
  10196. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10197. for (int64_t ic = 0; ic < nek1; ++ic) {
  10198. // k indices
  10199. const int ik3 = iq3;
  10200. const int ik2 = iq2;
  10201. const int ik1 = ic;
  10202. // S indices
  10203. const int i1 = ik1;
  10204. ggml_vec_dot_f16(neq0,
  10205. S + i1,
  10206. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10207. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10208. }
  10209. } else {
  10210. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10211. // k indices
  10212. const int ik3 = iq3;
  10213. const int ik2 = iq2;
  10214. const int ik1 = ic;
  10215. // S indices
  10216. const int i1 = ik1;
  10217. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10218. S + i1,
  10219. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10220. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10221. }
  10222. }
  10223. // scale
  10224. ggml_vec_scale_f32(nek1, S, scale);
  10225. if (masked) {
  10226. for (int64_t i = P; i < M; i++) {
  10227. if (i > P + iq1) {
  10228. S[i] = -INFINITY;
  10229. }
  10230. }
  10231. }
  10232. // softmax
  10233. {
  10234. float max = -INFINITY;
  10235. ggml_vec_max_f32(M, &max, S);
  10236. ggml_float sum = 0.0;
  10237. {
  10238. #ifdef GGML_SOFT_MAX_ACCELERATE
  10239. max = -max;
  10240. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10241. vvexpf(S, S, &Mup);
  10242. ggml_vec_sum_f32(Mup, &sum, S);
  10243. #else
  10244. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10245. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10246. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10247. float * SS = S + i;
  10248. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10249. if (SS[j] == -INFINITY) {
  10250. SS[j] = 0.0f;
  10251. } else {
  10252. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10253. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10254. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10255. sump[j] += (ggml_float)val;
  10256. SS[j] = val;
  10257. }
  10258. }
  10259. }
  10260. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10261. sum += sump[i];
  10262. }
  10263. #endif
  10264. }
  10265. assert(sum > 0.0);
  10266. sum = 1.0/sum;
  10267. ggml_vec_scale_f32(M, S, sum);
  10268. #ifndef NDEBUG
  10269. for (int i = 0; i < M; ++i) {
  10270. assert(!isnan(S[i]));
  10271. assert(!isinf(S[i]));
  10272. }
  10273. #endif
  10274. }
  10275. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10276. for (int64_t i = 0; i < M; i++) {
  10277. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10278. }
  10279. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10280. for (int64_t ic = 0; ic < nev1; ++ic) {
  10281. // dst indices
  10282. const int i1 = iq1;
  10283. const int i2 = iq2;
  10284. const int i3 = iq3;
  10285. ggml_vec_dot_f16(nek1,
  10286. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10287. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10288. S16);
  10289. }
  10290. } else {
  10291. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10292. // dst indices
  10293. const int i1 = iq1;
  10294. const int i2 = iq2;
  10295. const int i3 = iq3;
  10296. ggml_vec_dot_f16_unroll(nek1, nbv1,
  10297. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10298. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10299. S16);
  10300. }
  10301. }
  10302. }
  10303. }
  10304. static void ggml_compute_forward_flash_attn(
  10305. const struct ggml_compute_params * params,
  10306. const struct ggml_tensor * q,
  10307. const struct ggml_tensor * k,
  10308. const struct ggml_tensor * v,
  10309. const bool masked,
  10310. struct ggml_tensor * dst) {
  10311. switch (q->type) {
  10312. case GGML_TYPE_F16:
  10313. {
  10314. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10315. } break;
  10316. case GGML_TYPE_F32:
  10317. {
  10318. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10319. } break;
  10320. default:
  10321. {
  10322. GGML_ASSERT(false);
  10323. } break;
  10324. }
  10325. }
  10326. // ggml_compute_forward_flash_ff
  10327. static void ggml_compute_forward_flash_ff_f16(
  10328. const struct ggml_compute_params * params,
  10329. const struct ggml_tensor * a, // F16
  10330. const struct ggml_tensor * b0, // F16 fc_w
  10331. const struct ggml_tensor * b1, // F32 fc_b
  10332. const struct ggml_tensor * c0, // F16 proj_w
  10333. const struct ggml_tensor * c1, // F32 proj_b
  10334. struct ggml_tensor * dst) {
  10335. int64_t t0 = ggml_perf_time_us();
  10336. UNUSED(t0);
  10337. const int64_t nea0 = a->ne[0];
  10338. const int64_t nea1 = a->ne[1];
  10339. const int64_t nea2 = a->ne[2];
  10340. const int64_t nea3 = a->ne[3];
  10341. const int64_t neb00 = b0->ne[0];
  10342. const int64_t neb01 = b0->ne[1];
  10343. //const int64_t neb02 = b0->ne[2];
  10344. //const int64_t neb03 = b0->ne[3];
  10345. const int64_t neb10 = b1->ne[0];
  10346. const int64_t neb11 = b1->ne[1];
  10347. //const int64_t neb12 = b1->ne[2];
  10348. //const int64_t neb13 = b1->ne[3];
  10349. const int64_t nec00 = c0->ne[0];
  10350. const int64_t nec01 = c0->ne[1];
  10351. //const int64_t nec02 = c0->ne[2];
  10352. //const int64_t nec03 = c0->ne[3];
  10353. const int64_t nec10 = c1->ne[0];
  10354. const int64_t nec11 = c1->ne[1];
  10355. //const int64_t nec12 = c1->ne[2];
  10356. //const int64_t nec13 = c1->ne[3];
  10357. const int64_t ne0 = dst->ne[0];
  10358. const int64_t ne1 = dst->ne[1];
  10359. const int64_t ne2 = dst->ne[2];
  10360. //const int64_t ne3 = dst->ne[3];
  10361. const int nba0 = a->nb[0];
  10362. const int nba1 = a->nb[1];
  10363. const int nba2 = a->nb[2];
  10364. const int nba3 = a->nb[3];
  10365. const int nbb00 = b0->nb[0];
  10366. const int nbb01 = b0->nb[1];
  10367. const int nbb02 = b0->nb[2];
  10368. const int nbb03 = b0->nb[3];
  10369. const int nbb10 = b1->nb[0];
  10370. //const int nbb11 = b1->nb[1];
  10371. //const int nbb12 = b1->nb[2];
  10372. //const int nbb13 = b1->nb[3];
  10373. const int nbc00 = c0->nb[0];
  10374. const int nbc01 = c0->nb[1];
  10375. const int nbc02 = c0->nb[2];
  10376. const int nbc03 = c0->nb[3];
  10377. const int nbc10 = c1->nb[0];
  10378. //const int nbc11 = c1->nb[1];
  10379. //const int nbc12 = c1->nb[2];
  10380. //const int nbc13 = c1->nb[3];
  10381. const int nb0 = dst->nb[0];
  10382. const int nb1 = dst->nb[1];
  10383. const int nb2 = dst->nb[2];
  10384. const int nb3 = dst->nb[3];
  10385. const int ith = params->ith;
  10386. const int nth = params->nth;
  10387. const int64_t D = nea0;
  10388. //const int64_t N = nea1;
  10389. const int64_t M = neb01;
  10390. GGML_ASSERT(ne0 == nea0);
  10391. GGML_ASSERT(ne1 == nea1);
  10392. GGML_ASSERT(ne2 == nea2);
  10393. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10394. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10395. GGML_ASSERT(nbb10 == sizeof(float));
  10396. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10397. GGML_ASSERT(nbc10 == sizeof(float));
  10398. GGML_ASSERT(neb00 == D);
  10399. GGML_ASSERT(neb01 == M);
  10400. GGML_ASSERT(neb10 == M);
  10401. GGML_ASSERT(neb11 == 1);
  10402. GGML_ASSERT(nec00 == M);
  10403. GGML_ASSERT(nec01 == D);
  10404. GGML_ASSERT(nec10 == D);
  10405. GGML_ASSERT(nec11 == 1);
  10406. // dst cannot be transposed or permuted
  10407. GGML_ASSERT(nb0 == sizeof(float));
  10408. GGML_ASSERT(nb0 <= nb1);
  10409. GGML_ASSERT(nb1 <= nb2);
  10410. GGML_ASSERT(nb2 <= nb3);
  10411. if (params->type == GGML_TASK_INIT) {
  10412. return;
  10413. }
  10414. if (params->type == GGML_TASK_FINALIZE) {
  10415. return;
  10416. }
  10417. // parallelize by a rows using ggml_vec_dot_f32
  10418. // total rows in a
  10419. const int nr = nea1*nea2*nea3;
  10420. // rows per thread
  10421. const int dr = (nr + nth - 1)/nth;
  10422. // row range for this thread
  10423. const int ir0 = dr*ith;
  10424. const int ir1 = MIN(ir0 + dr, nr);
  10425. for (int ir = ir0; ir < ir1; ++ir) {
  10426. // a indices
  10427. const int ia3 = ir/(nea2*nea1);
  10428. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10429. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10430. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10431. for (int64_t ic = 0; ic < neb01; ++ic) {
  10432. // b0 indices
  10433. const int ib03 = ia3;
  10434. const int ib02 = ia2;
  10435. const int ib01 = ic;
  10436. // S indices
  10437. const int i1 = ib01;
  10438. ggml_vec_dot_f16(nea0,
  10439. S + i1,
  10440. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10441. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10442. }
  10443. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10444. //ggml_vec_gelu_f32(neb01, S, S);
  10445. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10446. for (int64_t i = 0; i < M; i++) {
  10447. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10448. }
  10449. ggml_vec_gelu_f16(neb01, S16, S16);
  10450. {
  10451. // dst indices
  10452. const int i1 = ia1;
  10453. const int i2 = ia2;
  10454. const int i3 = ia3;
  10455. for (int64_t ic = 0; ic < nec01; ++ic) {
  10456. ggml_vec_dot_f16(neb01,
  10457. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10458. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10459. S16);
  10460. }
  10461. ggml_vec_add_f32(nec01,
  10462. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10463. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10464. (float *) c1->data);
  10465. }
  10466. }
  10467. }
  10468. static void ggml_compute_forward_flash_ff(
  10469. const struct ggml_compute_params * params,
  10470. const struct ggml_tensor * a,
  10471. const struct ggml_tensor * b0,
  10472. const struct ggml_tensor * b1,
  10473. const struct ggml_tensor * c0,
  10474. const struct ggml_tensor * c1,
  10475. struct ggml_tensor * dst) {
  10476. switch (b0->type) {
  10477. case GGML_TYPE_F16:
  10478. {
  10479. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10480. } break;
  10481. case GGML_TYPE_F32:
  10482. {
  10483. GGML_ASSERT(false); // TODO
  10484. } break;
  10485. default:
  10486. {
  10487. GGML_ASSERT(false);
  10488. } break;
  10489. }
  10490. }
  10491. // ggml_compute_forward_map_unary
  10492. static void ggml_compute_forward_map_unary_f32(
  10493. const struct ggml_compute_params * params,
  10494. const struct ggml_tensor * src0,
  10495. struct ggml_tensor * dst,
  10496. const ggml_unary_op_f32_t fun) {
  10497. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10498. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10499. return;
  10500. }
  10501. const int n = ggml_nrows(src0);
  10502. const int nc = src0->ne[0];
  10503. assert( dst->nb[0] == sizeof(float));
  10504. assert(src0->nb[0] == sizeof(float));
  10505. for (int i = 0; i < n; i++) {
  10506. fun(nc,
  10507. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10508. (float *) ((char *) src0->data + i*(src0->nb[1])));
  10509. }
  10510. }
  10511. static void ggml_compute_forward_map_unary(
  10512. const struct ggml_compute_params * params,
  10513. const struct ggml_tensor * src0,
  10514. struct ggml_tensor * dst,
  10515. const ggml_unary_op_f32_t fun) {
  10516. switch (src0->type) {
  10517. case GGML_TYPE_F32:
  10518. {
  10519. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  10520. } break;
  10521. default:
  10522. {
  10523. GGML_ASSERT(false);
  10524. } break;
  10525. }
  10526. }
  10527. // ggml_compute_forward_map_binary
  10528. static void ggml_compute_forward_map_binary_f32(
  10529. const struct ggml_compute_params * params,
  10530. const struct ggml_tensor * src0,
  10531. const struct ggml_tensor * src1,
  10532. struct ggml_tensor * dst,
  10533. const ggml_binary_op_f32_t fun) {
  10534. assert(params->ith == 0);
  10535. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  10536. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10537. return;
  10538. }
  10539. const int n = ggml_nrows(src0);
  10540. const int nc = src0->ne[0];
  10541. assert( dst->nb[0] == sizeof(float));
  10542. assert(src0->nb[0] == sizeof(float));
  10543. assert(src1->nb[0] == sizeof(float));
  10544. for (int i = 0; i < n; i++) {
  10545. fun(nc,
  10546. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10547. (float *) ((char *) src0->data + i*(src0->nb[1])),
  10548. (float *) ((char *) src1->data + i*(src1->nb[1])));
  10549. }
  10550. }
  10551. static void ggml_compute_forward_map_binary(
  10552. const struct ggml_compute_params * params,
  10553. const struct ggml_tensor * src0,
  10554. const struct ggml_tensor * src1,
  10555. struct ggml_tensor * dst,
  10556. const ggml_binary_op_f32_t fun) {
  10557. switch (src0->type) {
  10558. case GGML_TYPE_F32:
  10559. {
  10560. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  10561. } break;
  10562. default:
  10563. {
  10564. GGML_ASSERT(false);
  10565. } break;
  10566. }
  10567. }
  10568. /////////////////////////////////
  10569. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  10570. GGML_ASSERT(params);
  10571. switch (tensor->op) {
  10572. case GGML_OP_DUP:
  10573. {
  10574. ggml_compute_forward_dup(params, tensor->src0, tensor);
  10575. } break;
  10576. case GGML_OP_ADD:
  10577. {
  10578. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  10579. } break;
  10580. case GGML_OP_ADD1:
  10581. {
  10582. ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor);
  10583. } break;
  10584. case GGML_OP_ACC:
  10585. {
  10586. ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10587. } break;
  10588. case GGML_OP_SUB:
  10589. {
  10590. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  10591. } break;
  10592. case GGML_OP_MUL:
  10593. {
  10594. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  10595. } break;
  10596. case GGML_OP_DIV:
  10597. {
  10598. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  10599. } break;
  10600. case GGML_OP_SQR:
  10601. {
  10602. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  10603. } break;
  10604. case GGML_OP_SQRT:
  10605. {
  10606. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  10607. } break;
  10608. case GGML_OP_LOG:
  10609. {
  10610. ggml_compute_forward_log(params, tensor->src0, tensor);
  10611. } break;
  10612. case GGML_OP_SUM:
  10613. {
  10614. ggml_compute_forward_sum(params, tensor->src0, tensor);
  10615. } break;
  10616. case GGML_OP_SUM_ROWS:
  10617. {
  10618. ggml_compute_forward_sum_rows(params, tensor->src0, tensor);
  10619. } break;
  10620. case GGML_OP_MEAN:
  10621. {
  10622. ggml_compute_forward_mean(params, tensor->src0, tensor);
  10623. } break;
  10624. case GGML_OP_REPEAT:
  10625. {
  10626. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  10627. } break;
  10628. case GGML_OP_ABS:
  10629. {
  10630. ggml_compute_forward_abs(params, tensor->src0, tensor);
  10631. } break;
  10632. case GGML_OP_SGN:
  10633. {
  10634. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  10635. } break;
  10636. case GGML_OP_NEG:
  10637. {
  10638. ggml_compute_forward_neg(params, tensor->src0, tensor);
  10639. } break;
  10640. case GGML_OP_STEP:
  10641. {
  10642. ggml_compute_forward_step(params, tensor->src0, tensor);
  10643. } break;
  10644. case GGML_OP_RELU:
  10645. {
  10646. ggml_compute_forward_relu(params, tensor->src0, tensor);
  10647. } break;
  10648. case GGML_OP_GELU:
  10649. {
  10650. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  10651. } break;
  10652. case GGML_OP_SILU:
  10653. {
  10654. ggml_compute_forward_silu(params, tensor->src0, tensor);
  10655. } break;
  10656. case GGML_OP_SILU_BACK:
  10657. {
  10658. ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor);
  10659. } break;
  10660. case GGML_OP_NORM:
  10661. {
  10662. ggml_compute_forward_norm(params, tensor->src0, tensor);
  10663. } break;
  10664. case GGML_OP_RMS_NORM:
  10665. {
  10666. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  10667. } break;
  10668. case GGML_OP_RMS_NORM_BACK:
  10669. {
  10670. ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor);
  10671. } break;
  10672. case GGML_OP_MUL_MAT:
  10673. {
  10674. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  10675. } break;
  10676. case GGML_OP_SCALE:
  10677. {
  10678. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  10679. } break;
  10680. case GGML_OP_SET:
  10681. {
  10682. ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10683. } break;
  10684. case GGML_OP_CPY:
  10685. {
  10686. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  10687. } break;
  10688. case GGML_OP_CONT:
  10689. {
  10690. ggml_compute_forward_cont(params, tensor->src0, tensor);
  10691. } break;
  10692. case GGML_OP_RESHAPE:
  10693. {
  10694. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  10695. } break;
  10696. case GGML_OP_VIEW:
  10697. {
  10698. ggml_compute_forward_view(params, tensor->src0);
  10699. } break;
  10700. case GGML_OP_PERMUTE:
  10701. {
  10702. ggml_compute_forward_permute(params, tensor->src0);
  10703. } break;
  10704. case GGML_OP_TRANSPOSE:
  10705. {
  10706. ggml_compute_forward_transpose(params, tensor->src0);
  10707. } break;
  10708. case GGML_OP_GET_ROWS:
  10709. {
  10710. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  10711. } break;
  10712. case GGML_OP_GET_ROWS_BACK:
  10713. {
  10714. ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10715. } break;
  10716. case GGML_OP_DIAG:
  10717. {
  10718. ggml_compute_forward_diag(params, tensor->src0, tensor);
  10719. } break;
  10720. case GGML_OP_DIAG_MASK_INF:
  10721. {
  10722. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  10723. } break;
  10724. case GGML_OP_DIAG_MASK_ZERO:
  10725. {
  10726. ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor);
  10727. } break;
  10728. case GGML_OP_SOFT_MAX:
  10729. {
  10730. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  10731. } break;
  10732. case GGML_OP_ROPE:
  10733. {
  10734. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  10735. } break;
  10736. case GGML_OP_ROPE_BACK:
  10737. {
  10738. ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor);
  10739. } break;
  10740. case GGML_OP_ALIBI:
  10741. {
  10742. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  10743. } break;
  10744. case GGML_OP_CLAMP:
  10745. {
  10746. ggml_compute_forward_clamp(params, tensor->src0, tensor->src1, tensor);
  10747. } break;
  10748. case GGML_OP_CONV_1D_1S:
  10749. {
  10750. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  10751. } break;
  10752. case GGML_OP_CONV_1D_2S:
  10753. {
  10754. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  10755. } break;
  10756. case GGML_OP_FLASH_ATTN:
  10757. {
  10758. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  10759. GGML_ASSERT(t == 0 || t == 1);
  10760. bool masked = t != 0;
  10761. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  10762. } break;
  10763. case GGML_OP_FLASH_FF:
  10764. {
  10765. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  10766. } break;
  10767. case GGML_OP_MAP_UNARY:
  10768. {
  10769. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  10770. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  10771. }
  10772. break;
  10773. case GGML_OP_MAP_BINARY:
  10774. {
  10775. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  10776. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  10777. }
  10778. break;
  10779. case GGML_OP_NONE:
  10780. {
  10781. // nop
  10782. } break;
  10783. case GGML_OP_COUNT:
  10784. {
  10785. GGML_ASSERT(false);
  10786. } break;
  10787. }
  10788. }
  10789. ////////////////////////////////////////////////////////////////////////////////
  10790. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  10791. struct ggml_tensor * src0 = tensor->src0;
  10792. struct ggml_tensor * src1 = tensor->src1;
  10793. switch (tensor->op) {
  10794. case GGML_OP_DUP:
  10795. {
  10796. if (src0->grad) {
  10797. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10798. }
  10799. } break;
  10800. case GGML_OP_ADD:
  10801. {
  10802. if (src0->grad) {
  10803. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10804. }
  10805. if (src1->grad) {
  10806. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  10807. }
  10808. } break;
  10809. case GGML_OP_ADD1:
  10810. {
  10811. if (src0->grad) {
  10812. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10813. }
  10814. if (src1->grad) {
  10815. src1->grad = ggml_add_impl(ctx,
  10816. src1->grad,
  10817. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  10818. inplace);
  10819. }
  10820. } break;
  10821. case GGML_OP_ACC:
  10822. {
  10823. if (src0->grad) {
  10824. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10825. }
  10826. if (src1->grad) {
  10827. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  10828. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  10829. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  10830. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  10831. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  10832. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  10833. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  10834. tensor->grad,
  10835. src1->grad->ne[0],
  10836. src1->grad->ne[1],
  10837. src1->grad->ne[2],
  10838. src1->grad->ne[3],
  10839. nb1, nb2, nb3, offset);
  10840. src1->grad =
  10841. ggml_add_impl(ctx,
  10842. src1->grad,
  10843. ggml_reshape(ctx,
  10844. ggml_cont(ctx, tensor_grad_view),
  10845. src1->grad),
  10846. inplace);
  10847. }
  10848. } break;
  10849. case GGML_OP_SUB:
  10850. {
  10851. if (src0->grad) {
  10852. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10853. }
  10854. if (src1->grad) {
  10855. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  10856. }
  10857. } break;
  10858. case GGML_OP_MUL:
  10859. {
  10860. if (src0->grad) {
  10861. src0->grad =
  10862. ggml_add_impl(ctx,
  10863. src0->grad,
  10864. ggml_mul(ctx, src1, tensor->grad),
  10865. inplace);
  10866. }
  10867. if (src1->grad) {
  10868. src1->grad =
  10869. ggml_add_impl(ctx,
  10870. src1->grad,
  10871. ggml_mul(ctx, src0, tensor->grad),
  10872. inplace);
  10873. }
  10874. } break;
  10875. case GGML_OP_DIV:
  10876. {
  10877. if (src0->grad) {
  10878. src0->grad =
  10879. ggml_add_impl(ctx,
  10880. src0->grad,
  10881. ggml_div(ctx, tensor->grad, src1),
  10882. inplace);
  10883. }
  10884. if (src1->grad) {
  10885. src1->grad =
  10886. ggml_sub_impl(ctx,
  10887. src1->grad,
  10888. ggml_mul(ctx,
  10889. tensor->grad,
  10890. ggml_div(ctx, tensor, src1)),
  10891. inplace);
  10892. }
  10893. } break;
  10894. case GGML_OP_SQR:
  10895. {
  10896. if (src0->grad) {
  10897. src0->grad =
  10898. ggml_add_impl(ctx,
  10899. src0->grad,
  10900. ggml_scale(ctx,
  10901. ggml_mul(ctx, src0, tensor->grad),
  10902. ggml_new_f32(ctx, 2.0f)),
  10903. inplace);
  10904. }
  10905. } break;
  10906. case GGML_OP_SQRT:
  10907. {
  10908. if (src0->grad) {
  10909. src0->grad =
  10910. ggml_add_impl(ctx,
  10911. src0->grad,
  10912. ggml_mul(ctx,
  10913. tensor->grad, // this was not catched by test_grad because in test_grad tensor->grad is 1
  10914. ggml_div(ctx,
  10915. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  10916. tensor)),
  10917. inplace);
  10918. }
  10919. } break;
  10920. case GGML_OP_LOG:
  10921. {
  10922. if (src0->grad) {
  10923. src0->grad =
  10924. ggml_add_impl(ctx,
  10925. src0->grad,
  10926. ggml_div(ctx,
  10927. tensor->grad,
  10928. src0),
  10929. inplace);
  10930. }
  10931. } break;
  10932. case GGML_OP_SUM:
  10933. {
  10934. if (src0->grad) {
  10935. src0->grad =
  10936. ggml_add1_impl(ctx,
  10937. src0->grad,
  10938. tensor->grad,
  10939. inplace);
  10940. }
  10941. } break;
  10942. case GGML_OP_SUM_ROWS:
  10943. {
  10944. if (src0->grad) {
  10945. src0->grad =
  10946. ggml_add_impl(ctx,
  10947. src0->grad,
  10948. ggml_repeat(ctx,
  10949. tensor->grad,
  10950. src0->grad),
  10951. inplace);
  10952. }
  10953. } break;
  10954. case GGML_OP_MEAN:
  10955. {
  10956. GGML_ASSERT(false); // TODO: implement
  10957. } break;
  10958. case GGML_OP_REPEAT:
  10959. {
  10960. // necessary for llama
  10961. if (src0->grad) {
  10962. GGML_ASSERT(src0->n_dims == 1 || src0->n_dims == 2);
  10963. const int nc = tensor->ne[0];
  10964. const int nr = tensor->ne[1];
  10965. const int nc0 = src0->ne[0];
  10966. const int nr0 = src0->ne[1];
  10967. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10968. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10969. // tensor->grad [nc,nr,1,1]
  10970. // reshape [nc0,nc/nc0,nr0,nr/nr0]
  10971. // permute [nc0,nr0,nc/nc0,nr/nr0]
  10972. // substitute [nc0,nr0,ncr,nrr]
  10973. // reshape [nc0*nr0,ncr*nrr,1,1]
  10974. // transpose [ncr*nrr,nc0*nr0,1,1]
  10975. // sum rows [1,nc0*nr0,1,1]
  10976. // transpose [nc0*nr0,1,1]
  10977. // reshape [nc0,nr0,1,1] reshape_1d or reshape_2d
  10978. // add to src0->grad
  10979. int64_t ne[4] = {nc0,ncr,nr0,nrr};
  10980. struct ggml_tensor* F00 = tensor->grad;
  10981. struct ggml_tensor* F01 = ggml_reshape (ctx, F00, ggml_new_tensor(ctx,tensor->grad->type,4,ne));
  10982. struct ggml_tensor* F02 = ggml_permute (ctx, F01, 0,2,1,3);
  10983. struct ggml_tensor* F03 = ggml_cont (ctx, F02);
  10984. struct ggml_tensor* F04 = ggml_reshape_2d(ctx, F03, nc0*nr0, ncr*nrr);
  10985. struct ggml_tensor* F05 = ggml_transpose (ctx, F04);
  10986. struct ggml_tensor* F06 = ggml_cont (ctx, F05);
  10987. struct ggml_tensor* F07 = ggml_sum_rows (ctx, F06);
  10988. struct ggml_tensor* F08 = ggml_transpose (ctx, F07);
  10989. struct ggml_tensor* F09 = ggml_cont (ctx, F08);
  10990. struct ggml_tensor* F10 = ggml_reshape (ctx, F09, src0->grad);
  10991. src0->grad =
  10992. ggml_add_impl(ctx,
  10993. src0->grad,
  10994. F10,
  10995. inplace);
  10996. }
  10997. } break;
  10998. case GGML_OP_ABS:
  10999. {
  11000. if (src0->grad) {
  11001. src0->grad =
  11002. ggml_add_impl(ctx,
  11003. src0->grad,
  11004. ggml_mul(ctx,
  11005. ggml_sgn(ctx, src0),
  11006. tensor->grad),
  11007. inplace);
  11008. }
  11009. } break;
  11010. case GGML_OP_SGN:
  11011. {
  11012. if (src0->grad) {
  11013. // noop
  11014. }
  11015. } break;
  11016. case GGML_OP_NEG:
  11017. {
  11018. if (src0->grad) {
  11019. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  11020. }
  11021. } break;
  11022. case GGML_OP_STEP:
  11023. {
  11024. if (src0->grad) {
  11025. // noop
  11026. }
  11027. } break;
  11028. case GGML_OP_RELU:
  11029. {
  11030. if (src0->grad) {
  11031. src0->grad = ggml_sub_impl(ctx,
  11032. src0->grad,
  11033. ggml_mul(ctx,
  11034. ggml_step(ctx, src0),
  11035. tensor->grad),
  11036. inplace);
  11037. }
  11038. } break;
  11039. case GGML_OP_GELU:
  11040. {
  11041. GGML_ASSERT(false); // TODO: not implemented
  11042. } break;
  11043. case GGML_OP_ALIBI:
  11044. {
  11045. GGML_ASSERT(false); // TODO: not implemented
  11046. } break;
  11047. case GGML_OP_CLAMP:
  11048. {
  11049. GGML_ASSERT(false); // TODO: not implemented
  11050. } break;
  11051. case GGML_OP_SILU:
  11052. {
  11053. // necessary for llama
  11054. if (src0->grad) {
  11055. src0->grad = ggml_add_impl(ctx,
  11056. src0->grad,
  11057. ggml_silu_back(ctx, src0, tensor->grad),
  11058. inplace);
  11059. }
  11060. } break;
  11061. case GGML_OP_SILU_BACK:
  11062. {
  11063. GGML_ASSERT(false); // TODO: not implemented
  11064. } break;
  11065. case GGML_OP_NORM:
  11066. {
  11067. GGML_ASSERT(false); // TODO: not implemented
  11068. } break;
  11069. case GGML_OP_RMS_NORM:
  11070. {
  11071. // necessary for llama
  11072. if (src0->grad) {
  11073. src0->grad = ggml_add_impl(ctx,
  11074. src0->grad,
  11075. ggml_rms_norm_back(ctx, src0, tensor->grad),
  11076. inplace);
  11077. }
  11078. } break;
  11079. case GGML_OP_RMS_NORM_BACK:
  11080. {
  11081. GGML_ASSERT(false); // TODO: not implemented
  11082. } break;
  11083. case GGML_OP_MUL_MAT:
  11084. {
  11085. // https://cs231n.github.io/optimization-2/#staged
  11086. // # forward pass
  11087. // s0 = np.random.randn(5, 10)
  11088. // s1 = np.random.randn(10, 3)
  11089. // t = s0.dot(s1)
  11090. // # now suppose we had the gradient on t from above in the circuit
  11091. // dt = np.random.randn(*t.shape) # same shape as t
  11092. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  11093. // ds1 = t.T.dot(dt)
  11094. // tensor.shape [m,p]
  11095. // src0.shape [n,m]
  11096. // src1.shape [n,p]
  11097. // necessary for llama
  11098. if (src0->grad) {
  11099. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  11100. src0->grad =
  11101. ggml_add_impl(ctx,
  11102. src0->grad,
  11103. // ds0 = dt.dot(s1.T)
  11104. // ggml_out_prod(ctx, // [n,m]
  11105. // src1, // [n,p]
  11106. // tensor->grad), // [m,p]
  11107. // for now just using A*B==(B.T*A.T).T
  11108. ggml_cont(ctx, // [n,m]
  11109. ggml_transpose(ctx, // [n,m]
  11110. ggml_mul_mat(ctx, // [m,n]
  11111. ggml_cont(ctx, // [p,m]
  11112. ggml_transpose(ctx, // [p,m]
  11113. tensor->grad)), // [m,p]
  11114. ggml_cont(ctx, // [p,n]
  11115. ggml_transpose(ctx, // [p,n]
  11116. src1))))), // [n,p]
  11117. inplace);
  11118. }
  11119. if (src1->grad) {
  11120. src1->grad =
  11121. ggml_add_impl(ctx,
  11122. src1->grad,
  11123. // ds1 = s0.T.dot(dt):
  11124. ggml_mul_mat(ctx, // [n,p]
  11125. ggml_cont(ctx, // [m,n]
  11126. ggml_transpose(ctx, src0)), // [m,n]
  11127. tensor->grad), // [m,p]
  11128. inplace);
  11129. }
  11130. } break;
  11131. case GGML_OP_SCALE:
  11132. {
  11133. // necessary for llama
  11134. if (src0->grad) {
  11135. src0->grad =
  11136. ggml_add_impl(ctx,
  11137. src0->grad,
  11138. ggml_scale_impl(ctx, tensor->grad, src1, false),
  11139. inplace);
  11140. }
  11141. if (src1->grad) {
  11142. src1->grad =
  11143. ggml_add_impl(ctx,
  11144. src1->grad,
  11145. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  11146. inplace);
  11147. }
  11148. } break;
  11149. case GGML_OP_SET:
  11150. {
  11151. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  11152. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  11153. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  11154. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  11155. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  11156. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  11157. struct ggml_tensor * tensor_grad_view = NULL;
  11158. if (src0->grad || src1->grad) {
  11159. GGML_ASSERT(src0->type == tensor->type);
  11160. GGML_ASSERT(tensor->grad->type == tensor->type);
  11161. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  11162. tensor_grad_view = ggml_view_4d(ctx,
  11163. tensor->grad,
  11164. src1->grad->ne[0],
  11165. src1->grad->ne[1],
  11166. src1->grad->ne[2],
  11167. src1->grad->ne[3],
  11168. nb1, nb2, nb3, offset);
  11169. }
  11170. if (src0->grad) {
  11171. src0->grad = ggml_add_impl(ctx,
  11172. src0->grad,
  11173. ggml_acc_impl(ctx,
  11174. tensor->grad,
  11175. ggml_neg(ctx, tensor_grad_view),
  11176. nb1, nb2, nb3, offset, false),
  11177. inplace);
  11178. }
  11179. if (src1->grad) {
  11180. src1->grad =
  11181. ggml_add_impl(ctx,
  11182. src1->grad,
  11183. ggml_reshape(ctx,
  11184. ggml_cont(ctx, tensor_grad_view),
  11185. src1->grad),
  11186. inplace);
  11187. }
  11188. } break;
  11189. case GGML_OP_CPY:
  11190. {
  11191. // necessary for llama
  11192. // cpy overwrites value of src1 by src0 and returns view(src1)
  11193. // the overwriting is mathematically equivalent to:
  11194. // tensor = src0 * 1 + src1 * 0
  11195. if (src0->grad) {
  11196. // dsrc0 = dtensor * 1
  11197. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11198. }
  11199. if (src1->grad) {
  11200. // dsrc1 = dtensor * 0 -> noop
  11201. }
  11202. } break;
  11203. case GGML_OP_CONT:
  11204. {
  11205. // same as cpy
  11206. if (src0->grad) {
  11207. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  11208. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  11209. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11210. }
  11211. } break;
  11212. case GGML_OP_RESHAPE:
  11213. {
  11214. // necessary for llama
  11215. if (src0->grad) {
  11216. src0->grad =
  11217. ggml_add_impl(ctx, src0->grad,
  11218. ggml_reshape(ctx, tensor->grad, src0->grad),
  11219. inplace);
  11220. }
  11221. } break;
  11222. case GGML_OP_VIEW:
  11223. {
  11224. // necessary for llama
  11225. if (src0->grad) {
  11226. size_t offset;
  11227. memcpy(&offset, tensor->padding, sizeof(offset));
  11228. size_t nb1 = tensor->nb[1];
  11229. size_t nb2 = tensor->nb[2];
  11230. size_t nb3 = tensor->nb[3];
  11231. if (src0->type != src0->grad->type) {
  11232. // gradient is typically F32, but src0 could be other type
  11233. size_t ng = ggml_element_size(src0->grad);
  11234. size_t n0 = ggml_element_size(src0);
  11235. GGML_ASSERT(offset % n0 == 0);
  11236. GGML_ASSERT(nb1 % n0 == 0);
  11237. GGML_ASSERT(nb2 % n0 == 0);
  11238. GGML_ASSERT(nb3 % n0 == 0);
  11239. offset = (offset / n0) * ng;
  11240. nb1 = (nb1 / n0) * ng;
  11241. nb2 = (nb2 / n0) * ng;
  11242. nb3 = (nb3 / n0) * ng;
  11243. }
  11244. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  11245. }
  11246. } break;
  11247. case GGML_OP_PERMUTE:
  11248. {
  11249. // necessary for llama
  11250. if (src0->grad) {
  11251. int axis0 = tensor->padding[0] & 0x3;
  11252. int axis1 = tensor->padding[1] & 0x3;
  11253. int axis2 = tensor->padding[2] & 0x3;
  11254. int axis3 = tensor->padding[3] & 0x3;
  11255. int axes_backward[4] = {0,0,0,0};
  11256. axes_backward[axis0] = 0;
  11257. axes_backward[axis1] = 1;
  11258. axes_backward[axis2] = 2;
  11259. axes_backward[axis3] = 3;
  11260. src0->grad =
  11261. ggml_add_impl(ctx, src0->grad,
  11262. ggml_permute(ctx,
  11263. tensor->grad,
  11264. axes_backward[0],
  11265. axes_backward[1],
  11266. axes_backward[2],
  11267. axes_backward[3]),
  11268. inplace);
  11269. }
  11270. } break;
  11271. case GGML_OP_TRANSPOSE:
  11272. {
  11273. // necessary for llama
  11274. if (src0->grad) {
  11275. src0->grad =
  11276. ggml_add_impl(ctx, src0->grad,
  11277. ggml_transpose(ctx, tensor->grad),
  11278. inplace);
  11279. }
  11280. } break;
  11281. case GGML_OP_GET_ROWS:
  11282. {
  11283. // necessary for llama (only for tokenizer)
  11284. if (src0->grad) {
  11285. src0->grad =
  11286. ggml_add_impl(ctx, src0->grad,
  11287. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  11288. inplace);
  11289. }
  11290. if (src1->grad) {
  11291. // noop
  11292. }
  11293. } break;
  11294. case GGML_OP_GET_ROWS_BACK:
  11295. {
  11296. GGML_ASSERT(false); // TODO: not implemented
  11297. } break;
  11298. case GGML_OP_DIAG:
  11299. {
  11300. GGML_ASSERT(false); // TODO: not implemented
  11301. } break;
  11302. case GGML_OP_DIAG_MASK_INF:
  11303. {
  11304. // necessary for llama
  11305. if (src0->grad) {
  11306. assert(src1->type == GGML_TYPE_I32);
  11307. assert(ggml_nelements(src1) == 2);
  11308. const int n_past = ((int32_t *) src1->data)[0];
  11309. src0->grad =
  11310. ggml_add_impl(ctx, src0->grad,
  11311. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  11312. inplace);
  11313. }
  11314. if (src1->grad) {
  11315. // noop
  11316. }
  11317. } break;
  11318. case GGML_OP_DIAG_MASK_ZERO:
  11319. {
  11320. // necessary for llama
  11321. if (src0->grad) {
  11322. assert(src1->type == GGML_TYPE_I32);
  11323. assert(ggml_nelements(src1) == 2);
  11324. const int n_past = ((int32_t *) src1->data)[0];
  11325. src0->grad =
  11326. ggml_add_impl(ctx, src0->grad,
  11327. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  11328. inplace);
  11329. }
  11330. if (src1->grad) {
  11331. // noop
  11332. }
  11333. } break;
  11334. case GGML_OP_SOFT_MAX:
  11335. {
  11336. // necessary for llama
  11337. if (src0->grad) {
  11338. // y = softmax(x)
  11339. //
  11340. // Jii = yi - yi*yi
  11341. // Jij = -yi*yj
  11342. // J = diag(y)-y.*y
  11343. // dx = J * dy
  11344. // dxk = sum(Jkj * dyk)
  11345. int64_t ne2[4] = {
  11346. tensor->ne[0],
  11347. 1,
  11348. tensor->ne[1]*tensor->ne[2],
  11349. tensor->ne[3]
  11350. };
  11351. struct ggml_tensor * tensor2 = ggml_cont(ctx,
  11352. ggml_reshape_4d(ctx,
  11353. ggml_cont(ctx, tensor),
  11354. ne2[0], ne2[1], ne2[2], ne2[3]));
  11355. struct ggml_tensor * grad2 = ggml_cont(ctx,
  11356. ggml_reshape_4d(ctx,
  11357. ggml_cont(ctx, tensor->grad),
  11358. ne2[0], ne2[1], ne2[2], ne2[3]));
  11359. struct ggml_tensor * tensor2_t = ggml_cont(ctx, // [1,ne0,ne1*ne2,ne3]
  11360. ggml_permute(ctx, // [1,ne0,ne1*ne2,ne3]
  11361. tensor2, // [ne0,1,ne1*ne2,ne3]
  11362. 1, 0, 2, 3));
  11363. src0->grad =
  11364. ggml_add_impl(ctx,
  11365. src0->grad, // [ne0,ne1,ne2,ne3]
  11366. ggml_reshape(ctx, // [ne0,ne1,ne2,ne3]
  11367. ggml_mul_mat(ctx, // [ne0,1,ne1*ne2,ne3]
  11368. ggml_sub(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11369. ggml_diag(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11370. tensor2), // [ne0,1,ne1*ne2,ne3]
  11371. ggml_mul_mat(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11372. tensor2_t, // [1,ne0,ne1*ne2,ne3]
  11373. tensor2_t)), // [1,ne0,ne1*ne2,ne3]
  11374. grad2), // [ne0,1,ne1*ne2,ne3]
  11375. src0->grad),
  11376. inplace);
  11377. }
  11378. } break;
  11379. case GGML_OP_ROPE:
  11380. {
  11381. // necessary for llama
  11382. if (src0->grad) {
  11383. assert(src1->type == GGML_TYPE_I32);
  11384. assert(ggml_nelements(src1) == 3);
  11385. const int n_past = ((int32_t *) src1->data)[0];
  11386. const int n_dims = ((int32_t *) src1->data)[1];
  11387. const int mode = ((int32_t *) src1->data)[2];
  11388. src0->grad = ggml_add_impl(ctx,
  11389. src0->grad,
  11390. ggml_rope_back(ctx,
  11391. tensor->grad,
  11392. n_past,
  11393. n_dims,
  11394. mode),
  11395. inplace);
  11396. }
  11397. if (src1->grad) {
  11398. // noop
  11399. }
  11400. } break;
  11401. case GGML_OP_ROPE_BACK:
  11402. {
  11403. if (src0->grad) {
  11404. assert(src1->type == GGML_TYPE_I32);
  11405. assert(ggml_nelements(src1) == 3);
  11406. const int n_past = ((int32_t *) src1->data)[0];
  11407. const int n_dims = ((int32_t *) src1->data)[1];
  11408. const int mode = ((int32_t *) src1->data)[2];
  11409. src0->grad = ggml_add_impl(ctx,
  11410. src0->grad,
  11411. ggml_rope(ctx,
  11412. tensor->grad,
  11413. n_past,
  11414. n_dims,
  11415. mode),
  11416. inplace);
  11417. }
  11418. if (src1->grad) {
  11419. // noop
  11420. }
  11421. } break;
  11422. case GGML_OP_CONV_1D_1S:
  11423. {
  11424. GGML_ASSERT(false); // TODO: not implemented
  11425. } break;
  11426. case GGML_OP_CONV_1D_2S:
  11427. {
  11428. GGML_ASSERT(false); // TODO: not implemented
  11429. } break;
  11430. case GGML_OP_FLASH_ATTN:
  11431. {
  11432. GGML_ASSERT(false); // not supported
  11433. } break;
  11434. case GGML_OP_FLASH_FF:
  11435. {
  11436. GGML_ASSERT(false); // not supported
  11437. } break;
  11438. case GGML_OP_MAP_UNARY:
  11439. case GGML_OP_MAP_BINARY:
  11440. {
  11441. GGML_ASSERT(false); // not supported
  11442. } break;
  11443. case GGML_OP_NONE:
  11444. {
  11445. // nop
  11446. } break;
  11447. case GGML_OP_COUNT:
  11448. {
  11449. GGML_ASSERT(false);
  11450. } break;
  11451. }
  11452. }
  11453. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  11454. if (node->grad == NULL) {
  11455. // this usually happens when we generate intermediate nodes from constants in the backward pass
  11456. // it can also happen during forward pass, if the user performs computations with constants
  11457. if (node->op != GGML_OP_NONE) {
  11458. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  11459. }
  11460. }
  11461. // check if already visited
  11462. for (int i = 0; i < cgraph->n_nodes; i++) {
  11463. if (cgraph->nodes[i] == node) {
  11464. return;
  11465. }
  11466. }
  11467. for (int i = 0; i < cgraph->n_leafs; i++) {
  11468. if (cgraph->leafs[i] == node) {
  11469. return;
  11470. }
  11471. }
  11472. if (node->src0) {
  11473. ggml_visit_parents(cgraph, node->src0);
  11474. }
  11475. if (node->src1) {
  11476. ggml_visit_parents(cgraph, node->src1);
  11477. }
  11478. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  11479. if (node->opt[i]) {
  11480. ggml_visit_parents(cgraph, node->opt[i]);
  11481. }
  11482. }
  11483. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  11484. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  11485. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  11486. if (strlen(node->name) == 0) {
  11487. snprintf(node->name, sizeof(node->name), "leaf_%d", cgraph->n_leafs);
  11488. }
  11489. cgraph->leafs[cgraph->n_leafs] = node;
  11490. cgraph->n_leafs++;
  11491. } else {
  11492. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  11493. if (strlen(node->name) == 0) {
  11494. snprintf(node->name, sizeof(node->name), "node_%d", cgraph->n_nodes);
  11495. }
  11496. cgraph->nodes[cgraph->n_nodes] = node;
  11497. cgraph->grads[cgraph->n_nodes] = node->grad;
  11498. cgraph->n_nodes++;
  11499. }
  11500. }
  11501. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  11502. if (!expand) {
  11503. cgraph->n_nodes = 0;
  11504. cgraph->n_leafs = 0;
  11505. }
  11506. const int n0 = cgraph->n_nodes;
  11507. UNUSED(n0);
  11508. ggml_visit_parents(cgraph, tensor);
  11509. const int n_new = cgraph->n_nodes - n0;
  11510. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  11511. if (n_new > 0) {
  11512. // the last added node should always be starting point
  11513. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  11514. }
  11515. }
  11516. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  11517. ggml_build_forward_impl(cgraph, tensor, true);
  11518. }
  11519. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  11520. struct ggml_cgraph result = {
  11521. /*.n_nodes =*/ 0,
  11522. /*.n_leafs =*/ 0,
  11523. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  11524. /*.work_size =*/ 0,
  11525. /*.work =*/ NULL,
  11526. /*.nodes =*/ { NULL },
  11527. /*.grads =*/ { NULL },
  11528. /*.leafs =*/ { NULL },
  11529. /*.perf_runs =*/ 0,
  11530. /*.perf_cycles =*/ 0,
  11531. /*.perf_time_us =*/ 0,
  11532. };
  11533. ggml_build_forward_impl(&result, tensor, false);
  11534. return result;
  11535. }
  11536. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  11537. struct ggml_cgraph result = *gf;
  11538. GGML_ASSERT(gf->n_nodes > 0);
  11539. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  11540. if (keep) {
  11541. for (int i = 0; i < gf->n_nodes; i++) {
  11542. struct ggml_tensor * node = gf->nodes[i];
  11543. if (node->grad) {
  11544. node->grad = ggml_dup_tensor(ctx, node);
  11545. gf->grads[i] = node->grad;
  11546. }
  11547. }
  11548. }
  11549. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11550. struct ggml_tensor * node = gf->nodes[i];
  11551. // because we detached the grad nodes from the original graph, we can afford inplace operations
  11552. if (node->grad) {
  11553. ggml_compute_backward(ctx, node, keep);
  11554. }
  11555. }
  11556. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11557. struct ggml_tensor * node = gf->nodes[i];
  11558. if (node->is_param) {
  11559. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  11560. ggml_build_forward_impl(&result, node->grad, true);
  11561. }
  11562. }
  11563. return result;
  11564. }
  11565. //
  11566. // thread data
  11567. //
  11568. // synchronization is done via busy loops
  11569. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  11570. //
  11571. #ifdef __APPLE__
  11572. //#include <os/lock.h>
  11573. //
  11574. //typedef os_unfair_lock ggml_lock_t;
  11575. //
  11576. //#define ggml_lock_init(x) UNUSED(x)
  11577. //#define ggml_lock_destroy(x) UNUSED(x)
  11578. //#define ggml_lock_lock os_unfair_lock_lock
  11579. //#define ggml_lock_unlock os_unfair_lock_unlock
  11580. //
  11581. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  11582. typedef int ggml_lock_t;
  11583. #define ggml_lock_init(x) UNUSED(x)
  11584. #define ggml_lock_destroy(x) UNUSED(x)
  11585. #define ggml_lock_lock(x) UNUSED(x)
  11586. #define ggml_lock_unlock(x) UNUSED(x)
  11587. #define GGML_LOCK_INITIALIZER 0
  11588. typedef pthread_t ggml_thread_t;
  11589. #define ggml_thread_create pthread_create
  11590. #define ggml_thread_join pthread_join
  11591. #else
  11592. //typedef pthread_spinlock_t ggml_lock_t;
  11593. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  11594. //#define ggml_lock_destroy pthread_spin_destroy
  11595. //#define ggml_lock_lock pthread_spin_lock
  11596. //#define ggml_lock_unlock pthread_spin_unlock
  11597. typedef int ggml_lock_t;
  11598. #define ggml_lock_init(x) UNUSED(x)
  11599. #define ggml_lock_destroy(x) UNUSED(x)
  11600. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  11601. #define ggml_lock_lock(x) _mm_pause()
  11602. #else
  11603. #define ggml_lock_lock(x) UNUSED(x)
  11604. #endif
  11605. #define ggml_lock_unlock(x) UNUSED(x)
  11606. #define GGML_LOCK_INITIALIZER 0
  11607. typedef pthread_t ggml_thread_t;
  11608. #define ggml_thread_create pthread_create
  11609. #define ggml_thread_join pthread_join
  11610. #endif
  11611. struct ggml_compute_state_shared {
  11612. ggml_lock_t spin;
  11613. int n_threads;
  11614. // synchronization primitives
  11615. atomic_int n_ready;
  11616. atomic_bool has_work;
  11617. atomic_bool stop; // stop all threads
  11618. };
  11619. struct ggml_compute_state {
  11620. ggml_thread_t thrd;
  11621. struct ggml_compute_params params;
  11622. struct ggml_tensor * node;
  11623. struct ggml_compute_state_shared * shared;
  11624. };
  11625. static thread_ret_t ggml_graph_compute_thread(void * data) {
  11626. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  11627. const int n_threads = state->shared->n_threads;
  11628. while (true) {
  11629. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  11630. atomic_store(&state->shared->has_work, false);
  11631. } else {
  11632. while (atomic_load(&state->shared->has_work)) {
  11633. if (atomic_load(&state->shared->stop)) {
  11634. return 0;
  11635. }
  11636. ggml_lock_lock (&state->shared->spin);
  11637. ggml_lock_unlock(&state->shared->spin);
  11638. }
  11639. }
  11640. atomic_fetch_sub(&state->shared->n_ready, 1);
  11641. // wait for work
  11642. while (!atomic_load(&state->shared->has_work)) {
  11643. if (atomic_load(&state->shared->stop)) {
  11644. return 0;
  11645. }
  11646. ggml_lock_lock (&state->shared->spin);
  11647. ggml_lock_unlock(&state->shared->spin);
  11648. }
  11649. // check if we should stop
  11650. if (atomic_load(&state->shared->stop)) {
  11651. break;
  11652. }
  11653. if (state->node) {
  11654. if (state->params.ith < state->params.nth) {
  11655. ggml_compute_forward(&state->params, state->node);
  11656. }
  11657. state->node = NULL;
  11658. } else {
  11659. break;
  11660. }
  11661. }
  11662. return 0;
  11663. }
  11664. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  11665. const int n_threads = cgraph->n_threads;
  11666. struct ggml_compute_state_shared state_shared = {
  11667. /*.spin =*/ GGML_LOCK_INITIALIZER,
  11668. /*.n_threads =*/ n_threads,
  11669. /*.n_ready =*/ 0,
  11670. /*.has_work =*/ false,
  11671. /*.stop =*/ false,
  11672. };
  11673. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  11674. // create thread pool
  11675. if (n_threads > 1) {
  11676. ggml_lock_init(&state_shared.spin);
  11677. atomic_store(&state_shared.has_work, true);
  11678. for (int j = 0; j < n_threads - 1; j++) {
  11679. workers[j] = (struct ggml_compute_state) {
  11680. .thrd = 0,
  11681. .params = {
  11682. .type = GGML_TASK_COMPUTE,
  11683. .ith = j + 1,
  11684. .nth = n_threads,
  11685. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11686. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11687. },
  11688. .node = NULL,
  11689. .shared = &state_shared,
  11690. };
  11691. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  11692. GGML_ASSERT(rc == 0);
  11693. UNUSED(rc);
  11694. }
  11695. }
  11696. // initialize tasks + work buffer
  11697. {
  11698. size_t work_size = 0;
  11699. // thread scheduling for the different operations
  11700. for (int i = 0; i < cgraph->n_nodes; i++) {
  11701. struct ggml_tensor * node = cgraph->nodes[i];
  11702. switch (node->op) {
  11703. case GGML_OP_CPY:
  11704. case GGML_OP_DUP:
  11705. {
  11706. node->n_tasks = n_threads;
  11707. size_t cur = 0;
  11708. if (ggml_is_quantized(node->type)) {
  11709. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  11710. }
  11711. work_size = MAX(work_size, cur);
  11712. } break;
  11713. case GGML_OP_ADD:
  11714. case GGML_OP_ADD1:
  11715. {
  11716. node->n_tasks = n_threads;
  11717. size_t cur = 0;
  11718. if (ggml_is_quantized(node->src0->type)) {
  11719. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  11720. }
  11721. work_size = MAX(work_size, cur);
  11722. } break;
  11723. case GGML_OP_ACC:
  11724. {
  11725. node->n_tasks = n_threads;
  11726. size_t cur = 0;
  11727. if (ggml_is_quantized(node->src0->type)) {
  11728. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads;
  11729. }
  11730. work_size = MAX(work_size, cur);
  11731. } break;
  11732. case GGML_OP_SUB:
  11733. case GGML_OP_DIV:
  11734. case GGML_OP_SQR:
  11735. case GGML_OP_SQRT:
  11736. case GGML_OP_LOG:
  11737. case GGML_OP_SUM:
  11738. case GGML_OP_SUM_ROWS:
  11739. case GGML_OP_MEAN:
  11740. case GGML_OP_REPEAT:
  11741. case GGML_OP_ABS:
  11742. case GGML_OP_SGN:
  11743. case GGML_OP_NEG:
  11744. case GGML_OP_STEP:
  11745. case GGML_OP_RELU:
  11746. {
  11747. node->n_tasks = 1;
  11748. } break;
  11749. case GGML_OP_MUL:
  11750. case GGML_OP_GELU:
  11751. case GGML_OP_SILU:
  11752. case GGML_OP_SILU_BACK:
  11753. case GGML_OP_NORM:
  11754. case GGML_OP_RMS_NORM:
  11755. case GGML_OP_RMS_NORM_BACK:
  11756. {
  11757. node->n_tasks = n_threads;
  11758. } break;
  11759. case GGML_OP_MUL_MAT:
  11760. {
  11761. node->n_tasks = n_threads;
  11762. // TODO: use different scheduling for different matrix sizes
  11763. //const int nr0 = ggml_nrows(node->src0);
  11764. //const int nr1 = ggml_nrows(node->src1);
  11765. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  11766. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  11767. size_t cur = 0;
  11768. #if defined(GGML_USE_CUBLAS)
  11769. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  11770. node->n_tasks = 1; // TODO: this actually is doing nothing
  11771. // the threads are still spinning
  11772. cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node);
  11773. }
  11774. else
  11775. #elif defined(GGML_USE_CLBLAST)
  11776. if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) {
  11777. node->n_tasks = 1; // TODO: this actually is doing nothing
  11778. // the threads are still spinning
  11779. cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node);
  11780. }
  11781. else
  11782. #endif
  11783. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  11784. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11785. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11786. node->n_tasks = 1; // TODO: this actually is doing nothing
  11787. // the threads are still spinning
  11788. // here we need memory just for single 2D matrix from src0
  11789. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11790. } else {
  11791. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11792. }
  11793. #else
  11794. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11795. #endif
  11796. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  11797. cur = 0;
  11798. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11799. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11800. node->n_tasks = 1;
  11801. }
  11802. #endif
  11803. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  11804. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11805. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11806. node->n_tasks = 1;
  11807. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11808. } else
  11809. #endif
  11810. {
  11811. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  11812. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  11813. }
  11814. } else {
  11815. GGML_ASSERT(false);
  11816. }
  11817. work_size = MAX(work_size, cur);
  11818. } break;
  11819. case GGML_OP_SCALE:
  11820. {
  11821. node->n_tasks = n_threads;
  11822. } break;
  11823. case GGML_OP_SET:
  11824. case GGML_OP_CONT:
  11825. case GGML_OP_RESHAPE:
  11826. case GGML_OP_VIEW:
  11827. case GGML_OP_PERMUTE:
  11828. case GGML_OP_TRANSPOSE:
  11829. case GGML_OP_GET_ROWS:
  11830. case GGML_OP_GET_ROWS_BACK:
  11831. case GGML_OP_DIAG:
  11832. case GGML_OP_DIAG_MASK_ZERO:
  11833. {
  11834. node->n_tasks = 1;
  11835. } break;
  11836. case GGML_OP_DIAG_MASK_INF:
  11837. case GGML_OP_SOFT_MAX:
  11838. case GGML_OP_ROPE:
  11839. case GGML_OP_ROPE_BACK:
  11840. {
  11841. node->n_tasks = n_threads;
  11842. } break;
  11843. case GGML_OP_ALIBI:
  11844. {
  11845. node->n_tasks = 1; //TODO
  11846. } break;
  11847. case GGML_OP_CLAMP:
  11848. {
  11849. node->n_tasks = 1; //TODO
  11850. } break;
  11851. case GGML_OP_CONV_1D_1S:
  11852. case GGML_OP_CONV_1D_2S:
  11853. {
  11854. node->n_tasks = n_threads;
  11855. GGML_ASSERT(node->src0->ne[3] == 1);
  11856. GGML_ASSERT(node->src1->ne[2] == 1);
  11857. GGML_ASSERT(node->src1->ne[3] == 1);
  11858. size_t cur = 0;
  11859. const int nk = node->src0->ne[0];
  11860. if (node->src0->type == GGML_TYPE_F16 &&
  11861. node->src1->type == GGML_TYPE_F32) {
  11862. cur = sizeof(ggml_fp16_t)*(
  11863. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11864. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11865. );
  11866. } else if (node->src0->type == GGML_TYPE_F32 &&
  11867. node->src1->type == GGML_TYPE_F32) {
  11868. cur = sizeof(float)*(
  11869. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11870. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11871. );
  11872. } else {
  11873. GGML_ASSERT(false);
  11874. }
  11875. work_size = MAX(work_size, cur);
  11876. } break;
  11877. case GGML_OP_FLASH_ATTN:
  11878. {
  11879. node->n_tasks = n_threads;
  11880. size_t cur = 0;
  11881. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  11882. if (node->src1->type == GGML_TYPE_F32) {
  11883. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11884. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11885. }
  11886. if (node->src1->type == GGML_TYPE_F16) {
  11887. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11888. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11889. }
  11890. work_size = MAX(work_size, cur);
  11891. } break;
  11892. case GGML_OP_FLASH_FF:
  11893. {
  11894. node->n_tasks = n_threads;
  11895. size_t cur = 0;
  11896. if (node->src1->type == GGML_TYPE_F32) {
  11897. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11898. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11899. }
  11900. if (node->src1->type == GGML_TYPE_F16) {
  11901. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11902. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11903. }
  11904. work_size = MAX(work_size, cur);
  11905. } break;
  11906. case GGML_OP_MAP_UNARY:
  11907. case GGML_OP_MAP_BINARY:
  11908. {
  11909. node->n_tasks = 1;
  11910. } break;
  11911. case GGML_OP_NONE:
  11912. {
  11913. node->n_tasks = 1;
  11914. } break;
  11915. case GGML_OP_COUNT:
  11916. {
  11917. GGML_ASSERT(false);
  11918. } break;
  11919. }
  11920. }
  11921. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  11922. GGML_ASSERT(false); // TODO: better handling
  11923. }
  11924. if (work_size > 0 && cgraph->work == NULL) {
  11925. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  11926. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  11927. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  11928. }
  11929. }
  11930. const int64_t perf_start_cycles = ggml_perf_cycles();
  11931. const int64_t perf_start_time_us = ggml_perf_time_us();
  11932. for (int i = 0; i < cgraph->n_nodes; i++) {
  11933. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  11934. struct ggml_tensor * node = cgraph->nodes[i];
  11935. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  11936. //if (node->grad == NULL && node->perf_runs > 0) {
  11937. // continue;
  11938. //}
  11939. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  11940. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  11941. // INIT
  11942. struct ggml_compute_params params = {
  11943. /*.type =*/ GGML_TASK_INIT,
  11944. /*.ith =*/ 0,
  11945. /*.nth =*/ node->n_tasks,
  11946. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11947. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  11948. };
  11949. ggml_compute_forward(&params, node);
  11950. // COMPUTE
  11951. if (node->n_tasks > 1) {
  11952. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11953. atomic_store(&state_shared.has_work, false);
  11954. }
  11955. while (atomic_load(&state_shared.has_work)) {
  11956. ggml_lock_lock (&state_shared.spin);
  11957. ggml_lock_unlock(&state_shared.spin);
  11958. }
  11959. // launch thread pool
  11960. for (int j = 0; j < n_threads - 1; j++) {
  11961. workers[j].params = (struct ggml_compute_params) {
  11962. .type = GGML_TASK_COMPUTE,
  11963. .ith = j + 1,
  11964. .nth = node->n_tasks,
  11965. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11966. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11967. };
  11968. workers[j].node = node;
  11969. }
  11970. atomic_fetch_sub(&state_shared.n_ready, 1);
  11971. while (atomic_load(&state_shared.n_ready) > 0) {
  11972. ggml_lock_lock (&state_shared.spin);
  11973. ggml_lock_unlock(&state_shared.spin);
  11974. }
  11975. atomic_store(&state_shared.has_work, true);
  11976. }
  11977. params.type = GGML_TASK_COMPUTE;
  11978. ggml_compute_forward(&params, node);
  11979. // wait for thread pool
  11980. if (node->n_tasks > 1) {
  11981. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11982. atomic_store(&state_shared.has_work, false);
  11983. }
  11984. while (atomic_load(&state_shared.has_work)) {
  11985. ggml_lock_lock (&state_shared.spin);
  11986. ggml_lock_unlock(&state_shared.spin);
  11987. }
  11988. atomic_fetch_sub(&state_shared.n_ready, 1);
  11989. while (atomic_load(&state_shared.n_ready) != 0) {
  11990. ggml_lock_lock (&state_shared.spin);
  11991. ggml_lock_unlock(&state_shared.spin);
  11992. }
  11993. }
  11994. // FINALIZE
  11995. if (node->n_tasks > 1) {
  11996. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11997. atomic_store(&state_shared.has_work, false);
  11998. }
  11999. while (atomic_load(&state_shared.has_work)) {
  12000. ggml_lock_lock (&state_shared.spin);
  12001. ggml_lock_unlock(&state_shared.spin);
  12002. }
  12003. // launch thread pool
  12004. for (int j = 0; j < n_threads - 1; j++) {
  12005. workers[j].params = (struct ggml_compute_params) {
  12006. .type = GGML_TASK_FINALIZE,
  12007. .ith = j + 1,
  12008. .nth = node->n_tasks,
  12009. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  12010. .wdata = cgraph->work ? cgraph->work->data : NULL,
  12011. };
  12012. workers[j].node = node;
  12013. }
  12014. atomic_fetch_sub(&state_shared.n_ready, 1);
  12015. while (atomic_load(&state_shared.n_ready) > 0) {
  12016. ggml_lock_lock (&state_shared.spin);
  12017. ggml_lock_unlock(&state_shared.spin);
  12018. }
  12019. atomic_store(&state_shared.has_work, true);
  12020. }
  12021. params.type = GGML_TASK_FINALIZE;
  12022. ggml_compute_forward(&params, node);
  12023. // wait for thread pool
  12024. if (node->n_tasks > 1) {
  12025. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  12026. atomic_store(&state_shared.has_work, false);
  12027. }
  12028. while (atomic_load(&state_shared.has_work)) {
  12029. ggml_lock_lock (&state_shared.spin);
  12030. ggml_lock_unlock(&state_shared.spin);
  12031. }
  12032. atomic_fetch_sub(&state_shared.n_ready, 1);
  12033. while (atomic_load(&state_shared.n_ready) != 0) {
  12034. ggml_lock_lock (&state_shared.spin);
  12035. ggml_lock_unlock(&state_shared.spin);
  12036. }
  12037. }
  12038. // performance stats (node)
  12039. {
  12040. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  12041. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  12042. node->perf_runs++;
  12043. node->perf_cycles += perf_cycles_cur;
  12044. node->perf_time_us += perf_time_us_cur;
  12045. }
  12046. }
  12047. // join thread pool
  12048. if (n_threads > 1) {
  12049. atomic_store(&state_shared.stop, true);
  12050. atomic_store(&state_shared.has_work, true);
  12051. for (int j = 0; j < n_threads - 1; j++) {
  12052. int rc = ggml_thread_join(workers[j].thrd, NULL);
  12053. GGML_ASSERT(rc == 0);
  12054. UNUSED(rc);
  12055. }
  12056. ggml_lock_destroy(&state_shared.spin);
  12057. }
  12058. // performance stats (graph)
  12059. {
  12060. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  12061. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  12062. cgraph->perf_runs++;
  12063. cgraph->perf_cycles += perf_cycles_cur;
  12064. cgraph->perf_time_us += perf_time_us_cur;
  12065. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  12066. __func__, cgraph->perf_runs,
  12067. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  12068. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  12069. (double) perf_time_us_cur / 1000.0,
  12070. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  12071. }
  12072. }
  12073. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  12074. for (int i = 0; i < cgraph->n_nodes; i++) {
  12075. struct ggml_tensor * grad = cgraph->grads[i];
  12076. if (grad) {
  12077. ggml_set_zero(grad);
  12078. }
  12079. }
  12080. }
  12081. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  12082. for (int i = 0; i < cgraph->n_leafs; i++) {
  12083. struct ggml_tensor * leaf = cgraph->leafs[i];
  12084. if (strcmp(leaf->name, name) == 0) {
  12085. return leaf;
  12086. }
  12087. }
  12088. for (int i = 0; i < cgraph->n_nodes; i++) {
  12089. struct ggml_tensor * node = cgraph->nodes[i];
  12090. if (strcmp(node->name, name) == 0) {
  12091. return node;
  12092. }
  12093. }
  12094. return NULL;
  12095. }
  12096. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  12097. const int64_t * ne = tensor->ne;
  12098. const size_t * nb = tensor->nb;
  12099. fprintf(fout, "%-6s %-12s %8d %8lld %8lld %8lld %8lld %16zu %16zu %16zu %16zu %16p %32s\n",
  12100. ggml_type_name(tensor->type),
  12101. ggml_op_name (tensor->op),
  12102. tensor->n_dims,
  12103. ne[0], ne[1], ne[2], ne[3],
  12104. nb[0], nb[1], nb[2], nb[3],
  12105. tensor->data,
  12106. tensor->name);
  12107. }
  12108. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  12109. const int64_t * ne = tensor->ne;
  12110. const size_t * nb = tensor->nb;
  12111. fprintf(fout, "%-6s %-6s %-12s %8d %8lld %8lld %8lld %8lld %16zu %16zu %16zu %16zu %8d %16p %32s\n",
  12112. arg,
  12113. ggml_type_name(tensor->type),
  12114. ggml_op_name (tensor->op),
  12115. tensor->n_dims,
  12116. ne[0], ne[1], ne[2], ne[3],
  12117. nb[0], nb[1], nb[2], nb[3],
  12118. tensor->n_tasks,
  12119. tensor->data,
  12120. tensor->name);
  12121. }
  12122. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  12123. //assert(cgraph->work == NULL);
  12124. //assert(cgraph->work_size == 0);
  12125. uint64_t size_eval = 0;
  12126. // compute size of intermediate results
  12127. // TODO: does not take into account scratch buffers !!!!
  12128. for (int i = 0; i < cgraph->n_nodes; ++i) {
  12129. size_eval += ggml_nbytes(cgraph->nodes[i]);
  12130. }
  12131. // print
  12132. {
  12133. FILE * fout = stdout;
  12134. fprintf(fout, "\n");
  12135. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  12136. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  12137. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  12138. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  12139. fprintf(fout, "%-16s %8llu\n", "eval", size_eval);
  12140. // header
  12141. fprintf(fout, "\n");
  12142. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  12143. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  12144. for (int i = 0; i < cgraph->n_leafs; ++i) {
  12145. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  12146. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  12147. GGML_ASSERT(cgraph->leafs[i]->src0 == NULL);
  12148. GGML_ASSERT(cgraph->leafs[i]->src1 == NULL);
  12149. }
  12150. // header
  12151. fprintf(fout, "\n");
  12152. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  12153. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  12154. for (int i = 0; i < cgraph->n_nodes; ++i) {
  12155. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  12156. if (cgraph->nodes[i]->src0) {
  12157. ggml_graph_export_node(cgraph->nodes[i]->src0, "SRC0", fout);
  12158. }
  12159. if (cgraph->nodes[i]->src1) {
  12160. ggml_graph_export_node(cgraph->nodes[i]->src1, "SRC1", fout);
  12161. }
  12162. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  12163. if (cgraph->nodes[i]->opt[j]) {
  12164. ggml_graph_export_node(cgraph->nodes[i]->opt[j], "OPT", fout);
  12165. }
  12166. }
  12167. fprintf(fout, "\n");
  12168. }
  12169. fprintf(fout, "\n");
  12170. }
  12171. // write binary data
  12172. {
  12173. FILE * fout = fopen(fname, "wb");
  12174. if (!fout) {
  12175. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  12176. return;
  12177. }
  12178. // header
  12179. {
  12180. const uint32_t magic = GGML_FILE_MAGIC;
  12181. const uint32_t version = GGML_FILE_VERSION;
  12182. const uint32_t n_leafs = cgraph->n_leafs;
  12183. const uint32_t nodes = cgraph->n_nodes;
  12184. fwrite(&magic, sizeof(uint32_t), 1, fout);
  12185. fwrite(&version, sizeof(uint32_t), 1, fout);
  12186. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  12187. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  12188. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  12189. }
  12190. // leafs
  12191. {
  12192. for (int i = 0; i < cgraph->n_leafs; ++i) {
  12193. const struct ggml_tensor * tensor = cgraph->leafs[i];
  12194. const uint32_t type = tensor->type;
  12195. const uint32_t op = tensor->op;
  12196. const uint32_t n_dims = tensor->n_dims;
  12197. fwrite(&type, sizeof(uint32_t), 1, fout);
  12198. fwrite(&op, sizeof(uint32_t), 1, fout);
  12199. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  12200. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12201. const uint64_t ne = tensor->ne[j];
  12202. const uint64_t nb = tensor->nb[j];
  12203. fwrite(&ne, sizeof(uint64_t), 1, fout);
  12204. fwrite(&nb, sizeof(uint64_t), 1, fout);
  12205. }
  12206. // store the pointer address
  12207. {
  12208. const uint64_t ptr = (uint64_t) tensor->data;
  12209. fwrite(&ptr, sizeof(uint64_t), 1, fout);
  12210. }
  12211. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  12212. // dump the data
  12213. // TODO: pad this to 32 byte boundary
  12214. {
  12215. const size_t size = ggml_nbytes(tensor);
  12216. fwrite(tensor->data, sizeof(char), size, fout);
  12217. }
  12218. }
  12219. }
  12220. // nodes
  12221. {
  12222. for (int i = 0; i < cgraph->n_nodes; ++i) {
  12223. const struct ggml_tensor * tensor = cgraph->nodes[i];
  12224. const uint32_t type = tensor->type;
  12225. const uint32_t op = tensor->op;
  12226. const uint32_t n_dims = tensor->n_dims;
  12227. fwrite(&type, sizeof(uint32_t), 1, fout);
  12228. fwrite(&op, sizeof(uint32_t), 1, fout);
  12229. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  12230. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12231. const uint64_t ne = tensor->ne[j];
  12232. const uint64_t nb = tensor->nb[j];
  12233. fwrite(&ne, sizeof(uint64_t), 1, fout);
  12234. fwrite(&nb, sizeof(uint64_t), 1, fout);
  12235. }
  12236. // store the pointer address
  12237. {
  12238. const uint64_t ptr = (uint64_t) tensor->data;
  12239. fwrite(&ptr, sizeof(uint64_t), 1, fout);
  12240. }
  12241. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  12242. // output the op arguments
  12243. {
  12244. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  12245. args[0] = tensor->src0;
  12246. args[1] = tensor->src1;
  12247. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  12248. args[2 + j] = tensor->opt[j];
  12249. }
  12250. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  12251. if (args[j]) {
  12252. int32_t idx = -1;
  12253. // check if leaf
  12254. {
  12255. for (int k = 0; k < cgraph->n_leafs; ++k) {
  12256. if (args[j] == cgraph->leafs[k]) {
  12257. idx = k;
  12258. break;
  12259. }
  12260. }
  12261. }
  12262. // check if node
  12263. if (idx == -1) {
  12264. for (int k = 0; k < cgraph->n_nodes; ++k) {
  12265. if (args[j] == cgraph->nodes[k]) {
  12266. idx = GGML_MAX_NODES + k;
  12267. break;
  12268. }
  12269. }
  12270. }
  12271. if (idx == -1) {
  12272. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  12273. return;
  12274. }
  12275. fwrite(&idx, sizeof(int32_t), 1, fout);
  12276. } else {
  12277. const int32_t nul = -1;
  12278. fwrite(&nul, sizeof(int32_t), 1, fout);
  12279. }
  12280. }
  12281. }
  12282. }
  12283. }
  12284. fclose(fout);
  12285. }
  12286. }
  12287. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  12288. assert(*ctx_data == NULL);
  12289. assert(*ctx_eval == NULL);
  12290. struct ggml_cgraph result = { 0 };
  12291. struct ggml_tensor * data = NULL;
  12292. // read file into data
  12293. {
  12294. FILE * fin = fopen(fname, "rb");
  12295. if (!fin) {
  12296. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  12297. return result;
  12298. }
  12299. size_t fsize = 0;
  12300. fseek(fin, 0, SEEK_END);
  12301. fsize = ftell(fin);
  12302. fseek(fin, 0, SEEK_SET);
  12303. // create the data context
  12304. {
  12305. const size_t overhead = 1*ggml_tensor_overhead();
  12306. struct ggml_init_params params = {
  12307. .mem_size = fsize + overhead,
  12308. .mem_buffer = NULL,
  12309. .no_alloc = false,
  12310. };
  12311. *ctx_data = ggml_init(params);
  12312. if (!*ctx_data) {
  12313. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  12314. return result;
  12315. }
  12316. }
  12317. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  12318. fread(data->data, sizeof(char), fsize, fin);
  12319. fclose(fin);
  12320. }
  12321. // populate result
  12322. {
  12323. char * ptr = (char *) data->data;
  12324. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  12325. if (magic != GGML_FILE_MAGIC) {
  12326. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  12327. return result;
  12328. }
  12329. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  12330. if (version != GGML_FILE_VERSION) {
  12331. fprintf(stderr, "%s: invalid version number\n", __func__);
  12332. return result;
  12333. }
  12334. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  12335. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  12336. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  12337. result.n_leafs = n_leafs;
  12338. result.n_nodes = n_nodes;
  12339. // create the data context
  12340. {
  12341. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  12342. struct ggml_init_params params = {
  12343. .mem_size = size_eval + overhead,
  12344. .mem_buffer = NULL,
  12345. .no_alloc = true,
  12346. };
  12347. *ctx_eval = ggml_init(params);
  12348. if (!*ctx_eval) {
  12349. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  12350. return result;
  12351. }
  12352. }
  12353. // leafs
  12354. {
  12355. uint32_t type;
  12356. uint32_t op;
  12357. uint32_t n_dims;
  12358. for (uint32_t i = 0; i < n_leafs; ++i) {
  12359. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  12360. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  12361. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  12362. int64_t ne[GGML_MAX_DIMS];
  12363. size_t nb[GGML_MAX_DIMS];
  12364. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12365. uint64_t ne_cur;
  12366. uint64_t nb_cur;
  12367. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  12368. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  12369. ne[j] = ne_cur;
  12370. nb[j] = nb_cur;
  12371. }
  12372. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  12373. tensor->op = (enum ggml_op) op;
  12374. uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur);
  12375. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  12376. tensor->data = (void *) ptr;
  12377. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12378. tensor->nb[j] = nb[j];
  12379. }
  12380. result.leafs[i] = tensor;
  12381. ptr += ggml_nbytes(tensor);
  12382. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  12383. }
  12384. }
  12385. ggml_set_no_alloc(*ctx_eval, false);
  12386. // nodes
  12387. {
  12388. uint32_t type;
  12389. uint32_t op;
  12390. uint32_t n_dims;
  12391. for (uint32_t i = 0; i < n_nodes; ++i) {
  12392. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  12393. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  12394. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  12395. enum ggml_op eop = (enum ggml_op) op;
  12396. int64_t ne[GGML_MAX_DIMS];
  12397. size_t nb[GGML_MAX_DIMS];
  12398. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12399. uint64_t ne_cur;
  12400. uint64_t nb_cur;
  12401. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  12402. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  12403. ne[j] = ne_cur;
  12404. nb[j] = nb_cur;
  12405. }
  12406. uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur); // TODO: not yet used
  12407. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  12408. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += (2 + GGML_MAX_OPT)*sizeof(int32_t);
  12409. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  12410. // parse args
  12411. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  12412. const int32_t arg_idx = ptr_arg_idx[j];
  12413. if (arg_idx == -1) {
  12414. continue;
  12415. }
  12416. if (arg_idx < GGML_MAX_NODES) {
  12417. args[j] = result.leafs[arg_idx];
  12418. } else {
  12419. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  12420. }
  12421. }
  12422. // create the tensor
  12423. // "view" operations are handled differently
  12424. // TODO: handle inplace ops - currently a copy is always made
  12425. struct ggml_tensor * tensor = NULL;
  12426. switch (eop) {
  12427. // TODO: implement other view ops
  12428. case GGML_OP_RESHAPE:
  12429. {
  12430. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  12431. } break;
  12432. case GGML_OP_VIEW:
  12433. {
  12434. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  12435. uint64_t offs;
  12436. memcpy(&offs, args[2]->data, sizeof(offs));
  12437. tensor->data = ((char *) tensor->data) + offs;
  12438. } break;
  12439. case GGML_OP_TRANSPOSE:
  12440. {
  12441. tensor = ggml_transpose(*ctx_eval, args[0]);
  12442. } break;
  12443. case GGML_OP_PERMUTE:
  12444. {
  12445. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  12446. } break;
  12447. default:
  12448. {
  12449. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  12450. tensor->op = eop;
  12451. } break;
  12452. }
  12453. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  12454. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12455. tensor->nb[j] = nb[j];
  12456. }
  12457. tensor->src0 = args[0];
  12458. tensor->src1 = args[1];
  12459. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  12460. tensor->opt[j] = args[2 + j];
  12461. }
  12462. result.nodes[i] = tensor;
  12463. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  12464. }
  12465. }
  12466. }
  12467. return result;
  12468. }
  12469. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  12470. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  12471. GGML_PRINT("=== GRAPH ===\n");
  12472. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  12473. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  12474. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  12475. for (int i = 0; i < cgraph->n_nodes; i++) {
  12476. struct ggml_tensor * node = cgraph->nodes[i];
  12477. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  12478. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  12479. i,
  12480. node->ne[0], node->ne[1], node->ne[2],
  12481. GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  12482. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  12483. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  12484. (double) node->perf_time_us / 1000.0,
  12485. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  12486. }
  12487. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  12488. for (int i = 0; i < cgraph->n_leafs; i++) {
  12489. struct ggml_tensor * node = cgraph->leafs[i];
  12490. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  12491. i,
  12492. node->ne[0], node->ne[1],
  12493. GGML_OP_NAME[node->op]);
  12494. }
  12495. for (int i = 0; i < GGML_OP_COUNT; i++) {
  12496. if (perf_total_per_op_us[i] == 0) {
  12497. continue;
  12498. }
  12499. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
  12500. }
  12501. GGML_PRINT("========================================\n");
  12502. }
  12503. // check if node is part of the graph
  12504. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  12505. if (cgraph == NULL) {
  12506. return true;
  12507. }
  12508. for (int i = 0; i < cgraph->n_nodes; i++) {
  12509. if (cgraph->nodes[i] == node) {
  12510. return true;
  12511. }
  12512. }
  12513. return false;
  12514. }
  12515. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  12516. for (int i = 0; i < cgraph->n_nodes; i++) {
  12517. struct ggml_tensor * parent = cgraph->nodes[i];
  12518. if (parent->grad == node) {
  12519. return parent;
  12520. }
  12521. }
  12522. return NULL;
  12523. }
  12524. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  12525. char color[16];
  12526. FILE * fp = fopen(filename, "w");
  12527. GGML_ASSERT(fp);
  12528. fprintf(fp, "digraph G {\n");
  12529. fprintf(fp, " newrank = true;\n");
  12530. fprintf(fp, " rankdir = LR;\n");
  12531. for (int i = 0; i < gb->n_nodes; i++) {
  12532. struct ggml_tensor * node = gb->nodes[i];
  12533. if (ggml_graph_get_parent(gb, node) != NULL) {
  12534. continue;
  12535. }
  12536. if (node->is_param) {
  12537. snprintf(color, sizeof(color), "yellow");
  12538. } else if (node->grad) {
  12539. if (ggml_graph_find(gf, node)) {
  12540. snprintf(color, sizeof(color), "green");
  12541. } else {
  12542. snprintf(color, sizeof(color), "lightblue");
  12543. }
  12544. } else {
  12545. snprintf(color, sizeof(color), "white");
  12546. }
  12547. fprintf(fp, " \"%p\" [ "
  12548. "style = filled; fillcolor = %s; shape = record; "
  12549. "label=\"",
  12550. (void *) node, color);
  12551. if (strlen(node->name) > 0) {
  12552. fprintf(fp, "%s |", node->name);
  12553. }
  12554. if (node->n_dims == 2) {
  12555. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
  12556. } else {
  12557. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
  12558. }
  12559. if (node->grad) {
  12560. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  12561. } else {
  12562. fprintf(fp, "\"; ]\n");
  12563. }
  12564. }
  12565. for (int i = 0; i < gb->n_leafs; i++) {
  12566. struct ggml_tensor * node = gb->leafs[i];
  12567. snprintf(color, sizeof(color), "pink");
  12568. fprintf(fp, " \"%p\" [ "
  12569. "style = filled; fillcolor = %s; shape = record; "
  12570. "label=\"<x>",
  12571. (void *) node, color);
  12572. if (strlen(node->name) > 0) {
  12573. fprintf(fp, "%s | ", node->name);
  12574. }
  12575. if (ggml_nelements(node) == 1) {
  12576. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  12577. fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
  12578. }
  12579. else {
  12580. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
  12581. }
  12582. }
  12583. else {
  12584. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  12585. }
  12586. fprintf(fp, "\"; ]\n");
  12587. }
  12588. for (int i = 0; i < gb->n_nodes; i++) {
  12589. struct ggml_tensor * node = gb->nodes[i];
  12590. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  12591. if (node->src0) {
  12592. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  12593. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  12594. parent0 ? (void *) parent0 : (void *) node->src0,
  12595. parent0 ? "g" : "x",
  12596. parent ? (void *) parent : (void *) node,
  12597. parent ? "g" : "x",
  12598. parent ? "empty" : "vee",
  12599. parent ? "dashed" : "solid");
  12600. }
  12601. if (node->src1) {
  12602. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  12603. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  12604. parent1 ? (void *) parent1 : (void *) node->src1,
  12605. parent1 ? "g" : "x",
  12606. parent ? (void *) parent : (void *) node,
  12607. parent ? "g" : "x",
  12608. parent ? "empty" : "vee",
  12609. parent ? "dashed" : "solid");
  12610. }
  12611. }
  12612. for (int i = 0; i < gb->n_leafs; i++) {
  12613. struct ggml_tensor * node = gb->leafs[i];
  12614. if (node->src0) {
  12615. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  12616. (void *) node->src0, "x",
  12617. (void *) node, "x");
  12618. }
  12619. if (node->src1) {
  12620. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  12621. (void *) node->src1, "x",
  12622. (void *) node, "x");
  12623. }
  12624. }
  12625. fprintf(fp, "}\n");
  12626. fclose(fp);
  12627. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  12628. }
  12629. ////////////////////////////////////////////////////////////////////////////////
  12630. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  12631. int i = 0;
  12632. for (int p = 0; p < np; ++p) {
  12633. const int64_t ne = ggml_nelements(ps[p]) ;
  12634. // TODO: add function to set tensor from array
  12635. for (int64_t j = 0; j < ne; ++j) {
  12636. ggml_set_f32_1d(ps[p], j, x[i++]);
  12637. }
  12638. }
  12639. }
  12640. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  12641. int i = 0;
  12642. for (int p = 0; p < np; ++p) {
  12643. const int64_t ne = ggml_nelements(ps[p]) ;
  12644. // TODO: add function to get all elements at once
  12645. for (int64_t j = 0; j < ne; ++j) {
  12646. x[i++] = ggml_get_f32_1d(ps[p], j);
  12647. }
  12648. }
  12649. }
  12650. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  12651. int i = 0;
  12652. for (int p = 0; p < np; ++p) {
  12653. const int64_t ne = ggml_nelements(ps[p]) ;
  12654. // TODO: add function to get all elements at once
  12655. for (int64_t j = 0; j < ne; ++j) {
  12656. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  12657. }
  12658. }
  12659. }
  12660. //
  12661. // ADAM
  12662. //
  12663. // ref: https://arxiv.org/pdf/1412.6980.pdf
  12664. //
  12665. static enum ggml_opt_result ggml_opt_adam(
  12666. struct ggml_context * ctx,
  12667. struct ggml_opt_params params,
  12668. struct ggml_tensor * f,
  12669. struct ggml_cgraph * gf,
  12670. struct ggml_cgraph * gb) {
  12671. GGML_ASSERT(ggml_is_scalar(f));
  12672. gf->n_threads = params.n_threads;
  12673. gb->n_threads = params.n_threads;
  12674. // these will store the parameters we want to optimize
  12675. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  12676. int np = 0;
  12677. int nx = 0;
  12678. for (int i = 0; i < gf->n_nodes; ++i) {
  12679. if (gf->nodes[i]->is_param) {
  12680. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  12681. GGML_ASSERT(np < GGML_MAX_PARAMS);
  12682. ps[np++] = gf->nodes[i];
  12683. nx += ggml_nelements(gf->nodes[i]);
  12684. }
  12685. }
  12686. // constants
  12687. const float alpha = params.adam.alpha;
  12688. const float beta1 = params.adam.beta1;
  12689. const float beta2 = params.adam.beta2;
  12690. const float eps = params.adam.eps;
  12691. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  12692. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  12693. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  12694. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  12695. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  12696. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  12697. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  12698. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  12699. // initialize
  12700. ggml_vec_set_f32(nx, m, 0.0f);
  12701. ggml_vec_set_f32(nx, v, 0.0f);
  12702. // update view
  12703. ggml_opt_get_params(np, ps, x);
  12704. // compute the function value
  12705. ggml_graph_reset (gf);
  12706. ggml_set_f32 (f->grad, 1.0f);
  12707. ggml_graph_compute(ctx, gb);
  12708. float fx_prev = ggml_get_f32_1d(f, 0);
  12709. if (pf) {
  12710. pf[0] = fx_prev;
  12711. }
  12712. int n_no_improvement = 0;
  12713. float fx_best = fx_prev;
  12714. // run the optimizer
  12715. for (int t = 0; t < params.adam.n_iter; ++t) {
  12716. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  12717. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  12718. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  12719. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  12720. for (int i = 0; i < np; ++i) {
  12721. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  12722. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  12723. }
  12724. const int64_t t_start_wall = ggml_time_us();
  12725. const int64_t t_start_cpu = ggml_cycles();
  12726. UNUSED(t_start_wall);
  12727. UNUSED(t_start_cpu);
  12728. {
  12729. // update the gradient
  12730. ggml_opt_get_grad(np, ps, g1);
  12731. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  12732. ggml_vec_scale_f32(nx, m, beta1);
  12733. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  12734. // g2 = g1^2
  12735. ggml_vec_sqr_f32 (nx, g2, g1);
  12736. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  12737. ggml_vec_scale_f32(nx, v, beta2);
  12738. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  12739. // m^hat = m_t / (1 - beta1^t)
  12740. // v^hat = v_t / (1 - beta2^t)
  12741. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  12742. ggml_vec_cpy_f32 (nx, mh, m);
  12743. ggml_vec_cpy_f32 (nx, vh, v);
  12744. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  12745. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  12746. ggml_vec_sqrt_f32 (nx, vh, vh);
  12747. ggml_vec_acc1_f32 (nx, vh, eps);
  12748. ggml_vec_div_f32 (nx, mh, mh, vh);
  12749. ggml_vec_sub_f32 (nx, x, x, mh);
  12750. // update the parameters
  12751. ggml_opt_set_params(np, ps, x);
  12752. }
  12753. ggml_graph_reset (gf);
  12754. ggml_set_f32 (f->grad, 1.0f);
  12755. ggml_graph_compute(ctx, gb);
  12756. const float fx = ggml_get_f32_1d(f, 0);
  12757. // check convergence
  12758. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  12759. GGML_PRINT_DEBUG("converged\n");
  12760. return GGML_OPT_OK;
  12761. }
  12762. // delta-based convergence test
  12763. if (pf != NULL) {
  12764. // need at least params.past iterations to start checking for convergence
  12765. if (params.past <= t) {
  12766. const float rate = (pf[t%params.past] - fx)/fx;
  12767. if (fabsf(rate) < params.delta) {
  12768. return GGML_OPT_OK;
  12769. }
  12770. }
  12771. pf[t%params.past] = fx;
  12772. }
  12773. // check for improvement
  12774. if (params.max_no_improvement > 0) {
  12775. if (fx_best > fx) {
  12776. fx_best = fx;
  12777. n_no_improvement = 0;
  12778. } else {
  12779. ++n_no_improvement;
  12780. if (n_no_improvement >= params.max_no_improvement) {
  12781. return GGML_OPT_OK;
  12782. }
  12783. }
  12784. }
  12785. fx_prev = fx;
  12786. {
  12787. const int64_t t_end_cpu = ggml_cycles();
  12788. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  12789. UNUSED(t_end_cpu);
  12790. const int64_t t_end_wall = ggml_time_us();
  12791. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  12792. UNUSED(t_end_wall);
  12793. }
  12794. }
  12795. return GGML_OPT_DID_NOT_CONVERGE;
  12796. }
  12797. //
  12798. // L-BFGS
  12799. //
  12800. // the L-BFGS implementation below is based on the following implementation:
  12801. //
  12802. // https://github.com/chokkan/liblbfgs
  12803. //
  12804. struct ggml_lbfgs_iteration_data {
  12805. float alpha;
  12806. float ys;
  12807. float * s;
  12808. float * y;
  12809. };
  12810. static enum ggml_opt_result linesearch_backtracking(
  12811. struct ggml_context * ctx,
  12812. const struct ggml_opt_params * params,
  12813. int nx,
  12814. float * x,
  12815. float * fx,
  12816. float * g,
  12817. float * d,
  12818. float * step,
  12819. const float * xp,
  12820. struct ggml_tensor * f,
  12821. struct ggml_cgraph * gf,
  12822. struct ggml_cgraph * gb,
  12823. const int np,
  12824. struct ggml_tensor * ps[]) {
  12825. int count = 0;
  12826. float width = 0.0f;
  12827. float dg = 0.0f;
  12828. float finit = 0.0f;
  12829. float dginit = 0.0f;
  12830. float dgtest = 0.0f;
  12831. const float dec = 0.5f;
  12832. const float inc = 2.1f;
  12833. if (*step <= 0.f) {
  12834. return GGML_LINESEARCH_INVALID_PARAMETERS;
  12835. }
  12836. // compute the initial gradient in the search direction
  12837. ggml_vec_dot_f32(nx, &dginit, g, d);
  12838. // make sure that d points to a descent direction
  12839. if (0 < dginit) {
  12840. return GGML_LINESEARCH_FAIL;
  12841. }
  12842. // initialize local variables
  12843. finit = *fx;
  12844. dgtest = params->lbfgs.ftol*dginit;
  12845. while (true) {
  12846. ggml_vec_cpy_f32(nx, x, xp);
  12847. ggml_vec_mad_f32(nx, x, d, *step);
  12848. // evaluate the function and gradient values
  12849. {
  12850. ggml_opt_set_params(np, ps, x);
  12851. ggml_graph_reset (gf);
  12852. ggml_set_f32 (f->grad, 1.0f);
  12853. ggml_graph_compute(ctx, gb);
  12854. ggml_opt_get_grad(np, ps, g);
  12855. *fx = ggml_get_f32_1d(f, 0);
  12856. }
  12857. ++count;
  12858. if (*fx > finit + (*step)*dgtest) {
  12859. width = dec;
  12860. } else {
  12861. // Armijo condition is satisfied
  12862. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  12863. return count;
  12864. }
  12865. ggml_vec_dot_f32(nx, &dg, g, d);
  12866. // check the Wolfe condition
  12867. if (dg < params->lbfgs.wolfe * dginit) {
  12868. width = inc;
  12869. } else {
  12870. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  12871. // regular Wolfe conditions
  12872. return count;
  12873. }
  12874. if(dg > -params->lbfgs.wolfe*dginit) {
  12875. width = dec;
  12876. } else {
  12877. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  12878. return count;
  12879. }
  12880. return count;
  12881. }
  12882. }
  12883. if (*step < params->lbfgs.min_step) {
  12884. return GGML_LINESEARCH_MINIMUM_STEP;
  12885. }
  12886. if (*step > params->lbfgs.max_step) {
  12887. return GGML_LINESEARCH_MAXIMUM_STEP;
  12888. }
  12889. if (params->lbfgs.max_linesearch <= count) {
  12890. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  12891. }
  12892. (*step) *= width;
  12893. }
  12894. return GGML_LINESEARCH_FAIL;
  12895. }
  12896. static enum ggml_opt_result ggml_opt_lbfgs(
  12897. struct ggml_context * ctx,
  12898. struct ggml_opt_params params,
  12899. struct ggml_tensor * f,
  12900. struct ggml_cgraph * gf,
  12901. struct ggml_cgraph * gb) {
  12902. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  12903. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  12904. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  12905. return GGML_OPT_INVALID_WOLFE;
  12906. }
  12907. }
  12908. gf->n_threads = params.n_threads;
  12909. gb->n_threads = params.n_threads;
  12910. const int m = params.lbfgs.m;
  12911. // these will store the parameters we want to optimize
  12912. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  12913. int np = 0;
  12914. int nx = 0;
  12915. for (int i = 0; i < gf->n_nodes; ++i) {
  12916. if (gf->nodes[i]->is_param) {
  12917. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  12918. GGML_ASSERT(np < GGML_MAX_PARAMS);
  12919. ps[np++] = gf->nodes[i];
  12920. nx += ggml_nelements(gf->nodes[i]);
  12921. }
  12922. }
  12923. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  12924. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  12925. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  12926. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  12927. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  12928. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  12929. float fx = 0.0f; // cost function value
  12930. float xnorm = 0.0f; // ||x||
  12931. float gnorm = 0.0f; // ||g||
  12932. float step = 0.0f;
  12933. // initialize x from the graph nodes
  12934. ggml_opt_get_params(np, ps, x);
  12935. // the L-BFGS memory
  12936. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  12937. for (int i = 0; i < m; ++i) {
  12938. lm[i].alpha = 0.0f;
  12939. lm[i].ys = 0.0f;
  12940. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12941. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12942. }
  12943. // evaluate the function value and its gradient
  12944. {
  12945. ggml_opt_set_params(np, ps, x);
  12946. ggml_graph_reset (gf);
  12947. ggml_set_f32 (f->grad, 1.0f);
  12948. ggml_graph_compute(ctx, gb);
  12949. ggml_opt_get_grad(np, ps, g);
  12950. fx = ggml_get_f32_1d(f, 0);
  12951. }
  12952. if (pf) {
  12953. pf[0] = fx;
  12954. }
  12955. float fx_best = fx;
  12956. // search direction = -gradient
  12957. ggml_vec_neg_f32(nx, d, g);
  12958. // ||x||, ||g||
  12959. ggml_vec_norm_f32(nx, &xnorm, x);
  12960. ggml_vec_norm_f32(nx, &gnorm, g);
  12961. if (xnorm < 1.0f) {
  12962. xnorm = 1.0f;
  12963. }
  12964. // already optimized
  12965. if (gnorm/xnorm <= params.lbfgs.eps) {
  12966. return GGML_OPT_OK;
  12967. }
  12968. // initial step
  12969. ggml_vec_norm_inv_f32(nx, &step, d);
  12970. int j = 0;
  12971. int k = 1;
  12972. int ls = 0;
  12973. int end = 0;
  12974. int bound = 0;
  12975. int n_no_improvement = 0;
  12976. float ys = 0.0f;
  12977. float yy = 0.0f;
  12978. float beta = 0.0f;
  12979. while (true) {
  12980. // store the current position and gradient vectors
  12981. ggml_vec_cpy_f32(nx, xp, x);
  12982. ggml_vec_cpy_f32(nx, gp, g);
  12983. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  12984. if (ls < 0) {
  12985. // linesearch failed - go back to the previous point and return
  12986. ggml_vec_cpy_f32(nx, x, xp);
  12987. ggml_vec_cpy_f32(nx, g, gp);
  12988. return ls;
  12989. }
  12990. ggml_vec_norm_f32(nx, &xnorm, x);
  12991. ggml_vec_norm_f32(nx, &gnorm, g);
  12992. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  12993. if (xnorm < 1.0f) {
  12994. xnorm = 1.0f;
  12995. }
  12996. if (gnorm/xnorm <= params.lbfgs.eps) {
  12997. // converged
  12998. return GGML_OPT_OK;
  12999. }
  13000. // delta-based convergence test
  13001. if (pf != NULL) {
  13002. // need at least params.past iterations to start checking for convergence
  13003. if (params.past <= k) {
  13004. const float rate = (pf[k%params.past] - fx)/fx;
  13005. if (fabsf(rate) < params.delta) {
  13006. return GGML_OPT_OK;
  13007. }
  13008. }
  13009. pf[k%params.past] = fx;
  13010. }
  13011. // check for improvement
  13012. if (params.max_no_improvement > 0) {
  13013. if (fx < fx_best) {
  13014. fx_best = fx;
  13015. n_no_improvement = 0;
  13016. } else {
  13017. n_no_improvement++;
  13018. if (n_no_improvement >= params.max_no_improvement) {
  13019. return GGML_OPT_OK;
  13020. }
  13021. }
  13022. }
  13023. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  13024. // reached the maximum number of iterations
  13025. return GGML_OPT_DID_NOT_CONVERGE;
  13026. }
  13027. // update vectors s and y:
  13028. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  13029. // y_{k+1} = g_{k+1} - g_{k}.
  13030. //
  13031. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  13032. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  13033. // compute scalars ys and yy:
  13034. // ys = y^t \cdot s -> 1 / \rho.
  13035. // yy = y^t \cdot y.
  13036. //
  13037. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  13038. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  13039. lm[end].ys = ys;
  13040. // find new search direction
  13041. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  13042. bound = (m <= k) ? m : k;
  13043. k++;
  13044. end = (end + 1)%m;
  13045. // initialize search direction with -g
  13046. ggml_vec_neg_f32(nx, d, g);
  13047. j = end;
  13048. for (int i = 0; i < bound; ++i) {
  13049. j = (j + m - 1) % m;
  13050. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  13051. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  13052. lm[j].alpha /= lm[j].ys;
  13053. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  13054. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  13055. }
  13056. ggml_vec_scale_f32(nx, d, ys/yy);
  13057. for (int i = 0; i < bound; ++i) {
  13058. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  13059. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  13060. beta /= lm[j].ys;
  13061. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  13062. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  13063. j = (j + 1)%m;
  13064. }
  13065. step = 1.0;
  13066. }
  13067. return GGML_OPT_DID_NOT_CONVERGE;
  13068. }
  13069. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  13070. struct ggml_opt_params result;
  13071. switch (type) {
  13072. case GGML_OPT_ADAM:
  13073. {
  13074. result = (struct ggml_opt_params) {
  13075. .type = GGML_OPT_ADAM,
  13076. .n_threads = 1,
  13077. .past = 0,
  13078. .delta = 1e-5f,
  13079. .max_no_improvement = 100,
  13080. .print_forward_graph = true,
  13081. .print_backward_graph = true,
  13082. .adam = {
  13083. .n_iter = 10000,
  13084. .alpha = 0.001f,
  13085. .beta1 = 0.9f,
  13086. .beta2 = 0.999f,
  13087. .eps = 1e-8f,
  13088. .eps_f = 1e-5f,
  13089. .eps_g = 1e-3f,
  13090. },
  13091. };
  13092. } break;
  13093. case GGML_OPT_LBFGS:
  13094. {
  13095. result = (struct ggml_opt_params) {
  13096. .type = GGML_OPT_LBFGS,
  13097. .n_threads = 1,
  13098. .past = 0,
  13099. .delta = 1e-5f,
  13100. .max_no_improvement = 0,
  13101. .print_forward_graph = true,
  13102. .print_backward_graph = true,
  13103. .lbfgs = {
  13104. .m = 6,
  13105. .n_iter = 100,
  13106. .max_linesearch = 20,
  13107. .eps = 1e-5f,
  13108. .ftol = 1e-4f,
  13109. .wolfe = 0.9f,
  13110. .min_step = 1e-20f,
  13111. .max_step = 1e+20f,
  13112. .linesearch = GGML_LINESEARCH_DEFAULT,
  13113. },
  13114. };
  13115. } break;
  13116. }
  13117. return result;
  13118. }
  13119. enum ggml_opt_result ggml_opt(
  13120. struct ggml_context * ctx,
  13121. struct ggml_opt_params params,
  13122. struct ggml_tensor * f) {
  13123. bool free_ctx = false;
  13124. if (ctx == NULL) {
  13125. struct ggml_init_params params_ctx = {
  13126. .mem_size = 16*1024*1024,
  13127. .mem_buffer = NULL,
  13128. .no_alloc = false,
  13129. };
  13130. ctx = ggml_init(params_ctx);
  13131. if (ctx == NULL) {
  13132. return GGML_OPT_NO_CONTEXT;
  13133. }
  13134. free_ctx = true;
  13135. }
  13136. enum ggml_opt_result result = GGML_OPT_OK;
  13137. // build forward + backward compute graphs
  13138. struct ggml_cgraph gf = ggml_build_forward (f);
  13139. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, true);
  13140. switch (params.type) {
  13141. case GGML_OPT_ADAM:
  13142. {
  13143. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  13144. } break;
  13145. case GGML_OPT_LBFGS:
  13146. {
  13147. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  13148. } break;
  13149. }
  13150. if (params.print_forward_graph) {
  13151. ggml_graph_print (&gf);
  13152. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  13153. }
  13154. if (params.print_backward_graph) {
  13155. ggml_graph_print (&gb);
  13156. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  13157. }
  13158. if (free_ctx) {
  13159. ggml_free(ctx);
  13160. }
  13161. return result;
  13162. }
  13163. ////////////////////////////////////////////////////////////////////////////////
  13164. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  13165. assert(k % QK4_0 == 0);
  13166. const int nb = k / QK4_0;
  13167. for (int b = 0; b < n; b += k) {
  13168. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  13169. quantize_row_q4_0_reference(src + b, y, k);
  13170. for (int i = 0; i < nb; i++) {
  13171. for (int j = 0; j < QK4_0; j += 2) {
  13172. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  13173. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  13174. hist[vi0]++;
  13175. hist[vi1]++;
  13176. }
  13177. }
  13178. }
  13179. return (n/QK4_0*sizeof(block_q4_0));
  13180. }
  13181. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  13182. assert(k % QK4_1 == 0);
  13183. const int nb = k / QK4_1;
  13184. for (int b = 0; b < n; b += k) {
  13185. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  13186. quantize_row_q4_1_reference(src + b, y, k);
  13187. for (int i = 0; i < nb; i++) {
  13188. for (int j = 0; j < QK4_1; j += 2) {
  13189. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  13190. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  13191. hist[vi0]++;
  13192. hist[vi1]++;
  13193. }
  13194. }
  13195. }
  13196. return (n/QK4_1*sizeof(block_q4_1));
  13197. }
  13198. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  13199. assert(k % QK5_0 == 0);
  13200. const int nb = k / QK5_0;
  13201. for (int b = 0; b < n; b += k) {
  13202. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  13203. quantize_row_q5_0_reference(src + b, y, k);
  13204. for (int i = 0; i < nb; i++) {
  13205. uint32_t qh;
  13206. memcpy(&qh, &y[i].qh, sizeof(qh));
  13207. for (int j = 0; j < QK5_0; j += 2) {
  13208. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  13209. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  13210. // cast to 16 bins
  13211. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  13212. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  13213. hist[vi0]++;
  13214. hist[vi1]++;
  13215. }
  13216. }
  13217. }
  13218. return (n/QK5_0*sizeof(block_q5_0));
  13219. }
  13220. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  13221. assert(k % QK5_1 == 0);
  13222. const int nb = k / QK5_1;
  13223. for (int b = 0; b < n; b += k) {
  13224. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  13225. quantize_row_q5_1_reference(src + b, y, k);
  13226. for (int i = 0; i < nb; i++) {
  13227. uint32_t qh;
  13228. memcpy(&qh, &y[i].qh, sizeof(qh));
  13229. for (int j = 0; j < QK5_1; j += 2) {
  13230. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  13231. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  13232. // cast to 16 bins
  13233. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  13234. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  13235. hist[vi0]++;
  13236. hist[vi1]++;
  13237. }
  13238. }
  13239. }
  13240. return (n/QK5_1*sizeof(block_q5_1));
  13241. }
  13242. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  13243. assert(k % QK8_0 == 0);
  13244. const int nb = k / QK8_0;
  13245. for (int b = 0; b < n; b += k) {
  13246. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  13247. quantize_row_q8_0_reference(src + b, y, k);
  13248. for (int i = 0; i < nb; i++) {
  13249. for (int j = 0; j < QK8_0; ++j) {
  13250. const int8_t vi = y[i].qs[j];
  13251. hist[vi/16 + 8]++;
  13252. }
  13253. }
  13254. }
  13255. return (n/QK8_0*sizeof(block_q8_0));
  13256. }
  13257. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  13258. size_t result = 0;
  13259. switch (type) {
  13260. case GGML_TYPE_Q4_0:
  13261. {
  13262. GGML_ASSERT(start % QK4_0 == 0);
  13263. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  13264. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  13265. } break;
  13266. case GGML_TYPE_Q4_1:
  13267. {
  13268. GGML_ASSERT(start % QK4_1 == 0);
  13269. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  13270. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  13271. } break;
  13272. case GGML_TYPE_Q5_0:
  13273. {
  13274. GGML_ASSERT(start % QK5_0 == 0);
  13275. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  13276. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  13277. } break;
  13278. case GGML_TYPE_Q5_1:
  13279. {
  13280. GGML_ASSERT(start % QK5_1 == 0);
  13281. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  13282. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  13283. } break;
  13284. case GGML_TYPE_Q8_0:
  13285. {
  13286. GGML_ASSERT(start % QK8_0 == 0);
  13287. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  13288. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  13289. } break;
  13290. case GGML_TYPE_Q2_K:
  13291. {
  13292. GGML_ASSERT(start % QK_K == 0);
  13293. block_q2_k * block = (block_q2_k*)dst + start / QK_K;
  13294. result = ggml_quantize_q2_k(src + start, block, n, n, hist);
  13295. } break;
  13296. case GGML_TYPE_Q3_K:
  13297. {
  13298. GGML_ASSERT(start % QK_K == 0);
  13299. block_q3_k * block = (block_q3_k*)dst + start / QK_K;
  13300. result = ggml_quantize_q3_k(src + start, block, n, n, hist);
  13301. } break;
  13302. case GGML_TYPE_Q4_K:
  13303. {
  13304. GGML_ASSERT(start % QK_K == 0);
  13305. block_q4_k * block = (block_q4_k*)dst + start / QK_K;
  13306. result = ggml_quantize_q4_k(src + start, block, n, n, hist);
  13307. } break;
  13308. case GGML_TYPE_Q5_K:
  13309. {
  13310. GGML_ASSERT(start % QK_K == 0);
  13311. block_q5_k * block = (block_q5_k*)dst + start / QK_K;
  13312. result = ggml_quantize_q5_k(src + start, block, n, n, hist);
  13313. } break;
  13314. case GGML_TYPE_Q6_K:
  13315. {
  13316. GGML_ASSERT(start % QK_K == 0);
  13317. block_q6_k * block = (block_q6_k*)dst + start / QK_K;
  13318. result = ggml_quantize_q6_k(src + start, block, n, n, hist);
  13319. } break;
  13320. default:
  13321. assert(false);
  13322. }
  13323. return result;
  13324. }
  13325. ////////////////////////////////////////////////////////////////////////////////
  13326. int ggml_cpu_has_avx(void) {
  13327. #if defined(__AVX__)
  13328. return 1;
  13329. #else
  13330. return 0;
  13331. #endif
  13332. }
  13333. int ggml_cpu_has_avx2(void) {
  13334. #if defined(__AVX2__)
  13335. return 1;
  13336. #else
  13337. return 0;
  13338. #endif
  13339. }
  13340. int ggml_cpu_has_avx512(void) {
  13341. #if defined(__AVX512F__)
  13342. return 1;
  13343. #else
  13344. return 0;
  13345. #endif
  13346. }
  13347. int ggml_cpu_has_avx512_vbmi(void) {
  13348. #if defined(__AVX512VBMI__)
  13349. return 1;
  13350. #else
  13351. return 0;
  13352. #endif
  13353. }
  13354. int ggml_cpu_has_avx512_vnni(void) {
  13355. #if defined(__AVX512VNNI__)
  13356. return 1;
  13357. #else
  13358. return 0;
  13359. #endif
  13360. }
  13361. int ggml_cpu_has_fma(void) {
  13362. #if defined(__FMA__)
  13363. return 1;
  13364. #else
  13365. return 0;
  13366. #endif
  13367. }
  13368. int ggml_cpu_has_neon(void) {
  13369. #if defined(__ARM_NEON)
  13370. return 1;
  13371. #else
  13372. return 0;
  13373. #endif
  13374. }
  13375. int ggml_cpu_has_arm_fma(void) {
  13376. #if defined(__ARM_FEATURE_FMA)
  13377. return 1;
  13378. #else
  13379. return 0;
  13380. #endif
  13381. }
  13382. int ggml_cpu_has_f16c(void) {
  13383. #if defined(__F16C__)
  13384. return 1;
  13385. #else
  13386. return 0;
  13387. #endif
  13388. }
  13389. int ggml_cpu_has_fp16_va(void) {
  13390. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  13391. return 1;
  13392. #else
  13393. return 0;
  13394. #endif
  13395. }
  13396. int ggml_cpu_has_wasm_simd(void) {
  13397. #if defined(__wasm_simd128__)
  13398. return 1;
  13399. #else
  13400. return 0;
  13401. #endif
  13402. }
  13403. int ggml_cpu_has_blas(void) {
  13404. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  13405. return 1;
  13406. #else
  13407. return 0;
  13408. #endif
  13409. }
  13410. int ggml_cpu_has_cublas(void) {
  13411. #if defined(GGML_USE_CUBLAS)
  13412. return 1;
  13413. #else
  13414. return 0;
  13415. #endif
  13416. }
  13417. int ggml_cpu_has_clblast(void) {
  13418. #if defined(GGML_USE_CLBLAST)
  13419. return 1;
  13420. #else
  13421. return 0;
  13422. #endif
  13423. }
  13424. int ggml_cpu_has_gpublas(void) {
  13425. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  13426. }
  13427. int ggml_cpu_has_sse3(void) {
  13428. #if defined(__SSE3__)
  13429. return 1;
  13430. #else
  13431. return 0;
  13432. #endif
  13433. }
  13434. int ggml_cpu_has_vsx(void) {
  13435. #if defined(__POWER9_VECTOR__)
  13436. return 1;
  13437. #else
  13438. return 0;
  13439. #endif
  13440. }
  13441. ////////////////////////////////////////////////////////////////////////////////