ggml.c 386 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #if defined(GGML_USE_ACCELERATE)
  116. #include <Accelerate/Accelerate.h>
  117. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  118. #include "ggml-opencl.h"
  119. #endif
  120. #elif defined(GGML_USE_OPENBLAS)
  121. #include <cblas.h>
  122. #elif defined(GGML_USE_CUBLAS)
  123. #include "ggml-cuda.h"
  124. #elif defined(GGML_USE_CLBLAST)
  125. #include "ggml-opencl.h"
  126. #endif
  127. #undef MIN
  128. #undef MAX
  129. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  130. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  131. // floating point type used to accumulate sums
  132. typedef double ggml_float;
  133. // 16-bit float
  134. // on Arm, we use __fp16
  135. // on x86, we use uint16_t
  136. #ifdef __ARM_NEON
  137. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  138. //
  139. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  140. //
  141. #include <arm_neon.h>
  142. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  143. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  144. #define GGML_FP16_TO_FP32(x) ((float) (x))
  145. #define GGML_FP32_TO_FP16(x) (x)
  146. #else
  147. #ifdef __wasm_simd128__
  148. #include <wasm_simd128.h>
  149. #else
  150. #ifdef __POWER9_VECTOR__
  151. #include <altivec.h>
  152. #undef bool
  153. #define bool _Bool
  154. #else
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #include <intrin.h>
  157. #else
  158. #include <immintrin.h>
  159. #endif
  160. #endif
  161. #endif
  162. #ifdef __F16C__
  163. #ifdef _MSC_VER
  164. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  165. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  166. #else
  167. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  168. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  169. #endif
  170. #elif defined(__POWER9_VECTOR__)
  171. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  172. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  173. /* the inline asm below is about 12% faster than the lookup method */
  174. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  175. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  176. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  177. register float f;
  178. register double d;
  179. __asm__(
  180. "mtfprd %0,%2\n"
  181. "xscvhpdp %0,%0\n"
  182. "frsp %1,%0\n" :
  183. /* temp */ "=d"(d),
  184. /* out */ "=f"(f):
  185. /* in */ "r"(h));
  186. return f;
  187. }
  188. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  189. register double d;
  190. register ggml_fp16_t r;
  191. __asm__( /* xscvdphp can work on double or single precision */
  192. "xscvdphp %0,%2\n"
  193. "mffprd %1,%0\n" :
  194. /* temp */ "=d"(d),
  195. /* out */ "=r"(r):
  196. /* in */ "f"(f));
  197. return r;
  198. }
  199. #else
  200. // FP16 <-> FP32
  201. // ref: https://github.com/Maratyszcza/FP16
  202. static inline float fp32_from_bits(uint32_t w) {
  203. union {
  204. uint32_t as_bits;
  205. float as_value;
  206. } fp32;
  207. fp32.as_bits = w;
  208. return fp32.as_value;
  209. }
  210. static inline uint32_t fp32_to_bits(float f) {
  211. union {
  212. float as_value;
  213. uint32_t as_bits;
  214. } fp32;
  215. fp32.as_value = f;
  216. return fp32.as_bits;
  217. }
  218. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  219. const uint32_t w = (uint32_t) h << 16;
  220. const uint32_t sign = w & UINT32_C(0x80000000);
  221. const uint32_t two_w = w + w;
  222. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  223. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  224. const float exp_scale = 0x1.0p-112f;
  225. #else
  226. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  227. #endif
  228. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  229. const uint32_t magic_mask = UINT32_C(126) << 23;
  230. const float magic_bias = 0.5f;
  231. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  232. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  233. const uint32_t result = sign |
  234. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  235. return fp32_from_bits(result);
  236. }
  237. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  238. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  239. const float scale_to_inf = 0x1.0p+112f;
  240. const float scale_to_zero = 0x1.0p-110f;
  241. #else
  242. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  243. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  244. #endif
  245. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  246. const uint32_t w = fp32_to_bits(f);
  247. const uint32_t shl1_w = w + w;
  248. const uint32_t sign = w & UINT32_C(0x80000000);
  249. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  250. if (bias < UINT32_C(0x71000000)) {
  251. bias = UINT32_C(0x71000000);
  252. }
  253. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  254. const uint32_t bits = fp32_to_bits(base);
  255. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  256. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  257. const uint32_t nonsign = exp_bits + mantissa_bits;
  258. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  259. }
  260. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  261. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  262. #endif // __F16C__
  263. #endif // __ARM_NEON
  264. //
  265. // global data
  266. //
  267. // precomputed gelu table for f16 (128 KB)
  268. static ggml_fp16_t table_gelu_f16[1 << 16];
  269. // precomputed silu table for f16 (128 KB)
  270. static ggml_fp16_t table_silu_f16[1 << 16];
  271. // precomputed exp table for f16 (128 KB)
  272. static ggml_fp16_t table_exp_f16[1 << 16];
  273. // precomputed f32 table for f16 (256 KB)
  274. static float table_f32_f16[1 << 16];
  275. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  276. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  277. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  278. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  279. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  280. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  281. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  282. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  283. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  284. // precomputed tables for expanding 8bits to 8 bytes:
  285. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  286. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  287. #endif
  288. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  289. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  290. // This is also true for POWER9.
  291. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  292. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  293. uint16_t s;
  294. memcpy(&s, &f, sizeof(uint16_t));
  295. return table_f32_f16[s];
  296. }
  297. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  298. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  299. #endif
  300. // note: do not use these inside ggml.c
  301. // these are meant to be used via the ggml.h API
  302. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  303. return (float) GGML_FP16_TO_FP32(x);
  304. }
  305. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  306. return GGML_FP32_TO_FP16(x);
  307. }
  308. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  309. for (size_t i = 0; i < n; i++) {
  310. y[i] = GGML_FP16_TO_FP32(x[i]);
  311. }
  312. }
  313. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  314. size_t i = 0;
  315. #if defined(__F16C__)
  316. for (; i + 7 < n; i += 8) {
  317. __m256 x_vec = _mm256_loadu_ps(x + i);
  318. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  319. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  320. }
  321. for(; i + 3 < n; i += 4) {
  322. __m128 x_vec = _mm_loadu_ps(x + i);
  323. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  324. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  325. }
  326. #endif
  327. for (; i < n; i++) {
  328. y[i] = GGML_FP32_TO_FP16(x[i]);
  329. }
  330. }
  331. //
  332. // timing
  333. //
  334. #if defined(_MSC_VER) || defined(__MINGW32__)
  335. static int64_t timer_freq;
  336. void ggml_time_init(void) {
  337. LARGE_INTEGER frequency;
  338. QueryPerformanceFrequency(&frequency);
  339. timer_freq = frequency.QuadPart;
  340. }
  341. int64_t ggml_time_ms(void) {
  342. LARGE_INTEGER t;
  343. QueryPerformanceCounter(&t);
  344. return (t.QuadPart * 1000) / timer_freq;
  345. }
  346. int64_t ggml_time_us(void) {
  347. LARGE_INTEGER t;
  348. QueryPerformanceCounter(&t);
  349. return (t.QuadPart * 1000000) / timer_freq;
  350. }
  351. #else
  352. void ggml_time_init(void) {}
  353. int64_t ggml_time_ms(void) {
  354. struct timespec ts;
  355. clock_gettime(CLOCK_MONOTONIC, &ts);
  356. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  357. }
  358. int64_t ggml_time_us(void) {
  359. struct timespec ts;
  360. clock_gettime(CLOCK_MONOTONIC, &ts);
  361. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  362. }
  363. #endif
  364. int64_t ggml_cycles(void) {
  365. return clock();
  366. }
  367. int64_t ggml_cycles_per_ms(void) {
  368. return CLOCKS_PER_SEC/1000;
  369. }
  370. #ifdef GGML_PERF
  371. #define ggml_perf_time_ms() ggml_time_ms()
  372. #define ggml_perf_time_us() ggml_time_us()
  373. #define ggml_perf_cycles() ggml_cycles()
  374. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  375. #else
  376. #define ggml_perf_time_ms() 0
  377. #define ggml_perf_time_us() 0
  378. #define ggml_perf_cycles() 0
  379. #define ggml_perf_cycles_per_ms() 0
  380. #endif
  381. //
  382. // cache line
  383. //
  384. #if defined(__cpp_lib_hardware_interference_size)
  385. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  386. #else
  387. #if defined(__POWER9_VECTOR__)
  388. #define CACHE_LINE_SIZE 128
  389. #else
  390. #define CACHE_LINE_SIZE 64
  391. #endif
  392. #endif
  393. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  394. //
  395. // quantization
  396. //
  397. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  398. // multiply int8_t, add results pairwise twice
  399. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  400. // Get absolute values of x vectors
  401. const __m128i ax = _mm_sign_epi8(x, x);
  402. // Sign the values of the y vectors
  403. const __m128i sy = _mm_sign_epi8(y, x);
  404. // Perform multiplication and create 16-bit values
  405. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  406. const __m128i ones = _mm_set1_epi16(1);
  407. return _mm_madd_epi16(ones, dot);
  408. }
  409. #if __AVX__ || __AVX2__ || __AVX512F__
  410. // horizontally add 8 floats
  411. static inline float hsum_float_8(const __m256 x) {
  412. __m128 res = _mm256_extractf128_ps(x, 1);
  413. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  414. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  415. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  416. return _mm_cvtss_f32(res);
  417. }
  418. // horizontally add 8 int32_t
  419. static inline int hsum_i32_8(const __m256i a) {
  420. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  421. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  422. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  423. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  424. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  425. }
  426. // horizontally add 4 int32_t
  427. static inline int hsum_i32_4(const __m128i a) {
  428. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  429. const __m128i sum64 = _mm_add_epi32(hi64, a);
  430. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  431. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  432. }
  433. #if __AVX2__ || __AVX512F__
  434. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  435. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  436. uint32_t x32;
  437. memcpy(&x32, x, sizeof(uint32_t));
  438. const __m256i shuf_mask = _mm256_set_epi64x(
  439. 0x0303030303030303, 0x0202020202020202,
  440. 0x0101010101010101, 0x0000000000000000);
  441. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  442. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  443. bytes = _mm256_or_si256(bytes, bit_mask);
  444. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  445. }
  446. // Unpack 32 4-bit fields into 32 bytes
  447. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  448. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  449. {
  450. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  451. const __m256i bytes = _mm256_set_m128i(_mm_srli_epi16(tmp, 4), tmp);
  452. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  453. return _mm256_and_si256(lowMask, bytes);
  454. }
  455. // add int16_t pairwise and return as float vector
  456. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  457. const __m256i ones = _mm256_set1_epi16(1);
  458. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  459. return _mm256_cvtepi32_ps(summed_pairs);
  460. }
  461. // multiply int8_t, add results pairwise twice and return as float vector
  462. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  463. // Get absolute values of x vectors
  464. const __m256i ax = _mm256_sign_epi8(x, x);
  465. // Sign the values of the y vectors
  466. const __m256i sy = _mm256_sign_epi8(y, x);
  467. #if __AVXVNNI__
  468. const __m256i zero = _mm256_setzero_si256();
  469. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  470. return _mm256_cvtepi32_ps(summed_pairs);
  471. #else
  472. // Perform multiplication and create 16-bit values
  473. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  474. return sum_i16_pairs_float(dot);
  475. #endif
  476. }
  477. static inline __m128i packNibbles( __m256i bytes )
  478. {
  479. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  480. #if __AVX512F__
  481. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  482. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  483. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  484. #else
  485. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  486. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  487. __m256i low = _mm256_and_si256( lowByte, bytes );
  488. high = _mm256_srli_epi16( high, 4 );
  489. bytes = _mm256_or_si256( low, high );
  490. // Compress uint16_t lanes into bytes
  491. __m128i r0 = _mm256_castsi256_si128( bytes );
  492. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  493. return _mm_packus_epi16( r0, r1 );
  494. #endif
  495. }
  496. #else
  497. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  498. {
  499. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  500. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  501. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  502. __m128i low = _mm_and_si128( lowByte, bytes1 );
  503. high = _mm_srli_epi16( high, 4 );
  504. bytes1 = _mm_or_si128( low, high );
  505. high = _mm_andnot_si128( lowByte, bytes2 );
  506. low = _mm_and_si128( lowByte, bytes2 );
  507. high = _mm_srli_epi16( high, 4 );
  508. bytes2 = _mm_or_si128( low, high );
  509. return _mm_packus_epi16( bytes1, bytes2);
  510. }
  511. #endif
  512. #elif defined(__SSSE3__)
  513. // horizontally add 4x4 floats
  514. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  515. __m128 res_0 =_mm_hadd_ps(a, b);
  516. __m128 res_1 =_mm_hadd_ps(c, d);
  517. __m128 res =_mm_hadd_ps(res_0, res_1);
  518. res =_mm_hadd_ps(res, res);
  519. res =_mm_hadd_ps(res, res);
  520. return _mm_cvtss_f32(res);
  521. }
  522. #endif // __AVX__ || __AVX2__ || __AVX512F__
  523. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  524. #if __ARM_NEON
  525. #if !defined(__aarch64__)
  526. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  527. return
  528. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  529. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  530. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  531. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  532. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  533. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  534. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  535. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  536. }
  537. inline static int16_t vaddvq_s8(int8x16_t v) {
  538. return
  539. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  540. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  541. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  542. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  543. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  544. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  545. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  546. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  547. }
  548. inline static int32_t vaddvq_s16(int16x8_t v) {
  549. return
  550. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  551. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  552. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  553. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  554. }
  555. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  556. return
  557. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  558. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  559. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  560. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  561. }
  562. inline static int32_t vaddvq_s32(int32x4_t v) {
  563. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  564. }
  565. inline static float vaddvq_f32(float32x4_t v) {
  566. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  567. }
  568. float vminvq_f32(float32x4_t v) {
  569. return
  570. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  571. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  572. }
  573. float vmaxvq_f32(float32x4_t v) {
  574. return
  575. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  576. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  577. }
  578. int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  579. int32x4_t res;
  580. res[0] = roundf(vgetq_lane_f32(v, 0));
  581. res[1] = roundf(vgetq_lane_f32(v, 1));
  582. res[2] = roundf(vgetq_lane_f32(v, 2));
  583. res[3] = roundf(vgetq_lane_f32(v, 3));
  584. return res;
  585. }
  586. #endif
  587. #endif
  588. #define QK4_0 32
  589. typedef struct {
  590. float d; // delta
  591. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  592. } block_q4_0;
  593. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  594. #define QK4_1 32
  595. typedef struct {
  596. float d; // delta
  597. float m; // min
  598. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  599. } block_q4_1;
  600. static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
  601. #define QK5_0 32
  602. typedef struct {
  603. ggml_fp16_t d; // delta
  604. uint8_t qh[4]; // 5-th bit of quants
  605. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  606. } block_q5_0;
  607. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  608. #define QK5_1 32
  609. typedef struct {
  610. ggml_fp16_t d; // delta
  611. ggml_fp16_t m; // min
  612. uint8_t qh[4]; // 5-th bit of quants
  613. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  614. } block_q5_1;
  615. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  616. #define QK8_0 32
  617. typedef struct {
  618. float d; // delta
  619. int8_t qs[QK8_0]; // quants
  620. } block_q8_0;
  621. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  622. #define QK8_1 32
  623. typedef struct {
  624. float d; // delta
  625. float s; // d * sum(qs[i])
  626. int8_t qs[QK8_1]; // quants
  627. } block_q8_1;
  628. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  629. // reference implementation for deterministic creation of model files
  630. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  631. static const int qk = QK4_0;
  632. assert(k % qk == 0);
  633. const int nb = k / qk;
  634. for (int i = 0; i < nb; i++) {
  635. float amax = 0.0f; // absolute max
  636. float max = 0.0f;
  637. for (int j = 0; j < qk; j++) {
  638. const float v = x[i*qk + j];
  639. if (amax < fabsf(v)) {
  640. amax = fabsf(v);
  641. max = v;
  642. }
  643. }
  644. const float d = max / -8;
  645. const float id = d ? 1.0f/d : 0.0f;
  646. y[i].d = d;
  647. for (int j = 0; j < qk/2; ++j) {
  648. const float x0 = x[i*qk + 0 + j]*id;
  649. const float x1 = x[i*qk + qk/2 + j]*id;
  650. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  651. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  652. y[i].qs[j] = xi0;
  653. y[i].qs[j] |= xi1 << 4;
  654. }
  655. }
  656. }
  657. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  658. quantize_row_q4_0_reference(x, y, k);
  659. }
  660. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  661. const int qk = QK4_1;
  662. assert(k % qk == 0);
  663. const int nb = k / qk;
  664. for (int i = 0; i < nb; i++) {
  665. float min = FLT_MAX;
  666. float max = -FLT_MAX;
  667. for (int j = 0; j < qk; j++) {
  668. const float v = x[i*qk + j];
  669. if (v < min) min = v;
  670. if (v > max) max = v;
  671. }
  672. const float d = (max - min) / ((1 << 4) - 1);
  673. const float id = d ? 1.0f/d : 0.0f;
  674. y[i].d = d;
  675. y[i].m = min;
  676. for (int j = 0; j < qk/2; ++j) {
  677. const float x0 = (x[i*qk + 0 + j] - min)*id;
  678. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  679. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  680. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  681. y[i].qs[j] = xi0;
  682. y[i].qs[j] |= xi1 << 4;
  683. }
  684. }
  685. }
  686. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  687. quantize_row_q4_1_reference(x, y, k);
  688. }
  689. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  690. static const int qk = QK5_0;
  691. assert(k % qk == 0);
  692. const int nb = k / qk;
  693. for (int i = 0; i < nb; i++) {
  694. float amax = 0.0f; // absolute max
  695. float max = 0.0f;
  696. for (int j = 0; j < qk; j++) {
  697. const float v = x[i*qk + j];
  698. if (amax < fabsf(v)) {
  699. amax = fabsf(v);
  700. max = v;
  701. }
  702. }
  703. const float d = max / -16;
  704. const float id = d ? 1.0f/d : 0.0f;
  705. y[i].d = GGML_FP32_TO_FP16(d);
  706. uint32_t qh = 0;
  707. for (int j = 0; j < qk/2; ++j) {
  708. const float x0 = x[i*qk + 0 + j]*id;
  709. const float x1 = x[i*qk + qk/2 + j]*id;
  710. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  711. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  712. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  713. // get the 5-th bit and store it in qh at the right position
  714. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  715. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  716. }
  717. memcpy(&y[i].qh, &qh, sizeof(qh));
  718. }
  719. }
  720. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  721. quantize_row_q5_0_reference(x, y, k);
  722. }
  723. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  724. const int qk = QK5_1;
  725. assert(k % qk == 0);
  726. const int nb = k / qk;
  727. for (int i = 0; i < nb; i++) {
  728. float min = FLT_MAX;
  729. float max = -FLT_MAX;
  730. for (int j = 0; j < qk; j++) {
  731. const float v = x[i*qk + j];
  732. if (v < min) min = v;
  733. if (v > max) max = v;
  734. }
  735. const float d = (max - min) / ((1 << 5) - 1);
  736. const float id = d ? 1.0f/d : 0.0f;
  737. y[i].d = GGML_FP32_TO_FP16(d);
  738. y[i].m = GGML_FP32_TO_FP16(min);
  739. uint32_t qh = 0;
  740. for (int j = 0; j < qk/2; ++j) {
  741. const float x0 = (x[i*qk + 0 + j] - min)*id;
  742. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  743. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  744. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  745. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  746. // get the 5-th bit and store it in qh at the right position
  747. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  748. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  749. }
  750. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  751. }
  752. }
  753. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  754. quantize_row_q5_1_reference(x, y, k);
  755. }
  756. // reference implementation for deterministic creation of model files
  757. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  758. assert(k % QK8_0 == 0);
  759. const int nb = k / QK8_0;
  760. for (int i = 0; i < nb; i++) {
  761. float amax = 0.0f; // absolute max
  762. for (int j = 0; j < QK8_0; j++) {
  763. const float v = x[i*QK8_0 + j];
  764. amax = MAX(amax, fabsf(v));
  765. }
  766. const float d = amax / ((1 << 7) - 1);
  767. const float id = d ? 1.0f/d : 0.0f;
  768. y[i].d = d;
  769. for (int j = 0; j < QK8_0; ++j) {
  770. const float x0 = x[i*QK8_0 + j]*id;
  771. y[i].qs[j] = roundf(x0);
  772. }
  773. }
  774. }
  775. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  776. assert(QK8_0 == 32);
  777. assert(k % QK8_0 == 0);
  778. const int nb = k / QK8_0;
  779. block_q8_0 * restrict y = vy;
  780. #if defined(__ARM_NEON)
  781. for (int i = 0; i < nb; i++) {
  782. float32x4_t srcv [8];
  783. float32x4_t asrcv[8];
  784. float32x4_t amaxv[8];
  785. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  786. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  787. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  788. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  789. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  790. const float amax = vmaxvq_f32(amaxv[0]);
  791. const float d = amax / ((1 << 7) - 1);
  792. const float id = d ? 1.0f/d : 0.0f;
  793. y[i].d = d;
  794. for (int j = 0; j < 8; j++) {
  795. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  796. const int32x4_t vi = vcvtnq_s32_f32(v);
  797. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  798. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  799. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  800. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  801. }
  802. }
  803. #elif defined(__AVX2__) || defined(__AVX__)
  804. for (int i = 0; i < nb; i++) {
  805. // Load elements into 4 AVX vectors
  806. __m256 v0 = _mm256_loadu_ps( x );
  807. __m256 v1 = _mm256_loadu_ps( x + 8 );
  808. __m256 v2 = _mm256_loadu_ps( x + 16 );
  809. __m256 v3 = _mm256_loadu_ps( x + 24 );
  810. x += 32;
  811. // Compute max(abs(e)) for the block
  812. const __m256 signBit = _mm256_set1_ps( -0.0f );
  813. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  814. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  815. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  816. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  817. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  818. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  819. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  820. const float maxScalar = _mm_cvtss_f32( max4 );
  821. // Quantize these floats
  822. const float d = maxScalar / 127.f;
  823. y[i].d = d;
  824. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  825. const __m256 mul = _mm256_set1_ps( id );
  826. // Apply the multiplier
  827. v0 = _mm256_mul_ps( v0, mul );
  828. v1 = _mm256_mul_ps( v1, mul );
  829. v2 = _mm256_mul_ps( v2, mul );
  830. v3 = _mm256_mul_ps( v3, mul );
  831. // Round to nearest integer
  832. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  833. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  834. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  835. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  836. // Convert floats to integers
  837. __m256i i0 = _mm256_cvtps_epi32( v0 );
  838. __m256i i1 = _mm256_cvtps_epi32( v1 );
  839. __m256i i2 = _mm256_cvtps_epi32( v2 );
  840. __m256i i3 = _mm256_cvtps_epi32( v3 );
  841. #if defined(__AVX2__)
  842. // Convert int32 to int16
  843. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  844. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  845. // Convert int16 to int8
  846. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  847. // We got our precious signed bytes, but the order is now wrong
  848. // These AVX2 pack instructions process 16-byte pieces independently
  849. // The following instruction is fixing the order
  850. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  851. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  852. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  853. #else
  854. // Since we don't have in AVX some necessary functions,
  855. // we split the registers in half and call AVX2 analogs from SSE
  856. __m128i ni0 = _mm256_castsi256_si128( i0 );
  857. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  858. __m128i ni2 = _mm256_castsi256_si128( i1 );
  859. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  860. __m128i ni4 = _mm256_castsi256_si128( i2 );
  861. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  862. __m128i ni6 = _mm256_castsi256_si128( i3 );
  863. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  864. // Convert int32 to int16
  865. ni0 = _mm_packs_epi32( ni0, ni1 );
  866. ni2 = _mm_packs_epi32( ni2, ni3 );
  867. ni4 = _mm_packs_epi32( ni4, ni5 );
  868. ni6 = _mm_packs_epi32( ni6, ni7 );
  869. // Convert int16 to int8
  870. ni0 = _mm_packs_epi16( ni0, ni2 );
  871. ni4 = _mm_packs_epi16( ni4, ni6 );
  872. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  873. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  874. #endif
  875. }
  876. #else
  877. // scalar
  878. quantize_row_q8_0_reference(x, y, k);
  879. #endif
  880. }
  881. // reference implementation for deterministic creation of model files
  882. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  883. assert(QK8_1 == 32);
  884. assert(k % QK8_1 == 0);
  885. const int nb = k / QK8_1;
  886. for (int i = 0; i < nb; i++) {
  887. float amax = 0.0f; // absolute max
  888. for (int j = 0; j < QK8_1; j++) {
  889. const float v = x[i*QK8_1 + j];
  890. amax = MAX(amax, fabsf(v));
  891. }
  892. const float d = amax / ((1 << 7) - 1);
  893. const float id = d ? 1.0f/d : 0.0f;
  894. y[i].d = d;
  895. int sum = 0;
  896. for (int j = 0; j < QK8_1/2; ++j) {
  897. const float v0 = x[i*QK8_1 + j]*id;
  898. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  899. y[i].qs[ j] = roundf(v0);
  900. y[i].qs[QK8_1/2 + j] = roundf(v1);
  901. sum += y[i].qs[ j];
  902. sum += y[i].qs[QK8_1/2 + j];
  903. }
  904. y[i].s = d * sum;
  905. }
  906. }
  907. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  908. assert(k % QK8_1 == 0);
  909. const int nb = k / QK8_1;
  910. block_q8_1 * restrict y = vy;
  911. #if defined(__ARM_NEON)
  912. for (int i = 0; i < nb; i++) {
  913. float32x4_t srcv [8];
  914. float32x4_t asrcv[8];
  915. float32x4_t amaxv[8];
  916. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  917. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  918. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  919. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  920. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  921. const float amax = vmaxvq_f32(amaxv[0]);
  922. const float d = amax / ((1 << 7) - 1);
  923. const float id = d ? 1.0f/d : 0.0f;
  924. y[i].d = d;
  925. int32x4_t accv = vdupq_n_s32(0);
  926. for (int j = 0; j < 8; j++) {
  927. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  928. const int32x4_t vi = vcvtnq_s32_f32(v);
  929. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  930. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  931. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  932. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  933. accv = vaddq_s32(accv, vi);
  934. }
  935. y[i].s = d * vaddvq_s32(accv);
  936. }
  937. #elif defined(__AVX2__) || defined(__AVX__)
  938. for (int i = 0; i < nb; i++) {
  939. // Load elements into 4 AVX vectors
  940. __m256 v0 = _mm256_loadu_ps( x );
  941. __m256 v1 = _mm256_loadu_ps( x + 8 );
  942. __m256 v2 = _mm256_loadu_ps( x + 16 );
  943. __m256 v3 = _mm256_loadu_ps( x + 24 );
  944. x += 32;
  945. // Compute max(abs(e)) for the block
  946. const __m256 signBit = _mm256_set1_ps( -0.0f );
  947. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  948. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  949. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  950. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  951. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  952. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  953. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  954. const float maxScalar = _mm_cvtss_f32( max4 );
  955. // Quantize these floats
  956. const float d = maxScalar / 127.f;
  957. y[i].d = d;
  958. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  959. const __m256 mul = _mm256_set1_ps( id );
  960. // Apply the multiplier
  961. v0 = _mm256_mul_ps( v0, mul );
  962. v1 = _mm256_mul_ps( v1, mul );
  963. v2 = _mm256_mul_ps( v2, mul );
  964. v3 = _mm256_mul_ps( v3, mul );
  965. // Round to nearest integer
  966. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  967. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  968. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  969. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  970. // Convert floats to integers
  971. __m256i i0 = _mm256_cvtps_epi32( v0 );
  972. __m256i i1 = _mm256_cvtps_epi32( v1 );
  973. __m256i i2 = _mm256_cvtps_epi32( v2 );
  974. __m256i i3 = _mm256_cvtps_epi32( v3 );
  975. #if defined(__AVX2__)
  976. // Compute the sum of the quants and set y[i].s
  977. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  978. // Convert int32 to int16
  979. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  980. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  981. // Convert int16 to int8
  982. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  983. // We got our precious signed bytes, but the order is now wrong
  984. // These AVX2 pack instructions process 16-byte pieces independently
  985. // The following instruction is fixing the order
  986. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  987. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  988. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  989. #else
  990. // Since we don't have in AVX some necessary functions,
  991. // we split the registers in half and call AVX2 analogs from SSE
  992. __m128i ni0 = _mm256_castsi256_si128( i0 );
  993. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  994. __m128i ni2 = _mm256_castsi256_si128( i1 );
  995. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  996. __m128i ni4 = _mm256_castsi256_si128( i2 );
  997. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  998. __m128i ni6 = _mm256_castsi256_si128( i3 );
  999. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1000. // Compute the sum of the quants and set y[i].s
  1001. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1002. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1003. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1004. // Convert int32 to int16
  1005. ni0 = _mm_packs_epi32( ni0, ni1 );
  1006. ni2 = _mm_packs_epi32( ni2, ni3 );
  1007. ni4 = _mm_packs_epi32( ni4, ni5 );
  1008. ni6 = _mm_packs_epi32( ni6, ni7 );
  1009. // Convert int16 to int8
  1010. ni0 = _mm_packs_epi16( ni0, ni2 );
  1011. ni4 = _mm_packs_epi16( ni4, ni6 );
  1012. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1013. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1014. #endif
  1015. }
  1016. #else
  1017. // scalar
  1018. quantize_row_q8_1_reference(x, y, k);
  1019. #endif
  1020. }
  1021. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1022. static const int qk = QK4_0;
  1023. assert(k % qk == 0);
  1024. const int nb = k / qk;
  1025. for (int i = 0; i < nb; i++) {
  1026. const float d = x[i].d;
  1027. for (int j = 0; j < qk/2; ++j) {
  1028. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1029. const int x1 = (x[i].qs[j] >> 4) - 8;
  1030. y[i*qk + j + 0 ] = x0*d;
  1031. y[i*qk + j + qk/2] = x1*d;
  1032. }
  1033. }
  1034. }
  1035. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1036. static const int qk = QK4_1;
  1037. assert(k % qk == 0);
  1038. const int nb = k / qk;
  1039. for (int i = 0; i < nb; i++) {
  1040. const float d = x[i].d;
  1041. const float m = x[i].m;
  1042. for (int j = 0; j < qk/2; ++j) {
  1043. const int x0 = (x[i].qs[j] & 0x0F);
  1044. const int x1 = (x[i].qs[j] >> 4);
  1045. y[i*qk + j + 0 ] = x0*d + m;
  1046. y[i*qk + j + qk/2] = x1*d + m;
  1047. }
  1048. }
  1049. }
  1050. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1051. static const int qk = QK5_0;
  1052. assert(k % qk == 0);
  1053. const int nb = k / qk;
  1054. for (int i = 0; i < nb; i++) {
  1055. const float d = GGML_FP16_TO_FP32(x[i].d);
  1056. uint32_t qh;
  1057. memcpy(&qh, x[i].qh, sizeof(qh));
  1058. for (int j = 0; j < qk/2; ++j) {
  1059. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1060. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1061. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1062. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1063. y[i*qk + j + 0 ] = x0*d;
  1064. y[i*qk + j + qk/2] = x1*d;
  1065. }
  1066. }
  1067. }
  1068. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1069. static const int qk = QK5_1;
  1070. assert(k % qk == 0);
  1071. const int nb = k / qk;
  1072. for (int i = 0; i < nb; i++) {
  1073. const float d = GGML_FP16_TO_FP32(x[i].d);
  1074. const float m = GGML_FP16_TO_FP32(x[i].m);
  1075. uint32_t qh;
  1076. memcpy(&qh, x[i].qh, sizeof(qh));
  1077. for (int j = 0; j < qk/2; ++j) {
  1078. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1079. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1080. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1081. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1082. y[i*qk + j + 0 ] = x0*d + m;
  1083. y[i*qk + j + qk/2] = x1*d + m;
  1084. }
  1085. }
  1086. }
  1087. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1088. static const int qk = QK8_0;
  1089. assert(k % qk == 0);
  1090. const int nb = k / qk;
  1091. const block_q8_0 * restrict x = vx;
  1092. for (int i = 0; i < nb; i++) {
  1093. const float d = x[i].d;
  1094. for (int j = 0; j < qk; ++j) {
  1095. y[i*qk + j] = x[i].qs[j]*d;
  1096. }
  1097. }
  1098. }
  1099. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1100. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1101. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1102. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1103. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1104. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1105. [GGML_TYPE_Q4_0] = {
  1106. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0,
  1107. .quantize_row_q = quantize_row_q4_0,
  1108. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1109. .quantize_row_q_dot = quantize_row_q8_0,
  1110. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1111. .vec_dot_type = GGML_TYPE_Q8_0,
  1112. },
  1113. [GGML_TYPE_Q4_1] = {
  1114. .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1,
  1115. .quantize_row_q = quantize_row_q4_1,
  1116. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1117. .quantize_row_q_dot = quantize_row_q8_1,
  1118. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1119. .vec_dot_type = GGML_TYPE_Q8_1,
  1120. },
  1121. [GGML_TYPE_Q5_0] = {
  1122. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0,
  1123. .quantize_row_q = quantize_row_q5_0,
  1124. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1125. .quantize_row_q_dot = quantize_row_q8_0,
  1126. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1127. .vec_dot_type = GGML_TYPE_Q8_0,
  1128. },
  1129. [GGML_TYPE_Q5_1] = {
  1130. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1,
  1131. .quantize_row_q = quantize_row_q5_1,
  1132. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1133. .quantize_row_q_dot = quantize_row_q8_1,
  1134. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1135. .vec_dot_type = GGML_TYPE_Q8_1,
  1136. },
  1137. [GGML_TYPE_Q8_0] = {
  1138. .dequantize_row_q = dequantize_row_q8_0,
  1139. .quantize_row_q = quantize_row_q8_0,
  1140. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1141. .quantize_row_q_dot = quantize_row_q8_0,
  1142. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1143. .vec_dot_type = GGML_TYPE_Q8_0,
  1144. },
  1145. [GGML_TYPE_Q8_1] = {
  1146. .dequantize_row_q = NULL, // TODO
  1147. .quantize_row_q = quantize_row_q8_1,
  1148. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1149. .quantize_row_q_dot = quantize_row_q8_1,
  1150. .vec_dot_q = NULL, // TODO
  1151. .vec_dot_type = GGML_TYPE_Q8_1,
  1152. },
  1153. };
  1154. // For internal test use
  1155. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1156. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1157. return quantize_fns[i];
  1158. }
  1159. //
  1160. // simd mappings
  1161. //
  1162. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1163. // we then implement the fundamental computation operations below using only these macros
  1164. // adding support for new architectures requires to define the corresponding SIMD macros
  1165. //
  1166. // GGML_F32_STEP / GGML_F16_STEP
  1167. // number of elements to process in a single step
  1168. //
  1169. // GGML_F32_EPR / GGML_F16_EPR
  1170. // number of elements to fit in a single register
  1171. //
  1172. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1173. #define GGML_SIMD
  1174. // F32 NEON
  1175. #define GGML_F32_STEP 16
  1176. #define GGML_F32_EPR 4
  1177. #define GGML_F32x4 float32x4_t
  1178. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1179. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1180. #define GGML_F32x4_LOAD vld1q_f32
  1181. #define GGML_F32x4_STORE vst1q_f32
  1182. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1183. #define GGML_F32x4_ADD vaddq_f32
  1184. #define GGML_F32x4_MUL vmulq_f32
  1185. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1186. #define GGML_F32x4_REDUCE(res, x) \
  1187. { \
  1188. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1189. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1190. } \
  1191. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1192. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1193. } \
  1194. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1195. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1196. } \
  1197. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1198. }
  1199. #define GGML_F32_VEC GGML_F32x4
  1200. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1201. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1202. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1203. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1204. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1205. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1206. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1207. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1208. // F16 NEON
  1209. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1210. #define GGML_F16_STEP 32
  1211. #define GGML_F16_EPR 8
  1212. #define GGML_F16x8 float16x8_t
  1213. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1214. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1215. #define GGML_F16x8_LOAD vld1q_f16
  1216. #define GGML_F16x8_STORE vst1q_f16
  1217. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1218. #define GGML_F16x8_ADD vaddq_f16
  1219. #define GGML_F16x8_MUL vmulq_f16
  1220. #define GGML_F16x8_REDUCE(res, x) \
  1221. { \
  1222. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1223. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1224. } \
  1225. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1226. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1227. } \
  1228. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1229. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1230. } \
  1231. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1232. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1233. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1234. }
  1235. #define GGML_F16_VEC GGML_F16x8
  1236. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1237. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1238. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1239. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1240. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1241. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1242. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1243. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1244. #else
  1245. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1246. // and take advantage of the vcvt_ functions to convert to/from FP16
  1247. #define GGML_F16_STEP 16
  1248. #define GGML_F16_EPR 4
  1249. #define GGML_F32Cx4 float32x4_t
  1250. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1251. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1252. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1253. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1254. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1255. #define GGML_F32Cx4_ADD vaddq_f32
  1256. #define GGML_F32Cx4_MUL vmulq_f32
  1257. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1258. #define GGML_F16_VEC GGML_F32Cx4
  1259. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1260. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1261. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1262. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1263. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1264. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1265. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1266. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1267. #endif
  1268. #elif defined(__AVX__)
  1269. #define GGML_SIMD
  1270. // F32 AVX
  1271. #define GGML_F32_STEP 32
  1272. #define GGML_F32_EPR 8
  1273. #define GGML_F32x8 __m256
  1274. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1275. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1276. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1277. #define GGML_F32x8_STORE _mm256_storeu_ps
  1278. #if defined(__FMA__)
  1279. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1280. #else
  1281. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1282. #endif
  1283. #define GGML_F32x8_ADD _mm256_add_ps
  1284. #define GGML_F32x8_MUL _mm256_mul_ps
  1285. #define GGML_F32x8_REDUCE(res, x) \
  1286. { \
  1287. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1288. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1289. } \
  1290. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1291. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1292. } \
  1293. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1294. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1295. } \
  1296. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1297. _mm256_extractf128_ps(x[0], 1)); \
  1298. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1299. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1300. }
  1301. // TODO: is this optimal ?
  1302. #define GGML_F32_VEC GGML_F32x8
  1303. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1304. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1305. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1306. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1307. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1308. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1309. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1310. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1311. // F16 AVX
  1312. #define GGML_F16_STEP 32
  1313. #define GGML_F16_EPR 8
  1314. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1315. #define GGML_F32Cx8 __m256
  1316. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1317. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1318. #if defined(__F16C__)
  1319. // the _mm256_cvt intrinsics require F16C
  1320. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1321. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1322. #else
  1323. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1324. float tmp[8];
  1325. for (int i = 0; i < 8; i++)
  1326. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1327. return _mm256_loadu_ps(tmp);
  1328. }
  1329. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1330. float arr[8];
  1331. _mm256_storeu_ps(arr, y);
  1332. for (int i = 0; i < 8; i++)
  1333. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1334. }
  1335. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1336. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1337. #endif
  1338. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1339. #define GGML_F32Cx8_ADD _mm256_add_ps
  1340. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1341. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1342. #define GGML_F16_VEC GGML_F32Cx8
  1343. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1344. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1345. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1346. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1347. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1348. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1349. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1350. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1351. #elif defined(__POWER9_VECTOR__)
  1352. #define GGML_SIMD
  1353. // F32 POWER9
  1354. #define GGML_F32_STEP 32
  1355. #define GGML_F32_EPR 4
  1356. #define GGML_F32x4 vector float
  1357. #define GGML_F32x4_ZERO 0.0f
  1358. #define GGML_F32x4_SET1 vec_splats
  1359. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1360. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1361. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1362. #define GGML_F32x4_ADD vec_add
  1363. #define GGML_F32x4_MUL vec_mul
  1364. #define GGML_F32x4_REDUCE(res, x) \
  1365. { \
  1366. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1367. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1368. } \
  1369. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1370. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1371. } \
  1372. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1373. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1374. } \
  1375. res = vec_extract(x[0], 0) + \
  1376. vec_extract(x[0], 1) + \
  1377. vec_extract(x[0], 2) + \
  1378. vec_extract(x[0], 3); \
  1379. }
  1380. #define GGML_F32_VEC GGML_F32x4
  1381. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1382. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1383. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1384. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1385. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1386. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1387. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1388. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1389. // F16 POWER9
  1390. #define GGML_F16_STEP GGML_F32_STEP
  1391. #define GGML_F16_EPR GGML_F32_EPR
  1392. #define GGML_F16_VEC GGML_F32x4
  1393. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1394. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1395. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1396. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1397. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1398. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1399. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1400. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1401. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1402. #define GGML_F16_VEC_STORE(p, r, i) \
  1403. if (i & 0x1) \
  1404. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1405. r[i - GGML_ENDIAN_BYTE(0)]), \
  1406. 0, p - GGML_F16_EPR)
  1407. #elif defined(__wasm_simd128__)
  1408. #define GGML_SIMD
  1409. // F32 WASM
  1410. #define GGML_F32_STEP 16
  1411. #define GGML_F32_EPR 4
  1412. #define GGML_F32x4 v128_t
  1413. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1414. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1415. #define GGML_F32x4_LOAD wasm_v128_load
  1416. #define GGML_F32x4_STORE wasm_v128_store
  1417. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1418. #define GGML_F32x4_ADD wasm_f32x4_add
  1419. #define GGML_F32x4_MUL wasm_f32x4_mul
  1420. #define GGML_F32x4_REDUCE(res, x) \
  1421. { \
  1422. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1423. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1424. } \
  1425. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1426. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1427. } \
  1428. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1429. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1430. } \
  1431. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1432. wasm_f32x4_extract_lane(x[0], 1) + \
  1433. wasm_f32x4_extract_lane(x[0], 2) + \
  1434. wasm_f32x4_extract_lane(x[0], 3); \
  1435. }
  1436. #define GGML_F32_VEC GGML_F32x4
  1437. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1438. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1439. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1440. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1441. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1442. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1443. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1444. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1445. // F16 WASM
  1446. #define GGML_F16_STEP 16
  1447. #define GGML_F16_EPR 4
  1448. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1449. float tmp[4];
  1450. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1451. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1452. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1453. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1454. return wasm_v128_load(tmp);
  1455. }
  1456. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1457. float tmp[4];
  1458. wasm_v128_store(tmp, x);
  1459. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1460. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1461. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1462. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1463. }
  1464. #define GGML_F16x4 v128_t
  1465. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1466. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1467. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1468. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1469. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1470. #define GGML_F16x4_ADD wasm_f32x4_add
  1471. #define GGML_F16x4_MUL wasm_f32x4_mul
  1472. #define GGML_F16x4_REDUCE(res, x) \
  1473. { \
  1474. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1475. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1476. } \
  1477. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1478. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1479. } \
  1480. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1481. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1482. } \
  1483. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1484. wasm_f32x4_extract_lane(x[0], 1) + \
  1485. wasm_f32x4_extract_lane(x[0], 2) + \
  1486. wasm_f32x4_extract_lane(x[0], 3); \
  1487. }
  1488. #define GGML_F16_VEC GGML_F16x4
  1489. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1490. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1491. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1492. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1493. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1494. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1495. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1496. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1497. #elif defined(__SSE3__)
  1498. #define GGML_SIMD
  1499. // F32 SSE
  1500. #define GGML_F32_STEP 32
  1501. #define GGML_F32_EPR 4
  1502. #define GGML_F32x4 __m128
  1503. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1504. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1505. #define GGML_F32x4_LOAD _mm_loadu_ps
  1506. #define GGML_F32x4_STORE _mm_storeu_ps
  1507. #if defined(__FMA__)
  1508. // TODO: Does this work?
  1509. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1510. #else
  1511. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1512. #endif
  1513. #define GGML_F32x4_ADD _mm_add_ps
  1514. #define GGML_F32x4_MUL _mm_mul_ps
  1515. #define GGML_F32x4_REDUCE(res, x) \
  1516. { \
  1517. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1518. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1519. } \
  1520. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1521. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1522. } \
  1523. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1524. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1525. } \
  1526. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1527. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1528. }
  1529. // TODO: is this optimal ?
  1530. #define GGML_F32_VEC GGML_F32x4
  1531. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1532. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1533. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1534. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1535. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1536. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1537. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1538. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1539. // F16 SSE
  1540. #define GGML_F16_STEP 32
  1541. #define GGML_F16_EPR 4
  1542. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1543. float tmp[4];
  1544. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1545. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1546. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1547. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1548. return _mm_loadu_ps(tmp);
  1549. }
  1550. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1551. float arr[4];
  1552. _mm_storeu_ps(arr, y);
  1553. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1554. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1555. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1556. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1557. }
  1558. #define GGML_F32Cx4 __m128
  1559. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1560. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1561. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1562. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1563. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1564. #define GGML_F32Cx4_ADD _mm_add_ps
  1565. #define GGML_F32Cx4_MUL _mm_mul_ps
  1566. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1567. #define GGML_F16_VEC GGML_F32Cx4
  1568. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1569. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1570. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1571. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1572. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1573. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1574. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1575. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1576. #endif
  1577. // GGML_F32_ARR / GGML_F16_ARR
  1578. // number of registers to use per step
  1579. #ifdef GGML_SIMD
  1580. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1581. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1582. #endif
  1583. //
  1584. // fundamental operations
  1585. //
  1586. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1587. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1588. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1589. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1590. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1591. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1592. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1593. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1594. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1595. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1596. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1597. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1598. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1599. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1600. #ifdef GGML_SIMD
  1601. float sumf = 0.0f;
  1602. const int np = (n & ~(GGML_F32_STEP - 1));
  1603. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1604. GGML_F32_VEC ax[GGML_F32_ARR];
  1605. GGML_F32_VEC ay[GGML_F32_ARR];
  1606. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1607. for (int j = 0; j < GGML_F32_ARR; j++) {
  1608. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1609. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1610. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1611. }
  1612. }
  1613. // reduce sum0..sum3 to sum0
  1614. GGML_F32_VEC_REDUCE(sumf, sum);
  1615. // leftovers
  1616. for (int i = np; i < n; ++i) {
  1617. sumf += x[i]*y[i];
  1618. }
  1619. #else
  1620. // scalar
  1621. ggml_float sumf = 0.0;
  1622. for (int i = 0; i < n; ++i) {
  1623. sumf += (ggml_float)(x[i]*y[i]);
  1624. }
  1625. #endif
  1626. *s = sumf;
  1627. }
  1628. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1629. ggml_float sumf = 0.0;
  1630. #if defined(GGML_SIMD)
  1631. const int np = (n & ~(GGML_F16_STEP - 1));
  1632. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1633. GGML_F16_VEC ax[GGML_F16_ARR];
  1634. GGML_F16_VEC ay[GGML_F16_ARR];
  1635. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1636. for (int j = 0; j < GGML_F16_ARR; j++) {
  1637. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1638. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1639. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1640. }
  1641. }
  1642. // reduce sum0..sum3 to sum0
  1643. GGML_F16_VEC_REDUCE(sumf, sum);
  1644. // leftovers
  1645. for (int i = np; i < n; ++i) {
  1646. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1647. }
  1648. #else
  1649. for (int i = 0; i < n; ++i) {
  1650. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1651. }
  1652. #endif
  1653. *s = sumf;
  1654. }
  1655. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1656. const int qk = QK8_0;
  1657. const int nb = n / qk;
  1658. assert(n % qk == 0);
  1659. assert(nb % 2 == 0);
  1660. const block_q4_0 * restrict x = vx;
  1661. const block_q8_0 * restrict y = vy;
  1662. #if defined(__ARM_NEON)
  1663. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1664. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1665. for (int i = 0; i < nb; i += 2) {
  1666. const block_q4_0 * restrict x0 = &x[i + 0];
  1667. const block_q4_0 * restrict x1 = &x[i + 1];
  1668. const block_q8_0 * restrict y0 = &y[i + 0];
  1669. const block_q8_0 * restrict y1 = &y[i + 1];
  1670. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1671. const int8x16_t s8b = vdupq_n_s8(0x8);
  1672. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1673. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1674. // 4-bit -> 8-bit
  1675. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1676. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1677. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1678. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1679. // sub 8
  1680. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1681. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1682. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1683. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1684. // load y
  1685. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1686. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1687. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1688. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1689. #if defined(__ARM_FEATURE_DOTPROD)
  1690. // dot product into int32x4_t
  1691. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1692. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1693. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  1694. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  1695. #else
  1696. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1697. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1698. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1699. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1700. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1701. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  1702. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  1703. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  1704. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1705. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1706. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1707. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1708. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  1709. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  1710. #endif
  1711. }
  1712. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1713. #elif defined(__AVX2__)
  1714. // Initialize accumulator with zeros
  1715. __m256 acc = _mm256_setzero_ps();
  1716. // Main loop
  1717. for (int i = 0; i < nb; ++i) {
  1718. /* Compute combined scale for the block */
  1719. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1720. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1721. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1722. const __m256i off = _mm256_set1_epi8( 8 );
  1723. bx = _mm256_sub_epi8( bx, off );
  1724. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1725. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  1726. /* Multiply q with scale and accumulate */
  1727. acc = _mm256_fmadd_ps( d, q, acc );
  1728. }
  1729. *s = hsum_float_8(acc);
  1730. #elif defined(__AVX__)
  1731. // Initialize accumulator with zeros
  1732. __m256 acc = _mm256_setzero_ps();
  1733. // Main loop
  1734. for (int i = 0; i < nb; ++i) {
  1735. // Compute combined scale for the block
  1736. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1737. const __m128i lowMask = _mm_set1_epi8(0xF);
  1738. const __m128i off = _mm_set1_epi8(8);
  1739. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  1740. __m128i bx = _mm_and_si128(lowMask, tmp);
  1741. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  1742. bx = _mm_sub_epi8(bx, off);
  1743. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  1744. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  1745. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1746. bx = _mm_sub_epi8(bx, off);
  1747. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  1748. // Convert int32_t to float
  1749. __m256 p = _mm256_cvtepi32_ps(_mm256_set_m128i(i32_0, i32_1));
  1750. // Apply the scale, and accumulate
  1751. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1752. }
  1753. *s = hsum_float_8(acc);
  1754. #elif defined(__SSSE3__)
  1755. // set constants
  1756. const __m128i lowMask = _mm_set1_epi8(0xF);
  1757. const __m128i off = _mm_set1_epi8(8);
  1758. // Initialize accumulator with zeros
  1759. __m128 acc_0 = _mm_setzero_ps();
  1760. __m128 acc_1 = _mm_setzero_ps();
  1761. __m128 acc_2 = _mm_setzero_ps();
  1762. __m128 acc_3 = _mm_setzero_ps();
  1763. // First round without accumulation
  1764. {
  1765. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  1766. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  1767. // Compute combined scale for the block 0 and 1
  1768. const __m128 d_0_1 = _mm_mul_ps( _mm_set1_ps( x[0].d ), _mm_set1_ps( y[0].d ) );
  1769. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  1770. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1771. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  1772. bx_0 = _mm_sub_epi8(bx_0, off);
  1773. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1774. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1775. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  1776. bx_1 = _mm_sub_epi8(bx_1, off);
  1777. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1778. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  1779. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  1780. // Compute combined scale for the block 2 and 3
  1781. const __m128 d_2_3 = _mm_mul_ps( _mm_set1_ps( x[1].d ), _mm_set1_ps( y[1].d ) );
  1782. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  1783. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1784. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  1785. bx_2 = _mm_sub_epi8(bx_2, off);
  1786. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1787. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1788. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  1789. bx_3 = _mm_sub_epi8(bx_3, off);
  1790. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1791. // Convert int32_t to float
  1792. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1793. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1794. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1795. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1796. // Apply the scale
  1797. acc_0 = _mm_mul_ps( d_0_1, p0 );
  1798. acc_1 = _mm_mul_ps( d_0_1, p1 );
  1799. acc_2 = _mm_mul_ps( d_2_3, p2 );
  1800. acc_3 = _mm_mul_ps( d_2_3, p3 );
  1801. }
  1802. // Main loop
  1803. for (int i = 2; i < nb; i+=2) {
  1804. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  1805. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  1806. // Compute combined scale for the block 0 and 1
  1807. const __m128 d_0_1 = _mm_mul_ps( _mm_set1_ps( x[i].d ), _mm_set1_ps( y[i].d ) );
  1808. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  1809. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1810. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  1811. bx_0 = _mm_sub_epi8(bx_0, off);
  1812. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1813. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1814. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1815. bx_1 = _mm_sub_epi8(bx_1, off);
  1816. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1817. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  1818. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  1819. // Compute combined scale for the block 2 and 3
  1820. const __m128 d_2_3 = _mm_mul_ps( _mm_set1_ps( x[i + 1].d ), _mm_set1_ps( y[i + 1].d ) );
  1821. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  1822. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1823. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  1824. bx_2 = _mm_sub_epi8(bx_2, off);
  1825. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1826. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1827. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  1828. bx_3 = _mm_sub_epi8(bx_3, off);
  1829. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1830. // Convert int32_t to float
  1831. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1832. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1833. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1834. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1835. // Apply the scale
  1836. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  1837. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  1838. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  1839. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  1840. // Acummulate
  1841. acc_0 = _mm_add_ps(p0_d, acc_0);
  1842. acc_1 = _mm_add_ps(p1_d, acc_1);
  1843. acc_2 = _mm_add_ps(p2_d, acc_2);
  1844. acc_3 = _mm_add_ps(p3_d, acc_3);
  1845. }
  1846. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  1847. #else
  1848. // scalar
  1849. float sumf = 0.0;
  1850. for (int i = 0; i < nb; i++) {
  1851. int sumi = 0;
  1852. for (int j = 0; j < qk/2; ++j) {
  1853. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  1854. const int v1 = (x[i].qs[j] >> 4) - 8;
  1855. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  1856. }
  1857. sumf += (x[i].d*y[i].d)*sumi;
  1858. }
  1859. *s = sumf;
  1860. #endif
  1861. }
  1862. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1863. const int qk = QK8_1;
  1864. const int nb = n / qk;
  1865. assert(n % qk == 0);
  1866. assert(nb % 2 == 0);
  1867. const block_q4_1 * restrict x = vx;
  1868. const block_q8_1 * restrict y = vy;
  1869. // TODO: add WASM SIMD
  1870. #if defined(__ARM_NEON)
  1871. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1872. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1873. float summs = 0;
  1874. for (int i = 0; i < nb; i += 2) {
  1875. const block_q4_1 * restrict x0 = &x[i + 0];
  1876. const block_q4_1 * restrict x1 = &x[i + 1];
  1877. const block_q8_1 * restrict y0 = &y[i + 0];
  1878. const block_q8_1 * restrict y1 = &y[i + 1];
  1879. summs += x0->m * y0->s + x1->m * y1->s;
  1880. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1881. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1882. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1883. // 4-bit -> 8-bit
  1884. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1885. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1886. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1887. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1888. // load y
  1889. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1890. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1891. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1892. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1893. #if defined(__ARM_FEATURE_DOTPROD)
  1894. // dot product into int32x4_t
  1895. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  1896. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  1897. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  1898. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  1899. #else
  1900. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  1901. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  1902. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  1903. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  1904. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  1905. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  1906. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  1907. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  1908. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1909. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1910. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1911. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1912. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  1913. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  1914. #endif
  1915. }
  1916. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  1917. #elif defined(__AVX2__)
  1918. // Initialize accumulator with zeros
  1919. __m256 acc = _mm256_setzero_ps();
  1920. float summs = 0;
  1921. // Main loop
  1922. for (int i = 0; i < nb; ++i) {
  1923. const float * d0 = &x[i].d;
  1924. const float * d1 = &y[i].d;
  1925. summs += x[i].m * y[i].s;
  1926. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1927. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1928. // Compute combined scales
  1929. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  1930. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1931. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1932. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  1933. const __m256 xy = mul_sum_i8_pairs_float(bx, by);
  1934. // Accumulate d0*d1*x*y
  1935. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  1936. }
  1937. *s = hsum_float_8(acc) + summs;
  1938. #else
  1939. // scalar
  1940. float sumf = 0.0;
  1941. for (int i = 0; i < nb; i++) {
  1942. int sumi = 0;
  1943. for (int j = 0; j < qk/2; ++j) {
  1944. const int v0 = (x[i].qs[j] & 0x0F);
  1945. const int v1 = (x[i].qs[j] >> 4);
  1946. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  1947. }
  1948. sumf += (x[i].d*y[i].d)*sumi + x[i].m*y[i].s;
  1949. }
  1950. *s = sumf;
  1951. #endif
  1952. }
  1953. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1954. const int qk = QK8_0;
  1955. const int nb = n / qk;
  1956. assert(n % qk == 0);
  1957. assert(nb % 2 == 0);
  1958. assert(qk == QK5_0);
  1959. const block_q5_0 * restrict x = vx;
  1960. const block_q8_0 * restrict y = vy;
  1961. #if defined(__ARM_NEON)
  1962. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1963. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1964. uint32_t qh0;
  1965. uint32_t qh1;
  1966. uint64_t tmp0[4];
  1967. uint64_t tmp1[4];
  1968. for (int i = 0; i < nb; i += 2) {
  1969. const block_q5_0 * restrict x0 = &x[i];
  1970. const block_q5_0 * restrict x1 = &x[i + 1];
  1971. const block_q8_0 * restrict y0 = &y[i];
  1972. const block_q8_0 * restrict y1 = &y[i + 1];
  1973. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1974. // extract the 5th bit via lookup table ((!b) << 4)
  1975. memcpy(&qh0, x0->qh, sizeof(qh0));
  1976. memcpy(&qh1, x1->qh, sizeof(qh1));
  1977. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  1978. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  1979. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  1980. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  1981. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  1982. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  1983. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  1984. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  1985. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  1986. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  1987. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  1988. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  1989. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1990. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1991. // 4-bit -> 8-bit
  1992. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1993. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1994. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1995. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1996. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  1997. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  1998. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  1999. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2000. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2001. // load y
  2002. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2003. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2004. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2005. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2006. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2007. const float x1d = GGML_FP16_TO_FP32(x1->d);
  2008. #if defined(__ARM_FEATURE_DOTPROD)
  2009. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2010. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2011. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), x0d*y0->d);
  2012. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2013. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2014. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), x1d*y1->d);
  2015. #else
  2016. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2017. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2018. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2019. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2020. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2021. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2022. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2023. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2024. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2025. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2026. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2027. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2028. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2029. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1d*y1->d);
  2030. #endif
  2031. }
  2032. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2033. #elif defined(__wasm_simd128__)
  2034. v128_t sumv = wasm_f32x4_splat(0.0f);
  2035. uint32_t qh;
  2036. uint64_t tmp[4];
  2037. // TODO: check if unrolling this is better
  2038. for (int i = 0; i < nb; ++i) {
  2039. const block_q5_0 * restrict x0 = &x[i];
  2040. const block_q8_0 * restrict y0 = &y[i];
  2041. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2042. const v128_t s16b = wasm_i8x16_splat(0x10);
  2043. // extract the 5th bit
  2044. memcpy(&qh, x0->qh, sizeof(qh));
  2045. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2046. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2047. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2048. tmp[3] = table_b2b_1[(qh >> 24) ];
  2049. const v128_t qhl = wasm_v128_load(tmp + 0);
  2050. const v128_t qhh = wasm_v128_load(tmp + 2);
  2051. const v128_t v0 = wasm_v128_load(x0->qs);
  2052. // 4-bit -> 8-bit
  2053. const v128_t v0l = wasm_v128_and (v0, m4b);
  2054. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2055. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2056. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2057. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2058. // load y
  2059. const v128_t v1l = wasm_v128_load(y0->qs);
  2060. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2061. // int8x16 -> int16x8
  2062. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2063. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2064. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2065. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2066. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2067. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2068. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2069. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2070. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2071. // dot product
  2072. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2073. wasm_i32x4_add(
  2074. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2075. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2076. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2077. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d)));
  2078. }
  2079. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2080. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2081. #elif defined(__AVX2__)
  2082. // Initialize accumulator with zeros
  2083. __m256 acc = _mm256_setzero_ps();
  2084. // Main loop
  2085. for (int i = 0; i < nb; i++) {
  2086. /* Compute combined scale for the block */
  2087. const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d));
  2088. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2089. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2090. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2091. bx = _mm256_or_si256(bx, bxhi);
  2092. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2093. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2094. /* Multiply q with scale and accumulate */
  2095. acc = _mm256_fmadd_ps(d, q, acc);
  2096. }
  2097. *s = hsum_float_8(acc);
  2098. #else
  2099. // scalar
  2100. float sumf = 0.0;
  2101. for (int i = 0; i < nb; i++) {
  2102. uint32_t qh;
  2103. memcpy(&qh, x[i].qh, sizeof(qh));
  2104. int sumi = 0;
  2105. for (int j = 0; j < qk/2; ++j) {
  2106. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2107. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2108. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2109. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2110. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2111. }
  2112. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi;
  2113. }
  2114. *s = sumf;
  2115. #endif
  2116. }
  2117. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2118. const int qk = QK8_1;
  2119. const int nb = n / qk;
  2120. assert(n % qk == 0);
  2121. assert(nb % 2 == 0);
  2122. assert(qk == QK5_1);
  2123. const block_q5_1 * restrict x = vx;
  2124. const block_q8_1 * restrict y = vy;
  2125. #if defined(__ARM_NEON)
  2126. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2127. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2128. float summs0 = 0.0f;
  2129. float summs1 = 0.0f;
  2130. uint32_t qh0;
  2131. uint32_t qh1;
  2132. uint64_t tmp0[4];
  2133. uint64_t tmp1[4];
  2134. for (int i = 0; i < nb; i += 2) {
  2135. const block_q5_1 * restrict x0 = &x[i];
  2136. const block_q5_1 * restrict x1 = &x[i + 1];
  2137. const block_q8_1 * restrict y0 = &y[i];
  2138. const block_q8_1 * restrict y1 = &y[i + 1];
  2139. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2140. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2141. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2142. // extract the 5th bit via lookup table ((b) << 4)
  2143. memcpy(&qh0, x0->qh, sizeof(qh0));
  2144. memcpy(&qh1, x1->qh, sizeof(qh1));
  2145. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2146. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2147. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2148. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2149. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2150. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2151. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2152. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2153. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2154. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2155. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2156. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2157. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2158. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2159. // 4-bit -> 8-bit
  2160. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2161. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2162. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2163. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2164. // add high bit
  2165. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2166. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2167. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2168. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2169. // load y
  2170. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2171. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2172. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2173. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2174. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2175. const float x1d = GGML_FP16_TO_FP32(x1->d);
  2176. #if defined(__ARM_FEATURE_DOTPROD)
  2177. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2178. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2179. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), x0d*y0->d);
  2180. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2181. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2182. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), x1d*y1->d);
  2183. #else
  2184. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2185. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2186. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2187. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2188. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2189. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2190. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2191. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2192. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2193. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2194. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2195. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2196. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2197. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1d*y1->d);
  2198. #endif
  2199. }
  2200. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2201. #elif defined(__wasm_simd128__)
  2202. v128_t sumv = wasm_f32x4_splat(0.0f);
  2203. float summs = 0.0f;
  2204. uint32_t qh;
  2205. uint64_t tmp[4];
  2206. // TODO: check if unrolling this is better
  2207. for (int i = 0; i < nb; ++i) {
  2208. const block_q5_1 * restrict x0 = &x[i];
  2209. const block_q8_1 * restrict y0 = &y[i];
  2210. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2211. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2212. // extract the 5th bit
  2213. memcpy(&qh, x0->qh, sizeof(qh));
  2214. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2215. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2216. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2217. tmp[3] = table_b2b_0[(qh >> 24) ];
  2218. const v128_t qhl = wasm_v128_load(tmp + 0);
  2219. const v128_t qhh = wasm_v128_load(tmp + 2);
  2220. const v128_t v0 = wasm_v128_load(x0->qs);
  2221. // 4-bit -> 8-bit
  2222. const v128_t v0l = wasm_v128_and (v0, m4b);
  2223. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2224. static bool x = true;
  2225. // add high bit
  2226. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2227. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2228. // load y
  2229. const v128_t v1l = wasm_v128_load(y0->qs);
  2230. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2231. // int8x16 -> int16x8
  2232. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2233. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2234. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2235. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2236. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2237. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2238. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2239. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2240. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2241. // dot product
  2242. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2243. wasm_i32x4_add(
  2244. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2245. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2246. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2247. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d)));
  2248. }
  2249. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2250. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2251. #elif defined(__AVX2__)
  2252. // Initialize accumulator with zeros
  2253. __m256 acc = _mm256_setzero_ps();
  2254. float summs = 0.0f;
  2255. // Main loop
  2256. for (int i = 0; i < nb; i++) {
  2257. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2258. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2259. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2260. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2261. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2262. bx = _mm256_or_si256(bx, bxhi);
  2263. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2264. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2265. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2266. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2267. }
  2268. *s = hsum_float_8(acc) + summs;
  2269. #else
  2270. // scalar
  2271. float sumf = 0.0;
  2272. for (int i = 0; i < nb; i++) {
  2273. uint32_t qh;
  2274. memcpy(&qh, x[i].qh, sizeof(qh));
  2275. int sumi = 0;
  2276. for (int j = 0; j < qk/2; ++j) {
  2277. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2278. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2279. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2280. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2281. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2282. }
  2283. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2284. }
  2285. *s = sumf;
  2286. #endif
  2287. }
  2288. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2289. const int qk = QK8_0;
  2290. const int nb = n / qk;
  2291. assert(n % qk == 0);
  2292. assert(nb % 2 == 0);
  2293. const block_q8_0 * restrict x = vx;
  2294. const block_q8_0 * restrict y = vy;
  2295. #if defined(__ARM_NEON)
  2296. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2297. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2298. for (int i = 0; i < nb; i += 2) {
  2299. const block_q8_0 * restrict x0 = &x[i + 0];
  2300. const block_q8_0 * restrict x1 = &x[i + 1];
  2301. const block_q8_0 * restrict y0 = &y[i + 0];
  2302. const block_q8_0 * restrict y1 = &y[i + 1];
  2303. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2304. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2305. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2306. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2307. // load y
  2308. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2309. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2310. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2311. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2312. #if defined(__ARM_FEATURE_DOTPROD)
  2313. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2314. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2315. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), x0->d*y0->d);
  2316. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2317. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2318. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), x1->d*y1->d);
  2319. #else
  2320. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2321. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2322. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2323. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2324. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2325. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2326. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2327. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2328. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2329. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2330. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2331. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2332. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), x0->d*y0->d);
  2333. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), x1->d*y1->d);
  2334. #endif
  2335. }
  2336. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2337. #elif defined(__AVX2__)
  2338. // Initialize accumulator with zeros
  2339. __m256 acc = _mm256_setzero_ps();
  2340. // Main loop
  2341. for (int i = 0; i < nb; ++i) {
  2342. // Compute combined scale for the block
  2343. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2344. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2345. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2346. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2347. // Multiply q with scale and accumulate
  2348. acc = _mm256_fmadd_ps( d, q, acc );
  2349. }
  2350. *s = hsum_float_8(acc);
  2351. #else
  2352. // scalar
  2353. float sumf = 0.0;
  2354. for (int i = 0; i < nb; i++) {
  2355. int sumi = 0;
  2356. for (int j = 0; j < qk; j++) {
  2357. sumi += x[i].qs[j]*y[i].qs[j];
  2358. }
  2359. sumf += (x[i].d*y[i].d)*sumi;
  2360. }
  2361. *s = sumf;
  2362. #endif
  2363. }
  2364. // compute GGML_VEC_DOT_UNROLL dot products at once
  2365. // xs - x row stride in bytes
  2366. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2367. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2368. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2369. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2370. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2371. }
  2372. #if defined(GGML_SIMD)
  2373. const int np = (n & ~(GGML_F16_STEP - 1));
  2374. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2375. GGML_F16_VEC ax[GGML_F16_ARR];
  2376. GGML_F16_VEC ay[GGML_F16_ARR];
  2377. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2378. for (int j = 0; j < GGML_F16_ARR; j++) {
  2379. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2380. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2381. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2382. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2383. }
  2384. }
  2385. }
  2386. // reduce sum0..sum3 to sum0
  2387. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2388. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2389. }
  2390. // leftovers
  2391. for (int i = np; i < n; ++i) {
  2392. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2393. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2394. }
  2395. }
  2396. #else
  2397. for (int i = 0; i < n; ++i) {
  2398. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2399. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2400. }
  2401. }
  2402. #endif
  2403. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2404. s[i] = sumf[i];
  2405. }
  2406. }
  2407. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2408. #if defined(GGML_SIMD)
  2409. const int np = (n & ~(GGML_F32_STEP - 1));
  2410. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2411. GGML_F32_VEC ax[GGML_F32_ARR];
  2412. GGML_F32_VEC ay[GGML_F32_ARR];
  2413. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2414. for (int j = 0; j < GGML_F32_ARR; j++) {
  2415. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2416. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2417. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2418. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2419. }
  2420. }
  2421. // leftovers
  2422. for (int i = np; i < n; ++i) {
  2423. y[i] += x[i]*v;
  2424. }
  2425. #else
  2426. // scalar
  2427. for (int i = 0; i < n; ++i) {
  2428. y[i] += x[i]*v;
  2429. }
  2430. #endif
  2431. }
  2432. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2433. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2434. #if defined(GGML_SIMD)
  2435. const int np = (n & ~(GGML_F32_STEP - 1));
  2436. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2437. GGML_F32_VEC ay[GGML_F32_ARR];
  2438. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2439. for (int j = 0; j < GGML_F32_ARR; j++) {
  2440. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2441. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2442. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2443. }
  2444. }
  2445. // leftovers
  2446. for (int i = np; i < n; ++i) {
  2447. y[i] *= v;
  2448. }
  2449. #else
  2450. // scalar
  2451. for (int i = 0; i < n; ++i) {
  2452. y[i] *= v;
  2453. }
  2454. #endif
  2455. }
  2456. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2457. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2458. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2459. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2460. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2461. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2462. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2463. static const float GELU_COEF_A = 0.044715f;
  2464. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2465. inline static float ggml_gelu_f32(float x) {
  2466. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2467. }
  2468. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2469. const uint16_t * i16 = (const uint16_t *) x;
  2470. for (int i = 0; i < n; ++i) {
  2471. y[i] = table_gelu_f16[i16[i]];
  2472. }
  2473. }
  2474. #ifdef GGML_GELU_FP16
  2475. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2476. uint16_t t;
  2477. for (int i = 0; i < n; ++i) {
  2478. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2479. memcpy(&t, &fp16, sizeof(uint16_t));
  2480. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2481. }
  2482. }
  2483. #else
  2484. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2485. for (int i = 0; i < n; ++i) {
  2486. y[i] = ggml_gelu_f32(x[i]);
  2487. }
  2488. }
  2489. #endif
  2490. // Sigmoid Linear Unit (SiLU) function
  2491. inline static float ggml_silu_f32(float x) {
  2492. return x/(1.0f + expf(-x));
  2493. }
  2494. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2495. const uint16_t * i16 = (const uint16_t *) x;
  2496. for (int i = 0; i < n; ++i) {
  2497. y[i] = table_silu_f16[i16[i]];
  2498. }
  2499. }
  2500. #ifdef GGML_SILU_FP16
  2501. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2502. uint16_t t;
  2503. for (int i = 0; i < n; ++i) {
  2504. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2505. memcpy(&t, &fp16, sizeof(uint16_t));
  2506. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2507. }
  2508. }
  2509. #else
  2510. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2511. for (int i = 0; i < n; ++i) {
  2512. y[i] = ggml_silu_f32(x[i]);
  2513. }
  2514. }
  2515. #endif
  2516. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2517. #ifndef GGML_USE_ACCELERATE
  2518. ggml_float sum = 0.0;
  2519. for (int i = 0; i < n; ++i) {
  2520. sum += (ggml_float)x[i];
  2521. }
  2522. *s = sum;
  2523. #else
  2524. vDSP_sve(x, 1, s, n);
  2525. #endif
  2526. }
  2527. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2528. ggml_float sum = 0.0;
  2529. for (int i = 0; i < n; ++i) {
  2530. sum += (ggml_float)x[i];
  2531. }
  2532. *s = sum;
  2533. }
  2534. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2535. #ifndef GGML_USE_ACCELERATE
  2536. float max = -INFINITY;
  2537. for (int i = 0; i < n; ++i) {
  2538. max = MAX(max, x[i]);
  2539. }
  2540. *s = max;
  2541. #else
  2542. vDSP_maxv(x, 1, s, n);
  2543. #endif
  2544. }
  2545. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2546. ggml_vec_norm_f32(n, s, x);
  2547. *s = 1.f/(*s);
  2548. }
  2549. //
  2550. // logging
  2551. //
  2552. #if (GGML_DEBUG >= 1)
  2553. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2554. #else
  2555. #define GGML_PRINT_DEBUG(...)
  2556. #endif
  2557. #if (GGML_DEBUG >= 5)
  2558. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2559. #else
  2560. #define GGML_PRINT_DEBUG_5(...)
  2561. #endif
  2562. #if (GGML_DEBUG >= 10)
  2563. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2564. #else
  2565. #define GGML_PRINT_DEBUG_10(...)
  2566. #endif
  2567. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2568. //
  2569. // data types
  2570. //
  2571. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2572. [GGML_TYPE_F32] = 1,
  2573. [GGML_TYPE_F16] = 1,
  2574. [GGML_TYPE_Q4_0] = QK4_0,
  2575. [GGML_TYPE_Q4_1] = QK4_1,
  2576. [GGML_TYPE_Q5_0] = QK5_0,
  2577. [GGML_TYPE_Q5_1] = QK5_1,
  2578. [GGML_TYPE_Q8_0] = QK8_0,
  2579. [GGML_TYPE_Q8_1] = QK8_1,
  2580. [GGML_TYPE_I8] = 1,
  2581. [GGML_TYPE_I16] = 1,
  2582. [GGML_TYPE_I32] = 1,
  2583. };
  2584. static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated");
  2585. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2586. [GGML_TYPE_F32] = sizeof(float),
  2587. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2588. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2589. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2590. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2591. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2592. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2593. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2594. [GGML_TYPE_I8] = sizeof(int8_t),
  2595. [GGML_TYPE_I16] = sizeof(int16_t),
  2596. [GGML_TYPE_I32] = sizeof(int32_t),
  2597. };
  2598. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated");
  2599. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2600. [GGML_TYPE_F32] = "f32",
  2601. [GGML_TYPE_F16] = "f16",
  2602. [GGML_TYPE_Q4_0] = "q4_0",
  2603. [GGML_TYPE_Q4_1] = "q4_1",
  2604. [GGML_TYPE_Q5_0] = "q5_0",
  2605. [GGML_TYPE_Q5_1] = "q5_1",
  2606. [GGML_TYPE_Q8_0] = "q8_0",
  2607. [GGML_TYPE_Q8_1] = "q8_1",
  2608. [GGML_TYPE_I8] = "i8",
  2609. [GGML_TYPE_I16] = "i16",
  2610. [GGML_TYPE_I32] = "i32",
  2611. };
  2612. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated");
  2613. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2614. [GGML_TYPE_F32] = false,
  2615. [GGML_TYPE_F16] = false,
  2616. [GGML_TYPE_Q4_0] = true,
  2617. [GGML_TYPE_Q4_1] = true,
  2618. [GGML_TYPE_Q5_0] = true,
  2619. [GGML_TYPE_Q5_1] = true,
  2620. [GGML_TYPE_Q8_0] = true,
  2621. [GGML_TYPE_Q8_1] = true,
  2622. [GGML_TYPE_I8] = false,
  2623. [GGML_TYPE_I16] = false,
  2624. [GGML_TYPE_I32] = false,
  2625. };
  2626. static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated");
  2627. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2628. "NONE",
  2629. "DUP",
  2630. "ADD",
  2631. "SUB",
  2632. "MUL",
  2633. "DIV",
  2634. "SQR",
  2635. "SQRT",
  2636. "SUM",
  2637. "MEAN",
  2638. "REPEAT",
  2639. "ABS",
  2640. "SGN",
  2641. "NEG",
  2642. "STEP",
  2643. "RELU",
  2644. "GELU",
  2645. "SILU",
  2646. "NORM",
  2647. "RMS_NORM",
  2648. "MUL_MAT",
  2649. "SCALE",
  2650. "CPY",
  2651. "CONT",
  2652. "RESHAPE",
  2653. "VIEW",
  2654. "PERMUTE",
  2655. "TRANSPOSE",
  2656. "GET_ROWS",
  2657. "DIAG_MASK_INF",
  2658. "SOFT_MAX",
  2659. "ROPE",
  2660. "ALIBI",
  2661. "CONV_1D_1S",
  2662. "CONV_1D_2S",
  2663. "FLASH_ATTN",
  2664. "FLASH_FF",
  2665. "MAP_UNARY",
  2666. "MAP_BINARY",
  2667. };
  2668. static_assert(GGML_OP_COUNT == 39, "GGML_OP_COUNT != 39");
  2669. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2670. "none",
  2671. "x",
  2672. "x+y",
  2673. "x-y",
  2674. "x*y",
  2675. "x/y",
  2676. "x^2",
  2677. "√x",
  2678. "Σx",
  2679. "Σx/n",
  2680. "repeat(x)",
  2681. "abs(x)",
  2682. "sgn(x)",
  2683. "-x",
  2684. "step(x)",
  2685. "relu(x)",
  2686. "gelu(x)",
  2687. "silu(x)",
  2688. "norm(x)",
  2689. "rms_norm(x)",
  2690. "X*Y",
  2691. "x*v",
  2692. "x-\\>y",
  2693. "cont(x)",
  2694. "reshape(x)",
  2695. "view(x)",
  2696. "permute(x)",
  2697. "transpose(x)",
  2698. "get_rows(x)",
  2699. "diag_mask_inf(x)",
  2700. "soft_max(x)",
  2701. "rope(x)",
  2702. "alibi(x)",
  2703. "conv_1d_1s(x)",
  2704. "conv_1d_2s(x)",
  2705. "flash_attn(x)",
  2706. "flash_ff(x)",
  2707. "f(x)",
  2708. "f(x,y)",
  2709. };
  2710. static_assert(GGML_OP_COUNT == 39, "GGML_OP_COUNT != 39");
  2711. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2712. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2713. //
  2714. // ggml context
  2715. //
  2716. struct ggml_context {
  2717. size_t mem_size;
  2718. void * mem_buffer;
  2719. bool mem_buffer_owned;
  2720. bool no_alloc;
  2721. int n_objects;
  2722. struct ggml_object * objects_begin;
  2723. struct ggml_object * objects_end;
  2724. struct ggml_scratch scratch;
  2725. struct ggml_scratch scratch_save;
  2726. };
  2727. struct ggml_context_container {
  2728. bool used;
  2729. struct ggml_context context;
  2730. };
  2731. //
  2732. // compute types
  2733. //
  2734. enum ggml_task_type {
  2735. GGML_TASK_INIT = 0,
  2736. GGML_TASK_COMPUTE,
  2737. GGML_TASK_FINALIZE,
  2738. };
  2739. struct ggml_compute_params {
  2740. enum ggml_task_type type;
  2741. int ith, nth;
  2742. // work buffer for all threads
  2743. size_t wsize;
  2744. void * wdata;
  2745. };
  2746. //
  2747. // ggml state
  2748. //
  2749. struct ggml_state {
  2750. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2751. };
  2752. // global state
  2753. static struct ggml_state g_state;
  2754. static atomic_int g_state_barrier = 0;
  2755. // barrier via spin lock
  2756. inline static void ggml_critical_section_start(void) {
  2757. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2758. while (processing > 0) {
  2759. // wait for other threads to finish
  2760. atomic_fetch_sub(&g_state_barrier, 1);
  2761. sched_yield(); // TODO: reconsider this
  2762. processing = atomic_fetch_add(&g_state_barrier, 1);
  2763. }
  2764. }
  2765. // TODO: make this somehow automatically executed
  2766. // some sort of "sentry" mechanism
  2767. inline static void ggml_critical_section_end(void) {
  2768. atomic_fetch_sub(&g_state_barrier, 1);
  2769. }
  2770. ////////////////////////////////////////////////////////////////////////////////
  2771. void ggml_print_object(const struct ggml_object * obj) {
  2772. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2773. obj->offs, obj->size, (const void *) obj->next);
  2774. }
  2775. void ggml_print_objects(const struct ggml_context * ctx) {
  2776. struct ggml_object * obj = ctx->objects_begin;
  2777. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2778. while (obj != NULL) {
  2779. ggml_print_object(obj);
  2780. obj = obj->next;
  2781. }
  2782. GGML_PRINT("%s: --- end ---\n", __func__);
  2783. }
  2784. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2785. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2786. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2787. }
  2788. int ggml_nrows(const struct ggml_tensor * tensor) {
  2789. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2790. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2791. }
  2792. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2793. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2794. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2795. }
  2796. int ggml_blck_size(enum ggml_type type) {
  2797. return GGML_BLCK_SIZE[type];
  2798. }
  2799. size_t ggml_type_size(enum ggml_type type) {
  2800. return GGML_TYPE_SIZE[type];
  2801. }
  2802. float ggml_type_sizef(enum ggml_type type) {
  2803. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2804. }
  2805. const char * ggml_type_name(enum ggml_type type) {
  2806. return GGML_TYPE_NAME[type];
  2807. }
  2808. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2809. return GGML_TYPE_SIZE[tensor->type];
  2810. }
  2811. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2812. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2813. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2814. }
  2815. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2816. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2817. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2818. }
  2819. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2820. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2821. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2822. }
  2823. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2824. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2825. return
  2826. (t0->ne[0] == t1->ne[0]) &&
  2827. (t0->ne[2] == t1->ne[2]) &&
  2828. (t0->ne[3] == t1->ne[3]);
  2829. }
  2830. bool ggml_is_quantized(enum ggml_type type) {
  2831. return GGML_IS_QUANTIZED[type];
  2832. }
  2833. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2834. enum ggml_type wtype = GGML_TYPE_COUNT;
  2835. switch (ftype) {
  2836. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2837. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2838. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2839. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2840. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2841. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2842. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2843. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2844. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2845. }
  2846. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2847. return wtype;
  2848. }
  2849. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2850. return tensor->nb[0] > tensor->nb[1];
  2851. }
  2852. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2853. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2854. return
  2855. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2856. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2857. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2858. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2859. }
  2860. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2861. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2862. return
  2863. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2864. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2865. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2866. }
  2867. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2868. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2869. return
  2870. (t0->ne[0] == t1->ne[0] ) &&
  2871. (t0->ne[1] == t1->ne[1] ) &&
  2872. (t0->ne[2] == t1->ne[2] ) &&
  2873. (t0->ne[3] == t1->ne[3] );
  2874. }
  2875. // check if t1 can be represented as a repeatition of t0
  2876. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2877. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2878. return
  2879. (t1->ne[0]%t0->ne[0] == 0) &&
  2880. (t1->ne[1]%t0->ne[1] == 0) &&
  2881. (t1->ne[2]%t0->ne[2] == 0) &&
  2882. (t1->ne[3]%t0->ne[3] == 0);
  2883. }
  2884. static inline int ggml_up32(int n) {
  2885. return (n + 31) & ~31;
  2886. }
  2887. static inline int ggml_up64(int n) {
  2888. return (n + 63) & ~63;
  2889. }
  2890. static inline int ggml_up(int n, int m) {
  2891. // assert m is a power of 2
  2892. GGML_ASSERT((m & (m - 1)) == 0);
  2893. return (n + m - 1) & ~(m - 1);
  2894. }
  2895. // assert that pointer is aligned to GGML_MEM_ALIGN
  2896. #define ggml_assert_aligned(ptr) \
  2897. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2898. ////////////////////////////////////////////////////////////////////////////////
  2899. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2900. // make this function thread safe
  2901. ggml_critical_section_start();
  2902. static bool is_first_call = true;
  2903. if (is_first_call) {
  2904. // initialize time system (required on Windows)
  2905. ggml_time_init();
  2906. // initialize GELU, SILU and EXP F32 tables
  2907. {
  2908. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2909. ggml_fp16_t ii;
  2910. for (int i = 0; i < (1 << 16); ++i) {
  2911. uint16_t ui = i;
  2912. memcpy(&ii, &ui, sizeof(ii));
  2913. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2914. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2915. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2916. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2917. }
  2918. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2919. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2920. }
  2921. // initialize g_state
  2922. {
  2923. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2924. g_state = (struct ggml_state) {
  2925. /*.contexts =*/ { { 0 } },
  2926. };
  2927. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2928. g_state.contexts[i].used = false;
  2929. }
  2930. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2931. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2932. }
  2933. #if defined(GGML_USE_CUBLAS)
  2934. ggml_init_cublas();
  2935. #elif defined(GGML_USE_CLBLAST)
  2936. ggml_cl_init();
  2937. #endif
  2938. is_first_call = false;
  2939. }
  2940. // find non-used context in g_state
  2941. struct ggml_context * ctx = NULL;
  2942. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2943. if (!g_state.contexts[i].used) {
  2944. g_state.contexts[i].used = true;
  2945. ctx = &g_state.contexts[i].context;
  2946. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2947. break;
  2948. }
  2949. }
  2950. if (ctx == NULL) {
  2951. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2952. ggml_critical_section_end();
  2953. return NULL;
  2954. }
  2955. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  2956. *ctx = (struct ggml_context) {
  2957. /*.mem_size =*/ mem_size,
  2958. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2959. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2960. /*.no_alloc =*/ params.no_alloc,
  2961. /*.n_objects =*/ 0,
  2962. /*.objects_begin =*/ NULL,
  2963. /*.objects_end =*/ NULL,
  2964. /*.scratch =*/ { 0, 0, NULL, },
  2965. /*.scratch_save =*/ { 0, 0, NULL, },
  2966. };
  2967. GGML_ASSERT(ctx->mem_buffer != NULL);
  2968. ggml_assert_aligned(ctx->mem_buffer);
  2969. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2970. ggml_critical_section_end();
  2971. return ctx;
  2972. }
  2973. void ggml_free(struct ggml_context * ctx) {
  2974. // make this function thread safe
  2975. ggml_critical_section_start();
  2976. bool found = false;
  2977. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2978. if (&g_state.contexts[i].context == ctx) {
  2979. g_state.contexts[i].used = false;
  2980. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2981. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2982. if (ctx->mem_buffer_owned) {
  2983. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2984. }
  2985. found = true;
  2986. break;
  2987. }
  2988. }
  2989. if (!found) {
  2990. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2991. }
  2992. ggml_critical_section_end();
  2993. }
  2994. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2995. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2996. }
  2997. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2998. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2999. ctx->scratch = scratch;
  3000. return result;
  3001. }
  3002. ////////////////////////////////////////////////////////////////////////////////
  3003. struct ggml_tensor * ggml_new_tensor_impl(
  3004. struct ggml_context * ctx,
  3005. enum ggml_type type,
  3006. int n_dims,
  3007. const int64_t* ne,
  3008. void* data) {
  3009. // always insert objects at the end of the context's memory pool
  3010. struct ggml_object * obj_cur = ctx->objects_end;
  3011. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3012. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3013. const size_t cur_end = cur_offs + cur_size;
  3014. size_t size_needed = 0;
  3015. if (data == NULL && !ctx->no_alloc) {
  3016. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3017. for (int i = 1; i < n_dims; i++) {
  3018. size_needed *= ne[i];
  3019. }
  3020. // align to GGML_MEM_ALIGN
  3021. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3022. }
  3023. char * const mem_buffer = ctx->mem_buffer;
  3024. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3025. if (ctx->scratch.data == NULL || data != NULL) {
  3026. size_needed += sizeof(struct ggml_tensor);
  3027. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3028. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3029. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3030. assert(false);
  3031. return NULL;
  3032. }
  3033. *obj_new = (struct ggml_object) {
  3034. .offs = cur_end + GGML_OBJECT_SIZE,
  3035. .size = size_needed,
  3036. .next = NULL,
  3037. };
  3038. } else {
  3039. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3040. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3041. assert(false);
  3042. return NULL;
  3043. }
  3044. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3045. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3046. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3047. assert(false);
  3048. return NULL;
  3049. }
  3050. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3051. *obj_new = (struct ggml_object) {
  3052. .offs = cur_end + GGML_OBJECT_SIZE,
  3053. .size = sizeof(struct ggml_tensor),
  3054. .next = NULL,
  3055. };
  3056. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3057. ctx->scratch.offs += size_needed;
  3058. }
  3059. if (obj_cur != NULL) {
  3060. obj_cur->next = obj_new;
  3061. } else {
  3062. // this is the first object in this context
  3063. ctx->objects_begin = obj_new;
  3064. }
  3065. ctx->objects_end = obj_new;
  3066. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3067. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3068. ggml_assert_aligned(result);
  3069. *result = (struct ggml_tensor) {
  3070. /*.type =*/ type,
  3071. /*.n_dims =*/ n_dims,
  3072. /*.ne =*/ { 1, 1, 1, 1 },
  3073. /*.nb =*/ { 0, 0, 0, 0 },
  3074. /*.op =*/ GGML_OP_NONE,
  3075. /*.is_param =*/ false,
  3076. /*.grad =*/ NULL,
  3077. /*.src0 =*/ NULL,
  3078. /*.src1 =*/ NULL,
  3079. /*.opt =*/ { NULL },
  3080. /*.n_tasks =*/ 0,
  3081. /*.perf_runs =*/ 0,
  3082. /*.perf_cycles =*/ 0,
  3083. /*.perf_time_us =*/ 0,
  3084. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3085. /*.name =*/ { 0 },
  3086. /*.pad =*/ { 0 },
  3087. };
  3088. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3089. //ggml_assert_aligned(result->data);
  3090. for (int i = 0; i < n_dims; i++) {
  3091. result->ne[i] = ne[i];
  3092. }
  3093. result->nb[0] = GGML_TYPE_SIZE[type];
  3094. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3095. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3096. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3097. }
  3098. ctx->n_objects++;
  3099. return result;
  3100. }
  3101. struct ggml_tensor * ggml_new_tensor(
  3102. struct ggml_context * ctx,
  3103. enum ggml_type type,
  3104. int n_dims,
  3105. const int64_t * ne) {
  3106. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3107. }
  3108. struct ggml_tensor * ggml_new_tensor_1d(
  3109. struct ggml_context * ctx,
  3110. enum ggml_type type,
  3111. int64_t ne0) {
  3112. return ggml_new_tensor(ctx, type, 1, &ne0);
  3113. }
  3114. struct ggml_tensor * ggml_new_tensor_2d(
  3115. struct ggml_context * ctx,
  3116. enum ggml_type type,
  3117. int64_t ne0,
  3118. int64_t ne1) {
  3119. const int64_t ne[2] = { ne0, ne1 };
  3120. return ggml_new_tensor(ctx, type, 2, ne);
  3121. }
  3122. struct ggml_tensor * ggml_new_tensor_3d(
  3123. struct ggml_context * ctx,
  3124. enum ggml_type type,
  3125. int64_t ne0,
  3126. int64_t ne1,
  3127. int64_t ne2) {
  3128. const int64_t ne[3] = { ne0, ne1, ne2 };
  3129. return ggml_new_tensor(ctx, type, 3, ne);
  3130. }
  3131. struct ggml_tensor * ggml_new_tensor_4d(
  3132. struct ggml_context * ctx,
  3133. enum ggml_type type,
  3134. int64_t ne0,
  3135. int64_t ne1,
  3136. int64_t ne2,
  3137. int64_t ne3) {
  3138. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3139. return ggml_new_tensor(ctx, type, 4, ne);
  3140. }
  3141. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3142. ctx->scratch_save = ctx->scratch;
  3143. ctx->scratch.data = NULL;
  3144. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3145. ctx->scratch = ctx->scratch_save;
  3146. ggml_set_i32(result, value);
  3147. return result;
  3148. }
  3149. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3150. ctx->scratch_save = ctx->scratch;
  3151. ctx->scratch.data = NULL;
  3152. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3153. ctx->scratch = ctx->scratch_save;
  3154. ggml_set_f32(result, value);
  3155. return result;
  3156. }
  3157. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3158. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3159. }
  3160. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3161. memset(tensor->data, 0, ggml_nbytes(tensor));
  3162. return tensor;
  3163. }
  3164. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3165. const int n = ggml_nrows(tensor);
  3166. const int nc = tensor->ne[0];
  3167. const size_t n1 = tensor->nb[1];
  3168. char * const data = tensor->data;
  3169. switch (tensor->type) {
  3170. case GGML_TYPE_I8:
  3171. {
  3172. assert(tensor->nb[0] == sizeof(int8_t));
  3173. for (int i = 0; i < n; i++) {
  3174. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3175. }
  3176. } break;
  3177. case GGML_TYPE_I16:
  3178. {
  3179. assert(tensor->nb[0] == sizeof(int16_t));
  3180. for (int i = 0; i < n; i++) {
  3181. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3182. }
  3183. } break;
  3184. case GGML_TYPE_I32:
  3185. {
  3186. assert(tensor->nb[0] == sizeof(int32_t));
  3187. for (int i = 0; i < n; i++) {
  3188. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3189. }
  3190. } break;
  3191. case GGML_TYPE_F16:
  3192. {
  3193. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3194. for (int i = 0; i < n; i++) {
  3195. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3196. }
  3197. } break;
  3198. case GGML_TYPE_F32:
  3199. {
  3200. assert(tensor->nb[0] == sizeof(float));
  3201. for (int i = 0; i < n; i++) {
  3202. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3203. }
  3204. } break;
  3205. default:
  3206. {
  3207. GGML_ASSERT(false);
  3208. } break;
  3209. }
  3210. return tensor;
  3211. }
  3212. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3213. const int n = ggml_nrows(tensor);
  3214. const int nc = tensor->ne[0];
  3215. const size_t n1 = tensor->nb[1];
  3216. char * const data = tensor->data;
  3217. switch (tensor->type) {
  3218. case GGML_TYPE_I8:
  3219. {
  3220. assert(tensor->nb[0] == sizeof(int8_t));
  3221. for (int i = 0; i < n; i++) {
  3222. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3223. }
  3224. } break;
  3225. case GGML_TYPE_I16:
  3226. {
  3227. assert(tensor->nb[0] == sizeof(int16_t));
  3228. for (int i = 0; i < n; i++) {
  3229. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3230. }
  3231. } break;
  3232. case GGML_TYPE_I32:
  3233. {
  3234. assert(tensor->nb[0] == sizeof(int32_t));
  3235. for (int i = 0; i < n; i++) {
  3236. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3237. }
  3238. } break;
  3239. case GGML_TYPE_F16:
  3240. {
  3241. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3242. for (int i = 0; i < n; i++) {
  3243. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3244. }
  3245. } break;
  3246. case GGML_TYPE_F32:
  3247. {
  3248. assert(tensor->nb[0] == sizeof(float));
  3249. for (int i = 0; i < n; i++) {
  3250. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3251. }
  3252. } break;
  3253. default:
  3254. {
  3255. GGML_ASSERT(false);
  3256. } break;
  3257. }
  3258. return tensor;
  3259. }
  3260. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3261. switch (tensor->type) {
  3262. case GGML_TYPE_I8:
  3263. {
  3264. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3265. return ((int8_t *)(tensor->data))[i];
  3266. } break;
  3267. case GGML_TYPE_I16:
  3268. {
  3269. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3270. return ((int16_t *)(tensor->data))[i];
  3271. } break;
  3272. case GGML_TYPE_I32:
  3273. {
  3274. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3275. return ((int32_t *)(tensor->data))[i];
  3276. } break;
  3277. case GGML_TYPE_F16:
  3278. {
  3279. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3280. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3281. } break;
  3282. case GGML_TYPE_F32:
  3283. {
  3284. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3285. return ((float *)(tensor->data))[i];
  3286. } break;
  3287. default:
  3288. {
  3289. GGML_ASSERT(false);
  3290. } break;
  3291. }
  3292. return 0.0f;
  3293. }
  3294. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3295. switch (tensor->type) {
  3296. case GGML_TYPE_I8:
  3297. {
  3298. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3299. ((int8_t *)(tensor->data))[i] = value;
  3300. } break;
  3301. case GGML_TYPE_I16:
  3302. {
  3303. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3304. ((int16_t *)(tensor->data))[i] = value;
  3305. } break;
  3306. case GGML_TYPE_I32:
  3307. {
  3308. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3309. ((int32_t *)(tensor->data))[i] = value;
  3310. } break;
  3311. case GGML_TYPE_F16:
  3312. {
  3313. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3314. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3315. } break;
  3316. case GGML_TYPE_F32:
  3317. {
  3318. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3319. ((float *)(tensor->data))[i] = value;
  3320. } break;
  3321. default:
  3322. {
  3323. GGML_ASSERT(false);
  3324. } break;
  3325. }
  3326. }
  3327. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3328. switch (tensor->type) {
  3329. case GGML_TYPE_I8:
  3330. {
  3331. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3332. return ((int8_t *)(tensor->data))[i];
  3333. } break;
  3334. case GGML_TYPE_I16:
  3335. {
  3336. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3337. return ((int16_t *)(tensor->data))[i];
  3338. } break;
  3339. case GGML_TYPE_I32:
  3340. {
  3341. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3342. return ((int32_t *)(tensor->data))[i];
  3343. } break;
  3344. case GGML_TYPE_F16:
  3345. {
  3346. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3347. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3348. } break;
  3349. case GGML_TYPE_F32:
  3350. {
  3351. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3352. return ((float *)(tensor->data))[i];
  3353. } break;
  3354. default:
  3355. {
  3356. GGML_ASSERT(false);
  3357. } break;
  3358. }
  3359. return 0.0f;
  3360. }
  3361. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3362. switch (tensor->type) {
  3363. case GGML_TYPE_I8:
  3364. {
  3365. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3366. ((int8_t *)(tensor->data))[i] = value;
  3367. } break;
  3368. case GGML_TYPE_I16:
  3369. {
  3370. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3371. ((int16_t *)(tensor->data))[i] = value;
  3372. } break;
  3373. case GGML_TYPE_I32:
  3374. {
  3375. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3376. ((int32_t *)(tensor->data))[i] = value;
  3377. } break;
  3378. case GGML_TYPE_F16:
  3379. {
  3380. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3381. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3382. } break;
  3383. case GGML_TYPE_F32:
  3384. {
  3385. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3386. ((float *)(tensor->data))[i] = value;
  3387. } break;
  3388. default:
  3389. {
  3390. GGML_ASSERT(false);
  3391. } break;
  3392. }
  3393. }
  3394. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3395. return tensor->data;
  3396. }
  3397. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3398. assert(tensor->type == GGML_TYPE_F32);
  3399. return (float *)(tensor->data);
  3400. }
  3401. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3402. return tensor->name;
  3403. }
  3404. void ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3405. strncpy(tensor->name, name, sizeof(tensor->name));
  3406. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3407. }
  3408. struct ggml_tensor * ggml_view_tensor(
  3409. struct ggml_context * ctx,
  3410. const struct ggml_tensor * src) {
  3411. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3412. result->nb[0] = src->nb[0];
  3413. result->nb[1] = src->nb[1];
  3414. result->nb[2] = src->nb[2];
  3415. result->nb[3] = src->nb[3];
  3416. return result;
  3417. }
  3418. ////////////////////////////////////////////////////////////////////////////////
  3419. // ggml_dup
  3420. struct ggml_tensor * ggml_dup_impl(
  3421. struct ggml_context * ctx,
  3422. struct ggml_tensor * a,
  3423. bool inplace) {
  3424. bool is_node = false;
  3425. if (!inplace && (a->grad)) {
  3426. is_node = true;
  3427. }
  3428. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3429. result->op = GGML_OP_DUP;
  3430. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3431. result->src0 = a;
  3432. result->src1 = NULL;
  3433. return result;
  3434. }
  3435. struct ggml_tensor * ggml_dup(
  3436. struct ggml_context * ctx,
  3437. struct ggml_tensor * a) {
  3438. return ggml_dup_impl(ctx, a, false);
  3439. }
  3440. struct ggml_tensor * ggml_dup_inplace(
  3441. struct ggml_context * ctx,
  3442. struct ggml_tensor * a) {
  3443. return ggml_dup_impl(ctx, a, true);
  3444. }
  3445. // ggml_add
  3446. struct ggml_tensor * ggml_add_impl(
  3447. struct ggml_context * ctx,
  3448. struct ggml_tensor * a,
  3449. struct ggml_tensor * b,
  3450. bool inplace) {
  3451. GGML_ASSERT(ggml_are_same_shape(a, b));
  3452. bool is_node = false;
  3453. if (!inplace && (a->grad || b->grad)) {
  3454. is_node = true;
  3455. }
  3456. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3457. result->op = GGML_OP_ADD;
  3458. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3459. result->src0 = a;
  3460. result->src1 = b;
  3461. return result;
  3462. }
  3463. struct ggml_tensor * ggml_add(
  3464. struct ggml_context * ctx,
  3465. struct ggml_tensor * a,
  3466. struct ggml_tensor * b) {
  3467. return ggml_add_impl(ctx, a, b, false);
  3468. }
  3469. struct ggml_tensor * ggml_add_inplace(
  3470. struct ggml_context * ctx,
  3471. struct ggml_tensor * a,
  3472. struct ggml_tensor * b) {
  3473. return ggml_add_impl(ctx, a, b, true);
  3474. }
  3475. // ggml_sub
  3476. struct ggml_tensor * ggml_sub_impl(
  3477. struct ggml_context * ctx,
  3478. struct ggml_tensor * a,
  3479. struct ggml_tensor * b,
  3480. bool inplace) {
  3481. GGML_ASSERT(ggml_are_same_shape(a, b));
  3482. bool is_node = false;
  3483. if (!inplace && (a->grad || b->grad)) {
  3484. is_node = true;
  3485. }
  3486. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3487. result->op = GGML_OP_SUB;
  3488. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3489. result->src0 = a;
  3490. result->src1 = b;
  3491. return result;
  3492. }
  3493. struct ggml_tensor * ggml_sub(
  3494. struct ggml_context * ctx,
  3495. struct ggml_tensor * a,
  3496. struct ggml_tensor * b) {
  3497. return ggml_sub_impl(ctx, a, b, false);
  3498. }
  3499. struct ggml_tensor * ggml_sub_inplace(
  3500. struct ggml_context * ctx,
  3501. struct ggml_tensor * a,
  3502. struct ggml_tensor * b) {
  3503. return ggml_sub_impl(ctx, a, b, true);
  3504. }
  3505. // ggml_mul
  3506. struct ggml_tensor * ggml_mul_impl(
  3507. struct ggml_context * ctx,
  3508. struct ggml_tensor * a,
  3509. struct ggml_tensor * b,
  3510. bool inplace) {
  3511. GGML_ASSERT(ggml_are_same_shape(a, b));
  3512. bool is_node = false;
  3513. if (!inplace && (a->grad || b->grad)) {
  3514. is_node = true;
  3515. }
  3516. if (inplace) {
  3517. GGML_ASSERT(is_node == false);
  3518. }
  3519. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3520. result->op = GGML_OP_MUL;
  3521. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3522. result->src0 = a;
  3523. result->src1 = b;
  3524. return result;
  3525. }
  3526. struct ggml_tensor * ggml_mul(
  3527. struct ggml_context * ctx,
  3528. struct ggml_tensor * a,
  3529. struct ggml_tensor * b) {
  3530. return ggml_mul_impl(ctx, a, b, false);
  3531. }
  3532. struct ggml_tensor * ggml_mul_inplace(
  3533. struct ggml_context * ctx,
  3534. struct ggml_tensor * a,
  3535. struct ggml_tensor * b) {
  3536. return ggml_mul_impl(ctx, a, b, true);
  3537. }
  3538. // ggml_div
  3539. struct ggml_tensor * ggml_div_impl(
  3540. struct ggml_context * ctx,
  3541. struct ggml_tensor * a,
  3542. struct ggml_tensor * b,
  3543. bool inplace) {
  3544. GGML_ASSERT(ggml_are_same_shape(a, b));
  3545. bool is_node = false;
  3546. if (!inplace && (a->grad || b->grad)) {
  3547. is_node = true;
  3548. }
  3549. if (inplace) {
  3550. GGML_ASSERT(is_node == false);
  3551. }
  3552. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3553. result->op = GGML_OP_DIV;
  3554. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3555. result->src0 = a;
  3556. result->src1 = b;
  3557. return result;
  3558. }
  3559. struct ggml_tensor * ggml_div(
  3560. struct ggml_context * ctx,
  3561. struct ggml_tensor * a,
  3562. struct ggml_tensor * b) {
  3563. return ggml_div_impl(ctx, a, b, false);
  3564. }
  3565. struct ggml_tensor * ggml_div_inplace(
  3566. struct ggml_context * ctx,
  3567. struct ggml_tensor * a,
  3568. struct ggml_tensor * b) {
  3569. return ggml_div_impl(ctx, a, b, true);
  3570. }
  3571. // ggml_sqr
  3572. struct ggml_tensor * ggml_sqr_impl(
  3573. struct ggml_context * ctx,
  3574. struct ggml_tensor * a,
  3575. bool inplace) {
  3576. bool is_node = false;
  3577. if (!inplace && (a->grad)) {
  3578. is_node = true;
  3579. }
  3580. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3581. result->op = GGML_OP_SQR;
  3582. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3583. result->src0 = a;
  3584. result->src1 = NULL;
  3585. return result;
  3586. }
  3587. struct ggml_tensor * ggml_sqr(
  3588. struct ggml_context * ctx,
  3589. struct ggml_tensor * a) {
  3590. return ggml_sqr_impl(ctx, a, false);
  3591. }
  3592. struct ggml_tensor * ggml_sqr_inplace(
  3593. struct ggml_context * ctx,
  3594. struct ggml_tensor * a) {
  3595. return ggml_sqr_impl(ctx, a, true);
  3596. }
  3597. // ggml_sqrt
  3598. struct ggml_tensor * ggml_sqrt_impl(
  3599. struct ggml_context * ctx,
  3600. struct ggml_tensor * a,
  3601. bool inplace) {
  3602. bool is_node = false;
  3603. if (!inplace && (a->grad)) {
  3604. is_node = true;
  3605. }
  3606. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3607. result->op = GGML_OP_SQRT;
  3608. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3609. result->src0 = a;
  3610. result->src1 = NULL;
  3611. return result;
  3612. }
  3613. struct ggml_tensor * ggml_sqrt(
  3614. struct ggml_context * ctx,
  3615. struct ggml_tensor * a) {
  3616. return ggml_sqrt_impl(ctx, a, false);
  3617. }
  3618. struct ggml_tensor * ggml_sqrt_inplace(
  3619. struct ggml_context * ctx,
  3620. struct ggml_tensor * a) {
  3621. return ggml_sqrt_impl(ctx, a, true);
  3622. }
  3623. // ggml_sum
  3624. struct ggml_tensor * ggml_sum(
  3625. struct ggml_context * ctx,
  3626. struct ggml_tensor * a) {
  3627. bool is_node = false;
  3628. if (a->grad) {
  3629. is_node = true;
  3630. }
  3631. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3632. result->op = GGML_OP_SUM;
  3633. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3634. result->src0 = a;
  3635. result->src1 = NULL;
  3636. return result;
  3637. }
  3638. // ggml_mean
  3639. struct ggml_tensor * ggml_mean(
  3640. struct ggml_context * ctx,
  3641. struct ggml_tensor * a) {
  3642. bool is_node = false;
  3643. if (a->grad) {
  3644. GGML_ASSERT(false); // TODO: implement
  3645. is_node = true;
  3646. }
  3647. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3648. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3649. result->op = GGML_OP_MEAN;
  3650. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3651. result->src0 = a;
  3652. result->src1 = NULL;
  3653. return result;
  3654. }
  3655. // ggml_repeat
  3656. struct ggml_tensor * ggml_repeat(
  3657. struct ggml_context * ctx,
  3658. struct ggml_tensor * a,
  3659. struct ggml_tensor * b) {
  3660. GGML_ASSERT(ggml_can_repeat(a, b));
  3661. bool is_node = false;
  3662. if (a->grad) {
  3663. is_node = true;
  3664. }
  3665. if (ggml_are_same_shape(a, b) && !is_node) {
  3666. return a;
  3667. }
  3668. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3669. result->op = GGML_OP_REPEAT;
  3670. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3671. result->src0 = a;
  3672. result->src1 = b;
  3673. return result;
  3674. }
  3675. // ggml_abs
  3676. struct ggml_tensor * ggml_abs_impl(
  3677. struct ggml_context * ctx,
  3678. struct ggml_tensor * a,
  3679. bool inplace) {
  3680. bool is_node = false;
  3681. if (!inplace && (a->grad)) {
  3682. is_node = true;
  3683. }
  3684. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3685. result->op = GGML_OP_ABS;
  3686. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3687. result->src0 = a;
  3688. result->src1 = NULL;
  3689. return result;
  3690. }
  3691. struct ggml_tensor * ggml_abs(
  3692. struct ggml_context * ctx,
  3693. struct ggml_tensor * a) {
  3694. return ggml_abs_impl(ctx, a, false);
  3695. }
  3696. struct ggml_tensor * ggml_abs_inplace(
  3697. struct ggml_context * ctx,
  3698. struct ggml_tensor * a) {
  3699. return ggml_abs_impl(ctx, a, true);
  3700. }
  3701. // ggml_sgn
  3702. struct ggml_tensor * ggml_sgn_impl(
  3703. struct ggml_context * ctx,
  3704. struct ggml_tensor * a,
  3705. bool inplace) {
  3706. bool is_node = false;
  3707. if (!inplace && (a->grad)) {
  3708. is_node = true;
  3709. }
  3710. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3711. result->op = GGML_OP_SGN;
  3712. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3713. result->src0 = a;
  3714. result->src1 = NULL;
  3715. return result;
  3716. }
  3717. struct ggml_tensor * ggml_sgn(
  3718. struct ggml_context * ctx,
  3719. struct ggml_tensor * a) {
  3720. return ggml_sgn_impl(ctx, a, false);
  3721. }
  3722. struct ggml_tensor * ggml_sgn_inplace(
  3723. struct ggml_context * ctx,
  3724. struct ggml_tensor * a) {
  3725. return ggml_sgn_impl(ctx, a, true);
  3726. }
  3727. // ggml_neg
  3728. struct ggml_tensor * ggml_neg_impl(
  3729. struct ggml_context * ctx,
  3730. struct ggml_tensor * a,
  3731. bool inplace) {
  3732. bool is_node = false;
  3733. if (!inplace && (a->grad)) {
  3734. is_node = true;
  3735. }
  3736. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3737. result->op = GGML_OP_NEG;
  3738. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3739. result->src0 = a;
  3740. result->src1 = NULL;
  3741. return result;
  3742. }
  3743. struct ggml_tensor * ggml_neg(
  3744. struct ggml_context * ctx,
  3745. struct ggml_tensor * a) {
  3746. return ggml_neg_impl(ctx, a, false);
  3747. }
  3748. struct ggml_tensor * ggml_neg_inplace(
  3749. struct ggml_context * ctx,
  3750. struct ggml_tensor * a) {
  3751. return ggml_neg_impl(ctx, a, true);
  3752. }
  3753. // ggml_step
  3754. struct ggml_tensor * ggml_step_impl(
  3755. struct ggml_context * ctx,
  3756. struct ggml_tensor * a,
  3757. bool inplace) {
  3758. bool is_node = false;
  3759. if (!inplace && (a->grad)) {
  3760. is_node = true;
  3761. }
  3762. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3763. result->op = GGML_OP_STEP;
  3764. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3765. result->src0 = a;
  3766. result->src1 = NULL;
  3767. return result;
  3768. }
  3769. struct ggml_tensor * ggml_step(
  3770. struct ggml_context * ctx,
  3771. struct ggml_tensor * a) {
  3772. return ggml_step_impl(ctx, a, false);
  3773. }
  3774. struct ggml_tensor * ggml_step_inplace(
  3775. struct ggml_context * ctx,
  3776. struct ggml_tensor * a) {
  3777. return ggml_step_impl(ctx, a, true);
  3778. }
  3779. // ggml_relu
  3780. struct ggml_tensor * ggml_relu_impl(
  3781. struct ggml_context * ctx,
  3782. struct ggml_tensor * a,
  3783. bool inplace) {
  3784. bool is_node = false;
  3785. if (!inplace && (a->grad)) {
  3786. is_node = true;
  3787. }
  3788. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3789. result->op = GGML_OP_RELU;
  3790. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3791. result->src0 = a;
  3792. result->src1 = NULL;
  3793. return result;
  3794. }
  3795. struct ggml_tensor * ggml_relu(
  3796. struct ggml_context * ctx,
  3797. struct ggml_tensor * a) {
  3798. return ggml_relu_impl(ctx, a, false);
  3799. }
  3800. struct ggml_tensor * ggml_relu_inplace(
  3801. struct ggml_context * ctx,
  3802. struct ggml_tensor * a) {
  3803. return ggml_relu_impl(ctx, a, true);
  3804. }
  3805. // ggml_gelu
  3806. struct ggml_tensor * ggml_gelu_impl(
  3807. struct ggml_context * ctx,
  3808. struct ggml_tensor * a,
  3809. bool inplace) {
  3810. bool is_node = false;
  3811. if (!inplace && (a->grad)) {
  3812. is_node = true;
  3813. }
  3814. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3815. result->op = GGML_OP_GELU;
  3816. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3817. result->src0 = a;
  3818. result->src1 = NULL;
  3819. return result;
  3820. }
  3821. struct ggml_tensor * ggml_gelu(
  3822. struct ggml_context * ctx,
  3823. struct ggml_tensor * a) {
  3824. return ggml_gelu_impl(ctx, a, false);
  3825. }
  3826. struct ggml_tensor * ggml_gelu_inplace(
  3827. struct ggml_context * ctx,
  3828. struct ggml_tensor * a) {
  3829. return ggml_gelu_impl(ctx, a, true);
  3830. }
  3831. // ggml_silu
  3832. struct ggml_tensor * ggml_silu_impl(
  3833. struct ggml_context * ctx,
  3834. struct ggml_tensor * a,
  3835. bool inplace) {
  3836. bool is_node = false;
  3837. if (!inplace && (a->grad)) {
  3838. is_node = true;
  3839. }
  3840. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3841. result->op = GGML_OP_SILU;
  3842. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3843. result->src0 = a;
  3844. result->src1 = NULL;
  3845. return result;
  3846. }
  3847. struct ggml_tensor * ggml_silu(
  3848. struct ggml_context * ctx,
  3849. struct ggml_tensor * a) {
  3850. return ggml_silu_impl(ctx, a, false);
  3851. }
  3852. struct ggml_tensor * ggml_silu_inplace(
  3853. struct ggml_context * ctx,
  3854. struct ggml_tensor * a) {
  3855. return ggml_silu_impl(ctx, a, true);
  3856. }
  3857. // ggml_norm
  3858. struct ggml_tensor * ggml_norm_impl(
  3859. struct ggml_context * ctx,
  3860. struct ggml_tensor * a,
  3861. bool inplace) {
  3862. bool is_node = false;
  3863. if (!inplace && (a->grad)) {
  3864. GGML_ASSERT(false); // TODO: implement backward
  3865. is_node = true;
  3866. }
  3867. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3868. result->op = GGML_OP_NORM;
  3869. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3870. result->src0 = a;
  3871. result->src1 = NULL; // TODO: maybe store epsilon here?
  3872. return result;
  3873. }
  3874. struct ggml_tensor * ggml_norm(
  3875. struct ggml_context * ctx,
  3876. struct ggml_tensor * a) {
  3877. return ggml_norm_impl(ctx, a, false);
  3878. }
  3879. struct ggml_tensor * ggml_norm_inplace(
  3880. struct ggml_context * ctx,
  3881. struct ggml_tensor * a) {
  3882. return ggml_norm_impl(ctx, a, true);
  3883. }
  3884. struct ggml_tensor * ggml_rms_norm_impl(
  3885. struct ggml_context * ctx,
  3886. struct ggml_tensor * a,
  3887. bool inplace) {
  3888. bool is_node = false;
  3889. if (!inplace && (a->grad)) {
  3890. GGML_ASSERT(false); // TODO: implement backward
  3891. is_node = true;
  3892. }
  3893. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3894. result->op = GGML_OP_RMS_NORM;
  3895. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3896. result->src0 = a;
  3897. result->src1 = NULL; // TODO: maybe store epsilon here?
  3898. return result;
  3899. }
  3900. struct ggml_tensor * ggml_rms_norm(
  3901. struct ggml_context * ctx,
  3902. struct ggml_tensor * a) {
  3903. return ggml_rms_norm_impl(ctx, a, false);
  3904. }
  3905. struct ggml_tensor * ggml_rms_norm_inplace(
  3906. struct ggml_context * ctx,
  3907. struct ggml_tensor * a) {
  3908. return ggml_rms_norm_impl(ctx, a, true);
  3909. }
  3910. // ggml_mul_mat
  3911. struct ggml_tensor * ggml_mul_mat(
  3912. struct ggml_context * ctx,
  3913. struct ggml_tensor * a,
  3914. struct ggml_tensor * b) {
  3915. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3916. GGML_ASSERT(!ggml_is_transposed(a));
  3917. bool is_node = false;
  3918. if (a->grad || b->grad) {
  3919. is_node = true;
  3920. }
  3921. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3922. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3923. result->op = GGML_OP_MUL_MAT;
  3924. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3925. result->src0 = a;
  3926. result->src1 = b;
  3927. return result;
  3928. }
  3929. // ggml_scale
  3930. struct ggml_tensor * ggml_scale_impl(
  3931. struct ggml_context * ctx,
  3932. struct ggml_tensor * a,
  3933. struct ggml_tensor * b,
  3934. bool inplace) {
  3935. GGML_ASSERT(ggml_is_scalar(b));
  3936. GGML_ASSERT(ggml_is_padded_1d(a));
  3937. bool is_node = false;
  3938. if (!inplace && (a->grad || b->grad)) {
  3939. GGML_ASSERT(false); // TODO: implement backward
  3940. is_node = true;
  3941. }
  3942. // TODO: when implement backward, fix this:
  3943. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3944. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3945. result->op = GGML_OP_SCALE;
  3946. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3947. result->src0 = a;
  3948. result->src1 = b;
  3949. return result;
  3950. }
  3951. struct ggml_tensor * ggml_scale(
  3952. struct ggml_context * ctx,
  3953. struct ggml_tensor * a,
  3954. struct ggml_tensor * b) {
  3955. return ggml_scale_impl(ctx, a, b, false);
  3956. }
  3957. struct ggml_tensor * ggml_scale_inplace(
  3958. struct ggml_context * ctx,
  3959. struct ggml_tensor * a,
  3960. struct ggml_tensor * b) {
  3961. return ggml_scale_impl(ctx, a, b, true);
  3962. }
  3963. // ggml_cpy
  3964. struct ggml_tensor * ggml_cpy_impl(
  3965. struct ggml_context * ctx,
  3966. struct ggml_tensor * a,
  3967. struct ggml_tensor * b,
  3968. bool inplace) {
  3969. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3970. bool is_node = false;
  3971. if (!inplace && (a->grad || b->grad)) {
  3972. GGML_ASSERT(false); // TODO: implement backward
  3973. is_node = true;
  3974. }
  3975. // make a view of the destination
  3976. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3977. result->op = GGML_OP_CPY;
  3978. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3979. result->src0 = a;
  3980. result->src1 = b;
  3981. return result;
  3982. }
  3983. struct ggml_tensor * ggml_cpy(
  3984. struct ggml_context * ctx,
  3985. struct ggml_tensor * a,
  3986. struct ggml_tensor * b) {
  3987. return ggml_cpy_impl(ctx, a, b, false);
  3988. }
  3989. struct ggml_tensor * ggml_cpy_inplace(
  3990. struct ggml_context * ctx,
  3991. struct ggml_tensor * a,
  3992. struct ggml_tensor * b) {
  3993. return ggml_cpy_impl(ctx, a, b, true);
  3994. }
  3995. // ggml_cont
  3996. struct ggml_tensor * ggml_cont_impl(
  3997. struct ggml_context * ctx,
  3998. struct ggml_tensor * a,
  3999. bool inplace) {
  4000. bool is_node = false;
  4001. if (!inplace && a->grad) {
  4002. GGML_ASSERT(false); // TODO: implement backward
  4003. is_node = true;
  4004. }
  4005. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4006. result->op = GGML_OP_CONT;
  4007. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4008. result->src0 = a;
  4009. result->src1 = NULL;
  4010. return result;
  4011. }
  4012. struct ggml_tensor * ggml_cont(
  4013. struct ggml_context * ctx,
  4014. struct ggml_tensor * a) {
  4015. return ggml_cont_impl(ctx, a, false);
  4016. }
  4017. struct ggml_tensor * ggml_cont_inplace(
  4018. struct ggml_context * ctx,
  4019. struct ggml_tensor * a) {
  4020. return ggml_cont_impl(ctx, a, true);
  4021. }
  4022. // ggml_reshape
  4023. struct ggml_tensor * ggml_reshape(
  4024. struct ggml_context * ctx,
  4025. struct ggml_tensor * a,
  4026. struct ggml_tensor * b) {
  4027. GGML_ASSERT(ggml_is_contiguous(a));
  4028. GGML_ASSERT(ggml_is_contiguous(b));
  4029. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4030. bool is_node = false;
  4031. if (a->grad || b->grad) {
  4032. GGML_ASSERT(false); // TODO: implement backward
  4033. is_node = true;
  4034. }
  4035. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4036. result->op = GGML_OP_RESHAPE;
  4037. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4038. result->src0 = a;
  4039. result->src1 = NULL;
  4040. return result;
  4041. }
  4042. struct ggml_tensor * ggml_reshape_2d(
  4043. struct ggml_context * ctx,
  4044. struct ggml_tensor * a,
  4045. int64_t ne0,
  4046. int64_t ne1) {
  4047. GGML_ASSERT(ggml_is_contiguous(a));
  4048. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4049. bool is_node = false;
  4050. if (a->grad) {
  4051. GGML_ASSERT(false); // TODO: implement backward
  4052. is_node = true;
  4053. }
  4054. const int64_t ne[2] = { ne0, ne1 };
  4055. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4056. result->op = GGML_OP_RESHAPE;
  4057. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4058. result->src0 = a;
  4059. result->src1 = NULL;
  4060. return result;
  4061. }
  4062. struct ggml_tensor * ggml_reshape_3d(
  4063. struct ggml_context * ctx,
  4064. struct ggml_tensor * a,
  4065. int64_t ne0,
  4066. int64_t ne1,
  4067. int64_t ne2) {
  4068. GGML_ASSERT(ggml_is_contiguous(a));
  4069. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4070. bool is_node = false;
  4071. if (a->grad) {
  4072. GGML_ASSERT(false); // TODO: implement backward
  4073. is_node = true;
  4074. }
  4075. const int64_t ne[3] = { ne0, ne1, ne2 };
  4076. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4077. result->op = GGML_OP_RESHAPE;
  4078. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4079. result->src0 = a;
  4080. result->src1 = NULL;
  4081. return result;
  4082. }
  4083. // ggml_view_1d
  4084. struct ggml_tensor * ggml_view_1d(
  4085. struct ggml_context * ctx,
  4086. struct ggml_tensor * a,
  4087. int64_t ne0,
  4088. size_t offset) {
  4089. if (a->grad) {
  4090. GGML_ASSERT(false); // gradient propagation is not supported
  4091. }
  4092. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4093. result->op = GGML_OP_VIEW;
  4094. result->grad = NULL;
  4095. result->src0 = a;
  4096. result->src1 = NULL; // TODO: maybe store the offset here?
  4097. return result;
  4098. }
  4099. // ggml_view_2d
  4100. struct ggml_tensor * ggml_view_2d(
  4101. struct ggml_context * ctx,
  4102. struct ggml_tensor * a,
  4103. int64_t ne0,
  4104. int64_t ne1,
  4105. size_t nb1,
  4106. size_t offset) {
  4107. if (a->grad) {
  4108. GGML_ASSERT(false); // gradient propagation is not supported
  4109. }
  4110. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4111. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4112. result->nb[1] = nb1;
  4113. result->nb[2] = result->nb[1]*ne1;
  4114. result->nb[3] = result->nb[2];
  4115. result->op = GGML_OP_VIEW;
  4116. result->grad = NULL;
  4117. result->src0 = a;
  4118. result->src1 = NULL; // TODO: maybe store the offset here?
  4119. return result;
  4120. }
  4121. // ggml_view_3d
  4122. struct ggml_tensor * ggml_view_3d(
  4123. struct ggml_context * ctx,
  4124. struct ggml_tensor * a,
  4125. int64_t ne0,
  4126. int64_t ne1,
  4127. int64_t ne2,
  4128. size_t nb1,
  4129. size_t nb2,
  4130. size_t offset) {
  4131. if (a->grad) {
  4132. GGML_ASSERT(false); // gradient propagation is not supported
  4133. }
  4134. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4135. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4136. result->nb[1] = nb1;
  4137. result->nb[2] = nb2;
  4138. result->nb[3] = result->nb[2]*ne2;
  4139. result->op = GGML_OP_VIEW;
  4140. result->grad = NULL;
  4141. result->src0 = a;
  4142. result->src1 = NULL; // TODO: maybe store the offset here?
  4143. return result;
  4144. }
  4145. // ggml_permute
  4146. struct ggml_tensor * ggml_permute(
  4147. struct ggml_context * ctx,
  4148. struct ggml_tensor * a,
  4149. int axis0,
  4150. int axis1,
  4151. int axis2,
  4152. int axis3) {
  4153. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4154. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4155. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4156. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4157. GGML_ASSERT(axis0 != axis1);
  4158. GGML_ASSERT(axis0 != axis2);
  4159. GGML_ASSERT(axis0 != axis3);
  4160. GGML_ASSERT(axis1 != axis2);
  4161. GGML_ASSERT(axis1 != axis3);
  4162. GGML_ASSERT(axis2 != axis3);
  4163. bool is_node = false;
  4164. if (a->grad) {
  4165. GGML_ASSERT(false); // TODO: implement backward
  4166. is_node = true;
  4167. }
  4168. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4169. int ne[GGML_MAX_DIMS];
  4170. int nb[GGML_MAX_DIMS];
  4171. ne[axis0] = a->ne[0];
  4172. ne[axis1] = a->ne[1];
  4173. ne[axis2] = a->ne[2];
  4174. ne[axis3] = a->ne[3];
  4175. nb[axis0] = a->nb[0];
  4176. nb[axis1] = a->nb[1];
  4177. nb[axis2] = a->nb[2];
  4178. nb[axis3] = a->nb[3];
  4179. result->ne[0] = ne[0];
  4180. result->ne[1] = ne[1];
  4181. result->ne[2] = ne[2];
  4182. result->ne[3] = ne[3];
  4183. result->nb[0] = nb[0];
  4184. result->nb[1] = nb[1];
  4185. result->nb[2] = nb[2];
  4186. result->nb[3] = nb[3];
  4187. result->op = GGML_OP_PERMUTE;
  4188. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4189. result->src0 = a;
  4190. result->src1 = NULL; // TODO: maybe store the permutation here?
  4191. return result;
  4192. }
  4193. // ggml_transpose
  4194. struct ggml_tensor * ggml_transpose(
  4195. struct ggml_context * ctx,
  4196. struct ggml_tensor * a) {
  4197. bool is_node = false;
  4198. if (a->grad) {
  4199. GGML_ASSERT(false); // TODO: implement backward
  4200. is_node = true;
  4201. }
  4202. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4203. result->ne[0] = a->ne[1];
  4204. result->ne[1] = a->ne[0];
  4205. result->nb[0] = a->nb[1];
  4206. result->nb[1] = a->nb[0];
  4207. result->op = GGML_OP_TRANSPOSE;
  4208. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4209. result->src0 = a;
  4210. result->src1 = NULL;
  4211. return result;
  4212. }
  4213. // ggml_get_rows
  4214. struct ggml_tensor * ggml_get_rows(
  4215. struct ggml_context * ctx,
  4216. struct ggml_tensor * a,
  4217. struct ggml_tensor * b) {
  4218. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4219. bool is_node = false;
  4220. if (a->grad || b->grad) {
  4221. GGML_ASSERT(false); // TODO: implement backward
  4222. is_node = true;
  4223. }
  4224. // TODO: implement non F32 return
  4225. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4226. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4227. result->op = GGML_OP_GET_ROWS;
  4228. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4229. result->src0 = a;
  4230. result->src1 = b;
  4231. return result;
  4232. }
  4233. // ggml_diag_mask_inf
  4234. struct ggml_tensor * ggml_diag_mask_inf(
  4235. struct ggml_context * ctx,
  4236. struct ggml_tensor * a,
  4237. int n_past) {
  4238. bool is_node = false;
  4239. if (a->grad) {
  4240. GGML_ASSERT(false); // TODO: implement backward
  4241. is_node = true;
  4242. }
  4243. // TODO: when implement backward, fix this:
  4244. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4245. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4246. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4247. ggml_set_name(b, "n_past");
  4248. result->op = GGML_OP_DIAG_MASK_INF;
  4249. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4250. result->src0 = a;
  4251. result->src1 = b;
  4252. return result;
  4253. }
  4254. // ggml_soft_max
  4255. struct ggml_tensor * ggml_soft_max(
  4256. struct ggml_context * ctx,
  4257. struct ggml_tensor * a) {
  4258. bool is_node = false;
  4259. if (a->grad) {
  4260. GGML_ASSERT(false); // TODO: implement backward
  4261. is_node = true;
  4262. }
  4263. // TODO: when implement backward, fix this:
  4264. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4265. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4266. result->op = GGML_OP_SOFT_MAX;
  4267. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4268. result->src0 = a;
  4269. result->src1 = NULL;
  4270. return result;
  4271. }
  4272. // ggml_rope
  4273. struct ggml_tensor * ggml_rope(
  4274. struct ggml_context * ctx,
  4275. struct ggml_tensor * a,
  4276. int n_past,
  4277. int n_dims,
  4278. int mode) {
  4279. GGML_ASSERT(n_past >= 0);
  4280. bool is_node = false;
  4281. if (a->grad) {
  4282. GGML_ASSERT(false); // TODO: implement backward
  4283. is_node = true;
  4284. }
  4285. // TODO: when implement backward, fix this:
  4286. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4287. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4288. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4289. ((int32_t *) b->data)[0] = n_past;
  4290. ((int32_t *) b->data)[1] = n_dims;
  4291. ((int32_t *) b->data)[2] = mode;
  4292. ggml_set_name(b, "n_past, n_dims, mode");
  4293. result->op = GGML_OP_ROPE;
  4294. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4295. result->src0 = a;
  4296. result->src1 = b;
  4297. return result;
  4298. }
  4299. // ggml_alibi
  4300. struct ggml_tensor * ggml_alibi(
  4301. struct ggml_context * ctx,
  4302. struct ggml_tensor * a,
  4303. int n_past,
  4304. int n_head) {
  4305. GGML_ASSERT(n_past >= 0);
  4306. bool is_node = false;
  4307. if (a->grad) {
  4308. GGML_ASSERT(false); // TODO: implement backward
  4309. is_node = true;
  4310. }
  4311. // TODO: when implement backward, fix this:
  4312. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4313. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4314. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4315. ((int32_t *) b->data)[0] = n_past;
  4316. ((int32_t *) b->data)[1] = n_head;
  4317. result->op = GGML_OP_ALIBI;
  4318. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4319. result->src0 = a;
  4320. result->src1 = b;
  4321. return result;
  4322. }
  4323. // ggml_conv_1d_1s
  4324. struct ggml_tensor * ggml_conv_1d_1s(
  4325. struct ggml_context * ctx,
  4326. struct ggml_tensor * a,
  4327. struct ggml_tensor * b) {
  4328. GGML_ASSERT(ggml_is_matrix(b));
  4329. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4330. GGML_ASSERT(a->ne[3] == 1);
  4331. bool is_node = false;
  4332. if (a->grad || b->grad) {
  4333. GGML_ASSERT(false); // TODO: implement backward
  4334. is_node = true;
  4335. }
  4336. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4337. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4338. result->op = GGML_OP_CONV_1D_1S;
  4339. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4340. result->src0 = a;
  4341. result->src1 = b;
  4342. return result;
  4343. }
  4344. // ggml_conv_1d_2s
  4345. struct ggml_tensor * ggml_conv_1d_2s(
  4346. struct ggml_context * ctx,
  4347. struct ggml_tensor * a,
  4348. struct ggml_tensor * b) {
  4349. GGML_ASSERT(ggml_is_matrix(b));
  4350. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4351. GGML_ASSERT(a->ne[3] == 1);
  4352. bool is_node = false;
  4353. if (a->grad || b->grad) {
  4354. GGML_ASSERT(false); // TODO: implement backward
  4355. is_node = true;
  4356. }
  4357. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4358. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4359. result->op = GGML_OP_CONV_1D_2S;
  4360. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4361. result->src0 = a;
  4362. result->src1 = b;
  4363. return result;
  4364. }
  4365. // ggml_flash_attn
  4366. struct ggml_tensor * ggml_flash_attn(
  4367. struct ggml_context * ctx,
  4368. struct ggml_tensor * q,
  4369. struct ggml_tensor * k,
  4370. struct ggml_tensor * v,
  4371. bool masked) {
  4372. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4373. // TODO: check if vT can be multiplied by (k*qT)
  4374. bool is_node = false;
  4375. if (q->grad || k->grad || v->grad) {
  4376. GGML_ASSERT(false); // TODO: implement backward
  4377. is_node = true;
  4378. }
  4379. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4380. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4381. result->op = GGML_OP_FLASH_ATTN;
  4382. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4383. result->src0 = q;
  4384. result->src1 = k;
  4385. result->opt[0] = v;
  4386. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4387. return result;
  4388. }
  4389. // ggml_flash_ff
  4390. struct ggml_tensor * ggml_flash_ff(
  4391. struct ggml_context * ctx,
  4392. struct ggml_tensor * a,
  4393. struct ggml_tensor * b0,
  4394. struct ggml_tensor * b1,
  4395. struct ggml_tensor * c0,
  4396. struct ggml_tensor * c1) {
  4397. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4398. // TODO: more checks
  4399. bool is_node = false;
  4400. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4401. GGML_ASSERT(false); // TODO: implement backward
  4402. is_node = true;
  4403. }
  4404. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4405. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4406. result->op = GGML_OP_FLASH_FF;
  4407. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4408. result->src0 = a;
  4409. result->src1 = b0;
  4410. result->opt[0] = b1;
  4411. result->opt[1] = c0;
  4412. result->opt[2] = c1;
  4413. return result;
  4414. }
  4415. // ggml_map_unary
  4416. struct ggml_tensor * ggml_map_unary_impl_f32(
  4417. struct ggml_context * ctx,
  4418. struct ggml_tensor * a,
  4419. const ggml_unary_op_f32_t fun,
  4420. bool inplace) {
  4421. bool is_node = false;
  4422. if (!inplace && a->grad) {
  4423. is_node = true;
  4424. }
  4425. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4426. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4427. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4428. result->op = GGML_OP_MAP_UNARY;
  4429. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4430. result->src0 = a;
  4431. result->opt[0] = addr_tensor;
  4432. return result;
  4433. }
  4434. struct ggml_tensor * ggml_map_unary_f32(
  4435. struct ggml_context * ctx,
  4436. struct ggml_tensor * a,
  4437. const ggml_unary_op_f32_t fun) {
  4438. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4439. }
  4440. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4441. struct ggml_context * ctx,
  4442. struct ggml_tensor * a,
  4443. const ggml_unary_op_f32_t fun) {
  4444. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4445. }
  4446. // ggml_map_binary
  4447. struct ggml_tensor * ggml_map_binary_impl_f32(
  4448. struct ggml_context * ctx,
  4449. struct ggml_tensor * a,
  4450. struct ggml_tensor * b,
  4451. const ggml_binary_op_f32_t fun,
  4452. bool inplace) {
  4453. GGML_ASSERT(ggml_are_same_shape(a, b));
  4454. bool is_node = false;
  4455. if (!inplace && (a->grad || b->grad)) {
  4456. is_node = true;
  4457. }
  4458. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4459. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4460. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4461. result->op = GGML_OP_MAP_BINARY;
  4462. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4463. result->src0 = a;
  4464. result->src1 = b;
  4465. result->opt[0] = addr_tensor;
  4466. return result;
  4467. }
  4468. struct ggml_tensor * ggml_map_binary_f32(
  4469. struct ggml_context * ctx,
  4470. struct ggml_tensor * a,
  4471. struct ggml_tensor * b,
  4472. const ggml_binary_op_f32_t fun) {
  4473. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4474. }
  4475. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4476. struct ggml_context * ctx,
  4477. struct ggml_tensor * a,
  4478. struct ggml_tensor * b,
  4479. const ggml_binary_op_f32_t fun) {
  4480. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4481. }
  4482. ////////////////////////////////////////////////////////////////////////////////
  4483. void ggml_set_param(
  4484. struct ggml_context * ctx,
  4485. struct ggml_tensor * tensor) {
  4486. tensor->is_param = true;
  4487. GGML_ASSERT(tensor->grad == NULL);
  4488. tensor->grad = ggml_dup_tensor(ctx, tensor);
  4489. }
  4490. // ggml_compute_forward_dup
  4491. static void ggml_compute_forward_dup_f16(
  4492. const struct ggml_compute_params * params,
  4493. const struct ggml_tensor * src0,
  4494. struct ggml_tensor * dst) {
  4495. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4496. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4497. return;
  4498. }
  4499. const int64_t ne00 = src0->ne[0];
  4500. const int64_t ne01 = src0->ne[1];
  4501. const int64_t ne02 = src0->ne[2];
  4502. const int64_t ne03 = src0->ne[3];
  4503. const int64_t ne0 = dst->ne[0];
  4504. const int64_t ne1 = dst->ne[1];
  4505. const int64_t ne2 = dst->ne[2];
  4506. const int64_t ne3 = dst->ne[3];
  4507. const size_t nb00 = src0->nb[0];
  4508. const size_t nb01 = src0->nb[1];
  4509. const size_t nb02 = src0->nb[2];
  4510. const size_t nb03 = src0->nb[3];
  4511. const size_t nb0 = dst->nb[0];
  4512. const size_t nb1 = dst->nb[1];
  4513. const size_t nb2 = dst->nb[2];
  4514. const size_t nb3 = dst->nb[3];
  4515. const int ith = params->ith; // thread index
  4516. const int nth = params->nth; // number of threads
  4517. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4518. // parallelize by elements
  4519. const int ne = ggml_nelements(dst);
  4520. const int dr = (ne + nth - 1) / nth;
  4521. const int ie0 = dr * ith;
  4522. const int ie1 = MIN(ie0 + dr, ne);
  4523. memcpy(
  4524. ((char *) dst->data + ie0*nb0),
  4525. ((char *) src0->data + ie0*nb00),
  4526. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4527. return;
  4528. }
  4529. // parallelize by rows
  4530. const int nr = ne01;
  4531. // number of rows per thread
  4532. const int dr = (nr + nth - 1) / nth;
  4533. // row range for this thread
  4534. const int ir0 = dr * ith;
  4535. const int ir1 = MIN(ir0 + dr, nr);
  4536. if (src0->type == dst->type &&
  4537. ne00 == ne0 &&
  4538. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4539. // copy by rows
  4540. const size_t rs = ne00*nb00;
  4541. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4542. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4543. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4544. memcpy(
  4545. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4546. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4547. rs);
  4548. }
  4549. }
  4550. }
  4551. return;
  4552. }
  4553. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  4554. if (ggml_is_contiguous(dst)) {
  4555. if (nb00 == sizeof(ggml_fp16_t)) {
  4556. if (dst->type == GGML_TYPE_F16) {
  4557. size_t id = 0;
  4558. const size_t rs = ne00 * nb00;
  4559. char * dst_ptr = (char *) dst->data;
  4560. for (int i03 = 0; i03 < ne03; i03++) {
  4561. for (int i02 = 0; i02 < ne02; i02++) {
  4562. id += rs * ir0;
  4563. for (int i01 = ir0; i01 < ir1; i01++) {
  4564. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4565. memcpy(dst_ptr + id, src0_ptr, rs);
  4566. id += rs;
  4567. }
  4568. id += rs * (ne01 - ir1);
  4569. }
  4570. }
  4571. } else if (dst->type == GGML_TYPE_F32) {
  4572. size_t id = 0;
  4573. float * dst_ptr = (float *) dst->data;
  4574. for (int i03 = 0; i03 < ne03; i03++) {
  4575. for (int i02 = 0; i02 < ne02; i02++) {
  4576. id += ne00 * ir0;
  4577. for (int i01 = ir0; i01 < ir1; i01++) {
  4578. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4579. for (int i00 = 0; i00 < ne00; i00++) {
  4580. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4581. id++;
  4582. }
  4583. }
  4584. id += ne00 * (ne01 - ir1);
  4585. }
  4586. }
  4587. } else if (ggml_is_quantized(dst->type)) {
  4588. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4589. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  4590. size_t id = 0;
  4591. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4592. char * dst_ptr = (char *) dst->data;
  4593. for (int i03 = 0; i03 < ne03; i03++) {
  4594. for (int i02 = 0; i02 < ne02; i02++) {
  4595. id += rs * ir0;
  4596. for (int i01 = ir0; i01 < ir1; i01++) {
  4597. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4598. for (int i00 = 0; i00 < ne00; i00++) {
  4599. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4600. }
  4601. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  4602. id += rs;
  4603. }
  4604. id += rs * (ne01 - ir1);
  4605. }
  4606. }
  4607. } else {
  4608. GGML_ASSERT(false); // TODO: implement
  4609. }
  4610. } else {
  4611. //printf("%s: this is not optimal - fix me\n", __func__);
  4612. if (dst->type == GGML_TYPE_F32) {
  4613. size_t id = 0;
  4614. float * dst_ptr = (float *) dst->data;
  4615. for (int i03 = 0; i03 < ne03; i03++) {
  4616. for (int i02 = 0; i02 < ne02; i02++) {
  4617. id += ne00 * ir0;
  4618. for (int i01 = ir0; i01 < ir1; i01++) {
  4619. for (int i00 = 0; i00 < ne00; i00++) {
  4620. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4621. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4622. id++;
  4623. }
  4624. }
  4625. id += ne00 * (ne01 - ir1);
  4626. }
  4627. }
  4628. } else if (dst->type == GGML_TYPE_F16) {
  4629. size_t id = 0;
  4630. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4631. for (int i03 = 0; i03 < ne03; i03++) {
  4632. for (int i02 = 0; i02 < ne02; i02++) {
  4633. id += ne00 * ir0;
  4634. for (int i01 = ir0; i01 < ir1; i01++) {
  4635. for (int i00 = 0; i00 < ne00; i00++) {
  4636. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4637. dst_ptr[id] = *src0_ptr;
  4638. id++;
  4639. }
  4640. }
  4641. id += ne00 * (ne01 - ir1);
  4642. }
  4643. }
  4644. } else {
  4645. GGML_ASSERT(false); // TODO: implement
  4646. }
  4647. }
  4648. return;
  4649. }
  4650. // dst counters
  4651. int64_t i10 = 0;
  4652. int64_t i11 = 0;
  4653. int64_t i12 = 0;
  4654. int64_t i13 = 0;
  4655. if (dst->type == GGML_TYPE_F16) {
  4656. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4657. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4658. i10 += ne00 * ir0;
  4659. while (i10 >= ne0) {
  4660. i10 -= ne0;
  4661. if (++i11 == ne1) {
  4662. i11 = 0;
  4663. if (++i12 == ne2) {
  4664. i12 = 0;
  4665. if (++i13 == ne3) {
  4666. i13 = 0;
  4667. }
  4668. }
  4669. }
  4670. }
  4671. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4672. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4673. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4674. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4675. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  4676. if (++i10 == ne00) {
  4677. i10 = 0;
  4678. if (++i11 == ne01) {
  4679. i11 = 0;
  4680. if (++i12 == ne02) {
  4681. i12 = 0;
  4682. if (++i13 == ne03) {
  4683. i13 = 0;
  4684. }
  4685. }
  4686. }
  4687. }
  4688. }
  4689. }
  4690. i10 += ne00 * (ne01 - ir1);
  4691. while (i10 >= ne0) {
  4692. i10 -= ne0;
  4693. if (++i11 == ne1) {
  4694. i11 = 0;
  4695. if (++i12 == ne2) {
  4696. i12 = 0;
  4697. if (++i13 == ne3) {
  4698. i13 = 0;
  4699. }
  4700. }
  4701. }
  4702. }
  4703. }
  4704. }
  4705. } else if (dst->type == GGML_TYPE_F32) {
  4706. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4707. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4708. i10 += ne00 * ir0;
  4709. while (i10 >= ne0) {
  4710. i10 -= ne0;
  4711. if (++i11 == ne1) {
  4712. i11 = 0;
  4713. if (++i12 == ne2) {
  4714. i12 = 0;
  4715. if (++i13 == ne3) {
  4716. i13 = 0;
  4717. }
  4718. }
  4719. }
  4720. }
  4721. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4722. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4723. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4724. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4725. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  4726. if (++i10 == ne0) {
  4727. i10 = 0;
  4728. if (++i11 == ne1) {
  4729. i11 = 0;
  4730. if (++i12 == ne2) {
  4731. i12 = 0;
  4732. if (++i13 == ne3) {
  4733. i13 = 0;
  4734. }
  4735. }
  4736. }
  4737. }
  4738. }
  4739. }
  4740. i10 += ne00 * (ne01 - ir1);
  4741. while (i10 >= ne0) {
  4742. i10 -= ne0;
  4743. if (++i11 == ne1) {
  4744. i11 = 0;
  4745. if (++i12 == ne2) {
  4746. i12 = 0;
  4747. if (++i13 == ne3) {
  4748. i13 = 0;
  4749. }
  4750. }
  4751. }
  4752. }
  4753. }
  4754. }
  4755. } else {
  4756. GGML_ASSERT(false); // TODO: implement
  4757. }
  4758. }
  4759. static void ggml_compute_forward_dup_f32(
  4760. const struct ggml_compute_params * params,
  4761. const struct ggml_tensor * src0,
  4762. struct ggml_tensor * dst) {
  4763. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4764. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4765. return;
  4766. }
  4767. const int64_t ne00 = src0->ne[0];
  4768. const int64_t ne01 = src0->ne[1];
  4769. const int64_t ne02 = src0->ne[2];
  4770. const int64_t ne03 = src0->ne[3];
  4771. const int64_t ne0 = dst->ne[0];
  4772. const int64_t ne1 = dst->ne[1];
  4773. const int64_t ne2 = dst->ne[2];
  4774. const int64_t ne3 = dst->ne[3];
  4775. const size_t nb00 = src0->nb[0];
  4776. const size_t nb01 = src0->nb[1];
  4777. const size_t nb02 = src0->nb[2];
  4778. const size_t nb03 = src0->nb[3];
  4779. const size_t nb0 = dst->nb[0];
  4780. const size_t nb1 = dst->nb[1];
  4781. const size_t nb2 = dst->nb[2];
  4782. const size_t nb3 = dst->nb[3];
  4783. const int ith = params->ith; // thread index
  4784. const int nth = params->nth; // number of threads
  4785. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4786. // parallelize by elements
  4787. const int ne = ggml_nelements(dst);
  4788. const int dr = (ne + nth - 1) / nth;
  4789. const int ie0 = dr * ith;
  4790. const int ie1 = MIN(ie0 + dr, ne);
  4791. memcpy(
  4792. ((char *) dst->data + ie0*nb0),
  4793. ((char *) src0->data + ie0*nb00),
  4794. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4795. return;
  4796. }
  4797. // parallelize by rows
  4798. const int nr = ne01;
  4799. // number of rows per thread
  4800. const int dr = (nr + nth - 1) / nth;
  4801. // row range for this thread
  4802. const int ir0 = dr * ith;
  4803. const int ir1 = MIN(ir0 + dr, nr);
  4804. if (src0->type == dst->type &&
  4805. ne00 == ne0 &&
  4806. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4807. // copy by rows
  4808. const size_t rs = ne00*nb00;
  4809. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4810. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4811. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4812. memcpy(
  4813. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4814. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4815. rs);
  4816. }
  4817. }
  4818. }
  4819. return;
  4820. }
  4821. if (ggml_is_contiguous(dst)) {
  4822. // TODO: simplify
  4823. if (nb00 == sizeof(float)) {
  4824. if (dst->type == GGML_TYPE_F32) {
  4825. size_t id = 0;
  4826. const size_t rs = ne00 * nb00;
  4827. char * dst_ptr = (char *) dst->data;
  4828. for (int i03 = 0; i03 < ne03; i03++) {
  4829. for (int i02 = 0; i02 < ne02; i02++) {
  4830. id += rs * ir0;
  4831. for (int i01 = ir0; i01 < ir1; i01++) {
  4832. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4833. memcpy(dst_ptr + id, src0_ptr, rs);
  4834. id += rs;
  4835. }
  4836. id += rs * (ne01 - ir1);
  4837. }
  4838. }
  4839. } else if (dst->type == GGML_TYPE_F16) {
  4840. size_t id = 0;
  4841. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4842. for (int i03 = 0; i03 < ne03; i03++) {
  4843. for (int i02 = 0; i02 < ne02; i02++) {
  4844. id += ne00 * ir0;
  4845. for (int i01 = ir0; i01 < ir1; i01++) {
  4846. for (int i00 = 0; i00 < ne00; i00++) {
  4847. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4848. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4849. id++;
  4850. }
  4851. }
  4852. id += ne00 * (ne01 - ir1);
  4853. }
  4854. }
  4855. } else if (ggml_is_quantized(dst->type)) {
  4856. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4857. size_t id = 0;
  4858. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4859. char * dst_ptr = (char *) dst->data;
  4860. for (int i03 = 0; i03 < ne03; i03++) {
  4861. for (int i02 = 0; i02 < ne02; i02++) {
  4862. id += rs * ir0;
  4863. for (int i01 = ir0; i01 < ir1; i01++) {
  4864. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4865. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  4866. id += rs;
  4867. }
  4868. id += rs * (ne01 - ir1);
  4869. }
  4870. }
  4871. } else {
  4872. GGML_ASSERT(false); // TODO: implement
  4873. }
  4874. } else {
  4875. //printf("%s: this is not optimal - fix me\n", __func__);
  4876. if (dst->type == GGML_TYPE_F32) {
  4877. size_t id = 0;
  4878. float * dst_ptr = (float *) dst->data;
  4879. for (int i03 = 0; i03 < ne03; i03++) {
  4880. for (int i02 = 0; i02 < ne02; i02++) {
  4881. id += ne00 * ir0;
  4882. for (int i01 = ir0; i01 < ir1; i01++) {
  4883. for (int i00 = 0; i00 < ne00; i00++) {
  4884. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4885. dst_ptr[id] = *src0_ptr;
  4886. id++;
  4887. }
  4888. }
  4889. id += ne00 * (ne01 - ir1);
  4890. }
  4891. }
  4892. } else if (dst->type == GGML_TYPE_F16) {
  4893. size_t id = 0;
  4894. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4895. for (int i03 = 0; i03 < ne03; i03++) {
  4896. for (int i02 = 0; i02 < ne02; i02++) {
  4897. id += ne00 * ir0;
  4898. for (int i01 = ir0; i01 < ir1; i01++) {
  4899. for (int i00 = 0; i00 < ne00; i00++) {
  4900. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4901. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4902. id++;
  4903. }
  4904. }
  4905. id += ne00 * (ne01 - ir1);
  4906. }
  4907. }
  4908. } else {
  4909. GGML_ASSERT(false); // TODO: implement
  4910. }
  4911. }
  4912. return;
  4913. }
  4914. // dst counters
  4915. int64_t i10 = 0;
  4916. int64_t i11 = 0;
  4917. int64_t i12 = 0;
  4918. int64_t i13 = 0;
  4919. if (dst->type == GGML_TYPE_F32) {
  4920. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4921. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4922. i10 += ne00 * ir0;
  4923. while (i10 >= ne0) {
  4924. i10 -= ne0;
  4925. if (++i11 == ne1) {
  4926. i11 = 0;
  4927. if (++i12 == ne2) {
  4928. i12 = 0;
  4929. if (++i13 == ne3) {
  4930. i13 = 0;
  4931. }
  4932. }
  4933. }
  4934. }
  4935. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4936. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4937. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4938. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4939. memcpy(dst_ptr, src0_ptr, sizeof(float));
  4940. if (++i10 == ne0) {
  4941. i10 = 0;
  4942. if (++i11 == ne1) {
  4943. i11 = 0;
  4944. if (++i12 == ne2) {
  4945. i12 = 0;
  4946. if (++i13 == ne3) {
  4947. i13 = 0;
  4948. }
  4949. }
  4950. }
  4951. }
  4952. }
  4953. }
  4954. i10 += ne00 * (ne01 - ir1);
  4955. while (i10 >= ne0) {
  4956. i10 -= ne0;
  4957. if (++i11 == ne1) {
  4958. i11 = 0;
  4959. if (++i12 == ne2) {
  4960. i12 = 0;
  4961. if (++i13 == ne3) {
  4962. i13 = 0;
  4963. }
  4964. }
  4965. }
  4966. }
  4967. }
  4968. }
  4969. } else if (dst->type == GGML_TYPE_F16) {
  4970. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4971. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4972. i10 += ne00 * ir0;
  4973. while (i10 >= ne0) {
  4974. i10 -= ne0;
  4975. if (++i11 == ne1) {
  4976. i11 = 0;
  4977. if (++i12 == ne2) {
  4978. i12 = 0;
  4979. if (++i13 == ne3) {
  4980. i13 = 0;
  4981. }
  4982. }
  4983. }
  4984. }
  4985. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4986. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4987. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4988. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4989. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  4990. if (++i10 == ne0) {
  4991. i10 = 0;
  4992. if (++i11 == ne1) {
  4993. i11 = 0;
  4994. if (++i12 == ne2) {
  4995. i12 = 0;
  4996. if (++i13 == ne3) {
  4997. i13 = 0;
  4998. }
  4999. }
  5000. }
  5001. }
  5002. }
  5003. }
  5004. i10 += ne00 * (ne01 - ir1);
  5005. while (i10 >= ne0) {
  5006. i10 -= ne0;
  5007. if (++i11 == ne1) {
  5008. i11 = 0;
  5009. if (++i12 == ne2) {
  5010. i12 = 0;
  5011. if (++i13 == ne3) {
  5012. i13 = 0;
  5013. }
  5014. }
  5015. }
  5016. }
  5017. }
  5018. }
  5019. } else {
  5020. GGML_ASSERT(false); // TODO: implement
  5021. }
  5022. }
  5023. static void ggml_compute_forward_dup(
  5024. const struct ggml_compute_params * params,
  5025. const struct ggml_tensor * src0,
  5026. struct ggml_tensor * dst) {
  5027. switch (src0->type) {
  5028. case GGML_TYPE_F16:
  5029. {
  5030. ggml_compute_forward_dup_f16(params, src0, dst);
  5031. } break;
  5032. case GGML_TYPE_F32:
  5033. {
  5034. ggml_compute_forward_dup_f32(params, src0, dst);
  5035. } break;
  5036. default:
  5037. {
  5038. GGML_ASSERT(false);
  5039. } break;
  5040. }
  5041. }
  5042. // ggml_compute_forward_add
  5043. static void ggml_compute_forward_add_f32(
  5044. const struct ggml_compute_params * params,
  5045. const struct ggml_tensor * src0,
  5046. const struct ggml_tensor * src1,
  5047. struct ggml_tensor * dst) {
  5048. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5049. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5050. return;
  5051. }
  5052. const int ith = params->ith;
  5053. const int nth = params->nth;
  5054. const int n = ggml_nrows(src0);
  5055. const int nc = src0->ne[0];
  5056. const size_t nb00 = src0->nb[0];
  5057. const size_t nb01 = src0->nb[1];
  5058. const size_t nb10 = src1->nb[0];
  5059. const size_t nb11 = src1->nb[1];
  5060. const size_t nb0 = dst->nb[0];
  5061. const size_t nb1 = dst->nb[1];
  5062. GGML_ASSERT( nb0 == sizeof(float));
  5063. GGML_ASSERT(nb00 == sizeof(float));
  5064. if (nb10 == sizeof(float)) {
  5065. for (int j = ith; j < n; j += nth) {
  5066. #ifdef GGML_USE_ACCELERATE
  5067. vDSP_vadd(
  5068. (float *) ((char *) src0->data + j*nb01), 1,
  5069. (float *) ((char *) src1->data + j*nb11), 1,
  5070. (float *) ((char *) dst->data + j*nb1), 1, nc);
  5071. #else
  5072. ggml_vec_add_f32(nc,
  5073. (float *) ((char *) dst->data + j*nb1),
  5074. (float *) ((char *) src0->data + j*nb01),
  5075. (float *) ((char *) src1->data + j*nb11));
  5076. #endif
  5077. }
  5078. } else {
  5079. // src1 is not contiguous
  5080. for (int j = ith; j < n; j += nth) {
  5081. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  5082. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  5083. for (int i = 0; i < nc; i++) {
  5084. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5085. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  5086. }
  5087. }
  5088. }
  5089. }
  5090. static void ggml_compute_forward_add_f16_f32(
  5091. const struct ggml_compute_params * params,
  5092. const struct ggml_tensor * src0,
  5093. const struct ggml_tensor * src1,
  5094. struct ggml_tensor * dst) {
  5095. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5096. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5097. return;
  5098. }
  5099. const int ith = params->ith;
  5100. const int nth = params->nth;
  5101. const int n = ggml_nrows(src0);
  5102. const int nc = src0->ne[0];
  5103. const size_t nb00 = src0->nb[0];
  5104. const size_t nb01 = src0->nb[1];
  5105. const size_t nb10 = src1->nb[0];
  5106. const size_t nb11 = src1->nb[1];
  5107. const size_t nb0 = dst->nb[0];
  5108. const size_t nb1 = dst->nb[1];
  5109. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5110. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5111. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5112. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5113. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5114. if (nb10 == sizeof(float)) {
  5115. for (int j = ith; j < n; j += nth) {
  5116. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5117. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5118. for (int i = 0; i < nc; i++) {
  5119. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5120. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  5121. }
  5122. }
  5123. }
  5124. else {
  5125. // src1 is not contiguous
  5126. GGML_ASSERT(false);
  5127. }
  5128. }
  5129. static void ggml_compute_forward_add_f16_f16(
  5130. const struct ggml_compute_params * params,
  5131. const struct ggml_tensor * src0,
  5132. const struct ggml_tensor * src1,
  5133. struct ggml_tensor * dst) {
  5134. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5135. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5136. return;
  5137. }
  5138. const int ith = params->ith;
  5139. const int nth = params->nth;
  5140. const int n = ggml_nrows(src0);
  5141. const int nc = src0->ne[0];
  5142. const size_t nb00 = src0->nb[0];
  5143. const size_t nb01 = src0->nb[1];
  5144. const size_t nb10 = src1->nb[0];
  5145. const size_t nb11 = src1->nb[1];
  5146. const size_t nb0 = dst->nb[0];
  5147. const size_t nb1 = dst->nb[1];
  5148. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5149. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5150. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5151. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5152. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5153. if (nb10 == sizeof(ggml_fp16_t)) {
  5154. for (int j = ith; j < n; j += nth) {
  5155. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5156. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5157. for (int i = 0; i < nc; i++) {
  5158. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  5159. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  5160. }
  5161. }
  5162. }
  5163. else {
  5164. // src1 is not contiguous
  5165. GGML_ASSERT(false);
  5166. }
  5167. }
  5168. static void ggml_compute_forward_add_q_f32(
  5169. const struct ggml_compute_params * params,
  5170. const struct ggml_tensor * src0,
  5171. const struct ggml_tensor * src1,
  5172. struct ggml_tensor * dst) {
  5173. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5174. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5175. return;
  5176. }
  5177. const int64_t ne00 = src0->ne[0];
  5178. const int64_t ne01 = src0->ne[1];
  5179. const int64_t ne02 = src0->ne[2];
  5180. const int64_t ne03 = src0->ne[3];
  5181. //const int64_t ne10 = src1->ne[0];
  5182. //const int64_t ne11 = src1->ne[1];
  5183. const int64_t ne12 = src1->ne[2];
  5184. const int64_t ne13 = src1->ne[3];
  5185. //const int64_t ne0 = dst->ne[0];
  5186. //const int64_t ne1 = dst->ne[1];
  5187. const int64_t ne2 = dst->ne[2];
  5188. const int64_t ne3 = dst->ne[3];
  5189. const int nb00 = src0->nb[0];
  5190. const int nb01 = src0->nb[1];
  5191. const int nb02 = src0->nb[2];
  5192. const int nb03 = src0->nb[3];
  5193. const int nb10 = src1->nb[0];
  5194. const int nb11 = src1->nb[1];
  5195. const int nb12 = src1->nb[2];
  5196. const int nb13 = src1->nb[3];
  5197. const int nb0 = dst->nb[0];
  5198. const int nb1 = dst->nb[1];
  5199. const int nb2 = dst->nb[2];
  5200. const int nb3 = dst->nb[3];
  5201. const int ith = params->ith;
  5202. const int nth = params->nth;
  5203. GGML_ASSERT(ne02 == ne12);
  5204. GGML_ASSERT(ne03 == ne13);
  5205. GGML_ASSERT(ne2 == ne12);
  5206. GGML_ASSERT(ne3 == ne13);
  5207. const enum ggml_type type = src0->type;
  5208. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5209. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5210. // we don't support permuted src0 or src1
  5211. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5212. GGML_ASSERT(nb10 == sizeof(float));
  5213. // dst cannot be transposed or permuted
  5214. GGML_ASSERT(nb0 <= nb1);
  5215. GGML_ASSERT(nb1 <= nb2);
  5216. GGML_ASSERT(nb2 <= nb3);
  5217. GGML_ASSERT(ggml_is_quantized(src0->type));
  5218. GGML_ASSERT(dst->type == src0->type);
  5219. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5220. // total rows in src0
  5221. const int nr = ne01*ne02*ne03;
  5222. // rows per thread
  5223. const int dr = (nr + nth - 1)/nth;
  5224. // row range for this thread
  5225. const int ir0 = dr*ith;
  5226. const int ir1 = MIN(ir0 + dr, nr);
  5227. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5228. for (int ir = ir0; ir < ir1; ++ir) {
  5229. // src0 indices
  5230. const int i03 = ir/(ne02*ne01);
  5231. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5232. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5233. // src1 and dst are same shape as src0 => same indices
  5234. const int i13 = i03;
  5235. const int i12 = i02;
  5236. const int i11 = i01;
  5237. const int i3 = i03;
  5238. const int i2 = i02;
  5239. const int i1 = i01;
  5240. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5241. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5242. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5243. assert(ne00 % 32 == 0);
  5244. // unquantize row from src0 to temp buffer
  5245. dequantize_row_q(src0_row, wdata, ne00);
  5246. // add src1
  5247. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5248. // quantize row to dst
  5249. quantize_row_q(wdata, dst_row, ne00);
  5250. }
  5251. }
  5252. static void ggml_compute_forward_add(
  5253. const struct ggml_compute_params * params,
  5254. const struct ggml_tensor * src0,
  5255. const struct ggml_tensor * src1,
  5256. struct ggml_tensor * dst) {
  5257. switch (src0->type) {
  5258. case GGML_TYPE_F32:
  5259. {
  5260. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5261. } break;
  5262. case GGML_TYPE_F16:
  5263. {
  5264. if (src1->type == GGML_TYPE_F16) {
  5265. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5266. }
  5267. else if (src1->type == GGML_TYPE_F32) {
  5268. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5269. }
  5270. else {
  5271. GGML_ASSERT(false);
  5272. }
  5273. } break;
  5274. case GGML_TYPE_Q4_0:
  5275. case GGML_TYPE_Q4_1:
  5276. case GGML_TYPE_Q5_0:
  5277. case GGML_TYPE_Q5_1:
  5278. case GGML_TYPE_Q8_0:
  5279. {
  5280. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5281. } break;
  5282. default:
  5283. {
  5284. GGML_ASSERT(false);
  5285. } break;
  5286. }
  5287. }
  5288. // ggml_compute_forward_sub
  5289. static void ggml_compute_forward_sub_f32(
  5290. const struct ggml_compute_params * params,
  5291. const struct ggml_tensor * src0,
  5292. const struct ggml_tensor * src1,
  5293. struct ggml_tensor * dst) {
  5294. assert(params->ith == 0);
  5295. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5296. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5297. return;
  5298. }
  5299. const int n = ggml_nrows(src0);
  5300. const int nc = src0->ne[0];
  5301. assert( dst->nb[0] == sizeof(float));
  5302. assert(src0->nb[0] == sizeof(float));
  5303. assert(src1->nb[0] == sizeof(float));
  5304. for (int i = 0; i < n; i++) {
  5305. ggml_vec_sub_f32(nc,
  5306. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5307. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5308. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5309. }
  5310. }
  5311. static void ggml_compute_forward_sub(
  5312. const struct ggml_compute_params * params,
  5313. const struct ggml_tensor * src0,
  5314. const struct ggml_tensor * src1,
  5315. struct ggml_tensor * dst) {
  5316. switch (src0->type) {
  5317. case GGML_TYPE_F32:
  5318. {
  5319. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  5320. } break;
  5321. default:
  5322. {
  5323. GGML_ASSERT(false);
  5324. } break;
  5325. }
  5326. }
  5327. // ggml_compute_forward_mul
  5328. static void ggml_compute_forward_mul_f32(
  5329. const struct ggml_compute_params * params,
  5330. const struct ggml_tensor * src0,
  5331. const struct ggml_tensor * src1,
  5332. struct ggml_tensor * dst) {
  5333. assert(params->ith == 0);
  5334. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5335. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5336. return;
  5337. }
  5338. const int n = ggml_nrows(src0);
  5339. const int nc = src0->ne[0];
  5340. assert( dst->nb[0] == sizeof(float));
  5341. assert(src0->nb[0] == sizeof(float));
  5342. assert(src1->nb[0] == sizeof(float));
  5343. for (int i = 0; i < n; i++) {
  5344. ggml_vec_mul_f32(nc,
  5345. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5346. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5347. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5348. }
  5349. }
  5350. static void ggml_compute_forward_mul(
  5351. const struct ggml_compute_params * params,
  5352. const struct ggml_tensor * src0,
  5353. const struct ggml_tensor * src1,
  5354. struct ggml_tensor * dst) {
  5355. switch (src0->type) {
  5356. case GGML_TYPE_F32:
  5357. {
  5358. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  5359. } break;
  5360. default:
  5361. {
  5362. GGML_ASSERT(false);
  5363. } break;
  5364. }
  5365. }
  5366. // ggml_compute_forward_div
  5367. static void ggml_compute_forward_div_f32(
  5368. const struct ggml_compute_params * params,
  5369. const struct ggml_tensor * src0,
  5370. const struct ggml_tensor * src1,
  5371. struct ggml_tensor * dst) {
  5372. assert(params->ith == 0);
  5373. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5374. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5375. return;
  5376. }
  5377. const int n = ggml_nrows(src0);
  5378. const int nc = src0->ne[0];
  5379. assert( dst->nb[0] == sizeof(float));
  5380. assert(src0->nb[0] == sizeof(float));
  5381. assert(src1->nb[0] == sizeof(float));
  5382. for (int i = 0; i < n; i++) {
  5383. ggml_vec_div_f32(nc,
  5384. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5385. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5386. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5387. }
  5388. }
  5389. static void ggml_compute_forward_div(
  5390. const struct ggml_compute_params * params,
  5391. const struct ggml_tensor * src0,
  5392. const struct ggml_tensor * src1,
  5393. struct ggml_tensor * dst) {
  5394. switch (src0->type) {
  5395. case GGML_TYPE_F32:
  5396. {
  5397. ggml_compute_forward_div_f32(params, src0, src1, dst);
  5398. } break;
  5399. default:
  5400. {
  5401. GGML_ASSERT(false);
  5402. } break;
  5403. }
  5404. }
  5405. // ggml_compute_forward_sqr
  5406. static void ggml_compute_forward_sqr_f32(
  5407. const struct ggml_compute_params * params,
  5408. const struct ggml_tensor * src0,
  5409. struct ggml_tensor * dst) {
  5410. assert(params->ith == 0);
  5411. assert(ggml_are_same_shape(src0, dst));
  5412. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5413. return;
  5414. }
  5415. const int n = ggml_nrows(src0);
  5416. const int nc = src0->ne[0];
  5417. assert( dst->nb[0] == sizeof(float));
  5418. assert(src0->nb[0] == sizeof(float));
  5419. for (int i = 0; i < n; i++) {
  5420. ggml_vec_sqr_f32(nc,
  5421. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5422. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5423. }
  5424. }
  5425. static void ggml_compute_forward_sqr(
  5426. const struct ggml_compute_params * params,
  5427. const struct ggml_tensor * src0,
  5428. struct ggml_tensor * dst) {
  5429. switch (src0->type) {
  5430. case GGML_TYPE_F32:
  5431. {
  5432. ggml_compute_forward_sqr_f32(params, src0, dst);
  5433. } break;
  5434. default:
  5435. {
  5436. GGML_ASSERT(false);
  5437. } break;
  5438. }
  5439. }
  5440. // ggml_compute_forward_sqrt
  5441. static void ggml_compute_forward_sqrt_f32(
  5442. const struct ggml_compute_params * params,
  5443. const struct ggml_tensor * src0,
  5444. struct ggml_tensor * dst) {
  5445. assert(params->ith == 0);
  5446. assert(ggml_are_same_shape(src0, dst));
  5447. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5448. return;
  5449. }
  5450. const int n = ggml_nrows(src0);
  5451. const int nc = src0->ne[0];
  5452. assert( dst->nb[0] == sizeof(float));
  5453. assert(src0->nb[0] == sizeof(float));
  5454. for (int i = 0; i < n; i++) {
  5455. ggml_vec_sqrt_f32(nc,
  5456. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5457. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5458. }
  5459. }
  5460. static void ggml_compute_forward_sqrt(
  5461. const struct ggml_compute_params * params,
  5462. const struct ggml_tensor * src0,
  5463. struct ggml_tensor * dst) {
  5464. switch (src0->type) {
  5465. case GGML_TYPE_F32:
  5466. {
  5467. ggml_compute_forward_sqrt_f32(params, src0, dst);
  5468. } break;
  5469. default:
  5470. {
  5471. GGML_ASSERT(false);
  5472. } break;
  5473. }
  5474. }
  5475. // ggml_compute_forward_sum
  5476. static void ggml_compute_forward_sum_f32(
  5477. const struct ggml_compute_params * params,
  5478. const struct ggml_tensor * src0,
  5479. struct ggml_tensor * dst) {
  5480. assert(params->ith == 0);
  5481. assert(ggml_is_scalar(dst));
  5482. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5483. return;
  5484. }
  5485. assert(ggml_is_scalar(dst));
  5486. assert(src0->nb[0] == sizeof(float));
  5487. const int64_t ne00 = src0->ne[0];
  5488. const int64_t ne01 = src0->ne[1];
  5489. const int64_t ne02 = src0->ne[2];
  5490. const int64_t ne03 = src0->ne[3];
  5491. const size_t nb01 = src0->nb[1];
  5492. const size_t nb02 = src0->nb[2];
  5493. const size_t nb03 = src0->nb[3];
  5494. ggml_float sum = 0;
  5495. ggml_float row_sum = 0;
  5496. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5497. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5498. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5499. ggml_vec_sum_ggf(ne00,
  5500. &row_sum,
  5501. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5502. sum += row_sum;
  5503. }
  5504. }
  5505. }
  5506. ((float *) dst->data)[0] = sum;
  5507. }
  5508. static void ggml_compute_forward_sum(
  5509. const struct ggml_compute_params * params,
  5510. const struct ggml_tensor * src0,
  5511. struct ggml_tensor * dst) {
  5512. switch (src0->type) {
  5513. case GGML_TYPE_F32:
  5514. {
  5515. ggml_compute_forward_sum_f32(params, src0, dst);
  5516. } break;
  5517. default:
  5518. {
  5519. GGML_ASSERT(false);
  5520. } break;
  5521. }
  5522. }
  5523. // ggml_compute_forward_mean
  5524. static void ggml_compute_forward_mean_f32(
  5525. const struct ggml_compute_params * params,
  5526. const struct ggml_tensor * src0,
  5527. struct ggml_tensor * dst) {
  5528. assert(params->ith == 0);
  5529. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5530. return;
  5531. }
  5532. assert(src0->nb[0] == sizeof(float));
  5533. const int64_t ne00 = src0->ne[0];
  5534. const int64_t ne01 = src0->ne[1];
  5535. const int64_t ne02 = src0->ne[2];
  5536. const int64_t ne03 = src0->ne[3];
  5537. const size_t nb01 = src0->nb[1];
  5538. const size_t nb02 = src0->nb[2];
  5539. const size_t nb03 = src0->nb[3];
  5540. const int64_t ne0 = dst->ne[0];
  5541. const int64_t ne1 = dst->ne[1];
  5542. const int64_t ne2 = dst->ne[2];
  5543. const int64_t ne3 = dst->ne[3];
  5544. assert(ne0 == 1);
  5545. assert(ne1 == ne01);
  5546. assert(ne2 == ne02);
  5547. assert(ne3 == ne03);
  5548. UNUSED(ne0);
  5549. UNUSED(ne1);
  5550. UNUSED(ne2);
  5551. UNUSED(ne3);
  5552. const size_t nb1 = dst->nb[1];
  5553. const size_t nb2 = dst->nb[2];
  5554. const size_t nb3 = dst->nb[3];
  5555. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5556. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5557. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5558. ggml_vec_sum_f32(ne00,
  5559. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5560. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5561. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  5562. }
  5563. }
  5564. }
  5565. }
  5566. static void ggml_compute_forward_mean(
  5567. const struct ggml_compute_params * params,
  5568. const struct ggml_tensor * src0,
  5569. struct ggml_tensor * dst) {
  5570. switch (src0->type) {
  5571. case GGML_TYPE_F32:
  5572. {
  5573. ggml_compute_forward_mean_f32(params, src0, dst);
  5574. } break;
  5575. default:
  5576. {
  5577. GGML_ASSERT(false);
  5578. } break;
  5579. }
  5580. }
  5581. // ggml_compute_forward_repeat
  5582. static void ggml_compute_forward_repeat_f32(
  5583. const struct ggml_compute_params * params,
  5584. const struct ggml_tensor * src0,
  5585. struct ggml_tensor * dst) {
  5586. assert(params->ith == 0);
  5587. assert(ggml_can_repeat(src0, dst));
  5588. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5589. return;
  5590. }
  5591. // TODO: implement support for rank > 2 tensors
  5592. assert(src0->ne[2] == 1);
  5593. assert(src0->ne[3] == 1);
  5594. assert( dst->ne[2] == 1);
  5595. assert( dst->ne[3] == 1);
  5596. const int nc = dst->ne[0];
  5597. const int nr = dst->ne[1];
  5598. const int nc0 = src0->ne[0];
  5599. const int nr0 = src0->ne[1];
  5600. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5601. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5602. // TODO: support for transposed / permuted tensors
  5603. assert( dst->nb[0] == sizeof(float));
  5604. assert(src0->nb[0] == sizeof(float));
  5605. // TODO: maybe this is not optimal?
  5606. for (int i = 0; i < nrr; i++) {
  5607. for (int j = 0; j < ncr; j++) {
  5608. for (int k = 0; k < nr0; k++) {
  5609. ggml_vec_cpy_f32(nc0,
  5610. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  5611. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  5612. }
  5613. }
  5614. }
  5615. }
  5616. static void ggml_compute_forward_repeat(
  5617. const struct ggml_compute_params * params,
  5618. const struct ggml_tensor * src0,
  5619. struct ggml_tensor * dst) {
  5620. switch (src0->type) {
  5621. case GGML_TYPE_F32:
  5622. {
  5623. ggml_compute_forward_repeat_f32(params, src0, dst);
  5624. } break;
  5625. default:
  5626. {
  5627. GGML_ASSERT(false);
  5628. } break;
  5629. }
  5630. }
  5631. // ggml_compute_forward_abs
  5632. static void ggml_compute_forward_abs_f32(
  5633. const struct ggml_compute_params * params,
  5634. const struct ggml_tensor * src0,
  5635. struct ggml_tensor * dst) {
  5636. assert(params->ith == 0);
  5637. assert(ggml_are_same_shape(src0, dst));
  5638. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5639. return;
  5640. }
  5641. const int n = ggml_nrows(src0);
  5642. const int nc = src0->ne[0];
  5643. assert(dst->nb[0] == sizeof(float));
  5644. assert(src0->nb[0] == sizeof(float));
  5645. for (int i = 0; i < n; i++) {
  5646. ggml_vec_abs_f32(nc,
  5647. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5648. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5649. }
  5650. }
  5651. static void ggml_compute_forward_abs(
  5652. const struct ggml_compute_params * params,
  5653. const struct ggml_tensor * src0,
  5654. struct ggml_tensor * dst) {
  5655. switch (src0->type) {
  5656. case GGML_TYPE_F32:
  5657. {
  5658. ggml_compute_forward_abs_f32(params, src0, dst);
  5659. } break;
  5660. default:
  5661. {
  5662. GGML_ASSERT(false);
  5663. } break;
  5664. }
  5665. }
  5666. // ggml_compute_forward_sgn
  5667. static void ggml_compute_forward_sgn_f32(
  5668. const struct ggml_compute_params * params,
  5669. const struct ggml_tensor * src0,
  5670. struct ggml_tensor * dst) {
  5671. assert(params->ith == 0);
  5672. assert(ggml_are_same_shape(src0, dst));
  5673. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5674. return;
  5675. }
  5676. const int n = ggml_nrows(src0);
  5677. const int nc = src0->ne[0];
  5678. assert(dst->nb[0] == sizeof(float));
  5679. assert(src0->nb[0] == sizeof(float));
  5680. for (int i = 0; i < n; i++) {
  5681. ggml_vec_sgn_f32(nc,
  5682. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5683. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5684. }
  5685. }
  5686. static void ggml_compute_forward_sgn(
  5687. const struct ggml_compute_params * params,
  5688. const struct ggml_tensor * src0,
  5689. struct ggml_tensor * dst) {
  5690. switch (src0->type) {
  5691. case GGML_TYPE_F32:
  5692. {
  5693. ggml_compute_forward_sgn_f32(params, src0, dst);
  5694. } break;
  5695. default:
  5696. {
  5697. GGML_ASSERT(false);
  5698. } break;
  5699. }
  5700. }
  5701. // ggml_compute_forward_neg
  5702. static void ggml_compute_forward_neg_f32(
  5703. const struct ggml_compute_params * params,
  5704. const struct ggml_tensor * src0,
  5705. struct ggml_tensor * dst) {
  5706. assert(params->ith == 0);
  5707. assert(ggml_are_same_shape(src0, dst));
  5708. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5709. return;
  5710. }
  5711. const int n = ggml_nrows(src0);
  5712. const int nc = src0->ne[0];
  5713. assert(dst->nb[0] == sizeof(float));
  5714. assert(src0->nb[0] == sizeof(float));
  5715. for (int i = 0; i < n; i++) {
  5716. ggml_vec_neg_f32(nc,
  5717. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5718. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5719. }
  5720. }
  5721. static void ggml_compute_forward_neg(
  5722. const struct ggml_compute_params * params,
  5723. const struct ggml_tensor * src0,
  5724. struct ggml_tensor * dst) {
  5725. switch (src0->type) {
  5726. case GGML_TYPE_F32:
  5727. {
  5728. ggml_compute_forward_neg_f32(params, src0, dst);
  5729. } break;
  5730. default:
  5731. {
  5732. GGML_ASSERT(false);
  5733. } break;
  5734. }
  5735. }
  5736. // ggml_compute_forward_step
  5737. static void ggml_compute_forward_step_f32(
  5738. const struct ggml_compute_params * params,
  5739. const struct ggml_tensor * src0,
  5740. struct ggml_tensor * dst) {
  5741. assert(params->ith == 0);
  5742. assert(ggml_are_same_shape(src0, dst));
  5743. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5744. return;
  5745. }
  5746. const int n = ggml_nrows(src0);
  5747. const int nc = src0->ne[0];
  5748. assert(dst->nb[0] == sizeof(float));
  5749. assert(src0->nb[0] == sizeof(float));
  5750. for (int i = 0; i < n; i++) {
  5751. ggml_vec_step_f32(nc,
  5752. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5753. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5754. }
  5755. }
  5756. static void ggml_compute_forward_step(
  5757. const struct ggml_compute_params * params,
  5758. const struct ggml_tensor * src0,
  5759. struct ggml_tensor * dst) {
  5760. switch (src0->type) {
  5761. case GGML_TYPE_F32:
  5762. {
  5763. ggml_compute_forward_step_f32(params, src0, dst);
  5764. } break;
  5765. default:
  5766. {
  5767. GGML_ASSERT(false);
  5768. } break;
  5769. }
  5770. }
  5771. // ggml_compute_forward_relu
  5772. static void ggml_compute_forward_relu_f32(
  5773. const struct ggml_compute_params * params,
  5774. const struct ggml_tensor * src0,
  5775. struct ggml_tensor * dst) {
  5776. assert(params->ith == 0);
  5777. assert(ggml_are_same_shape(src0, dst));
  5778. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5779. return;
  5780. }
  5781. const int n = ggml_nrows(src0);
  5782. const int nc = src0->ne[0];
  5783. assert(dst->nb[0] == sizeof(float));
  5784. assert(src0->nb[0] == sizeof(float));
  5785. for (int i = 0; i < n; i++) {
  5786. ggml_vec_relu_f32(nc,
  5787. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5788. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5789. }
  5790. }
  5791. static void ggml_compute_forward_relu(
  5792. const struct ggml_compute_params * params,
  5793. const struct ggml_tensor * src0,
  5794. struct ggml_tensor * dst) {
  5795. switch (src0->type) {
  5796. case GGML_TYPE_F32:
  5797. {
  5798. ggml_compute_forward_relu_f32(params, src0, dst);
  5799. } break;
  5800. default:
  5801. {
  5802. GGML_ASSERT(false);
  5803. } break;
  5804. }
  5805. }
  5806. // ggml_compute_forward_gelu
  5807. static void ggml_compute_forward_gelu_f32(
  5808. const struct ggml_compute_params * params,
  5809. const struct ggml_tensor * src0,
  5810. struct ggml_tensor * dst) {
  5811. GGML_ASSERT(ggml_is_contiguous(src0));
  5812. GGML_ASSERT(ggml_is_contiguous(dst));
  5813. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5814. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5815. return;
  5816. }
  5817. const int ith = params->ith;
  5818. const int nth = params->nth;
  5819. const int nc = src0->ne[0];
  5820. const int nr = ggml_nrows(src0);
  5821. // rows per thread
  5822. const int dr = (nr + nth - 1)/nth;
  5823. // row range for this thread
  5824. const int ir0 = dr*ith;
  5825. const int ir1 = MIN(ir0 + dr, nr);
  5826. for (int i1 = ir0; i1 < ir1; i1++) {
  5827. ggml_vec_gelu_f32(nc,
  5828. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5829. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5830. #ifndef NDEBUG
  5831. for (int k = 0; k < nc; k++) {
  5832. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5833. UNUSED(x);
  5834. assert(!isnan(x));
  5835. assert(!isinf(x));
  5836. }
  5837. #endif
  5838. }
  5839. }
  5840. static void ggml_compute_forward_gelu(
  5841. const struct ggml_compute_params * params,
  5842. const struct ggml_tensor * src0,
  5843. struct ggml_tensor * dst) {
  5844. switch (src0->type) {
  5845. case GGML_TYPE_F32:
  5846. {
  5847. ggml_compute_forward_gelu_f32(params, src0, dst);
  5848. } break;
  5849. default:
  5850. {
  5851. GGML_ASSERT(false);
  5852. } break;
  5853. }
  5854. //printf("XXXXXXXX gelu\n");
  5855. }
  5856. // ggml_compute_forward_silu
  5857. static void ggml_compute_forward_silu_f32(
  5858. const struct ggml_compute_params * params,
  5859. const struct ggml_tensor * src0,
  5860. struct ggml_tensor * dst) {
  5861. GGML_ASSERT(ggml_is_contiguous(src0));
  5862. GGML_ASSERT(ggml_is_contiguous(dst));
  5863. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5864. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5865. return;
  5866. }
  5867. const int ith = params->ith;
  5868. const int nth = params->nth;
  5869. const int nc = src0->ne[0];
  5870. const int nr = ggml_nrows(src0);
  5871. // rows per thread
  5872. const int dr = (nr + nth - 1)/nth;
  5873. // row range for this thread
  5874. const int ir0 = dr*ith;
  5875. const int ir1 = MIN(ir0 + dr, nr);
  5876. for (int i1 = ir0; i1 < ir1; i1++) {
  5877. ggml_vec_silu_f32(nc,
  5878. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5879. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5880. #ifndef NDEBUG
  5881. for (int k = 0; k < nc; k++) {
  5882. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5883. UNUSED(x);
  5884. assert(!isnan(x));
  5885. assert(!isinf(x));
  5886. }
  5887. #endif
  5888. }
  5889. }
  5890. static void ggml_compute_forward_silu(
  5891. const struct ggml_compute_params * params,
  5892. const struct ggml_tensor * src0,
  5893. struct ggml_tensor * dst) {
  5894. switch (src0->type) {
  5895. case GGML_TYPE_F32:
  5896. {
  5897. ggml_compute_forward_silu_f32(params, src0, dst);
  5898. } break;
  5899. default:
  5900. {
  5901. GGML_ASSERT(false);
  5902. } break;
  5903. }
  5904. }
  5905. // ggml_compute_forward_norm
  5906. static void ggml_compute_forward_norm_f32(
  5907. const struct ggml_compute_params * params,
  5908. const struct ggml_tensor * src0,
  5909. struct ggml_tensor * dst) {
  5910. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5911. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5912. return;
  5913. }
  5914. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5915. const int ith = params->ith;
  5916. const int nth = params->nth;
  5917. const int64_t ne00 = src0->ne[0];
  5918. const int64_t ne01 = src0->ne[1];
  5919. const int64_t ne02 = src0->ne[2];
  5920. const int64_t ne03 = src0->ne[3];
  5921. const size_t nb01 = src0->nb[1];
  5922. const size_t nb02 = src0->nb[2];
  5923. const size_t nb03 = src0->nb[3];
  5924. const size_t nb1 = dst->nb[1];
  5925. const size_t nb2 = dst->nb[2];
  5926. const size_t nb3 = dst->nb[3];
  5927. const float eps = 1e-5f; // TODO: make this a parameter
  5928. // TODO: optimize
  5929. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5930. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5931. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5932. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5933. ggml_float sum = 0.0;
  5934. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5935. sum += (ggml_float)x[i00];
  5936. }
  5937. float mean = sum/ne00;
  5938. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5939. ggml_float sum2 = 0.0;
  5940. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5941. float v = x[i00] - mean;
  5942. y[i00] = v;
  5943. sum2 += (ggml_float)(v*v);
  5944. }
  5945. float variance = sum2/ne00;
  5946. const float scale = 1.0f/sqrtf(variance + eps);
  5947. ggml_vec_scale_f32(ne00, y, scale);
  5948. }
  5949. }
  5950. }
  5951. }
  5952. static void ggml_compute_forward_norm(
  5953. const struct ggml_compute_params * params,
  5954. const struct ggml_tensor * src0,
  5955. struct ggml_tensor * dst) {
  5956. switch (src0->type) {
  5957. case GGML_TYPE_F32:
  5958. {
  5959. ggml_compute_forward_norm_f32(params, src0, dst);
  5960. } break;
  5961. default:
  5962. {
  5963. GGML_ASSERT(false);
  5964. } break;
  5965. }
  5966. }
  5967. static void ggml_compute_forward_rms_norm_f32(
  5968. const struct ggml_compute_params * params,
  5969. const struct ggml_tensor * src0,
  5970. struct ggml_tensor * dst) {
  5971. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5972. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5973. return;
  5974. }
  5975. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5976. const int ith = params->ith;
  5977. const int nth = params->nth;
  5978. const int64_t ne00 = src0->ne[0];
  5979. const int64_t ne01 = src0->ne[1];
  5980. const int64_t ne02 = src0->ne[2];
  5981. const int64_t ne03 = src0->ne[3];
  5982. const size_t nb01 = src0->nb[1];
  5983. const size_t nb02 = src0->nb[2];
  5984. const size_t nb03 = src0->nb[3];
  5985. const size_t nb1 = dst->nb[1];
  5986. const size_t nb2 = dst->nb[2];
  5987. const size_t nb3 = dst->nb[3];
  5988. const float eps = 1e-6f; // TODO: make this a parameter
  5989. // TODO: optimize
  5990. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5991. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5992. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5993. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5994. ggml_float sum = 0.0;
  5995. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5996. sum += (ggml_float)(x[i00] * x[i00]);
  5997. }
  5998. float mean = sum/ne00;
  5999. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6000. memcpy(y, x, ne00 * sizeof(float));
  6001. // for (int i00 = 0; i00 < ne00; i00++) {
  6002. // y[i00] = x[i00];
  6003. // }
  6004. const float scale = 1.0f/sqrtf(mean + eps);
  6005. ggml_vec_scale_f32(ne00, y, scale);
  6006. }
  6007. }
  6008. }
  6009. }
  6010. static void ggml_compute_forward_rms_norm(
  6011. const struct ggml_compute_params * params,
  6012. const struct ggml_tensor * src0,
  6013. struct ggml_tensor * dst) {
  6014. switch (src0->type) {
  6015. case GGML_TYPE_F32:
  6016. {
  6017. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  6018. } break;
  6019. default:
  6020. {
  6021. GGML_ASSERT(false);
  6022. } break;
  6023. }
  6024. }
  6025. // ggml_compute_forward_mul_mat
  6026. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6027. // helper function to determine if it is better to use BLAS or not
  6028. // for large matrices, BLAS is faster
  6029. static bool ggml_compute_forward_mul_mat_use_blas(
  6030. const struct ggml_tensor * src0,
  6031. const struct ggml_tensor * src1,
  6032. struct ggml_tensor * dst) {
  6033. //const int64_t ne00 = src0->ne[0];
  6034. //const int64_t ne01 = src0->ne[1];
  6035. const int64_t ne10 = src1->ne[0];
  6036. const int64_t ne0 = dst->ne[0];
  6037. const int64_t ne1 = dst->ne[1];
  6038. // TODO: find the optimal values for these
  6039. if (ggml_is_contiguous(src0) &&
  6040. ggml_is_contiguous(src1) &&
  6041. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  6042. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  6043. return true;
  6044. }
  6045. return false;
  6046. }
  6047. #endif
  6048. static void ggml_compute_forward_mul_mat_f32(
  6049. const struct ggml_compute_params * params,
  6050. const struct ggml_tensor * src0,
  6051. const struct ggml_tensor * src1,
  6052. struct ggml_tensor * dst) {
  6053. int64_t t0 = ggml_perf_time_us();
  6054. UNUSED(t0);
  6055. const int64_t ne00 = src0->ne[0];
  6056. const int64_t ne01 = src0->ne[1];
  6057. const int64_t ne02 = src0->ne[2];
  6058. const int64_t ne03 = src0->ne[3];
  6059. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6060. const int64_t ne10 = src1->ne[0];
  6061. #endif
  6062. const int64_t ne11 = src1->ne[1];
  6063. #ifndef NDEBUG
  6064. const int64_t ne12 = src1->ne[2];
  6065. const int64_t ne13 = src1->ne[3];
  6066. const int64_t ne0 = dst->ne[0];
  6067. const int64_t ne1 = dst->ne[1];
  6068. const int64_t ne2 = dst->ne[2];
  6069. const int64_t ne3 = dst->ne[3];
  6070. const int nb00 = src0->nb[0];
  6071. #endif
  6072. const int nb01 = src0->nb[1];
  6073. const int nb02 = src0->nb[2];
  6074. const int nb03 = src0->nb[3];
  6075. #ifndef NDEBUG
  6076. const int nb10 = src1->nb[0];
  6077. #endif
  6078. const int nb11 = src1->nb[1];
  6079. const int nb12 = src1->nb[2];
  6080. const int nb13 = src1->nb[3];
  6081. const int nb0 = dst->nb[0];
  6082. const int nb1 = dst->nb[1];
  6083. const int nb2 = dst->nb[2];
  6084. const int nb3 = dst->nb[3];
  6085. const int ith = params->ith;
  6086. const int nth = params->nth;
  6087. assert(ne02 == ne12);
  6088. assert(ne03 == ne13);
  6089. assert(ne2 == ne12);
  6090. assert(ne3 == ne13);
  6091. // we don't support permuted src0 or src1
  6092. assert(nb00 == sizeof(float));
  6093. assert(nb10 == sizeof(float));
  6094. // dst cannot be transposed or permuted
  6095. assert(nb0 == sizeof(float));
  6096. assert(nb0 <= nb1);
  6097. assert(nb1 <= nb2);
  6098. assert(nb2 <= nb3);
  6099. assert(ne0 == ne01);
  6100. assert(ne1 == ne11);
  6101. assert(ne2 == ne02);
  6102. assert(ne3 == ne03);
  6103. // nb01 >= nb00 - src0 is not transposed
  6104. // compute by src0 rows
  6105. #if defined(GGML_USE_CUBLAS)
  6106. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  6107. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  6108. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  6109. }
  6110. return;
  6111. }
  6112. #endif
  6113. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6114. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6115. if (params->ith != 0) {
  6116. return;
  6117. }
  6118. if (params->type == GGML_TASK_INIT) {
  6119. return;
  6120. }
  6121. if (params->type == GGML_TASK_FINALIZE) {
  6122. return;
  6123. }
  6124. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6125. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6126. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6127. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6128. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6129. #if defined(GGML_USE_CLBLAST)
  6130. // zT = y * xT
  6131. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6132. ne11, ne01, ne10,
  6133. 1.0f, y, ne10,
  6134. x, ne10,
  6135. 0.0f, d, ne01,
  6136. GGML_TYPE_F32);
  6137. #else
  6138. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6139. ne11, ne01, ne10,
  6140. 1.0f, y, ne10,
  6141. x, ne00,
  6142. 0.0f, d, ne01);
  6143. #endif
  6144. }
  6145. }
  6146. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6147. return;
  6148. }
  6149. #endif
  6150. if (params->type == GGML_TASK_INIT) {
  6151. return;
  6152. }
  6153. if (params->type == GGML_TASK_FINALIZE) {
  6154. return;
  6155. }
  6156. // parallelize by src0 rows using ggml_vec_dot_f32
  6157. // total rows in src0
  6158. const int nr = ne01*ne02*ne03;
  6159. // rows per thread
  6160. const int dr = (nr + nth - 1)/nth;
  6161. // row range for this thread
  6162. const int ir0 = dr*ith;
  6163. const int ir1 = MIN(ir0 + dr, nr);
  6164. for (int ir = ir0; ir < ir1; ++ir) {
  6165. // src0 indices
  6166. const int i03 = ir/(ne02*ne01);
  6167. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6168. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6169. for (int64_t ic = 0; ic < ne11; ++ic) {
  6170. // src1 indices
  6171. const int i13 = i03;
  6172. const int i12 = i02;
  6173. const int i11 = ic;
  6174. // dst indices
  6175. const int i0 = i01;
  6176. const int i1 = i11;
  6177. const int i2 = i02;
  6178. const int i3 = i03;
  6179. ggml_vec_dot_f32(ne00,
  6180. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6181. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  6182. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  6183. }
  6184. }
  6185. //int64_t t1 = ggml_perf_time_us();
  6186. //static int64_t acc = 0;
  6187. //acc += t1 - t0;
  6188. //if (t1 - t0 > 10) {
  6189. // printf("\n");
  6190. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6191. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6192. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6193. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  6194. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6195. //}
  6196. }
  6197. static void ggml_compute_forward_mul_mat_f16_f32(
  6198. const struct ggml_compute_params * params,
  6199. const struct ggml_tensor * src0,
  6200. const struct ggml_tensor * src1,
  6201. struct ggml_tensor * dst) {
  6202. int64_t t0 = ggml_perf_time_us();
  6203. UNUSED(t0);
  6204. const int64_t ne00 = src0->ne[0];
  6205. const int64_t ne01 = src0->ne[1];
  6206. const int64_t ne02 = src0->ne[2];
  6207. const int64_t ne03 = src0->ne[3];
  6208. const int64_t ne10 = src1->ne[0];
  6209. const int64_t ne11 = src1->ne[1];
  6210. const int64_t ne12 = src1->ne[2];
  6211. const int64_t ne13 = src1->ne[3];
  6212. const int64_t ne0 = dst->ne[0];
  6213. const int64_t ne1 = dst->ne[1];
  6214. const int64_t ne2 = dst->ne[2];
  6215. const int64_t ne3 = dst->ne[3];
  6216. //const int64_t ne = ne0*ne1*ne2*ne3;
  6217. const int nb00 = src0->nb[0];
  6218. const int nb01 = src0->nb[1];
  6219. const int nb02 = src0->nb[2];
  6220. const int nb03 = src0->nb[3];
  6221. const int nb10 = src1->nb[0];
  6222. const int nb11 = src1->nb[1];
  6223. const int nb12 = src1->nb[2];
  6224. const int nb13 = src1->nb[3];
  6225. const int nb0 = dst->nb[0];
  6226. const int nb1 = dst->nb[1];
  6227. const int nb2 = dst->nb[2];
  6228. const int nb3 = dst->nb[3];
  6229. const int ith = params->ith;
  6230. const int nth = params->nth;
  6231. GGML_ASSERT(ne02 == ne12);
  6232. GGML_ASSERT(ne03 == ne13);
  6233. GGML_ASSERT(ne2 == ne12);
  6234. GGML_ASSERT(ne3 == ne13);
  6235. // TODO: we don't support permuted src0
  6236. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6237. // dst cannot be transposed or permuted
  6238. GGML_ASSERT(nb0 == sizeof(float));
  6239. GGML_ASSERT(nb0 <= nb1);
  6240. GGML_ASSERT(nb1 <= nb2);
  6241. GGML_ASSERT(nb2 <= nb3);
  6242. GGML_ASSERT(ne0 == ne01);
  6243. GGML_ASSERT(ne1 == ne11);
  6244. GGML_ASSERT(ne2 == ne02);
  6245. GGML_ASSERT(ne3 == ne03);
  6246. // nb01 >= nb00 - src0 is not transposed
  6247. // compute by src0 rows
  6248. #if defined(GGML_USE_CUBLAS)
  6249. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  6250. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  6251. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  6252. }
  6253. return;
  6254. }
  6255. #endif
  6256. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6257. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6258. GGML_ASSERT(nb10 == sizeof(float));
  6259. if (params->ith != 0) {
  6260. return;
  6261. }
  6262. if (params->type == GGML_TASK_INIT) {
  6263. return;
  6264. }
  6265. if (params->type == GGML_TASK_FINALIZE) {
  6266. return;
  6267. }
  6268. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6269. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6270. float * const wdata = params->wdata;
  6271. {
  6272. size_t id = 0;
  6273. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6274. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6275. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6276. }
  6277. }
  6278. assert(id*sizeof(float) <= params->wsize);
  6279. }
  6280. #if defined(GGML_USE_CLBLAST)
  6281. const float * x = wdata;
  6282. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6283. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6284. // zT = y * xT
  6285. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6286. ne11, ne01, ne10,
  6287. 1.0f, y, ne10,
  6288. x, ne10,
  6289. 0.0f, d, ne01,
  6290. GGML_TYPE_F32);
  6291. #else
  6292. const float * x = wdata;
  6293. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6294. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6295. // zT = y * xT
  6296. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6297. ne11, ne01, ne10,
  6298. 1.0f, y, ne10,
  6299. x, ne00,
  6300. 0.0f, d, ne01);
  6301. #endif
  6302. }
  6303. }
  6304. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6305. return;
  6306. }
  6307. #endif
  6308. if (params->type == GGML_TASK_INIT) {
  6309. ggml_fp16_t * const wdata = params->wdata;
  6310. size_t id = 0;
  6311. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6312. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6313. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6314. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  6315. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  6316. }
  6317. }
  6318. }
  6319. }
  6320. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  6321. return;
  6322. }
  6323. if (params->type == GGML_TASK_FINALIZE) {
  6324. return;
  6325. }
  6326. // fp16 -> half the size, so divide by 2
  6327. // TODO: do not support transposed src1
  6328. assert(nb10/2 == sizeof(ggml_fp16_t));
  6329. // parallelize by src0 rows using ggml_vec_dot_f16
  6330. // total rows in src0
  6331. const int nr = ne01*ne02*ne03;
  6332. // rows per thread
  6333. const int dr = (nr + nth - 1)/nth;
  6334. // row range for this thread
  6335. const int ir0 = dr*ith;
  6336. const int ir1 = MIN(ir0 + dr, nr);
  6337. ggml_fp16_t * wdata = params->wdata;
  6338. for (int ir = ir0; ir < ir1; ++ir) {
  6339. // src0 indices
  6340. const int i03 = ir/(ne02*ne01);
  6341. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6342. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6343. const int i13 = i03;
  6344. const int i12 = i02;
  6345. const int i0 = i01;
  6346. const int i2 = i02;
  6347. const int i3 = i03;
  6348. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6349. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  6350. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6351. for (int64_t ic = 0; ic < ne11; ++ic) {
  6352. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  6353. }
  6354. }
  6355. //int64_t t1 = ggml_time_us();
  6356. //static int64_t acc = 0;
  6357. //acc += t1 - t0;
  6358. //if (t1 - t0 > 10) {
  6359. // printf("\n");
  6360. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6361. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6362. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6363. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6364. //}
  6365. }
  6366. static void ggml_compute_forward_mul_mat_q_f32(
  6367. const struct ggml_compute_params * params,
  6368. const struct ggml_tensor * src0,
  6369. const struct ggml_tensor * src1,
  6370. struct ggml_tensor * dst) {
  6371. int64_t t0 = ggml_perf_time_us();
  6372. UNUSED(t0);
  6373. const int64_t ne00 = src0->ne[0];
  6374. const int64_t ne01 = src0->ne[1];
  6375. const int64_t ne02 = src0->ne[2];
  6376. const int64_t ne03 = src0->ne[3];
  6377. const int64_t ne10 = src1->ne[0];
  6378. const int64_t ne11 = src1->ne[1];
  6379. const int64_t ne12 = src1->ne[2];
  6380. const int64_t ne13 = src1->ne[3];
  6381. const int64_t ne0 = dst->ne[0];
  6382. const int64_t ne1 = dst->ne[1];
  6383. const int64_t ne2 = dst->ne[2];
  6384. const int64_t ne3 = dst->ne[3];
  6385. const int nb00 = src0->nb[0];
  6386. const int nb01 = src0->nb[1];
  6387. const int nb02 = src0->nb[2];
  6388. const int nb03 = src0->nb[3];
  6389. const int nb10 = src1->nb[0];
  6390. const int nb11 = src1->nb[1];
  6391. const int nb12 = src1->nb[2];
  6392. const int nb13 = src1->nb[3];
  6393. const int nb0 = dst->nb[0];
  6394. const int nb1 = dst->nb[1];
  6395. const int nb2 = dst->nb[2];
  6396. const int nb3 = dst->nb[3];
  6397. const int ith = params->ith;
  6398. const int nth = params->nth;
  6399. GGML_ASSERT(ne02 == ne12);
  6400. GGML_ASSERT(ne03 == ne13);
  6401. GGML_ASSERT(ne2 == ne12);
  6402. GGML_ASSERT(ne3 == ne13);
  6403. const enum ggml_type type = src0->type;
  6404. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  6405. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  6406. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  6407. // we don't support permuted src0 or src1
  6408. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  6409. GGML_ASSERT(nb10 == sizeof(float));
  6410. // dst cannot be transposed or permuted
  6411. GGML_ASSERT(nb0 == sizeof(float));
  6412. GGML_ASSERT(nb0 <= nb1);
  6413. GGML_ASSERT(nb1 <= nb2);
  6414. GGML_ASSERT(nb2 <= nb3);
  6415. GGML_ASSERT(ne0 == ne01);
  6416. GGML_ASSERT(ne1 == ne11);
  6417. GGML_ASSERT(ne2 == ne02);
  6418. GGML_ASSERT(ne3 == ne03);
  6419. // nb01 >= nb00 - src0 is not transposed
  6420. // compute by src0 rows
  6421. #if defined(GGML_USE_CUBLAS)
  6422. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  6423. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  6424. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  6425. }
  6426. return;
  6427. }
  6428. #endif
  6429. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6430. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6431. if (params->ith != 0) {
  6432. return;
  6433. }
  6434. if (params->type == GGML_TASK_INIT) {
  6435. return;
  6436. }
  6437. if (params->type == GGML_TASK_FINALIZE) {
  6438. return;
  6439. }
  6440. float * const wdata = params->wdata;
  6441. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6442. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6443. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6444. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6445. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6446. #if defined(GGML_USE_CLBLAST)
  6447. const void* x = (char *) src0->data + i03*nb03 + i02*nb02;
  6448. #else
  6449. {
  6450. size_t id = 0;
  6451. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6452. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  6453. id += ne00;
  6454. }
  6455. assert(id*sizeof(float) <= params->wsize);
  6456. }
  6457. const float * x = wdata;
  6458. #endif
  6459. #if defined(GGML_USE_CLBLAST)
  6460. // zT = y * xT
  6461. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6462. ne11, ne01, ne10,
  6463. 1.0f, y, ne10,
  6464. x, ne10,
  6465. 0.0f, d, ne01,
  6466. type);
  6467. #else
  6468. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6469. ne11, ne01, ne10,
  6470. 1.0f, y, ne10,
  6471. x, ne00,
  6472. 0.0f, d, ne01);
  6473. #endif
  6474. }
  6475. }
  6476. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6477. return;
  6478. }
  6479. #endif
  6480. if (params->type == GGML_TASK_INIT) {
  6481. char * wdata = params->wdata;
  6482. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  6483. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6484. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6485. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6486. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  6487. wdata += row_size;
  6488. }
  6489. }
  6490. }
  6491. return;
  6492. }
  6493. if (params->type == GGML_TASK_FINALIZE) {
  6494. return;
  6495. }
  6496. // parallelize by src0 rows using ggml_vec_dot_q
  6497. // total rows in src0
  6498. const int nr = ne01*ne02*ne03;
  6499. // rows per thread
  6500. const int dr = (nr + nth - 1)/nth;
  6501. // row range for this thread
  6502. const int ir0 = dr*ith;
  6503. const int ir1 = MIN(ir0 + dr, nr);
  6504. void * wdata = params->wdata;
  6505. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  6506. for (int ir = ir0; ir < ir1; ++ir) {
  6507. // src0 indices
  6508. const int i03 = ir/(ne02*ne01);
  6509. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6510. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6511. const int i13 = i03;
  6512. const int i12 = i02;
  6513. const int i0 = i01;
  6514. const int i2 = i02;
  6515. const int i3 = i03;
  6516. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6517. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  6518. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6519. assert(ne00 % 32 == 0);
  6520. for (int64_t ic = 0; ic < ne11; ++ic) {
  6521. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  6522. }
  6523. }
  6524. //int64_t t1 = ggml_time_us();
  6525. //static int64_t acc = 0;
  6526. //acc += t1 - t0;
  6527. //if (t1 - t0 > 10) {
  6528. // printf("\n");
  6529. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6530. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6531. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6532. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6533. //}
  6534. }
  6535. static void ggml_compute_forward_mul_mat(
  6536. const struct ggml_compute_params * params,
  6537. const struct ggml_tensor * src0,
  6538. const struct ggml_tensor * src1,
  6539. struct ggml_tensor * dst) {
  6540. switch (src0->type) {
  6541. case GGML_TYPE_Q4_0:
  6542. case GGML_TYPE_Q4_1:
  6543. case GGML_TYPE_Q5_0:
  6544. case GGML_TYPE_Q5_1:
  6545. case GGML_TYPE_Q8_0:
  6546. case GGML_TYPE_Q8_1:
  6547. {
  6548. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  6549. } break;
  6550. case GGML_TYPE_F16:
  6551. {
  6552. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  6553. } break;
  6554. case GGML_TYPE_F32:
  6555. {
  6556. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  6557. } break;
  6558. default:
  6559. {
  6560. GGML_ASSERT(false);
  6561. } break;
  6562. }
  6563. }
  6564. // ggml_compute_forward_scale
  6565. static void ggml_compute_forward_scale_f32(
  6566. const struct ggml_compute_params * params,
  6567. const struct ggml_tensor * src0,
  6568. const struct ggml_tensor * src1,
  6569. struct ggml_tensor * dst) {
  6570. GGML_ASSERT(ggml_is_contiguous(src0));
  6571. GGML_ASSERT(ggml_is_contiguous(dst));
  6572. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6573. GGML_ASSERT(ggml_is_scalar(src1));
  6574. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6575. return;
  6576. }
  6577. // scale factor
  6578. const float v = *(float *) src1->data;
  6579. const int ith = params->ith;
  6580. const int nth = params->nth;
  6581. const int nc = src0->ne[0];
  6582. const int nr = ggml_nrows(src0);
  6583. // rows per thread
  6584. const int dr = (nr + nth - 1)/nth;
  6585. // row range for this thread
  6586. const int ir0 = dr*ith;
  6587. const int ir1 = MIN(ir0 + dr, nr);
  6588. for (int i1 = ir0; i1 < ir1; i1++) {
  6589. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  6590. }
  6591. }
  6592. static void ggml_compute_forward_scale(
  6593. const struct ggml_compute_params * params,
  6594. const struct ggml_tensor * src0,
  6595. const struct ggml_tensor * src1,
  6596. struct ggml_tensor * dst) {
  6597. switch (src0->type) {
  6598. case GGML_TYPE_F32:
  6599. {
  6600. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  6601. } break;
  6602. default:
  6603. {
  6604. GGML_ASSERT(false);
  6605. } break;
  6606. }
  6607. }
  6608. // ggml_compute_forward_cpy
  6609. static void ggml_compute_forward_cpy(
  6610. const struct ggml_compute_params * params,
  6611. const struct ggml_tensor * src0,
  6612. struct ggml_tensor * dst) {
  6613. ggml_compute_forward_dup(params, src0, dst);
  6614. }
  6615. // ggml_compute_forward_cont
  6616. static void ggml_compute_forward_cont(
  6617. const struct ggml_compute_params * params,
  6618. const struct ggml_tensor * src0,
  6619. struct ggml_tensor * dst) {
  6620. ggml_compute_forward_dup(params, src0, dst);
  6621. }
  6622. // ggml_compute_forward_reshape
  6623. static void ggml_compute_forward_reshape(
  6624. const struct ggml_compute_params * params,
  6625. const struct ggml_tensor * src0,
  6626. struct ggml_tensor * dst) {
  6627. // NOP
  6628. UNUSED(params);
  6629. UNUSED(src0);
  6630. UNUSED(dst);
  6631. }
  6632. // ggml_compute_forward_view
  6633. static void ggml_compute_forward_view(
  6634. const struct ggml_compute_params * params,
  6635. const struct ggml_tensor * src0) {
  6636. // NOP
  6637. UNUSED(params);
  6638. UNUSED(src0);
  6639. }
  6640. // ggml_compute_forward_permute
  6641. static void ggml_compute_forward_permute(
  6642. const struct ggml_compute_params * params,
  6643. const struct ggml_tensor * src0) {
  6644. // NOP
  6645. UNUSED(params);
  6646. UNUSED(src0);
  6647. }
  6648. // ggml_compute_forward_transpose
  6649. static void ggml_compute_forward_transpose(
  6650. const struct ggml_compute_params * params,
  6651. const struct ggml_tensor * src0) {
  6652. // NOP
  6653. UNUSED(params);
  6654. UNUSED(src0);
  6655. }
  6656. // ggml_compute_forward_get_rows
  6657. static void ggml_compute_forward_get_rows_q(
  6658. const struct ggml_compute_params * params,
  6659. const struct ggml_tensor * src0,
  6660. const struct ggml_tensor * src1,
  6661. struct ggml_tensor * dst) {
  6662. assert(params->ith == 0);
  6663. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6664. return;
  6665. }
  6666. const int nc = src0->ne[0];
  6667. const int nr = ggml_nelements(src1);
  6668. const enum ggml_type type = src0->type;
  6669. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6670. assert( dst->ne[0] == nc);
  6671. assert( dst->ne[1] == nr);
  6672. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  6673. for (int i = 0; i < nr; ++i) {
  6674. const int r = ((int32_t *) src1->data)[i];
  6675. dequantize_row_q(
  6676. (const void *) ((char *) src0->data + r*src0->nb[1]),
  6677. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  6678. }
  6679. }
  6680. static void ggml_compute_forward_get_rows_f16(
  6681. const struct ggml_compute_params * params,
  6682. const struct ggml_tensor * src0,
  6683. const struct ggml_tensor * src1,
  6684. struct ggml_tensor * dst) {
  6685. assert(params->ith == 0);
  6686. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6687. return;
  6688. }
  6689. const int nc = src0->ne[0];
  6690. const int nr = ggml_nelements(src1);
  6691. assert( dst->ne[0] == nc);
  6692. assert( dst->ne[1] == nr);
  6693. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6694. for (int i = 0; i < nr; ++i) {
  6695. const int r = ((int32_t *) src1->data)[i];
  6696. for (int j = 0; j < nc; ++j) {
  6697. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  6698. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  6699. }
  6700. }
  6701. }
  6702. static void ggml_compute_forward_get_rows_f32(
  6703. const struct ggml_compute_params * params,
  6704. const struct ggml_tensor * src0,
  6705. const struct ggml_tensor * src1,
  6706. struct ggml_tensor * dst) {
  6707. assert(params->ith == 0);
  6708. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6709. return;
  6710. }
  6711. const int nc = src0->ne[0];
  6712. const int nr = ggml_nelements(src1);
  6713. assert( dst->ne[0] == nc);
  6714. assert( dst->ne[1] == nr);
  6715. assert(src0->nb[0] == sizeof(float));
  6716. for (int i = 0; i < nr; ++i) {
  6717. const int r = ((int32_t *) src1->data)[i];
  6718. ggml_vec_cpy_f32(nc,
  6719. (float *) ((char *) dst->data + i*dst->nb[1]),
  6720. (float *) ((char *) src0->data + r*src0->nb[1]));
  6721. }
  6722. }
  6723. static void ggml_compute_forward_get_rows(
  6724. const struct ggml_compute_params * params,
  6725. const struct ggml_tensor * src0,
  6726. const struct ggml_tensor * src1,
  6727. struct ggml_tensor * dst) {
  6728. switch (src0->type) {
  6729. case GGML_TYPE_Q4_0:
  6730. case GGML_TYPE_Q4_1:
  6731. case GGML_TYPE_Q5_0:
  6732. case GGML_TYPE_Q5_1:
  6733. case GGML_TYPE_Q8_0:
  6734. case GGML_TYPE_Q8_1:
  6735. {
  6736. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  6737. } break;
  6738. case GGML_TYPE_F16:
  6739. {
  6740. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  6741. } break;
  6742. case GGML_TYPE_F32:
  6743. {
  6744. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  6745. } break;
  6746. default:
  6747. {
  6748. GGML_ASSERT(false);
  6749. } break;
  6750. }
  6751. //static bool first = true;
  6752. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6753. //if (first) {
  6754. // first = false;
  6755. //} else {
  6756. // for (int k = 0; k < dst->ne[1]; ++k) {
  6757. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  6758. // for (int i = 0; i < 16; ++i) {
  6759. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  6760. // }
  6761. // printf("\n");
  6762. // }
  6763. // printf("\n");
  6764. // }
  6765. // printf("\n");
  6766. // exit(0);
  6767. //}
  6768. }
  6769. // ggml_compute_forward_diag_mask_inf
  6770. static void ggml_compute_forward_diag_mask_inf_f32(
  6771. const struct ggml_compute_params * params,
  6772. const struct ggml_tensor * src0,
  6773. const struct ggml_tensor * src1,
  6774. struct ggml_tensor * dst) {
  6775. assert(params->ith == 0);
  6776. assert(src1->type == GGML_TYPE_I32);
  6777. assert(ggml_nelements(src1) == 1);
  6778. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6779. return;
  6780. }
  6781. const int n_past = ((int32_t *) src1->data)[0];
  6782. // TODO: handle transposed/permuted matrices
  6783. const int n = ggml_nrows(src0);
  6784. const int nc = src0->ne[0];
  6785. const int nr = src0->ne[1];
  6786. const int nz = n/nr;
  6787. assert( dst->nb[0] == sizeof(float));
  6788. assert(src0->nb[0] == sizeof(float));
  6789. for (int k = 0; k < nz; k++) {
  6790. for (int j = 0; j < nr; j++) {
  6791. for (int i = n_past; i < nc; i++) {
  6792. if (i > n_past + j) {
  6793. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  6794. }
  6795. }
  6796. }
  6797. }
  6798. }
  6799. static void ggml_compute_forward_diag_mask_inf(
  6800. const struct ggml_compute_params * params,
  6801. const struct ggml_tensor * src0,
  6802. const struct ggml_tensor * src1,
  6803. struct ggml_tensor * dst) {
  6804. switch (src0->type) {
  6805. case GGML_TYPE_F32:
  6806. {
  6807. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  6808. } break;
  6809. default:
  6810. {
  6811. GGML_ASSERT(false);
  6812. } break;
  6813. }
  6814. }
  6815. // ggml_compute_forward_soft_max
  6816. static void ggml_compute_forward_soft_max_f32(
  6817. const struct ggml_compute_params * params,
  6818. const struct ggml_tensor * src0,
  6819. struct ggml_tensor * dst) {
  6820. GGML_ASSERT(ggml_is_contiguous(src0));
  6821. GGML_ASSERT(ggml_is_contiguous(dst));
  6822. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6823. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6824. return;
  6825. }
  6826. // TODO: handle transposed/permuted matrices
  6827. const int ith = params->ith;
  6828. const int nth = params->nth;
  6829. const int nc = src0->ne[0];
  6830. const int nr = ggml_nrows(src0);
  6831. // rows per thread
  6832. const int dr = (nr + nth - 1)/nth;
  6833. // row range for this thread
  6834. const int ir0 = dr*ith;
  6835. const int ir1 = MIN(ir0 + dr, nr);
  6836. for (int i1 = ir0; i1 < ir1; i1++) {
  6837. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  6838. #ifndef NDEBUG
  6839. for (int i = 0; i < nc; ++i) {
  6840. //printf("p[%d] = %f\n", i, p[i]);
  6841. assert(!isnan(p[i]));
  6842. }
  6843. #endif
  6844. float max = -INFINITY;
  6845. ggml_vec_max_f32(nc, &max, p);
  6846. ggml_float sum = 0.0;
  6847. uint16_t scvt;
  6848. for (int i = 0; i < nc; i++) {
  6849. //printf("p[%3d] = %8.4f\n", i, p[i]);
  6850. if (p[i] == -INFINITY) {
  6851. p[i] = 0.0f;
  6852. } else {
  6853. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  6854. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  6855. memcpy(&scvt, &s, sizeof(scvt));
  6856. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  6857. sum += (ggml_float)val;
  6858. p[i] = val;
  6859. }
  6860. }
  6861. assert(sum > 0.0);
  6862. sum = 1.0/sum;
  6863. ggml_vec_scale_f32(nc, p, sum);
  6864. #ifndef NDEBUG
  6865. for (int i = 0; i < nc; ++i) {
  6866. assert(!isnan(p[i]));
  6867. assert(!isinf(p[i]));
  6868. }
  6869. #endif
  6870. }
  6871. }
  6872. static void ggml_compute_forward_soft_max(
  6873. const struct ggml_compute_params * params,
  6874. const struct ggml_tensor * src0,
  6875. struct ggml_tensor * dst) {
  6876. switch (src0->type) {
  6877. case GGML_TYPE_F32:
  6878. {
  6879. ggml_compute_forward_soft_max_f32(params, src0, dst);
  6880. } break;
  6881. default:
  6882. {
  6883. GGML_ASSERT(false);
  6884. } break;
  6885. }
  6886. }
  6887. // ggml_compute_forward_alibi
  6888. static void ggml_compute_forward_alibi_f32(
  6889. const struct ggml_compute_params * params,
  6890. const struct ggml_tensor * src0,
  6891. const struct ggml_tensor * src1,
  6892. struct ggml_tensor * dst) {
  6893. assert(params->ith == 0);
  6894. assert(src1->type == GGML_TYPE_I32);
  6895. assert(ggml_nelements(src1) == 2);
  6896. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6897. return;
  6898. }
  6899. const int n_past = ((int32_t *) src1->data)[0];
  6900. const int n_head = ((int32_t *) src1->data)[1];
  6901. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  6902. const int ne1 = src0->ne[1]; // seq_len_without_past
  6903. //const int ne2 = src0->ne[2]; // n_head -> this is k
  6904. //const int ne3 = src0->ne[3]; // 1 -> bsz
  6905. const int n = ggml_nrows(src0);
  6906. const int ne2_ne3 = n/ne1; // ne2*ne3
  6907. const int nb0 = src0->nb[0];
  6908. const int nb1 = src0->nb[1];
  6909. const int nb2 = src0->nb[2];
  6910. //const int nb3 = src0->nb[3];
  6911. assert(nb0 == sizeof(float));
  6912. assert(ne1 + n_past == ne0); (void) n_past;
  6913. // add alibi to src0 (KQ_scaled)
  6914. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  6915. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  6916. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  6917. for (int i = 0; i < ne0; i++) {
  6918. for (int j = 0; j < ne1; j++) {
  6919. for (int k = 0; k < ne2_ne3; k++) {
  6920. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  6921. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  6922. // TODO: k*nb2 or k*nb3
  6923. float m_k;
  6924. if (k < n_heads_log2_floor) {
  6925. m_k = powf(m0, k + 1);
  6926. } else {
  6927. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  6928. }
  6929. pdst[0] = i * m_k + src[0];
  6930. }
  6931. }
  6932. }
  6933. }
  6934. static void ggml_compute_forward_alibi_f16(
  6935. const struct ggml_compute_params * params,
  6936. const struct ggml_tensor * src0,
  6937. const struct ggml_tensor * src1,
  6938. struct ggml_tensor * dst) {
  6939. assert(params->ith == 0);
  6940. assert(src1->type == GGML_TYPE_I32);
  6941. assert(ggml_nelements(src1) == 2);
  6942. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6943. return;
  6944. }
  6945. const int n_past = ((int32_t *) src1->data)[0];
  6946. const int n_head = ((int32_t *) src1->data)[1];
  6947. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  6948. const int ne1 = src0->ne[1]; // seq_len_without_past
  6949. //const int ne2 = src0->ne[2]; // n_head -> this is k
  6950. //const int ne3 = src0->ne[3]; // 1 -> bsz
  6951. const int n = ggml_nrows(src0);
  6952. const int ne2_ne3 = n/ne1; // ne2*ne3
  6953. const int nb0 = src0->nb[0];
  6954. const int nb1 = src0->nb[1];
  6955. const int nb2 = src0->nb[2];
  6956. //const int nb3 = src0->nb[3];
  6957. assert(nb0 == sizeof(ggml_fp16_t));
  6958. assert(ne1 + n_past == ne0); (void) n_past;
  6959. // add alibi to src0 (KQ_scaled)
  6960. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  6961. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  6962. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  6963. for (int i = 0; i < ne0; i++) {
  6964. for (int j = 0; j < ne1; j++) {
  6965. for (int k = 0; k < ne2_ne3; k++) {
  6966. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  6967. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  6968. // TODO: k*nb2 or k*nb3
  6969. float m_k;
  6970. if (k < n_heads_log2_floor) {
  6971. m_k = powf(m0, k + 1);
  6972. } else {
  6973. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  6974. }
  6975. // we return F32
  6976. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  6977. }
  6978. }
  6979. }
  6980. }
  6981. static void ggml_compute_forward_alibi(
  6982. const struct ggml_compute_params * params,
  6983. const struct ggml_tensor * src0,
  6984. const struct ggml_tensor * src1,
  6985. struct ggml_tensor * dst) {
  6986. switch (src0->type) {
  6987. case GGML_TYPE_F16:
  6988. {
  6989. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  6990. } break;
  6991. case GGML_TYPE_F32:
  6992. {
  6993. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  6994. } break;
  6995. case GGML_TYPE_Q4_0:
  6996. case GGML_TYPE_Q4_1:
  6997. case GGML_TYPE_Q5_0:
  6998. case GGML_TYPE_Q5_1:
  6999. case GGML_TYPE_Q8_0:
  7000. case GGML_TYPE_Q8_1:
  7001. case GGML_TYPE_I8:
  7002. case GGML_TYPE_I16:
  7003. case GGML_TYPE_I32:
  7004. case GGML_TYPE_COUNT:
  7005. {
  7006. GGML_ASSERT(false);
  7007. } break;
  7008. }
  7009. }
  7010. // ggml_compute_forward_rope
  7011. static void ggml_compute_forward_rope_f32(
  7012. const struct ggml_compute_params * params,
  7013. const struct ggml_tensor * src0,
  7014. const struct ggml_tensor * src1,
  7015. struct ggml_tensor * dst) {
  7016. assert(src1->type == GGML_TYPE_I32);
  7017. assert(ggml_nelements(src1) == 3);
  7018. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7019. return;
  7020. }
  7021. const int n_past = ((int32_t *) src1->data)[0];
  7022. const int n_dims = ((int32_t *) src1->data)[1];
  7023. const int mode = ((int32_t *) src1->data)[2];
  7024. //const int64_t ne0 = src0->ne[0];
  7025. const int64_t ne1 = src0->ne[1];
  7026. const int64_t ne2 = src0->ne[2];
  7027. const int64_t ne3 = src0->ne[3];
  7028. const int nb0 = src0->nb[0];
  7029. const int nb1 = src0->nb[1];
  7030. const int nb2 = src0->nb[2];
  7031. const int nb3 = src0->nb[3];
  7032. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7033. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7034. assert(nb0 == sizeof(float));
  7035. const int ith = params->ith;
  7036. const int nth = params->nth;
  7037. const int nr = ggml_nrows(src0);
  7038. // rows per thread
  7039. const int dr = (nr + nth - 1)/nth;
  7040. // row range for this thread
  7041. const int ir0 = dr*ith;
  7042. const int ir1 = MIN(ir0 + dr, nr);
  7043. // row index used to determine which thread to use
  7044. int ir = 0;
  7045. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7046. const bool is_neox = mode & 2;
  7047. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7048. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7049. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7050. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7051. if (ir++ < ir0) continue;
  7052. if (ir > ir1) break;
  7053. float theta = (float)p;
  7054. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7055. const float cos_theta = cosf(theta);
  7056. const float sin_theta = sinf(theta);
  7057. theta *= theta_scale;
  7058. if (!is_neox) {
  7059. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7060. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7061. const float x0 = src[0];
  7062. const float x1 = src[1];
  7063. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7064. dst_data[1] = x0*sin_theta + x1*cos_theta;
  7065. } else {
  7066. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7067. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7068. const float x0 = src[0];
  7069. const float x1 = src[n_dims/2];
  7070. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7071. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  7072. }
  7073. }
  7074. }
  7075. }
  7076. }
  7077. }
  7078. static void ggml_compute_forward_rope_f16(
  7079. const struct ggml_compute_params * params,
  7080. const struct ggml_tensor * src0,
  7081. const struct ggml_tensor * src1,
  7082. struct ggml_tensor * dst) {
  7083. assert(src1->type == GGML_TYPE_I32);
  7084. assert(ggml_nelements(src1) == 3);
  7085. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7086. return;
  7087. }
  7088. const int n_past = ((int32_t *) src1->data)[0];
  7089. const int n_dims = ((int32_t *) src1->data)[1];
  7090. const int mode = ((int32_t *) src1->data)[2];
  7091. //const int64_t ne0 = src0->ne[0];
  7092. const int64_t ne1 = src0->ne[1];
  7093. const int64_t ne2 = src0->ne[2];
  7094. const int64_t ne3 = src0->ne[3];
  7095. const int nb0 = src0->nb[0];
  7096. const int nb1 = src0->nb[1];
  7097. const int nb2 = src0->nb[2];
  7098. const int nb3 = src0->nb[3];
  7099. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7100. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7101. assert(nb0 == sizeof(ggml_fp16_t));
  7102. const int ith = params->ith;
  7103. const int nth = params->nth;
  7104. const int nr = ggml_nrows(src0);
  7105. // rows per thread
  7106. const int dr = (nr + nth - 1)/nth;
  7107. // row range for this thread
  7108. const int ir0 = dr*ith;
  7109. const int ir1 = MIN(ir0 + dr, nr);
  7110. // row index used to determine which thread to use
  7111. int ir = 0;
  7112. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7113. const bool is_neox = mode & 2;
  7114. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7115. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7116. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7117. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7118. if (ir++ < ir0) continue;
  7119. if (ir > ir1) break;
  7120. float theta = (float)p;
  7121. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7122. const float cos_theta = cosf(theta);
  7123. const float sin_theta = sinf(theta);
  7124. theta *= theta_scale;
  7125. if (!is_neox) {
  7126. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7127. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7128. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7129. const float x1 = GGML_FP16_TO_FP32(src[1]);
  7130. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7131. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7132. } else {
  7133. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7134. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7135. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7136. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  7137. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7138. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7139. }
  7140. }
  7141. }
  7142. }
  7143. }
  7144. }
  7145. static void ggml_compute_forward_rope(
  7146. const struct ggml_compute_params * params,
  7147. const struct ggml_tensor * src0,
  7148. const struct ggml_tensor * src1,
  7149. struct ggml_tensor * dst) {
  7150. switch (src0->type) {
  7151. case GGML_TYPE_F16:
  7152. {
  7153. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  7154. } break;
  7155. case GGML_TYPE_F32:
  7156. {
  7157. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  7158. } break;
  7159. default:
  7160. {
  7161. GGML_ASSERT(false);
  7162. } break;
  7163. }
  7164. }
  7165. // ggml_compute_forward_conv_1d_1s
  7166. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  7167. const struct ggml_compute_params * params,
  7168. const struct ggml_tensor * src0,
  7169. const struct ggml_tensor * src1,
  7170. struct ggml_tensor * dst) {
  7171. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7172. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7173. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7174. int64_t t0 = ggml_perf_time_us();
  7175. UNUSED(t0);
  7176. const int64_t ne00 = src0->ne[0];
  7177. const int64_t ne01 = src0->ne[1];
  7178. const int64_t ne02 = src0->ne[2];
  7179. //const int64_t ne03 = src0->ne[3];
  7180. const int64_t ne10 = src1->ne[0];
  7181. const int64_t ne11 = src1->ne[1];
  7182. //const int64_t ne12 = src1->ne[2];
  7183. //const int64_t ne13 = src1->ne[3];
  7184. //const int64_t ne0 = dst->ne[0];
  7185. //const int64_t ne1 = dst->ne[1];
  7186. //const int64_t ne2 = dst->ne[2];
  7187. //const int64_t ne3 = dst->ne[3];
  7188. //const int64_t ne = ne0*ne1*ne2*ne3;
  7189. const int nb00 = src0->nb[0];
  7190. const int nb01 = src0->nb[1];
  7191. const int nb02 = src0->nb[2];
  7192. //const int nb03 = src0->nb[3];
  7193. const int nb10 = src1->nb[0];
  7194. const int nb11 = src1->nb[1];
  7195. //const int nb12 = src1->nb[2];
  7196. //const int nb13 = src1->nb[3];
  7197. //const int nb0 = dst->nb[0];
  7198. const int nb1 = dst->nb[1];
  7199. //const int nb2 = dst->nb[2];
  7200. //const int nb3 = dst->nb[3];
  7201. const int ith = params->ith;
  7202. const int nth = params->nth;
  7203. const int nk = ne00;
  7204. const int nh = nk/2;
  7205. const int ew0 = ggml_up32(ne01);
  7206. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7207. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7208. GGML_ASSERT(nb10 == sizeof(float));
  7209. if (params->type == GGML_TASK_INIT) {
  7210. // TODO: fix this memset (wsize is overestimated)
  7211. memset(params->wdata, 0, params->wsize);
  7212. // prepare kernel data (src0)
  7213. {
  7214. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7215. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7216. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7217. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7218. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7219. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7220. dst_data[i00*ew0 + i01] = src[i00];
  7221. }
  7222. }
  7223. }
  7224. }
  7225. // prepare source data (src1)
  7226. {
  7227. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7228. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7229. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7230. ggml_fp16_t * dst_data = wdata;
  7231. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7232. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7233. }
  7234. }
  7235. }
  7236. return;
  7237. }
  7238. if (params->type == GGML_TASK_FINALIZE) {
  7239. return;
  7240. }
  7241. // total rows in dst
  7242. const int nr = ne02;
  7243. // rows per thread
  7244. const int dr = (nr + nth - 1)/nth;
  7245. // row range for this thread
  7246. const int ir0 = dr*ith;
  7247. const int ir1 = MIN(ir0 + dr, nr);
  7248. for (int i1 = ir0; i1 < ir1; i1++) {
  7249. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7250. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7251. dst_data[i0] = 0;
  7252. for (int k = -nh; k <= nh; k++) {
  7253. float v = 0.0f;
  7254. ggml_vec_dot_f16(ew0, &v,
  7255. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7256. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7257. dst_data[i0] += v;
  7258. }
  7259. }
  7260. }
  7261. }
  7262. static void ggml_compute_forward_conv_1d_1s_f32(
  7263. const struct ggml_compute_params * params,
  7264. const struct ggml_tensor * src0,
  7265. const struct ggml_tensor * src1,
  7266. struct ggml_tensor * dst) {
  7267. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7268. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7269. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7270. int64_t t0 = ggml_perf_time_us();
  7271. UNUSED(t0);
  7272. const int64_t ne00 = src0->ne[0];
  7273. const int64_t ne01 = src0->ne[1];
  7274. const int64_t ne02 = src0->ne[2];
  7275. //const int64_t ne03 = src0->ne[3];
  7276. const int64_t ne10 = src1->ne[0];
  7277. const int64_t ne11 = src1->ne[1];
  7278. //const int64_t ne12 = src1->ne[2];
  7279. //const int64_t ne13 = src1->ne[3];
  7280. //const int64_t ne0 = dst->ne[0];
  7281. //const int64_t ne1 = dst->ne[1];
  7282. //const int64_t ne2 = dst->ne[2];
  7283. //const int64_t ne3 = dst->ne[3];
  7284. //const int64_t ne = ne0*ne1*ne2*ne3;
  7285. const int nb00 = src0->nb[0];
  7286. const int nb01 = src0->nb[1];
  7287. const int nb02 = src0->nb[2];
  7288. //const int nb03 = src0->nb[3];
  7289. const int nb10 = src1->nb[0];
  7290. const int nb11 = src1->nb[1];
  7291. //const int nb12 = src1->nb[2];
  7292. //const int nb13 = src1->nb[3];
  7293. //const int nb0 = dst->nb[0];
  7294. const int nb1 = dst->nb[1];
  7295. //const int nb2 = dst->nb[2];
  7296. //const int nb3 = dst->nb[3];
  7297. const int ith = params->ith;
  7298. const int nth = params->nth;
  7299. const int nk = ne00;
  7300. const int nh = nk/2;
  7301. const int ew0 = ggml_up32(ne01);
  7302. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7303. GGML_ASSERT(nb00 == sizeof(float));
  7304. GGML_ASSERT(nb10 == sizeof(float));
  7305. if (params->type == GGML_TASK_INIT) {
  7306. // TODO: fix this memset (wsize is overestimated)
  7307. memset(params->wdata, 0, params->wsize);
  7308. // prepare kernel data (src0)
  7309. {
  7310. float * const wdata = (float *) params->wdata + 0;
  7311. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7312. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7313. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7314. float * dst_data = wdata + i02*ew0*ne00;
  7315. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7316. dst_data[i00*ew0 + i01] = src[i00];
  7317. }
  7318. }
  7319. }
  7320. }
  7321. // prepare source data (src1)
  7322. {
  7323. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7324. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7325. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7326. float * dst_data = wdata;
  7327. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7328. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7329. }
  7330. }
  7331. }
  7332. return;
  7333. }
  7334. if (params->type == GGML_TASK_FINALIZE) {
  7335. return;
  7336. }
  7337. // total rows in dst
  7338. const int nr = ne02;
  7339. // rows per thread
  7340. const int dr = (nr + nth - 1)/nth;
  7341. // row range for this thread
  7342. const int ir0 = dr*ith;
  7343. const int ir1 = MIN(ir0 + dr, nr);
  7344. for (int i1 = ir0; i1 < ir1; i1++) {
  7345. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7346. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7347. dst_data[i0] = 0;
  7348. for (int k = -nh; k <= nh; k++) {
  7349. float v = 0.0f;
  7350. ggml_vec_dot_f32(ew0, &v,
  7351. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7352. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7353. dst_data[i0] += v;
  7354. }
  7355. }
  7356. }
  7357. }
  7358. static void ggml_compute_forward_conv_1d_1s(
  7359. const struct ggml_compute_params * params,
  7360. const struct ggml_tensor * src0,
  7361. const struct ggml_tensor * src1,
  7362. struct ggml_tensor * dst) {
  7363. switch (src0->type) {
  7364. case GGML_TYPE_F16:
  7365. {
  7366. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  7367. } break;
  7368. case GGML_TYPE_F32:
  7369. {
  7370. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  7371. } break;
  7372. default:
  7373. {
  7374. GGML_ASSERT(false);
  7375. } break;
  7376. }
  7377. }
  7378. // ggml_compute_forward_conv_1d_2s
  7379. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  7380. const struct ggml_compute_params * params,
  7381. const struct ggml_tensor * src0,
  7382. const struct ggml_tensor * src1,
  7383. struct ggml_tensor * dst) {
  7384. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7385. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7386. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7387. int64_t t0 = ggml_perf_time_us();
  7388. UNUSED(t0);
  7389. const int64_t ne00 = src0->ne[0];
  7390. const int64_t ne01 = src0->ne[1];
  7391. const int64_t ne02 = src0->ne[2];
  7392. //const int64_t ne03 = src0->ne[3];
  7393. const int64_t ne10 = src1->ne[0];
  7394. const int64_t ne11 = src1->ne[1];
  7395. //const int64_t ne12 = src1->ne[2];
  7396. //const int64_t ne13 = src1->ne[3];
  7397. //const int64_t ne0 = dst->ne[0];
  7398. //const int64_t ne1 = dst->ne[1];
  7399. //const int64_t ne2 = dst->ne[2];
  7400. //const int64_t ne3 = dst->ne[3];
  7401. //const int64_t ne = ne0*ne1*ne2*ne3;
  7402. const int nb00 = src0->nb[0];
  7403. const int nb01 = src0->nb[1];
  7404. const int nb02 = src0->nb[2];
  7405. //const int nb03 = src0->nb[3];
  7406. const int nb10 = src1->nb[0];
  7407. const int nb11 = src1->nb[1];
  7408. //const int nb12 = src1->nb[2];
  7409. //const int nb13 = src1->nb[3];
  7410. //const int nb0 = dst->nb[0];
  7411. const int nb1 = dst->nb[1];
  7412. //const int nb2 = dst->nb[2];
  7413. //const int nb3 = dst->nb[3];
  7414. const int ith = params->ith;
  7415. const int nth = params->nth;
  7416. const int nk = ne00;
  7417. const int nh = nk/2;
  7418. const int ew0 = ggml_up32(ne01);
  7419. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7420. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7421. GGML_ASSERT(nb10 == sizeof(float));
  7422. if (params->type == GGML_TASK_INIT) {
  7423. // TODO: fix this memset (wsize is overestimated)
  7424. memset(params->wdata, 0, params->wsize);
  7425. // prepare kernel data (src0)
  7426. {
  7427. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7428. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7429. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7430. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7431. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7432. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7433. dst_data[i00*ew0 + i01] = src[i00];
  7434. }
  7435. }
  7436. }
  7437. }
  7438. // prepare source data (src1)
  7439. {
  7440. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7441. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7442. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7443. ggml_fp16_t * dst_data = wdata;
  7444. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7445. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7446. }
  7447. }
  7448. }
  7449. return;
  7450. }
  7451. if (params->type == GGML_TASK_FINALIZE) {
  7452. return;
  7453. }
  7454. // total rows in dst
  7455. const int nr = ne02;
  7456. // rows per thread
  7457. const int dr = (nr + nth - 1)/nth;
  7458. // row range for this thread
  7459. const int ir0 = dr*ith;
  7460. const int ir1 = MIN(ir0 + dr, nr);
  7461. for (int i1 = ir0; i1 < ir1; i1++) {
  7462. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7463. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7464. dst_data[i0/2] = 0;
  7465. for (int k = -nh; k <= nh; k++) {
  7466. float v = 0.0f;
  7467. ggml_vec_dot_f16(ew0, &v,
  7468. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7469. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7470. dst_data[i0/2] += v;
  7471. }
  7472. }
  7473. }
  7474. }
  7475. static void ggml_compute_forward_conv_1d_2s_f32(
  7476. const struct ggml_compute_params * params,
  7477. const struct ggml_tensor * src0,
  7478. const struct ggml_tensor * src1,
  7479. struct ggml_tensor * dst) {
  7480. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7481. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7482. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7483. int64_t t0 = ggml_perf_time_us();
  7484. UNUSED(t0);
  7485. const int64_t ne00 = src0->ne[0];
  7486. const int64_t ne01 = src0->ne[1];
  7487. const int64_t ne02 = src0->ne[2];
  7488. //const int64_t ne03 = src0->ne[3];
  7489. const int64_t ne10 = src1->ne[0];
  7490. const int64_t ne11 = src1->ne[1];
  7491. //const int64_t ne12 = src1->ne[2];
  7492. //const int64_t ne13 = src1->ne[3];
  7493. //const int64_t ne0 = dst->ne[0];
  7494. //const int64_t ne1 = dst->ne[1];
  7495. //const int64_t ne2 = dst->ne[2];
  7496. //const int64_t ne3 = dst->ne[3];
  7497. //const int64_t ne = ne0*ne1*ne2*ne3;
  7498. const int nb00 = src0->nb[0];
  7499. const int nb01 = src0->nb[1];
  7500. const int nb02 = src0->nb[2];
  7501. //const int nb03 = src0->nb[3];
  7502. const int nb10 = src1->nb[0];
  7503. const int nb11 = src1->nb[1];
  7504. //const int nb12 = src1->nb[2];
  7505. //const int nb13 = src1->nb[3];
  7506. //const int nb0 = dst->nb[0];
  7507. const int nb1 = dst->nb[1];
  7508. //const int nb2 = dst->nb[2];
  7509. //const int nb3 = dst->nb[3];
  7510. const int ith = params->ith;
  7511. const int nth = params->nth;
  7512. const int nk = ne00;
  7513. const int nh = nk/2;
  7514. const int ew0 = ggml_up32(ne01);
  7515. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7516. GGML_ASSERT(nb00 == sizeof(float));
  7517. GGML_ASSERT(nb10 == sizeof(float));
  7518. if (params->type == GGML_TASK_INIT) {
  7519. // TODO: fix this memset (wsize is overestimated)
  7520. memset(params->wdata, 0, params->wsize);
  7521. // prepare kernel data (src0)
  7522. {
  7523. float * const wdata = (float *) params->wdata + 0;
  7524. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7525. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7526. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7527. float * dst_data = wdata + i02*ew0*ne00;
  7528. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7529. dst_data[i00*ew0 + i01] = src[i00];
  7530. }
  7531. }
  7532. }
  7533. }
  7534. // prepare source data (src1)
  7535. {
  7536. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7537. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7538. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7539. float * dst_data = wdata;
  7540. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7541. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7542. }
  7543. }
  7544. }
  7545. return;
  7546. }
  7547. if (params->type == GGML_TASK_FINALIZE) {
  7548. return;
  7549. }
  7550. // total rows in dst
  7551. const int nr = ne02;
  7552. // rows per thread
  7553. const int dr = (nr + nth - 1)/nth;
  7554. // row range for this thread
  7555. const int ir0 = dr*ith;
  7556. const int ir1 = MIN(ir0 + dr, nr);
  7557. for (int i1 = ir0; i1 < ir1; i1++) {
  7558. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7559. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7560. dst_data[i0/2] = 0;
  7561. for (int k = -nh; k <= nh; k++) {
  7562. float v = 0.0f;
  7563. ggml_vec_dot_f32(ew0, &v,
  7564. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7565. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7566. dst_data[i0/2] += v;
  7567. }
  7568. }
  7569. }
  7570. }
  7571. static void ggml_compute_forward_conv_1d_2s(
  7572. const struct ggml_compute_params * params,
  7573. const struct ggml_tensor * src0,
  7574. const struct ggml_tensor * src1,
  7575. struct ggml_tensor * dst) {
  7576. switch (src0->type) {
  7577. case GGML_TYPE_F16:
  7578. {
  7579. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  7580. } break;
  7581. case GGML_TYPE_F32:
  7582. {
  7583. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  7584. } break;
  7585. default:
  7586. {
  7587. GGML_ASSERT(false);
  7588. } break;
  7589. }
  7590. }
  7591. // ggml_compute_forward_flash_attn
  7592. static void ggml_compute_forward_flash_attn_f32(
  7593. const struct ggml_compute_params * params,
  7594. const struct ggml_tensor * q,
  7595. const struct ggml_tensor * k,
  7596. const struct ggml_tensor * v,
  7597. const bool masked,
  7598. struct ggml_tensor * dst) {
  7599. int64_t t0 = ggml_perf_time_us();
  7600. UNUSED(t0);
  7601. const int64_t neq0 = q->ne[0];
  7602. const int64_t neq1 = q->ne[1];
  7603. const int64_t neq2 = q->ne[2];
  7604. const int64_t neq3 = q->ne[3];
  7605. const int64_t nek0 = k->ne[0];
  7606. const int64_t nek1 = k->ne[1];
  7607. //const int64_t nek2 = k->ne[2];
  7608. //const int64_t nek3 = k->ne[3];
  7609. //const int64_t nev0 = v->ne[0];
  7610. const int64_t nev1 = v->ne[1];
  7611. //const int64_t nev2 = v->ne[2];
  7612. //const int64_t nev3 = v->ne[3];
  7613. const int64_t ne0 = dst->ne[0];
  7614. const int64_t ne1 = dst->ne[1];
  7615. //const int64_t ne2 = dst->ne[2];
  7616. //const int64_t ne3 = dst->ne[3];
  7617. const int nbk0 = k->nb[0];
  7618. const int nbk1 = k->nb[1];
  7619. const int nbk2 = k->nb[2];
  7620. const int nbk3 = k->nb[3];
  7621. const int nbq0 = q->nb[0];
  7622. const int nbq1 = q->nb[1];
  7623. const int nbq2 = q->nb[2];
  7624. const int nbq3 = q->nb[3];
  7625. const int nbv0 = v->nb[0];
  7626. const int nbv1 = v->nb[1];
  7627. const int nbv2 = v->nb[2];
  7628. const int nbv3 = v->nb[3];
  7629. const int nb0 = dst->nb[0];
  7630. const int nb1 = dst->nb[1];
  7631. const int nb2 = dst->nb[2];
  7632. const int nb3 = dst->nb[3];
  7633. const int ith = params->ith;
  7634. const int nth = params->nth;
  7635. const int64_t D = neq0;
  7636. const int64_t N = neq1;
  7637. const int64_t P = nek1 - N;
  7638. const int64_t M = P + N;
  7639. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7640. GGML_ASSERT(ne0 == D);
  7641. GGML_ASSERT(ne1 == N);
  7642. GGML_ASSERT(P >= 0);
  7643. GGML_ASSERT(nbq0 == sizeof(float));
  7644. GGML_ASSERT(nbk0 == sizeof(float));
  7645. GGML_ASSERT(nbv0 == sizeof(float));
  7646. GGML_ASSERT(neq0 == D);
  7647. GGML_ASSERT(nek0 == D);
  7648. GGML_ASSERT(nev1 == D);
  7649. GGML_ASSERT(neq1 == N);
  7650. GGML_ASSERT(nek1 == N + P);
  7651. GGML_ASSERT(nev1 == D);
  7652. // dst cannot be transposed or permuted
  7653. GGML_ASSERT(nb0 == sizeof(float));
  7654. GGML_ASSERT(nb0 <= nb1);
  7655. GGML_ASSERT(nb1 <= nb2);
  7656. GGML_ASSERT(nb2 <= nb3);
  7657. if (params->type == GGML_TASK_INIT) {
  7658. return;
  7659. }
  7660. if (params->type == GGML_TASK_FINALIZE) {
  7661. return;
  7662. }
  7663. // parallelize by q rows using ggml_vec_dot_f32
  7664. // total rows in q
  7665. const int nr = neq1*neq2*neq3;
  7666. // rows per thread
  7667. const int dr = (nr + nth - 1)/nth;
  7668. // row range for this thread
  7669. const int ir0 = dr*ith;
  7670. const int ir1 = MIN(ir0 + dr, nr);
  7671. const float scale = 1.0f/sqrtf(D);
  7672. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7673. for (int ir = ir0; ir < ir1; ++ir) {
  7674. // q indices
  7675. const int iq3 = ir/(neq2*neq1);
  7676. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7677. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7678. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  7679. for (int i = M; i < Mup; ++i) {
  7680. S[i] = -INFINITY;
  7681. }
  7682. for (int64_t ic = 0; ic < nek1; ++ic) {
  7683. // k indices
  7684. const int ik3 = iq3;
  7685. const int ik2 = iq2;
  7686. const int ik1 = ic;
  7687. // S indices
  7688. const int i1 = ik1;
  7689. ggml_vec_dot_f32(neq0,
  7690. S + i1,
  7691. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7692. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7693. }
  7694. // scale
  7695. ggml_vec_scale_f32(nek1, S, scale);
  7696. if (masked) {
  7697. for (int64_t i = P; i < M; i++) {
  7698. if (i > P + iq1) {
  7699. S[i] = -INFINITY;
  7700. }
  7701. }
  7702. }
  7703. // softmax
  7704. {
  7705. float max = -INFINITY;
  7706. ggml_vec_max_f32(M, &max, S);
  7707. ggml_float sum = 0.0;
  7708. {
  7709. #ifdef GGML_SOFT_MAX_ACCELERATE
  7710. max = -max;
  7711. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7712. vvexpf(S, S, &Mup);
  7713. ggml_vec_sum_f32(Mup, &sum, S);
  7714. #else
  7715. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7716. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7717. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7718. float * SS = S + i;
  7719. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7720. if (SS[j] == -INFINITY) {
  7721. SS[j] = 0.0f;
  7722. } else {
  7723. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7724. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7725. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7726. sump[j] += (ggml_float)val;
  7727. SS[j] = val;
  7728. }
  7729. }
  7730. }
  7731. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7732. sum += sump[i];
  7733. }
  7734. #endif
  7735. }
  7736. assert(sum > 0.0);
  7737. sum = 1.0/sum;
  7738. ggml_vec_scale_f32(M, S, sum);
  7739. #ifndef NDEBUG
  7740. for (int i = 0; i < M; ++i) {
  7741. assert(!isnan(S[i]));
  7742. assert(!isinf(S[i]));
  7743. }
  7744. #endif
  7745. }
  7746. for (int64_t ic = 0; ic < nev1; ++ic) {
  7747. // dst indices
  7748. const int i1 = iq1;
  7749. const int i2 = iq2;
  7750. const int i3 = iq3;
  7751. ggml_vec_dot_f32(nek1,
  7752. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7753. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7754. S);
  7755. }
  7756. }
  7757. }
  7758. static void ggml_compute_forward_flash_attn_f16(
  7759. const struct ggml_compute_params * params,
  7760. const struct ggml_tensor * q,
  7761. const struct ggml_tensor * k,
  7762. const struct ggml_tensor * v,
  7763. const bool masked,
  7764. struct ggml_tensor * dst) {
  7765. int64_t t0 = ggml_perf_time_us();
  7766. UNUSED(t0);
  7767. const int64_t neq0 = q->ne[0];
  7768. const int64_t neq1 = q->ne[1];
  7769. const int64_t neq2 = q->ne[2];
  7770. const int64_t neq3 = q->ne[3];
  7771. const int64_t nek0 = k->ne[0];
  7772. const int64_t nek1 = k->ne[1];
  7773. //const int64_t nek2 = k->ne[2];
  7774. //const int64_t nek3 = k->ne[3];
  7775. //const int64_t nev0 = v->ne[0];
  7776. const int64_t nev1 = v->ne[1];
  7777. //const int64_t nev2 = v->ne[2];
  7778. //const int64_t nev3 = v->ne[3];
  7779. const int64_t ne0 = dst->ne[0];
  7780. const int64_t ne1 = dst->ne[1];
  7781. //const int64_t ne2 = dst->ne[2];
  7782. //const int64_t ne3 = dst->ne[3];
  7783. const int nbk0 = k->nb[0];
  7784. const int nbk1 = k->nb[1];
  7785. const int nbk2 = k->nb[2];
  7786. const int nbk3 = k->nb[3];
  7787. const int nbq0 = q->nb[0];
  7788. const int nbq1 = q->nb[1];
  7789. const int nbq2 = q->nb[2];
  7790. const int nbq3 = q->nb[3];
  7791. const int nbv0 = v->nb[0];
  7792. const int nbv1 = v->nb[1];
  7793. const int nbv2 = v->nb[2];
  7794. const int nbv3 = v->nb[3];
  7795. const int nb0 = dst->nb[0];
  7796. const int nb1 = dst->nb[1];
  7797. const int nb2 = dst->nb[2];
  7798. const int nb3 = dst->nb[3];
  7799. const int ith = params->ith;
  7800. const int nth = params->nth;
  7801. const int64_t D = neq0;
  7802. const int64_t N = neq1;
  7803. const int64_t P = nek1 - N;
  7804. const int64_t M = P + N;
  7805. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7806. GGML_ASSERT(ne0 == D);
  7807. GGML_ASSERT(ne1 == N);
  7808. GGML_ASSERT(P >= 0);
  7809. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  7810. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  7811. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  7812. GGML_ASSERT(neq0 == D);
  7813. GGML_ASSERT(nek0 == D);
  7814. GGML_ASSERT(nev1 == D);
  7815. GGML_ASSERT(neq1 == N);
  7816. GGML_ASSERT(nek1 == N + P);
  7817. GGML_ASSERT(nev1 == D);
  7818. // dst cannot be transposed or permuted
  7819. GGML_ASSERT(nb0 == sizeof(float));
  7820. GGML_ASSERT(nb0 <= nb1);
  7821. GGML_ASSERT(nb1 <= nb2);
  7822. GGML_ASSERT(nb2 <= nb3);
  7823. if (params->type == GGML_TASK_INIT) {
  7824. return;
  7825. }
  7826. if (params->type == GGML_TASK_FINALIZE) {
  7827. return;
  7828. }
  7829. // parallelize by q rows using ggml_vec_dot_f32
  7830. // total rows in q
  7831. const int nr = neq1*neq2*neq3;
  7832. // rows per thread
  7833. const int dr = (nr + nth - 1)/nth;
  7834. // row range for this thread
  7835. const int ir0 = dr*ith;
  7836. const int ir1 = MIN(ir0 + dr, nr);
  7837. const float scale = 1.0f/sqrtf(D);
  7838. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7839. for (int ir = ir0; ir < ir1; ++ir) {
  7840. // q indices
  7841. const int iq3 = ir/(neq2*neq1);
  7842. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7843. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7844. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  7845. for (int i = M; i < Mup; ++i) {
  7846. S[i] = -INFINITY;
  7847. }
  7848. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  7849. for (int64_t ic = 0; ic < nek1; ++ic) {
  7850. // k indices
  7851. const int ik3 = iq3;
  7852. const int ik2 = iq2;
  7853. const int ik1 = ic;
  7854. // S indices
  7855. const int i1 = ik1;
  7856. ggml_vec_dot_f16(neq0,
  7857. S + i1,
  7858. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7859. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7860. }
  7861. } else {
  7862. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  7863. // k indices
  7864. const int ik3 = iq3;
  7865. const int ik2 = iq2;
  7866. const int ik1 = ic;
  7867. // S indices
  7868. const int i1 = ik1;
  7869. ggml_vec_dot_f16_unroll(neq0, nbk1,
  7870. S + i1,
  7871. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7872. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7873. }
  7874. }
  7875. // scale
  7876. ggml_vec_scale_f32(nek1, S, scale);
  7877. if (masked) {
  7878. for (int64_t i = P; i < M; i++) {
  7879. if (i > P + iq1) {
  7880. S[i] = -INFINITY;
  7881. }
  7882. }
  7883. }
  7884. // softmax
  7885. {
  7886. float max = -INFINITY;
  7887. ggml_vec_max_f32(M, &max, S);
  7888. ggml_float sum = 0.0;
  7889. {
  7890. #ifdef GGML_SOFT_MAX_ACCELERATE
  7891. max = -max;
  7892. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7893. vvexpf(S, S, &Mup);
  7894. ggml_vec_sum_f32(Mup, &sum, S);
  7895. #else
  7896. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7897. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7898. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7899. float * SS = S + i;
  7900. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7901. if (SS[j] == -INFINITY) {
  7902. SS[j] = 0.0f;
  7903. } else {
  7904. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7905. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7906. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7907. sump[j] += (ggml_float)val;
  7908. SS[j] = val;
  7909. }
  7910. }
  7911. }
  7912. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7913. sum += sump[i];
  7914. }
  7915. #endif
  7916. }
  7917. assert(sum > 0.0);
  7918. sum = 1.0/sum;
  7919. ggml_vec_scale_f32(M, S, sum);
  7920. #ifndef NDEBUG
  7921. for (int i = 0; i < M; ++i) {
  7922. assert(!isnan(S[i]));
  7923. assert(!isinf(S[i]));
  7924. }
  7925. #endif
  7926. }
  7927. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  7928. for (int64_t i = 0; i < M; i++) {
  7929. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7930. }
  7931. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  7932. for (int64_t ic = 0; ic < nev1; ++ic) {
  7933. // dst indices
  7934. const int i1 = iq1;
  7935. const int i2 = iq2;
  7936. const int i3 = iq3;
  7937. ggml_vec_dot_f16(nek1,
  7938. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7939. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7940. S16);
  7941. }
  7942. } else {
  7943. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  7944. // dst indices
  7945. const int i1 = iq1;
  7946. const int i2 = iq2;
  7947. const int i3 = iq3;
  7948. ggml_vec_dot_f16_unroll(nek1, nbv1,
  7949. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7950. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7951. S16);
  7952. }
  7953. }
  7954. }
  7955. }
  7956. static void ggml_compute_forward_flash_attn(
  7957. const struct ggml_compute_params * params,
  7958. const struct ggml_tensor * q,
  7959. const struct ggml_tensor * k,
  7960. const struct ggml_tensor * v,
  7961. const bool masked,
  7962. struct ggml_tensor * dst) {
  7963. switch (q->type) {
  7964. case GGML_TYPE_F16:
  7965. {
  7966. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  7967. } break;
  7968. case GGML_TYPE_F32:
  7969. {
  7970. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  7971. } break;
  7972. default:
  7973. {
  7974. GGML_ASSERT(false);
  7975. } break;
  7976. }
  7977. }
  7978. // ggml_compute_forward_flash_ff
  7979. static void ggml_compute_forward_flash_ff_f16(
  7980. const struct ggml_compute_params * params,
  7981. const struct ggml_tensor * a, // F16
  7982. const struct ggml_tensor * b0, // F16 fc_w
  7983. const struct ggml_tensor * b1, // F32 fc_b
  7984. const struct ggml_tensor * c0, // F16 proj_w
  7985. const struct ggml_tensor * c1, // F32 proj_b
  7986. struct ggml_tensor * dst) {
  7987. int64_t t0 = ggml_perf_time_us();
  7988. UNUSED(t0);
  7989. const int64_t nea0 = a->ne[0];
  7990. const int64_t nea1 = a->ne[1];
  7991. const int64_t nea2 = a->ne[2];
  7992. const int64_t nea3 = a->ne[3];
  7993. const int64_t neb00 = b0->ne[0];
  7994. const int64_t neb01 = b0->ne[1];
  7995. //const int64_t neb02 = b0->ne[2];
  7996. //const int64_t neb03 = b0->ne[3];
  7997. const int64_t neb10 = b1->ne[0];
  7998. const int64_t neb11 = b1->ne[1];
  7999. //const int64_t neb12 = b1->ne[2];
  8000. //const int64_t neb13 = b1->ne[3];
  8001. const int64_t nec00 = c0->ne[0];
  8002. const int64_t nec01 = c0->ne[1];
  8003. //const int64_t nec02 = c0->ne[2];
  8004. //const int64_t nec03 = c0->ne[3];
  8005. const int64_t nec10 = c1->ne[0];
  8006. const int64_t nec11 = c1->ne[1];
  8007. //const int64_t nec12 = c1->ne[2];
  8008. //const int64_t nec13 = c1->ne[3];
  8009. const int64_t ne0 = dst->ne[0];
  8010. const int64_t ne1 = dst->ne[1];
  8011. const int64_t ne2 = dst->ne[2];
  8012. //const int64_t ne3 = dst->ne[3];
  8013. const int nba0 = a->nb[0];
  8014. const int nba1 = a->nb[1];
  8015. const int nba2 = a->nb[2];
  8016. const int nba3 = a->nb[3];
  8017. const int nbb00 = b0->nb[0];
  8018. const int nbb01 = b0->nb[1];
  8019. const int nbb02 = b0->nb[2];
  8020. const int nbb03 = b0->nb[3];
  8021. const int nbb10 = b1->nb[0];
  8022. //const int nbb11 = b1->nb[1];
  8023. //const int nbb12 = b1->nb[2];
  8024. //const int nbb13 = b1->nb[3];
  8025. const int nbc00 = c0->nb[0];
  8026. const int nbc01 = c0->nb[1];
  8027. const int nbc02 = c0->nb[2];
  8028. const int nbc03 = c0->nb[3];
  8029. const int nbc10 = c1->nb[0];
  8030. //const int nbc11 = c1->nb[1];
  8031. //const int nbc12 = c1->nb[2];
  8032. //const int nbc13 = c1->nb[3];
  8033. const int nb0 = dst->nb[0];
  8034. const int nb1 = dst->nb[1];
  8035. const int nb2 = dst->nb[2];
  8036. const int nb3 = dst->nb[3];
  8037. const int ith = params->ith;
  8038. const int nth = params->nth;
  8039. const int64_t D = nea0;
  8040. //const int64_t N = nea1;
  8041. const int64_t M = neb01;
  8042. GGML_ASSERT(ne0 == nea0);
  8043. GGML_ASSERT(ne1 == nea1);
  8044. GGML_ASSERT(ne2 == nea2);
  8045. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  8046. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  8047. GGML_ASSERT(nbb10 == sizeof(float));
  8048. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  8049. GGML_ASSERT(nbc10 == sizeof(float));
  8050. GGML_ASSERT(neb00 == D);
  8051. GGML_ASSERT(neb01 == M);
  8052. GGML_ASSERT(neb10 == M);
  8053. GGML_ASSERT(neb11 == 1);
  8054. GGML_ASSERT(nec00 == M);
  8055. GGML_ASSERT(nec01 == D);
  8056. GGML_ASSERT(nec10 == D);
  8057. GGML_ASSERT(nec11 == 1);
  8058. // dst cannot be transposed or permuted
  8059. GGML_ASSERT(nb0 == sizeof(float));
  8060. GGML_ASSERT(nb0 <= nb1);
  8061. GGML_ASSERT(nb1 <= nb2);
  8062. GGML_ASSERT(nb2 <= nb3);
  8063. if (params->type == GGML_TASK_INIT) {
  8064. return;
  8065. }
  8066. if (params->type == GGML_TASK_FINALIZE) {
  8067. return;
  8068. }
  8069. // parallelize by a rows using ggml_vec_dot_f32
  8070. // total rows in a
  8071. const int nr = nea1*nea2*nea3;
  8072. // rows per thread
  8073. const int dr = (nr + nth - 1)/nth;
  8074. // row range for this thread
  8075. const int ir0 = dr*ith;
  8076. const int ir1 = MIN(ir0 + dr, nr);
  8077. for (int ir = ir0; ir < ir1; ++ir) {
  8078. // a indices
  8079. const int ia3 = ir/(nea2*nea1);
  8080. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  8081. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  8082. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  8083. for (int64_t ic = 0; ic < neb01; ++ic) {
  8084. // b0 indices
  8085. const int ib03 = ia3;
  8086. const int ib02 = ia2;
  8087. const int ib01 = ic;
  8088. // S indices
  8089. const int i1 = ib01;
  8090. ggml_vec_dot_f16(nea0,
  8091. S + i1,
  8092. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  8093. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  8094. }
  8095. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  8096. //ggml_vec_gelu_f32(neb01, S, S);
  8097. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  8098. for (int64_t i = 0; i < M; i++) {
  8099. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8100. }
  8101. ggml_vec_gelu_f16(neb01, S16, S16);
  8102. {
  8103. // dst indices
  8104. const int i1 = ia1;
  8105. const int i2 = ia2;
  8106. const int i3 = ia3;
  8107. for (int64_t ic = 0; ic < nec01; ++ic) {
  8108. ggml_vec_dot_f16(neb01,
  8109. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8110. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  8111. S16);
  8112. }
  8113. ggml_vec_add_f32(nec01,
  8114. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8115. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8116. (float *) c1->data);
  8117. }
  8118. }
  8119. }
  8120. static void ggml_compute_forward_flash_ff(
  8121. const struct ggml_compute_params * params,
  8122. const struct ggml_tensor * a,
  8123. const struct ggml_tensor * b0,
  8124. const struct ggml_tensor * b1,
  8125. const struct ggml_tensor * c0,
  8126. const struct ggml_tensor * c1,
  8127. struct ggml_tensor * dst) {
  8128. switch (b0->type) {
  8129. case GGML_TYPE_F16:
  8130. {
  8131. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  8132. } break;
  8133. case GGML_TYPE_F32:
  8134. {
  8135. GGML_ASSERT(false); // TODO
  8136. } break;
  8137. default:
  8138. {
  8139. GGML_ASSERT(false);
  8140. } break;
  8141. }
  8142. }
  8143. // ggml_compute_forward_map_unary
  8144. static void ggml_compute_forward_map_unary_f32(
  8145. const struct ggml_compute_params * params,
  8146. const struct ggml_tensor * src0,
  8147. struct ggml_tensor * dst,
  8148. const ggml_unary_op_f32_t fun) {
  8149. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8150. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8151. return;
  8152. }
  8153. const int n = ggml_nrows(src0);
  8154. const int nc = src0->ne[0];
  8155. assert( dst->nb[0] == sizeof(float));
  8156. assert(src0->nb[0] == sizeof(float));
  8157. for (int i = 0; i < n; i++) {
  8158. fun(nc,
  8159. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8160. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8161. }
  8162. }
  8163. static void ggml_compute_forward_map_unary(
  8164. const struct ggml_compute_params * params,
  8165. const struct ggml_tensor * src0,
  8166. struct ggml_tensor * dst,
  8167. const ggml_unary_op_f32_t fun) {
  8168. switch (src0->type) {
  8169. case GGML_TYPE_F32:
  8170. {
  8171. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  8172. } break;
  8173. default:
  8174. {
  8175. GGML_ASSERT(false);
  8176. } break;
  8177. }
  8178. }
  8179. // ggml_compute_forward_map_binary
  8180. static void ggml_compute_forward_map_binary_f32(
  8181. const struct ggml_compute_params * params,
  8182. const struct ggml_tensor * src0,
  8183. const struct ggml_tensor * src1,
  8184. struct ggml_tensor * dst,
  8185. const ggml_binary_op_f32_t fun) {
  8186. assert(params->ith == 0);
  8187. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8188. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8189. return;
  8190. }
  8191. const int n = ggml_nrows(src0);
  8192. const int nc = src0->ne[0];
  8193. assert( dst->nb[0] == sizeof(float));
  8194. assert(src0->nb[0] == sizeof(float));
  8195. assert(src1->nb[0] == sizeof(float));
  8196. for (int i = 0; i < n; i++) {
  8197. fun(nc,
  8198. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8199. (float *) ((char *) src0->data + i*(src0->nb[1])),
  8200. (float *) ((char *) src1->data + i*(src1->nb[1])));
  8201. }
  8202. }
  8203. static void ggml_compute_forward_map_binary(
  8204. const struct ggml_compute_params * params,
  8205. const struct ggml_tensor * src0,
  8206. const struct ggml_tensor * src1,
  8207. struct ggml_tensor * dst,
  8208. const ggml_binary_op_f32_t fun) {
  8209. switch (src0->type) {
  8210. case GGML_TYPE_F32:
  8211. {
  8212. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  8213. } break;
  8214. default:
  8215. {
  8216. GGML_ASSERT(false);
  8217. } break;
  8218. }
  8219. }
  8220. /////////////////////////////////
  8221. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  8222. GGML_ASSERT(params);
  8223. switch (tensor->op) {
  8224. case GGML_OP_DUP:
  8225. {
  8226. ggml_compute_forward_dup(params, tensor->src0, tensor);
  8227. } break;
  8228. case GGML_OP_ADD:
  8229. {
  8230. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  8231. } break;
  8232. case GGML_OP_SUB:
  8233. {
  8234. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  8235. } break;
  8236. case GGML_OP_MUL:
  8237. {
  8238. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  8239. } break;
  8240. case GGML_OP_DIV:
  8241. {
  8242. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  8243. } break;
  8244. case GGML_OP_SQR:
  8245. {
  8246. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  8247. } break;
  8248. case GGML_OP_SQRT:
  8249. {
  8250. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  8251. } break;
  8252. case GGML_OP_SUM:
  8253. {
  8254. ggml_compute_forward_sum(params, tensor->src0, tensor);
  8255. } break;
  8256. case GGML_OP_MEAN:
  8257. {
  8258. ggml_compute_forward_mean(params, tensor->src0, tensor);
  8259. } break;
  8260. case GGML_OP_REPEAT:
  8261. {
  8262. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  8263. } break;
  8264. case GGML_OP_ABS:
  8265. {
  8266. ggml_compute_forward_abs(params, tensor->src0, tensor);
  8267. } break;
  8268. case GGML_OP_SGN:
  8269. {
  8270. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  8271. } break;
  8272. case GGML_OP_NEG:
  8273. {
  8274. ggml_compute_forward_neg(params, tensor->src0, tensor);
  8275. } break;
  8276. case GGML_OP_STEP:
  8277. {
  8278. ggml_compute_forward_step(params, tensor->src0, tensor);
  8279. } break;
  8280. case GGML_OP_RELU:
  8281. {
  8282. ggml_compute_forward_relu(params, tensor->src0, tensor);
  8283. } break;
  8284. case GGML_OP_GELU:
  8285. {
  8286. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  8287. } break;
  8288. case GGML_OP_SILU:
  8289. {
  8290. ggml_compute_forward_silu(params, tensor->src0, tensor);
  8291. } break;
  8292. case GGML_OP_NORM:
  8293. {
  8294. ggml_compute_forward_norm(params, tensor->src0, tensor);
  8295. } break;
  8296. case GGML_OP_RMS_NORM:
  8297. {
  8298. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  8299. } break;
  8300. case GGML_OP_MUL_MAT:
  8301. {
  8302. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  8303. } break;
  8304. case GGML_OP_SCALE:
  8305. {
  8306. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  8307. } break;
  8308. case GGML_OP_CPY:
  8309. {
  8310. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  8311. } break;
  8312. case GGML_OP_CONT:
  8313. {
  8314. ggml_compute_forward_cont(params, tensor->src0, tensor);
  8315. } break;
  8316. case GGML_OP_RESHAPE:
  8317. {
  8318. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  8319. } break;
  8320. case GGML_OP_VIEW:
  8321. {
  8322. ggml_compute_forward_view(params, tensor->src0);
  8323. } break;
  8324. case GGML_OP_PERMUTE:
  8325. {
  8326. ggml_compute_forward_permute(params, tensor->src0);
  8327. } break;
  8328. case GGML_OP_TRANSPOSE:
  8329. {
  8330. ggml_compute_forward_transpose(params, tensor->src0);
  8331. } break;
  8332. case GGML_OP_GET_ROWS:
  8333. {
  8334. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  8335. } break;
  8336. case GGML_OP_DIAG_MASK_INF:
  8337. {
  8338. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  8339. } break;
  8340. case GGML_OP_SOFT_MAX:
  8341. {
  8342. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  8343. } break;
  8344. case GGML_OP_ROPE:
  8345. {
  8346. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  8347. } break;
  8348. case GGML_OP_ALIBI:
  8349. {
  8350. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  8351. } break;
  8352. case GGML_OP_CONV_1D_1S:
  8353. {
  8354. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  8355. } break;
  8356. case GGML_OP_CONV_1D_2S:
  8357. {
  8358. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  8359. } break;
  8360. case GGML_OP_FLASH_ATTN:
  8361. {
  8362. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  8363. GGML_ASSERT(t == 0 || t == 1);
  8364. bool masked = t != 0;
  8365. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  8366. } break;
  8367. case GGML_OP_FLASH_FF:
  8368. {
  8369. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  8370. } break;
  8371. case GGML_OP_MAP_UNARY:
  8372. {
  8373. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  8374. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  8375. }
  8376. break;
  8377. case GGML_OP_MAP_BINARY:
  8378. {
  8379. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  8380. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  8381. }
  8382. break;
  8383. case GGML_OP_NONE:
  8384. {
  8385. // nop
  8386. } break;
  8387. case GGML_OP_COUNT:
  8388. {
  8389. GGML_ASSERT(false);
  8390. } break;
  8391. }
  8392. }
  8393. ////////////////////////////////////////////////////////////////////////////////
  8394. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  8395. struct ggml_tensor * src0 = tensor->src0;
  8396. struct ggml_tensor * src1 = tensor->src1;
  8397. switch (tensor->op) {
  8398. case GGML_OP_DUP:
  8399. {
  8400. if (src0->grad) {
  8401. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8402. }
  8403. } break;
  8404. case GGML_OP_ADD:
  8405. {
  8406. if (src0->grad) {
  8407. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8408. }
  8409. if (src1->grad) {
  8410. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  8411. }
  8412. } break;
  8413. case GGML_OP_SUB:
  8414. {
  8415. if (src0->grad) {
  8416. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8417. }
  8418. if (src1->grad) {
  8419. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  8420. }
  8421. } break;
  8422. case GGML_OP_MUL:
  8423. {
  8424. if (src0->grad) {
  8425. src0->grad =
  8426. ggml_add_impl(ctx,
  8427. src0->grad,
  8428. ggml_mul(ctx, src1, tensor->grad),
  8429. inplace);
  8430. }
  8431. if (src1->grad) {
  8432. src1->grad =
  8433. ggml_add_impl(ctx,
  8434. src1->grad,
  8435. ggml_mul(ctx, src0, tensor->grad),
  8436. inplace);
  8437. }
  8438. } break;
  8439. case GGML_OP_DIV:
  8440. {
  8441. if (src0->grad) {
  8442. src0->grad =
  8443. ggml_add_impl(ctx,
  8444. src0->grad,
  8445. ggml_div(ctx, tensor->grad, src1),
  8446. inplace);
  8447. }
  8448. if (src1->grad) {
  8449. src1->grad =
  8450. ggml_sub_impl(ctx,
  8451. src1->grad,
  8452. ggml_mul(ctx,
  8453. tensor->grad,
  8454. ggml_div(ctx, tensor, src1)),
  8455. inplace);
  8456. }
  8457. } break;
  8458. case GGML_OP_SQR:
  8459. {
  8460. if (src0->grad) {
  8461. src0->grad =
  8462. ggml_add_impl(ctx,
  8463. src0->grad,
  8464. ggml_mul(ctx,
  8465. ggml_mul(ctx, src0, tensor->grad),
  8466. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  8467. inplace);
  8468. }
  8469. } break;
  8470. case GGML_OP_SQRT:
  8471. {
  8472. if (src0->grad) {
  8473. src0->grad =
  8474. ggml_add_impl(ctx,
  8475. src0->grad,
  8476. ggml_div(ctx,
  8477. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  8478. tensor),
  8479. inplace);
  8480. }
  8481. } break;
  8482. case GGML_OP_SUM:
  8483. {
  8484. if (src0->grad) {
  8485. src0->grad =
  8486. ggml_add_impl(ctx,
  8487. src0->grad,
  8488. ggml_repeat(ctx, tensor->grad, src0->grad),
  8489. inplace);
  8490. }
  8491. } break;
  8492. case GGML_OP_MEAN:
  8493. {
  8494. GGML_ASSERT(false); // TODO: implement
  8495. } break;
  8496. case GGML_OP_REPEAT:
  8497. {
  8498. if (src0->grad) {
  8499. src0->grad =
  8500. ggml_add_impl(ctx,
  8501. src0->grad,
  8502. ggml_sum(ctx, tensor->grad),
  8503. inplace);
  8504. }
  8505. } break;
  8506. case GGML_OP_ABS:
  8507. {
  8508. if (src0->grad) {
  8509. src0->grad =
  8510. ggml_add_impl(ctx,
  8511. src0->grad,
  8512. ggml_mul(ctx,
  8513. ggml_sgn(ctx, src0),
  8514. tensor->grad),
  8515. inplace);
  8516. }
  8517. } break;
  8518. case GGML_OP_SGN:
  8519. {
  8520. if (src0->grad) {
  8521. // noop
  8522. }
  8523. } break;
  8524. case GGML_OP_NEG:
  8525. {
  8526. if (src0->grad) {
  8527. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  8528. }
  8529. } break;
  8530. case GGML_OP_STEP:
  8531. {
  8532. if (src0->grad) {
  8533. // noop
  8534. }
  8535. } break;
  8536. case GGML_OP_RELU:
  8537. {
  8538. if (src0->grad) {
  8539. src0->grad = ggml_sub_impl(ctx,
  8540. src0->grad,
  8541. ggml_mul(ctx,
  8542. ggml_step(ctx, src0),
  8543. tensor->grad),
  8544. inplace);
  8545. }
  8546. } break;
  8547. case GGML_OP_GELU:
  8548. {
  8549. GGML_ASSERT(false); // TODO: not implemented
  8550. } break;
  8551. case GGML_OP_ALIBI:
  8552. {
  8553. GGML_ASSERT(false); // TODO: not implemented
  8554. } break;
  8555. case GGML_OP_SILU:
  8556. {
  8557. GGML_ASSERT(false); // TODO: not implemented
  8558. } break;
  8559. case GGML_OP_NORM:
  8560. {
  8561. GGML_ASSERT(false); // TODO: not implemented
  8562. } break;
  8563. case GGML_OP_RMS_NORM:
  8564. {
  8565. GGML_ASSERT(false); // TODO: not implemented
  8566. } break;
  8567. case GGML_OP_MUL_MAT:
  8568. {
  8569. if (src0->grad) {
  8570. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  8571. GGML_ASSERT(false);
  8572. }
  8573. if (src1->grad) {
  8574. src1->grad =
  8575. ggml_add_impl(ctx,
  8576. src1->grad,
  8577. ggml_mul_mat(ctx,
  8578. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  8579. tensor->grad),
  8580. inplace);
  8581. }
  8582. } break;
  8583. case GGML_OP_SCALE:
  8584. {
  8585. GGML_ASSERT(false); // TODO: not implemented
  8586. } break;
  8587. case GGML_OP_CPY:
  8588. {
  8589. GGML_ASSERT(false); // TODO: not implemented
  8590. } break;
  8591. case GGML_OP_CONT:
  8592. {
  8593. GGML_ASSERT(false); // TODO: not implemented
  8594. } break;
  8595. case GGML_OP_RESHAPE:
  8596. {
  8597. GGML_ASSERT(false); // TODO: not implemented
  8598. } break;
  8599. case GGML_OP_VIEW:
  8600. {
  8601. GGML_ASSERT(false); // not supported
  8602. } break;
  8603. case GGML_OP_PERMUTE:
  8604. {
  8605. GGML_ASSERT(false); // TODO: not implemented
  8606. } break;
  8607. case GGML_OP_TRANSPOSE:
  8608. {
  8609. GGML_ASSERT(false); // TODO: not implemented
  8610. } break;
  8611. case GGML_OP_GET_ROWS:
  8612. {
  8613. GGML_ASSERT(false); // TODO: not implemented
  8614. } break;
  8615. case GGML_OP_DIAG_MASK_INF:
  8616. {
  8617. GGML_ASSERT(false); // TODO: not implemented
  8618. } break;
  8619. case GGML_OP_SOFT_MAX:
  8620. {
  8621. GGML_ASSERT(false); // TODO: not implemented
  8622. } break;
  8623. case GGML_OP_ROPE:
  8624. {
  8625. GGML_ASSERT(false); // TODO: not implemented
  8626. } break;
  8627. case GGML_OP_CONV_1D_1S:
  8628. {
  8629. GGML_ASSERT(false); // TODO: not implemented
  8630. } break;
  8631. case GGML_OP_CONV_1D_2S:
  8632. {
  8633. GGML_ASSERT(false); // TODO: not implemented
  8634. } break;
  8635. case GGML_OP_FLASH_ATTN:
  8636. {
  8637. GGML_ASSERT(false); // not supported
  8638. } break;
  8639. case GGML_OP_FLASH_FF:
  8640. {
  8641. GGML_ASSERT(false); // not supported
  8642. } break;
  8643. case GGML_OP_MAP_UNARY:
  8644. case GGML_OP_MAP_BINARY:
  8645. {
  8646. GGML_ASSERT(false); // not supported
  8647. } break;
  8648. case GGML_OP_NONE:
  8649. {
  8650. // nop
  8651. } break;
  8652. case GGML_OP_COUNT:
  8653. {
  8654. GGML_ASSERT(false);
  8655. } break;
  8656. }
  8657. }
  8658. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  8659. if (node->grad == NULL) {
  8660. // this usually happens when we generate intermediate nodes from constants in the backward pass
  8661. // it can also happen during forward pass, if the user performs computations with constants
  8662. if (node->op != GGML_OP_NONE) {
  8663. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  8664. }
  8665. }
  8666. // check if already visited
  8667. for (int i = 0; i < cgraph->n_nodes; i++) {
  8668. if (cgraph->nodes[i] == node) {
  8669. return;
  8670. }
  8671. }
  8672. for (int i = 0; i < cgraph->n_leafs; i++) {
  8673. if (cgraph->leafs[i] == node) {
  8674. return;
  8675. }
  8676. }
  8677. if (node->src0) {
  8678. ggml_visit_parents(cgraph, node->src0);
  8679. }
  8680. if (node->src1) {
  8681. ggml_visit_parents(cgraph, node->src1);
  8682. }
  8683. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  8684. if (node->opt[i]) {
  8685. ggml_visit_parents(cgraph, node->opt[i]);
  8686. }
  8687. }
  8688. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  8689. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  8690. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  8691. cgraph->leafs[cgraph->n_leafs] = node;
  8692. cgraph->n_leafs++;
  8693. } else {
  8694. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  8695. cgraph->nodes[cgraph->n_nodes] = node;
  8696. cgraph->grads[cgraph->n_nodes] = node->grad;
  8697. cgraph->n_nodes++;
  8698. }
  8699. }
  8700. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  8701. if (!expand) {
  8702. cgraph->n_nodes = 0;
  8703. cgraph->n_leafs = 0;
  8704. }
  8705. const int n0 = cgraph->n_nodes;
  8706. UNUSED(n0);
  8707. ggml_visit_parents(cgraph, tensor);
  8708. const int n_new = cgraph->n_nodes - n0;
  8709. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  8710. if (n_new > 0) {
  8711. // the last added node should always be starting point
  8712. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  8713. }
  8714. }
  8715. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  8716. ggml_build_forward_impl(cgraph, tensor, true);
  8717. }
  8718. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  8719. struct ggml_cgraph result = {
  8720. /*.n_nodes =*/ 0,
  8721. /*.n_leafs =*/ 0,
  8722. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  8723. /*.work_size =*/ 0,
  8724. /*.work =*/ NULL,
  8725. /*.nodes =*/ { NULL },
  8726. /*.grads =*/ { NULL },
  8727. /*.leafs =*/ { NULL },
  8728. /*.perf_runs =*/ 0,
  8729. /*.perf_cycles =*/ 0,
  8730. /*.perf_time_us =*/ 0,
  8731. };
  8732. ggml_build_forward_impl(&result, tensor, false);
  8733. return result;
  8734. }
  8735. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  8736. struct ggml_cgraph result = *gf;
  8737. GGML_ASSERT(gf->n_nodes > 0);
  8738. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  8739. if (keep) {
  8740. for (int i = 0; i < gf->n_nodes; i++) {
  8741. struct ggml_tensor * node = gf->nodes[i];
  8742. if (node->grad) {
  8743. node->grad = ggml_dup_tensor(ctx, node);
  8744. gf->grads[i] = node->grad;
  8745. }
  8746. }
  8747. }
  8748. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8749. struct ggml_tensor * node = gf->nodes[i];
  8750. // because we detached the grad nodes from the original graph, we can afford inplace operations
  8751. if (node->grad) {
  8752. ggml_compute_backward(ctx, node, keep);
  8753. }
  8754. }
  8755. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8756. struct ggml_tensor * node = gf->nodes[i];
  8757. if (node->is_param) {
  8758. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  8759. ggml_build_forward_impl(&result, node->grad, true);
  8760. }
  8761. }
  8762. return result;
  8763. }
  8764. //
  8765. // thread data
  8766. //
  8767. // synchronization is done via busy loops
  8768. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  8769. //
  8770. #ifdef __APPLE__
  8771. //#include <os/lock.h>
  8772. //
  8773. //typedef os_unfair_lock ggml_lock_t;
  8774. //
  8775. //#define ggml_lock_init(x) UNUSED(x)
  8776. //#define ggml_lock_destroy(x) UNUSED(x)
  8777. //#define ggml_lock_lock os_unfair_lock_lock
  8778. //#define ggml_lock_unlock os_unfair_lock_unlock
  8779. //
  8780. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  8781. typedef int ggml_lock_t;
  8782. #define ggml_lock_init(x) UNUSED(x)
  8783. #define ggml_lock_destroy(x) UNUSED(x)
  8784. #define ggml_lock_lock(x) UNUSED(x)
  8785. #define ggml_lock_unlock(x) UNUSED(x)
  8786. #define GGML_LOCK_INITIALIZER 0
  8787. typedef pthread_t ggml_thread_t;
  8788. #define ggml_thread_create pthread_create
  8789. #define ggml_thread_join pthread_join
  8790. #else
  8791. //typedef pthread_spinlock_t ggml_lock_t;
  8792. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  8793. //#define ggml_lock_destroy pthread_spin_destroy
  8794. //#define ggml_lock_lock pthread_spin_lock
  8795. //#define ggml_lock_unlock pthread_spin_unlock
  8796. typedef int ggml_lock_t;
  8797. #define ggml_lock_init(x) UNUSED(x)
  8798. #define ggml_lock_destroy(x) UNUSED(x)
  8799. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  8800. #define ggml_lock_lock(x) _mm_pause()
  8801. #else
  8802. #define ggml_lock_lock(x) UNUSED(x)
  8803. #endif
  8804. #define ggml_lock_unlock(x) UNUSED(x)
  8805. #define GGML_LOCK_INITIALIZER 0
  8806. typedef pthread_t ggml_thread_t;
  8807. #define ggml_thread_create pthread_create
  8808. #define ggml_thread_join pthread_join
  8809. #endif
  8810. struct ggml_compute_state_shared {
  8811. ggml_lock_t spin;
  8812. int n_threads;
  8813. // synchronization primitives
  8814. atomic_int n_ready;
  8815. atomic_bool has_work;
  8816. atomic_bool stop; // stop all threads
  8817. };
  8818. struct ggml_compute_state {
  8819. ggml_thread_t thrd;
  8820. struct ggml_compute_params params;
  8821. struct ggml_tensor * node;
  8822. struct ggml_compute_state_shared * shared;
  8823. };
  8824. static thread_ret_t ggml_graph_compute_thread(void * data) {
  8825. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  8826. const int n_threads = state->shared->n_threads;
  8827. while (true) {
  8828. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  8829. atomic_store(&state->shared->has_work, false);
  8830. } else {
  8831. while (atomic_load(&state->shared->has_work)) {
  8832. if (atomic_load(&state->shared->stop)) {
  8833. return 0;
  8834. }
  8835. ggml_lock_lock (&state->shared->spin);
  8836. ggml_lock_unlock(&state->shared->spin);
  8837. }
  8838. }
  8839. atomic_fetch_sub(&state->shared->n_ready, 1);
  8840. // wait for work
  8841. while (!atomic_load(&state->shared->has_work)) {
  8842. if (atomic_load(&state->shared->stop)) {
  8843. return 0;
  8844. }
  8845. ggml_lock_lock (&state->shared->spin);
  8846. ggml_lock_unlock(&state->shared->spin);
  8847. }
  8848. // check if we should stop
  8849. if (atomic_load(&state->shared->stop)) {
  8850. break;
  8851. }
  8852. if (state->node) {
  8853. if (state->params.ith < state->params.nth) {
  8854. ggml_compute_forward(&state->params, state->node);
  8855. }
  8856. state->node = NULL;
  8857. } else {
  8858. break;
  8859. }
  8860. }
  8861. return 0;
  8862. }
  8863. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  8864. const int n_threads = cgraph->n_threads;
  8865. struct ggml_compute_state_shared state_shared = {
  8866. /*.spin =*/ GGML_LOCK_INITIALIZER,
  8867. /*.n_threads =*/ n_threads,
  8868. /*.n_ready =*/ 0,
  8869. /*.has_work =*/ false,
  8870. /*.stop =*/ false,
  8871. };
  8872. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  8873. // create thread pool
  8874. if (n_threads > 1) {
  8875. ggml_lock_init(&state_shared.spin);
  8876. atomic_store(&state_shared.has_work, true);
  8877. for (int j = 0; j < n_threads - 1; j++) {
  8878. workers[j] = (struct ggml_compute_state) {
  8879. .thrd = 0,
  8880. .params = {
  8881. .type = GGML_TASK_COMPUTE,
  8882. .ith = j + 1,
  8883. .nth = n_threads,
  8884. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8885. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8886. },
  8887. .node = NULL,
  8888. .shared = &state_shared,
  8889. };
  8890. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  8891. GGML_ASSERT(rc == 0);
  8892. UNUSED(rc);
  8893. }
  8894. }
  8895. // initialize tasks + work buffer
  8896. {
  8897. size_t work_size = 0;
  8898. // thread scheduling for the different operations
  8899. for (int i = 0; i < cgraph->n_nodes; i++) {
  8900. struct ggml_tensor * node = cgraph->nodes[i];
  8901. switch (node->op) {
  8902. case GGML_OP_CPY:
  8903. case GGML_OP_DUP:
  8904. {
  8905. node->n_tasks = n_threads;
  8906. size_t cur = 0;
  8907. if (ggml_is_quantized(node->type)) {
  8908. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  8909. }
  8910. work_size = MAX(work_size, cur);
  8911. } break;
  8912. case GGML_OP_ADD:
  8913. {
  8914. node->n_tasks = n_threads;
  8915. size_t cur = 0;
  8916. if (ggml_is_quantized(node->src0->type)) {
  8917. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  8918. }
  8919. work_size = MAX(work_size, cur);
  8920. } break;
  8921. case GGML_OP_SUB:
  8922. case GGML_OP_MUL:
  8923. case GGML_OP_DIV:
  8924. case GGML_OP_SQR:
  8925. case GGML_OP_SQRT:
  8926. case GGML_OP_SUM:
  8927. case GGML_OP_MEAN:
  8928. case GGML_OP_REPEAT:
  8929. case GGML_OP_ABS:
  8930. case GGML_OP_SGN:
  8931. case GGML_OP_NEG:
  8932. case GGML_OP_STEP:
  8933. case GGML_OP_RELU:
  8934. {
  8935. node->n_tasks = 1;
  8936. } break;
  8937. case GGML_OP_GELU:
  8938. {
  8939. node->n_tasks = n_threads;
  8940. } break;
  8941. case GGML_OP_SILU:
  8942. {
  8943. node->n_tasks = n_threads;
  8944. } break;
  8945. case GGML_OP_NORM:
  8946. case GGML_OP_RMS_NORM:
  8947. {
  8948. node->n_tasks = n_threads;
  8949. } break;
  8950. case GGML_OP_MUL_MAT:
  8951. {
  8952. node->n_tasks = n_threads;
  8953. // TODO: use different scheduling for different matrix sizes
  8954. //const int nr0 = ggml_nrows(node->src0);
  8955. //const int nr1 = ggml_nrows(node->src1);
  8956. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  8957. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  8958. size_t cur = 0;
  8959. #if defined(GGML_USE_CUBLAS)
  8960. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  8961. node->n_tasks = 1; // TODO: this actually is doing nothing
  8962. // the threads are still spinning
  8963. cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node);
  8964. }
  8965. else
  8966. #endif
  8967. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  8968. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8969. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8970. node->n_tasks = 1; // TODO: this actually is doing nothing
  8971. // the threads are still spinning
  8972. // here we need memory just for single 2D matrix from src0
  8973. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8974. } else {
  8975. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8976. }
  8977. #else
  8978. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8979. #endif
  8980. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  8981. cur = 0;
  8982. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8983. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8984. node->n_tasks = 1;
  8985. }
  8986. #endif
  8987. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  8988. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8989. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8990. node->n_tasks = 1;
  8991. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8992. } else
  8993. #endif
  8994. {
  8995. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  8996. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  8997. }
  8998. } else {
  8999. GGML_ASSERT(false);
  9000. }
  9001. work_size = MAX(work_size, cur);
  9002. } break;
  9003. case GGML_OP_SCALE:
  9004. {
  9005. node->n_tasks = n_threads;
  9006. } break;
  9007. case GGML_OP_CONT:
  9008. case GGML_OP_RESHAPE:
  9009. case GGML_OP_VIEW:
  9010. case GGML_OP_PERMUTE:
  9011. case GGML_OP_TRANSPOSE:
  9012. case GGML_OP_GET_ROWS:
  9013. case GGML_OP_DIAG_MASK_INF:
  9014. {
  9015. node->n_tasks = 1;
  9016. } break;
  9017. case GGML_OP_SOFT_MAX:
  9018. {
  9019. node->n_tasks = n_threads;
  9020. } break;
  9021. case GGML_OP_ROPE:
  9022. {
  9023. node->n_tasks = n_threads;
  9024. } break;
  9025. case GGML_OP_ALIBI:
  9026. {
  9027. node->n_tasks = 1; //TODO
  9028. } break;
  9029. case GGML_OP_CONV_1D_1S:
  9030. case GGML_OP_CONV_1D_2S:
  9031. {
  9032. node->n_tasks = n_threads;
  9033. GGML_ASSERT(node->src0->ne[3] == 1);
  9034. GGML_ASSERT(node->src1->ne[2] == 1);
  9035. GGML_ASSERT(node->src1->ne[3] == 1);
  9036. size_t cur = 0;
  9037. const int nk = node->src0->ne[0];
  9038. if (node->src0->type == GGML_TYPE_F16 &&
  9039. node->src1->type == GGML_TYPE_F32) {
  9040. cur = sizeof(ggml_fp16_t)*(
  9041. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9042. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9043. );
  9044. } else if (node->src0->type == GGML_TYPE_F32 &&
  9045. node->src1->type == GGML_TYPE_F32) {
  9046. cur = sizeof(float)*(
  9047. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9048. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9049. );
  9050. } else {
  9051. GGML_ASSERT(false);
  9052. }
  9053. work_size = MAX(work_size, cur);
  9054. } break;
  9055. case GGML_OP_FLASH_ATTN:
  9056. {
  9057. node->n_tasks = n_threads;
  9058. size_t cur = 0;
  9059. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  9060. if (node->src1->type == GGML_TYPE_F32) {
  9061. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9062. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9063. }
  9064. if (node->src1->type == GGML_TYPE_F16) {
  9065. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9066. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9067. }
  9068. work_size = MAX(work_size, cur);
  9069. } break;
  9070. case GGML_OP_FLASH_FF:
  9071. {
  9072. node->n_tasks = n_threads;
  9073. size_t cur = 0;
  9074. if (node->src1->type == GGML_TYPE_F32) {
  9075. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9076. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9077. }
  9078. if (node->src1->type == GGML_TYPE_F16) {
  9079. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9080. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9081. }
  9082. work_size = MAX(work_size, cur);
  9083. } break;
  9084. case GGML_OP_MAP_UNARY:
  9085. case GGML_OP_MAP_BINARY:
  9086. {
  9087. node->n_tasks = 1;
  9088. } break;
  9089. case GGML_OP_NONE:
  9090. {
  9091. node->n_tasks = 1;
  9092. } break;
  9093. case GGML_OP_COUNT:
  9094. {
  9095. GGML_ASSERT(false);
  9096. } break;
  9097. }
  9098. }
  9099. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  9100. GGML_ASSERT(false); // TODO: better handling
  9101. }
  9102. if (work_size > 0 && cgraph->work == NULL) {
  9103. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  9104. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  9105. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  9106. }
  9107. }
  9108. const int64_t perf_start_cycles = ggml_perf_cycles();
  9109. const int64_t perf_start_time_us = ggml_perf_time_us();
  9110. for (int i = 0; i < cgraph->n_nodes; i++) {
  9111. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  9112. struct ggml_tensor * node = cgraph->nodes[i];
  9113. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  9114. //if (node->grad == NULL && node->perf_runs > 0) {
  9115. // continue;
  9116. //}
  9117. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  9118. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  9119. // INIT
  9120. struct ggml_compute_params params = {
  9121. /*.type =*/ GGML_TASK_INIT,
  9122. /*.ith =*/ 0,
  9123. /*.nth =*/ node->n_tasks,
  9124. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9125. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  9126. };
  9127. ggml_compute_forward(&params, node);
  9128. // COMPUTE
  9129. if (node->n_tasks > 1) {
  9130. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9131. atomic_store(&state_shared.has_work, false);
  9132. }
  9133. while (atomic_load(&state_shared.has_work)) {
  9134. ggml_lock_lock (&state_shared.spin);
  9135. ggml_lock_unlock(&state_shared.spin);
  9136. }
  9137. // launch thread pool
  9138. for (int j = 0; j < n_threads - 1; j++) {
  9139. workers[j].params = (struct ggml_compute_params) {
  9140. .type = GGML_TASK_COMPUTE,
  9141. .ith = j + 1,
  9142. .nth = node->n_tasks,
  9143. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9144. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9145. };
  9146. workers[j].node = node;
  9147. }
  9148. atomic_fetch_sub(&state_shared.n_ready, 1);
  9149. while (atomic_load(&state_shared.n_ready) > 0) {
  9150. ggml_lock_lock (&state_shared.spin);
  9151. ggml_lock_unlock(&state_shared.spin);
  9152. }
  9153. atomic_store(&state_shared.has_work, true);
  9154. }
  9155. params.type = GGML_TASK_COMPUTE;
  9156. ggml_compute_forward(&params, node);
  9157. // wait for thread pool
  9158. if (node->n_tasks > 1) {
  9159. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9160. atomic_store(&state_shared.has_work, false);
  9161. }
  9162. while (atomic_load(&state_shared.has_work)) {
  9163. ggml_lock_lock (&state_shared.spin);
  9164. ggml_lock_unlock(&state_shared.spin);
  9165. }
  9166. atomic_fetch_sub(&state_shared.n_ready, 1);
  9167. while (atomic_load(&state_shared.n_ready) != 0) {
  9168. ggml_lock_lock (&state_shared.spin);
  9169. ggml_lock_unlock(&state_shared.spin);
  9170. }
  9171. }
  9172. // FINALIZE
  9173. if (node->n_tasks > 1) {
  9174. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9175. atomic_store(&state_shared.has_work, false);
  9176. }
  9177. while (atomic_load(&state_shared.has_work)) {
  9178. ggml_lock_lock (&state_shared.spin);
  9179. ggml_lock_unlock(&state_shared.spin);
  9180. }
  9181. // launch thread pool
  9182. for (int j = 0; j < n_threads - 1; j++) {
  9183. workers[j].params = (struct ggml_compute_params) {
  9184. .type = GGML_TASK_FINALIZE,
  9185. .ith = j + 1,
  9186. .nth = node->n_tasks,
  9187. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9188. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9189. };
  9190. workers[j].node = node;
  9191. }
  9192. atomic_fetch_sub(&state_shared.n_ready, 1);
  9193. while (atomic_load(&state_shared.n_ready) > 0) {
  9194. ggml_lock_lock (&state_shared.spin);
  9195. ggml_lock_unlock(&state_shared.spin);
  9196. }
  9197. atomic_store(&state_shared.has_work, true);
  9198. }
  9199. params.type = GGML_TASK_FINALIZE;
  9200. ggml_compute_forward(&params, node);
  9201. // wait for thread pool
  9202. if (node->n_tasks > 1) {
  9203. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9204. atomic_store(&state_shared.has_work, false);
  9205. }
  9206. while (atomic_load(&state_shared.has_work)) {
  9207. ggml_lock_lock (&state_shared.spin);
  9208. ggml_lock_unlock(&state_shared.spin);
  9209. }
  9210. atomic_fetch_sub(&state_shared.n_ready, 1);
  9211. while (atomic_load(&state_shared.n_ready) != 0) {
  9212. ggml_lock_lock (&state_shared.spin);
  9213. ggml_lock_unlock(&state_shared.spin);
  9214. }
  9215. }
  9216. // performance stats (node)
  9217. {
  9218. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  9219. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  9220. node->perf_runs++;
  9221. node->perf_cycles += perf_cycles_cur;
  9222. node->perf_time_us += perf_time_us_cur;
  9223. }
  9224. }
  9225. // join thread pool
  9226. if (n_threads > 1) {
  9227. atomic_store(&state_shared.stop, true);
  9228. atomic_store(&state_shared.has_work, true);
  9229. for (int j = 0; j < n_threads - 1; j++) {
  9230. int rc = ggml_thread_join(workers[j].thrd, NULL);
  9231. GGML_ASSERT(rc == 0);
  9232. UNUSED(rc);
  9233. }
  9234. ggml_lock_destroy(&state_shared.spin);
  9235. }
  9236. // performance stats (graph)
  9237. {
  9238. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  9239. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  9240. cgraph->perf_runs++;
  9241. cgraph->perf_cycles += perf_cycles_cur;
  9242. cgraph->perf_time_us += perf_time_us_cur;
  9243. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  9244. __func__, cgraph->perf_runs,
  9245. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  9246. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  9247. (double) perf_time_us_cur / 1000.0,
  9248. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  9249. }
  9250. }
  9251. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  9252. for (int i = 0; i < cgraph->n_nodes; i++) {
  9253. struct ggml_tensor * grad = cgraph->grads[i];
  9254. if (grad) {
  9255. ggml_set_zero(grad);
  9256. }
  9257. }
  9258. }
  9259. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  9260. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  9261. GGML_PRINT("=== GRAPH ===\n");
  9262. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  9263. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  9264. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  9265. for (int i = 0; i < cgraph->n_nodes; i++) {
  9266. struct ggml_tensor * node = cgraph->nodes[i];
  9267. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  9268. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  9269. i,
  9270. node->ne[0], node->ne[1], node->ne[2],
  9271. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  9272. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  9273. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  9274. (double) node->perf_time_us / 1000.0,
  9275. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  9276. }
  9277. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  9278. for (int i = 0; i < cgraph->n_leafs; i++) {
  9279. struct ggml_tensor * node = cgraph->leafs[i];
  9280. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  9281. i,
  9282. node->ne[0], node->ne[1],
  9283. GGML_OP_LABEL[node->op]);
  9284. }
  9285. for (int i = 0; i < GGML_OP_COUNT; i++) {
  9286. if (perf_total_per_op_us[i] == 0) {
  9287. continue;
  9288. }
  9289. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  9290. }
  9291. GGML_PRINT("========================================\n");
  9292. }
  9293. // check if node is part of the graph
  9294. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9295. if (cgraph == NULL) {
  9296. return true;
  9297. }
  9298. for (int i = 0; i < cgraph->n_nodes; i++) {
  9299. if (cgraph->nodes[i] == node) {
  9300. return true;
  9301. }
  9302. }
  9303. return false;
  9304. }
  9305. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9306. for (int i = 0; i < cgraph->n_nodes; i++) {
  9307. struct ggml_tensor * parent = cgraph->nodes[i];
  9308. if (parent->grad == node) {
  9309. return parent;
  9310. }
  9311. }
  9312. return NULL;
  9313. }
  9314. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  9315. char color[16];
  9316. FILE * fp = fopen(filename, "w");
  9317. GGML_ASSERT(fp);
  9318. fprintf(fp, "digraph G {\n");
  9319. fprintf(fp, " newrank = true;\n");
  9320. fprintf(fp, " rankdir = LR;\n");
  9321. for (int i = 0; i < gb->n_nodes; i++) {
  9322. struct ggml_tensor * node = gb->nodes[i];
  9323. if (ggml_graph_get_parent(gb, node) != NULL) {
  9324. continue;
  9325. }
  9326. if (node->is_param) {
  9327. snprintf(color, sizeof(color), "yellow");
  9328. } else if (node->grad) {
  9329. if (ggml_graph_find(gf, node)) {
  9330. snprintf(color, sizeof(color), "green");
  9331. } else {
  9332. snprintf(color, sizeof(color), "lightblue");
  9333. }
  9334. } else {
  9335. snprintf(color, sizeof(color), "white");
  9336. }
  9337. fprintf(fp, " \"%p\" [ "
  9338. "style = filled; fillcolor = %s; shape = record; "
  9339. "label=\"",
  9340. (void *) node, color);
  9341. if (strlen(node->name) > 0) {
  9342. fprintf(fp, "%s |", node->name);
  9343. }
  9344. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  9345. i, node->ne[0], node->ne[1],
  9346. GGML_OP_SYMBOL[node->op]);
  9347. if (node->grad) {
  9348. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  9349. } else {
  9350. fprintf(fp, "\"; ]\n");
  9351. }
  9352. }
  9353. for (int i = 0; i < gb->n_leafs; i++) {
  9354. struct ggml_tensor * node = gb->leafs[i];
  9355. snprintf(color, sizeof(color), "pink");
  9356. fprintf(fp, " \"%p\" [ "
  9357. "style = filled; fillcolor = %s; shape = record; "
  9358. "label=\"<x>",
  9359. (void *) node, color);
  9360. if (strlen(node->name) > 0) {
  9361. fprintf(fp, "%s | ", node->name);
  9362. }
  9363. if (ggml_nelements(node) == 1) {
  9364. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  9365. fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
  9366. }
  9367. else {
  9368. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
  9369. }
  9370. }
  9371. else {
  9372. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  9373. }
  9374. fprintf(fp, "\"; ]\n");
  9375. }
  9376. for (int i = 0; i < gb->n_nodes; i++) {
  9377. struct ggml_tensor * node = gb->nodes[i];
  9378. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  9379. if (node->src0) {
  9380. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  9381. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  9382. parent0 ? (void *) parent0 : (void *) node->src0,
  9383. parent0 ? "g" : "x",
  9384. parent ? (void *) parent : (void *) node,
  9385. parent ? "g" : "x",
  9386. parent ? "empty" : "vee",
  9387. parent ? "dashed" : "solid");
  9388. }
  9389. if (node->src1) {
  9390. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  9391. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  9392. parent1 ? (void *) parent1 : (void *) node->src1,
  9393. parent1 ? "g" : "x",
  9394. parent ? (void *) parent : (void *) node,
  9395. parent ? "g" : "x",
  9396. parent ? "empty" : "vee",
  9397. parent ? "dashed" : "solid");
  9398. }
  9399. }
  9400. for (int i = 0; i < gb->n_leafs; i++) {
  9401. struct ggml_tensor * node = gb->leafs[i];
  9402. if (node->src0) {
  9403. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  9404. (void *) node->src0, "x",
  9405. (void *) node, "x");
  9406. }
  9407. if (node->src1) {
  9408. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  9409. (void *) node->src1, "x",
  9410. (void *) node, "x");
  9411. }
  9412. }
  9413. fprintf(fp, "}\n");
  9414. fclose(fp);
  9415. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  9416. }
  9417. ////////////////////////////////////////////////////////////////////////////////
  9418. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  9419. int i = 0;
  9420. for (int p = 0; p < np; ++p) {
  9421. const int64_t ne = ggml_nelements(ps[p]) ;
  9422. // TODO: add function to set tensor from array
  9423. for (int64_t j = 0; j < ne; ++j) {
  9424. ggml_set_f32_1d(ps[p], j, x[i++]);
  9425. }
  9426. }
  9427. }
  9428. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  9429. int i = 0;
  9430. for (int p = 0; p < np; ++p) {
  9431. const int64_t ne = ggml_nelements(ps[p]) ;
  9432. // TODO: add function to get all elements at once
  9433. for (int64_t j = 0; j < ne; ++j) {
  9434. x[i++] = ggml_get_f32_1d(ps[p], j);
  9435. }
  9436. }
  9437. }
  9438. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  9439. int i = 0;
  9440. for (int p = 0; p < np; ++p) {
  9441. const int64_t ne = ggml_nelements(ps[p]) ;
  9442. // TODO: add function to get all elements at once
  9443. for (int64_t j = 0; j < ne; ++j) {
  9444. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  9445. }
  9446. }
  9447. }
  9448. //
  9449. // ADAM
  9450. //
  9451. // ref: https://arxiv.org/pdf/1412.6980.pdf
  9452. //
  9453. static enum ggml_opt_result ggml_opt_adam(
  9454. struct ggml_context * ctx,
  9455. struct ggml_opt_params params,
  9456. struct ggml_tensor * f,
  9457. struct ggml_cgraph * gf,
  9458. struct ggml_cgraph * gb) {
  9459. GGML_ASSERT(ggml_is_scalar(f));
  9460. gf->n_threads = params.n_threads;
  9461. gb->n_threads = params.n_threads;
  9462. // these will store the parameters we want to optimize
  9463. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9464. int np = 0;
  9465. int nx = 0;
  9466. for (int i = 0; i < gf->n_nodes; ++i) {
  9467. if (gf->nodes[i]->is_param) {
  9468. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9469. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9470. ps[np++] = gf->nodes[i];
  9471. nx += ggml_nelements(gf->nodes[i]);
  9472. }
  9473. }
  9474. // constants
  9475. const float alpha = params.adam.alpha;
  9476. const float beta1 = params.adam.beta1;
  9477. const float beta2 = params.adam.beta2;
  9478. const float eps = params.adam.eps;
  9479. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  9480. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  9481. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  9482. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  9483. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  9484. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  9485. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  9486. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9487. // initialize
  9488. ggml_vec_set_f32(nx, m, 0.0f);
  9489. ggml_vec_set_f32(nx, v, 0.0f);
  9490. // update view
  9491. ggml_opt_get_params(np, ps, x);
  9492. // compute the function value
  9493. ggml_graph_reset (gf);
  9494. ggml_set_f32 (f->grad, 1.0f);
  9495. ggml_graph_compute(ctx, gb);
  9496. float fx_prev = ggml_get_f32_1d(f, 0);
  9497. if (pf) {
  9498. pf[0] = fx_prev;
  9499. }
  9500. int n_no_improvement = 0;
  9501. float fx_best = fx_prev;
  9502. // run the optimizer
  9503. for (int t = 0; t < params.adam.n_iter; ++t) {
  9504. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  9505. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9506. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  9507. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  9508. for (int i = 0; i < np; ++i) {
  9509. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  9510. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  9511. }
  9512. const int64_t t_start_wall = ggml_time_us();
  9513. const int64_t t_start_cpu = ggml_cycles();
  9514. UNUSED(t_start_wall);
  9515. UNUSED(t_start_cpu);
  9516. {
  9517. // update the gradient
  9518. ggml_opt_get_grad(np, ps, g1);
  9519. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  9520. ggml_vec_scale_f32(nx, m, beta1);
  9521. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  9522. // g2 = g1^2
  9523. ggml_vec_sqr_f32 (nx, g2, g1);
  9524. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  9525. ggml_vec_scale_f32(nx, v, beta2);
  9526. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  9527. // m^hat = m_t / (1 - beta1^t)
  9528. // v^hat = v_t / (1 - beta2^t)
  9529. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  9530. ggml_vec_cpy_f32 (nx, mh, m);
  9531. ggml_vec_cpy_f32 (nx, vh, v);
  9532. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  9533. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  9534. ggml_vec_sqrt_f32 (nx, vh, vh);
  9535. ggml_vec_acc1_f32 (nx, vh, eps);
  9536. ggml_vec_div_f32 (nx, mh, mh, vh);
  9537. ggml_vec_sub_f32 (nx, x, x, mh);
  9538. // update the parameters
  9539. ggml_opt_set_params(np, ps, x);
  9540. }
  9541. ggml_graph_reset (gf);
  9542. ggml_set_f32 (f->grad, 1.0f);
  9543. ggml_graph_compute(ctx, gb);
  9544. const float fx = ggml_get_f32_1d(f, 0);
  9545. // check convergence
  9546. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  9547. GGML_PRINT_DEBUG("converged\n");
  9548. return GGML_OPT_OK;
  9549. }
  9550. // delta-based convergence test
  9551. if (pf != NULL) {
  9552. // need at least params.past iterations to start checking for convergence
  9553. if (params.past <= t) {
  9554. const float rate = (pf[t%params.past] - fx)/fx;
  9555. if (fabsf(rate) < params.delta) {
  9556. return GGML_OPT_OK;
  9557. }
  9558. }
  9559. pf[t%params.past] = fx;
  9560. }
  9561. // check for improvement
  9562. if (params.max_no_improvement > 0) {
  9563. if (fx_best > fx) {
  9564. fx_best = fx;
  9565. n_no_improvement = 0;
  9566. } else {
  9567. ++n_no_improvement;
  9568. if (n_no_improvement >= params.max_no_improvement) {
  9569. return GGML_OPT_OK;
  9570. }
  9571. }
  9572. }
  9573. fx_prev = fx;
  9574. {
  9575. const int64_t t_end_cpu = ggml_cycles();
  9576. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  9577. UNUSED(t_end_cpu);
  9578. const int64_t t_end_wall = ggml_time_us();
  9579. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  9580. UNUSED(t_end_wall);
  9581. }
  9582. }
  9583. return GGML_OPT_DID_NOT_CONVERGE;
  9584. }
  9585. //
  9586. // L-BFGS
  9587. //
  9588. // the L-BFGS implementation below is based on the following implementation:
  9589. //
  9590. // https://github.com/chokkan/liblbfgs
  9591. //
  9592. struct ggml_lbfgs_iteration_data {
  9593. float alpha;
  9594. float ys;
  9595. float * s;
  9596. float * y;
  9597. };
  9598. static enum ggml_opt_result linesearch_backtracking(
  9599. struct ggml_context * ctx,
  9600. const struct ggml_opt_params * params,
  9601. int nx,
  9602. float * x,
  9603. float * fx,
  9604. float * g,
  9605. float * d,
  9606. float * step,
  9607. const float * xp,
  9608. struct ggml_tensor * f,
  9609. struct ggml_cgraph * gf,
  9610. struct ggml_cgraph * gb,
  9611. const int np,
  9612. struct ggml_tensor * ps[]) {
  9613. int count = 0;
  9614. float width = 0.0f;
  9615. float dg = 0.0f;
  9616. float finit = 0.0f;
  9617. float dginit = 0.0f;
  9618. float dgtest = 0.0f;
  9619. const float dec = 0.5f;
  9620. const float inc = 2.1f;
  9621. if (*step <= 0.f) {
  9622. return GGML_LINESEARCH_INVALID_PARAMETERS;
  9623. }
  9624. // compute the initial gradient in the search direction
  9625. ggml_vec_dot_f32(nx, &dginit, g, d);
  9626. // make sure that d points to a descent direction
  9627. if (0 < dginit) {
  9628. return GGML_LINESEARCH_FAIL;
  9629. }
  9630. // initialize local variables
  9631. finit = *fx;
  9632. dgtest = params->lbfgs.ftol*dginit;
  9633. while (true) {
  9634. ggml_vec_cpy_f32(nx, x, xp);
  9635. ggml_vec_mad_f32(nx, x, d, *step);
  9636. // evaluate the function and gradient values
  9637. {
  9638. ggml_opt_set_params(np, ps, x);
  9639. ggml_graph_reset (gf);
  9640. ggml_set_f32 (f->grad, 1.0f);
  9641. ggml_graph_compute(ctx, gb);
  9642. ggml_opt_get_grad(np, ps, g);
  9643. *fx = ggml_get_f32_1d(f, 0);
  9644. }
  9645. ++count;
  9646. if (*fx > finit + (*step)*dgtest) {
  9647. width = dec;
  9648. } else {
  9649. // Armijo condition is satisfied
  9650. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  9651. return count;
  9652. }
  9653. ggml_vec_dot_f32(nx, &dg, g, d);
  9654. // check the Wolfe condition
  9655. if (dg < params->lbfgs.wolfe * dginit) {
  9656. width = inc;
  9657. } else {
  9658. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  9659. // regular Wolfe conditions
  9660. return count;
  9661. }
  9662. if(dg > -params->lbfgs.wolfe*dginit) {
  9663. width = dec;
  9664. } else {
  9665. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  9666. return count;
  9667. }
  9668. return count;
  9669. }
  9670. }
  9671. if (*step < params->lbfgs.min_step) {
  9672. return GGML_LINESEARCH_MINIMUM_STEP;
  9673. }
  9674. if (*step > params->lbfgs.max_step) {
  9675. return GGML_LINESEARCH_MAXIMUM_STEP;
  9676. }
  9677. if (params->lbfgs.max_linesearch <= count) {
  9678. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  9679. }
  9680. (*step) *= width;
  9681. }
  9682. return GGML_LINESEARCH_FAIL;
  9683. }
  9684. static enum ggml_opt_result ggml_opt_lbfgs(
  9685. struct ggml_context * ctx,
  9686. struct ggml_opt_params params,
  9687. struct ggml_tensor * f,
  9688. struct ggml_cgraph * gf,
  9689. struct ggml_cgraph * gb) {
  9690. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  9691. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  9692. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  9693. return GGML_OPT_INVALID_WOLFE;
  9694. }
  9695. }
  9696. gf->n_threads = params.n_threads;
  9697. gb->n_threads = params.n_threads;
  9698. const int m = params.lbfgs.m;
  9699. // these will store the parameters we want to optimize
  9700. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9701. int np = 0;
  9702. int nx = 0;
  9703. for (int i = 0; i < gf->n_nodes; ++i) {
  9704. if (gf->nodes[i]->is_param) {
  9705. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9706. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9707. ps[np++] = gf->nodes[i];
  9708. nx += ggml_nelements(gf->nodes[i]);
  9709. }
  9710. }
  9711. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  9712. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  9713. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  9714. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  9715. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  9716. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9717. float fx = 0.0f; // cost function value
  9718. float xnorm = 0.0f; // ||x||
  9719. float gnorm = 0.0f; // ||g||
  9720. float step = 0.0f;
  9721. // initialize x from the graph nodes
  9722. ggml_opt_get_params(np, ps, x);
  9723. // the L-BFGS memory
  9724. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  9725. for (int i = 0; i < m; ++i) {
  9726. lm[i].alpha = 0.0f;
  9727. lm[i].ys = 0.0f;
  9728. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9729. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9730. }
  9731. // evaluate the function value and its gradient
  9732. {
  9733. ggml_opt_set_params(np, ps, x);
  9734. ggml_graph_reset (gf);
  9735. ggml_set_f32 (f->grad, 1.0f);
  9736. ggml_graph_compute(ctx, gb);
  9737. ggml_opt_get_grad(np, ps, g);
  9738. fx = ggml_get_f32_1d(f, 0);
  9739. }
  9740. if (pf) {
  9741. pf[0] = fx;
  9742. }
  9743. float fx_best = fx;
  9744. // search direction = -gradient
  9745. ggml_vec_neg_f32(nx, d, g);
  9746. // ||x||, ||g||
  9747. ggml_vec_norm_f32(nx, &xnorm, x);
  9748. ggml_vec_norm_f32(nx, &gnorm, g);
  9749. if (xnorm < 1.0f) {
  9750. xnorm = 1.0f;
  9751. }
  9752. // already optimized
  9753. if (gnorm/xnorm <= params.lbfgs.eps) {
  9754. return GGML_OPT_OK;
  9755. }
  9756. // initial step
  9757. ggml_vec_norm_inv_f32(nx, &step, d);
  9758. int j = 0;
  9759. int k = 1;
  9760. int ls = 0;
  9761. int end = 0;
  9762. int bound = 0;
  9763. int n_no_improvement = 0;
  9764. float ys = 0.0f;
  9765. float yy = 0.0f;
  9766. float beta = 0.0f;
  9767. while (true) {
  9768. // store the current position and gradient vectors
  9769. ggml_vec_cpy_f32(nx, xp, x);
  9770. ggml_vec_cpy_f32(nx, gp, g);
  9771. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  9772. if (ls < 0) {
  9773. // linesearch failed - go back to the previous point and return
  9774. ggml_vec_cpy_f32(nx, x, xp);
  9775. ggml_vec_cpy_f32(nx, g, gp);
  9776. return ls;
  9777. }
  9778. ggml_vec_norm_f32(nx, &xnorm, x);
  9779. ggml_vec_norm_f32(nx, &gnorm, g);
  9780. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9781. if (xnorm < 1.0f) {
  9782. xnorm = 1.0f;
  9783. }
  9784. if (gnorm/xnorm <= params.lbfgs.eps) {
  9785. // converged
  9786. return GGML_OPT_OK;
  9787. }
  9788. // delta-based convergence test
  9789. if (pf != NULL) {
  9790. // need at least params.past iterations to start checking for convergence
  9791. if (params.past <= k) {
  9792. const float rate = (pf[k%params.past] - fx)/fx;
  9793. if (fabsf(rate) < params.delta) {
  9794. return GGML_OPT_OK;
  9795. }
  9796. }
  9797. pf[k%params.past] = fx;
  9798. }
  9799. // check for improvement
  9800. if (params.max_no_improvement > 0) {
  9801. if (fx < fx_best) {
  9802. fx_best = fx;
  9803. n_no_improvement = 0;
  9804. } else {
  9805. n_no_improvement++;
  9806. if (n_no_improvement >= params.max_no_improvement) {
  9807. return GGML_OPT_OK;
  9808. }
  9809. }
  9810. }
  9811. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  9812. // reached the maximum number of iterations
  9813. return GGML_OPT_DID_NOT_CONVERGE;
  9814. }
  9815. // update vectors s and y:
  9816. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  9817. // y_{k+1} = g_{k+1} - g_{k}.
  9818. //
  9819. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  9820. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  9821. // compute scalars ys and yy:
  9822. // ys = y^t \cdot s -> 1 / \rho.
  9823. // yy = y^t \cdot y.
  9824. //
  9825. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  9826. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  9827. lm[end].ys = ys;
  9828. // find new search direction
  9829. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  9830. bound = (m <= k) ? m : k;
  9831. k++;
  9832. end = (end + 1)%m;
  9833. // initialize search direction with -g
  9834. ggml_vec_neg_f32(nx, d, g);
  9835. j = end;
  9836. for (int i = 0; i < bound; ++i) {
  9837. j = (j + m - 1) % m;
  9838. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  9839. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  9840. lm[j].alpha /= lm[j].ys;
  9841. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  9842. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  9843. }
  9844. ggml_vec_scale_f32(nx, d, ys/yy);
  9845. for (int i = 0; i < bound; ++i) {
  9846. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  9847. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  9848. beta /= lm[j].ys;
  9849. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  9850. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  9851. j = (j + 1)%m;
  9852. }
  9853. step = 1.0;
  9854. }
  9855. return GGML_OPT_DID_NOT_CONVERGE;
  9856. }
  9857. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  9858. struct ggml_opt_params result;
  9859. switch (type) {
  9860. case GGML_OPT_ADAM:
  9861. {
  9862. result = (struct ggml_opt_params) {
  9863. .type = GGML_OPT_ADAM,
  9864. .n_threads = 1,
  9865. .past = 0,
  9866. .delta = 1e-5f,
  9867. .max_no_improvement = 100,
  9868. .print_forward_graph = true,
  9869. .print_backward_graph = true,
  9870. .adam = {
  9871. .n_iter = 10000,
  9872. .alpha = 0.001f,
  9873. .beta1 = 0.9f,
  9874. .beta2 = 0.999f,
  9875. .eps = 1e-8f,
  9876. .eps_f = 1e-5f,
  9877. .eps_g = 1e-3f,
  9878. },
  9879. };
  9880. } break;
  9881. case GGML_OPT_LBFGS:
  9882. {
  9883. result = (struct ggml_opt_params) {
  9884. .type = GGML_OPT_LBFGS,
  9885. .n_threads = 1,
  9886. .past = 0,
  9887. .delta = 1e-5f,
  9888. .max_no_improvement = 0,
  9889. .print_forward_graph = true,
  9890. .print_backward_graph = true,
  9891. .lbfgs = {
  9892. .m = 6,
  9893. .n_iter = 100,
  9894. .max_linesearch = 20,
  9895. .eps = 1e-5f,
  9896. .ftol = 1e-4f,
  9897. .wolfe = 0.9f,
  9898. .min_step = 1e-20f,
  9899. .max_step = 1e+20f,
  9900. .linesearch = GGML_LINESEARCH_DEFAULT,
  9901. },
  9902. };
  9903. } break;
  9904. }
  9905. return result;
  9906. }
  9907. enum ggml_opt_result ggml_opt(
  9908. struct ggml_context * ctx,
  9909. struct ggml_opt_params params,
  9910. struct ggml_tensor * f) {
  9911. bool free_ctx = false;
  9912. if (ctx == NULL) {
  9913. struct ggml_init_params params_ctx = {
  9914. .mem_size = 16*1024*1024,
  9915. .mem_buffer = NULL,
  9916. .no_alloc = false,
  9917. };
  9918. ctx = ggml_init(params_ctx);
  9919. if (ctx == NULL) {
  9920. return GGML_OPT_NO_CONTEXT;
  9921. }
  9922. free_ctx = true;
  9923. }
  9924. enum ggml_opt_result result = GGML_OPT_OK;
  9925. // build forward + backward compute graphs
  9926. struct ggml_cgraph gf = ggml_build_forward (f);
  9927. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  9928. switch (params.type) {
  9929. case GGML_OPT_ADAM:
  9930. {
  9931. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  9932. } break;
  9933. case GGML_OPT_LBFGS:
  9934. {
  9935. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  9936. } break;
  9937. }
  9938. if (params.print_forward_graph) {
  9939. ggml_graph_print (&gf);
  9940. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  9941. }
  9942. if (params.print_backward_graph) {
  9943. ggml_graph_print (&gb);
  9944. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  9945. }
  9946. if (free_ctx) {
  9947. ggml_free(ctx);
  9948. }
  9949. return result;
  9950. }
  9951. ////////////////////////////////////////////////////////////////////////////////
  9952. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  9953. assert(k % QK4_0 == 0);
  9954. const int nb = k / QK4_0;
  9955. for (int b = 0; b < n; b += k) {
  9956. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  9957. quantize_row_q4_0_reference(src + b, y, k);
  9958. for (int i = 0; i < nb; i++) {
  9959. for (int j = 0; j < QK4_0; j += 2) {
  9960. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  9961. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  9962. hist[vi0]++;
  9963. hist[vi1]++;
  9964. }
  9965. }
  9966. }
  9967. return (n/QK4_0*sizeof(block_q4_0));
  9968. }
  9969. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  9970. assert(k % QK4_1 == 0);
  9971. const int nb = k / QK4_1;
  9972. for (int b = 0; b < n; b += k) {
  9973. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  9974. quantize_row_q4_1_reference(src + b, y, k);
  9975. for (int i = 0; i < nb; i++) {
  9976. for (int j = 0; j < QK4_1; j += 2) {
  9977. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  9978. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  9979. hist[vi0]++;
  9980. hist[vi1]++;
  9981. }
  9982. }
  9983. }
  9984. return (n/QK4_1*sizeof(block_q4_1));
  9985. }
  9986. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  9987. assert(k % QK5_0 == 0);
  9988. const int nb = k / QK5_0;
  9989. for (int b = 0; b < n; b += k) {
  9990. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  9991. quantize_row_q5_0_reference(src + b, y, k);
  9992. for (int i = 0; i < nb; i++) {
  9993. uint32_t qh;
  9994. memcpy(&qh, &y[i].qh, sizeof(qh));
  9995. for (int j = 0; j < QK5_0; j += 2) {
  9996. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  9997. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  9998. // cast to 16 bins
  9999. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  10000. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  10001. hist[vi0]++;
  10002. hist[vi1]++;
  10003. }
  10004. }
  10005. }
  10006. return (n/QK5_0*sizeof(block_q5_0));
  10007. }
  10008. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10009. assert(k % QK5_1 == 0);
  10010. const int nb = k / QK5_1;
  10011. for (int b = 0; b < n; b += k) {
  10012. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  10013. quantize_row_q5_1_reference(src + b, y, k);
  10014. for (int i = 0; i < nb; i++) {
  10015. uint32_t qh;
  10016. memcpy(&qh, &y[i].qh, sizeof(qh));
  10017. for (int j = 0; j < QK5_1; j += 2) {
  10018. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  10019. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  10020. // cast to 16 bins
  10021. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  10022. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  10023. hist[vi0]++;
  10024. hist[vi1]++;
  10025. }
  10026. }
  10027. }
  10028. return (n/QK5_1*sizeof(block_q5_1));
  10029. }
  10030. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10031. assert(k % QK8_0 == 0);
  10032. const int nb = k / QK8_0;
  10033. for (int b = 0; b < n; b += k) {
  10034. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  10035. quantize_row_q8_0_reference(src + b, y, k);
  10036. for (int i = 0; i < nb; i++) {
  10037. for (int j = 0; j < QK8_0; ++j) {
  10038. const int8_t vi = y[i].qs[j];
  10039. hist[vi/16 + 8]++;
  10040. }
  10041. }
  10042. }
  10043. return (n/QK8_0*sizeof(block_q8_0));
  10044. }
  10045. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  10046. size_t result = 0;
  10047. switch (type) {
  10048. case GGML_TYPE_Q4_0:
  10049. {
  10050. GGML_ASSERT(start % QK4_0 == 0);
  10051. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  10052. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  10053. } break;
  10054. case GGML_TYPE_Q4_1:
  10055. {
  10056. GGML_ASSERT(start % QK4_1 == 0);
  10057. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  10058. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  10059. } break;
  10060. case GGML_TYPE_Q5_0:
  10061. {
  10062. GGML_ASSERT(start % QK5_0 == 0);
  10063. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  10064. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  10065. } break;
  10066. case GGML_TYPE_Q5_1:
  10067. {
  10068. GGML_ASSERT(start % QK5_1 == 0);
  10069. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  10070. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  10071. } break;
  10072. case GGML_TYPE_Q8_0:
  10073. {
  10074. GGML_ASSERT(start % QK8_0 == 0);
  10075. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  10076. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  10077. } break;
  10078. default:
  10079. assert(false);
  10080. }
  10081. return result;
  10082. }
  10083. ////////////////////////////////////////////////////////////////////////////////
  10084. int ggml_cpu_has_avx(void) {
  10085. #if defined(__AVX__)
  10086. return 1;
  10087. #else
  10088. return 0;
  10089. #endif
  10090. }
  10091. int ggml_cpu_has_avx2(void) {
  10092. #if defined(__AVX2__)
  10093. return 1;
  10094. #else
  10095. return 0;
  10096. #endif
  10097. }
  10098. int ggml_cpu_has_avx512(void) {
  10099. #if defined(__AVX512F__)
  10100. return 1;
  10101. #else
  10102. return 0;
  10103. #endif
  10104. }
  10105. int ggml_cpu_has_avx512_vbmi(void) {
  10106. #if defined(__AVX512VBMI__)
  10107. return 1;
  10108. #else
  10109. return 0;
  10110. #endif
  10111. }
  10112. int ggml_cpu_has_avx512_vnni(void) {
  10113. #if defined(__AVX512VNNI__)
  10114. return 1;
  10115. #else
  10116. return 0;
  10117. #endif
  10118. }
  10119. int ggml_cpu_has_fma(void) {
  10120. #if defined(__FMA__)
  10121. return 1;
  10122. #else
  10123. return 0;
  10124. #endif
  10125. }
  10126. int ggml_cpu_has_neon(void) {
  10127. #if defined(__ARM_NEON)
  10128. return 1;
  10129. #else
  10130. return 0;
  10131. #endif
  10132. }
  10133. int ggml_cpu_has_arm_fma(void) {
  10134. #if defined(__ARM_FEATURE_FMA)
  10135. return 1;
  10136. #else
  10137. return 0;
  10138. #endif
  10139. }
  10140. int ggml_cpu_has_f16c(void) {
  10141. #if defined(__F16C__)
  10142. return 1;
  10143. #else
  10144. return 0;
  10145. #endif
  10146. }
  10147. int ggml_cpu_has_fp16_va(void) {
  10148. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  10149. return 1;
  10150. #else
  10151. return 0;
  10152. #endif
  10153. }
  10154. int ggml_cpu_has_wasm_simd(void) {
  10155. #if defined(__wasm_simd128__)
  10156. return 1;
  10157. #else
  10158. return 0;
  10159. #endif
  10160. }
  10161. int ggml_cpu_has_blas(void) {
  10162. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  10163. return 1;
  10164. #else
  10165. return 0;
  10166. #endif
  10167. }
  10168. int ggml_cpu_has_cublas(void) {
  10169. #if defined(GGML_USE_CUBLAS)
  10170. return 1;
  10171. #else
  10172. return 0;
  10173. #endif
  10174. }
  10175. int ggml_cpu_has_clblast(void) {
  10176. #if defined(GGML_USE_CLBLAST)
  10177. return 1;
  10178. #else
  10179. return 0;
  10180. #endif
  10181. }
  10182. int ggml_cpu_has_gpublas(void) {
  10183. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  10184. }
  10185. int ggml_cpu_has_sse3(void) {
  10186. #if defined(__SSE3__)
  10187. return 1;
  10188. #else
  10189. return 0;
  10190. #endif
  10191. }
  10192. int ggml_cpu_has_vsx(void) {
  10193. #if defined(__POWER9_VECTOR__)
  10194. return 1;
  10195. #else
  10196. return 0;
  10197. #endif
  10198. }
  10199. ////////////////////////////////////////////////////////////////////////////////