clip.cpp 182 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322
  1. // NOTE: This is modified from clip.cpp only for LLaVA,
  2. // so there might be still unnecessary artifacts hanging around
  3. // I'll gradually clean and extend it
  4. // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
  5. #include "clip.h"
  6. #include "clip-impl.h"
  7. #include "ggml.h"
  8. #include "ggml-cpp.h"
  9. #include "ggml-cpu.h"
  10. #include "ggml-alloc.h"
  11. #include "ggml-backend.h"
  12. #include "gguf.h"
  13. #include <cassert>
  14. #include <cmath>
  15. #include <cstdlib>
  16. #include <cstring>
  17. #include <fstream>
  18. #include <map>
  19. #include <regex>
  20. #include <stdexcept>
  21. #include <unordered_set>
  22. #include <vector>
  23. #include <sstream>
  24. #include <cinttypes>
  25. #include <limits>
  26. #include <array>
  27. #include <numeric>
  28. #include <functional>
  29. struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL};
  30. enum ffn_op_type {
  31. FFN_GELU,
  32. FFN_GELU_ERF,
  33. FFN_SILU,
  34. FFN_GELU_QUICK,
  35. };
  36. enum norm_type {
  37. NORM_TYPE_NORMAL,
  38. NORM_TYPE_RMS,
  39. };
  40. //#define CLIP_DEBUG_FUNCTIONS
  41. #ifdef CLIP_DEBUG_FUNCTIONS
  42. static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
  43. std::ofstream file(filename, std::ios::binary);
  44. if (!file.is_open()) {
  45. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  46. return;
  47. }
  48. // PPM header: P6 format, width, height, and max color value
  49. file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
  50. // Write pixel data
  51. for (size_t i = 0; i < img.buf.size(); i += 3) {
  52. // PPM expects binary data in RGB format, which matches our image buffer
  53. file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
  54. }
  55. file.close();
  56. }
  57. static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
  58. std::ofstream file(filename, std::ios::binary);
  59. if (!file.is_open()) {
  60. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  61. return;
  62. }
  63. int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
  64. int bytesPerPixel = 3;
  65. int widthInBytes = img.nx * bytesPerPixel;
  66. int paddingAmount = (4 - (widthInBytes % 4)) % 4;
  67. int stride = widthInBytes + paddingAmount;
  68. // Bitmap file header
  69. unsigned char fileHeader[14] = {
  70. 'B','M', // Signature
  71. 0,0,0,0, // Image file size in bytes
  72. 0,0,0,0, // Reserved
  73. 54,0,0,0 // Start of pixel array
  74. };
  75. // Total file size
  76. fileSize = 54 + (stride * img.ny);
  77. fileHeader[2] = (unsigned char)(fileSize);
  78. fileHeader[3] = (unsigned char)(fileSize >> 8);
  79. fileHeader[4] = (unsigned char)(fileSize >> 16);
  80. fileHeader[5] = (unsigned char)(fileSize >> 24);
  81. // Bitmap information header (BITMAPINFOHEADER)
  82. unsigned char infoHeader[40] = {
  83. 40,0,0,0, // Size of this header (40 bytes)
  84. 0,0,0,0, // Image width
  85. 0,0,0,0, // Image height
  86. 1,0, // Number of color planes
  87. 24,0, // Bits per pixel
  88. 0,0,0,0, // No compression
  89. 0,0,0,0, // Image size (can be 0 for no compression)
  90. 0,0,0,0, // X pixels per meter (not specified)
  91. 0,0,0,0, // Y pixels per meter (not specified)
  92. 0,0,0,0, // Total colors (color table not used)
  93. 0,0,0,0 // Important colors (all are important)
  94. };
  95. // Width and height in the information header
  96. infoHeader[4] = (unsigned char)(img.nx);
  97. infoHeader[5] = (unsigned char)(img.nx >> 8);
  98. infoHeader[6] = (unsigned char)(img.nx >> 16);
  99. infoHeader[7] = (unsigned char)(img.nx >> 24);
  100. infoHeader[8] = (unsigned char)(img.ny);
  101. infoHeader[9] = (unsigned char)(img.ny >> 8);
  102. infoHeader[10] = (unsigned char)(img.ny >> 16);
  103. infoHeader[11] = (unsigned char)(img.ny >> 24);
  104. // Write file headers
  105. file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
  106. file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
  107. // Pixel data
  108. std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
  109. for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
  110. for (int x = 0; x < img.nx; ++x) {
  111. // Each pixel
  112. size_t pixelIndex = (y * img.nx + x) * 3;
  113. unsigned char pixel[3] = {
  114. img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
  115. img.buf[pixelIndex + 1],
  116. img.buf[pixelIndex]
  117. };
  118. file.write(reinterpret_cast<char*>(pixel), 3);
  119. }
  120. // Write padding for the row
  121. file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
  122. }
  123. file.close();
  124. }
  125. // debug function to convert f32 to u8
  126. static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
  127. dst.nx = src.nx;
  128. dst.ny = src.ny;
  129. dst.buf.resize(3 * src.nx * src.ny);
  130. for (size_t i = 0; i < src.buf.size(); ++i) {
  131. dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
  132. }
  133. }
  134. #endif
  135. //
  136. // clip layers
  137. //
  138. enum patch_merge_type {
  139. PATCH_MERGE_FLAT,
  140. PATCH_MERGE_SPATIAL_UNPAD,
  141. };
  142. struct clip_hparams {
  143. int32_t image_size;
  144. int32_t patch_size;
  145. int32_t n_embd;
  146. int32_t n_ff;
  147. int32_t projection_dim;
  148. int32_t n_head;
  149. int32_t n_layer;
  150. int32_t proj_scale_factor = 0; // idefics3
  151. float image_mean[3];
  152. float image_std[3];
  153. // for models using dynamic image size, we need to have a smaller image size to warmup
  154. // otherwise, user will get OOM everytime they load the model
  155. int32_t warmup_image_size = 0;
  156. int32_t warmup_audio_size = 3000;
  157. ffn_op_type ffn_op = FFN_GELU;
  158. patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
  159. float eps = 1e-6;
  160. float rope_theta = 0.0;
  161. std::vector<clip_image_size> image_res_candidates; // for llava-uhd style models
  162. int32_t image_crop_resolution;
  163. std::unordered_set<int32_t> vision_feature_layer;
  164. int32_t attn_window_size = 0;
  165. int32_t n_wa_pattern = 0;
  166. int32_t spatial_merge_size = 0;
  167. // audio
  168. int32_t n_mel_bins = 0; // whisper preprocessor
  169. int32_t proj_stack_factor = 0; // ultravox
  170. // legacy
  171. bool has_llava_projector = false;
  172. int minicpmv_version = 0;
  173. int32_t minicpmv_query_num = 0; // MiniCPM-V query number
  174. };
  175. struct clip_layer {
  176. // attention
  177. ggml_tensor * k_w = nullptr;
  178. ggml_tensor * k_b = nullptr;
  179. ggml_tensor * q_w = nullptr;
  180. ggml_tensor * q_b = nullptr;
  181. ggml_tensor * v_w = nullptr;
  182. ggml_tensor * v_b = nullptr;
  183. ggml_tensor * o_w = nullptr;
  184. ggml_tensor * o_b = nullptr;
  185. ggml_tensor * k_norm = nullptr;
  186. ggml_tensor * q_norm = nullptr;
  187. // layernorm 1
  188. ggml_tensor * ln_1_w = nullptr;
  189. ggml_tensor * ln_1_b = nullptr;
  190. ggml_tensor * ff_up_w = nullptr;
  191. ggml_tensor * ff_up_b = nullptr;
  192. ggml_tensor * ff_gate_w = nullptr;
  193. ggml_tensor * ff_gate_b = nullptr;
  194. ggml_tensor * ff_down_w = nullptr;
  195. ggml_tensor * ff_down_b = nullptr;
  196. // layernorm 2
  197. ggml_tensor * ln_2_w = nullptr;
  198. ggml_tensor * ln_2_b = nullptr;
  199. // layer scale (no bias)
  200. ggml_tensor * ls_1_w = nullptr;
  201. ggml_tensor * ls_2_w = nullptr;
  202. };
  203. struct clip_model {
  204. clip_modality modality = CLIP_MODALITY_VISION;
  205. projector_type proj_type = PROJECTOR_TYPE_MLP;
  206. clip_hparams hparams;
  207. // embeddings
  208. ggml_tensor * class_embedding = nullptr;
  209. ggml_tensor * patch_embeddings_0 = nullptr;
  210. ggml_tensor * patch_embeddings_1 = nullptr; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
  211. ggml_tensor * patch_bias = nullptr;
  212. ggml_tensor * position_embeddings = nullptr;
  213. ggml_tensor * pre_ln_w = nullptr;
  214. ggml_tensor * pre_ln_b = nullptr;
  215. std::vector<clip_layer> layers;
  216. ggml_tensor * post_ln_w;
  217. ggml_tensor * post_ln_b;
  218. ggml_tensor * projection; // TODO: rename it to fc (fully connected layer)
  219. ggml_tensor * mm_fc_w;
  220. ggml_tensor * mm_fc_b;
  221. // LLaVA projection
  222. ggml_tensor * mm_input_norm_w = nullptr;
  223. ggml_tensor * mm_input_norm_b = nullptr;
  224. ggml_tensor * mm_0_w = nullptr;
  225. ggml_tensor * mm_0_b = nullptr;
  226. ggml_tensor * mm_2_w = nullptr;
  227. ggml_tensor * mm_2_b = nullptr;
  228. ggml_tensor * image_newline = nullptr;
  229. // Yi type models with mlp+normalization projection
  230. ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
  231. ggml_tensor * mm_1_b = nullptr;
  232. ggml_tensor * mm_3_w = nullptr;
  233. ggml_tensor * mm_3_b = nullptr;
  234. ggml_tensor * mm_4_w = nullptr;
  235. ggml_tensor * mm_4_b = nullptr;
  236. // GLMV-Edge projection
  237. ggml_tensor * mm_model_adapter_conv_w = nullptr;
  238. ggml_tensor * mm_model_adapter_conv_b = nullptr;
  239. ggml_tensor * mm_glm_tok_boi = nullptr;
  240. ggml_tensor * mm_glm_tok_eoi = nullptr;
  241. // MobileVLM projection
  242. ggml_tensor * mm_model_mlp_1_w = nullptr;
  243. ggml_tensor * mm_model_mlp_1_b = nullptr;
  244. ggml_tensor * mm_model_mlp_3_w = nullptr;
  245. ggml_tensor * mm_model_mlp_3_b = nullptr;
  246. ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
  247. ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
  248. ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
  249. ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
  250. ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
  251. ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
  252. ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
  253. ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
  254. ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
  255. ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
  256. ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
  257. ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
  258. ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
  259. ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
  260. ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
  261. ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
  262. ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
  263. ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
  264. ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
  265. ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
  266. // MobileVLM_V2 projection
  267. ggml_tensor * mm_model_mlp_0_w = nullptr;
  268. ggml_tensor * mm_model_mlp_0_b = nullptr;
  269. ggml_tensor * mm_model_mlp_2_w = nullptr;
  270. ggml_tensor * mm_model_mlp_2_b = nullptr;
  271. ggml_tensor * mm_model_peg_0_w = nullptr;
  272. ggml_tensor * mm_model_peg_0_b = nullptr;
  273. // MINICPMV projection
  274. ggml_tensor * mm_model_pos_embed_k = nullptr;
  275. ggml_tensor * mm_model_query = nullptr;
  276. ggml_tensor * mm_model_proj = nullptr;
  277. ggml_tensor * mm_model_kv_proj = nullptr;
  278. ggml_tensor * mm_model_attn_q_w = nullptr;
  279. ggml_tensor * mm_model_attn_q_b = nullptr;
  280. ggml_tensor * mm_model_attn_k_w = nullptr;
  281. ggml_tensor * mm_model_attn_k_b = nullptr;
  282. ggml_tensor * mm_model_attn_v_w = nullptr;
  283. ggml_tensor * mm_model_attn_v_b = nullptr;
  284. ggml_tensor * mm_model_attn_o_w = nullptr;
  285. ggml_tensor * mm_model_attn_o_b = nullptr;
  286. ggml_tensor * mm_model_ln_q_w = nullptr;
  287. ggml_tensor * mm_model_ln_q_b = nullptr;
  288. ggml_tensor * mm_model_ln_kv_w = nullptr;
  289. ggml_tensor * mm_model_ln_kv_b = nullptr;
  290. ggml_tensor * mm_model_ln_post_w = nullptr;
  291. ggml_tensor * mm_model_ln_post_b = nullptr;
  292. // gemma3
  293. ggml_tensor * mm_input_proj_w = nullptr;
  294. ggml_tensor * mm_soft_emb_norm_w = nullptr;
  295. // pixtral
  296. ggml_tensor * token_embd_img_break = nullptr;
  297. ggml_tensor * mm_patch_merger_w = nullptr;
  298. // ultravox / whisper encoder
  299. ggml_tensor * conv1d_1_w = nullptr;
  300. ggml_tensor * conv1d_1_b = nullptr;
  301. ggml_tensor * conv1d_2_w = nullptr;
  302. ggml_tensor * conv1d_2_b = nullptr;
  303. ggml_tensor * mm_norm_pre_w = nullptr;
  304. ggml_tensor * mm_norm_mid_w = nullptr;
  305. bool audio_has_avgpool() const {
  306. return proj_type == PROJECTOR_TYPE_QWEN2A
  307. || proj_type == PROJECTOR_TYPE_VOXTRAL;
  308. }
  309. bool audio_has_stack_frames() const {
  310. return proj_type == PROJECTOR_TYPE_ULTRAVOX
  311. || proj_type == PROJECTOR_TYPE_VOXTRAL;
  312. }
  313. };
  314. struct clip_ctx {
  315. clip_model model;
  316. gguf_context_ptr ctx_gguf;
  317. ggml_context_ptr ctx_data;
  318. std::vector<uint8_t> buf_compute_meta;
  319. std::vector<ggml_backend_t> backend_ptrs;
  320. std::vector<ggml_backend_buffer_type_t> backend_buft;
  321. ggml_backend_t backend = nullptr;
  322. ggml_backend_t backend_cpu = nullptr;
  323. ggml_backend_buffer_ptr buf;
  324. int max_nodes = 8192;
  325. ggml_backend_sched_ptr sched;
  326. // for debugging
  327. bool debug_graph = false;
  328. std::vector<ggml_tensor *> debug_print_tensors;
  329. clip_ctx(clip_context_params & ctx_params) {
  330. debug_graph = std::getenv("MTMD_DEBUG_GRAPH") != nullptr;
  331. backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
  332. if (!backend_cpu) {
  333. throw std::runtime_error("failed to initialize CPU backend");
  334. }
  335. if (ctx_params.use_gpu) {
  336. auto backend_name = std::getenv("MTMD_BACKEND_DEVICE");
  337. if (backend_name != nullptr) {
  338. backend = ggml_backend_init_by_name(backend_name, nullptr);
  339. if (!backend) {
  340. LOG_WRN("%s: Warning: Failed to initialize \"%s\" backend, falling back to default GPU backend\n", __func__, backend_name);
  341. }
  342. }
  343. if (!backend) {
  344. backend = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr);
  345. }
  346. }
  347. if (backend) {
  348. LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
  349. backend_ptrs.push_back(backend);
  350. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  351. } else {
  352. backend = backend_cpu;
  353. LOG_INF("%s: CLIP using CPU backend\n", __func__);
  354. }
  355. backend_ptrs.push_back(backend_cpu);
  356. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));
  357. sched.reset(
  358. ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false, true)
  359. );
  360. }
  361. ~clip_ctx() {
  362. ggml_backend_free(backend);
  363. if (backend != backend_cpu) {
  364. ggml_backend_free(backend_cpu);
  365. }
  366. }
  367. // this function is added so that we don't change too much of the existing code
  368. projector_type proj_type() const {
  369. return model.proj_type;
  370. }
  371. };
  372. struct clip_graph {
  373. clip_ctx * ctx;
  374. const clip_model & model;
  375. const clip_hparams & hparams;
  376. // we only support single image per batch
  377. const clip_image_f32 & img;
  378. const int patch_size;
  379. const int n_patches_x;
  380. const int n_patches_y;
  381. const int n_patches;
  382. const int n_embd;
  383. const int n_head;
  384. const int d_head;
  385. const int n_layer;
  386. const float eps;
  387. const float kq_scale;
  388. ggml_context_ptr ctx0_ptr;
  389. ggml_context * ctx0;
  390. ggml_cgraph * gf;
  391. clip_graph(clip_ctx * ctx, const clip_image_f32 & img) :
  392. ctx(ctx),
  393. model(ctx->model),
  394. hparams(model.hparams),
  395. img(img),
  396. patch_size(hparams.patch_size),
  397. n_patches_x(img.nx / patch_size),
  398. n_patches_y(img.ny / patch_size),
  399. n_patches(n_patches_x * n_patches_y),
  400. n_embd(hparams.n_embd),
  401. n_head(hparams.n_head),
  402. d_head(n_embd / n_head),
  403. n_layer(hparams.n_layer),
  404. eps(hparams.eps),
  405. kq_scale(1.0f / sqrtf((float)d_head)) {
  406. struct ggml_init_params params = {
  407. /*.mem_size =*/ ctx->buf_compute_meta.size(),
  408. /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
  409. /*.no_alloc =*/ true,
  410. };
  411. ctx0_ptr.reset(ggml_init(params));
  412. ctx0 = ctx0_ptr.get();
  413. gf = ggml_new_graph_custom(ctx0, ctx->max_nodes, false);
  414. }
  415. ggml_cgraph * build_siglip() {
  416. ggml_tensor * inp = build_inp();
  417. ggml_tensor * learned_pos_embd = model.position_embeddings;
  418. if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
  419. learned_pos_embd = resize_position_embeddings();
  420. }
  421. ggml_tensor * cur = build_vit(
  422. inp, n_patches,
  423. NORM_TYPE_NORMAL,
  424. hparams.ffn_op,
  425. learned_pos_embd,
  426. nullptr);
  427. if (ctx->proj_type() == PROJECTOR_TYPE_GEMMA3) {
  428. const int batch_size = 1;
  429. GGML_ASSERT(n_patches_x == n_patches_y);
  430. const int patches_per_image = n_patches_x;
  431. const int kernel_size = hparams.proj_scale_factor;
  432. cur = ggml_transpose(ctx0, cur);
  433. cur = ggml_cont_4d(ctx0, cur, patches_per_image, patches_per_image, n_embd, batch_size);
  434. // doing a pool2d to reduce the number of output tokens
  435. cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
  436. cur = ggml_reshape_3d(ctx0, cur, cur->ne[0] * cur->ne[0], n_embd, batch_size);
  437. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  438. // apply norm before projection
  439. cur = ggml_rms_norm(ctx0, cur, eps);
  440. cur = ggml_mul(ctx0, cur, model.mm_soft_emb_norm_w);
  441. // apply projection
  442. cur = ggml_mul_mat(ctx0,
  443. ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
  444. cur);
  445. } else if (ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3) {
  446. // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578
  447. const int scale_factor = model.hparams.proj_scale_factor;
  448. const int n_embd = cur->ne[0];
  449. const int seq = cur->ne[1];
  450. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  451. const int height = std::sqrt(seq);
  452. const int width = std::sqrt(seq);
  453. GGML_ASSERT(scale_factor != 0);
  454. cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height, bsz);
  455. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  456. cur = ggml_cont_4d(ctx0, cur,
  457. n_embd * scale_factor * scale_factor,
  458. height / scale_factor,
  459. width / scale_factor,
  460. bsz);
  461. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  462. cur = ggml_cont_3d(ctx0, cur,
  463. n_embd * scale_factor * scale_factor,
  464. seq / (scale_factor * scale_factor),
  465. bsz);
  466. cur = ggml_mul_mat(ctx0, model.projection, cur);
  467. } else if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
  468. // pixel unshuffle block
  469. const int scale_factor = model.hparams.proj_scale_factor;
  470. GGML_ASSERT(scale_factor > 1);
  471. const int n_embd = cur->ne[0];
  472. int width = img.nx / patch_size;
  473. int height = img.ny / patch_size;
  474. // pad width and height to factor
  475. const int64_t pad_width = CLIP_ALIGN(width, scale_factor) - width;
  476. const int64_t pad_height = CLIP_ALIGN(height, scale_factor) - height;
  477. cur = ggml_reshape_3d(ctx0, cur, n_embd, width, height);
  478. if (pad_width || pad_height) {
  479. cur = ggml_pad(ctx0, cur, 0, pad_width, pad_height, 0);
  480. width += pad_width;
  481. height += pad_height;
  482. }
  483. // unshuffle h
  484. cur = ggml_reshape_3d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height);
  485. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  486. // unshuffle w
  487. cur = ggml_cont_3d(ctx0, cur, n_embd * scale_factor * scale_factor, height / scale_factor, width / scale_factor);
  488. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  489. cur = ggml_cont_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
  490. // projection
  491. cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
  492. cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
  493. cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
  494. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  495. cur = ggml_add(ctx0, cur, model.mm_1_b);
  496. cur = ggml_gelu(ctx0, cur);
  497. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  498. cur = ggml_add(ctx0, cur, model.mm_2_b);
  499. } else {
  500. GGML_ABORT("SigLIP: Unsupported projector type");
  501. }
  502. // build the graph
  503. ggml_build_forward_expand(gf, cur);
  504. return gf;
  505. }
  506. ggml_cgraph * build_pixtral() {
  507. const int n_merge = hparams.spatial_merge_size;
  508. // 2D input positions
  509. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  510. ggml_set_name(pos_h, "pos_h");
  511. ggml_set_input(pos_h);
  512. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  513. ggml_set_name(pos_w, "pos_w");
  514. ggml_set_input(pos_w);
  515. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  516. return build_rope_2d(ctx0, cur, pos_h, pos_w, hparams.rope_theta, true);
  517. };
  518. ggml_tensor * inp = build_inp();
  519. ggml_tensor * cur = build_vit(
  520. inp, n_patches,
  521. NORM_TYPE_RMS,
  522. hparams.ffn_op,
  523. nullptr, // no learned pos embd
  524. add_pos);
  525. // mistral small 3.1 patch merger
  526. // ref: https://github.com/huggingface/transformers/blob/7a3e208892c06a5e278144eaf38c8599a42f53e7/src/transformers/models/mistral3/modeling_mistral3.py#L67
  527. if (model.mm_patch_merger_w) {
  528. GGML_ASSERT(hparams.spatial_merge_size > 0);
  529. cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.mm_input_norm_w);
  530. // reshape image tokens to 2D grid
  531. cur = ggml_reshape_3d(ctx0, cur, n_embd, n_patches_x, n_patches_y);
  532. cur = ggml_permute(ctx0, cur, 2, 0, 1, 3); // [x, y, n_embd]
  533. cur = ggml_cont(ctx0, cur);
  534. // torch.nn.functional.unfold is just an im2col under the hood
  535. // we just need a dummy kernel to make it work
  536. ggml_tensor * kernel = ggml_view_3d(ctx0, cur, n_merge, n_merge, cur->ne[2], 0, 0, 0);
  537. cur = ggml_im2col(ctx0, kernel, cur, n_merge, n_merge, 0, 0, 1, 1, true, inp->type);
  538. // project to n_embd
  539. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
  540. cur = ggml_mul_mat(ctx0, model.mm_patch_merger_w, cur);
  541. }
  542. // LlavaMultiModalProjector (always using GELU activation)
  543. {
  544. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  545. if (model.mm_1_b) {
  546. cur = ggml_add(ctx0, cur, model.mm_1_b);
  547. }
  548. cur = ggml_gelu(ctx0, cur);
  549. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  550. if (model.mm_2_b) {
  551. cur = ggml_add(ctx0, cur, model.mm_2_b);
  552. }
  553. }
  554. // arrangement of the [IMG_BREAK] token
  555. {
  556. // not efficient, but works
  557. // the trick is to view the embeddings as a 3D tensor with shape [n_embd, n_patches_per_row, n_rows]
  558. // and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
  559. // after the concatenation, we have a tensor with shape [n_embd, n_patches_per_row + 1, n_rows]
  560. const int p_y = n_merge > 0 ? n_patches_y / n_merge : n_patches_y;
  561. const int p_x = n_merge > 0 ? n_patches_x / n_merge : n_patches_x;
  562. const int p_total = p_x * p_y;
  563. const int n_embd_text = cur->ne[0];
  564. const int n_tokens_output = p_total + p_y - 1; // one [IMG_BREAK] per row, except the last row
  565. ggml_tensor * tmp = ggml_reshape_3d(ctx0, cur, n_embd_text, p_x, p_y);
  566. ggml_tensor * tok = ggml_new_tensor_3d(ctx0, tmp->type, n_embd_text, 1, p_y);
  567. tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor
  568. tok = ggml_add(ctx0, tok, model.token_embd_img_break);
  569. tmp = ggml_concat(ctx0, tmp, tok, 1);
  570. cur = ggml_view_2d(ctx0, tmp,
  571. n_embd_text, n_tokens_output,
  572. ggml_row_size(tmp->type, n_embd_text), 0);
  573. }
  574. // build the graph
  575. ggml_build_forward_expand(gf, cur);
  576. return gf;
  577. }
  578. // Qwen2VL and Qwen2.5VL use M-RoPE
  579. ggml_cgraph * build_qwen2vl() {
  580. GGML_ASSERT(model.patch_bias == nullptr);
  581. GGML_ASSERT(model.class_embedding == nullptr);
  582. const int batch_size = 1;
  583. const bool use_window_attn = hparams.n_wa_pattern > 0;
  584. const int n_wa_pattern = hparams.n_wa_pattern;
  585. const int n_pos = n_patches;
  586. const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
  587. norm_type norm_t = ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
  588. ? NORM_TYPE_RMS // qwen 2.5 vl
  589. : NORM_TYPE_NORMAL; // qwen 2 vl
  590. int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
  591. ggml_tensor * inp_raw = build_inp_raw();
  592. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  593. GGML_ASSERT(img.nx % (patch_size * 2) == 0);
  594. GGML_ASSERT(img.ny % (patch_size * 2) == 0);
  595. // second conv dimension
  596. {
  597. auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  598. inp = ggml_add(ctx0, inp, inp_1);
  599. inp = ggml_permute(ctx0, inp, 1, 2, 0, 3); // [w, h, c, b] -> [c, w, h, b]
  600. inp = ggml_cont_4d(
  601. ctx0, inp,
  602. n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
  603. inp = ggml_reshape_4d(
  604. ctx0, inp,
  605. n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
  606. inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
  607. inp = ggml_cont_3d(
  608. ctx0, inp,
  609. n_embd, n_patches_x * n_patches_y, batch_size);
  610. }
  611. ggml_tensor * inpL = inp;
  612. ggml_tensor * window_mask = nullptr;
  613. ggml_tensor * window_idx = nullptr;
  614. ggml_tensor * inv_window_idx = nullptr;
  615. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
  616. ggml_set_name(positions, "positions");
  617. ggml_set_input(positions);
  618. // pre-layernorm
  619. if (model.pre_ln_w) {
  620. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  621. }
  622. if (use_window_attn) {
  623. // handle window attention inputs
  624. inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
  625. ggml_set_name(inv_window_idx, "inv_window_idx");
  626. ggml_set_input(inv_window_idx);
  627. // mask for window attention
  628. window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_pos, n_pos);
  629. ggml_set_name(window_mask, "window_mask");
  630. ggml_set_input(window_mask);
  631. // inpL shape: [n_embd, n_patches_x * n_patches_y, batch_size]
  632. GGML_ASSERT(batch_size == 1);
  633. inpL = ggml_reshape_2d(ctx0, inpL, n_embd * 4, n_patches_x * n_patches_y * batch_size / 4);
  634. inpL = ggml_get_rows(ctx0, inpL, inv_window_idx);
  635. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_patches_x * n_patches_y, batch_size);
  636. }
  637. // loop over layers
  638. for (int il = 0; il < n_layer; il++) {
  639. auto & layer = model.layers[il];
  640. const bool full_attn = use_window_attn ? (il + 1) % n_wa_pattern == 0 : true;
  641. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  642. // layernorm1
  643. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  644. cb(cur, "ln1", il);
  645. // self-attention
  646. {
  647. ggml_tensor * Qcur = ggml_add(ctx0,
  648. ggml_mul_mat(ctx0, layer.q_w, cur), layer.q_b);
  649. ggml_tensor * Kcur = ggml_add(ctx0,
  650. ggml_mul_mat(ctx0, layer.k_w, cur), layer.k_b);
  651. ggml_tensor * Vcur = ggml_add(ctx0,
  652. ggml_mul_mat(ctx0, layer.v_w, cur), layer.v_b);
  653. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_patches);
  654. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_patches);
  655. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_patches);
  656. cb(Qcur, "Qcur", il);
  657. cb(Kcur, "Kcur", il);
  658. cb(Vcur, "Vcur", il);
  659. // apply M-RoPE
  660. Qcur = ggml_rope_multi(
  661. ctx0, Qcur, positions, nullptr,
  662. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  663. Kcur = ggml_rope_multi(
  664. ctx0, Kcur, positions, nullptr,
  665. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  666. cb(Qcur, "Qcur_rope", il);
  667. cb(Kcur, "Kcur_rope", il);
  668. ggml_tensor * attn_mask = full_attn ? nullptr : window_mask;
  669. cur = build_attn(layer.o_w, layer.o_b,
  670. Qcur, Kcur, Vcur, attn_mask, kq_scale, il);
  671. cb(cur, "attn_out", il);
  672. }
  673. // re-add the layer input, e.g., residual
  674. cur = ggml_add(ctx0, cur, inpL);
  675. inpL = cur; // inpL = residual, cur = hidden_states
  676. cb(cur, "ffn_inp", il);
  677. // layernorm2
  678. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  679. cb(cur, "ffn_inp_normed", il);
  680. // ffn
  681. cur = build_ffn(cur,
  682. layer.ff_up_w, layer.ff_up_b,
  683. layer.ff_gate_w, layer.ff_gate_b,
  684. layer.ff_down_w, layer.ff_down_b,
  685. hparams.ffn_op, il);
  686. cb(cur, "ffn_out", il);
  687. // residual 2
  688. cur = ggml_add(ctx0, inpL, cur);
  689. cb(cur, "layer_out", il);
  690. inpL = cur;
  691. }
  692. // post-layernorm
  693. if (model.post_ln_w) {
  694. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
  695. }
  696. // multimodal projection
  697. ggml_tensor * embeddings = inpL;
  698. embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
  699. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  700. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  701. // GELU activation
  702. embeddings = ggml_gelu(ctx0, embeddings);
  703. // Second linear layer
  704. embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
  705. embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
  706. if (use_window_attn) {
  707. window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
  708. ggml_set_name(window_idx, "window_idx");
  709. ggml_set_input(window_idx);
  710. // embeddings shape: [n_embd, n_patches_x * n_patches_y, batch_size]
  711. GGML_ASSERT(batch_size == 1);
  712. embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4);
  713. embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
  714. embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4, batch_size);
  715. }
  716. // build the graph
  717. ggml_build_forward_expand(gf, embeddings);
  718. return gf;
  719. }
  720. ggml_cgraph * build_minicpmv() {
  721. const int batch_size = 1;
  722. GGML_ASSERT(model.class_embedding == nullptr);
  723. const int n_pos = n_patches;
  724. // position embeddings for the projector (not for ViT)
  725. int n_output_dim = clip_n_mmproj_embd(ctx);
  726. ggml_tensor * pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_output_dim, n_pos, batch_size);
  727. ggml_set_name(pos_embed, "pos_embed");
  728. ggml_set_input(pos_embed);
  729. // for selecting learned pos embd, used by ViT
  730. struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  731. ggml_set_name(positions, "positions");
  732. ggml_set_input(positions);
  733. ggml_tensor * learned_pos_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);
  734. ggml_tensor * inp = build_inp();
  735. ggml_tensor * embeddings = build_vit(
  736. inp, n_patches,
  737. NORM_TYPE_NORMAL,
  738. hparams.ffn_op,
  739. learned_pos_embd,
  740. nullptr);
  741. // resampler projector (it is just another transformer)
  742. ggml_tensor * q = model.mm_model_query;
  743. ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
  744. // norm
  745. q = build_norm(q, model.mm_model_ln_q_w, model.mm_model_ln_q_b, NORM_TYPE_NORMAL, eps, -1);
  746. v = build_norm(v, model.mm_model_ln_kv_w, model.mm_model_ln_kv_b, NORM_TYPE_NORMAL, eps, -1);
  747. // k = v + pos_embed
  748. ggml_tensor * k = ggml_add(ctx0, v, pos_embed);
  749. // attention
  750. {
  751. int n_embd = clip_n_mmproj_embd(ctx);
  752. const int d_head = 128;
  753. int n_head = n_embd/d_head;
  754. // Use actual config value if available, otherwise fall back to hardcoded values
  755. int num_query = ctx->model.hparams.minicpmv_query_num;
  756. ggml_tensor * Q = ggml_add(ctx0,
  757. ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q),
  758. model.mm_model_attn_q_b);
  759. ggml_tensor * K = ggml_add(ctx0,
  760. ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k),
  761. model.mm_model_attn_k_b);
  762. ggml_tensor * V = ggml_add(ctx0,
  763. ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v),
  764. model.mm_model_attn_v_b);
  765. Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_query);
  766. K = ggml_reshape_3d(ctx0, K, d_head, n_head, n_pos);
  767. V = ggml_reshape_3d(ctx0, V, d_head, n_head, n_pos);
  768. cb(Q, "resampler_Q", -1);
  769. cb(K, "resampler_K", -1);
  770. cb(V, "resampler_V", -1);
  771. embeddings = build_attn(
  772. model.mm_model_attn_o_w,
  773. model.mm_model_attn_o_b,
  774. Q, K, V, nullptr, kq_scale, -1);
  775. cb(embeddings, "resampler_attn_out", -1);
  776. }
  777. // layernorm
  778. embeddings = build_norm(embeddings, model.mm_model_ln_post_w, model.mm_model_ln_post_b, NORM_TYPE_NORMAL, eps, -1);
  779. // projection
  780. embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
  781. // build the graph
  782. ggml_build_forward_expand(gf, embeddings);
  783. return gf;
  784. }
  785. ggml_cgraph * build_internvl() {
  786. GGML_ASSERT(model.class_embedding != nullptr);
  787. GGML_ASSERT(model.position_embeddings != nullptr);
  788. const int n_pos = n_patches + 1;
  789. ggml_tensor * inp = build_inp();
  790. // add CLS token
  791. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  792. // The larger models use a different ViT, which uses RMS norm instead of layer norm
  793. // ref: https://github.com/ggml-org/llama.cpp/pull/13443#issuecomment-2869786188
  794. norm_type norm_t = (hparams.n_embd == 3200 && hparams.n_layer == 45)
  795. ? NORM_TYPE_RMS // 6B ViT (Used by InternVL 2.5/3 - 26B, 38B, 78B)
  796. : NORM_TYPE_NORMAL; // 300M ViT (Used by all smaller InternVL models)
  797. ggml_tensor * cur = build_vit(
  798. inp, n_pos,
  799. norm_t,
  800. hparams.ffn_op,
  801. model.position_embeddings,
  802. nullptr);
  803. // remove CLS token
  804. cur = ggml_view_2d(ctx0, cur,
  805. n_embd, n_patches,
  806. ggml_row_size(cur->type, n_embd), 0);
  807. // pixel shuffle
  808. {
  809. const int scale_factor = model.hparams.proj_scale_factor;
  810. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  811. const int height = n_patches_y;
  812. const int width = n_patches_x;
  813. GGML_ASSERT(scale_factor > 0);
  814. cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, height / scale_factor, width, bsz);
  815. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  816. cur = ggml_cont_4d(ctx0, cur,
  817. n_embd * scale_factor * scale_factor,
  818. height / scale_factor,
  819. width / scale_factor,
  820. bsz);
  821. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  822. // flatten to 2D
  823. cur = ggml_cont_2d(ctx0, cur,
  824. n_embd * scale_factor * scale_factor,
  825. cur->ne[1] * cur->ne[2]);
  826. }
  827. // projector (always using GELU activation)
  828. {
  829. // projector LayerNorm uses pytorch's default eps = 1e-5
  830. // ref: https://huggingface.co/OpenGVLab/InternVL3-8B-Instruct/blob/a34d3e4e129a5856abfd6aa6de79776484caa14e/modeling_internvl_chat.py#L79
  831. cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1);
  832. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  833. cur = ggml_add(ctx0, cur, model.mm_1_b);
  834. cur = ggml_gelu(ctx0, cur);
  835. cur = ggml_mul_mat(ctx0, model.mm_3_w, cur);
  836. cur = ggml_add(ctx0, cur, model.mm_3_b);
  837. }
  838. // build the graph
  839. ggml_build_forward_expand(gf, cur);
  840. return gf;
  841. }
  842. ggml_cgraph * build_llama4() {
  843. GGML_ASSERT(model.class_embedding != nullptr);
  844. GGML_ASSERT(model.position_embeddings != nullptr);
  845. const int n_pos = n_patches + 1; // +1 for [CLS]
  846. // 2D input positions
  847. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  848. ggml_set_name(pos_h, "pos_h");
  849. ggml_set_input(pos_h);
  850. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  851. ggml_set_name(pos_w, "pos_w");
  852. ggml_set_input(pos_w);
  853. ggml_tensor * inp = build_inp_raw();
  854. // Llama4UnfoldConvolution
  855. {
  856. ggml_tensor * kernel = ggml_reshape_4d(ctx0, model.patch_embeddings_0,
  857. patch_size, patch_size, 3, n_embd);
  858. inp = ggml_im2col(ctx0, kernel, inp, patch_size, patch_size, 0, 0, 1, 1, true, inp->type);
  859. inp = ggml_mul_mat(ctx0, model.patch_embeddings_0, inp);
  860. inp = ggml_reshape_2d(ctx0, inp, n_embd, n_patches);
  861. cb(inp, "patch_conv", -1);
  862. }
  863. // add CLS token
  864. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  865. // build ViT with 2D position embeddings
  866. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  867. // first half is X axis and second half is Y axis
  868. // ref: https://github.com/huggingface/transformers/blob/40a493c7ed4f19f08eadb0639cf26d49bfa5e180/src/transformers/models/llama4/modeling_llama4.py#L1312
  869. // ref: https://github.com/Blaizzy/mlx-vlm/blob/a57156aa87b33cca6e5ee6cfc14dd4ef8f611be6/mlx_vlm/models/llama4/vision.py#L441
  870. return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
  871. };
  872. ggml_tensor * cur = build_vit(
  873. inp, n_pos,
  874. NORM_TYPE_NORMAL,
  875. hparams.ffn_op,
  876. model.position_embeddings,
  877. add_pos);
  878. // remove CLS token
  879. cur = ggml_view_2d(ctx0, cur,
  880. n_embd, n_patches,
  881. ggml_row_size(cur->type, n_embd), 0);
  882. // pixel shuffle
  883. // based on Llama4VisionPixelShuffleMLP
  884. // https://github.com/huggingface/transformers/blob/2932f318a20d9e54cc7aea052e040164d85de7d6/src/transformers/models/llama4/modeling_llama4.py#L1151
  885. {
  886. const int scale_factor = model.hparams.proj_scale_factor;
  887. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  888. GGML_ASSERT(scale_factor > 0);
  889. GGML_ASSERT(n_patches_x == n_patches_y); // llama4 only supports square images
  890. cur = ggml_reshape_4d(ctx0, cur,
  891. n_embd * scale_factor,
  892. n_patches_x / scale_factor,
  893. n_patches_y,
  894. bsz);
  895. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  896. cur = ggml_cont_4d(ctx0, cur,
  897. n_embd * scale_factor * scale_factor,
  898. n_patches_x / scale_factor,
  899. n_patches_y / scale_factor,
  900. bsz);
  901. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  902. // flatten to 2D
  903. cur = ggml_cont_2d(ctx0, cur,
  904. n_embd * scale_factor * scale_factor,
  905. n_patches / scale_factor / scale_factor);
  906. cb(cur, "pixel_shuffle", -1);
  907. }
  908. // based on Llama4VisionMLP2 (always uses GELU activation, no bias)
  909. {
  910. cur = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, cur);
  911. cur = ggml_gelu(ctx0, cur);
  912. cur = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, cur);
  913. cur = ggml_gelu(ctx0, cur);
  914. cb(cur, "adapter_mlp", -1);
  915. }
  916. // Llama4MultiModalProjector
  917. cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
  918. cb(cur, "projected", -1);
  919. // build the graph
  920. ggml_build_forward_expand(gf, cur);
  921. return gf;
  922. }
  923. // this graph is used by llava, granite and glm
  924. // due to having embedding_stack (used by granite), we cannot reuse build_vit
  925. ggml_cgraph * build_llava() {
  926. const int batch_size = 1;
  927. const int n_pos = n_patches + (model.class_embedding ? 1 : 0);
  928. GGML_ASSERT(n_patches_x == n_patches_y && "only square images supported");
  929. // Calculate the deepest feature layer based on hparams and projector type
  930. int max_feature_layer = n_layer;
  931. {
  932. // Get the index of the second to last layer; this is the default for models that have a llava projector
  933. int il_last = hparams.n_layer - 1;
  934. int deepest_feature_layer = -1;
  935. if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV || ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
  936. il_last += 1;
  937. }
  938. // If we set explicit vision feature layers, only go up to the deepest one
  939. // NOTE: only used by granite-vision models for now
  940. for (const auto & feature_layer : hparams.vision_feature_layer) {
  941. if (feature_layer > deepest_feature_layer) {
  942. deepest_feature_layer = feature_layer;
  943. }
  944. }
  945. max_feature_layer = deepest_feature_layer < 0 ? il_last : deepest_feature_layer;
  946. }
  947. ggml_tensor * inp = build_inp();
  948. // concat class_embeddings and patch_embeddings
  949. if (model.class_embedding) {
  950. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  951. }
  952. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  953. ggml_set_name(positions, "positions");
  954. ggml_set_input(positions);
  955. inp = ggml_add(ctx0, inp, ggml_get_rows(ctx0, model.position_embeddings, positions));
  956. ggml_tensor * inpL = inp;
  957. // pre-layernorm
  958. if (model.pre_ln_w) {
  959. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, NORM_TYPE_NORMAL, eps, -1);
  960. cb(inpL, "pre_ln", -1);
  961. }
  962. std::vector<ggml_tensor *> embedding_stack;
  963. const auto & vision_feature_layer = hparams.vision_feature_layer;
  964. // loop over layers
  965. for (int il = 0; il < max_feature_layer; il++) {
  966. auto & layer = model.layers[il];
  967. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  968. // If this is an embedding feature layer, save the output.
  969. // NOTE: 0 index here refers to the input to the encoder.
  970. if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
  971. embedding_stack.push_back(cur);
  972. }
  973. // layernorm1
  974. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
  975. cb(cur, "layer_inp_normed", il);
  976. // self-attention
  977. {
  978. ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
  979. if (layer.q_b) {
  980. Qcur = ggml_add(ctx0, Qcur, layer.q_b);
  981. }
  982. ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
  983. if (layer.k_b) {
  984. Kcur = ggml_add(ctx0, Kcur, layer.k_b);
  985. }
  986. ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
  987. if (layer.v_b) {
  988. Vcur = ggml_add(ctx0, Vcur, layer.v_b);
  989. }
  990. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
  991. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
  992. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
  993. cb(Qcur, "Qcur", il);
  994. cb(Kcur, "Kcur", il);
  995. cb(Vcur, "Vcur", il);
  996. cur = build_attn(layer.o_w, layer.o_b,
  997. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  998. cb(cur, "attn_out", il);
  999. }
  1000. // re-add the layer input, e.g., residual
  1001. cur = ggml_add(ctx0, cur, inpL);
  1002. inpL = cur; // inpL = residual, cur = hidden_states
  1003. cb(cur, "ffn_inp", il);
  1004. // layernorm2
  1005. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
  1006. cb(cur, "ffn_inp_normed", il);
  1007. // ffn
  1008. cur = build_ffn(cur,
  1009. layer.ff_up_w, layer.ff_up_b,
  1010. layer.ff_gate_w, layer.ff_gate_b,
  1011. layer.ff_down_w, layer.ff_down_b,
  1012. hparams.ffn_op, il);
  1013. cb(cur, "ffn_out", il);
  1014. // residual 2
  1015. cur = ggml_add(ctx0, inpL, cur);
  1016. cb(cur, "layer_out", il);
  1017. inpL = cur;
  1018. }
  1019. // post-layernorm
  1020. if (model.post_ln_w) {
  1021. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, NORM_TYPE_NORMAL, eps, -1);
  1022. }
  1023. ggml_tensor * embeddings = inpL;
  1024. // process vision feature layers (used by granite)
  1025. {
  1026. // final layer is a vision feature layer
  1027. if (vision_feature_layer.find(max_feature_layer) != vision_feature_layer.end()) {
  1028. embedding_stack.push_back(inpL);
  1029. }
  1030. // If feature layers are explicitly set, stack them (if we have multiple)
  1031. if (!embedding_stack.empty()) {
  1032. embeddings = embedding_stack[0];
  1033. for (size_t i = 1; i < embedding_stack.size(); i++) {
  1034. embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
  1035. }
  1036. }
  1037. }
  1038. // llava projector (also used by granite)
  1039. if (ctx->model.hparams.has_llava_projector) {
  1040. embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
  1041. ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  1042. ggml_set_name(patches, "patches");
  1043. ggml_set_input(patches);
  1044. // shape [1, 576, 1024]
  1045. // ne is whcn, ne = [1024, 576, 1, 1]
  1046. embeddings = ggml_get_rows(ctx0, embeddings, patches);
  1047. // print_tensor_info(embeddings, "embeddings");
  1048. // llava projector
  1049. if (ctx->proj_type() == PROJECTOR_TYPE_MLP) {
  1050. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  1051. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  1052. embeddings = ggml_gelu(ctx0, embeddings);
  1053. if (model.mm_2_w) {
  1054. embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
  1055. embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
  1056. }
  1057. }
  1058. else if (ctx->proj_type() == PROJECTOR_TYPE_MLP_NORM) {
  1059. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  1060. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  1061. // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
  1062. // First LayerNorm
  1063. embeddings = ggml_norm(ctx0, embeddings, eps);
  1064. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
  1065. model.mm_1_b);
  1066. // GELU activation
  1067. embeddings = ggml_gelu(ctx0, embeddings);
  1068. // Second linear layer
  1069. embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
  1070. embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
  1071. // Second LayerNorm
  1072. embeddings = ggml_norm(ctx0, embeddings, eps);
  1073. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
  1074. model.mm_4_b);
  1075. }
  1076. else if (ctx->proj_type() == PROJECTOR_TYPE_LDP) {
  1077. // MobileVLM projector
  1078. int n_patch = 24;
  1079. ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
  1080. mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
  1081. mlp_1 = ggml_gelu(ctx0, mlp_1);
  1082. ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
  1083. mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
  1084. // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
  1085. // block 1
  1086. ggml_tensor * block_1 = nullptr;
  1087. {
  1088. // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
  1089. mlp_3 = ggml_permute(ctx0, mlp_3, 1, 0, 2, 3);
  1090. mlp_3 = ggml_cont_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
  1091. // stride = 1, padding = 1, bias is nullptr
  1092. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
  1093. // layer norm
  1094. // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1095. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  1096. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  1097. block_1 = ggml_norm(ctx0, block_1, eps);
  1098. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
  1099. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1100. // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1101. // hardswish
  1102. ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  1103. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  1104. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1105. // pointwise conv
  1106. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  1107. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
  1108. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
  1109. block_1 = ggml_relu(ctx0, block_1);
  1110. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
  1111. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
  1112. block_1 = ggml_hardsigmoid(ctx0, block_1);
  1113. // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
  1114. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  1115. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  1116. int w = block_1->ne[0], h = block_1->ne[1];
  1117. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  1118. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  1119. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  1120. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
  1121. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  1122. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  1123. block_1 = ggml_norm(ctx0, block_1, eps);
  1124. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
  1125. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1126. // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1127. // residual
  1128. block_1 = ggml_add(ctx0, mlp_3, block_1);
  1129. }
  1130. // block_2
  1131. {
  1132. // stride = 2
  1133. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
  1134. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  1135. // layer norm
  1136. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  1137. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  1138. block_1 = ggml_norm(ctx0, block_1, eps);
  1139. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
  1140. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1141. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  1142. // hardswish
  1143. ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  1144. // not sure the parameters is right for globalAvgPooling
  1145. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  1146. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1147. // pointwise conv
  1148. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  1149. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
  1150. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
  1151. block_1 = ggml_relu(ctx0, block_1);
  1152. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
  1153. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
  1154. block_1 = ggml_hardsigmoid(ctx0, block_1);
  1155. // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1156. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  1157. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  1158. int w = block_1->ne[0], h = block_1->ne[1];
  1159. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  1160. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  1161. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  1162. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
  1163. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  1164. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  1165. block_1 = ggml_norm(ctx0, block_1, eps);
  1166. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
  1167. block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
  1168. // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
  1169. }
  1170. embeddings = block_1;
  1171. }
  1172. else if (ctx->proj_type() == PROJECTOR_TYPE_LDPV2)
  1173. {
  1174. int n_patch = 24;
  1175. ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  1176. mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
  1177. mlp_0 = ggml_gelu(ctx0, mlp_0);
  1178. ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
  1179. mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
  1180. // mlp_2 ne = [2048, 576, 1, 1]
  1181. // // AVG Pool Layer 2*2, strides = 2
  1182. mlp_2 = ggml_permute(ctx0, mlp_2, 1, 0, 2, 3);
  1183. // mlp_2 ne = [576, 2048, 1, 1]
  1184. mlp_2 = ggml_cont_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
  1185. // mlp_2 ne [24, 24, 2048, 1]
  1186. mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
  1187. // weight ne = [3, 3, 2048, 1]
  1188. ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
  1189. peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
  1190. peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
  1191. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
  1192. peg_0 = ggml_add(ctx0, peg_0, mlp_2);
  1193. peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
  1194. embeddings = peg_0;
  1195. }
  1196. else {
  1197. GGML_ABORT("fatal error");
  1198. }
  1199. }
  1200. // glm projector
  1201. else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
  1202. size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
  1203. embeddings = ggml_permute(ctx0,embeddings,1,0,2,3);
  1204. embeddings = ggml_cont_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
  1205. embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
  1206. embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
  1207. embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
  1208. embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
  1209. // GLU
  1210. {
  1211. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  1212. embeddings = ggml_norm(ctx0, embeddings, eps);
  1213. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
  1214. embeddings = ggml_gelu_inplace(ctx0, embeddings);
  1215. ggml_tensor * x = embeddings;
  1216. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
  1217. x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
  1218. embeddings = ggml_swiglu_split(ctx0, embeddings, x);
  1219. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
  1220. }
  1221. // arrangement of BOI/EOI token embeddings
  1222. // note: these embeddings are not present in text model, hence we cannot process them as text tokens
  1223. // see: https://huggingface.co/THUDM/glm-edge-v-2b/blob/main/siglip.py#L53
  1224. {
  1225. embeddings = ggml_concat(ctx0, model.mm_glm_tok_boi, embeddings, 1); // BOI
  1226. embeddings = ggml_concat(ctx0, embeddings, model.mm_glm_tok_eoi, 1); // EOI
  1227. }
  1228. }
  1229. else {
  1230. GGML_ABORT("llava: unknown projector type");
  1231. }
  1232. // build the graph
  1233. ggml_build_forward_expand(gf, embeddings);
  1234. return gf;
  1235. }
  1236. // whisper encoder with custom projector
  1237. ggml_cgraph * build_whisper_enc() {
  1238. const int n_frames = img.nx;
  1239. const int n_pos = n_frames / 2;
  1240. GGML_ASSERT(model.position_embeddings->ne[1] >= n_pos);
  1241. ggml_tensor * inp = build_inp_raw(1);
  1242. // conv1d block
  1243. {
  1244. // convolution + gelu
  1245. ggml_tensor * cur = ggml_conv_1d_ph(ctx0, model.conv1d_1_w, inp, 1, 1);
  1246. cur = ggml_add(ctx0, cur, model.conv1d_1_b);
  1247. cur = ggml_gelu_erf(ctx0, cur);
  1248. cur = ggml_conv_1d_ph(ctx0, model.conv1d_2_w, cur, 2, 1);
  1249. cur = ggml_add(ctx0, cur, model.conv1d_2_b);
  1250. cur = ggml_gelu_erf(ctx0, cur);
  1251. // transpose
  1252. inp = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  1253. cb(inp, "after_conv1d", -1);
  1254. }
  1255. // sanity check (only check one layer, but it should be the same for all)
  1256. GGML_ASSERT(model.layers[0].ln_1_w && model.layers[0].ln_1_b);
  1257. GGML_ASSERT(model.layers[0].ln_2_w && model.layers[0].ln_2_b);
  1258. GGML_ASSERT(model.layers[0].q_b);
  1259. GGML_ASSERT(model.layers[0].v_b);
  1260. GGML_ASSERT(!model.layers[0].k_b); // no bias for k
  1261. GGML_ASSERT(model.post_ln_w && model.post_ln_b);
  1262. ggml_tensor * pos_embd_selected = ggml_view_2d(
  1263. ctx0, model.position_embeddings,
  1264. model.position_embeddings->ne[0], n_pos,
  1265. model.position_embeddings->nb[1], 0
  1266. );
  1267. ggml_tensor * cur = build_vit(
  1268. inp, n_pos,
  1269. NORM_TYPE_NORMAL,
  1270. hparams.ffn_op,
  1271. pos_embd_selected,
  1272. nullptr);
  1273. cb(cur, "after_transformer", -1);
  1274. if (model.audio_has_stack_frames()) {
  1275. // StackAudioFrames
  1276. // https://huggingface.co/fixie-ai/ultravox-v0_5-llama-3_2-1b/blob/main/ultravox_model.py
  1277. int64_t stride = n_embd * hparams.proj_stack_factor;
  1278. int64_t padded_len = GGML_PAD(ggml_nelements(cur), stride);
  1279. int64_t pad = padded_len - ggml_nelements(cur);
  1280. if (pad > 0) {
  1281. cur = ggml_view_1d(ctx0, cur, ggml_nelements(cur), 0);
  1282. cur = ggml_pad(ctx0, cur, pad, 0, 0, 0);
  1283. }
  1284. cur = ggml_view_2d(ctx0, cur, stride, padded_len / stride,
  1285. ggml_row_size(cur->type, stride), 0);
  1286. cb(cur, "after_stacked", -1);
  1287. }
  1288. if (ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX) {
  1289. // UltravoxProjector
  1290. // pre-norm
  1291. cur = ggml_rms_norm(ctx0, cur, 1e-6);
  1292. cur = ggml_mul(ctx0, cur, model.mm_norm_pre_w);
  1293. // ffn in
  1294. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1295. // swiglu
  1296. // see SwiGLU in ultravox_model.py, the second half passed through is silu, not the first half
  1297. cur = ggml_swiglu_swapped(ctx0, cur);
  1298. // mid-norm
  1299. cur = ggml_rms_norm(ctx0, cur, 1e-6);
  1300. cur = ggml_mul(ctx0, cur, model.mm_norm_mid_w);
  1301. // ffn out
  1302. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  1303. } else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2A) {
  1304. // projector
  1305. cur = ggml_mul_mat(ctx0, model.mm_fc_w, cur);
  1306. cur = ggml_add(ctx0, cur, model.mm_fc_b);
  1307. } else if (ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL) {
  1308. // projector
  1309. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1310. cur = ggml_gelu_erf(ctx0, cur);
  1311. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  1312. } else {
  1313. GGML_ABORT("%s: unknown projector type", __func__);
  1314. }
  1315. cb(cur, "projected", -1);
  1316. ggml_build_forward_expand(gf, cur);
  1317. return gf;
  1318. }
  1319. private:
  1320. //
  1321. // utility functions
  1322. //
  1323. void cb(ggml_tensor * cur0, const char * name, int il) const {
  1324. if (ctx->debug_graph) {
  1325. ggml_tensor * cur = ggml_cpy(ctx0, cur0, ggml_dup_tensor(ctx0, cur0));
  1326. std::string cur_name = il >= 0 ? std::string(name) + "_" + std::to_string(il) : name;
  1327. ggml_set_name(cur, cur_name.c_str());
  1328. ggml_set_output(cur);
  1329. ggml_build_forward_expand(gf, cur);
  1330. ctx->debug_print_tensors.push_back(cur);
  1331. }
  1332. }
  1333. // siglip2 naflex
  1334. ggml_tensor * resize_position_embeddings() {
  1335. ggml_tensor * pos_embd = model.position_embeddings;
  1336. const int height = img.ny / patch_size;
  1337. const int width = img.nx / patch_size;
  1338. if (!pos_embd || height * width == pos_embd->ne[1]) {
  1339. return pos_embd;
  1340. }
  1341. const int n_pos_embd = std::sqrt(pos_embd->ne[1]);
  1342. pos_embd = ggml_reshape_3d(ctx0, pos_embd, n_embd, n_pos_embd, n_pos_embd); // -> (n_embd, n_pos_embd, n_pos_embd)
  1343. pos_embd = ggml_permute(ctx0, pos_embd, 2, 0, 1, 3); // -> (n_pos_embd, n_pos_embd, n_embd)
  1344. pos_embd = ggml_interpolate(ctx0, pos_embd, width, height, n_embd, 1, 1); // -> (width, height, n_embd)
  1345. pos_embd = ggml_reshape_2d(ctx0, pos_embd, height * width, n_embd); // -> (height * width, n_embd)
  1346. pos_embd = ggml_transpose(ctx0, pos_embd); // -> (n_embd, height * width)
  1347. pos_embd = ggml_cont(ctx0, pos_embd);
  1348. return pos_embd;
  1349. }
  1350. // build vision transformer (ViT) cgraph
  1351. // this function should cover most of the models
  1352. // if your model has specific features, you should probably duplicate this function
  1353. ggml_tensor * build_vit(
  1354. ggml_tensor * inp,
  1355. int64_t n_pos,
  1356. norm_type norm_t,
  1357. ffn_op_type ffn_t,
  1358. ggml_tensor * learned_pos_embd,
  1359. std::function<ggml_tensor *(ggml_tensor *, const clip_layer &)> add_pos
  1360. ) {
  1361. if (learned_pos_embd) {
  1362. inp = ggml_add(ctx0, inp, learned_pos_embd);
  1363. cb(inp, "pos_embed", -1);
  1364. }
  1365. ggml_tensor * inpL = inp;
  1366. // pre-layernorm
  1367. if (model.pre_ln_w) {
  1368. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  1369. cb(inpL, "pre_ln", -1);
  1370. }
  1371. // loop over layers
  1372. for (int il = 0; il < n_layer; il++) {
  1373. auto & layer = model.layers[il];
  1374. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  1375. // layernorm1
  1376. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  1377. cb(cur, "layer_inp_normed", il);
  1378. // self-attention
  1379. {
  1380. ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
  1381. if (layer.q_b) {
  1382. Qcur = ggml_add(ctx0, Qcur, layer.q_b);
  1383. }
  1384. ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
  1385. if (layer.k_b) {
  1386. Kcur = ggml_add(ctx0, Kcur, layer.k_b);
  1387. }
  1388. ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
  1389. if (layer.v_b) {
  1390. Vcur = ggml_add(ctx0, Vcur, layer.v_b);
  1391. }
  1392. if (layer.q_norm) {
  1393. Qcur = build_norm(Qcur, layer.q_norm, NULL, norm_t, eps, il);
  1394. cb(Qcur, "Qcur_norm", il);
  1395. }
  1396. if (layer.k_norm) {
  1397. Kcur = build_norm(Kcur, layer.k_norm, NULL, norm_t, eps, il);
  1398. cb(Kcur, "Kcur_norm", il);
  1399. }
  1400. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
  1401. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
  1402. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
  1403. cb(Qcur, "Qcur", il);
  1404. cb(Kcur, "Kcur", il);
  1405. cb(Vcur, "Vcur", il);
  1406. if (add_pos) {
  1407. Qcur = add_pos(Qcur, layer);
  1408. Kcur = add_pos(Kcur, layer);
  1409. cb(Qcur, "Qcur_pos", il);
  1410. cb(Kcur, "Kcur_pos", il);
  1411. }
  1412. cur = build_attn(layer.o_w, layer.o_b,
  1413. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  1414. cb(cur, "attn_out", il);
  1415. }
  1416. if (layer.ls_1_w) {
  1417. cur = ggml_mul(ctx0, cur, layer.ls_1_w);
  1418. cb(cur, "attn_out_scaled", il);
  1419. }
  1420. // re-add the layer input, e.g., residual
  1421. cur = ggml_add(ctx0, cur, inpL);
  1422. inpL = cur; // inpL = residual, cur = hidden_states
  1423. cb(cur, "ffn_inp", il);
  1424. // layernorm2
  1425. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  1426. cb(cur, "ffn_inp_normed", il);
  1427. // ffn
  1428. cur = build_ffn(cur,
  1429. layer.ff_up_w, layer.ff_up_b,
  1430. layer.ff_gate_w, layer.ff_gate_b,
  1431. layer.ff_down_w, layer.ff_down_b,
  1432. ffn_t, il);
  1433. cb(cur, "ffn_out", il);
  1434. if (layer.ls_2_w) {
  1435. cur = ggml_mul(ctx0, cur, layer.ls_2_w);
  1436. cb(cur, "ffn_out_scaled", il);
  1437. }
  1438. // residual 2
  1439. cur = ggml_add(ctx0, inpL, cur);
  1440. cb(cur, "layer_out", il);
  1441. inpL = cur;
  1442. }
  1443. if (ctx->model.audio_has_avgpool()) {
  1444. ggml_tensor * cur = inpL;
  1445. cur = ggml_transpose(ctx0, cur);
  1446. cur = ggml_cont(ctx0, cur);
  1447. cur = ggml_pool_1d(ctx0, cur, GGML_OP_POOL_AVG, 2, 2, 0);
  1448. cur = ggml_transpose(ctx0, cur);
  1449. cur = ggml_cont(ctx0, cur);
  1450. inpL = cur;
  1451. }
  1452. // post-layernorm
  1453. if (model.post_ln_w) {
  1454. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, -1);
  1455. }
  1456. return inpL;
  1457. }
  1458. // build the input after conv2d (inp_raw --> patches)
  1459. // returns tensor with shape [n_embd, n_patches]
  1460. ggml_tensor * build_inp() {
  1461. ggml_tensor * inp_raw = build_inp_raw();
  1462. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  1463. inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd);
  1464. inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
  1465. if (model.patch_bias) {
  1466. inp = ggml_add(ctx0, inp, model.patch_bias);
  1467. cb(inp, "patch_bias", -1);
  1468. }
  1469. return inp;
  1470. }
  1471. ggml_tensor * build_inp_raw(int channels = 3) {
  1472. ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, img.nx, img.ny, channels);
  1473. ggml_set_name(inp_raw, "inp_raw");
  1474. ggml_set_input(inp_raw);
  1475. return inp_raw;
  1476. }
  1477. ggml_tensor * build_norm(
  1478. ggml_tensor * cur,
  1479. ggml_tensor * mw,
  1480. ggml_tensor * mb,
  1481. norm_type type,
  1482. float norm_eps,
  1483. int il) const {
  1484. cur = type == NORM_TYPE_RMS
  1485. ? ggml_rms_norm(ctx0, cur, norm_eps)
  1486. : ggml_norm(ctx0, cur, norm_eps);
  1487. if (mw || mb) {
  1488. cb(cur, "norm", il);
  1489. }
  1490. if (mw) {
  1491. cur = ggml_mul(ctx0, cur, mw);
  1492. if (mb) {
  1493. cb(cur, "norm_w", il);
  1494. }
  1495. }
  1496. if (mb) {
  1497. cur = ggml_add(ctx0, cur, mb);
  1498. }
  1499. return cur;
  1500. }
  1501. ggml_tensor * build_ffn(
  1502. ggml_tensor * cur,
  1503. ggml_tensor * up,
  1504. ggml_tensor * up_b,
  1505. ggml_tensor * gate,
  1506. ggml_tensor * gate_b,
  1507. ggml_tensor * down,
  1508. ggml_tensor * down_b,
  1509. ffn_op_type type_op,
  1510. int il) const {
  1511. ggml_tensor * tmp = up ? ggml_mul_mat(ctx0, up, cur) : cur;
  1512. cb(tmp, "ffn_up", il);
  1513. if (up_b) {
  1514. tmp = ggml_add(ctx0, tmp, up_b);
  1515. cb(tmp, "ffn_up_b", il);
  1516. }
  1517. if (gate) {
  1518. cur = ggml_mul_mat(ctx0, gate, cur);
  1519. cb(cur, "ffn_gate", il);
  1520. if (gate_b) {
  1521. cur = ggml_add(ctx0, cur, gate_b);
  1522. cb(cur, "ffn_gate_b", il);
  1523. }
  1524. } else {
  1525. cur = tmp;
  1526. }
  1527. // we only support parallel ffn for now
  1528. switch (type_op) {
  1529. case FFN_SILU:
  1530. if (gate) {
  1531. cur = ggml_swiglu_split(ctx0, cur, tmp);
  1532. cb(cur, "ffn_swiglu", il);
  1533. } else {
  1534. cur = ggml_silu(ctx0, cur);
  1535. cb(cur, "ffn_silu", il);
  1536. } break;
  1537. case FFN_GELU:
  1538. if (gate) {
  1539. cur = ggml_geglu_split(ctx0, cur, tmp);
  1540. cb(cur, "ffn_geglu", il);
  1541. } else {
  1542. cur = ggml_gelu(ctx0, cur);
  1543. cb(cur, "ffn_gelu", il);
  1544. } break;
  1545. case FFN_GELU_ERF:
  1546. if (gate) {
  1547. cur = ggml_geglu_erf_split(ctx0, cur, tmp);
  1548. cb(cur, "ffn_geglu_erf", il);
  1549. } else {
  1550. cur = ggml_gelu_erf(ctx0, cur);
  1551. cb(cur, "ffn_gelu_erf", il);
  1552. } break;
  1553. case FFN_GELU_QUICK:
  1554. if (gate) {
  1555. cur = ggml_geglu_quick_split(ctx0, cur, tmp);
  1556. cb(cur, "ffn_geglu_quick", il);
  1557. } else {
  1558. cur = ggml_gelu_quick(ctx0, cur);
  1559. cb(cur, "ffn_gelu_quick", il);
  1560. } break;
  1561. }
  1562. if (down) {
  1563. cur = ggml_mul_mat(ctx0, down, cur);
  1564. }
  1565. if (down_b) {
  1566. cb(cur, "ffn_down", il);
  1567. }
  1568. if (down_b) {
  1569. cur = ggml_add(ctx0, cur, down_b);
  1570. }
  1571. return cur;
  1572. }
  1573. ggml_tensor * build_attn(
  1574. ggml_tensor * wo,
  1575. ggml_tensor * wo_b,
  1576. ggml_tensor * q_cur,
  1577. ggml_tensor * k_cur,
  1578. ggml_tensor * v_cur,
  1579. ggml_tensor * kq_mask,
  1580. float kq_scale,
  1581. int il) const {
  1582. // these nodes are added to the graph together so that they are not reordered
  1583. // by doing so, the number of splits in the graph is reduced
  1584. ggml_build_forward_expand(gf, q_cur);
  1585. ggml_build_forward_expand(gf, k_cur);
  1586. ggml_build_forward_expand(gf, v_cur);
  1587. ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
  1588. //cb(q, "q", il);
  1589. ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
  1590. //cb(k, "k", il);
  1591. ggml_tensor * v = ggml_permute(ctx0, v_cur, 1, 2, 0, 3);
  1592. v = ggml_cont(ctx0, v);
  1593. //cb(k, "v", il);
  1594. ggml_tensor * cur;
  1595. // TODO @ngxson : support flash attention
  1596. {
  1597. const auto n_tokens = q->ne[1];
  1598. const auto n_head = q->ne[2];
  1599. // const auto n_kv = k->ne[1]; // for flash attention
  1600. ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  1601. // F32 may not needed for vision encoders?
  1602. // ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  1603. kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, 0.0f);
  1604. ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
  1605. cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  1606. cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
  1607. }
  1608. cb(cur, "kqv_out", il);
  1609. if (wo) {
  1610. cur = ggml_mul_mat(ctx0, wo, cur);
  1611. }
  1612. if (wo_b) {
  1613. cur = ggml_add(ctx0, cur, wo_b);
  1614. }
  1615. return cur;
  1616. }
  1617. // implementation of the 2D RoPE without adding a new op in ggml
  1618. // this is not efficient (use double the memory), but works on all backends
  1619. // TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
  1620. static ggml_tensor * build_rope_2d(
  1621. ggml_context * ctx0,
  1622. ggml_tensor * cur,
  1623. ggml_tensor * pos_a, // first half
  1624. ggml_tensor * pos_b, // second half
  1625. const float freq_base,
  1626. const bool interleave_freq
  1627. ) {
  1628. const int64_t n_dim = cur->ne[0];
  1629. const int64_t n_head = cur->ne[1];
  1630. const int64_t n_pos = cur->ne[2];
  1631. // for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
  1632. // we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
  1633. // first half of cur will use 1e-0, 1e-2 (even)
  1634. // second half of cur will use 1e-1, 1e-3 (odd)
  1635. // the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
  1636. // ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
  1637. // then for the second half, we use freq_scale to shift the inv_freq
  1638. // ^ why? replace (2i) with (2i+1) in the above equation
  1639. const float freq_scale_odd = interleave_freq
  1640. ? std::pow(freq_base, (float)-2/n_dim)
  1641. : 1.0;
  1642. // first half
  1643. ggml_tensor * first;
  1644. {
  1645. first = ggml_view_3d(ctx0, cur,
  1646. n_dim/2, n_head, n_pos,
  1647. ggml_row_size(cur->type, n_dim),
  1648. ggml_row_size(cur->type, n_dim*n_head),
  1649. 0);
  1650. first = ggml_rope_ext(
  1651. ctx0,
  1652. first,
  1653. pos_a, // positions
  1654. nullptr, // freq factors
  1655. n_dim/2, // n_dims
  1656. 0, 0, freq_base,
  1657. 1.0f, 0.0f, 1.0f, 0.0f, 0.0f
  1658. );
  1659. }
  1660. // second half
  1661. ggml_tensor * second;
  1662. {
  1663. second = ggml_view_3d(ctx0, cur,
  1664. n_dim/2, n_head, n_pos,
  1665. ggml_row_size(cur->type, n_dim),
  1666. ggml_row_size(cur->type, n_dim*n_head),
  1667. n_dim/2 * ggml_element_size(cur));
  1668. second = ggml_rope_ext(
  1669. ctx0,
  1670. second,
  1671. pos_b, // positions
  1672. nullptr, // freq factors
  1673. n_dim/2, // n_dims
  1674. 0, 0, freq_base,
  1675. freq_scale_odd,
  1676. 0.0f, 1.0f, 0.0f, 0.0f
  1677. );
  1678. }
  1679. cur = ggml_concat(ctx0, first, second, 0);
  1680. return cur;
  1681. }
  1682. };
  1683. static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
  1684. GGML_ASSERT(imgs.entries.size() == 1 && "n_batch > 1 is not supported");
  1685. clip_graph graph(ctx, *imgs.entries[0]);
  1686. ggml_cgraph * res;
  1687. switch (ctx->proj_type()) {
  1688. case PROJECTOR_TYPE_GEMMA3:
  1689. case PROJECTOR_TYPE_IDEFICS3:
  1690. case PROJECTOR_TYPE_LFM2:
  1691. {
  1692. res = graph.build_siglip();
  1693. } break;
  1694. case PROJECTOR_TYPE_PIXTRAL:
  1695. {
  1696. res = graph.build_pixtral();
  1697. } break;
  1698. case PROJECTOR_TYPE_QWEN2VL:
  1699. case PROJECTOR_TYPE_QWEN25VL:
  1700. {
  1701. res = graph.build_qwen2vl();
  1702. } break;
  1703. case PROJECTOR_TYPE_MINICPMV:
  1704. {
  1705. res = graph.build_minicpmv();
  1706. } break;
  1707. case PROJECTOR_TYPE_INTERNVL:
  1708. {
  1709. res = graph.build_internvl();
  1710. } break;
  1711. case PROJECTOR_TYPE_LLAMA4:
  1712. {
  1713. res = graph.build_llama4();
  1714. } break;
  1715. case PROJECTOR_TYPE_ULTRAVOX:
  1716. case PROJECTOR_TYPE_VOXTRAL:
  1717. case PROJECTOR_TYPE_QWEN2A:
  1718. {
  1719. res = graph.build_whisper_enc();
  1720. } break;
  1721. default:
  1722. {
  1723. res = graph.build_llava();
  1724. } break;
  1725. }
  1726. return res;
  1727. }
  1728. struct clip_model_loader {
  1729. ggml_context_ptr ctx_meta;
  1730. gguf_context_ptr ctx_gguf;
  1731. std::string fname;
  1732. size_t model_size = 0; // in bytes
  1733. bool has_vision = false;
  1734. bool has_audio = false;
  1735. // TODO @ngxson : we should not pass clip_ctx here, it should be clip_model
  1736. clip_model_loader(const char * fname) : fname(fname) {
  1737. struct ggml_context * meta = nullptr;
  1738. struct gguf_init_params params = {
  1739. /*.no_alloc = */ true,
  1740. /*.ctx = */ &meta,
  1741. };
  1742. ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params));
  1743. if (!ctx_gguf.get()) {
  1744. throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
  1745. }
  1746. ctx_meta.reset(meta);
  1747. const int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
  1748. // print gguf info
  1749. {
  1750. std::string name;
  1751. get_string(KEY_NAME, name, false);
  1752. std::string description;
  1753. get_string(KEY_DESCRIPTION, description, false);
  1754. LOG_INF("%s: model name: %s\n", __func__, name.c_str());
  1755. LOG_INF("%s: description: %s\n", __func__, description.c_str());
  1756. LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx_gguf.get()));
  1757. LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx_gguf.get()));
  1758. LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors);
  1759. LOG_INF("%s: n_kv: %d\n", __func__, (int)gguf_get_n_kv(ctx_gguf.get()));
  1760. LOG_INF("\n");
  1761. }
  1762. // modalities
  1763. {
  1764. get_bool(KEY_HAS_VISION_ENC, has_vision, false);
  1765. get_bool(KEY_HAS_AUDIO_ENC, has_audio, false);
  1766. if (has_vision) {
  1767. LOG_INF("%s: has vision encoder\n", __func__);
  1768. }
  1769. if (has_audio) {
  1770. LOG_INF("%s: has audio encoder\n", __func__);
  1771. }
  1772. }
  1773. // tensors
  1774. {
  1775. for (int i = 0; i < n_tensors; ++i) {
  1776. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  1777. const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
  1778. enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
  1779. ggml_tensor * cur = ggml_get_tensor(meta, name);
  1780. size_t tensor_size = ggml_nbytes(cur);
  1781. model_size += tensor_size;
  1782. LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
  1783. __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
  1784. }
  1785. }
  1786. }
  1787. void load_hparams(clip_model & model, clip_modality modality) {
  1788. auto & hparams = model.hparams;
  1789. std::string log_ffn_op; // for logging
  1790. // sanity check
  1791. if (modality == CLIP_MODALITY_VISION) {
  1792. GGML_ASSERT(has_vision);
  1793. } else if (modality == CLIP_MODALITY_AUDIO) {
  1794. GGML_ASSERT(has_audio);
  1795. }
  1796. model.modality = modality;
  1797. // projector type
  1798. std::string proj_type;
  1799. {
  1800. get_string(KEY_PROJ_TYPE, proj_type, false);
  1801. if (!proj_type.empty()) {
  1802. model.proj_type = clip_projector_type_from_string(proj_type);
  1803. }
  1804. if (model.proj_type == PROJECTOR_TYPE_UNKNOWN) {
  1805. throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str()));
  1806. }
  1807. // correct arch for multimodal models
  1808. if (model.proj_type == PROJECTOR_TYPE_QWEN25O) {
  1809. model.proj_type = modality == CLIP_MODALITY_VISION
  1810. ? PROJECTOR_TYPE_QWEN25VL
  1811. : PROJECTOR_TYPE_QWEN2A;
  1812. }
  1813. }
  1814. const bool is_vision = model.modality == CLIP_MODALITY_VISION;
  1815. const bool is_audio = model.modality == CLIP_MODALITY_AUDIO;
  1816. // other hparams
  1817. {
  1818. const char * prefix = is_vision ? "vision" : "audio";
  1819. get_u32(string_format(KEY_N_EMBD, prefix), hparams.n_embd);
  1820. get_u32(string_format(KEY_N_HEAD, prefix), hparams.n_head);
  1821. get_u32(string_format(KEY_N_FF, prefix), hparams.n_ff);
  1822. get_u32(string_format(KEY_N_BLOCK, prefix), hparams.n_layer);
  1823. get_u32(string_format(KEY_PROJ_DIM, prefix), hparams.projection_dim);
  1824. get_f32(string_format(KEY_LAYER_NORM_EPS, prefix), hparams.eps);
  1825. if (is_vision) {
  1826. get_u32(KEY_IMAGE_SIZE, hparams.image_size);
  1827. get_u32(KEY_PATCH_SIZE, hparams.patch_size);
  1828. get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
  1829. get_i32(KEY_MINICPMV_VERSION, hparams.minicpmv_version, false); // legacy
  1830. get_u32(KEY_MINICPMV_QUERY_NUM, hparams.minicpmv_query_num, false);
  1831. if (hparams.minicpmv_query_num == 0) {
  1832. // Fallback to hardcoded values for legacy models
  1833. if (hparams.minicpmv_version == 3) {
  1834. hparams.minicpmv_query_num = 64;
  1835. } else if (hparams.minicpmv_version == 4) {
  1836. hparams.minicpmv_query_num = 64;
  1837. } else if (hparams.minicpmv_version == 5) {
  1838. hparams.minicpmv_query_num = 64;
  1839. } else {
  1840. hparams.minicpmv_query_num = 96;
  1841. }
  1842. }
  1843. } else if (is_audio) {
  1844. get_u32(KEY_A_NUM_MEL_BINS, hparams.n_mel_bins);
  1845. } else {
  1846. GGML_ASSERT(false && "unknown modality");
  1847. }
  1848. // for pinpoints, we need to convert it into a list of resolution candidates
  1849. {
  1850. std::vector<int> pinpoints;
  1851. get_arr_int(KEY_IMAGE_GRID_PINPOINTS, pinpoints, false);
  1852. if (!pinpoints.empty()) {
  1853. for (size_t i = 0; i < pinpoints.size(); i += 2) {
  1854. hparams.image_res_candidates.push_back({
  1855. pinpoints[i],
  1856. pinpoints[i+1],
  1857. });
  1858. }
  1859. }
  1860. }
  1861. // default warmup value
  1862. hparams.warmup_image_size = hparams.image_size;
  1863. hparams.has_llava_projector = model.proj_type == PROJECTOR_TYPE_MLP
  1864. || model.proj_type == PROJECTOR_TYPE_MLP_NORM
  1865. || model.proj_type == PROJECTOR_TYPE_LDP
  1866. || model.proj_type == PROJECTOR_TYPE_LDPV2;
  1867. {
  1868. bool use_gelu = false;
  1869. bool use_silu = false;
  1870. get_bool(KEY_USE_GELU, use_gelu, false);
  1871. get_bool(KEY_USE_SILU, use_silu, false);
  1872. if (use_gelu && use_silu) {
  1873. throw std::runtime_error(string_format("%s: both use_gelu and use_silu are set to true\n", __func__));
  1874. }
  1875. if (use_gelu) {
  1876. hparams.ffn_op = FFN_GELU;
  1877. log_ffn_op = "gelu";
  1878. } else if (use_silu) {
  1879. hparams.ffn_op = FFN_SILU;
  1880. log_ffn_op = "silu";
  1881. } else {
  1882. hparams.ffn_op = FFN_GELU_QUICK;
  1883. log_ffn_op = "gelu_quick";
  1884. }
  1885. }
  1886. {
  1887. std::string mm_patch_merge_type;
  1888. get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
  1889. if (mm_patch_merge_type == "spatial_unpad") {
  1890. hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD;
  1891. }
  1892. }
  1893. if (is_vision) {
  1894. int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN);
  1895. int idx_std = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD);
  1896. GGML_ASSERT(idx_mean >= 0 && "image_mean not found");
  1897. GGML_ASSERT(idx_std >= 0 && "image_std not found");
  1898. const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean);
  1899. const float * std_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std);
  1900. for (int i = 0; i < 3; ++i) {
  1901. hparams.image_mean[i] = mean_data[i];
  1902. hparams.image_std[i] = std_data[i];
  1903. }
  1904. }
  1905. // Load the vision feature layer indices if they are explicitly provided;
  1906. // if multiple vision feature layers are present, the values will be concatenated
  1907. // to form the final visual features.
  1908. // NOTE: gguf conversions should standardize the values of the vision feature layer to
  1909. // be non-negative, since we use -1 to mark values as unset here.
  1910. std::vector<int> vision_feature_layer;
  1911. get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false);
  1912. // convert std::vector to std::unordered_set
  1913. for (auto & layer : vision_feature_layer) {
  1914. hparams.vision_feature_layer.insert(layer);
  1915. }
  1916. // model-specific params
  1917. switch (model.proj_type) {
  1918. case PROJECTOR_TYPE_MINICPMV:
  1919. {
  1920. if (hparams.minicpmv_version == 0) {
  1921. hparams.minicpmv_version = 2; // default to 2 if not set
  1922. }
  1923. } break;
  1924. case PROJECTOR_TYPE_IDEFICS3:
  1925. case PROJECTOR_TYPE_LFM2:
  1926. case PROJECTOR_TYPE_INTERNVL:
  1927. {
  1928. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
  1929. } break;
  1930. case PROJECTOR_TYPE_PIXTRAL:
  1931. {
  1932. hparams.rope_theta = 10000.0f;
  1933. hparams.warmup_image_size = hparams.patch_size * 8;
  1934. // Mistral Small 2506 needs 1024x1024 image size cap to prevent OOM
  1935. // ref: https://github.com/ggml-org/llama.cpp/issues/14310
  1936. hparams.image_size = 1024;
  1937. get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.spatial_merge_size, false);
  1938. } break;
  1939. case PROJECTOR_TYPE_GEMMA3:
  1940. {
  1941. // default value (used by all model sizes in gemma 3 family)
  1942. // number of patches for each **side** is reduced by a factor of 4
  1943. hparams.proj_scale_factor = 4;
  1944. // test model (tinygemma3) has a different value, we optionally read it
  1945. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
  1946. } break;
  1947. case PROJECTOR_TYPE_QWEN2VL:
  1948. {
  1949. // max image size = sqrt(max_pixels) = 3584
  1950. // ref: https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct/blob/main/preprocessor_config.json
  1951. // however, the model use unreasonable memory past 1024 size, we force it to 1024 otherwise it's unusable
  1952. // ref: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/discussions/10
  1953. hparams.image_size = 1024;
  1954. hparams.warmup_image_size = hparams.patch_size * 8;
  1955. } break;
  1956. case PROJECTOR_TYPE_QWEN25VL:
  1957. {
  1958. // max image size = sqrt(max_pixels)
  1959. // https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/preprocessor_config.json
  1960. // however, the model use unreasonable memory past 1024 size, we force it to 1024 otherwise it's unusable
  1961. // ref: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/discussions/10
  1962. hparams.image_size = 1024;
  1963. hparams.warmup_image_size = hparams.patch_size * 8;
  1964. get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern);
  1965. } break;
  1966. case PROJECTOR_TYPE_LLAMA4:
  1967. {
  1968. hparams.rope_theta = 10000.0f;
  1969. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor);
  1970. set_llava_uhd_res_candidates(model, 3);
  1971. } break;
  1972. case PROJECTOR_TYPE_ULTRAVOX:
  1973. case PROJECTOR_TYPE_QWEN2A:
  1974. case PROJECTOR_TYPE_VOXTRAL:
  1975. {
  1976. bool require_stack = model.proj_type == PROJECTOR_TYPE_ULTRAVOX ||
  1977. model.proj_type == PROJECTOR_TYPE_VOXTRAL;
  1978. get_u32(KEY_A_PROJ_STACK_FACTOR, hparams.proj_stack_factor, require_stack);
  1979. if (hparams.n_mel_bins != 128) {
  1980. throw std::runtime_error(string_format("%s: only 128 mel bins are supported for ultravox\n", __func__));
  1981. }
  1982. hparams.ffn_op = FFN_GELU_ERF;
  1983. log_ffn_op = "gelu_erf"; // temporary solution for logging
  1984. } break;
  1985. default:
  1986. break;
  1987. }
  1988. LOG_INF("%s: projector: %s\n", __func__, proj_type.c_str());
  1989. LOG_INF("%s: n_embd: %d\n", __func__, hparams.n_embd);
  1990. LOG_INF("%s: n_head: %d\n", __func__, hparams.n_head);
  1991. LOG_INF("%s: n_ff: %d\n", __func__, hparams.n_ff);
  1992. LOG_INF("%s: n_layer: %d\n", __func__, hparams.n_layer);
  1993. LOG_INF("%s: ffn_op: %s\n", __func__, log_ffn_op.c_str());
  1994. LOG_INF("%s: projection_dim: %d\n", __func__, hparams.projection_dim);
  1995. if (is_vision) {
  1996. LOG_INF("\n--- vision hparams ---\n");
  1997. LOG_INF("%s: image_size: %d\n", __func__, hparams.image_size);
  1998. LOG_INF("%s: patch_size: %d\n", __func__, hparams.patch_size);
  1999. LOG_INF("%s: has_llava_proj: %d\n", __func__, hparams.has_llava_projector);
  2000. LOG_INF("%s: minicpmv_version: %d\n", __func__, hparams.minicpmv_version);
  2001. LOG_INF("%s: proj_scale_factor: %d\n", __func__, hparams.proj_scale_factor);
  2002. LOG_INF("%s: n_wa_pattern: %d\n", __func__, hparams.n_wa_pattern);
  2003. } else if (is_audio) {
  2004. LOG_INF("\n--- audio hparams ---\n");
  2005. LOG_INF("%s: n_mel_bins: %d\n", __func__, hparams.n_mel_bins);
  2006. LOG_INF("%s: proj_stack_factor: %d\n", __func__, hparams.proj_stack_factor);
  2007. }
  2008. LOG_INF("\n");
  2009. LOG_INF("%s: model size: %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
  2010. LOG_INF("%s: metadata size: %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
  2011. }
  2012. }
  2013. void load_tensors(clip_ctx & ctx_clip) {
  2014. auto & model = ctx_clip.model;
  2015. auto & hparams = model.hparams;
  2016. std::map<std::string, size_t> tensor_offset;
  2017. std::vector<ggml_tensor *> tensors_to_load;
  2018. // TODO @ngxson : support both audio and video in the future
  2019. const char * prefix = model.modality == CLIP_MODALITY_AUDIO ? "a" : "v";
  2020. // get offsets
  2021. for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) {
  2022. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  2023. tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i);
  2024. }
  2025. // create data context
  2026. struct ggml_init_params params = {
  2027. /*.mem_size =*/ static_cast<size_t>(gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(),
  2028. /*.mem_buffer =*/ NULL,
  2029. /*.no_alloc =*/ true,
  2030. };
  2031. ctx_clip.ctx_data.reset(ggml_init(params));
  2032. if (!ctx_clip.ctx_data) {
  2033. throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
  2034. }
  2035. // helper function
  2036. auto get_tensor = [&](const std::string & name, bool required = true) {
  2037. ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
  2038. if (!cur && required) {
  2039. throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
  2040. }
  2041. if (cur) {
  2042. tensors_to_load.push_back(cur);
  2043. // add tensors to context
  2044. ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
  2045. ggml_set_name(data_tensor, cur->name);
  2046. cur = data_tensor;
  2047. }
  2048. return cur;
  2049. };
  2050. model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
  2051. model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, prefix, "weight"), false);
  2052. model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, prefix, "bias"), false);
  2053. model.post_ln_w = get_tensor(string_format(TN_LN_POST, prefix, "weight"), false);
  2054. model.post_ln_b = get_tensor(string_format(TN_LN_POST, prefix, "bias"), false);
  2055. model.patch_bias = get_tensor(TN_PATCH_BIAS, false);
  2056. model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD, false);
  2057. model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
  2058. model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, prefix), false);
  2059. // layers
  2060. model.layers.resize(hparams.n_layer);
  2061. for (int il = 0; il < hparams.n_layer; ++il) {
  2062. auto & layer = model.layers[il];
  2063. layer.k_w = get_tensor(string_format(TN_ATTN_K, prefix, il, "weight"));
  2064. layer.q_w = get_tensor(string_format(TN_ATTN_Q, prefix, il, "weight"));
  2065. layer.v_w = get_tensor(string_format(TN_ATTN_V, prefix, il, "weight"));
  2066. layer.o_w = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "weight"));
  2067. layer.k_norm = get_tensor(string_format(TN_ATTN_K_NORM, prefix, il, "weight"), false);
  2068. layer.q_norm = get_tensor(string_format(TN_ATTN_Q_NORM, prefix, il, "weight"), false);
  2069. layer.ln_1_w = get_tensor(string_format(TN_LN_1, prefix, il, "weight"), false);
  2070. layer.ln_2_w = get_tensor(string_format(TN_LN_2, prefix, il, "weight"), false);
  2071. layer.ls_1_w = get_tensor(string_format(TN_LS_1, prefix, il, "weight"), false); // no bias
  2072. layer.ls_2_w = get_tensor(string_format(TN_LS_2, prefix, il, "weight"), false); // no bias
  2073. layer.k_b = get_tensor(string_format(TN_ATTN_K, prefix, il, "bias"), false);
  2074. layer.q_b = get_tensor(string_format(TN_ATTN_Q, prefix, il, "bias"), false);
  2075. layer.v_b = get_tensor(string_format(TN_ATTN_V, prefix, il, "bias"), false);
  2076. layer.o_b = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "bias"), false);
  2077. layer.ln_1_b = get_tensor(string_format(TN_LN_1, prefix, il, "bias"), false);
  2078. layer.ln_2_b = get_tensor(string_format(TN_LN_2, prefix, il, "bias"), false);
  2079. // ffn
  2080. layer.ff_up_w = get_tensor(string_format(TN_FFN_UP, prefix, il, "weight"));
  2081. layer.ff_up_b = get_tensor(string_format(TN_FFN_UP, prefix, il, "bias"), false);
  2082. layer.ff_gate_w = get_tensor(string_format(TN_FFN_GATE, prefix, il, "weight"), false);
  2083. layer.ff_gate_b = get_tensor(string_format(TN_FFN_GATE, prefix, il, "bias"), false);
  2084. layer.ff_down_w = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "weight"));
  2085. layer.ff_down_b = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "bias"), false);
  2086. // some models already exported with legacy (incorrect) naming which is quite messy, let's fix it here
  2087. // note: Qwen model converted from the old surgery script has n_ff = 0, so we cannot use n_ff to check!
  2088. if (layer.ff_up_w && layer.ff_down_w && layer.ff_down_w->ne[0] == hparams.n_embd) {
  2089. // swap up and down weights
  2090. ggml_tensor * tmp = layer.ff_up_w;
  2091. layer.ff_up_w = layer.ff_down_w;
  2092. layer.ff_down_w = tmp;
  2093. // swap up and down biases
  2094. tmp = layer.ff_up_b;
  2095. layer.ff_up_b = layer.ff_down_b;
  2096. layer.ff_down_b = tmp;
  2097. }
  2098. }
  2099. switch (model.proj_type) {
  2100. case PROJECTOR_TYPE_MLP:
  2101. case PROJECTOR_TYPE_MLP_NORM:
  2102. {
  2103. // LLaVA projection
  2104. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false);
  2105. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false);
  2106. // Yi-type llava
  2107. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false);
  2108. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  2109. // missing in Yi-type llava
  2110. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false);
  2111. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  2112. // Yi-type llava
  2113. model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false);
  2114. model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false);
  2115. model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false);
  2116. model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false);
  2117. if (model.mm_3_w) {
  2118. // TODO: this is a hack to support Yi-type llava
  2119. model.proj_type = PROJECTOR_TYPE_MLP_NORM;
  2120. }
  2121. model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
  2122. } break;
  2123. case PROJECTOR_TYPE_LDP:
  2124. {
  2125. // MobileVLM projection
  2126. model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2127. model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  2128. model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  2129. model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  2130. model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
  2131. model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
  2132. model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
  2133. model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
  2134. model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
  2135. model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
  2136. model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
  2137. model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
  2138. model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
  2139. model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
  2140. model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
  2141. model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
  2142. model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
  2143. model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
  2144. model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
  2145. model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
  2146. model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
  2147. model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
  2148. model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
  2149. model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
  2150. } break;
  2151. case PROJECTOR_TYPE_LDPV2:
  2152. {
  2153. // MobilVLM_V2 projection
  2154. model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  2155. model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  2156. model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
  2157. model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias"));
  2158. model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight"));
  2159. model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias"));
  2160. } break;
  2161. case PROJECTOR_TYPE_MINICPMV:
  2162. {
  2163. // model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
  2164. model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K);
  2165. model.mm_model_query = get_tensor(TN_MINICPMV_QUERY);
  2166. model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ);
  2167. model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ);
  2168. model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight"));
  2169. model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight"));
  2170. model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight"));
  2171. model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias"));
  2172. model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias"));
  2173. model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias"));
  2174. model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight"));
  2175. model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias"));
  2176. model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight"));
  2177. model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias"));
  2178. model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight"));
  2179. model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias"));
  2180. model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight"));
  2181. model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias"));
  2182. } break;
  2183. case PROJECTOR_TYPE_GLM_EDGE:
  2184. {
  2185. model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
  2186. model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
  2187. model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR, "weight"));
  2188. model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "weight"));
  2189. model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "bias"));
  2190. model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H, "weight"));
  2191. model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE, "weight"));
  2192. model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H, "weight"));
  2193. model.mm_glm_tok_boi = get_tensor(string_format(TN_TOK_GLM_BOI, "weight"));
  2194. model.mm_glm_tok_eoi = get_tensor(string_format(TN_TOK_GLM_EOI, "weight"));
  2195. } break;
  2196. case PROJECTOR_TYPE_QWEN2VL:
  2197. case PROJECTOR_TYPE_QWEN25VL:
  2198. {
  2199. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
  2200. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
  2201. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2202. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  2203. } break;
  2204. case PROJECTOR_TYPE_GEMMA3:
  2205. {
  2206. model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
  2207. model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
  2208. } break;
  2209. case PROJECTOR_TYPE_IDEFICS3:
  2210. {
  2211. model.projection = get_tensor(TN_MM_PROJECTOR);
  2212. } break;
  2213. case PROJECTOR_TYPE_LFM2:
  2214. {
  2215. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM);
  2216. model.mm_input_norm_b = get_tensor(TN_MM_INP_NORM_B);
  2217. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2218. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"));
  2219. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2220. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  2221. } break;
  2222. case PROJECTOR_TYPE_PIXTRAL:
  2223. {
  2224. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2225. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  2226. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2227. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  2228. // [IMG_BREAK] token embedding
  2229. model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK);
  2230. // for mistral small 3.1
  2231. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
  2232. model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
  2233. } break;
  2234. case PROJECTOR_TYPE_ULTRAVOX:
  2235. {
  2236. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2237. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2238. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2239. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2240. model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
  2241. model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
  2242. model.mm_norm_pre_w = get_tensor(string_format(TN_MM_NORM_PRE, "weight"));
  2243. model.mm_norm_mid_w = get_tensor(string_format(TN_MM_NORM_MID, "weight"));
  2244. } break;
  2245. case PROJECTOR_TYPE_QWEN2A:
  2246. {
  2247. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2248. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2249. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2250. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2251. model.mm_fc_w = get_tensor(string_format(TN_MM_AUDIO_FC, "weight"));
  2252. model.mm_fc_b = get_tensor(string_format(TN_MM_AUDIO_FC, "bias"));
  2253. } break;
  2254. case PROJECTOR_TYPE_VOXTRAL:
  2255. {
  2256. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2257. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2258. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2259. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2260. model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
  2261. model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
  2262. } break;
  2263. case PROJECTOR_TYPE_INTERNVL:
  2264. {
  2265. model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  2266. model.mm_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  2267. model.mm_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2268. model.mm_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  2269. model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  2270. model.mm_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  2271. } break;
  2272. case PROJECTOR_TYPE_LLAMA4:
  2273. {
  2274. model.mm_model_proj = get_tensor(TN_MM_PROJECTOR);
  2275. model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2276. model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
  2277. } break;
  2278. default:
  2279. GGML_ASSERT(false && "unknown projector type");
  2280. }
  2281. // load data
  2282. {
  2283. std::vector<uint8_t> read_buf;
  2284. auto fin = std::ifstream(fname, std::ios::binary);
  2285. if (!fin) {
  2286. throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
  2287. }
  2288. // alloc memory and offload data
  2289. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
  2290. ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
  2291. ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  2292. for (auto & t : tensors_to_load) {
  2293. ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
  2294. const size_t offset = tensor_offset[t->name];
  2295. fin.seekg(offset, std::ios::beg);
  2296. if (!fin) {
  2297. throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name));
  2298. }
  2299. size_t num_bytes = ggml_nbytes(cur);
  2300. if (ggml_backend_buft_is_host(buft)) {
  2301. // for the CPU and Metal backend, we can read directly into the tensor
  2302. fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
  2303. } else {
  2304. // read into a temporary buffer first, then copy to device memory
  2305. read_buf.resize(num_bytes);
  2306. fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
  2307. ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
  2308. }
  2309. }
  2310. fin.close();
  2311. LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str());
  2312. }
  2313. }
  2314. void alloc_compute_meta(clip_ctx & ctx_clip) {
  2315. const auto & hparams = ctx_clip.model.hparams;
  2316. ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead());
  2317. // create a fake batch
  2318. clip_image_f32_batch batch;
  2319. clip_image_f32_ptr img(clip_image_f32_init());
  2320. if (ctx_clip.model.modality == CLIP_MODALITY_VISION) {
  2321. img->nx = hparams.warmup_image_size;
  2322. img->ny = hparams.warmup_image_size;
  2323. } else {
  2324. img->nx = hparams.warmup_audio_size;
  2325. img->ny = hparams.n_mel_bins;
  2326. }
  2327. batch.entries.push_back(std::move(img));
  2328. ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch);
  2329. ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
  2330. for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
  2331. ggml_backend_t backend = ctx_clip.backend_ptrs[i];
  2332. ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
  2333. size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend);
  2334. if (size > 1) {
  2335. LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  2336. ggml_backend_buft_name(buft),
  2337. size / 1024.0 / 1024.0);
  2338. }
  2339. }
  2340. }
  2341. void get_bool(const std::string & key, bool & output, bool required = true) {
  2342. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2343. if (i < 0) {
  2344. if (required) throw std::runtime_error("Key not found: " + key);
  2345. return;
  2346. }
  2347. output = gguf_get_val_bool(ctx_gguf.get(), i);
  2348. }
  2349. void get_i32(const std::string & key, int & output, bool required = true) {
  2350. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2351. if (i < 0) {
  2352. if (required) throw std::runtime_error("Key not found: " + key);
  2353. return;
  2354. }
  2355. output = gguf_get_val_i32(ctx_gguf.get(), i);
  2356. }
  2357. void get_u32(const std::string & key, int & output, bool required = true) {
  2358. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2359. if (i < 0) {
  2360. if (required) throw std::runtime_error("Key not found: " + key);
  2361. return;
  2362. }
  2363. output = gguf_get_val_u32(ctx_gguf.get(), i);
  2364. }
  2365. void get_f32(const std::string & key, float & output, bool required = true) {
  2366. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2367. if (i < 0) {
  2368. if (required) throw std::runtime_error("Key not found: " + key);
  2369. return;
  2370. }
  2371. output = gguf_get_val_f32(ctx_gguf.get(), i);
  2372. }
  2373. void get_string(const std::string & key, std::string & output, bool required = true) {
  2374. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2375. if (i < 0) {
  2376. if (required) throw std::runtime_error("Key not found: " + key);
  2377. return;
  2378. }
  2379. output = std::string(gguf_get_val_str(ctx_gguf.get(), i));
  2380. }
  2381. void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) {
  2382. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2383. if (i < 0) {
  2384. if (required) throw std::runtime_error("Key not found: " + key);
  2385. return;
  2386. }
  2387. int n = gguf_get_arr_n(ctx_gguf.get(), i);
  2388. output.resize(n);
  2389. const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i);
  2390. for (int i = 0; i < n; ++i) {
  2391. output[i] = values[i];
  2392. }
  2393. }
  2394. void set_llava_uhd_res_candidates(clip_model & model, const int max_patches_per_side) {
  2395. auto & hparams = model.hparams;
  2396. for (int x = 1; x <= max_patches_per_side; x++) {
  2397. for (int y = 1; y <= max_patches_per_side; y++) {
  2398. if (x == 1 && y == 1) {
  2399. continue; // skip the first point
  2400. }
  2401. hparams.image_res_candidates.push_back(clip_image_size{
  2402. x*hparams.image_size,
  2403. y*hparams.image_size,
  2404. });
  2405. }
  2406. }
  2407. }
  2408. };
  2409. struct clip_init_result clip_init(const char * fname, struct clip_context_params ctx_params) {
  2410. g_logger_state.verbosity_thold = ctx_params.verbosity;
  2411. clip_ctx * ctx_vision = nullptr;
  2412. clip_ctx * ctx_audio = nullptr;
  2413. try {
  2414. clip_model_loader loader(fname);
  2415. if (loader.has_vision) {
  2416. ctx_vision = new clip_ctx(ctx_params);
  2417. loader.load_hparams(ctx_vision->model, CLIP_MODALITY_VISION);
  2418. loader.load_tensors(*ctx_vision);
  2419. loader.alloc_compute_meta(*ctx_vision);
  2420. }
  2421. if (loader.has_audio) {
  2422. ctx_audio = new clip_ctx(ctx_params);
  2423. loader.load_hparams(ctx_audio->model, CLIP_MODALITY_AUDIO);
  2424. loader.load_tensors(*ctx_audio);
  2425. loader.alloc_compute_meta(*ctx_audio);
  2426. }
  2427. } catch (const std::exception & e) {
  2428. LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what());
  2429. if (ctx_vision) {
  2430. delete ctx_vision;
  2431. }
  2432. if (ctx_audio) {
  2433. delete ctx_audio;
  2434. }
  2435. return {nullptr, nullptr};
  2436. }
  2437. return {ctx_vision, ctx_audio};
  2438. }
  2439. struct clip_image_size * clip_image_size_init() {
  2440. struct clip_image_size * load_image_size = new struct clip_image_size();
  2441. load_image_size->width = 448;
  2442. load_image_size->height = 448;
  2443. return load_image_size;
  2444. }
  2445. struct clip_image_u8 * clip_image_u8_init() {
  2446. return new clip_image_u8();
  2447. }
  2448. struct clip_image_f32 * clip_image_f32_init() {
  2449. return new clip_image_f32();
  2450. }
  2451. struct clip_image_f32_batch * clip_image_f32_batch_init() {
  2452. return new clip_image_f32_batch();
  2453. }
  2454. unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
  2455. if (nx) *nx = img->nx;
  2456. if (ny) *ny = img->ny;
  2457. return img->buf.data();
  2458. }
  2459. void clip_image_size_free(struct clip_image_size * load_image_size) {
  2460. if (load_image_size == nullptr) {
  2461. return;
  2462. }
  2463. delete load_image_size;
  2464. }
  2465. void clip_image_u8_free(struct clip_image_u8 * img) { if (img) delete img; }
  2466. void clip_image_f32_free(struct clip_image_f32 * img) { if (img) delete img; }
  2467. void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { if (batch) delete batch; }
  2468. void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { if (batch) delete batch; }
  2469. size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
  2470. return batch->entries.size();
  2471. }
  2472. size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
  2473. if (idx < 0 || idx >= (int)batch->entries.size()) {
  2474. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  2475. return 0;
  2476. }
  2477. return batch->entries[idx]->nx;
  2478. }
  2479. size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
  2480. if (idx < 0 || idx >= (int)batch->entries.size()) {
  2481. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  2482. return 0;
  2483. }
  2484. return batch->entries[idx]->ny;
  2485. }
  2486. clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
  2487. if (idx < 0 || idx >= (int)batch->entries.size()) {
  2488. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  2489. return nullptr;
  2490. }
  2491. return batch->entries[idx].get();
  2492. }
  2493. void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
  2494. img->nx = nx;
  2495. img->ny = ny;
  2496. img->buf.resize(3 * nx * ny);
  2497. memcpy(img->buf.data(), rgb_pixels, img->buf.size());
  2498. }
  2499. // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
  2500. static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
  2501. dst.nx = src.nx;
  2502. dst.ny = src.ny;
  2503. dst.buf.resize(src.buf.size());
  2504. // TODO @ngxson : seems like this could be done more efficiently on cgraph
  2505. for (size_t i = 0; i < src.buf.size(); ++i) {
  2506. int c = i % 3; // rgb
  2507. dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
  2508. }
  2509. }
  2510. // set of tools to manupulate images
  2511. // in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
  2512. struct image_manipulation {
  2513. // Bilinear resize function
  2514. static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
  2515. dst.nx = target_width;
  2516. dst.ny = target_height;
  2517. dst.buf.resize(3 * target_width * target_height);
  2518. float x_ratio = static_cast<float>(src.nx - 1) / target_width;
  2519. float y_ratio = static_cast<float>(src.ny - 1) / target_height;
  2520. for (int y = 0; y < target_height; y++) {
  2521. for (int x = 0; x < target_width; x++) {
  2522. float px = x_ratio * x;
  2523. float py = y_ratio * y;
  2524. int x_floor = static_cast<int>(px);
  2525. int y_floor = static_cast<int>(py);
  2526. float x_lerp = px - x_floor;
  2527. float y_lerp = py - y_floor;
  2528. for (int c = 0; c < 3; c++) {
  2529. float top = lerp(
  2530. static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
  2531. static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
  2532. x_lerp
  2533. );
  2534. float bottom = lerp(
  2535. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
  2536. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
  2537. x_lerp
  2538. );
  2539. dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
  2540. }
  2541. }
  2542. }
  2543. }
  2544. // Bicubic resize function
  2545. // part of image will be cropped if the aspect ratio is different
  2546. static bool bicubic_resize(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
  2547. const int nx = img.nx;
  2548. const int ny = img.ny;
  2549. dst.nx = target_width;
  2550. dst.ny = target_height;
  2551. dst.buf.resize(3 * target_width * target_height);
  2552. float Cc;
  2553. float C[5];
  2554. float d0, d2, d3, a0, a1, a2, a3;
  2555. int i, j, k, jj;
  2556. int x, y;
  2557. float dx, dy;
  2558. float tx, ty;
  2559. tx = (float)nx / (float)target_width;
  2560. ty = (float)ny / (float)target_height;
  2561. // Bicubic interpolation; adapted from ViT.cpp, inspired from :
  2562. // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
  2563. // -> https://en.wikipedia.org/wiki/Bicubic_interpolation
  2564. for (i = 0; i < target_height; i++) {
  2565. for (j = 0; j < target_width; j++) {
  2566. x = (int)(tx * j);
  2567. y = (int)(ty * i);
  2568. dx = tx * j - x;
  2569. dy = ty * i - y;
  2570. for (k = 0; k < 3; k++) {
  2571. for (jj = 0; jj <= 3; jj++) {
  2572. d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2573. d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2574. d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2575. a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2576. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  2577. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  2578. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  2579. C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
  2580. d0 = C[0] - C[1];
  2581. d2 = C[2] - C[1];
  2582. d3 = C[3] - C[1];
  2583. a0 = C[1];
  2584. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  2585. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  2586. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  2587. Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
  2588. const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
  2589. dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
  2590. }
  2591. }
  2592. }
  2593. }
  2594. return true;
  2595. }
  2596. // llava-1.6 type of resize_and_pad
  2597. // if the ratio is not 1:1, padding with pad_color will be applied
  2598. // pad_color is single channel, default is 0 (black)
  2599. static void resize_and_pad_image(const clip_image_u8 & image, clip_image_u8 & dst, const clip_image_size & target_resolution, std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
  2600. int target_width = target_resolution.width;
  2601. int target_height = target_resolution.height;
  2602. float scale_w = static_cast<float>(target_width) / image.nx;
  2603. float scale_h = static_cast<float>(target_height) / image.ny;
  2604. int new_width, new_height;
  2605. if (scale_w < scale_h) {
  2606. new_width = target_width;
  2607. new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
  2608. } else {
  2609. new_height = target_height;
  2610. new_width = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
  2611. }
  2612. clip_image_u8 resized_image;
  2613. bicubic_resize(image, resized_image, new_width, new_height);
  2614. clip_image_u8 padded_image;
  2615. padded_image.nx = target_width;
  2616. padded_image.ny = target_height;
  2617. padded_image.buf.resize(3 * target_width * target_height);
  2618. // Fill the padded image with the fill color
  2619. for (size_t i = 0; i < padded_image.buf.size(); i += 3) {
  2620. padded_image.buf[i] = pad_color[0];
  2621. padded_image.buf[i + 1] = pad_color[1];
  2622. padded_image.buf[i + 2] = pad_color[2];
  2623. }
  2624. // Calculate padding offsets
  2625. int pad_x = (target_width - new_width) / 2;
  2626. int pad_y = (target_height - new_height) / 2;
  2627. // Copy the resized image into the center of the padded buffer
  2628. for (int y = 0; y < new_height; ++y) {
  2629. for (int x = 0; x < new_width; ++x) {
  2630. for (int c = 0; c < 3; ++c) {
  2631. padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
  2632. }
  2633. }
  2634. }
  2635. dst = std::move(padded_image);
  2636. }
  2637. static void crop_image(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
  2638. dst.nx = w;
  2639. dst.ny = h;
  2640. dst.buf.resize(3 * w * h);
  2641. for (int i = 0; i < h; ++i) {
  2642. for (int j = 0; j < w; ++j) {
  2643. int src_idx = 3 * ((y + i)*image.nx + (x + j));
  2644. int dst_idx = 3 * (i*w + j);
  2645. dst.buf[dst_idx] = image.buf[src_idx];
  2646. dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
  2647. dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
  2648. }
  2649. }
  2650. }
  2651. // calculate the size of the **resized** image, while preserving the aspect ratio
  2652. // the calculated size will be aligned to the nearest multiple of align_size
  2653. // if H or W size is larger than max_dimension, it will be resized to max_dimension
  2654. static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int max_dimension) {
  2655. if (inp_size.width <= 0 || inp_size.height <= 0 || align_size <= 0 || max_dimension <= 0) {
  2656. return {0, 0};
  2657. }
  2658. float scale = std::min(1.0f, std::min(static_cast<float>(max_dimension) / inp_size.width,
  2659. static_cast<float>(max_dimension) / inp_size.height));
  2660. float target_width_f = static_cast<float>(inp_size.width) * scale;
  2661. float target_height_f = static_cast<float>(inp_size.height) * scale;
  2662. int aligned_width = CLIP_ALIGN((int)target_width_f, align_size);
  2663. int aligned_height = CLIP_ALIGN((int)target_height_f, align_size);
  2664. return {aligned_width, aligned_height};
  2665. }
  2666. private:
  2667. static inline int clip(int x, int lower, int upper) {
  2668. return std::max(lower, std::min(x, upper));
  2669. }
  2670. // Linear interpolation between two points
  2671. static inline float lerp(float s, float e, float t) {
  2672. return s + (e - s) * t;
  2673. }
  2674. };
  2675. /**
  2676. * implementation of LLaVA-UHD:
  2677. * - https://arxiv.org/pdf/2403.11703
  2678. * - https://github.com/thunlp/LLaVA-UHD
  2679. * - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
  2680. *
  2681. * overview:
  2682. * - an image always have a single overview (downscaled image)
  2683. * - an image can have 0 or multiple slices, depending on the image size
  2684. * - each slice can then be considered as a separate image
  2685. *
  2686. * for example:
  2687. *
  2688. * [overview] --> [slice 1] --> [slice 2]
  2689. * | |
  2690. * +--> [slice 3] --> [slice 4]
  2691. */
  2692. struct llava_uhd {
  2693. struct slice_coordinates {
  2694. int x;
  2695. int y;
  2696. clip_image_size size;
  2697. };
  2698. struct slice_instructions {
  2699. clip_image_size overview_size; // size of downscaled image
  2700. clip_image_size refined_size; // size of image right before slicing (must be multiple of slice size)
  2701. clip_image_size grid_size; // grid_size.width * grid_size.height = number of slices
  2702. std::vector<slice_coordinates> slices;
  2703. bool padding_refined = false; // if true, refine image will be padded to the grid size (e.g. llava-1.6)
  2704. };
  2705. static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
  2706. slice_instructions res;
  2707. const int patch_size = clip_get_patch_size(ctx);
  2708. const int slice_size = clip_get_image_size(ctx);
  2709. const int original_width = original_size.width;
  2710. const int original_height = original_size.height;
  2711. const bool has_slices = original_size.width > slice_size || original_size.height > slice_size;
  2712. const bool has_pinpoints = !ctx->model.hparams.image_res_candidates.empty();
  2713. if (!has_slices) {
  2714. // skip slicing logic
  2715. res.overview_size = clip_image_size{slice_size, slice_size};
  2716. res.refined_size = clip_image_size{0, 0};
  2717. res.grid_size = clip_image_size{0, 0};
  2718. return res;
  2719. }
  2720. if (has_pinpoints) {
  2721. // has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
  2722. auto refine_size = llava_uhd::select_best_resolution(
  2723. original_size,
  2724. ctx->model.hparams.image_res_candidates);
  2725. res.overview_size = clip_image_size{slice_size, slice_size};
  2726. res.refined_size = refine_size;
  2727. res.grid_size = clip_image_size{0, 0};
  2728. res.padding_refined = true;
  2729. LOG_DBG("%s: using pinpoints for slicing\n", __func__);
  2730. LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d\n",
  2731. __func__, original_width, original_height,
  2732. res.overview_size.width, res.overview_size.height,
  2733. res.refined_size.width, res.refined_size.height);
  2734. for (int y = 0; y < refine_size.height; y += slice_size) {
  2735. for (int x = 0; x < refine_size.width; x += slice_size) {
  2736. slice_coordinates slice;
  2737. slice.x = x;
  2738. slice.y = y;
  2739. slice.size.width = std::min(slice_size, refine_size.width - x);
  2740. slice.size.height = std::min(slice_size, refine_size.height - y);
  2741. res.slices.push_back(slice);
  2742. LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
  2743. __func__, (int)res.slices.size() - 1,
  2744. slice.x, slice.y, slice.size.width, slice.size.height);
  2745. }
  2746. }
  2747. res.grid_size.height = refine_size.height / slice_size;
  2748. res.grid_size.width = refine_size.width / slice_size;
  2749. LOG_DBG("%s: grid size: %d x %d\n", __func__, res.grid_size.width, res.grid_size.height);
  2750. return res;
  2751. }
  2752. // no pinpoints, dynamically calculate the grid size (e.g. minicpmv)
  2753. auto best_size = get_best_resize(original_size, slice_size, patch_size, !has_slices);
  2754. res.overview_size = best_size;
  2755. {
  2756. const int max_slice_nums = 9; // TODO: this is only used by minicpmv, maybe remove it
  2757. const float log_ratio = log((float)original_width / original_height);
  2758. const float ratio = (float)original_width * original_height / (slice_size * slice_size);
  2759. const int multiple = fmin(ceil(ratio), max_slice_nums);
  2760. auto best_grid = get_best_grid(max_slice_nums, multiple, log_ratio);
  2761. auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
  2762. res.grid_size = best_grid;
  2763. res.refined_size = refine_size;
  2764. LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d, grid size: %d x %d\n",
  2765. __func__, original_width, original_height,
  2766. res.overview_size.width, res.overview_size.height,
  2767. res.refined_size.width, res.refined_size.height,
  2768. res.grid_size.width, res.grid_size.height);
  2769. int width = refine_size.width;
  2770. int height = refine_size.height;
  2771. int grid_x = int(width / best_grid.width);
  2772. int grid_y = int(height / best_grid.height);
  2773. for (int patches_y = 0, ic = 0;
  2774. patches_y < refine_size.height && ic < best_grid.height;
  2775. patches_y += grid_y, ic += 1) {
  2776. for (int patches_x = 0, jc = 0;
  2777. patches_x < refine_size.width && jc < best_grid.width;
  2778. patches_x += grid_x, jc += 1) {
  2779. slice_coordinates slice;
  2780. slice.x = patches_x;
  2781. slice.y = patches_y;
  2782. slice.size.width = grid_x;
  2783. slice.size.height = grid_y;
  2784. res.slices.push_back(slice);
  2785. LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
  2786. __func__, (int)res.slices.size() - 1,
  2787. slice.x, slice.y, slice.size.width, slice.size.height);
  2788. }
  2789. }
  2790. }
  2791. return res;
  2792. }
  2793. static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
  2794. std::vector<clip_image_u8_ptr> output;
  2795. // resize to overview size
  2796. clip_image_u8_ptr resized_img(clip_image_u8_init());
  2797. image_manipulation::bicubic_resize(*img, *resized_img, inst.overview_size.width, inst.overview_size.height);
  2798. output.push_back(std::move(resized_img));
  2799. if (inst.slices.empty()) {
  2800. // no slices, just return the resized image
  2801. return output;
  2802. }
  2803. // resize to refined size
  2804. clip_image_u8_ptr refined_img(clip_image_u8_init());
  2805. if (inst.padding_refined) {
  2806. image_manipulation::resize_and_pad_image(*img, *refined_img, inst.refined_size);
  2807. } else {
  2808. image_manipulation::bilinear_resize(*img, *refined_img, inst.refined_size.width, inst.refined_size.height);
  2809. }
  2810. // create slices
  2811. for (const auto & slice : inst.slices) {
  2812. int x = slice.x;
  2813. int y = slice.y;
  2814. int w = slice.size.width;
  2815. int h = slice.size.height;
  2816. clip_image_u8_ptr img_slice(clip_image_u8_init());
  2817. image_manipulation::crop_image(*refined_img, *img_slice, x, y, w, h);
  2818. output.push_back(std::move(img_slice));
  2819. }
  2820. return output;
  2821. }
  2822. private:
  2823. static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
  2824. int width = original_size.width;
  2825. int height = original_size.height;
  2826. if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
  2827. float r = static_cast<float>(width) / height;
  2828. height = static_cast<int>(scale_resolution / std::sqrt(r));
  2829. width = static_cast<int>(height * r);
  2830. }
  2831. clip_image_size res;
  2832. res.width = ensure_divide(width, patch_size);
  2833. res.height = ensure_divide(height, patch_size);
  2834. return res;
  2835. }
  2836. static clip_image_size resize_maintain_aspect_ratio(const clip_image_size & orig, const clip_image_size & target_max) {
  2837. float scale_width = static_cast<float>(target_max.width) / orig.width;
  2838. float scale_height = static_cast<float>(target_max.height) / orig.height;
  2839. float scale = std::min(scale_width, scale_height);
  2840. return clip_image_size{
  2841. static_cast<int>(orig.width * scale),
  2842. static_cast<int>(orig.height * scale),
  2843. };
  2844. }
  2845. /**
  2846. * Selects the best resolution from a list of possible resolutions based on the original size.
  2847. *
  2848. * For example, when given a list of resolutions:
  2849. * - 100x100
  2850. * - 200x100
  2851. * - 100x200
  2852. * - 200x200
  2853. *
  2854. * And an input image of size 111x200, then 100x200 is the best fit (least wasted resolution).
  2855. *
  2856. * @param original_size The original size of the image
  2857. * @param possible_resolutions A list of possible resolutions
  2858. * @return The best fit resolution
  2859. */
  2860. static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
  2861. clip_image_size best_fit;
  2862. int min_wasted_area = std::numeric_limits<int>::max();
  2863. int max_effective_resolution = 0;
  2864. for (const clip_image_size & candidate : possible_resolutions) {
  2865. auto target_size = resize_maintain_aspect_ratio(original_size, candidate);
  2866. int effective_resolution = std::min(
  2867. target_size.width * target_size.height,
  2868. original_size.width * original_size.height);
  2869. int wasted_area = (candidate.width * candidate.height) - effective_resolution;
  2870. if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_area < min_wasted_area)) {
  2871. max_effective_resolution = effective_resolution;
  2872. min_wasted_area = wasted_area;
  2873. best_fit = candidate;
  2874. }
  2875. LOG_DBG("%s: candidate: %d x %d, target: %d x %d, wasted: %d, effective: %d\n", __func__, candidate.width, candidate.height, target_size.width, target_size.height, wasted_area, effective_resolution);
  2876. }
  2877. return best_fit;
  2878. }
  2879. static int ensure_divide(int length, int patch_size) {
  2880. return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
  2881. }
  2882. static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
  2883. int width = original_size.width;
  2884. int height = original_size.height;
  2885. int grid_x = grid.width;
  2886. int grid_y = grid.height;
  2887. int refine_width = ensure_divide(width, grid_x);
  2888. int refine_height = ensure_divide(height, grid_y);
  2889. clip_image_size grid_size;
  2890. grid_size.width = refine_width / grid_x;
  2891. grid_size.height = refine_height / grid_y;
  2892. auto best_grid_size = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
  2893. int best_grid_width = best_grid_size.width;
  2894. int best_grid_height = best_grid_size.height;
  2895. clip_image_size refine_size;
  2896. refine_size.width = best_grid_width * grid_x;
  2897. refine_size.height = best_grid_height * grid_y;
  2898. return refine_size;
  2899. }
  2900. static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
  2901. std::vector<int> candidate_split_grids_nums;
  2902. for (int i : {multiple - 1, multiple, multiple + 1}) {
  2903. if (i == 1 || i > max_slice_nums) {
  2904. continue;
  2905. }
  2906. candidate_split_grids_nums.push_back(i);
  2907. }
  2908. std::vector<clip_image_size> candidate_grids;
  2909. for (int split_grids_nums : candidate_split_grids_nums) {
  2910. int m = 1;
  2911. while (m <= split_grids_nums) {
  2912. if (split_grids_nums % m == 0) {
  2913. candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
  2914. }
  2915. ++m;
  2916. }
  2917. }
  2918. clip_image_size best_grid{1, 1};
  2919. float min_error = std::numeric_limits<float>::infinity();
  2920. for (const auto& grid : candidate_grids) {
  2921. float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
  2922. if (error < min_error) {
  2923. best_grid = grid;
  2924. min_error = error;
  2925. }
  2926. }
  2927. return best_grid;
  2928. }
  2929. };
  2930. // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
  2931. // res_imgs memory is being allocated here, previous allocations will be freed if found
  2932. bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
  2933. clip_image_size original_size{img->nx, img->ny};
  2934. bool pad_to_square = true;
  2935. auto & params = ctx->model.hparams;
  2936. // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
  2937. if (params.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD) {
  2938. pad_to_square = false;
  2939. }
  2940. if (clip_is_minicpmv(ctx)) {
  2941. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  2942. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  2943. for (size_t i = 0; i < imgs.size(); ++i) {
  2944. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  2945. clip_image_f32_ptr res(clip_image_f32_init());
  2946. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  2947. res_imgs->entries.push_back(std::move(res));
  2948. }
  2949. res_imgs->grid_x = inst.grid_size.width;
  2950. res_imgs->grid_y = inst.grid_size.height;
  2951. return true;
  2952. } else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
  2953. clip_image_u8 resized;
  2954. auto patch_size = params.patch_size * 2;
  2955. auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, patch_size, params.image_size);
  2956. image_manipulation::bicubic_resize(*img, resized, new_size.width, new_size.height);
  2957. clip_image_f32_ptr img_f32(clip_image_f32_init());
  2958. // clip_image_f32_ptr res(clip_image_f32_init());
  2959. normalize_image_u8_to_f32(resized, *img_f32, params.image_mean, params.image_std);
  2960. // res_imgs->data[0] = *res;
  2961. res_imgs->entries.push_back(std::move(img_f32));
  2962. return true;
  2963. }
  2964. else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE
  2965. || ctx->proj_type() == PROJECTOR_TYPE_GEMMA3
  2966. || ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3
  2967. || ctx->proj_type() == PROJECTOR_TYPE_INTERNVL // TODO @ngxson : support dynamic resolution
  2968. ) {
  2969. clip_image_u8 resized_image;
  2970. int sz = params.image_size;
  2971. image_manipulation::resize_and_pad_image(*img, resized_image, {sz, sz});
  2972. clip_image_f32_ptr img_f32(clip_image_f32_init());
  2973. //clip_image_save_to_bmp(resized_image, "resized.bmp");
  2974. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  2975. res_imgs->entries.push_back(std::move(img_f32));
  2976. return true;
  2977. } else if (ctx->proj_type() == PROJECTOR_TYPE_PIXTRAL) {
  2978. clip_image_u8 resized_image;
  2979. auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, params.patch_size, params.image_size);
  2980. image_manipulation::bilinear_resize(*img, resized_image, new_size.width, new_size.height);
  2981. clip_image_f32_ptr img_f32(clip_image_f32_init());
  2982. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  2983. res_imgs->entries.push_back(std::move(img_f32));
  2984. return true;
  2985. } else if (ctx->proj_type() == PROJECTOR_TYPE_LLAMA4) {
  2986. GGML_ASSERT(!params.image_res_candidates.empty());
  2987. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  2988. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  2989. for (size_t i = 0; i < imgs.size(); ++i) {
  2990. clip_image_f32_ptr res(clip_image_f32_init());
  2991. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  2992. res_imgs->entries.push_back(std::move(res));
  2993. }
  2994. res_imgs->grid_x = inst.grid_size.width;
  2995. res_imgs->grid_y = inst.grid_size.height;
  2996. return true;
  2997. } else if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
  2998. GGML_ASSERT(params.proj_scale_factor);
  2999. // smart resize
  3000. const int width = img->nx;
  3001. const int height = img->ny;
  3002. const int total_factor = params.patch_size * params.proj_scale_factor;
  3003. constexpr int min_image_tokens = 64;
  3004. constexpr int max_image_tokens = 256;
  3005. const float min_pixels = min_image_tokens * total_factor * total_factor;
  3006. const float max_pixels = max_image_tokens * total_factor * total_factor;
  3007. auto round_by_factor = [f = total_factor](float x) { return static_cast<int>(std::nearbyintf(x / static_cast<float>(f))) * f; };
  3008. auto ceil_by_factor = [f = total_factor](float x) { return static_cast<int>(std::ceil(x / static_cast<float>(f))) * f; };
  3009. auto floor_by_factor = [f = total_factor](float x) { return static_cast<int>(std::floor(x / static_cast<float>(f))) * f; };
  3010. int h_bar = std::max(total_factor, round_by_factor(height));
  3011. int w_bar = std::max(total_factor, round_by_factor(width));
  3012. if (h_bar * w_bar > max_pixels) {
  3013. const auto beta = std::sqrt((height * width) / max_pixels);
  3014. h_bar = std::max(total_factor, floor_by_factor(height / beta));
  3015. w_bar = std::max(total_factor, floor_by_factor(width / beta));
  3016. } else if (h_bar * w_bar < min_pixels) {
  3017. const auto beta = std::sqrt(min_pixels / (height * width));
  3018. h_bar = ceil_by_factor(height * beta);
  3019. w_bar = ceil_by_factor(width * beta);
  3020. }
  3021. const std::array<uint8_t, 3> pad_color = {122, 116, 104};
  3022. clip_image_u8 resized_img;
  3023. image_manipulation::resize_and_pad_image(*img, resized_img, clip_image_size{w_bar, h_bar}, pad_color);
  3024. clip_image_f32_ptr res(clip_image_f32_init());
  3025. normalize_image_u8_to_f32(resized_img, *res, params.image_mean, params.image_std);
  3026. res_imgs->entries.push_back(std::move(res));
  3027. return true;
  3028. }
  3029. // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
  3030. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  3031. clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
  3032. if (pad_to_square) {
  3033. // for llava-1.5, we resize image to a square, and pad the shorter side with a background color
  3034. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  3035. const int longer_side = std::max(img->nx, img->ny);
  3036. temp->nx = longer_side;
  3037. temp->ny = longer_side;
  3038. temp->buf.resize(3 * longer_side * longer_side);
  3039. // background color in RGB from LLaVA (this is the mean rgb color * 255)
  3040. const std::array<uint8_t, 3> pad_color = {122, 116, 104};
  3041. // resize the image to the target_size
  3042. image_manipulation::resize_and_pad_image(*img, *temp, clip_image_size{params.image_size, params.image_size}, pad_color);
  3043. clip_image_f32_ptr res(clip_image_f32_init());
  3044. normalize_image_u8_to_f32(*temp, *res, params.image_mean, params.image_std);
  3045. res_imgs->entries.push_back(std::move(res));
  3046. return true;
  3047. } else if (!params.image_res_candidates.empty()) {
  3048. // "spatial_unpad" with "anyres" processing for llava-1.6
  3049. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  3050. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  3051. for (size_t i = 0; i < imgs.size(); ++i) {
  3052. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  3053. clip_image_f32_ptr res(clip_image_f32_init());
  3054. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3055. res_imgs->entries.push_back(std::move(res));
  3056. }
  3057. return true;
  3058. }
  3059. GGML_ASSERT(false && "Unknown image preprocessing type");
  3060. }
  3061. ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
  3062. return ctx->model.image_newline;
  3063. }
  3064. void clip_free(clip_ctx * ctx) {
  3065. if (ctx == nullptr) {
  3066. return;
  3067. }
  3068. delete ctx;
  3069. }
  3070. // deprecated
  3071. size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
  3072. const int32_t nx = ctx->model.hparams.image_size;
  3073. const int32_t ny = ctx->model.hparams.image_size;
  3074. return clip_embd_nbytes_by_img(ctx, nx, ny);
  3075. }
  3076. size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h) {
  3077. clip_image_f32 img;
  3078. img.nx = img_w;
  3079. img.ny = img_h;
  3080. return clip_n_output_tokens(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
  3081. }
  3082. int32_t clip_get_image_size(const struct clip_ctx * ctx) {
  3083. return ctx->model.hparams.image_size;
  3084. }
  3085. int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
  3086. return ctx->model.hparams.patch_size;
  3087. }
  3088. int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
  3089. return ctx->model.hparams.n_embd;
  3090. }
  3091. const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
  3092. return ctx->model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
  3093. }
  3094. int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3095. const auto & params = ctx->model.hparams;
  3096. const int n_total = clip_n_output_tokens(ctx, img);
  3097. if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
  3098. return img->nx / (params.patch_size * 2) + (int)(img->nx % params.patch_size > 0);
  3099. }
  3100. return n_total;
  3101. }
  3102. int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3103. const auto & params = ctx->model.hparams;
  3104. if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
  3105. return img->ny / (params.patch_size * 2) + (int)(img->ny % params.patch_size > 0);
  3106. }
  3107. return 1;
  3108. }
  3109. int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3110. const auto & params = ctx->model.hparams;
  3111. // for models with fixed size image, the input image is already pre-processed and resized to square
  3112. int patch_size = params.patch_size;
  3113. int n_patches = (img->nx / patch_size) * (img->ny / patch_size);
  3114. projector_type proj = ctx->proj_type();
  3115. switch (proj) {
  3116. case PROJECTOR_TYPE_MLP:
  3117. case PROJECTOR_TYPE_MLP_NORM:
  3118. {
  3119. // do nothing
  3120. } break;
  3121. case PROJECTOR_TYPE_LDP:
  3122. case PROJECTOR_TYPE_LDPV2:
  3123. case PROJECTOR_TYPE_GLM_EDGE:
  3124. {
  3125. n_patches /= 4;
  3126. if (ctx->model.mm_glm_tok_boi) {
  3127. n_patches += 2; // for BOI and EOI token embeddings
  3128. }
  3129. } break;
  3130. case PROJECTOR_TYPE_MINICPMV:
  3131. {
  3132. // Use actual config value if available, otherwise fall back to hardcoded values
  3133. if (params.minicpmv_query_num > 0) {
  3134. n_patches = params.minicpmv_query_num;
  3135. } else {
  3136. // Fallback to hardcoded values for legacy models
  3137. if (params.minicpmv_version == 2) {
  3138. n_patches = 96;
  3139. } else if (params.minicpmv_version == 3) {
  3140. n_patches = 64;
  3141. } else if (params.minicpmv_version == 4) {
  3142. n_patches = 64;
  3143. } else if (params.minicpmv_version == 5) {
  3144. // MiniCPM-V 4.0
  3145. n_patches = 64;
  3146. } else {
  3147. GGML_ABORT("Unknown minicpmv version");
  3148. }
  3149. }
  3150. } break;
  3151. case PROJECTOR_TYPE_QWEN2VL:
  3152. case PROJECTOR_TYPE_QWEN25VL:
  3153. {
  3154. // dynamic size (2 conv, so double patch size)
  3155. int patch_size = params.patch_size * 2;
  3156. int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
  3157. int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0);
  3158. n_patches = x_patch * y_patch;
  3159. } break;
  3160. case PROJECTOR_TYPE_GEMMA3:
  3161. case PROJECTOR_TYPE_IDEFICS3:
  3162. case PROJECTOR_TYPE_INTERNVL:
  3163. case PROJECTOR_TYPE_LLAMA4:
  3164. case PROJECTOR_TYPE_LFM2:
  3165. {
  3166. // both W and H are divided by proj_scale_factor
  3167. int scale_factor = ctx->model.hparams.proj_scale_factor;
  3168. n_patches /= (scale_factor * scale_factor);
  3169. } break;
  3170. case PROJECTOR_TYPE_PIXTRAL:
  3171. {
  3172. // dynamic size
  3173. int n_merge = params.spatial_merge_size;
  3174. int n_patches_x = img->nx / patch_size / (n_merge > 0 ? n_merge : 1);
  3175. int n_patches_y = img->ny / patch_size / (n_merge > 0 ? n_merge : 1);
  3176. n_patches = n_patches_y * n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
  3177. } break;
  3178. case PROJECTOR_TYPE_VOXTRAL:
  3179. case PROJECTOR_TYPE_ULTRAVOX:
  3180. case PROJECTOR_TYPE_QWEN2A:
  3181. {
  3182. n_patches = img->nx;
  3183. const int proj_stack_factor = ctx->model.hparams.proj_stack_factor;
  3184. if (ctx->model.audio_has_stack_frames()) {
  3185. GGML_ASSERT(proj_stack_factor > 0);
  3186. const int n_len = CLIP_ALIGN(n_patches, proj_stack_factor);
  3187. n_patches = n_len / proj_stack_factor;
  3188. }
  3189. // whisper downscales input token by half after conv1d
  3190. n_patches /= 2;
  3191. if (ctx->model.audio_has_avgpool()) {
  3192. // divide by 2 because of nn.AvgPool1d(2, stride=2)
  3193. n_patches /= 2;
  3194. }
  3195. } break;
  3196. default:
  3197. GGML_ABORT("unsupported projector type");
  3198. }
  3199. return n_patches;
  3200. }
  3201. static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
  3202. assert(embed_dim % 2 == 0);
  3203. int H = pos.size();
  3204. int W = pos[0].size();
  3205. std::vector<float> omega(embed_dim / 2);
  3206. for (int i = 0; i < embed_dim / 2; ++i) {
  3207. omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
  3208. }
  3209. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  3210. for (int h = 0; h < H; ++h) {
  3211. for (int w = 0; w < W; ++w) {
  3212. for (int d = 0; d < embed_dim / 2; ++d) {
  3213. float out_value = pos[h][w] * omega[d];
  3214. emb[h][w][d] = sin(out_value);
  3215. emb[h][w][d + embed_dim / 2] = cos(out_value);
  3216. }
  3217. }
  3218. }
  3219. return emb;
  3220. }
  3221. static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
  3222. assert(embed_dim % 2 == 0);
  3223. std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
  3224. std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)
  3225. int H = emb_h.size();
  3226. int W = emb_h[0].size();
  3227. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  3228. for (int h = 0; h < H; ++h) {
  3229. for (int w = 0; w < W; ++w) {
  3230. for (int d = 0; d < embed_dim / 2; ++d) {
  3231. emb[h][w][d] = emb_h[h][w][d];
  3232. emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
  3233. }
  3234. }
  3235. }
  3236. return emb;
  3237. }
  3238. static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
  3239. int grid_h_size = image_size.first;
  3240. int grid_w_size = image_size.second;
  3241. std::vector<float> grid_h(grid_h_size);
  3242. std::vector<float> grid_w(grid_w_size);
  3243. for (int i = 0; i < grid_h_size; ++i) {
  3244. grid_h[i] = static_cast<float>(i);
  3245. }
  3246. for (int i = 0; i < grid_w_size; ++i) {
  3247. grid_w[i] = static_cast<float>(i);
  3248. }
  3249. std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
  3250. for (int h = 0; h < grid_h_size; ++h) {
  3251. for (int w = 0; w < grid_w_size; ++w) {
  3252. grid[h][w] = grid_w[w];
  3253. }
  3254. }
  3255. std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
  3256. for (int h = 0; h < grid_h_size; ++h) {
  3257. for (int w = 0; w < grid_w_size; ++w) {
  3258. grid_2d[0][h][w] = grid_h[h];
  3259. grid_2d[1][h][w] = grid_w[w];
  3260. }
  3261. }
  3262. std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);
  3263. int H = image_size.first;
  3264. int W = image_size.second;
  3265. std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
  3266. for (int h = 0; h < H; ++h) {
  3267. for (int w = 0; w < W; ++w) {
  3268. pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
  3269. }
  3270. }
  3271. return pos_embed_2d;
  3272. }
  3273. bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
  3274. clip_image_f32_batch imgs;
  3275. clip_image_f32_ptr img_copy(clip_image_f32_init());
  3276. *img_copy = *img;
  3277. imgs.entries.push_back(std::move(img_copy));
  3278. return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
  3279. }
  3280. bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
  3281. const clip_image_f32_batch & imgs = *imgs_c_ptr;
  3282. int batch_size = imgs.entries.size();
  3283. // TODO @ngxson : implement batch size > 1 as a loop
  3284. // we don't need true batching support because the cgraph will gonna be big anyway
  3285. if (batch_size != 1) {
  3286. return false; // only support batch size of 1
  3287. }
  3288. // build the inference graph
  3289. ctx->debug_print_tensors.clear();
  3290. ggml_backend_sched_reset(ctx->sched.get());
  3291. ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
  3292. ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
  3293. // set inputs
  3294. const auto & model = ctx->model;
  3295. const auto & hparams = model.hparams;
  3296. const int image_size_width = imgs.entries[0]->nx;
  3297. const int image_size_height = imgs.entries[0]->ny;
  3298. const int patch_size = hparams.patch_size;
  3299. const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
  3300. const int n_pos = num_patches + (model.class_embedding ? 1 : 0);
  3301. const int pos_w = image_size_width / patch_size;
  3302. const int pos_h = image_size_height / patch_size;
  3303. const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl
  3304. auto get_inp_tensor = [&gf](const char * name) {
  3305. ggml_tensor * inp = ggml_graph_get_tensor(gf, name);
  3306. if (inp == nullptr) {
  3307. GGML_ABORT("Failed to get tensor %s", name);
  3308. }
  3309. if (!(inp->flags & GGML_TENSOR_FLAG_INPUT)) {
  3310. GGML_ABORT("Tensor %s is not an input tensor", name);
  3311. }
  3312. return inp;
  3313. };
  3314. auto set_input_f32 = [&get_inp_tensor](const char * name, std::vector<float> & values) {
  3315. ggml_tensor * cur = get_inp_tensor(name);
  3316. GGML_ASSERT(cur->type == GGML_TYPE_F32);
  3317. GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
  3318. ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
  3319. };
  3320. auto set_input_i32 = [&get_inp_tensor](const char * name, std::vector<int32_t> & values) {
  3321. ggml_tensor * cur = get_inp_tensor(name);
  3322. GGML_ASSERT(cur->type == GGML_TYPE_I32);
  3323. GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
  3324. ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
  3325. };
  3326. // set input pixel values
  3327. if (!imgs.is_audio) {
  3328. size_t nelem = 0;
  3329. for (const auto & img : imgs.entries) {
  3330. nelem += img->nx * img->ny * 3;
  3331. }
  3332. std::vector<float> inp_raw(nelem);
  3333. // layout of data (note: the channel dim is unrolled to better visualize the layout):
  3334. //
  3335. // ┌──W──┐
  3336. // │ H │ channel = R
  3337. // ├─────┤ │
  3338. // │ H │ channel = G
  3339. // ├─────┤ │
  3340. // │ H │ channel = B
  3341. // └─────┘ │
  3342. // ──────┘ x B
  3343. for (size_t i = 0; i < imgs.entries.size(); i++) {
  3344. const int nx = imgs.entries[i]->nx;
  3345. const int ny = imgs.entries[i]->ny;
  3346. const int n = nx * ny;
  3347. for (int b = 0; b < batch_size; b++) {
  3348. float * batch_entry = inp_raw.data() + b * (3*n);
  3349. for (int y = 0; y < ny; y++) {
  3350. for (int x = 0; x < nx; x++) {
  3351. size_t base_src = 3*(y * nx + x); // idx of the first channel
  3352. size_t base_dst = y * nx + x; // idx of the first channel
  3353. batch_entry[ base_dst] = imgs.entries[b]->buf[base_src ];
  3354. batch_entry[1*n + base_dst] = imgs.entries[b]->buf[base_src + 1];
  3355. batch_entry[2*n + base_dst] = imgs.entries[b]->buf[base_src + 2];
  3356. }
  3357. }
  3358. }
  3359. }
  3360. set_input_f32("inp_raw", inp_raw);
  3361. } else {
  3362. // audio input
  3363. GGML_ASSERT(imgs.entries.size() == 1);
  3364. const auto & mel_inp = imgs.entries[0];
  3365. const int n_step = mel_inp->nx;
  3366. const int n_mel = mel_inp->ny;
  3367. std::vector<float> inp_raw(n_step * n_mel);
  3368. std::memcpy(inp_raw.data(), mel_inp->buf.data(), n_step * n_mel * sizeof(float));
  3369. set_input_f32("inp_raw", inp_raw);
  3370. }
  3371. // set input per projector
  3372. switch (ctx->model.proj_type) {
  3373. case PROJECTOR_TYPE_MINICPMV:
  3374. {
  3375. // inspired from siglip:
  3376. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
  3377. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
  3378. std::vector<int32_t> positions(pos_h * pos_w);
  3379. int bucket_coords_h[1024];
  3380. int bucket_coords_w[1024];
  3381. for (int i = 0; i < pos_h; i++){
  3382. bucket_coords_h[i] = std::floor(70.0*i/pos_h);
  3383. }
  3384. for (int i = 0; i < pos_w; i++){
  3385. bucket_coords_w[i] = std::floor(70.0*i/pos_w);
  3386. }
  3387. for (int i = 0, id = 0; i < pos_h; i++){
  3388. for (int j = 0; j < pos_w; j++){
  3389. positions[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
  3390. }
  3391. }
  3392. set_input_i32("positions", positions);
  3393. // inspired from resampler of Qwen-VL:
  3394. // -> https://huggingface.co/Qwen/Qwen-VL/tree/main
  3395. // -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
  3396. int embed_dim = clip_n_mmproj_embd(ctx);
  3397. // TODO @ngxson : this is very inefficient, can we do this using ggml_sin and ggml_cos?
  3398. auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
  3399. std::vector<float> pos_embed(embed_dim * pos_w * pos_h);
  3400. for(int i = 0; i < pos_w * pos_h; ++i){
  3401. for(int j = 0; j < embed_dim; ++j){
  3402. pos_embed[i * embed_dim + j] = pos_embed_t[i][j];
  3403. }
  3404. }
  3405. set_input_f32("pos_embed", pos_embed);
  3406. } break;
  3407. case PROJECTOR_TYPE_QWEN2VL:
  3408. {
  3409. const int merge_ratio = 2;
  3410. const int pw = image_size_width / patch_size;
  3411. const int ph = image_size_height / patch_size;
  3412. std::vector<int> positions(n_pos * 4);
  3413. int ptr = 0;
  3414. for (int y = 0; y < ph; y += merge_ratio) {
  3415. for (int x = 0; x < pw; x += merge_ratio) {
  3416. for (int dy = 0; dy < 2; dy++) {
  3417. for (int dx = 0; dx < 2; dx++) {
  3418. positions[ ptr] = y + dy;
  3419. positions[ num_patches + ptr] = x + dx;
  3420. positions[2 * num_patches + ptr] = y + dy;
  3421. positions[3 * num_patches + ptr] = x + dx;
  3422. ptr++;
  3423. }
  3424. }
  3425. }
  3426. }
  3427. set_input_i32("positions", positions);
  3428. } break;
  3429. case PROJECTOR_TYPE_QWEN25VL:
  3430. {
  3431. // pw * ph = number of tokens output by ViT after apply patch merger
  3432. // ipw * ipw = number of vision token been processed inside ViT
  3433. const int merge_ratio = 2;
  3434. const int pw = image_size_width / patch_size / merge_ratio;
  3435. const int ph = image_size_height / patch_size / merge_ratio;
  3436. const int ipw = image_size_width / patch_size;
  3437. const int iph = image_size_height / patch_size;
  3438. std::vector<int> idx (ph * pw);
  3439. std::vector<int> inv_idx(ph * pw);
  3440. if (use_window_attn) {
  3441. const int attn_window_size = 112;
  3442. const int grid_window = attn_window_size / patch_size / merge_ratio;
  3443. int dst = 0;
  3444. // [num_vision_tokens, num_vision_tokens] attention mask tensor
  3445. std::vector<float> mask(pow(ipw * iph, 2), std::numeric_limits<float>::lowest());
  3446. int mask_row = 0;
  3447. for (int y = 0; y < ph; y += grid_window) {
  3448. for (int x = 0; x < pw; x += grid_window) {
  3449. const int win_h = std::min(grid_window, ph - y);
  3450. const int win_w = std::min(grid_window, pw - x);
  3451. const int dst_0 = dst;
  3452. // group all tokens belong to the same window togather (to a continue range)
  3453. for (int dy = 0; dy < win_h; dy++) {
  3454. for (int dx = 0; dx < win_w; dx++) {
  3455. const int src = (y + dy) * pw + (x + dx);
  3456. GGML_ASSERT(src < (int)idx.size());
  3457. GGML_ASSERT(dst < (int)inv_idx.size());
  3458. idx [src] = dst;
  3459. inv_idx[dst] = src;
  3460. dst++;
  3461. }
  3462. }
  3463. for (int r=0; r < win_h * win_w * merge_ratio * merge_ratio; r++) {
  3464. int row_offset = mask_row * (ipw * iph);
  3465. std::fill(
  3466. mask.begin() + row_offset + (dst_0 * merge_ratio * merge_ratio),
  3467. mask.begin() + row_offset + (dst * merge_ratio * merge_ratio),
  3468. 0.0);
  3469. mask_row++;
  3470. }
  3471. }
  3472. }
  3473. set_input_i32("window_idx", idx);
  3474. set_input_i32("inv_window_idx", inv_idx);
  3475. set_input_f32("window_mask", mask);
  3476. } else {
  3477. for (int i = 0; i < ph * pw; i++) {
  3478. idx[i] = i;
  3479. }
  3480. }
  3481. const int mpow = merge_ratio * merge_ratio;
  3482. std::vector<int> positions(n_pos * 4);
  3483. int ptr = 0;
  3484. for (int y = 0; y < iph; y += merge_ratio) {
  3485. for (int x = 0; x < ipw; x += merge_ratio) {
  3486. for (int dy = 0; dy < 2; dy++) {
  3487. for (int dx = 0; dx < 2; dx++) {
  3488. auto remap = idx[ptr / mpow];
  3489. remap = (remap * mpow) + (ptr % mpow);
  3490. positions[ remap] = y + dy;
  3491. positions[ num_patches + remap] = x + dx;
  3492. positions[2 * num_patches + remap] = y + dy;
  3493. positions[3 * num_patches + remap] = x + dx;
  3494. ptr++;
  3495. }
  3496. }
  3497. }
  3498. }
  3499. set_input_i32("positions", positions);
  3500. } break;
  3501. case PROJECTOR_TYPE_PIXTRAL:
  3502. {
  3503. // set the 2D positions
  3504. int n_patches_per_col = image_size_width / patch_size;
  3505. std::vector<int> pos_data(n_pos);
  3506. // dimension H
  3507. for (int i = 0; i < n_pos; i++) {
  3508. pos_data[i] = i / n_patches_per_col;
  3509. }
  3510. set_input_i32("pos_h", pos_data);
  3511. // dimension W
  3512. for (int i = 0; i < n_pos; i++) {
  3513. pos_data[i] = i % n_patches_per_col;
  3514. }
  3515. set_input_i32("pos_w", pos_data);
  3516. } break;
  3517. case PROJECTOR_TYPE_GLM_EDGE:
  3518. {
  3519. // llava and other models
  3520. std::vector<int32_t> positions(n_pos);
  3521. for (int i = 0; i < n_pos; i++) {
  3522. positions[i] = i;
  3523. }
  3524. set_input_i32("positions", positions);
  3525. } break;
  3526. case PROJECTOR_TYPE_MLP:
  3527. case PROJECTOR_TYPE_MLP_NORM:
  3528. case PROJECTOR_TYPE_LDP:
  3529. case PROJECTOR_TYPE_LDPV2:
  3530. {
  3531. // llava and other models
  3532. std::vector<int32_t> positions(n_pos);
  3533. for (int i = 0; i < n_pos; i++) {
  3534. positions[i] = i;
  3535. }
  3536. set_input_i32("positions", positions);
  3537. // The patches vector is used to get rows to index into the embeds with;
  3538. // we should skip dim 0 only if we have CLS to avoid going out of bounds
  3539. // when retrieving the rows.
  3540. int patch_offset = model.class_embedding ? 1 : 0;
  3541. std::vector<int32_t> patches(num_patches);
  3542. for (int i = 0; i < num_patches; i++) {
  3543. patches[i] = i + patch_offset;
  3544. }
  3545. set_input_i32("patches", patches);
  3546. } break;
  3547. case PROJECTOR_TYPE_GEMMA3:
  3548. case PROJECTOR_TYPE_IDEFICS3:
  3549. case PROJECTOR_TYPE_INTERNVL:
  3550. case PROJECTOR_TYPE_QWEN2A:
  3551. case PROJECTOR_TYPE_ULTRAVOX:
  3552. case PROJECTOR_TYPE_LFM2:
  3553. case PROJECTOR_TYPE_VOXTRAL:
  3554. {
  3555. // do nothing
  3556. } break;
  3557. case PROJECTOR_TYPE_LLAMA4:
  3558. {
  3559. // set the 2D positions
  3560. int n_patches_per_col = image_size_width / patch_size;
  3561. std::vector<int> pos_data(num_patches + 1, 0); // +1 for the [CLS] token
  3562. // last pos is always kept 0, it's for CLS
  3563. // dimension H
  3564. for (int i = 0; i < num_patches; i++) {
  3565. pos_data[i] = (i / n_patches_per_col) + 1;
  3566. }
  3567. set_input_i32("pos_h", pos_data);
  3568. // dimension W
  3569. for (int i = 0; i < num_patches; i++) {
  3570. pos_data[i] = (i % n_patches_per_col) + 1;
  3571. }
  3572. set_input_i32("pos_w", pos_data);
  3573. } break;
  3574. default:
  3575. GGML_ABORT("Unknown projector type");
  3576. }
  3577. // ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
  3578. ggml_backend_dev_t dev = ggml_backend_get_device(ctx->backend_cpu);
  3579. ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
  3580. if (reg) {
  3581. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  3582. if (ggml_backend_set_n_threads_fn) {
  3583. ggml_backend_set_n_threads_fn(ctx->backend_cpu, n_threads);
  3584. }
  3585. }
  3586. auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
  3587. if (status != GGML_STATUS_SUCCESS) {
  3588. LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
  3589. return false;
  3590. }
  3591. // print debug nodes
  3592. if (ctx->debug_graph) {
  3593. LOG_INF("\n\n---\n\n");
  3594. LOG_INF("\n\nDebug graph:\n\n");
  3595. for (ggml_tensor * t : ctx->debug_print_tensors) {
  3596. std::vector<uint8_t> data(ggml_nbytes(t));
  3597. ggml_backend_tensor_get(t, data.data(), 0, ggml_nbytes(t));
  3598. print_tensor_shape(t);
  3599. print_tensor_data(t, data.data(), 3);
  3600. }
  3601. }
  3602. // the last node is the embedding tensor
  3603. ggml_tensor * embeddings = ggml_graph_node(gf, -1);
  3604. // sanity check (only support batch size of 1 for now)
  3605. const int n_tokens_out = embeddings->ne[1];
  3606. const int expected_n_tokens_out = clip_n_output_tokens(ctx, imgs.entries[0].get());
  3607. if (n_tokens_out != expected_n_tokens_out) {
  3608. LOG_ERR("%s: expected output %d tokens, got %d\n", __func__, expected_n_tokens_out, n_tokens_out);
  3609. GGML_ABORT("Invalid number of output tokens");
  3610. }
  3611. // copy the embeddings to the location passed by the user
  3612. ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
  3613. return true;
  3614. }
  3615. int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
  3616. switch (ctx->model.proj_type) {
  3617. case PROJECTOR_TYPE_LDP:
  3618. return ctx->model.mm_model_block_1_block_2_1_b->ne[0];
  3619. case PROJECTOR_TYPE_LDPV2:
  3620. return ctx->model.mm_model_peg_0_b->ne[0];
  3621. case PROJECTOR_TYPE_MLP:
  3622. case PROJECTOR_TYPE_PIXTRAL:
  3623. return ctx->model.mm_2_w->ne[1];
  3624. case PROJECTOR_TYPE_MLP_NORM:
  3625. return ctx->model.mm_3_b->ne[0];
  3626. case PROJECTOR_TYPE_MINICPMV:
  3627. return ctx->model.mm_model_proj->ne[0];
  3628. case PROJECTOR_TYPE_GLM_EDGE:
  3629. return ctx->model.mm_model_mlp_3_w->ne[1];
  3630. case PROJECTOR_TYPE_QWEN2VL:
  3631. case PROJECTOR_TYPE_QWEN25VL:
  3632. return ctx->model.mm_1_b->ne[0];
  3633. case PROJECTOR_TYPE_GEMMA3:
  3634. return ctx->model.mm_input_proj_w->ne[0];
  3635. case PROJECTOR_TYPE_IDEFICS3:
  3636. return ctx->model.projection->ne[1];
  3637. case PROJECTOR_TYPE_ULTRAVOX:
  3638. case PROJECTOR_TYPE_VOXTRAL:
  3639. return ctx->model.mm_2_w->ne[1];
  3640. case PROJECTOR_TYPE_INTERNVL:
  3641. return ctx->model.mm_3_w->ne[1];
  3642. case PROJECTOR_TYPE_LLAMA4:
  3643. return ctx->model.mm_model_proj->ne[1];
  3644. case PROJECTOR_TYPE_QWEN2A:
  3645. return ctx->model.mm_fc_w->ne[1];
  3646. case PROJECTOR_TYPE_LFM2:
  3647. return ctx->model.mm_2_w->ne[1];
  3648. default:
  3649. GGML_ABORT("Unknown projector type");
  3650. }
  3651. }
  3652. int clip_is_minicpmv(const struct clip_ctx * ctx) {
  3653. if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV) {
  3654. return ctx->model.hparams.minicpmv_version;
  3655. }
  3656. return 0;
  3657. }
  3658. bool clip_is_glm(const struct clip_ctx * ctx) {
  3659. return ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE;
  3660. }
  3661. bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
  3662. return ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL
  3663. || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL;
  3664. }
  3665. bool clip_is_llava(const struct clip_ctx * ctx) {
  3666. return ctx->model.hparams.has_llava_projector;
  3667. }
  3668. bool clip_is_gemma3(const struct clip_ctx * ctx) {
  3669. return ctx->proj_type() == PROJECTOR_TYPE_GEMMA3;
  3670. }
  3671. bool clip_has_vision_encoder(const struct clip_ctx * ctx) {
  3672. return ctx->model.modality == CLIP_MODALITY_VISION;
  3673. }
  3674. bool clip_has_audio_encoder(const struct clip_ctx * ctx) {
  3675. return ctx->model.modality == CLIP_MODALITY_AUDIO;
  3676. }
  3677. bool clip_has_whisper_encoder(const struct clip_ctx * ctx) {
  3678. return ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX
  3679. || ctx->proj_type() == PROJECTOR_TYPE_QWEN2A
  3680. || ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL;
  3681. }
  3682. bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
  3683. clip_image_f32 clip_img;
  3684. clip_img.buf.resize(h * w * 3);
  3685. for (int i = 0; i < h*w*3; i++)
  3686. {
  3687. clip_img.buf[i] = img[i];
  3688. }
  3689. clip_img.nx = w;
  3690. clip_img.ny = h;
  3691. clip_image_encode(ctx, n_threads, &clip_img, vec);
  3692. return true;
  3693. }
  3694. //
  3695. // API used internally with mtmd
  3696. //
  3697. projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
  3698. return ctx->proj_type();
  3699. }
  3700. void clip_image_f32_batch_add_mel(struct clip_image_f32_batch * batch, int n_mel, int n_frames, float * mel) {
  3701. clip_image_f32 * audio = new clip_image_f32;
  3702. audio->nx = n_frames;
  3703. audio->ny = n_mel;
  3704. audio->buf.resize(n_frames * n_mel);
  3705. std::memcpy(audio->buf.data(), mel, n_frames * n_mel * sizeof(float));
  3706. batch->entries.push_back(clip_image_f32_ptr(audio));
  3707. batch->is_audio = true;
  3708. }