ggml.c 769 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511205122051320514205152051620517205182051920520205212052220523205242052520526205272052820529205302053120532205332053420535205362053720538205392054020541205422054320544205452054620547205482054920550205512055220553205542055520556205572055820559205602056120562205632056420565205662056720568205692057020571205722057320574205752057620577205782057920580205812058220583205842058520586205872058820589205902059120592205932059420595205962059720598205992060020601206022060320604206052060620607206082060920610206112061220613206142061520616206172061820619206202062120622206232062420625206262062720628206292063020631206322063320634206352063620637206382063920640206412064220643206442064520646206472064820649206502065120652206532065420655206562065720658206592066020661206622066320664206652066620667206682066920670206712067220673206742067520676206772067820679206802068120682206832068420685206862068720688206892069020691206922069320694206952069620697206982069920700207012070220703207042070520706207072070820709207102071120712207132071420715207162071720718207192072020721207222072320724207252072620727207282072920730207312073220733207342073520736207372073820739207402074120742207432074420745207462074720748207492075020751207522075320754207552075620757207582075920760207612076220763207642076520766207672076820769207702077120772207732077420775207762077720778207792078020781207822078320784207852078620787207882078920790207912079220793207942079520796207972079820799208002080120802208032080420805208062080720808208092081020811208122081320814208152081620817208182081920820208212082220823208242082520826208272082820829208302083120832208332083420835208362083720838208392084020841208422084320844208452084620847208482084920850208512085220853208542085520856208572085820859208602086120862208632086420865208662086720868208692087020871208722087320874208752087620877208782087920880208812088220883208842088520886208872088820889208902089120892208932089420895208962089720898208992090020901209022090320904209052090620907209082090920910209112091220913209142091520916209172091820919209202092120922209232092420925209262092720928209292093020931209322093320934209352093620937209382093920940209412094220943209442094520946209472094820949209502095120952209532095420955209562095720958209592096020961209622096320964209652096620967209682096920970209712097220973209742097520976209772097820979209802098120982209832098420985209862098720988209892099020991209922099320994209952099620997209982099921000210012100221003210042100521006210072100821009210102101121012210132101421015210162101721018210192102021021210222102321024210252102621027210282102921030210312103221033210342103521036210372103821039210402104121042210432104421045210462104721048210492105021051210522105321054210552105621057210582105921060210612106221063210642106521066210672106821069210702107121072210732107421075210762107721078210792108021081210822108321084210852108621087210882108921090210912109221093210942109521096210972109821099211002110121102211032110421105211062110721108211092111021111211122111321114211152111621117211182111921120211212112221123211242112521126211272112821129211302113121132211332113421135211362113721138211392114021141211422114321144211452114621147211482114921150211512115221153211542115521156211572115821159211602116121162211632116421165211662116721168211692117021171211722117321174211752117621177211782117921180211812118221183211842118521186211872118821189211902119121192211932119421195211962119721198211992120021201212022120321204212052120621207212082120921210212112121221213212142121521216212172121821219212202122121222212232122421225212262122721228212292123021231212322123321234212352123621237212382123921240212412124221243212442124521246212472124821249212502125121252212532125421255212562125721258212592126021261212622126321264212652126621267212682126921270212712127221273212742127521276212772127821279212802128121282212832128421285212862128721288212892129021291212922129321294212952129621297212982129921300213012130221303213042130521306213072130821309213102131121312213132131421315213162131721318213192132021321213222132321324213252132621327213282132921330213312133221333213342133521336213372133821339213402134121342213432134421345213462134721348213492135021351213522135321354213552135621357213582135921360213612136221363213642136521366213672136821369213702137121372213732137421375213762137721378213792138021381213822138321384213852138621387213882138921390213912139221393213942139521396213972139821399214002140121402214032140421405214062140721408214092141021411214122141321414214152141621417214182141921420214212142221423214242142521426214272142821429214302143121432214332143421435214362143721438214392144021441214422144321444214452144621447214482144921450214512145221453214542145521456214572145821459214602146121462214632146421465214662146721468214692147021471214722147321474214752147621477214782147921480214812148221483214842148521486214872148821489214902149121492214932149421495214962149721498214992150021501215022150321504215052150621507215082150921510215112151221513215142151521516215172151821519215202152121522215232152421525215262152721528215292153021531215322153321534215352153621537215382153921540215412154221543215442154521546215472154821549215502155121552215532155421555215562155721558215592156021561215622156321564215652156621567215682156921570215712157221573215742157521576215772157821579215802158121582215832158421585215862158721588215892159021591215922159321594215952159621597215982159921600216012160221603216042160521606216072160821609216102161121612216132161421615216162161721618216192162021621216222162321624216252162621627216282162921630216312163221633216342163521636216372163821639216402164121642216432164421645216462164721648216492165021651216522165321654216552165621657216582165921660216612166221663216642166521666216672166821669216702167121672216732167421675216762167721678216792168021681216822168321684216852168621687216882168921690216912169221693216942169521696216972169821699217002170121702217032170421705217062170721708217092171021711217122171321714217152171621717217182171921720217212172221723217242172521726217272172821729217302173121732217332173421735217362173721738217392174021741217422174321744217452174621747217482174921750217512175221753217542175521756217572175821759217602176121762217632176421765217662176721768217692177021771217722177321774217752177621777217782177921780217812178221783217842178521786217872178821789217902179121792217932179421795217962179721798217992180021801218022180321804218052180621807218082180921810218112181221813218142181521816218172181821819218202182121822218232182421825218262182721828218292183021831218322183321834218352183621837218382183921840218412184221843218442184521846218472184821849218502185121852218532185421855218562185721858218592186021861218622186321864218652186621867218682186921870218712187221873218742187521876218772187821879218802188121882218832188421885218862188721888218892189021891218922189321894218952189621897218982189921900219012190221903219042190521906219072190821909219102191121912219132191421915219162191721918219192192021921219222192321924219252192621927219282192921930219312193221933219342193521936219372193821939219402194121942219432194421945219462194721948219492195021951219522195321954219552195621957219582195921960219612196221963219642196521966219672196821969219702197121972219732197421975219762197721978219792198021981219822198321984219852198621987219882198921990219912199221993219942199521996219972199821999220002200122002220032200422005220062200722008220092201022011220122201322014220152201622017220182201922020220212202222023220242202522026220272202822029220302203122032220332203422035220362203722038220392204022041220422204322044220452204622047220482204922050220512205222053220542205522056220572205822059220602206122062220632206422065220662206722068220692207022071220722207322074220752207622077220782207922080220812208222083220842208522086220872208822089220902209122092220932209422095220962209722098220992210022101221022210322104221052210622107221082210922110221112211222113221142211522116221172211822119221202212122122221232212422125221262212722128221292213022131221322213322134221352213622137221382213922140221412214222143221442214522146221472214822149221502215122152221532215422155221562215722158221592216022161221622216322164221652216622167221682216922170221712217222173221742217522176221772217822179221802218122182221832218422185221862218722188221892219022191221922219322194221952219622197221982219922200222012220222203222042220522206222072220822209222102221122212222132221422215222162221722218222192222022221222222222322224222252222622227222282222922230222312223222233222342223522236222372223822239222402224122242222432224422245222462224722248222492225022251222522225322254222552225622257222582225922260222612226222263222642226522266222672226822269222702227122272222732227422275222762227722278222792228022281222822228322284222852228622287222882228922290222912229222293222942229522296222972229822299223002230122302223032230422305223062230722308223092231022311223122231322314223152231622317223182231922320223212232222323223242232522326223272232822329223302233122332223332233422335223362233722338223392234022341223422234322344223452234622347223482234922350223512235222353223542235522356223572235822359223602236122362223632236422365223662236722368223692237022371223722237322374223752237622377223782237922380223812238222383223842238522386223872238822389223902239122392223932239422395223962239722398223992240022401224022240322404224052240622407224082240922410224112241222413224142241522416224172241822419224202242122422224232242422425224262242722428224292243022431224322243322434224352243622437224382243922440224412244222443224442244522446224472244822449224502245122452224532245422455224562245722458224592246022461224622246322464224652246622467224682246922470224712247222473224742247522476224772247822479224802248122482224832248422485224862248722488224892249022491224922249322494224952249622497224982249922500225012250222503225042250522506225072250822509225102251122512225132251422515225162251722518225192252022521225222252322524225252252622527225282252922530225312253222533225342253522536225372253822539225402254122542225432254422545225462254722548225492255022551225522255322554225552255622557225582255922560225612256222563225642256522566225672256822569225702257122572225732257422575225762257722578225792258022581225822258322584225852258622587225882258922590225912259222593225942259522596225972259822599226002260122602226032260422605226062260722608226092261022611226122261322614226152261622617226182261922620226212262222623226242262522626226272262822629226302263122632226332263422635226362263722638226392264022641226422264322644226452264622647226482264922650226512265222653226542265522656226572265822659226602266122662226632266422665226662266722668226692267022671226722267322674226752267622677226782267922680226812268222683226842268522686226872268822689226902269122692226932269422695226962269722698226992270022701227022270322704227052270622707227082270922710227112271222713227142271522716227172271822719227202272122722227232272422725227262272722728227292273022731227322273322734227352273622737227382273922740227412274222743227442274522746227472274822749227502275122752227532275422755227562275722758227592276022761227622276322764227652276622767227682276922770227712277222773227742277522776227772277822779227802278122782227832278422785227862278722788227892279022791227922279322794227952279622797227982279922800228012280222803228042280522806228072280822809228102281122812228132281422815228162281722818228192282022821228222282322824228252282622827228282282922830228312283222833228342283522836228372283822839228402284122842228432284422845228462284722848228492285022851228522285322854228552285622857228582285922860228612286222863228642286522866228672286822869228702287122872228732287422875228762287722878228792288022881228822288322884228852288622887228882288922890228912289222893228942289522896228972289822899229002290122902229032290422905229062290722908229092291022911229122291322914229152291622917229182291922920229212292222923229242292522926229272292822929229302293122932229332293422935229362293722938229392294022941229422294322944229452294622947229482294922950229512295222953229542295522956229572295822959229602296122962229632296422965229662296722968229692297022971229722297322974229752297622977229782297922980229812298222983229842298522986229872298822989229902299122992229932299422995229962299722998229992300023001230022300323004230052300623007230082300923010230112301223013230142301523016230172301823019230202302123022230232302423025230262302723028230292303023031230322303323034230352303623037230382303923040230412304223043230442304523046230472304823049230502305123052230532305423055230562305723058230592306023061230622306323064230652306623067230682306923070230712307223073230742307523076230772307823079230802308123082230832308423085230862308723088230892309023091230922309323094230952309623097230982309923100231012310223103231042310523106231072310823109231102311123112231132311423115231162311723118231192312023121231222312323124231252312623127231282312923130231312313223133231342313523136231372313823139231402314123142231432314423145231462314723148231492315023151231522315323154231552315623157231582315923160231612316223163231642316523166231672316823169231702317123172231732317423175231762317723178231792318023181231822318323184231852318623187231882318923190231912319223193231942319523196231972319823199232002320123202232032320423205232062320723208232092321023211232122321323214232152321623217232182321923220232212322223223232242322523226232272322823229232302323123232232332323423235232362323723238232392324023241232422324323244232452324623247232482324923250232512325223253232542325523256232572325823259232602326123262232632326423265232662326723268232692327023271232722327323274232752327623277232782327923280232812328223283232842328523286232872328823289232902329123292232932329423295232962329723298232992330023301233022330323304233052330623307233082330923310233112331223313233142331523316233172331823319233202332123322233232332423325233262332723328233292333023331233322333323334233352333623337233382333923340233412334223343233442334523346233472334823349233502335123352233532335423355233562335723358233592336023361233622336323364233652336623367233682336923370233712337223373233742337523376233772337823379233802338123382233832338423385233862338723388233892339023391233922339323394233952339623397233982339923400234012340223403234042340523406234072340823409234102341123412234132341423415234162341723418234192342023421234222342323424234252342623427234282342923430234312343223433234342343523436234372343823439234402344123442234432344423445234462344723448234492345023451234522345323454234552345623457234582345923460234612346223463234642346523466234672346823469234702347123472234732347423475234762347723478234792348023481234822348323484234852348623487234882348923490234912349223493234942349523496234972349823499235002350123502235032350423505235062350723508235092351023511235122351323514235152351623517235182351923520235212352223523235242352523526235272352823529235302353123532235332353423535235362353723538235392354023541235422354323544235452354623547235482354923550235512355223553235542355523556235572355823559235602356123562235632356423565235662356723568235692357023571235722357323574235752357623577235782357923580235812358223583235842358523586235872358823589235902359123592235932359423595235962359723598235992360023601236022360323604236052360623607236082360923610236112361223613236142361523616236172361823619236202362123622236232362423625236262362723628236292363023631236322363323634236352363623637236382363923640236412364223643236442364523646236472364823649236502365123652236532365423655236562365723658236592366023661236622366323664236652366623667236682366923670236712367223673236742367523676236772367823679236802368123682236832368423685236862368723688236892369023691236922369323694236952369623697236982369923700237012370223703237042370523706237072370823709237102371123712237132371423715237162371723718237192372023721237222372323724237252372623727237282372923730237312373223733237342373523736237372373823739237402374123742
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-backend.h"
  4. #include "ggml-impl.h"
  5. #include "ggml-cpu-impl.h"
  6. #include "ggml-quants.h"
  7. #include "ggml.h"
  8. #include "ggml-aarch64.h"
  9. #if defined(_MSC_VER) || defined(__MINGW32__)
  10. #include <malloc.h> // using malloc.h with MSC/MINGW
  11. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  12. #include <alloca.h>
  13. #endif
  14. #include <assert.h>
  15. #include <errno.h>
  16. #include <time.h>
  17. #include <math.h>
  18. #include <stdlib.h>
  19. #include <string.h>
  20. #include <stdint.h>
  21. #include <inttypes.h>
  22. #include <stdio.h>
  23. #include <float.h>
  24. #include <limits.h>
  25. #include <stdarg.h>
  26. #include <signal.h>
  27. #if defined(__gnu_linux__)
  28. #include <syscall.h>
  29. #endif
  30. #ifdef GGML_USE_OPENMP
  31. #include <omp.h>
  32. #endif
  33. #ifdef GGML_USE_METAL
  34. #include <unistd.h>
  35. #endif
  36. #if defined(__ARM_FEATURE_SVE)
  37. int ggml_sve_cnt_b = 0;
  38. #endif
  39. #if defined(__ARM_FEATURE_SVE) || defined(__ARM_FEATURE_MATMUL_INT8)
  40. #undef GGML_USE_LLAMAFILE
  41. #endif
  42. #ifdef GGML_USE_LLAMAFILE
  43. #include <llamafile/sgemm.h>
  44. #endif
  45. #if defined(_MSC_VER)
  46. // disable "possible loss of data" to avoid hundreds of casts
  47. // we should just be careful :)
  48. #pragma warning(disable: 4244 4267)
  49. // disable POSIX deprecation warnings
  50. // these functions are never going away, anyway
  51. #pragma warning(disable: 4996)
  52. // unreachable code because of multiple instances of code after GGML_ABORT
  53. #pragma warning(disable: 4702)
  54. #endif
  55. // Note: once we move threading into a separate C++ file
  56. // will use std::hardware_destructive_interference_size instead of hardcoding it here
  57. // and we'll use C++ attribute syntax.
  58. #define GGML_CACHE_LINE 64
  59. #if defined(__clang__) || defined(__GNUC__)
  60. #define GGML_CACHE_ALIGN __attribute__((aligned(GGML_CACHE_LINE)))
  61. #endif
  62. #if defined(__has_feature)
  63. #if __has_feature(thread_sanitizer)
  64. #define GGML_TSAN_ENABLED 1
  65. #endif
  66. #else // __has_feature
  67. #if defined(__SANITIZE_THREAD__)
  68. #define GGML_TSAN_ENABLED 1
  69. #endif
  70. #endif // __has_feature
  71. #if defined(_WIN32)
  72. #define WIN32_LEAN_AND_MEAN
  73. #ifndef NOMINMAX
  74. #define NOMINMAX
  75. #endif
  76. #include <windows.h>
  77. #if !defined(__clang__)
  78. #define GGML_CACHE_ALIGN __declspec(align(GGML_CACHE_LINE))
  79. typedef volatile LONG atomic_int;
  80. typedef atomic_int atomic_bool;
  81. typedef atomic_int atomic_flag;
  82. #define ATOMIC_FLAG_INIT 0
  83. typedef enum {
  84. memory_order_relaxed,
  85. memory_order_consume,
  86. memory_order_acquire,
  87. memory_order_release,
  88. memory_order_acq_rel,
  89. memory_order_seq_cst
  90. } memory_order;
  91. static void atomic_store(atomic_int * ptr, LONG val) {
  92. InterlockedExchange(ptr, val);
  93. }
  94. static void atomic_store_explicit(atomic_int * ptr, LONG val, memory_order mo) {
  95. // TODO: add support for explicit memory order
  96. InterlockedExchange(ptr, val);
  97. }
  98. static LONG atomic_load(atomic_int * ptr) {
  99. return InterlockedCompareExchange(ptr, 0, 0);
  100. }
  101. static LONG atomic_load_explicit(atomic_int * ptr, memory_order mo) {
  102. // TODO: add support for explicit memory order
  103. return InterlockedCompareExchange(ptr, 0, 0);
  104. }
  105. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  106. return InterlockedExchangeAdd(ptr, inc);
  107. }
  108. static LONG atomic_fetch_add_explicit(atomic_int * ptr, LONG inc, memory_order mo) {
  109. // TODO: add support for explicit memory order
  110. return InterlockedExchangeAdd(ptr, inc);
  111. }
  112. static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) {
  113. return InterlockedExchange(ptr, 1);
  114. }
  115. static void atomic_flag_clear(atomic_flag * ptr) {
  116. InterlockedExchange(ptr, 0);
  117. }
  118. #else // clang
  119. #include <stdatomic.h>
  120. #endif
  121. typedef HANDLE pthread_t;
  122. typedef DWORD thread_ret_t;
  123. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  124. (void) unused;
  125. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  126. if (handle == NULL)
  127. {
  128. return EAGAIN;
  129. }
  130. *out = handle;
  131. return 0;
  132. }
  133. static int pthread_join(pthread_t thread, void * unused) {
  134. (void) unused;
  135. int ret = (int) WaitForSingleObject(thread, INFINITE);
  136. CloseHandle(thread);
  137. return ret;
  138. }
  139. static int sched_yield (void) {
  140. Sleep (0);
  141. return 0;
  142. }
  143. #else
  144. #include <pthread.h>
  145. #include <stdatomic.h>
  146. #include <sched.h>
  147. #if defined(__FreeBSD__)
  148. #include <pthread_np.h>
  149. #endif
  150. typedef void * thread_ret_t;
  151. #include <sys/types.h>
  152. #include <sys/stat.h>
  153. #include <unistd.h>
  154. #endif
  155. typedef pthread_t ggml_thread_t;
  156. #ifdef GGML_USE_CPU_HBM
  157. #include <hbwmalloc.h>
  158. #endif
  159. #if defined(__APPLE__)
  160. #include <TargetConditionals.h>
  161. #endif
  162. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  163. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  164. #include <sys/wait.h>
  165. #if defined(__ANDROID__)
  166. #include <unwind.h>
  167. #include <dlfcn.h>
  168. #include <stdio.h>
  169. struct backtrace_state {
  170. void ** current;
  171. void ** end;
  172. };
  173. static _Unwind_Reason_Code unwind_callback(struct _Unwind_Context* context, void* arg) {
  174. struct backtrace_state * state = (struct backtrace_state *)arg;
  175. uintptr_t pc = _Unwind_GetIP(context);
  176. if (pc) {
  177. if (state->current == state->end) {
  178. return _URC_END_OF_STACK;
  179. } else {
  180. *state->current++ = (void*)pc;
  181. }
  182. }
  183. return _URC_NO_REASON;
  184. }
  185. static void ggml_print_backtrace_symbols(void) {
  186. const int max = 100;
  187. void* buffer[max];
  188. struct backtrace_state state = {buffer, buffer + max};
  189. _Unwind_Backtrace(unwind_callback, &state);
  190. int count = state.current - buffer;
  191. for (int idx = 0; idx < count; ++idx) {
  192. const void * addr = buffer[idx];
  193. const char * symbol = "";
  194. Dl_info info;
  195. if (dladdr(addr, &info) && info.dli_sname) {
  196. symbol = info.dli_sname;
  197. }
  198. fprintf(stderr, "%d: %p %s\n", idx, addr, symbol);
  199. }
  200. }
  201. #elif defined(__linux__) && defined(__GLIBC__)
  202. #include <execinfo.h>
  203. static void ggml_print_backtrace_symbols(void) {
  204. void * trace[100];
  205. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  206. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  207. }
  208. #else
  209. static void ggml_print_backtrace_symbols(void) {
  210. // platform not supported
  211. }
  212. #endif
  213. static void ggml_print_backtrace(void) {
  214. char attach[32];
  215. snprintf(attach, sizeof(attach), "attach %d", getpid());
  216. int pid = fork();
  217. if (pid == 0) {
  218. // try gdb
  219. execlp("gdb", "gdb", "--batch",
  220. "-ex", "set style enabled on",
  221. "-ex", attach,
  222. "-ex", "bt -frame-info source-and-location",
  223. "-ex", "detach",
  224. "-ex", "quit",
  225. (char *) NULL);
  226. // try lldb
  227. execlp("lldb", "lldb", "--batch",
  228. "-o", "bt",
  229. "-o", "quit",
  230. "-p", attach,
  231. (char *) NULL);
  232. exit(EXIT_FAILURE);
  233. } else {
  234. int wstatus;
  235. waitpid(pid, &wstatus, 0);
  236. if (WIFEXITED(wstatus)) {
  237. if (WEXITSTATUS(wstatus) == EXIT_FAILURE) {
  238. // gdb failed, fallback to backtrace_symbols
  239. ggml_print_backtrace_symbols();
  240. }
  241. }
  242. }
  243. }
  244. #else
  245. static void ggml_print_backtrace(void) {
  246. // platform not supported
  247. }
  248. #endif
  249. void ggml_abort(const char * file, int line, const char * fmt, ...) {
  250. fflush(stdout);
  251. fprintf(stderr, "%s:%d: ", file, line);
  252. va_list args;
  253. va_start(args, fmt);
  254. vfprintf(stderr, fmt, args);
  255. va_end(args);
  256. fprintf(stderr, "\n");
  257. ggml_print_backtrace();
  258. abort();
  259. }
  260. #define GGML_DEBUG 0
  261. #define GGML_GELU_FP16
  262. #define GGML_GELU_QUICK_FP16
  263. #define GGML_N_TASKS_MAX (-1)
  264. #define GGML_SOFT_MAX_UNROLL 4
  265. #define GGML_VEC_DOT_UNROLL 2
  266. #define GGML_VEC_MAD_UNROLL 32
  267. //
  268. // logging
  269. //
  270. #if (GGML_DEBUG >= 1)
  271. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  272. #else
  273. #define GGML_PRINT_DEBUG(...)
  274. #endif
  275. #if (GGML_DEBUG >= 5)
  276. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  277. #else
  278. #define GGML_PRINT_DEBUG_5(...)
  279. #endif
  280. #if (GGML_DEBUG >= 10)
  281. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  282. #else
  283. #define GGML_PRINT_DEBUG_10(...)
  284. #endif
  285. #define GGML_PRINT(...) printf(__VA_ARGS__)
  286. //
  287. // end of logging block
  288. //
  289. #ifdef GGML_USE_ACCELERATE
  290. // uncomment to use vDSP for soft max computation
  291. // note: not sure if it is actually faster
  292. //#define GGML_SOFT_MAX_ACCELERATE
  293. #endif
  294. #if defined(_MSC_VER) || defined(__MINGW32__)
  295. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  296. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  297. #else
  298. inline static void * ggml_aligned_malloc(size_t size) {
  299. if (size == 0) {
  300. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  301. return NULL;
  302. }
  303. void * aligned_memory = NULL;
  304. #ifdef GGML_USE_CPU_HBM
  305. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  306. #elif GGML_USE_METAL
  307. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  308. #else
  309. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  310. #endif
  311. if (result != 0) {
  312. // Handle allocation failure
  313. const char *error_desc = "unknown allocation error";
  314. switch (result) {
  315. case EINVAL:
  316. error_desc = "invalid alignment value";
  317. break;
  318. case ENOMEM:
  319. error_desc = "insufficient memory";
  320. break;
  321. }
  322. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  323. GGML_ABORT("fatal error");
  324. return NULL;
  325. }
  326. return aligned_memory;
  327. }
  328. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  329. #ifdef GGML_USE_CPU_HBM
  330. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  331. #else
  332. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  333. #endif
  334. #endif
  335. inline static void * ggml_malloc(size_t size) {
  336. if (size == 0) {
  337. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  338. return NULL;
  339. }
  340. void * result = malloc(size);
  341. if (result == NULL) {
  342. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  343. GGML_ABORT("fatal error");
  344. }
  345. return result;
  346. }
  347. // calloc
  348. inline static void * ggml_calloc(size_t num, size_t size) {
  349. if (num == 0 || size == 0) {
  350. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  351. return NULL;
  352. }
  353. void * result = calloc(num, size);
  354. if (result == NULL) {
  355. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  356. GGML_ABORT("fatal error");
  357. }
  358. return result;
  359. }
  360. #define GGML_MALLOC(size) ggml_malloc(size)
  361. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  362. #define GGML_FREE(ptr) free(ptr)
  363. #define UNUSED GGML_UNUSED
  364. #define SWAP(x, y, T) do { T SWAP = x; (x) = y; (y) = SWAP; } while (0)
  365. #if defined(GGML_USE_ACCELERATE)
  366. #include <Accelerate/Accelerate.h>
  367. #endif
  368. // floating point type used to accumulate sums
  369. typedef double ggml_float;
  370. #undef MIN
  371. #undef MAX
  372. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  373. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  374. //
  375. // global data
  376. //
  377. // precomputed gelu table for f16 (128 KB)
  378. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  379. // precomputed quick gelu table for f16 (128 KB)
  380. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  381. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  382. float ggml_table_f32_f16[1 << 16];
  383. GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
  384. switch (status) {
  385. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  386. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  387. case GGML_STATUS_SUCCESS: return "GGML status: success";
  388. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  389. }
  390. return "GGML status: unknown";
  391. }
  392. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  393. #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
  394. return GGML_FP16_TO_FP32(x);
  395. }
  396. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  397. #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
  398. return GGML_FP32_TO_FP16(x);
  399. }
  400. float ggml_bf16_to_fp32(ggml_bf16_t x) {
  401. #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
  402. return GGML_BF16_TO_FP32(x); // it just left shifts
  403. }
  404. ggml_bf16_t ggml_fp32_to_bf16(float x) {
  405. #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
  406. return GGML_FP32_TO_BF16(x);
  407. }
  408. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  409. for (int64_t i = 0; i < n; i++) {
  410. y[i] = GGML_FP16_TO_FP32(x[i]);
  411. }
  412. }
  413. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  414. int64_t i = 0;
  415. #if defined(__F16C__)
  416. for (; i + 7 < n; i += 8) {
  417. __m256 x_vec = _mm256_loadu_ps(x + i);
  418. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  419. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  420. }
  421. for(; i + 3 < n; i += 4) {
  422. __m128 x_vec = _mm_loadu_ps(x + i);
  423. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  424. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  425. }
  426. #endif
  427. for (; i < n; i++) {
  428. y[i] = GGML_FP32_TO_FP16(x[i]);
  429. }
  430. }
  431. void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
  432. int64_t i = 0;
  433. #if defined(__AVX512F__)
  434. for (; i + 16 <= n; i += 16) {
  435. _mm512_storeu_ps(y + i,
  436. _mm512_castsi512_ps(
  437. _mm512_slli_epi32(
  438. _mm512_cvtepu16_epi32(
  439. _mm256_loadu_si256(
  440. (const __m256i *)(x + i))),
  441. 16)));
  442. }
  443. #elif defined(__AVX2__)
  444. for (; i + 8 <= n; i += 8) {
  445. _mm256_storeu_ps(y + i,
  446. _mm256_castsi256_ps(
  447. _mm256_slli_epi32(
  448. _mm256_cvtepu16_epi32(
  449. _mm_loadu_si128(
  450. (const __m128i *)(x + i))),
  451. 16)));
  452. }
  453. #endif
  454. for (; i < n; i++) {
  455. y[i] = GGML_BF16_TO_FP32(x[i]);
  456. }
  457. }
  458. void ggml_fp32_to_bf16_row_ref(const float * x, ggml_bf16_t * y, int64_t n) {
  459. for (int i = 0; i < n; i++) {
  460. y[i] = ggml_compute_fp32_to_bf16(x[i]);
  461. }
  462. }
  463. void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
  464. int i = 0;
  465. #if defined(__AVX512BF16__)
  466. // subnormals are flushed to zero on this platform
  467. for (; i + 32 <= n; i += 32) {
  468. _mm512_storeu_si512(
  469. (__m512i *)(y + i),
  470. m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
  471. _mm512_loadu_ps(x + i))));
  472. }
  473. #endif
  474. for (; i < n; i++) {
  475. y[i] = GGML_FP32_TO_BF16(x[i]);
  476. }
  477. }
  478. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  479. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  480. }
  481. //
  482. // timing
  483. //
  484. #if defined(_MSC_VER) || defined(__MINGW32__)
  485. static int64_t timer_freq, timer_start;
  486. void ggml_time_init(void) {
  487. LARGE_INTEGER t;
  488. QueryPerformanceFrequency(&t);
  489. timer_freq = t.QuadPart;
  490. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  491. // and the uptime is high enough.
  492. // We subtract the program start time to reduce the likelihood of that happening.
  493. QueryPerformanceCounter(&t);
  494. timer_start = t.QuadPart;
  495. }
  496. int64_t ggml_time_ms(void) {
  497. LARGE_INTEGER t;
  498. QueryPerformanceCounter(&t);
  499. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  500. }
  501. int64_t ggml_time_us(void) {
  502. LARGE_INTEGER t;
  503. QueryPerformanceCounter(&t);
  504. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  505. }
  506. #else
  507. void ggml_time_init(void) {}
  508. int64_t ggml_time_ms(void) {
  509. struct timespec ts;
  510. clock_gettime(CLOCK_MONOTONIC, &ts);
  511. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  512. }
  513. int64_t ggml_time_us(void) {
  514. struct timespec ts;
  515. clock_gettime(CLOCK_MONOTONIC, &ts);
  516. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  517. }
  518. #endif
  519. int64_t ggml_cycles(void) {
  520. return clock();
  521. }
  522. int64_t ggml_cycles_per_ms(void) {
  523. return CLOCKS_PER_SEC/1000;
  524. }
  525. //
  526. // cross-platform UTF-8 file paths
  527. //
  528. #ifdef _WIN32
  529. static wchar_t * ggml_mbstowcs(const char * mbs) {
  530. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  531. if (!wlen) {
  532. errno = EINVAL;
  533. return NULL;
  534. }
  535. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  536. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  537. if (!wlen) {
  538. GGML_FREE(wbuf);
  539. errno = EINVAL;
  540. return NULL;
  541. }
  542. return wbuf;
  543. }
  544. #endif
  545. FILE * ggml_fopen(const char * fname, const char * mode) {
  546. #ifdef _WIN32
  547. FILE * file = NULL;
  548. // convert fname (UTF-8)
  549. wchar_t * wfname = ggml_mbstowcs(fname);
  550. if (wfname) {
  551. // convert mode (ANSI)
  552. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  553. wchar_t * wmode_p = wmode;
  554. do {
  555. *wmode_p++ = (wchar_t)*mode;
  556. } while (*mode++);
  557. // open file
  558. file = _wfopen(wfname, wmode);
  559. GGML_FREE(wfname);
  560. GGML_FREE(wmode);
  561. }
  562. return file;
  563. #else
  564. return fopen(fname, mode);
  565. #endif
  566. }
  567. //
  568. // cache line
  569. //
  570. #if defined(__cpp_lib_hardware_interference_size)
  571. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  572. #else
  573. #if defined(__POWER9_VECTOR__)
  574. #define CACHE_LINE_SIZE 128
  575. #else
  576. #define CACHE_LINE_SIZE 64
  577. #endif
  578. #endif
  579. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  580. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  581. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  582. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  583. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  584. [GGML_TYPE_I8] = {
  585. .type_name = "i8",
  586. .blck_size = 1,
  587. .type_size = sizeof(int8_t),
  588. .is_quantized = false,
  589. },
  590. [GGML_TYPE_I16] = {
  591. .type_name = "i16",
  592. .blck_size = 1,
  593. .type_size = sizeof(int16_t),
  594. .is_quantized = false,
  595. },
  596. [GGML_TYPE_I32] = {
  597. .type_name = "i32",
  598. .blck_size = 1,
  599. .type_size = sizeof(int32_t),
  600. .is_quantized = false,
  601. },
  602. [GGML_TYPE_I64] = {
  603. .type_name = "i64",
  604. .blck_size = 1,
  605. .type_size = sizeof(int64_t),
  606. .is_quantized = false,
  607. },
  608. [GGML_TYPE_F64] = {
  609. .type_name = "f64",
  610. .blck_size = 1,
  611. .type_size = sizeof(double),
  612. .is_quantized = false,
  613. .nrows = 1,
  614. },
  615. [GGML_TYPE_F32] = {
  616. .type_name = "f32",
  617. .blck_size = 1,
  618. .type_size = sizeof(float),
  619. .is_quantized = false,
  620. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  621. .vec_dot_type = GGML_TYPE_F32,
  622. .nrows = 1,
  623. },
  624. [GGML_TYPE_F16] = {
  625. .type_name = "f16",
  626. .blck_size = 1,
  627. .type_size = sizeof(ggml_fp16_t),
  628. .is_quantized = false,
  629. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  630. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  631. .from_float_ref = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  632. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  633. .vec_dot_type = GGML_TYPE_F16,
  634. .nrows = 1,
  635. },
  636. [GGML_TYPE_Q4_0] = {
  637. .type_name = "q4_0",
  638. .blck_size = QK4_0,
  639. .type_size = sizeof(block_q4_0),
  640. .is_quantized = true,
  641. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  642. .from_float = quantize_row_q4_0,
  643. .from_float_ref = (ggml_from_float_t) quantize_row_q4_0_ref,
  644. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  645. .vec_dot_type = GGML_TYPE_Q8_0,
  646. #if defined (__ARM_FEATURE_MATMUL_INT8)
  647. .nrows = 2,
  648. #else
  649. .nrows = 1,
  650. #endif
  651. },
  652. [GGML_TYPE_Q4_1] = {
  653. .type_name = "q4_1",
  654. .blck_size = QK4_1,
  655. .type_size = sizeof(block_q4_1),
  656. .is_quantized = true,
  657. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  658. .from_float = quantize_row_q4_1,
  659. .from_float_ref = (ggml_from_float_t) quantize_row_q4_1_ref,
  660. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  661. .vec_dot_type = GGML_TYPE_Q8_1,
  662. #if defined (__ARM_FEATURE_MATMUL_INT8)
  663. .nrows = 2,
  664. #else
  665. .nrows = 1,
  666. #endif
  667. },
  668. [4] = { // GGML_TYPE_Q4_2
  669. .type_name = "DEPRECATED",
  670. .blck_size = 0,
  671. .type_size = 0,
  672. .is_quantized = false,
  673. .to_float = NULL,
  674. .from_float = NULL,
  675. .from_float_ref = NULL,
  676. .vec_dot = NULL,
  677. .vec_dot_type = GGML_TYPE_COUNT,
  678. .nrows = 1,
  679. },
  680. [5] = { // GGML_TYPE_Q4_3
  681. .type_name = "DEPRECATED",
  682. .blck_size = 0,
  683. .type_size = 0,
  684. .is_quantized = false,
  685. .to_float = NULL,
  686. .from_float = NULL,
  687. .from_float_ref = NULL,
  688. .vec_dot = NULL,
  689. .vec_dot_type = GGML_TYPE_COUNT,
  690. .nrows = 1,
  691. },
  692. [GGML_TYPE_Q5_0] = {
  693. .type_name = "q5_0",
  694. .blck_size = QK5_0,
  695. .type_size = sizeof(block_q5_0),
  696. .is_quantized = true,
  697. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  698. .from_float = quantize_row_q5_0,
  699. .from_float_ref = (ggml_from_float_t) quantize_row_q5_0_ref,
  700. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  701. .vec_dot_type = GGML_TYPE_Q8_0,
  702. .nrows = 1,
  703. },
  704. [GGML_TYPE_Q5_1] = {
  705. .type_name = "q5_1",
  706. .blck_size = QK5_1,
  707. .type_size = sizeof(block_q5_1),
  708. .is_quantized = true,
  709. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  710. .from_float = quantize_row_q5_1,
  711. .from_float_ref = (ggml_from_float_t) quantize_row_q5_1_ref,
  712. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  713. .vec_dot_type = GGML_TYPE_Q8_1,
  714. .nrows = 1,
  715. },
  716. [GGML_TYPE_Q8_0] = {
  717. .type_name = "q8_0",
  718. .blck_size = QK8_0,
  719. .type_size = sizeof(block_q8_0),
  720. .is_quantized = true,
  721. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  722. .from_float = quantize_row_q8_0,
  723. .from_float_ref = (ggml_from_float_t) quantize_row_q8_0_ref,
  724. .from_float_to_mat = quantize_mat_q8_0,
  725. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  726. .vec_dot_type = GGML_TYPE_Q8_0,
  727. #if defined (__ARM_FEATURE_MATMUL_INT8)
  728. .nrows = 2,
  729. #else
  730. .nrows = 1,
  731. #endif
  732. },
  733. [GGML_TYPE_Q8_1] = {
  734. .type_name = "q8_1",
  735. .blck_size = QK8_1,
  736. .type_size = sizeof(block_q8_1),
  737. .is_quantized = true,
  738. .from_float = quantize_row_q8_1,
  739. .from_float_ref = (ggml_from_float_t) quantize_row_q8_1_ref,
  740. .vec_dot_type = GGML_TYPE_Q8_1,
  741. .nrows = 1,
  742. },
  743. [GGML_TYPE_Q2_K] = {
  744. .type_name = "q2_K",
  745. .blck_size = QK_K,
  746. .type_size = sizeof(block_q2_K),
  747. .is_quantized = true,
  748. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  749. .from_float = quantize_row_q2_K,
  750. .from_float_ref = (ggml_from_float_t) quantize_row_q2_K_ref,
  751. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  752. .vec_dot_type = GGML_TYPE_Q8_K,
  753. .nrows = 1,
  754. },
  755. [GGML_TYPE_Q3_K] = {
  756. .type_name = "q3_K",
  757. .blck_size = QK_K,
  758. .type_size = sizeof(block_q3_K),
  759. .is_quantized = true,
  760. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  761. .from_float = quantize_row_q3_K,
  762. .from_float_ref = (ggml_from_float_t) quantize_row_q3_K_ref,
  763. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  764. .vec_dot_type = GGML_TYPE_Q8_K,
  765. .nrows = 1,
  766. },
  767. [GGML_TYPE_Q4_K] = {
  768. .type_name = "q4_K",
  769. .blck_size = QK_K,
  770. .type_size = sizeof(block_q4_K),
  771. .is_quantized = true,
  772. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  773. .from_float = quantize_row_q4_K,
  774. .from_float_ref = (ggml_from_float_t) quantize_row_q4_K_ref,
  775. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  776. .vec_dot_type = GGML_TYPE_Q8_K,
  777. .nrows = 1,
  778. },
  779. [GGML_TYPE_Q5_K] = {
  780. .type_name = "q5_K",
  781. .blck_size = QK_K,
  782. .type_size = sizeof(block_q5_K),
  783. .is_quantized = true,
  784. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  785. .from_float = quantize_row_q5_K,
  786. .from_float_ref = (ggml_from_float_t) quantize_row_q5_K_ref,
  787. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  788. .vec_dot_type = GGML_TYPE_Q8_K,
  789. .nrows = 1,
  790. },
  791. [GGML_TYPE_Q6_K] = {
  792. .type_name = "q6_K",
  793. .blck_size = QK_K,
  794. .type_size = sizeof(block_q6_K),
  795. .is_quantized = true,
  796. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  797. .from_float = quantize_row_q6_K,
  798. .from_float_ref = (ggml_from_float_t) quantize_row_q6_K_ref,
  799. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  800. .vec_dot_type = GGML_TYPE_Q8_K,
  801. .nrows = 1,
  802. },
  803. [GGML_TYPE_IQ2_XXS] = {
  804. .type_name = "iq2_xxs",
  805. .blck_size = QK_K,
  806. .type_size = sizeof(block_iq2_xxs),
  807. .is_quantized = true,
  808. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  809. .from_float = NULL,
  810. .from_float_ref = NULL,
  811. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  812. .vec_dot_type = GGML_TYPE_Q8_K,
  813. .nrows = 1,
  814. },
  815. [GGML_TYPE_IQ2_XS] = {
  816. .type_name = "iq2_xs",
  817. .blck_size = QK_K,
  818. .type_size = sizeof(block_iq2_xs),
  819. .is_quantized = true,
  820. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  821. .from_float = NULL,
  822. .from_float_ref = NULL,
  823. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  824. .vec_dot_type = GGML_TYPE_Q8_K,
  825. .nrows = 1,
  826. },
  827. [GGML_TYPE_IQ3_XXS] = {
  828. .type_name = "iq3_xxs",
  829. .blck_size = QK_K,
  830. .type_size = sizeof(block_iq3_xxs),
  831. .is_quantized = true,
  832. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  833. .from_float = quantize_row_iq3_xxs,
  834. .from_float_ref = (ggml_from_float_t)quantize_row_iq3_xxs_ref,
  835. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  836. .vec_dot_type = GGML_TYPE_Q8_K,
  837. .nrows = 1,
  838. },
  839. [GGML_TYPE_IQ3_S] = {
  840. .type_name = "iq3_s",
  841. .blck_size = QK_K,
  842. .type_size = sizeof(block_iq3_s),
  843. .is_quantized = true,
  844. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  845. .from_float = quantize_row_iq3_s,
  846. .from_float_ref = (ggml_from_float_t)quantize_row_iq3_s_ref,
  847. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  848. .vec_dot_type = GGML_TYPE_Q8_K,
  849. .nrows = 1,
  850. },
  851. [GGML_TYPE_IQ2_S] = {
  852. .type_name = "iq2_s",
  853. .blck_size = QK_K,
  854. .type_size = sizeof(block_iq2_s),
  855. .is_quantized = true,
  856. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  857. .from_float = quantize_row_iq2_s,
  858. .from_float_ref = (ggml_from_float_t)quantize_row_iq2_s_ref,
  859. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  860. .vec_dot_type = GGML_TYPE_Q8_K,
  861. .nrows = 1,
  862. },
  863. [GGML_TYPE_IQ1_S] = {
  864. .type_name = "iq1_s",
  865. .blck_size = QK_K,
  866. .type_size = sizeof(block_iq1_s),
  867. .is_quantized = true,
  868. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  869. .from_float = NULL,
  870. .from_float_ref = NULL,
  871. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  872. .vec_dot_type = GGML_TYPE_Q8_K,
  873. .nrows = 1,
  874. },
  875. [GGML_TYPE_IQ1_M] = {
  876. .type_name = "iq1_m",
  877. .blck_size = QK_K,
  878. .type_size = sizeof(block_iq1_m),
  879. .is_quantized = true,
  880. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  881. .from_float = NULL,
  882. .from_float_ref = NULL,
  883. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  884. .vec_dot_type = GGML_TYPE_Q8_K,
  885. .nrows = 1,
  886. },
  887. [GGML_TYPE_IQ4_NL] = {
  888. .type_name = "iq4_nl",
  889. .blck_size = QK4_NL,
  890. .type_size = sizeof(block_iq4_nl),
  891. .is_quantized = true,
  892. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  893. .from_float = quantize_row_iq4_nl,
  894. .from_float_ref = (ggml_from_float_t)quantize_row_iq4_nl_ref,
  895. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  896. .vec_dot_type = GGML_TYPE_Q8_0,
  897. .nrows = 1,
  898. },
  899. [GGML_TYPE_IQ4_XS] = {
  900. .type_name = "iq4_xs",
  901. .blck_size = QK_K,
  902. .type_size = sizeof(block_iq4_xs),
  903. .is_quantized = true,
  904. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  905. .from_float = quantize_row_iq4_xs,
  906. .from_float_ref = (ggml_from_float_t)quantize_row_iq4_xs_ref,
  907. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  908. .vec_dot_type = GGML_TYPE_Q8_K,
  909. .nrows = 1,
  910. },
  911. [GGML_TYPE_Q8_K] = {
  912. .type_name = "q8_K",
  913. .blck_size = QK_K,
  914. .type_size = sizeof(block_q8_K),
  915. .is_quantized = true,
  916. .from_float = quantize_row_q8_K,
  917. },
  918. [GGML_TYPE_BF16] = {
  919. .type_name = "bf16",
  920. .blck_size = 1,
  921. .type_size = sizeof(ggml_bf16_t),
  922. .is_quantized = false,
  923. .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
  924. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  925. .from_float_ref = (ggml_from_float_t) ggml_fp32_to_bf16_row_ref,
  926. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  927. .vec_dot_type = GGML_TYPE_BF16,
  928. .nrows = 1,
  929. },
  930. [GGML_TYPE_Q4_0_4_4] = {
  931. .type_name = "q4_0_4x4",
  932. .blck_size = QK4_0,
  933. .blck_size_interleave = 4,
  934. .type_size = sizeof(block_q4_0),
  935. .is_quantized = true,
  936. .to_float = NULL,
  937. .from_float = NULL,
  938. .from_float_ref = NULL,
  939. .vec_dot = NULL,
  940. .vec_dot_type = GGML_TYPE_Q8_0,
  941. .nrows = 1,
  942. .ncols = 4,
  943. .gemv = ggml_gemv_q4_0_4x4_q8_0,
  944. .gemm = ggml_gemm_q4_0_4x4_q8_0,
  945. },
  946. [GGML_TYPE_Q4_0_4_8] = {
  947. .type_name = "q4_0_4x8",
  948. .blck_size = QK4_0,
  949. .blck_size_interleave = 8,
  950. .type_size = sizeof(block_q4_0),
  951. .is_quantized = true,
  952. .to_float = NULL,
  953. .from_float = NULL,
  954. .from_float_ref = NULL,
  955. .vec_dot = NULL,
  956. .vec_dot_type = GGML_TYPE_Q8_0,
  957. .nrows = 1,
  958. .ncols = 4,
  959. .gemv = ggml_gemv_q4_0_4x8_q8_0,
  960. .gemm = ggml_gemm_q4_0_4x8_q8_0,
  961. },
  962. [GGML_TYPE_Q4_0_8_8] = {
  963. .type_name = "q4_0_8x8",
  964. .blck_size = QK4_0,
  965. .blck_size_interleave = 8,
  966. .type_size = sizeof(block_q4_0),
  967. .is_quantized = true,
  968. .to_float = NULL,
  969. .from_float = NULL,
  970. .from_float_ref = NULL,
  971. .vec_dot = NULL,
  972. .vec_dot_type = GGML_TYPE_Q8_0,
  973. .nrows = 1,
  974. .ncols = 8,
  975. .gemv = ggml_gemv_q4_0_8x8_q8_0,
  976. .gemm = ggml_gemm_q4_0_8x8_q8_0,
  977. },
  978. [GGML_TYPE_TQ1_0] = {
  979. .type_name = "tq1_0",
  980. .blck_size = QK_K,
  981. .type_size = sizeof(block_tq1_0),
  982. .is_quantized = true,
  983. .to_float = (ggml_to_float_t) dequantize_row_tq1_0,
  984. .from_float = quantize_row_tq1_0,
  985. .from_float_ref = (ggml_from_float_t) quantize_row_tq1_0_ref,
  986. .vec_dot = ggml_vec_dot_tq1_0_q8_K,
  987. .vec_dot_type = GGML_TYPE_Q8_K,
  988. .nrows = 1,
  989. },
  990. [GGML_TYPE_TQ2_0] = {
  991. .type_name = "tq2_0",
  992. .blck_size = QK_K,
  993. .type_size = sizeof(block_tq2_0),
  994. .is_quantized = true,
  995. .to_float = (ggml_to_float_t) dequantize_row_tq2_0,
  996. .from_float = quantize_row_tq2_0,
  997. .from_float_ref = (ggml_from_float_t) quantize_row_tq2_0_ref,
  998. .vec_dot = ggml_vec_dot_tq2_0_q8_K,
  999. .vec_dot_type = GGML_TYPE_Q8_K,
  1000. .nrows = 1,
  1001. },
  1002. };
  1003. // For internal test use
  1004. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  1005. GGML_ASSERT(type < GGML_TYPE_COUNT);
  1006. return type_traits[type];
  1007. }
  1008. //
  1009. // simd mappings
  1010. //
  1011. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1012. // we then implement the fundamental computation operations below using only these macros
  1013. // adding support for new architectures requires to define the corresponding SIMD macros
  1014. //
  1015. // GGML_F32_STEP / GGML_F16_STEP
  1016. // number of elements to process in a single step
  1017. //
  1018. // GGML_F32_EPR / GGML_F16_EPR
  1019. // number of elements to fit in a single register
  1020. //
  1021. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1022. #define GGML_SIMD
  1023. // F32 NEON
  1024. #define GGML_F32_STEP 16
  1025. #define GGML_F32_EPR 4
  1026. #define GGML_F32x4 float32x4_t
  1027. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1028. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1029. #define GGML_F32x4_LOAD vld1q_f32
  1030. #define GGML_F32x4_STORE vst1q_f32
  1031. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1032. #define GGML_F32x4_ADD vaddq_f32
  1033. #define GGML_F32x4_MUL vmulq_f32
  1034. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1035. #define GGML_F32x4_REDUCE(res, x) \
  1036. { \
  1037. int offset = GGML_F32_ARR >> 1; \
  1038. for (int i = 0; i < offset; ++i) { \
  1039. (x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
  1040. } \
  1041. offset >>= 1; \
  1042. for (int i = 0; i < offset; ++i) { \
  1043. (x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
  1044. } \
  1045. offset >>= 1; \
  1046. for (int i = 0; i < offset; ++i) { \
  1047. (x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
  1048. } \
  1049. (res) = GGML_F32x4_REDUCE_ONE((x)[0]); \
  1050. }
  1051. #define GGML_F32_VEC GGML_F32x4
  1052. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1053. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1054. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1055. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1056. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1057. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1058. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1059. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1060. // F16 NEON
  1061. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1062. #define GGML_F16_STEP 32
  1063. #define GGML_F16_EPR 8
  1064. #define GGML_F16x8 float16x8_t
  1065. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1066. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1067. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  1068. #define GGML_F16x8_STORE vst1q_f16
  1069. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1070. #define GGML_F16x8_ADD vaddq_f16
  1071. #define GGML_F16x8_MUL vmulq_f16
  1072. #define GGML_F16x8_REDUCE(res, x) \
  1073. do { \
  1074. int offset = GGML_F16_ARR >> 1; \
  1075. for (int i = 0; i < offset; ++i) { \
  1076. (x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
  1077. } \
  1078. offset >>= 1; \
  1079. for (int i = 0; i < offset; ++i) { \
  1080. (x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
  1081. } \
  1082. offset >>= 1; \
  1083. for (int i = 0; i < offset; ++i) { \
  1084. (x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
  1085. } \
  1086. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 ((x)[0])); \
  1087. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16((x)[0])); \
  1088. (res) = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1089. } while (0)
  1090. #define GGML_F16_VEC GGML_F16x8
  1091. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1092. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1093. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1094. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), (r)[i])
  1095. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1096. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1097. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1098. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1099. #else
  1100. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1101. // and take advantage of the vcvt_ functions to convert to/from FP16
  1102. #define GGML_F16_STEP 16
  1103. #define GGML_F16_EPR 4
  1104. #define GGML_F32Cx4 float32x4_t
  1105. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1106. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1107. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  1108. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1109. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1110. #define GGML_F32Cx4_ADD vaddq_f32
  1111. #define GGML_F32Cx4_MUL vmulq_f32
  1112. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1113. #define GGML_F16_VEC GGML_F32Cx4
  1114. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1115. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1116. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1117. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  1118. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1119. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1120. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1121. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1122. #endif
  1123. #elif defined(__AVX512F__)
  1124. #define GGML_SIMD
  1125. // F32 AVX512
  1126. #define GGML_F32_STEP 64
  1127. #define GGML_F32_EPR 16
  1128. #define GGML_F32x16 __m512
  1129. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  1130. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  1131. #define GGML_F32x16_LOAD _mm512_loadu_ps
  1132. #define GGML_F32x16_STORE _mm512_storeu_ps
  1133. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  1134. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  1135. #define GGML_F32x16_ADD _mm512_add_ps
  1136. #define GGML_F32x16_MUL _mm512_mul_ps
  1137. #define GGML_F32x16_REDUCE(res, x) \
  1138. do { \
  1139. int offset = GGML_F32_ARR >> 1; \
  1140. for (int i = 0; i < offset; ++i) { \
  1141. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1142. } \
  1143. offset >>= 1; \
  1144. for (int i = 0; i < offset; ++i) { \
  1145. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1146. } \
  1147. offset >>= 1; \
  1148. for (int i = 0; i < offset; ++i) { \
  1149. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1150. } \
  1151. res = _mm512_reduce_add_ps(x[0]); \
  1152. } while (0)
  1153. // TODO: is this optimal ?
  1154. #define GGML_F32_VEC GGML_F32x16
  1155. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  1156. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  1157. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  1158. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  1159. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  1160. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  1161. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  1162. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  1163. // F16 AVX512
  1164. // F16 AVX
  1165. #define GGML_F16_STEP 64
  1166. #define GGML_F16_EPR 16
  1167. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  1168. #define GGML_F32Cx16 __m512
  1169. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  1170. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  1171. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  1172. // so F16C guard isn't required
  1173. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  1174. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  1175. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  1176. #define GGML_F32Cx16_ADD _mm512_add_ps
  1177. #define GGML_F32Cx16_MUL _mm512_mul_ps
  1178. #define GGML_F32Cx16_REDUCE(res, x) \
  1179. do { \
  1180. int offset = GGML_F32_ARR >> 1; \
  1181. for (int i = 0; i < offset; ++i) { \
  1182. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1183. } \
  1184. offset >>= 1; \
  1185. for (int i = 0; i < offset; ++i) { \
  1186. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1187. } \
  1188. offset >>= 1; \
  1189. for (int i = 0; i < offset; ++i) { \
  1190. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1191. } \
  1192. res = _mm512_reduce_add_ps(x[0]); \
  1193. } while (0)
  1194. #define GGML_F16_VEC GGML_F32Cx16
  1195. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  1196. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  1197. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  1198. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  1199. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  1200. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  1201. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  1202. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  1203. #elif defined(__AVX__)
  1204. #define GGML_SIMD
  1205. // F32 AVX
  1206. #define GGML_F32_STEP 32
  1207. #define GGML_F32_EPR 8
  1208. #define GGML_F32x8 __m256
  1209. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1210. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1211. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1212. #define GGML_F32x8_STORE _mm256_storeu_ps
  1213. #if defined(__FMA__)
  1214. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1215. #else
  1216. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1217. #endif
  1218. #define GGML_F32x8_ADD _mm256_add_ps
  1219. #define GGML_F32x8_MUL _mm256_mul_ps
  1220. #define GGML_F32x8_REDUCE(res, x) \
  1221. do { \
  1222. int offset = GGML_F32_ARR >> 1; \
  1223. for (int i = 0; i < offset; ++i) { \
  1224. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1225. } \
  1226. offset >>= 1; \
  1227. for (int i = 0; i < offset; ++i) { \
  1228. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1229. } \
  1230. offset >>= 1; \
  1231. for (int i = 0; i < offset; ++i) { \
  1232. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1233. } \
  1234. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1235. _mm256_extractf128_ps(x[0], 1)); \
  1236. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1237. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1238. } while (0)
  1239. // TODO: is this optimal ?
  1240. #define GGML_F32_VEC GGML_F32x8
  1241. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1242. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1243. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1244. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1245. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1246. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1247. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1248. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1249. // F16 AVX
  1250. #define GGML_F16_STEP 32
  1251. #define GGML_F16_EPR 8
  1252. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1253. #define GGML_F32Cx8 __m256
  1254. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1255. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1256. #if defined(__F16C__)
  1257. // the _mm256_cvt intrinsics require F16C
  1258. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  1259. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1260. #else
  1261. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1262. float tmp[8];
  1263. for (int i = 0; i < 8; i++) {
  1264. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1265. }
  1266. return _mm256_loadu_ps(tmp);
  1267. }
  1268. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1269. float arr[8];
  1270. _mm256_storeu_ps(arr, y);
  1271. for (int i = 0; i < 8; i++)
  1272. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1273. }
  1274. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1275. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1276. #endif
  1277. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1278. #define GGML_F32Cx8_ADD _mm256_add_ps
  1279. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1280. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1281. #define GGML_F16_VEC GGML_F32Cx8
  1282. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1283. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1284. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1285. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1286. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1287. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1288. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1289. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1290. #elif defined(__POWER9_VECTOR__)
  1291. #define GGML_SIMD
  1292. // F32 POWER9
  1293. #define GGML_F32_STEP 32
  1294. #define GGML_F32_EPR 4
  1295. #define GGML_F32x4 vector float
  1296. #define GGML_F32x4_ZERO 0.0f
  1297. #define GGML_F32x4_SET1 vec_splats
  1298. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1299. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1300. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1301. #define GGML_F32x4_ADD vec_add
  1302. #define GGML_F32x4_MUL vec_mul
  1303. #define GGML_F32x4_REDUCE(res, x) \
  1304. { \
  1305. int offset = GGML_F32_ARR >> 1; \
  1306. for (int i = 0; i < offset; ++i) { \
  1307. x[i] = vec_add(x[i], x[offset+i]); \
  1308. } \
  1309. offset >>= 1; \
  1310. for (int i = 0; i < offset; ++i) { \
  1311. x[i] = vec_add(x[i], x[offset+i]); \
  1312. } \
  1313. offset >>= 1; \
  1314. for (int i = 0; i < offset; ++i) { \
  1315. x[i] = vec_add(x[i], x[offset+i]); \
  1316. } \
  1317. res = vec_extract(x[0], 0) + \
  1318. vec_extract(x[0], 1) + \
  1319. vec_extract(x[0], 2) + \
  1320. vec_extract(x[0], 3); \
  1321. }
  1322. #define GGML_F32_VEC GGML_F32x4
  1323. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1324. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1325. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1326. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1327. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1328. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1329. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1330. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1331. // F16 POWER9
  1332. #define GGML_F16_STEP GGML_F32_STEP
  1333. #define GGML_F16_EPR GGML_F32_EPR
  1334. #define GGML_F16_VEC GGML_F32x4
  1335. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1336. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1337. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1338. #define GGML_F16_VEC_ADD GGML_F32x4_ADD
  1339. #define GGML_F16_VEC_MUL GGML_F32x4_MUL
  1340. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1341. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1342. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1343. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1344. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1345. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1346. #define GGML_F16_VEC_STORE(p, r, i) \
  1347. if (i & 0x1) \
  1348. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1349. r[i - GGML_ENDIAN_BYTE(0)]), \
  1350. 0, p - GGML_F16_EPR)
  1351. #elif defined(__wasm_simd128__)
  1352. #define GGML_SIMD
  1353. // F32 WASM
  1354. #define GGML_F32_STEP 16
  1355. #define GGML_F32_EPR 4
  1356. #define GGML_F32x4 v128_t
  1357. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1358. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1359. #define GGML_F32x4_LOAD wasm_v128_load
  1360. #define GGML_F32x4_STORE wasm_v128_store
  1361. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1362. #define GGML_F32x4_ADD wasm_f32x4_add
  1363. #define GGML_F32x4_MUL wasm_f32x4_mul
  1364. #define GGML_F32x4_REDUCE(res, x) \
  1365. { \
  1366. int offset = GGML_F32_ARR >> 1; \
  1367. for (int i = 0; i < offset; ++i) { \
  1368. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1369. } \
  1370. offset >>= 1; \
  1371. for (int i = 0; i < offset; ++i) { \
  1372. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1373. } \
  1374. offset >>= 1; \
  1375. for (int i = 0; i < offset; ++i) { \
  1376. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1377. } \
  1378. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1379. wasm_f32x4_extract_lane(x[0], 1) + \
  1380. wasm_f32x4_extract_lane(x[0], 2) + \
  1381. wasm_f32x4_extract_lane(x[0], 3); \
  1382. }
  1383. #define GGML_F32_VEC GGML_F32x4
  1384. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1385. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1386. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1387. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1388. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1389. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1390. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1391. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1392. // F16 WASM
  1393. #define GGML_F16_STEP 16
  1394. #define GGML_F16_EPR 4
  1395. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1396. float tmp[4];
  1397. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1398. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1399. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1400. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1401. return wasm_v128_load(tmp);
  1402. }
  1403. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1404. float tmp[4];
  1405. wasm_v128_store(tmp, x);
  1406. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1407. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1408. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1409. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1410. }
  1411. #define GGML_F16x4 v128_t
  1412. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1413. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1414. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1415. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1416. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1417. #define GGML_F16x4_ADD wasm_f32x4_add
  1418. #define GGML_F16x4_MUL wasm_f32x4_mul
  1419. #define GGML_F16x4_REDUCE(res, x) \
  1420. { \
  1421. int offset = GGML_F16_ARR >> 1; \
  1422. for (int i = 0; i < offset; ++i) { \
  1423. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1424. } \
  1425. offset >>= 1; \
  1426. for (int i = 0; i < offset; ++i) { \
  1427. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1428. } \
  1429. offset >>= 1; \
  1430. for (int i = 0; i < offset; ++i) { \
  1431. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1432. } \
  1433. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1434. wasm_f32x4_extract_lane(x[0], 1) + \
  1435. wasm_f32x4_extract_lane(x[0], 2) + \
  1436. wasm_f32x4_extract_lane(x[0], 3); \
  1437. }
  1438. #define GGML_F16_VEC GGML_F16x4
  1439. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1440. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1441. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1442. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1443. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1444. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1445. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1446. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1447. #elif defined(__SSE3__)
  1448. #define GGML_SIMD
  1449. // F32 SSE
  1450. #define GGML_F32_STEP 32
  1451. #define GGML_F32_EPR 4
  1452. #define GGML_F32x4 __m128
  1453. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1454. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1455. #define GGML_F32x4_LOAD _mm_loadu_ps
  1456. #define GGML_F32x4_STORE _mm_storeu_ps
  1457. #if defined(__FMA__)
  1458. // TODO: Does this work?
  1459. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1460. #else
  1461. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1462. #endif
  1463. #define GGML_F32x4_ADD _mm_add_ps
  1464. #define GGML_F32x4_MUL _mm_mul_ps
  1465. #define GGML_F32x4_REDUCE(res, x) \
  1466. { \
  1467. int offset = GGML_F32_ARR >> 1; \
  1468. for (int i = 0; i < offset; ++i) { \
  1469. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1470. } \
  1471. offset >>= 1; \
  1472. for (int i = 0; i < offset; ++i) { \
  1473. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1474. } \
  1475. offset >>= 1; \
  1476. for (int i = 0; i < offset; ++i) { \
  1477. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1478. } \
  1479. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1480. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1481. }
  1482. // TODO: is this optimal ?
  1483. #define GGML_F32_VEC GGML_F32x4
  1484. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1485. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1486. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1487. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1488. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1489. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1490. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1491. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1492. // F16 SSE
  1493. #define GGML_F16_STEP 32
  1494. #define GGML_F16_EPR 4
  1495. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1496. float tmp[4];
  1497. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1498. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1499. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1500. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1501. return _mm_loadu_ps(tmp);
  1502. }
  1503. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1504. float arr[4];
  1505. _mm_storeu_ps(arr, y);
  1506. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1507. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1508. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1509. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1510. }
  1511. #define GGML_F32Cx4 __m128
  1512. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1513. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1514. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1515. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1516. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1517. #define GGML_F32Cx4_ADD _mm_add_ps
  1518. #define GGML_F32Cx4_MUL _mm_mul_ps
  1519. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1520. #define GGML_F16_VEC GGML_F32Cx4
  1521. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1522. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1523. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1524. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1525. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1526. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1527. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1528. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1529. #elif defined(__loongarch_asx)
  1530. #define GGML_SIMD
  1531. // F32 LASX
  1532. #define GGML_F32_STEP 32
  1533. #define GGML_F32_EPR 8
  1534. #define GGML_F32x8 __m256
  1535. #define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
  1536. #define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
  1537. #define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
  1538. #define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
  1539. #define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
  1540. #define GGML_F32x8_ADD __lasx_xvfadd_s
  1541. #define GGML_F32x8_MUL __lasx_xvfmul_s
  1542. #define GGML_F32x8_REDUCE(res, x) \
  1543. do { \
  1544. int offset = GGML_F32_ARR >> 1; \
  1545. for (int i = 0; i < offset; ++i) { \
  1546. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1547. } \
  1548. offset >>= 1; \
  1549. for (int i = 0; i < offset; ++i) { \
  1550. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1551. } \
  1552. offset >>= 1; \
  1553. for (int i = 0; i < offset; ++i) { \
  1554. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1555. } \
  1556. float *tmp_p = (float *)&x[0]; \
  1557. res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
  1558. } while (0)
  1559. // TODO: is this optimal ?
  1560. #define GGML_F32_VEC GGML_F32x8
  1561. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1562. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1563. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1564. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1565. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1566. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1567. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1568. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1569. // F16 LASX
  1570. #define GGML_F16_STEP 32
  1571. #define GGML_F16_EPR 8
  1572. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1573. #define GGML_F32Cx8 __m256
  1574. #define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
  1575. #define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
  1576. static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) {
  1577. float tmp[8];
  1578. for (int i = 0; i < 8; i++) {
  1579. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1580. }
  1581. return (__m256)__lasx_xvld(tmp, 0);
  1582. }
  1583. static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
  1584. float arr[8];
  1585. __lasx_xvst(y, arr, 0);
  1586. for (int i = 0; i < 8; i++) {
  1587. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1588. }
  1589. }
  1590. #define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
  1591. #define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
  1592. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1593. #define GGML_F32Cx8_ADD __lasx_xvfadd_s
  1594. #define GGML_F32Cx8_MUL __lasx_xvfmul_s
  1595. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1596. #define GGML_F16_VEC GGML_F32Cx8
  1597. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1598. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1599. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1600. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1601. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1602. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1603. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1604. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1605. #elif defined(__loongarch_sx)
  1606. #define GGML_SIMD
  1607. // F32 LSX
  1608. #define GGML_F32_STEP 32
  1609. #define GGML_F32_EPR 4
  1610. #define GGML_F32x4 __m128
  1611. #define GGML_F32x4_ZERO __lsx_vldi(0)
  1612. #define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1613. #define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
  1614. #define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
  1615. #define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
  1616. #define GGML_F32x4_ADD __lsx_vfadd_s
  1617. #define GGML_F32x4_MUL __lsx_vfmul_s
  1618. #define GGML_F32x4_REDUCE(res, x) \
  1619. { \
  1620. int offset = GGML_F32_ARR >> 1; \
  1621. for (int i = 0; i < offset; ++i) { \
  1622. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1623. } \
  1624. offset >>= 1; \
  1625. for (int i = 0; i < offset; ++i) { \
  1626. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1627. } \
  1628. offset >>= 1; \
  1629. for (int i = 0; i < offset; ++i) { \
  1630. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1631. } \
  1632. __m128i tmp = __lsx_vsrli_d((__m128i)x[0], 32); \
  1633. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, x[0]); \
  1634. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1635. const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
  1636. tmp = __lsx_vsrli_d((__m128i)t0, 32); \
  1637. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, t0); \
  1638. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1639. res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
  1640. }
  1641. #define GGML_F32_VEC GGML_F32x4
  1642. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1643. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1644. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1645. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1646. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1647. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1648. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1649. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1650. // F16 LSX
  1651. #define GGML_F16_STEP 32
  1652. #define GGML_F16_EPR 4
  1653. static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) {
  1654. float tmp[4];
  1655. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1656. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1657. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1658. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1659. return __lsx_vld(tmp, 0);
  1660. }
  1661. static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
  1662. float arr[4];
  1663. __lsx_vst(y, arr, 0);
  1664. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1665. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1666. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1667. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1668. }
  1669. #define GGML_F32Cx4 __m128
  1670. #define GGML_F32Cx4_ZERO __lsx_vldi(0)
  1671. #define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1672. #define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
  1673. #define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
  1674. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1675. #define GGML_F32Cx4_ADD __lsx_vfadd_s
  1676. #define GGML_F32Cx4_MUL __lsx_vfmul_s
  1677. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1678. #define GGML_F16_VEC GGML_F32Cx4
  1679. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1680. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1681. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1682. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1683. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1684. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1685. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1686. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1687. #endif
  1688. // GGML_F32_ARR / GGML_F16_ARR
  1689. // number of registers to use per step
  1690. #ifdef GGML_SIMD
  1691. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1692. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1693. #endif
  1694. //
  1695. // ggml object
  1696. //
  1697. struct ggml_object {
  1698. size_t offs;
  1699. size_t size;
  1700. struct ggml_object * next;
  1701. enum ggml_object_type type;
  1702. char padding[4];
  1703. };
  1704. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  1705. //
  1706. // ggml context
  1707. //
  1708. struct ggml_context {
  1709. size_t mem_size;
  1710. void* mem_buffer;
  1711. bool mem_buffer_owned;
  1712. bool no_alloc;
  1713. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1714. int n_objects;
  1715. struct ggml_object * objects_begin;
  1716. struct ggml_object * objects_end;
  1717. struct ggml_scratch scratch;
  1718. struct ggml_scratch scratch_save;
  1719. };
  1720. struct ggml_context_container {
  1721. bool used;
  1722. struct ggml_context context;
  1723. };
  1724. //
  1725. // Threading defs
  1726. //
  1727. typedef pthread_t ggml_thread_t;
  1728. #if defined(_WIN32)
  1729. typedef CONDITION_VARIABLE ggml_cond_t;
  1730. typedef SRWLOCK ggml_mutex_t;
  1731. #define ggml_mutex_init(m) InitializeSRWLock(m)
  1732. #define ggml_mutex_destroy(m)
  1733. #define ggml_mutex_lock(m) AcquireSRWLockExclusive(m)
  1734. #define ggml_mutex_unlock(m) ReleaseSRWLockExclusive(m)
  1735. #define ggml_mutex_lock_shared(m) AcquireSRWLockShared(m)
  1736. #define ggml_mutex_unlock_shared(m) ReleaseSRWLockShared(m)
  1737. #define ggml_cond_init(c) InitializeConditionVariable(c)
  1738. #define ggml_cond_destroy(c)
  1739. #define ggml_cond_wait(c, m) SleepConditionVariableSRW(c, m, INFINITE, CONDITION_VARIABLE_LOCKMODE_SHARED)
  1740. #define ggml_cond_broadcast(c) WakeAllConditionVariable(c)
  1741. #define ggml_thread_create pthread_create
  1742. #define ggml_thread_join pthread_join
  1743. #else
  1744. typedef pthread_cond_t ggml_cond_t;
  1745. typedef pthread_mutex_t ggml_mutex_t;
  1746. #define ggml_mutex_init(m) pthread_mutex_init(m, NULL)
  1747. #define ggml_mutex_destroy(m) pthread_mutex_destroy(m)
  1748. #define ggml_mutex_lock(m) pthread_mutex_lock(m)
  1749. #define ggml_mutex_unlock(m) pthread_mutex_unlock(m)
  1750. #define ggml_mutex_lock_shared(m) pthread_mutex_lock(m)
  1751. #define ggml_mutex_unlock_shared(m) pthread_mutex_unlock(m)
  1752. #define ggml_lock_init(x) UNUSED(x)
  1753. #define ggml_lock_destroy(x) UNUSED(x)
  1754. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  1755. #define ggml_lock_lock(x) _mm_pause()
  1756. #else
  1757. #define ggml_lock_lock(x) UNUSED(x)
  1758. #endif
  1759. #define ggml_lock_unlock(x) UNUSED(x)
  1760. #define GGML_LOCK_INITIALIZER 0
  1761. #define ggml_cond_init(c) pthread_cond_init(c, NULL)
  1762. #define ggml_cond_destroy(c) pthread_cond_destroy(c)
  1763. #define ggml_cond_wait(c, m) pthread_cond_wait(c, m)
  1764. #define ggml_cond_broadcast(c) pthread_cond_broadcast(c)
  1765. #define ggml_thread_create pthread_create
  1766. #define ggml_thread_join pthread_join
  1767. #endif
  1768. // Threadpool def
  1769. struct ggml_threadpool {
  1770. ggml_mutex_t mutex; // mutex for cond.var
  1771. ggml_cond_t cond; // cond.var for waiting for new work
  1772. struct ggml_cgraph * cgraph;
  1773. struct ggml_cplan * cplan;
  1774. // synchronization primitives
  1775. atomic_int n_graph; // incremented when there is work to be done (i.e each graph)
  1776. atomic_int GGML_CACHE_ALIGN n_barrier;
  1777. atomic_int GGML_CACHE_ALIGN n_barrier_passed;
  1778. atomic_int current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
  1779. // these are atomic as an annotation for thread-sanitizer
  1780. atomic_bool stop; // Used for stopping the threadpool altogether
  1781. atomic_bool pause; // Used for pausing the threadpool or individual threads
  1782. atomic_bool abort; // Used for aborting processing of a graph
  1783. struct ggml_compute_state * workers; // per thread state
  1784. int n_threads_max; // number of threads in the pool
  1785. atomic_int n_threads_cur; // number of threads used in the current graph
  1786. int32_t prio; // Scheduling priority
  1787. uint32_t poll; // Polling level (0 - no polling)
  1788. enum ggml_status ec;
  1789. };
  1790. // Per-thread state
  1791. struct ggml_compute_state {
  1792. #ifndef GGML_USE_OPENMP
  1793. ggml_thread_t thrd;
  1794. bool cpumask[GGML_MAX_N_THREADS];
  1795. int last_graph;
  1796. bool pending;
  1797. #endif
  1798. struct ggml_threadpool * threadpool;
  1799. int ith;
  1800. };
  1801. struct ggml_compute_params {
  1802. // ith = thread index, nth = number of threads
  1803. int ith, nth;
  1804. // work buffer for all threads
  1805. size_t wsize;
  1806. void * wdata;
  1807. struct ggml_threadpool * threadpool;
  1808. };
  1809. //
  1810. // fundamental operations
  1811. //
  1812. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1813. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1814. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1815. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1816. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1817. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1818. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1819. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1820. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1821. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1822. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1823. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1824. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1825. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1826. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1827. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1828. assert(nrc == 1);
  1829. UNUSED(nrc);
  1830. UNUSED(bx);
  1831. UNUSED(by);
  1832. UNUSED(bs);
  1833. #if defined(GGML_SIMD)
  1834. float sumf = 0.0f;
  1835. const int np = (n & ~(GGML_F32_STEP - 1));
  1836. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1837. GGML_F32_VEC ax[GGML_F32_ARR];
  1838. GGML_F32_VEC ay[GGML_F32_ARR];
  1839. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1840. for (int j = 0; j < GGML_F32_ARR; j++) {
  1841. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1842. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1843. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1844. }
  1845. }
  1846. // reduce sum0..sum3 to sum0
  1847. GGML_F32_VEC_REDUCE(sumf, sum);
  1848. // leftovers
  1849. for (int i = np; i < n; ++i) {
  1850. sumf += x[i]*y[i];
  1851. }
  1852. #else
  1853. // scalar
  1854. ggml_float sumf = 0.0;
  1855. for (int i = 0; i < n; ++i) {
  1856. sumf += (ggml_float)(x[i]*y[i]);
  1857. }
  1858. #endif
  1859. *s = sumf;
  1860. }
  1861. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1862. assert(nrc == 1);
  1863. UNUSED(nrc);
  1864. UNUSED(bx);
  1865. UNUSED(by);
  1866. UNUSED(bs);
  1867. int i = 0;
  1868. ggml_float sumf = 0;
  1869. #if defined(__AVX512BF16__)
  1870. __m512 c1 = _mm512_setzero_ps();
  1871. __m512 c2 = _mm512_setzero_ps();
  1872. for (; i + 64 <= n; i += 64) {
  1873. c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
  1874. m512bh(_mm512_loadu_si512((y + i))));
  1875. c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
  1876. m512bh(_mm512_loadu_si512((y + i + 32))));
  1877. }
  1878. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1879. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1880. #elif defined(__AVX512F__)
  1881. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1882. __m512 c1 = _mm512_setzero_ps();
  1883. __m512 c2 = _mm512_setzero_ps();
  1884. for (; i + 32 <= n; i += 32) {
  1885. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1886. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1887. }
  1888. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1889. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1890. #undef LOAD
  1891. #elif defined(__AVX2__)
  1892. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1893. __m256 c1 = _mm256_setzero_ps();
  1894. __m256 c2 = _mm256_setzero_ps();
  1895. __m256 c3 = _mm256_setzero_ps();
  1896. __m256 c4 = _mm256_setzero_ps();
  1897. for (; i + 32 <= n; i += 32) {
  1898. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1899. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1900. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1901. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1902. }
  1903. __m128 g;
  1904. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1905. _mm256_add_ps(c2, c4));
  1906. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1907. _mm256_castps256_ps128(c1));
  1908. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1909. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1910. sumf += (ggml_float)_mm_cvtss_f32(g);
  1911. #undef LOAD
  1912. #endif
  1913. for (; i < n; ++i) {
  1914. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1915. GGML_BF16_TO_FP32(y[i]));
  1916. }
  1917. *s = sumf;
  1918. }
  1919. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1920. assert(nrc == 1);
  1921. UNUSED(nrc);
  1922. UNUSED(bx);
  1923. UNUSED(by);
  1924. UNUSED(bs);
  1925. ggml_float sumf = 0.0;
  1926. #if defined(GGML_SIMD)
  1927. const int np = (n & ~(GGML_F16_STEP - 1));
  1928. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1929. GGML_F16_VEC ax[GGML_F16_ARR];
  1930. GGML_F16_VEC ay[GGML_F16_ARR];
  1931. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1932. for (int j = 0; j < GGML_F16_ARR; j++) {
  1933. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1934. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1935. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1936. }
  1937. }
  1938. // reduce sum0..sum3 to sum0
  1939. GGML_F16_VEC_REDUCE(sumf, sum);
  1940. // leftovers
  1941. for (int i = np; i < n; ++i) {
  1942. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1943. }
  1944. #else
  1945. for (int i = 0; i < n; ++i) {
  1946. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1947. }
  1948. #endif
  1949. *s = sumf;
  1950. }
  1951. // compute GGML_VEC_DOT_UNROLL dot products at once
  1952. // xs - x row stride in bytes
  1953. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1954. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1955. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1956. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1957. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1958. }
  1959. #if defined(GGML_SIMD)
  1960. const int np = (n & ~(GGML_F16_STEP - 1));
  1961. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1962. GGML_F16_VEC ax[GGML_F16_ARR];
  1963. GGML_F16_VEC ay[GGML_F16_ARR];
  1964. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1965. for (int j = 0; j < GGML_F16_ARR; j++) {
  1966. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1967. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1968. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1969. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1970. }
  1971. }
  1972. }
  1973. // reduce sum0..sum3 to sum0
  1974. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1975. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1976. }
  1977. // leftovers
  1978. for (int i = np; i < n; ++i) {
  1979. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1980. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1981. }
  1982. }
  1983. #else
  1984. for (int i = 0; i < n; ++i) {
  1985. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1986. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1987. }
  1988. }
  1989. #endif
  1990. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1991. s[i] = sumf[i];
  1992. }
  1993. }
  1994. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1995. #if defined(GGML_SIMD)
  1996. const int np = (n & ~(GGML_F32_STEP - 1));
  1997. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1998. GGML_F32_VEC ax[GGML_F32_ARR];
  1999. GGML_F32_VEC ay[GGML_F32_ARR];
  2000. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2001. for (int j = 0; j < GGML_F32_ARR; j++) {
  2002. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2003. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2004. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2005. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2006. }
  2007. }
  2008. // leftovers
  2009. for (int i = np; i < n; ++i) {
  2010. y[i] += x[i]*v;
  2011. }
  2012. #else
  2013. // scalar
  2014. for (int i = 0; i < n; ++i) {
  2015. y[i] += x[i]*v;
  2016. }
  2017. #endif
  2018. }
  2019. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  2020. #if defined(GGML_SIMD)
  2021. const int np = (n & ~(GGML_F16_STEP - 1));
  2022. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  2023. GGML_F16_VEC ax[GGML_F16_ARR];
  2024. GGML_F16_VEC ay[GGML_F16_ARR];
  2025. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2026. for (int j = 0; j < GGML_F16_ARR; j++) {
  2027. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  2028. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2029. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  2030. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  2031. }
  2032. }
  2033. // leftovers
  2034. for (int i = np; i < n; ++i) {
  2035. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  2036. }
  2037. #else
  2038. // scalar
  2039. for (int i = 0; i < n; ++i) {
  2040. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  2041. }
  2042. #endif
  2043. }
  2044. // xs and vs are byte strides of x and v
  2045. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  2046. const float * restrict x[GGML_VEC_MAD_UNROLL];
  2047. const float * restrict v[GGML_VEC_MAD_UNROLL];
  2048. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  2049. x[i] = (const float *) ((const char *) xv + i*xs);
  2050. v[i] = (const float *) ((const char *) vv + i*vs);
  2051. }
  2052. #if defined(GGML_SIMD)
  2053. const int np = (n & ~(GGML_F32_STEP - 1));
  2054. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  2055. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  2056. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  2057. }
  2058. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  2059. GGML_F32_VEC ay[GGML_F32_ARR];
  2060. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2061. for (int j = 0; j < GGML_F32_ARR; j++) {
  2062. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2063. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  2064. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  2065. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  2066. }
  2067. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2068. }
  2069. }
  2070. // leftovers
  2071. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  2072. for (int i = np; i < n; ++i) {
  2073. y[i] += x[k][i]*v[k][0];
  2074. }
  2075. }
  2076. #else
  2077. // scalar
  2078. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  2079. for (int i = 0; i < n; ++i) {
  2080. y[i] += x[k][i]*v[k][0];
  2081. }
  2082. }
  2083. #endif
  2084. }
  2085. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2086. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2087. #if defined(GGML_USE_ACCELERATE)
  2088. vDSP_vsmul(y, 1, &v, y, 1, n);
  2089. #elif defined(GGML_SIMD)
  2090. const int np = (n & ~(GGML_F32_STEP - 1));
  2091. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2092. GGML_F32_VEC ay[GGML_F32_ARR];
  2093. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2094. for (int j = 0; j < GGML_F32_ARR; j++) {
  2095. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2096. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2097. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2098. }
  2099. }
  2100. // leftovers
  2101. for (int i = np; i < n; ++i) {
  2102. y[i] *= v;
  2103. }
  2104. #else
  2105. // scalar
  2106. for (int i = 0; i < n; ++i) {
  2107. y[i] *= v;
  2108. }
  2109. #endif
  2110. }
  2111. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  2112. #if defined(GGML_SIMD)
  2113. const int np = (n & ~(GGML_F16_STEP - 1));
  2114. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  2115. GGML_F16_VEC ay[GGML_F16_ARR];
  2116. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2117. for (int j = 0; j < GGML_F16_ARR; j++) {
  2118. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2119. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  2120. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  2121. }
  2122. }
  2123. // leftovers
  2124. for (int i = np; i < n; ++i) {
  2125. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  2126. }
  2127. #else
  2128. // scalar
  2129. for (int i = 0; i < n; ++i) {
  2130. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  2131. }
  2132. #endif
  2133. }
  2134. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  2135. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2136. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2137. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2138. inline static void ggml_vec_sin_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sinf(x[i]); }
  2139. inline static void ggml_vec_cos_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = cosf(x[i]); }
  2140. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2141. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2142. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2143. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  2144. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expm1f(x[i]); }
  2145. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2146. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  2147. inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
  2148. // TODO: optimize performance
  2149. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  2150. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  2151. inline static void ggml_vec_exp_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = expf(x[i]); }
  2152. static const float GELU_COEF_A = 0.044715f;
  2153. static const float GELU_QUICK_COEF = -1.702f;
  2154. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2155. inline static float ggml_gelu_f32(float x) {
  2156. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2157. }
  2158. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2159. const uint16_t * i16 = (const uint16_t *) x;
  2160. for (int i = 0; i < n; ++i) {
  2161. y[i] = ggml_table_gelu_f16[i16[i]];
  2162. }
  2163. }
  2164. #ifdef GGML_GELU_FP16
  2165. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2166. uint16_t t;
  2167. for (int i = 0; i < n; ++i) {
  2168. if (x[i] <= -10.0f) {
  2169. y[i] = 0.0f;
  2170. } else if (x[i] >= 10.0f) {
  2171. y[i] = x[i];
  2172. } else {
  2173. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2174. memcpy(&t, &fp16, sizeof(uint16_t));
  2175. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  2176. }
  2177. }
  2178. }
  2179. #else
  2180. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2181. for (int i = 0; i < n; ++i) {
  2182. y[i] = ggml_gelu_f32(x[i]);
  2183. }
  2184. }
  2185. #endif
  2186. inline static float ggml_gelu_quick_f32(float x) {
  2187. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2188. }
  2189. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2190. // const uint16_t * i16 = (const uint16_t *) x;
  2191. // for (int i = 0; i < n; ++i) {
  2192. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  2193. // }
  2194. //}
  2195. #ifdef GGML_GELU_QUICK_FP16
  2196. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2197. uint16_t t;
  2198. for (int i = 0; i < n; ++i) {
  2199. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2200. memcpy(&t, &fp16, sizeof(uint16_t));
  2201. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  2202. }
  2203. }
  2204. #else
  2205. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2206. for (int i = 0; i < n; ++i) {
  2207. y[i] = ggml_gelu_quick_f32(x[i]);
  2208. }
  2209. }
  2210. #endif
  2211. // Sigmoid Linear Unit (SiLU) function
  2212. inline static float ggml_silu_f32(float x) {
  2213. return x/(1.0f + expf(-x));
  2214. }
  2215. #if __FINITE_MATH_ONLY__
  2216. #error "some routines in ggml.c require non-finite math arithmetics -- pass -fno-finite-math-only to the compiler to fix"
  2217. #error "ref: https://github.com/ggerganov/llama.cpp/pull/7154#issuecomment-2143844461"
  2218. #endif
  2219. #if defined(__ARM_NEON) && defined(__aarch64__)
  2220. // adapted from arm limited optimized routine
  2221. // the maximum error is 1.45358 plus 0.5 ulps
  2222. // numbers above 88.38 will flush to infinity
  2223. // numbers beneath -103.97 will flush to zero
  2224. inline static float32x4_t ggml_v_expf(float32x4_t x) {
  2225. const float32x4_t r = vdupq_n_f32(0x1.8p23f);
  2226. const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
  2227. const float32x4_t n = vsubq_f32(z, r);
  2228. const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
  2229. vdupq_n_f32(0x1.7f7d1cp-20f));
  2230. const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
  2231. const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
  2232. const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
  2233. const float32x4_t u = vmulq_f32(b, b);
  2234. const float32x4_t j = vfmaq_f32(
  2235. vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
  2236. vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
  2237. vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
  2238. if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
  2239. return vfmaq_f32(k, j, k);
  2240. const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
  2241. const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
  2242. const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
  2243. return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
  2244. vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
  2245. }
  2246. // computes silu x/(1+exp(-x)) in single precision vector
  2247. inline static float32x4_t ggml_v_silu(float32x4_t x) {
  2248. const float32x4_t one = vdupq_n_f32(1.0f);
  2249. const float32x4_t zero = vdupq_n_f32(0.0f);
  2250. const float32x4_t neg_x = vsubq_f32(zero, x);
  2251. const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
  2252. const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
  2253. return vdivq_f32(x, one_plus_exp_neg_x);
  2254. }
  2255. #elif defined(__AVX512F__) && defined(__AVX512DQ__)
  2256. // adapted from arm limited optimized routine
  2257. // the maximum error is 1.45358 plus 0.5 ulps
  2258. // numbers above 88.38 will flush to infinity
  2259. // numbers beneath -103.97 will flush to zero
  2260. inline static __m512 ggml_v_expf(__m512 x) {
  2261. const __m512 r = _mm512_set1_ps(0x1.8p23f);
  2262. const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
  2263. const __m512 n = _mm512_sub_ps(z, r);
  2264. const __m512 b =
  2265. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
  2266. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
  2267. const __mmask16 d =
  2268. _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
  2269. const __m512 u = _mm512_mul_ps(b, b);
  2270. const __m512 j = _mm512_fmadd_ps(
  2271. _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
  2272. _mm512_set1_ps(0x1.573e2ep-5f)),
  2273. u,
  2274. _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
  2275. _mm512_set1_ps(0x1.fffdb6p-2f))),
  2276. u,
  2277. _mm512_fmadd_ps(_mm512_set1_ps(0x1.ffffecp-1f), b, _mm512_set1_ps(1.0F)));
  2278. const __m512 res = _mm512_scalef_ps(j, n);
  2279. if (_mm512_kortestz(d, d))
  2280. return res;
  2281. const __m512 zero = _mm512_setzero_ps();
  2282. const __m512 alt = _mm512_mask_blend_ps(
  2283. _mm512_cmp_ps_mask(n, zero, _CMP_LE_OQ), _mm512_set1_ps(INFINITY), zero);
  2284. return _mm512_mask_blend_ps(d, res, alt);
  2285. }
  2286. // computes silu x/(1+exp(-x)) in single precision vector
  2287. inline static __m512 ggml_v_silu(__m512 x) {
  2288. const __m512 one = _mm512_set1_ps(1);
  2289. const __m512 zero = _mm512_setzero_ps();
  2290. const __m512 neg_x = _mm512_sub_ps(zero, x);
  2291. const __m512 exp_neg_x = ggml_v_expf(neg_x);
  2292. const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
  2293. return _mm512_div_ps(x, one_plus_exp_neg_x);
  2294. }
  2295. #elif defined(__AVX2__) && defined(__FMA__)
  2296. // adapted from arm limited optimized routine
  2297. // the maximum error is 1.45358 plus 0.5 ulps
  2298. // numbers above 88.38 will flush to infinity
  2299. // numbers beneath -103.97 will flush to zero
  2300. inline static __m256 ggml_v_expf(__m256 x) {
  2301. const __m256 r = _mm256_set1_ps(0x1.8p23f);
  2302. const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
  2303. const __m256 n = _mm256_sub_ps(z, r);
  2304. const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
  2305. _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
  2306. const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
  2307. const __m256 k = _mm256_castsi256_ps(
  2308. _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
  2309. const __m256i c = _mm256_castps_si256(
  2310. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2311. _mm256_set1_ps(126), _CMP_GT_OQ));
  2312. const __m256 u = _mm256_mul_ps(b, b);
  2313. const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
  2314. _mm256_set1_ps(0x1.573e2ep-5f)), u,
  2315. _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
  2316. _mm256_set1_ps(0x1.fffdb6p-2f))),
  2317. u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
  2318. if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
  2319. return _mm256_fmadd_ps(j, k, k);
  2320. const __m256i g = _mm256_and_si256(
  2321. _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
  2322. _mm256_set1_epi32(0x82000000u));
  2323. const __m256 s1 =
  2324. _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
  2325. const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
  2326. const __m256i d = _mm256_castps_si256(
  2327. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2328. _mm256_set1_ps(192), _CMP_GT_OQ));
  2329. return _mm256_or_ps(
  2330. _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
  2331. _mm256_andnot_ps(
  2332. _mm256_castsi256_ps(d),
  2333. _mm256_or_ps(
  2334. _mm256_and_ps(_mm256_castsi256_ps(c),
  2335. _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
  2336. _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
  2337. }
  2338. // computes silu x/(1+exp(-x)) in single precision vector
  2339. inline static __m256 ggml_v_silu(__m256 x) {
  2340. const __m256 one = _mm256_set1_ps(1);
  2341. const __m256 zero = _mm256_setzero_ps();
  2342. const __m256 neg_x = _mm256_sub_ps(zero, x);
  2343. const __m256 exp_neg_x = ggml_v_expf(neg_x);
  2344. const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
  2345. return _mm256_div_ps(x, one_plus_exp_neg_x);
  2346. }
  2347. #elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
  2348. #if defined(__FMA__)
  2349. #define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
  2350. #define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
  2351. #else
  2352. #define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
  2353. #define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
  2354. #endif
  2355. // adapted from arm limited optimized routine
  2356. // the maximum error is 1.45358 plus 0.5 ulps
  2357. // numbers above 88.38 will flush to infinity
  2358. // numbers beneath -103.97 will flush to zero
  2359. inline static __m128 ggml_v_expf(__m128 x) {
  2360. const __m128 r = _mm_set1_ps(0x1.8p23f);
  2361. const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
  2362. const __m128 n = _mm_sub_ps(z, r);
  2363. const __m128 b =
  2364. NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
  2365. const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
  2366. const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
  2367. const __m128i c =
  2368. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
  2369. const __m128 u = _mm_mul_ps(b, b);
  2370. const __m128 j =
  2371. MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
  2372. MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
  2373. u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
  2374. if (!_mm_movemask_epi8(c))
  2375. return MADD128(j, k, k);
  2376. const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
  2377. _mm_set1_epi32(0x82000000u));
  2378. const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
  2379. const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
  2380. const __m128i d =
  2381. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
  2382. return _mm_or_ps(
  2383. _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
  2384. _mm_andnot_ps(_mm_castsi128_ps(d),
  2385. _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
  2386. _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
  2387. }
  2388. // computes silu x/(1+exp(-x)) in single precision vector
  2389. inline static __m128 ggml_v_silu(__m128 x) {
  2390. const __m128 one = _mm_set1_ps(1);
  2391. const __m128 zero = _mm_setzero_ps();
  2392. const __m128 neg_x = _mm_sub_ps(zero, x);
  2393. const __m128 exp_neg_x = ggml_v_expf(neg_x);
  2394. const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
  2395. return _mm_div_ps(x, one_plus_exp_neg_x);
  2396. }
  2397. #endif // __ARM_NEON / __AVX2__ / __SSE2__
  2398. static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2399. int i = 0;
  2400. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2401. for (; i + 15 < n; i += 16) {
  2402. _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
  2403. }
  2404. #elif defined(__AVX2__) && defined(__FMA__)
  2405. for (; i + 7 < n; i += 8) {
  2406. _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
  2407. }
  2408. #elif defined(__SSE2__)
  2409. for (; i + 3 < n; i += 4) {
  2410. _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
  2411. }
  2412. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2413. for (; i + 3 < n; i += 4) {
  2414. vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
  2415. }
  2416. #endif
  2417. for (; i < n; ++i) {
  2418. y[i] = ggml_silu_f32(x[i]);
  2419. }
  2420. }
  2421. static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
  2422. int i = 0;
  2423. ggml_float sum = 0;
  2424. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2425. for (; i + 15 < n; i += 16) {
  2426. __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
  2427. _mm512_set1_ps(max)));
  2428. _mm512_storeu_ps(y + i, val);
  2429. sum += (ggml_float)_mm512_reduce_add_ps(val);
  2430. }
  2431. #elif defined(__AVX2__) && defined(__FMA__)
  2432. for (; i + 7 < n; i += 8) {
  2433. __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
  2434. _mm256_set1_ps(max)));
  2435. _mm256_storeu_ps(y + i, val);
  2436. __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
  2437. _mm256_castps256_ps128(val));
  2438. val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
  2439. val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
  2440. sum += (ggml_float)_mm_cvtss_f32(val2);
  2441. }
  2442. #elif defined(__SSE2__)
  2443. for (; i + 3 < n; i += 4) {
  2444. __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
  2445. _mm_set1_ps(max)));
  2446. _mm_storeu_ps(y + i, val);
  2447. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  2448. val = _mm_add_ps(val, _mm_movehl_ps(val, val));
  2449. val = _mm_add_ss(val, _mm_movehdup_ps(val));
  2450. #else
  2451. __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
  2452. val = _mm_add_ps(val, tmp);
  2453. tmp = _mm_movehl_ps(tmp, val);
  2454. val = _mm_add_ss(val, tmp);
  2455. #endif
  2456. sum += (ggml_float)_mm_cvtss_f32(val);
  2457. }
  2458. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2459. for (; i + 3 < n; i += 4) {
  2460. float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
  2461. vdupq_n_f32(max)));
  2462. vst1q_f32(y + i, val);
  2463. sum += (ggml_float)vaddvq_f32(val);
  2464. }
  2465. #endif
  2466. for (; i < n; ++i) {
  2467. float val = expf(x[i] - max);
  2468. sum += (ggml_float)val;
  2469. y[i] = val;
  2470. }
  2471. return sum;
  2472. }
  2473. static ggml_float ggml_vec_log_soft_max_f32(const int n, float * y, const float * x, float max) {
  2474. // log(soft_max) = log(soft_max_i / soft_max_sum) = log(soft_max_i) - log(soft_max_sum) = (logit_i - max) - log(soft_max_i)
  2475. int i = 0;
  2476. ggml_float sum = 0;
  2477. for (; i < n; ++i) {
  2478. float val = x[i] - max;
  2479. y[i] = val;
  2480. sum += (ggml_float)expf(val);
  2481. }
  2482. return sum = (ggml_float)logf(sum);
  2483. }
  2484. inline static float ggml_silu_backward_f32(float x, float dy) {
  2485. const float s = 1.0f/(1.0f + expf(-x));
  2486. return dy*s*(1.0f + x*(1.0f - s));
  2487. }
  2488. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2489. for (int i = 0; i < n; ++i) {
  2490. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2491. }
  2492. }
  2493. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2494. #ifndef GGML_USE_ACCELERATE
  2495. ggml_float sum = 0.0;
  2496. for (int i = 0; i < n; ++i) {
  2497. sum += (ggml_float)x[i];
  2498. }
  2499. *s = sum;
  2500. #else
  2501. vDSP_sve(x, 1, s, n);
  2502. #endif
  2503. }
  2504. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  2505. ggml_float sum = 0.0;
  2506. for (int i = 0; i < n; ++i) {
  2507. sum += (ggml_float)x[i];
  2508. }
  2509. *s = sum;
  2510. }
  2511. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  2512. float sum = 0.0f;
  2513. for (int i = 0; i < n; ++i) {
  2514. sum += GGML_FP16_TO_FP32(x[i]);
  2515. }
  2516. *s = sum;
  2517. }
  2518. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  2519. float sum = 0.0f;
  2520. for (int i = 0; i < n; ++i) {
  2521. sum += GGML_BF16_TO_FP32(x[i]);
  2522. }
  2523. *s = sum;
  2524. }
  2525. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2526. #ifndef GGML_USE_ACCELERATE
  2527. float max = -INFINITY;
  2528. for (int i = 0; i < n; ++i) {
  2529. max = MAX(max, x[i]);
  2530. }
  2531. *s = max;
  2532. #else
  2533. vDSP_maxv(x, 1, s, n);
  2534. #endif
  2535. }
  2536. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2537. ggml_vec_norm_f32(n, s, x);
  2538. *s = 1.f/(*s);
  2539. }
  2540. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2541. float max = -INFINITY;
  2542. int idx = 0;
  2543. for (int i = 0; i < n; ++i) {
  2544. max = MAX(max, x[i]);
  2545. if (max == x[i]) { idx = i; }
  2546. }
  2547. *s = idx;
  2548. }
  2549. //
  2550. // data types
  2551. //
  2552. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2553. "NONE",
  2554. "DUP",
  2555. "ADD",
  2556. "ADD1",
  2557. "ACC",
  2558. "SUB",
  2559. "MUL",
  2560. "DIV",
  2561. "SQR",
  2562. "SQRT",
  2563. "LOG",
  2564. "SIN",
  2565. "COS",
  2566. "SUM",
  2567. "SUM_ROWS",
  2568. "MEAN",
  2569. "ARGMAX",
  2570. "REPEAT",
  2571. "REPEAT_BACK",
  2572. "CONCAT",
  2573. "SILU_BACK",
  2574. "NORM",
  2575. "RMS_NORM",
  2576. "RMS_NORM_BACK",
  2577. "GROUP_NORM",
  2578. "MUL_MAT",
  2579. "MUL_MAT_ID",
  2580. "OUT_PROD",
  2581. "SCALE",
  2582. "SET",
  2583. "CPY",
  2584. "CONT",
  2585. "RESHAPE",
  2586. "VIEW",
  2587. "PERMUTE",
  2588. "TRANSPOSE",
  2589. "GET_ROWS",
  2590. "GET_ROWS_BACK",
  2591. "DIAG",
  2592. "DIAG_MASK_INF",
  2593. "DIAG_MASK_ZERO",
  2594. "SOFT_MAX",
  2595. "SOFT_MAX_BACK",
  2596. "ROPE",
  2597. "ROPE_BACK",
  2598. "CLAMP",
  2599. "CONV_TRANSPOSE_1D",
  2600. "IM2COL",
  2601. "IM2COL_BACK",
  2602. "CONV_TRANSPOSE_2D",
  2603. "POOL_1D",
  2604. "POOL_2D",
  2605. "POOL_2D_BACK",
  2606. "UPSCALE",
  2607. "PAD",
  2608. "ARANGE",
  2609. "TIMESTEP_EMBEDDING",
  2610. "ARGSORT",
  2611. "LEAKY_RELU",
  2612. "FLASH_ATTN_EXT",
  2613. "FLASH_ATTN_BACK",
  2614. "SSM_CONV",
  2615. "SSM_SCAN",
  2616. "WIN_PART",
  2617. "WIN_UNPART",
  2618. "GET_REL_POS",
  2619. "ADD_REL_POS",
  2620. "RWKV_WKV",
  2621. "UNARY",
  2622. "MAP_UNARY",
  2623. "MAP_BINARY",
  2624. "MAP_CUSTOM1_F32",
  2625. "MAP_CUSTOM2_F32",
  2626. "MAP_CUSTOM3_F32",
  2627. "MAP_CUSTOM1",
  2628. "MAP_CUSTOM2",
  2629. "MAP_CUSTOM3",
  2630. "CROSS_ENTROPY_LOSS",
  2631. "CROSS_ENTROPY_LOSS_BACK",
  2632. "OPT_STEP_ADAMW",
  2633. };
  2634. static_assert(GGML_OP_COUNT == 80, "GGML_OP_COUNT != 80");
  2635. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2636. "none",
  2637. "x",
  2638. "x+y",
  2639. "x+y",
  2640. "view(x,nb,offset)+=y->x",
  2641. "x-y",
  2642. "x*y",
  2643. "x/y",
  2644. "x^2",
  2645. "√x",
  2646. "log(x)",
  2647. "sin(x)",
  2648. "cos(x)",
  2649. "Σx",
  2650. "Σx_k",
  2651. "Σx/n",
  2652. "argmax(x)",
  2653. "repeat(x)",
  2654. "repeat_back(x)",
  2655. "concat(x, y)",
  2656. "silu_back(x)",
  2657. "norm(x)",
  2658. "rms_norm(x)",
  2659. "rms_norm_back(x)",
  2660. "group_norm(x)",
  2661. "X*Y",
  2662. "X[i]*Y",
  2663. "X*Y",
  2664. "x*v",
  2665. "y-\\>view(x)",
  2666. "x-\\>y",
  2667. "cont(x)",
  2668. "reshape(x)",
  2669. "view(x)",
  2670. "permute(x)",
  2671. "transpose(x)",
  2672. "get_rows(x)",
  2673. "get_rows_back(x)",
  2674. "diag(x)",
  2675. "diag_mask_inf(x)",
  2676. "diag_mask_zero(x)",
  2677. "soft_max(x)",
  2678. "soft_max_back(x)",
  2679. "rope(x)",
  2680. "rope_back(x)",
  2681. "clamp(x)",
  2682. "conv_transpose_1d(x)",
  2683. "im2col(x)",
  2684. "im2col_back(x)",
  2685. "conv_transpose_2d(x)",
  2686. "pool_1d(x)",
  2687. "pool_2d(x)",
  2688. "pool_2d_back(x)",
  2689. "upscale(x)",
  2690. "pad(x)",
  2691. "arange(start, stop, step)",
  2692. "timestep_embedding(timesteps, dim, max_period)",
  2693. "argsort(x)",
  2694. "leaky_relu(x)",
  2695. "flash_attn_ext(x)",
  2696. "flash_attn_back(x)",
  2697. "ssm_conv(x)",
  2698. "ssm_scan(x)",
  2699. "win_part(x)",
  2700. "win_unpart(x)",
  2701. "get_rel_pos(x)",
  2702. "add_rel_pos(x)",
  2703. "rwkv_wkv(k, v, r, tf, td, s)",
  2704. "unary(x)",
  2705. "f(x)",
  2706. "f(x,y)",
  2707. "custom_f32(x)",
  2708. "custom_f32(x,y)",
  2709. "custom_f32(x,y,z)",
  2710. "custom(x)",
  2711. "custom(x,y)",
  2712. "custom(x,y,z)",
  2713. "cross_entropy_loss(x,y)",
  2714. "cross_entropy_loss_back(x,y)",
  2715. "adamw(x)",
  2716. };
  2717. static_assert(GGML_OP_COUNT == 80, "GGML_OP_COUNT != 80");
  2718. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  2719. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  2720. "ABS",
  2721. "SGN",
  2722. "NEG",
  2723. "STEP",
  2724. "TANH",
  2725. "ELU",
  2726. "RELU",
  2727. "SIGMOID",
  2728. "GELU",
  2729. "GELU_QUICK",
  2730. "SILU",
  2731. "HARDSWISH",
  2732. "HARDSIGMOID",
  2733. "EXP",
  2734. };
  2735. static_assert(GGML_UNARY_OP_COUNT == 14, "GGML_UNARY_OP_COUNT != 14");
  2736. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2737. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2738. // Helpers for polling loops
  2739. #if defined(__aarch64__) && ( defined(__clang__) || defined(__GNUC__) )
  2740. static inline void ggml_thread_cpu_relax(void) {
  2741. __asm__ volatile("yield" ::: "memory");
  2742. }
  2743. #elif defined(__x86_64__)
  2744. static inline void ggml_thread_cpu_relax(void) {
  2745. _mm_pause();
  2746. }
  2747. #else
  2748. static inline void ggml_thread_cpu_relax(void) {;}
  2749. #endif
  2750. //
  2751. // NUMA support
  2752. //
  2753. #define GGML_NUMA_MAX_NODES 8
  2754. #define GGML_NUMA_MAX_CPUS 512
  2755. struct ggml_numa_node {
  2756. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  2757. uint32_t n_cpus;
  2758. };
  2759. struct ggml_numa_nodes {
  2760. enum ggml_numa_strategy numa_strategy;
  2761. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  2762. uint32_t n_nodes;
  2763. uint32_t total_cpus; // hardware threads on system
  2764. uint32_t current_node; // node on which main process is execting
  2765. #if defined(__gnu_linux__)
  2766. cpu_set_t cpuset; // cpuset from numactl
  2767. #else
  2768. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  2769. #endif
  2770. };
  2771. //
  2772. // ggml state
  2773. //
  2774. struct ggml_state {
  2775. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2776. struct ggml_numa_nodes numa;
  2777. };
  2778. // global state
  2779. static struct ggml_state g_state;
  2780. static atomic_flag g_state_critical = ATOMIC_FLAG_INIT;
  2781. // critical section via spin lock
  2782. inline static void ggml_critical_section_start(void) {
  2783. while (atomic_flag_test_and_set(&g_state_critical)) {
  2784. // spin
  2785. sched_yield();
  2786. }
  2787. }
  2788. static void ggml_barrier(struct ggml_threadpool * tp) {
  2789. int n_threads = atomic_load_explicit(&tp->n_threads_cur, memory_order_relaxed);
  2790. if (n_threads == 1) {
  2791. return;
  2792. }
  2793. #ifdef GGML_USE_OPENMP
  2794. #pragma omp barrier
  2795. #else
  2796. int n_passed = atomic_load_explicit(&tp->n_barrier_passed, memory_order_relaxed);
  2797. // enter barrier (full seq-cst fence)
  2798. int n_barrier = atomic_fetch_add_explicit(&tp->n_barrier, 1, memory_order_seq_cst);
  2799. if (n_barrier == (n_threads - 1)) {
  2800. // last thread
  2801. atomic_store_explicit(&tp->n_barrier, 0, memory_order_relaxed);
  2802. // exit barrier (fill seq-cst fence)
  2803. atomic_fetch_add_explicit(&tp->n_barrier_passed, 1, memory_order_seq_cst);
  2804. return;
  2805. }
  2806. // wait for other threads
  2807. while (atomic_load_explicit(&tp->n_barrier_passed, memory_order_relaxed) == n_passed) {
  2808. ggml_thread_cpu_relax();
  2809. }
  2810. // exit barrier (full seq-cst fence)
  2811. // TSAN doesn't support standalone fence yet, we use a dummy read-modify-write instead
  2812. #ifdef GGML_TSAN_ENABLED
  2813. atomic_fetch_add_explicit(&tp->n_barrier_passed, 0, memory_order_seq_cst);
  2814. #else
  2815. atomic_thread_fence(memory_order_seq_cst);
  2816. #endif
  2817. #endif
  2818. }
  2819. // TODO: make this somehow automatically executed
  2820. // some sort of "sentry" mechanism
  2821. inline static void ggml_critical_section_end(void) {
  2822. atomic_flag_clear(&g_state_critical);
  2823. }
  2824. #if defined(__gnu_linux__)
  2825. static cpu_set_t ggml_get_numa_affinity(void) {
  2826. cpu_set_t cpuset;
  2827. pthread_t thread;
  2828. thread = pthread_self();
  2829. CPU_ZERO(&cpuset);
  2830. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2831. return cpuset;
  2832. }
  2833. #else
  2834. static uint32_t ggml_get_numa_affinity(void) {
  2835. return 0; // no NUMA support
  2836. }
  2837. #endif
  2838. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2839. if (g_state.numa.n_nodes > 0) {
  2840. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2841. return;
  2842. }
  2843. #if defined(__gnu_linux__)
  2844. struct stat st;
  2845. char path[256];
  2846. int rv;
  2847. // set numa scheme
  2848. g_state.numa.numa_strategy = numa_flag;
  2849. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2850. g_state.numa.cpuset = ggml_get_numa_affinity();
  2851. // enumerate nodes
  2852. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2853. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2854. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2855. if (stat(path, &st) != 0) { break; }
  2856. ++g_state.numa.n_nodes;
  2857. }
  2858. // enumerate CPUs
  2859. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2860. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2861. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2862. if (stat(path, &st) != 0) { break; }
  2863. ++g_state.numa.total_cpus;
  2864. }
  2865. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2866. // figure out which node we're on
  2867. uint current_cpu;
  2868. int getcpu_ret = 0;
  2869. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
  2870. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2871. #else
  2872. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2873. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2874. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2875. # endif
  2876. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2877. #endif
  2878. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2879. g_state.numa.n_nodes = 0;
  2880. return;
  2881. }
  2882. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2883. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2884. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2885. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2886. node->n_cpus = 0;
  2887. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2888. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2889. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2890. if (stat(path, &st) == 0) {
  2891. node->cpus[node->n_cpus++] = c;
  2892. GGML_PRINT_DEBUG(" %u", c);
  2893. }
  2894. }
  2895. GGML_PRINT_DEBUG("\n");
  2896. }
  2897. if (ggml_is_numa()) {
  2898. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2899. if (fptr != NULL) {
  2900. char buf[42];
  2901. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2902. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2903. }
  2904. fclose(fptr);
  2905. }
  2906. }
  2907. #else
  2908. UNUSED(numa_flag);
  2909. // TODO
  2910. #endif
  2911. }
  2912. bool ggml_is_numa(void) {
  2913. return g_state.numa.n_nodes > 1;
  2914. }
  2915. ////////////////////////////////////////////////////////////////////////////////
  2916. void ggml_print_object(const struct ggml_object * obj) {
  2917. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2918. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2919. }
  2920. void ggml_print_objects(const struct ggml_context * ctx) {
  2921. struct ggml_object * obj = ctx->objects_begin;
  2922. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2923. while (obj != NULL) {
  2924. ggml_print_object(obj);
  2925. obj = obj->next;
  2926. }
  2927. GGML_PRINT("%s: --- end ---\n", __func__);
  2928. }
  2929. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2930. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2931. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2932. }
  2933. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2934. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2935. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2936. }
  2937. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2938. size_t nbytes;
  2939. size_t blck_size = ggml_blck_size(tensor->type);
  2940. if (blck_size == 1) {
  2941. nbytes = ggml_type_size(tensor->type);
  2942. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2943. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2944. }
  2945. }
  2946. else {
  2947. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2948. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2949. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2950. }
  2951. }
  2952. return nbytes;
  2953. }
  2954. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2955. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2956. }
  2957. GGML_CALL int64_t ggml_blck_size(enum ggml_type type) {
  2958. return type_traits[type].blck_size;
  2959. }
  2960. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2961. return type_traits[type].type_size;
  2962. }
  2963. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2964. assert(ne % ggml_blck_size(type) == 0);
  2965. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2966. }
  2967. double ggml_type_sizef(enum ggml_type type) {
  2968. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2969. }
  2970. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2971. return type < GGML_TYPE_COUNT ? type_traits[type].type_name : "NONE";
  2972. }
  2973. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2974. return type_traits[type].is_quantized;
  2975. }
  2976. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2977. return GGML_OP_NAME[op];
  2978. }
  2979. const char * ggml_op_symbol(enum ggml_op op) {
  2980. return GGML_OP_SYMBOL[op];
  2981. }
  2982. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2983. return GGML_UNARY_OP_NAME[op];
  2984. }
  2985. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2986. if (t->op == GGML_OP_UNARY) {
  2987. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2988. return ggml_unary_op_name(uop);
  2989. }
  2990. return ggml_op_name(t->op);
  2991. }
  2992. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2993. return ggml_type_size(tensor->type);
  2994. }
  2995. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2996. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2997. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2998. }
  2999. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3000. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3001. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3002. }
  3003. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3004. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3005. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3006. }
  3007. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  3008. return tensor->ne[3] == 1;
  3009. }
  3010. int ggml_n_dims(const struct ggml_tensor * tensor) {
  3011. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  3012. if (tensor->ne[i] > 1) {
  3013. return i + 1;
  3014. }
  3015. }
  3016. return 1;
  3017. }
  3018. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3019. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3020. return (t0->ne[0] == t1->ne[0]) &&
  3021. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3022. (t1->ne[3]%t0->ne[3] == 0);
  3023. }
  3024. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3025. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3026. return (t0->ne[1] == t1->ne[1]) &&
  3027. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3028. (t1->ne[3]%t0->ne[3] == 0);
  3029. }
  3030. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3031. enum ggml_type wtype = GGML_TYPE_COUNT;
  3032. switch (ftype) {
  3033. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3034. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3035. case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
  3036. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3037. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3038. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3039. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3040. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3041. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3042. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3043. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3044. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3045. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3046. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  3047. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  3048. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  3049. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  3050. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  3051. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  3052. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  3053. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  3054. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  3055. case GGML_FTYPE_MOSTLY_Q4_0_4_4: wtype = GGML_TYPE_Q4_0_4_4; break;
  3056. case GGML_FTYPE_MOSTLY_Q4_0_4_8: wtype = GGML_TYPE_Q4_0_4_8; break;
  3057. case GGML_FTYPE_MOSTLY_Q4_0_8_8: wtype = GGML_TYPE_Q4_0_8_8; break;
  3058. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3059. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3060. }
  3061. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3062. return wtype;
  3063. }
  3064. size_t ggml_tensor_overhead(void) {
  3065. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  3066. }
  3067. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3068. return tensor->nb[0] > tensor->nb[1];
  3069. }
  3070. static bool ggml_is_contiguous_n(const struct ggml_tensor * tensor, int n) {
  3071. size_t next_nb = ggml_type_size(tensor->type);
  3072. if (tensor->ne[0] != ggml_blck_size(tensor->type) && tensor->nb[0] != next_nb) {
  3073. return false;
  3074. }
  3075. next_nb *= tensor->ne[0]/ggml_blck_size(tensor->type);
  3076. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  3077. if (tensor->ne[i] != 1) {
  3078. if (i > n) {
  3079. if (tensor->nb[i] != next_nb) {
  3080. return false;
  3081. }
  3082. next_nb *= tensor->ne[i];
  3083. } else {
  3084. // this dimension does not need to be contiguous
  3085. next_nb = tensor->ne[i]*tensor->nb[i];
  3086. }
  3087. }
  3088. }
  3089. return true;
  3090. }
  3091. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3092. return ggml_is_contiguous_0(tensor);
  3093. }
  3094. GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
  3095. return ggml_is_contiguous_n(tensor, 0);
  3096. }
  3097. GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
  3098. return ggml_is_contiguous_n(tensor, 1);
  3099. }
  3100. GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
  3101. return ggml_is_contiguous_n(tensor, 2);
  3102. }
  3103. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3104. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3105. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3106. }
  3107. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3108. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3109. return
  3110. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3111. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3112. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3113. }
  3114. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  3115. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  3116. if (tensor->ne[i] == 0) {
  3117. // empty if any dimension has no elements
  3118. return true;
  3119. }
  3120. }
  3121. return false;
  3122. }
  3123. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3124. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3125. return
  3126. (t0->ne[0] == t1->ne[0]) &&
  3127. (t0->ne[1] == t1->ne[1]) &&
  3128. (t0->ne[2] == t1->ne[2]) &&
  3129. (t0->ne[3] == t1->ne[3]);
  3130. }
  3131. bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3132. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3133. return
  3134. (t0->nb[0] == t1->nb[0]) &&
  3135. (t0->nb[1] == t1->nb[1]) &&
  3136. (t0->nb[2] == t1->nb[2]) &&
  3137. (t0->nb[3] == t1->nb[3]);
  3138. }
  3139. // check if t1 can be represented as a repeatition of t0
  3140. bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3141. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3142. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  3143. (t1->ne[0]%t0->ne[0] == 0) &&
  3144. (t1->ne[1]%t0->ne[1] == 0) &&
  3145. (t1->ne[2]%t0->ne[2] == 0) &&
  3146. (t1->ne[3]%t0->ne[3] == 0);
  3147. }
  3148. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3149. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3150. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3151. }
  3152. static inline int ggml_up32(int n) {
  3153. return (n + 31) & ~31;
  3154. }
  3155. //static inline int ggml_up64(int n) {
  3156. // return (n + 63) & ~63;
  3157. //}
  3158. static inline int ggml_up(int n, int m) {
  3159. // assert m is a power of 2
  3160. GGML_ASSERT((m & (m - 1)) == 0);
  3161. return (n + m - 1) & ~(m - 1);
  3162. }
  3163. // assert that pointer is aligned to GGML_MEM_ALIGN
  3164. #define GGML_ASSERT_ALIGNED(ptr) \
  3165. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3166. ////////////////////////////////////////////////////////////////////////////////
  3167. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3168. // make this function thread safe
  3169. ggml_critical_section_start();
  3170. static bool is_first_call = true;
  3171. if (is_first_call) {
  3172. // initialize time system (required on Windows)
  3173. ggml_time_init();
  3174. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3175. {
  3176. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3177. for (int i = 0; i < (1 << 16); ++i) {
  3178. union {
  3179. uint16_t u16;
  3180. ggml_fp16_t fp16;
  3181. } u = {i};
  3182. float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
  3183. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3184. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3185. }
  3186. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3187. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3188. }
  3189. // initialize g_state
  3190. {
  3191. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3192. g_state = (struct ggml_state) {
  3193. /*.contexts =*/ { { 0 } },
  3194. /*.numa =*/ {
  3195. .n_nodes = 0,
  3196. .total_cpus = 0,
  3197. },
  3198. };
  3199. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3200. g_state.contexts[i].used = false;
  3201. }
  3202. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3203. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3204. }
  3205. is_first_call = false;
  3206. }
  3207. // find non-used context in g_state
  3208. struct ggml_context * ctx = NULL;
  3209. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3210. if (!g_state.contexts[i].used) {
  3211. g_state.contexts[i].used = true;
  3212. ctx = &g_state.contexts[i].context;
  3213. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3214. break;
  3215. }
  3216. }
  3217. if (ctx == NULL) {
  3218. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3219. ggml_critical_section_end();
  3220. return NULL;
  3221. }
  3222. // allow to call ggml_init with 0 size
  3223. if (params.mem_size == 0) {
  3224. params.mem_size = GGML_MEM_ALIGN;
  3225. }
  3226. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  3227. *ctx = (struct ggml_context) {
  3228. /*.mem_size =*/ mem_size,
  3229. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3230. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3231. /*.no_alloc =*/ params.no_alloc,
  3232. /*.no_alloc_save =*/ params.no_alloc,
  3233. /*.n_objects =*/ 0,
  3234. /*.objects_begin =*/ NULL,
  3235. /*.objects_end =*/ NULL,
  3236. /*.scratch =*/ { 0, 0, NULL, },
  3237. /*.scratch_save =*/ { 0, 0, NULL, },
  3238. };
  3239. GGML_ASSERT(ctx->mem_buffer != NULL);
  3240. GGML_ASSERT_ALIGNED(ctx->mem_buffer);
  3241. #if defined(__ARM_FEATURE_SVE)
  3242. if (!ggml_sve_cnt_b) {
  3243. ggml_sve_cnt_b = PR_SVE_VL_LEN_MASK & prctl(PR_SVE_GET_VL);
  3244. }
  3245. #endif
  3246. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3247. ggml_critical_section_end();
  3248. return ctx;
  3249. }
  3250. void ggml_free(struct ggml_context * ctx) {
  3251. if (ctx == NULL) {
  3252. return;
  3253. }
  3254. // make this function thread safe
  3255. ggml_critical_section_start();
  3256. bool found = false;
  3257. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3258. if (&g_state.contexts[i].context == ctx) {
  3259. g_state.contexts[i].used = false;
  3260. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  3261. __func__, i, ggml_used_mem(ctx));
  3262. if (ctx->mem_buffer_owned) {
  3263. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3264. }
  3265. found = true;
  3266. break;
  3267. }
  3268. }
  3269. if (!found) {
  3270. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3271. }
  3272. ggml_critical_section_end();
  3273. }
  3274. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3275. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3276. }
  3277. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3278. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3279. ctx->scratch = scratch;
  3280. return result;
  3281. }
  3282. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  3283. return ctx->no_alloc;
  3284. }
  3285. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3286. ctx->no_alloc = no_alloc;
  3287. }
  3288. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3289. return ctx->mem_buffer;
  3290. }
  3291. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3292. return ctx->mem_size;
  3293. }
  3294. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3295. size_t max_size = 0;
  3296. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  3297. size_t bytes = ggml_nbytes(tensor);
  3298. max_size = MAX(max_size, bytes);
  3299. }
  3300. return max_size;
  3301. }
  3302. // IMPORTANT:
  3303. // when creating "opt" tensors, always save and load the scratch buffer
  3304. // this is an error prone process, but it is necessary to support inplace
  3305. // operators when using scratch buffers
  3306. // TODO: implement a better way
  3307. static void ggml_scratch_save(struct ggml_context * ctx) {
  3308. // this is needed to allow opt tensors to store their data
  3309. // TODO: again, need to find a better way
  3310. ctx->no_alloc_save = ctx->no_alloc;
  3311. ctx->no_alloc = false;
  3312. ctx->scratch_save = ctx->scratch;
  3313. ctx->scratch.data = NULL;
  3314. }
  3315. static void ggml_scratch_load(struct ggml_context * ctx) {
  3316. ctx->no_alloc = ctx->no_alloc_save;
  3317. ctx->scratch = ctx->scratch_save;
  3318. }
  3319. ////////////////////////////////////////////////////////////////////////////////
  3320. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3321. // always insert objects at the end of the context's memory pool
  3322. struct ggml_object * obj_cur = ctx->objects_end;
  3323. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3324. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3325. const size_t cur_end = cur_offs + cur_size;
  3326. // align to GGML_MEM_ALIGN
  3327. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3328. char * const mem_buffer = ctx->mem_buffer;
  3329. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3330. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3331. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3332. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3333. assert(false);
  3334. return NULL;
  3335. }
  3336. *obj_new = (struct ggml_object) {
  3337. .offs = cur_end + GGML_OBJECT_SIZE,
  3338. .size = size_needed,
  3339. .next = NULL,
  3340. .type = type,
  3341. };
  3342. GGML_ASSERT_ALIGNED(mem_buffer + obj_new->offs);
  3343. if (obj_cur != NULL) {
  3344. obj_cur->next = obj_new;
  3345. } else {
  3346. // this is the first object in this context
  3347. ctx->objects_begin = obj_new;
  3348. }
  3349. ctx->objects_end = obj_new;
  3350. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3351. return obj_new;
  3352. }
  3353. static struct ggml_tensor * ggml_new_tensor_impl(
  3354. struct ggml_context * ctx,
  3355. enum ggml_type type,
  3356. int n_dims,
  3357. const int64_t * ne,
  3358. struct ggml_tensor * view_src,
  3359. size_t view_offs) {
  3360. GGML_ASSERT(type >= 0 && type < GGML_TYPE_COUNT);
  3361. GGML_ASSERT(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3362. // find the base tensor and absolute offset
  3363. if (view_src != NULL && view_src->view_src != NULL) {
  3364. view_offs += view_src->view_offs;
  3365. view_src = view_src->view_src;
  3366. }
  3367. size_t data_size = ggml_row_size(type, ne[0]);
  3368. for (int i = 1; i < n_dims; i++) {
  3369. data_size *= ne[i];
  3370. }
  3371. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  3372. void * data = view_src != NULL ? view_src->data : NULL;
  3373. if (data != NULL) {
  3374. data = (char *) data + view_offs;
  3375. }
  3376. size_t obj_alloc_size = 0;
  3377. if (view_src == NULL && !ctx->no_alloc) {
  3378. if (ctx->scratch.data != NULL) {
  3379. // allocate tensor data in the scratch buffer
  3380. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3381. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3382. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3383. assert(false);
  3384. return NULL;
  3385. }
  3386. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3387. ctx->scratch.offs += data_size;
  3388. } else {
  3389. // allocate tensor data in the context's memory pool
  3390. obj_alloc_size = data_size;
  3391. }
  3392. }
  3393. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3394. GGML_ASSERT(obj_new);
  3395. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3396. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3397. #ifdef __clang__
  3398. // temporary until ggml_tensor::backend is removed
  3399. #pragma clang diagnostic push
  3400. #pragma clang diagnostic ignored "-Wdeprecated-declarations"
  3401. #endif
  3402. *result = (struct ggml_tensor) {
  3403. /*.type =*/ type,
  3404. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  3405. /*.buffer =*/ NULL,
  3406. /*.ne =*/ { 1, 1, 1, 1 },
  3407. /*.nb =*/ { 0, 0, 0, 0 },
  3408. /*.op =*/ GGML_OP_NONE,
  3409. /*.op_params =*/ { 0 },
  3410. /*.flags =*/ 0,
  3411. /*.grad =*/ NULL,
  3412. /*.src =*/ { NULL },
  3413. /*.view_src =*/ view_src,
  3414. /*.view_offs =*/ view_offs,
  3415. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3416. /*.name =*/ { 0 },
  3417. /*.extra =*/ NULL,
  3418. ///*.padding =*/ { 0 },
  3419. };
  3420. #ifdef __clang__
  3421. #pragma clang diagnostic pop
  3422. #endif
  3423. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3424. //GGML_ASSERT_ALIGNED(result->data);
  3425. for (int i = 0; i < n_dims; i++) {
  3426. result->ne[i] = ne[i];
  3427. }
  3428. result->nb[0] = ggml_type_size(type);
  3429. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3430. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3431. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3432. }
  3433. ctx->n_objects++;
  3434. return result;
  3435. }
  3436. struct ggml_tensor * ggml_new_tensor(
  3437. struct ggml_context * ctx,
  3438. enum ggml_type type,
  3439. int n_dims,
  3440. const int64_t * ne) {
  3441. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3442. }
  3443. struct ggml_tensor * ggml_new_tensor_1d(
  3444. struct ggml_context * ctx,
  3445. enum ggml_type type,
  3446. int64_t ne0) {
  3447. return ggml_new_tensor(ctx, type, 1, &ne0);
  3448. }
  3449. struct ggml_tensor * ggml_new_tensor_2d(
  3450. struct ggml_context * ctx,
  3451. enum ggml_type type,
  3452. int64_t ne0,
  3453. int64_t ne1) {
  3454. const int64_t ne[2] = { ne0, ne1 };
  3455. return ggml_new_tensor(ctx, type, 2, ne);
  3456. }
  3457. struct ggml_tensor * ggml_new_tensor_3d(
  3458. struct ggml_context * ctx,
  3459. enum ggml_type type,
  3460. int64_t ne0,
  3461. int64_t ne1,
  3462. int64_t ne2) {
  3463. const int64_t ne[3] = { ne0, ne1, ne2 };
  3464. return ggml_new_tensor(ctx, type, 3, ne);
  3465. }
  3466. struct ggml_tensor * ggml_new_tensor_4d(
  3467. struct ggml_context * ctx,
  3468. enum ggml_type type,
  3469. int64_t ne0,
  3470. int64_t ne1,
  3471. int64_t ne2,
  3472. int64_t ne3) {
  3473. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3474. return ggml_new_tensor(ctx, type, 4, ne);
  3475. }
  3476. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3477. ggml_scratch_save(ctx);
  3478. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3479. ggml_scratch_load(ctx);
  3480. ggml_set_i32(result, value);
  3481. return result;
  3482. }
  3483. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3484. ggml_scratch_save(ctx);
  3485. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3486. ggml_scratch_load(ctx);
  3487. ggml_set_f32(result, value);
  3488. return result;
  3489. }
  3490. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3491. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  3492. }
  3493. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3494. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3495. assert(params_size <= GGML_MAX_OP_PARAMS);
  3496. memcpy(tensor->op_params, params, params_size);
  3497. }
  3498. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3499. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3500. return ((const int32_t *)(tensor->op_params))[i];
  3501. }
  3502. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  3503. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3504. return ((const float *)(tensor->op_params))[i];
  3505. }
  3506. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3507. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3508. ((int32_t *)(tensor->op_params))[i] = value;
  3509. }
  3510. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  3511. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3512. ((float *)(tensor->op_params))[i] = value;
  3513. }
  3514. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3515. if (tensor->buffer) {
  3516. ggml_backend_tensor_memset(tensor, 0, 0, ggml_nbytes(tensor));
  3517. } else {
  3518. memset(tensor->data, 0, ggml_nbytes(tensor));
  3519. }
  3520. return tensor;
  3521. }
  3522. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3523. const int n = ggml_nrows(tensor);
  3524. const int nc = tensor->ne[0];
  3525. const size_t n1 = tensor->nb[1];
  3526. char * const data = tensor->data;
  3527. switch (tensor->type) {
  3528. case GGML_TYPE_I8:
  3529. {
  3530. assert(tensor->nb[0] == sizeof(int8_t));
  3531. for (int i = 0; i < n; i++) {
  3532. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3533. }
  3534. } break;
  3535. case GGML_TYPE_I16:
  3536. {
  3537. assert(tensor->nb[0] == sizeof(int16_t));
  3538. for (int i = 0; i < n; i++) {
  3539. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3540. }
  3541. } break;
  3542. case GGML_TYPE_I32:
  3543. {
  3544. assert(tensor->nb[0] == sizeof(int32_t));
  3545. for (int i = 0; i < n; i++) {
  3546. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3547. }
  3548. } break;
  3549. case GGML_TYPE_F16:
  3550. {
  3551. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3552. for (int i = 0; i < n; i++) {
  3553. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3554. }
  3555. } break;
  3556. case GGML_TYPE_BF16:
  3557. {
  3558. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3559. for (int i = 0; i < n; i++) {
  3560. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3561. }
  3562. } break;
  3563. case GGML_TYPE_F32:
  3564. {
  3565. assert(tensor->nb[0] == sizeof(float));
  3566. for (int i = 0; i < n; i++) {
  3567. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3568. }
  3569. } break;
  3570. default:
  3571. {
  3572. GGML_ABORT("fatal error");
  3573. }
  3574. }
  3575. return tensor;
  3576. }
  3577. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3578. const int n = ggml_nrows(tensor);
  3579. const int nc = tensor->ne[0];
  3580. const size_t n1 = tensor->nb[1];
  3581. char * const data = tensor->data;
  3582. switch (tensor->type) {
  3583. case GGML_TYPE_I8:
  3584. {
  3585. assert(tensor->nb[0] == sizeof(int8_t));
  3586. for (int i = 0; i < n; i++) {
  3587. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3588. }
  3589. } break;
  3590. case GGML_TYPE_I16:
  3591. {
  3592. assert(tensor->nb[0] == sizeof(int16_t));
  3593. for (int i = 0; i < n; i++) {
  3594. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3595. }
  3596. } break;
  3597. case GGML_TYPE_I32:
  3598. {
  3599. assert(tensor->nb[0] == sizeof(int32_t));
  3600. for (int i = 0; i < n; i++) {
  3601. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3602. }
  3603. } break;
  3604. case GGML_TYPE_F16:
  3605. {
  3606. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3607. for (int i = 0; i < n; i++) {
  3608. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3609. }
  3610. } break;
  3611. case GGML_TYPE_BF16:
  3612. {
  3613. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  3614. for (int i = 0; i < n; i++) {
  3615. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3616. }
  3617. } break;
  3618. case GGML_TYPE_F32:
  3619. {
  3620. assert(tensor->nb[0] == sizeof(float));
  3621. for (int i = 0; i < n; i++) {
  3622. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3623. }
  3624. } break;
  3625. default:
  3626. {
  3627. GGML_ABORT("fatal error");
  3628. }
  3629. }
  3630. return tensor;
  3631. }
  3632. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  3633. const int64_t ne2 = tensor->ne[2];
  3634. const int64_t ne1 = tensor->ne[1];
  3635. const int64_t ne0 = tensor->ne[0];
  3636. const int64_t i3_ = (i/(ne2*ne1*ne0));
  3637. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  3638. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  3639. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  3640. if (i0) {
  3641. * i0 = i0_;
  3642. }
  3643. if (i1) {
  3644. * i1 = i1_;
  3645. }
  3646. if (i2) {
  3647. * i2 = i2_;
  3648. }
  3649. if (i3) {
  3650. * i3 = i3_;
  3651. }
  3652. }
  3653. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3654. if (!ggml_is_contiguous(tensor)) {
  3655. int64_t id[4] = { 0, 0, 0, 0 };
  3656. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3657. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  3658. }
  3659. switch (tensor->type) {
  3660. case GGML_TYPE_I8:
  3661. {
  3662. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3663. return ((int8_t *)(tensor->data))[i];
  3664. }
  3665. case GGML_TYPE_I16:
  3666. {
  3667. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3668. return ((int16_t *)(tensor->data))[i];
  3669. }
  3670. case GGML_TYPE_I32:
  3671. {
  3672. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3673. return ((int32_t *)(tensor->data))[i];
  3674. }
  3675. case GGML_TYPE_F16:
  3676. {
  3677. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3678. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3679. }
  3680. case GGML_TYPE_BF16:
  3681. {
  3682. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3683. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3684. }
  3685. case GGML_TYPE_F32:
  3686. {
  3687. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3688. return ((float *)(tensor->data))[i];
  3689. }
  3690. default:
  3691. {
  3692. GGML_ABORT("fatal error");
  3693. }
  3694. }
  3695. }
  3696. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3697. if (!ggml_is_contiguous(tensor)) {
  3698. int64_t id[4] = { 0, 0, 0, 0 };
  3699. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3700. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3701. return;
  3702. }
  3703. switch (tensor->type) {
  3704. case GGML_TYPE_I8:
  3705. {
  3706. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3707. ((int8_t *)(tensor->data))[i] = value;
  3708. } break;
  3709. case GGML_TYPE_I16:
  3710. {
  3711. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3712. ((int16_t *)(tensor->data))[i] = value;
  3713. } break;
  3714. case GGML_TYPE_I32:
  3715. {
  3716. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3717. ((int32_t *)(tensor->data))[i] = value;
  3718. } break;
  3719. case GGML_TYPE_F16:
  3720. {
  3721. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3722. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3723. } break;
  3724. case GGML_TYPE_BF16:
  3725. {
  3726. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3727. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3728. } break;
  3729. case GGML_TYPE_F32:
  3730. {
  3731. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3732. ((float *)(tensor->data))[i] = value;
  3733. } break;
  3734. default:
  3735. {
  3736. GGML_ABORT("fatal error");
  3737. }
  3738. }
  3739. }
  3740. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3741. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3742. switch (tensor->type) {
  3743. case GGML_TYPE_I8:
  3744. return ((int8_t *) data)[0];
  3745. case GGML_TYPE_I16:
  3746. return ((int16_t *) data)[0];
  3747. case GGML_TYPE_I32:
  3748. return ((int32_t *) data)[0];
  3749. case GGML_TYPE_F16:
  3750. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3751. case GGML_TYPE_BF16:
  3752. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3753. case GGML_TYPE_F32:
  3754. return ((float *) data)[0];
  3755. default:
  3756. GGML_ABORT("fatal error");
  3757. }
  3758. }
  3759. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  3760. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3761. switch (tensor->type) {
  3762. case GGML_TYPE_I8:
  3763. {
  3764. ((int8_t *)(data))[0] = value;
  3765. } break;
  3766. case GGML_TYPE_I16:
  3767. {
  3768. ((int16_t *)(data))[0] = value;
  3769. } break;
  3770. case GGML_TYPE_I32:
  3771. {
  3772. ((int32_t *)(data))[0] = value;
  3773. } break;
  3774. case GGML_TYPE_F16:
  3775. {
  3776. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3777. } break;
  3778. case GGML_TYPE_BF16:
  3779. {
  3780. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3781. } break;
  3782. case GGML_TYPE_F32:
  3783. {
  3784. ((float *)(data))[0] = value;
  3785. } break;
  3786. default:
  3787. {
  3788. GGML_ABORT("fatal error");
  3789. }
  3790. }
  3791. }
  3792. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3793. if (!ggml_is_contiguous(tensor)) {
  3794. int64_t id[4] = { 0, 0, 0, 0 };
  3795. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3796. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  3797. }
  3798. switch (tensor->type) {
  3799. case GGML_TYPE_I8:
  3800. {
  3801. return ((int8_t *)(tensor->data))[i];
  3802. }
  3803. case GGML_TYPE_I16:
  3804. {
  3805. return ((int16_t *)(tensor->data))[i];
  3806. }
  3807. case GGML_TYPE_I32:
  3808. {
  3809. return ((int32_t *)(tensor->data))[i];
  3810. }
  3811. case GGML_TYPE_F16:
  3812. {
  3813. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3814. }
  3815. case GGML_TYPE_BF16:
  3816. {
  3817. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3818. }
  3819. case GGML_TYPE_F32:
  3820. {
  3821. return ((float *)(tensor->data))[i];
  3822. }
  3823. default:
  3824. {
  3825. GGML_ABORT("fatal error");
  3826. }
  3827. }
  3828. }
  3829. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3830. if (!ggml_is_contiguous(tensor)) {
  3831. int64_t id[4] = { 0, 0, 0, 0 };
  3832. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3833. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3834. return;
  3835. }
  3836. switch (tensor->type) {
  3837. case GGML_TYPE_I8:
  3838. {
  3839. ((int8_t *)(tensor->data))[i] = value;
  3840. } break;
  3841. case GGML_TYPE_I16:
  3842. {
  3843. ((int16_t *)(tensor->data))[i] = value;
  3844. } break;
  3845. case GGML_TYPE_I32:
  3846. {
  3847. ((int32_t *)(tensor->data))[i] = value;
  3848. } break;
  3849. case GGML_TYPE_F16:
  3850. {
  3851. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3852. } break;
  3853. case GGML_TYPE_BF16:
  3854. {
  3855. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3856. } break;
  3857. case GGML_TYPE_F32:
  3858. {
  3859. ((float *)(tensor->data))[i] = value;
  3860. } break;
  3861. default:
  3862. {
  3863. GGML_ABORT("fatal error");
  3864. }
  3865. }
  3866. }
  3867. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3868. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3869. switch (tensor->type) {
  3870. case GGML_TYPE_I8:
  3871. return ((int8_t *) data)[0];
  3872. case GGML_TYPE_I16:
  3873. return ((int16_t *) data)[0];
  3874. case GGML_TYPE_I32:
  3875. return ((int32_t *) data)[0];
  3876. case GGML_TYPE_F16:
  3877. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3878. case GGML_TYPE_BF16:
  3879. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3880. case GGML_TYPE_F32:
  3881. return ((float *) data)[0];
  3882. default:
  3883. GGML_ABORT("fatal error");
  3884. }
  3885. }
  3886. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  3887. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3888. switch (tensor->type) {
  3889. case GGML_TYPE_I8:
  3890. {
  3891. ((int8_t *)(data))[0] = value;
  3892. } break;
  3893. case GGML_TYPE_I16:
  3894. {
  3895. ((int16_t *)(data))[0] = value;
  3896. } break;
  3897. case GGML_TYPE_I32:
  3898. {
  3899. ((int32_t *)(data))[0] = value;
  3900. } break;
  3901. case GGML_TYPE_F16:
  3902. {
  3903. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3904. } break;
  3905. case GGML_TYPE_BF16:
  3906. {
  3907. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3908. } break;
  3909. case GGML_TYPE_F32:
  3910. {
  3911. ((float *)(data))[0] = value;
  3912. } break;
  3913. default:
  3914. {
  3915. GGML_ABORT("fatal error");
  3916. }
  3917. }
  3918. }
  3919. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3920. return tensor->data;
  3921. }
  3922. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3923. assert(tensor->type == GGML_TYPE_F32);
  3924. return (float *)(tensor->data);
  3925. }
  3926. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3927. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3928. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3929. }
  3930. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3931. return tensor->name;
  3932. }
  3933. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3934. size_t i;
  3935. for (i = 0; i < sizeof(tensor->name) - 1 && name[i] != '\0'; i++) {
  3936. tensor->name[i] = name[i];
  3937. }
  3938. tensor->name[i] = '\0';
  3939. return tensor;
  3940. }
  3941. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3942. va_list args;
  3943. va_start(args, fmt);
  3944. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3945. va_end(args);
  3946. return tensor;
  3947. }
  3948. struct ggml_tensor * ggml_view_tensor(
  3949. struct ggml_context * ctx,
  3950. struct ggml_tensor * src) {
  3951. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3952. ggml_format_name(result, "%s (view)", src->name);
  3953. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3954. result->nb[i] = src->nb[i];
  3955. }
  3956. return result;
  3957. }
  3958. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3959. struct ggml_object * obj = ctx->objects_begin;
  3960. char * const mem_buffer = ctx->mem_buffer;
  3961. while (obj != NULL) {
  3962. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3963. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3964. }
  3965. obj = obj->next;
  3966. }
  3967. return NULL;
  3968. }
  3969. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3970. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3971. obj = obj->next;
  3972. char * const mem_buffer = ctx->mem_buffer;
  3973. while (obj != NULL) {
  3974. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3975. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3976. }
  3977. obj = obj->next;
  3978. }
  3979. return NULL;
  3980. }
  3981. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3982. struct ggml_object * obj = ctx->objects_begin;
  3983. char * const mem_buffer = ctx->mem_buffer;
  3984. while (obj != NULL) {
  3985. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3986. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3987. if (strcmp(cur->name, name) == 0) {
  3988. return cur;
  3989. }
  3990. }
  3991. obj = obj->next;
  3992. }
  3993. return NULL;
  3994. }
  3995. ////////////////////////////////////////////////////////////////////////////////
  3996. // ggml_dup
  3997. static struct ggml_tensor * ggml_dup_impl(
  3998. struct ggml_context * ctx,
  3999. struct ggml_tensor * a,
  4000. bool inplace) {
  4001. bool is_node = false;
  4002. if (!inplace && (a->grad)) {
  4003. is_node = true;
  4004. }
  4005. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4006. result->op = GGML_OP_DUP;
  4007. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4008. result->src[0] = a;
  4009. return result;
  4010. }
  4011. struct ggml_tensor * ggml_dup(
  4012. struct ggml_context * ctx,
  4013. struct ggml_tensor * a) {
  4014. return ggml_dup_impl(ctx, a, false);
  4015. }
  4016. struct ggml_tensor * ggml_dup_inplace(
  4017. struct ggml_context * ctx,
  4018. struct ggml_tensor * a) {
  4019. return ggml_dup_impl(ctx, a, true);
  4020. }
  4021. // ggml_add
  4022. static struct ggml_tensor * ggml_add_impl(
  4023. struct ggml_context * ctx,
  4024. struct ggml_tensor * a,
  4025. struct ggml_tensor * b,
  4026. bool inplace) {
  4027. GGML_ASSERT(ggml_can_repeat(b, a));
  4028. bool is_node = false;
  4029. if (!inplace && (a->grad || b->grad)) {
  4030. is_node = true;
  4031. }
  4032. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4033. result->op = GGML_OP_ADD;
  4034. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4035. result->src[0] = a;
  4036. result->src[1] = b;
  4037. return result;
  4038. }
  4039. struct ggml_tensor * ggml_add(
  4040. struct ggml_context * ctx,
  4041. struct ggml_tensor * a,
  4042. struct ggml_tensor * b) {
  4043. return ggml_add_impl(ctx, a, b, false);
  4044. }
  4045. struct ggml_tensor * ggml_add_inplace(
  4046. struct ggml_context * ctx,
  4047. struct ggml_tensor * a,
  4048. struct ggml_tensor * b) {
  4049. return ggml_add_impl(ctx, a, b, true);
  4050. }
  4051. // ggml_add_cast
  4052. static struct ggml_tensor * ggml_add_cast_impl(
  4053. struct ggml_context * ctx,
  4054. struct ggml_tensor * a,
  4055. struct ggml_tensor * b,
  4056. enum ggml_type type) {
  4057. // TODO: support less-strict constraint
  4058. // GGML_ASSERT(ggml_can_repeat(b, a));
  4059. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4060. // currently only supported for quantized input and f16
  4061. GGML_ASSERT(ggml_is_quantized(a->type) ||
  4062. a->type == GGML_TYPE_F16 ||
  4063. a->type == GGML_TYPE_BF16);
  4064. bool is_node = false;
  4065. if (a->grad || b->grad) {
  4066. // TODO: support backward pass for broadcasting
  4067. GGML_ASSERT(ggml_are_same_shape(a, b));
  4068. is_node = true;
  4069. }
  4070. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4071. result->op = GGML_OP_ADD;
  4072. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  4073. result->src[0] = a;
  4074. result->src[1] = b;
  4075. return result;
  4076. }
  4077. struct ggml_tensor * ggml_add_cast(
  4078. struct ggml_context * ctx,
  4079. struct ggml_tensor * a,
  4080. struct ggml_tensor * b,
  4081. enum ggml_type type) {
  4082. return ggml_add_cast_impl(ctx, a, b, type);
  4083. }
  4084. // ggml_add1
  4085. static struct ggml_tensor * ggml_add1_impl(
  4086. struct ggml_context * ctx,
  4087. struct ggml_tensor * a,
  4088. struct ggml_tensor * b,
  4089. bool inplace) {
  4090. GGML_ASSERT(ggml_is_scalar(b));
  4091. GGML_ASSERT(ggml_is_padded_1d(a));
  4092. bool is_node = false;
  4093. if (a->grad || b->grad) {
  4094. is_node = true;
  4095. }
  4096. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4097. result->op = GGML_OP_ADD1;
  4098. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4099. result->src[0] = a;
  4100. result->src[1] = b;
  4101. return result;
  4102. }
  4103. struct ggml_tensor * ggml_add1(
  4104. struct ggml_context * ctx,
  4105. struct ggml_tensor * a,
  4106. struct ggml_tensor * b) {
  4107. return ggml_add1_impl(ctx, a, b, false);
  4108. }
  4109. struct ggml_tensor * ggml_add1_inplace(
  4110. struct ggml_context * ctx,
  4111. struct ggml_tensor * a,
  4112. struct ggml_tensor * b) {
  4113. return ggml_add1_impl(ctx, a, b, true);
  4114. }
  4115. // ggml_acc
  4116. static struct ggml_tensor * ggml_acc_impl(
  4117. struct ggml_context * ctx,
  4118. struct ggml_tensor * a,
  4119. struct ggml_tensor * b,
  4120. size_t nb1,
  4121. size_t nb2,
  4122. size_t nb3,
  4123. size_t offset,
  4124. bool inplace) {
  4125. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4126. GGML_ASSERT(ggml_is_contiguous(a));
  4127. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4128. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4129. bool is_node = false;
  4130. if (!inplace && (a->grad || b->grad)) {
  4131. is_node = true;
  4132. }
  4133. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4134. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4135. ggml_set_op_params(result, params, sizeof(params));
  4136. result->op = GGML_OP_ACC;
  4137. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4138. result->src[0] = a;
  4139. result->src[1] = b;
  4140. return result;
  4141. }
  4142. struct ggml_tensor * ggml_acc(
  4143. struct ggml_context * ctx,
  4144. struct ggml_tensor * a,
  4145. struct ggml_tensor * b,
  4146. size_t nb1,
  4147. size_t nb2,
  4148. size_t nb3,
  4149. size_t offset) {
  4150. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4151. }
  4152. struct ggml_tensor * ggml_acc_inplace(
  4153. struct ggml_context * ctx,
  4154. struct ggml_tensor * a,
  4155. struct ggml_tensor * b,
  4156. size_t nb1,
  4157. size_t nb2,
  4158. size_t nb3,
  4159. size_t offset) {
  4160. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4161. }
  4162. // ggml_sub
  4163. static struct ggml_tensor * ggml_sub_impl(
  4164. struct ggml_context * ctx,
  4165. struct ggml_tensor * a,
  4166. struct ggml_tensor * b,
  4167. bool inplace) {
  4168. GGML_ASSERT(ggml_can_repeat(b, a));
  4169. bool is_node = false;
  4170. if (!inplace && (a->grad || b->grad)) {
  4171. // TODO: support backward pass for broadcasting
  4172. GGML_ASSERT(ggml_are_same_shape(a, b));
  4173. is_node = true;
  4174. }
  4175. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4176. result->op = GGML_OP_SUB;
  4177. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4178. result->src[0] = a;
  4179. result->src[1] = b;
  4180. return result;
  4181. }
  4182. struct ggml_tensor * ggml_sub(
  4183. struct ggml_context * ctx,
  4184. struct ggml_tensor * a,
  4185. struct ggml_tensor * b) {
  4186. return ggml_sub_impl(ctx, a, b, false);
  4187. }
  4188. struct ggml_tensor * ggml_sub_inplace(
  4189. struct ggml_context * ctx,
  4190. struct ggml_tensor * a,
  4191. struct ggml_tensor * b) {
  4192. return ggml_sub_impl(ctx, a, b, true);
  4193. }
  4194. // ggml_mul
  4195. static struct ggml_tensor * ggml_mul_impl(
  4196. struct ggml_context * ctx,
  4197. struct ggml_tensor * a,
  4198. struct ggml_tensor * b,
  4199. bool inplace) {
  4200. GGML_ASSERT(ggml_can_repeat(b, a));
  4201. bool is_node = false;
  4202. if (!inplace && (a->grad || b->grad)) {
  4203. // TODO: support backward pass for broadcasting
  4204. GGML_ASSERT(ggml_are_same_shape(a, b));
  4205. is_node = true;
  4206. }
  4207. if (inplace) {
  4208. GGML_ASSERT(!is_node);
  4209. }
  4210. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4211. result->op = GGML_OP_MUL;
  4212. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4213. result->src[0] = a;
  4214. result->src[1] = b;
  4215. return result;
  4216. }
  4217. struct ggml_tensor * ggml_mul(
  4218. struct ggml_context * ctx,
  4219. struct ggml_tensor * a,
  4220. struct ggml_tensor * b) {
  4221. return ggml_mul_impl(ctx, a, b, false);
  4222. }
  4223. struct ggml_tensor * ggml_mul_inplace(
  4224. struct ggml_context * ctx,
  4225. struct ggml_tensor * a,
  4226. struct ggml_tensor * b) {
  4227. return ggml_mul_impl(ctx, a, b, true);
  4228. }
  4229. // ggml_div
  4230. static struct ggml_tensor * ggml_div_impl(
  4231. struct ggml_context * ctx,
  4232. struct ggml_tensor * a,
  4233. struct ggml_tensor * b,
  4234. bool inplace) {
  4235. GGML_ASSERT(ggml_can_repeat(b, a));
  4236. bool is_node = false;
  4237. if (!inplace && (a->grad || b->grad)) {
  4238. is_node = true;
  4239. }
  4240. if (inplace) {
  4241. GGML_ASSERT(!is_node);
  4242. }
  4243. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4244. result->op = GGML_OP_DIV;
  4245. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4246. result->src[0] = a;
  4247. result->src[1] = b;
  4248. return result;
  4249. }
  4250. struct ggml_tensor * ggml_div(
  4251. struct ggml_context * ctx,
  4252. struct ggml_tensor * a,
  4253. struct ggml_tensor * b) {
  4254. return ggml_div_impl(ctx, a, b, false);
  4255. }
  4256. struct ggml_tensor * ggml_div_inplace(
  4257. struct ggml_context * ctx,
  4258. struct ggml_tensor * a,
  4259. struct ggml_tensor * b) {
  4260. return ggml_div_impl(ctx, a, b, true);
  4261. }
  4262. // ggml_sqr
  4263. static struct ggml_tensor * ggml_sqr_impl(
  4264. struct ggml_context * ctx,
  4265. struct ggml_tensor * a,
  4266. bool inplace) {
  4267. bool is_node = false;
  4268. if (!inplace && (a->grad)) {
  4269. is_node = true;
  4270. }
  4271. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4272. result->op = GGML_OP_SQR;
  4273. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4274. result->src[0] = a;
  4275. return result;
  4276. }
  4277. struct ggml_tensor * ggml_sqr(
  4278. struct ggml_context * ctx,
  4279. struct ggml_tensor * a) {
  4280. return ggml_sqr_impl(ctx, a, false);
  4281. }
  4282. struct ggml_tensor * ggml_sqr_inplace(
  4283. struct ggml_context * ctx,
  4284. struct ggml_tensor * a) {
  4285. return ggml_sqr_impl(ctx, a, true);
  4286. }
  4287. // ggml_sqrt
  4288. static struct ggml_tensor * ggml_sqrt_impl(
  4289. struct ggml_context * ctx,
  4290. struct ggml_tensor * a,
  4291. bool inplace) {
  4292. bool is_node = false;
  4293. if (!inplace && (a->grad)) {
  4294. is_node = true;
  4295. }
  4296. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4297. result->op = GGML_OP_SQRT;
  4298. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4299. result->src[0] = a;
  4300. return result;
  4301. }
  4302. struct ggml_tensor * ggml_sqrt(
  4303. struct ggml_context * ctx,
  4304. struct ggml_tensor * a) {
  4305. return ggml_sqrt_impl(ctx, a, false);
  4306. }
  4307. struct ggml_tensor * ggml_sqrt_inplace(
  4308. struct ggml_context * ctx,
  4309. struct ggml_tensor * a) {
  4310. return ggml_sqrt_impl(ctx, a, true);
  4311. }
  4312. // ggml_log
  4313. static struct ggml_tensor * ggml_log_impl(
  4314. struct ggml_context * ctx,
  4315. struct ggml_tensor * a,
  4316. bool inplace) {
  4317. bool is_node = false;
  4318. if (!inplace && (a->grad)) {
  4319. is_node = true;
  4320. }
  4321. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4322. result->op = GGML_OP_LOG;
  4323. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4324. result->src[0] = a;
  4325. return result;
  4326. }
  4327. struct ggml_tensor * ggml_log(
  4328. struct ggml_context * ctx,
  4329. struct ggml_tensor * a) {
  4330. return ggml_log_impl(ctx, a, false);
  4331. }
  4332. struct ggml_tensor * ggml_log_inplace(
  4333. struct ggml_context * ctx,
  4334. struct ggml_tensor * a) {
  4335. return ggml_log_impl(ctx, a, true);
  4336. }
  4337. // ggml_sin
  4338. static struct ggml_tensor * ggml_sin_impl(
  4339. struct ggml_context * ctx,
  4340. struct ggml_tensor * a,
  4341. bool inplace) {
  4342. bool is_node = false;
  4343. if (!inplace && (a->grad)) {
  4344. is_node = true;
  4345. }
  4346. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4347. result->op = GGML_OP_SIN;
  4348. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4349. result->src[0] = a;
  4350. return result;
  4351. }
  4352. struct ggml_tensor * ggml_sin(
  4353. struct ggml_context * ctx,
  4354. struct ggml_tensor * a) {
  4355. return ggml_sin_impl(ctx, a, false);
  4356. }
  4357. struct ggml_tensor * ggml_sin_inplace(
  4358. struct ggml_context * ctx,
  4359. struct ggml_tensor * a) {
  4360. return ggml_sin_impl(ctx, a, true);
  4361. }
  4362. // ggml_cos
  4363. static struct ggml_tensor * ggml_cos_impl(
  4364. struct ggml_context * ctx,
  4365. struct ggml_tensor * a,
  4366. bool inplace) {
  4367. bool is_node = false;
  4368. if (!inplace && (a->grad)) {
  4369. is_node = true;
  4370. }
  4371. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4372. result->op = GGML_OP_COS;
  4373. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4374. result->src[0] = a;
  4375. return result;
  4376. }
  4377. struct ggml_tensor * ggml_cos(
  4378. struct ggml_context * ctx,
  4379. struct ggml_tensor * a) {
  4380. return ggml_cos_impl(ctx, a, false);
  4381. }
  4382. struct ggml_tensor * ggml_cos_inplace(
  4383. struct ggml_context * ctx,
  4384. struct ggml_tensor * a) {
  4385. return ggml_cos_impl(ctx, a, true);
  4386. }
  4387. // ggml_sum
  4388. struct ggml_tensor * ggml_sum(
  4389. struct ggml_context * ctx,
  4390. struct ggml_tensor * a) {
  4391. bool is_node = false;
  4392. if (a->grad) {
  4393. is_node = true;
  4394. }
  4395. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4396. result->op = GGML_OP_SUM;
  4397. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4398. result->src[0] = a;
  4399. return result;
  4400. }
  4401. // ggml_sum_rows
  4402. struct ggml_tensor * ggml_sum_rows(
  4403. struct ggml_context * ctx,
  4404. struct ggml_tensor * a) {
  4405. bool is_node = false;
  4406. if (a->grad) {
  4407. is_node = true;
  4408. }
  4409. int64_t ne[GGML_MAX_DIMS] = { 1 };
  4410. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  4411. ne[i] = a->ne[i];
  4412. }
  4413. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4414. result->op = GGML_OP_SUM_ROWS;
  4415. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4416. result->src[0] = a;
  4417. return result;
  4418. }
  4419. // ggml_mean
  4420. struct ggml_tensor * ggml_mean(
  4421. struct ggml_context * ctx,
  4422. struct ggml_tensor * a) {
  4423. bool is_node = false;
  4424. if (a->grad) {
  4425. GGML_ABORT("fatal error"); // TODO: implement
  4426. is_node = true;
  4427. }
  4428. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4429. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4430. result->op = GGML_OP_MEAN;
  4431. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4432. result->src[0] = a;
  4433. return result;
  4434. }
  4435. // ggml_argmax
  4436. struct ggml_tensor * ggml_argmax(
  4437. struct ggml_context * ctx,
  4438. struct ggml_tensor * a) {
  4439. GGML_ASSERT(ggml_is_matrix(a));
  4440. bool is_node = false;
  4441. if (a->grad) {
  4442. GGML_ABORT("fatal error");
  4443. is_node = true;
  4444. }
  4445. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  4446. result->op = GGML_OP_ARGMAX;
  4447. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4448. result->src[0] = a;
  4449. return result;
  4450. }
  4451. // ggml_repeat
  4452. struct ggml_tensor * ggml_repeat(
  4453. struct ggml_context * ctx,
  4454. struct ggml_tensor * a,
  4455. struct ggml_tensor * b) {
  4456. GGML_ASSERT(ggml_can_repeat(a, b));
  4457. bool is_node = false;
  4458. if (a->grad) {
  4459. is_node = true;
  4460. }
  4461. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4462. result->op = GGML_OP_REPEAT;
  4463. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4464. result->src[0] = a;
  4465. return result;
  4466. }
  4467. // ggml_repeat_back
  4468. struct ggml_tensor * ggml_repeat_back(
  4469. struct ggml_context * ctx,
  4470. struct ggml_tensor * a,
  4471. struct ggml_tensor * b) {
  4472. GGML_ASSERT(ggml_can_repeat(b, a));
  4473. bool is_node = false;
  4474. if (a->grad) {
  4475. is_node = true;
  4476. }
  4477. if (ggml_are_same_shape(a, b) && !is_node) {
  4478. return a;
  4479. }
  4480. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4481. result->op = GGML_OP_REPEAT_BACK;
  4482. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4483. result->src[0] = a;
  4484. return result;
  4485. }
  4486. // ggml_concat
  4487. struct ggml_tensor * ggml_concat(
  4488. struct ggml_context * ctx,
  4489. struct ggml_tensor * a,
  4490. struct ggml_tensor * b,
  4491. int dim) {
  4492. GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
  4493. int64_t ne[GGML_MAX_DIMS];
  4494. for (int d = 0; d < GGML_MAX_DIMS; ++d) {
  4495. if (d == dim) {
  4496. ne[d] = a->ne[d] + b->ne[d];
  4497. continue;
  4498. }
  4499. GGML_ASSERT(a->ne[d] == b->ne[d]);
  4500. ne[d] = a->ne[d];
  4501. }
  4502. bool is_node = false;
  4503. if (a->grad || b->grad) {
  4504. GGML_ABORT("fatal error"); // TODO: implement
  4505. is_node = true;
  4506. }
  4507. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4508. ggml_set_op_params_i32(result, 0, dim);
  4509. result->op = GGML_OP_CONCAT;
  4510. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4511. result->src[0] = a;
  4512. result->src[1] = b;
  4513. return result;
  4514. }
  4515. // ggml_abs
  4516. struct ggml_tensor * ggml_abs(
  4517. struct ggml_context * ctx,
  4518. struct ggml_tensor * a) {
  4519. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4520. }
  4521. struct ggml_tensor * ggml_abs_inplace(
  4522. struct ggml_context * ctx,
  4523. struct ggml_tensor * a) {
  4524. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4525. }
  4526. // ggml_sgn
  4527. struct ggml_tensor * ggml_sgn(
  4528. struct ggml_context * ctx,
  4529. struct ggml_tensor * a) {
  4530. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4531. }
  4532. struct ggml_tensor * ggml_sgn_inplace(
  4533. struct ggml_context * ctx,
  4534. struct ggml_tensor * a) {
  4535. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4536. }
  4537. // ggml_neg
  4538. struct ggml_tensor * ggml_neg(
  4539. struct ggml_context * ctx,
  4540. struct ggml_tensor * a) {
  4541. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4542. }
  4543. struct ggml_tensor * ggml_neg_inplace(
  4544. struct ggml_context * ctx,
  4545. struct ggml_tensor * a) {
  4546. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4547. }
  4548. // ggml_step
  4549. struct ggml_tensor * ggml_step(
  4550. struct ggml_context * ctx,
  4551. struct ggml_tensor * a) {
  4552. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4553. }
  4554. struct ggml_tensor * ggml_step_inplace(
  4555. struct ggml_context * ctx,
  4556. struct ggml_tensor * a) {
  4557. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4558. }
  4559. // ggml_tanh
  4560. struct ggml_tensor * ggml_tanh(
  4561. struct ggml_context * ctx,
  4562. struct ggml_tensor * a) {
  4563. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4564. }
  4565. struct ggml_tensor * ggml_tanh_inplace(
  4566. struct ggml_context * ctx,
  4567. struct ggml_tensor * a) {
  4568. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4569. }
  4570. // ggml_elu
  4571. struct ggml_tensor * ggml_elu(
  4572. struct ggml_context * ctx,
  4573. struct ggml_tensor * a) {
  4574. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4575. }
  4576. struct ggml_tensor * ggml_elu_inplace(
  4577. struct ggml_context * ctx,
  4578. struct ggml_tensor * a) {
  4579. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4580. }
  4581. // ggml_relu
  4582. struct ggml_tensor * ggml_relu(
  4583. struct ggml_context * ctx,
  4584. struct ggml_tensor * a) {
  4585. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4586. }
  4587. struct ggml_tensor * ggml_relu_inplace(
  4588. struct ggml_context * ctx,
  4589. struct ggml_tensor * a) {
  4590. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4591. }
  4592. // ggml_leaky_relu
  4593. struct ggml_tensor * ggml_leaky_relu(
  4594. struct ggml_context * ctx,
  4595. struct ggml_tensor * a, float negative_slope, bool inplace) {
  4596. bool is_node = false;
  4597. if (!inplace && (a->grad)) {
  4598. GGML_ABORT("fatal error"); // TODO: not implemented
  4599. is_node = true;
  4600. }
  4601. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4602. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  4603. result->op = GGML_OP_LEAKY_RELU;
  4604. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4605. result->src[0] = a;
  4606. return result;
  4607. }
  4608. // ggml_sigmoid
  4609. struct ggml_tensor * ggml_sigmoid(
  4610. struct ggml_context * ctx,
  4611. struct ggml_tensor * a) {
  4612. return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
  4613. }
  4614. struct ggml_tensor * ggml_sigmoid_inplace(
  4615. struct ggml_context * ctx,
  4616. struct ggml_tensor * a) {
  4617. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
  4618. }
  4619. // ggml_gelu
  4620. struct ggml_tensor * ggml_gelu(
  4621. struct ggml_context * ctx,
  4622. struct ggml_tensor * a) {
  4623. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4624. }
  4625. struct ggml_tensor * ggml_gelu_inplace(
  4626. struct ggml_context * ctx,
  4627. struct ggml_tensor * a) {
  4628. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4629. }
  4630. // ggml_gelu_quick
  4631. struct ggml_tensor * ggml_gelu_quick(
  4632. struct ggml_context * ctx,
  4633. struct ggml_tensor * a) {
  4634. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4635. }
  4636. struct ggml_tensor * ggml_gelu_quick_inplace(
  4637. struct ggml_context * ctx,
  4638. struct ggml_tensor * a) {
  4639. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4640. }
  4641. // ggml_silu
  4642. struct ggml_tensor * ggml_silu(
  4643. struct ggml_context * ctx,
  4644. struct ggml_tensor * a) {
  4645. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4646. }
  4647. struct ggml_tensor * ggml_silu_inplace(
  4648. struct ggml_context * ctx,
  4649. struct ggml_tensor * a) {
  4650. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4651. }
  4652. // ggml_silu_back
  4653. struct ggml_tensor * ggml_silu_back(
  4654. struct ggml_context * ctx,
  4655. struct ggml_tensor * a,
  4656. struct ggml_tensor * b) {
  4657. bool is_node = false;
  4658. if (a->grad || b->grad) {
  4659. // TODO: implement backward
  4660. is_node = true;
  4661. }
  4662. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4663. result->op = GGML_OP_SILU_BACK;
  4664. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4665. result->src[0] = a;
  4666. result->src[1] = b;
  4667. return result;
  4668. }
  4669. // ggml hardswish
  4670. struct ggml_tensor * ggml_hardswish(
  4671. struct ggml_context * ctx,
  4672. struct ggml_tensor * a) {
  4673. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  4674. }
  4675. // ggml hardsigmoid
  4676. struct ggml_tensor * ggml_hardsigmoid(
  4677. struct ggml_context * ctx,
  4678. struct ggml_tensor * a) {
  4679. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  4680. }
  4681. // ggml exp
  4682. struct ggml_tensor * ggml_exp(
  4683. struct ggml_context * ctx,
  4684. struct ggml_tensor * a) {
  4685. return ggml_unary(ctx, a, GGML_UNARY_OP_EXP);
  4686. }
  4687. struct ggml_tensor * ggml_exp_inplace(
  4688. struct ggml_context * ctx,
  4689. struct ggml_tensor * a) {
  4690. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_EXP);
  4691. }
  4692. // ggml_norm
  4693. static struct ggml_tensor * ggml_norm_impl(
  4694. struct ggml_context * ctx,
  4695. struct ggml_tensor * a,
  4696. float eps,
  4697. bool inplace) {
  4698. bool is_node = false;
  4699. if (!inplace && (a->grad)) {
  4700. GGML_ABORT("fatal error"); // TODO: implement backward
  4701. is_node = true;
  4702. }
  4703. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4704. ggml_set_op_params(result, &eps, sizeof(eps));
  4705. result->op = GGML_OP_NORM;
  4706. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4707. result->src[0] = a;
  4708. return result;
  4709. }
  4710. struct ggml_tensor * ggml_norm(
  4711. struct ggml_context * ctx,
  4712. struct ggml_tensor * a,
  4713. float eps) {
  4714. return ggml_norm_impl(ctx, a, eps, false);
  4715. }
  4716. struct ggml_tensor * ggml_norm_inplace(
  4717. struct ggml_context * ctx,
  4718. struct ggml_tensor * a,
  4719. float eps) {
  4720. return ggml_norm_impl(ctx, a, eps, true);
  4721. }
  4722. // ggml_rms_norm
  4723. static struct ggml_tensor * ggml_rms_norm_impl(
  4724. struct ggml_context * ctx,
  4725. struct ggml_tensor * a,
  4726. float eps,
  4727. bool inplace) {
  4728. bool is_node = false;
  4729. if (!inplace && (a->grad)) {
  4730. is_node = true;
  4731. }
  4732. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4733. ggml_set_op_params(result, &eps, sizeof(eps));
  4734. result->op = GGML_OP_RMS_NORM;
  4735. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4736. result->src[0] = a;
  4737. return result;
  4738. }
  4739. struct ggml_tensor * ggml_rms_norm(
  4740. struct ggml_context * ctx,
  4741. struct ggml_tensor * a,
  4742. float eps) {
  4743. return ggml_rms_norm_impl(ctx, a, eps, false);
  4744. }
  4745. struct ggml_tensor * ggml_rms_norm_inplace(
  4746. struct ggml_context * ctx,
  4747. struct ggml_tensor * a,
  4748. float eps) {
  4749. return ggml_rms_norm_impl(ctx, a, eps, true);
  4750. }
  4751. // ggml_rms_norm_back
  4752. struct ggml_tensor * ggml_rms_norm_back(
  4753. struct ggml_context * ctx,
  4754. struct ggml_tensor * a,
  4755. struct ggml_tensor * b,
  4756. float eps) {
  4757. bool is_node = false;
  4758. if (a->grad) {
  4759. // TODO: implement backward
  4760. is_node = true;
  4761. }
  4762. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4763. ggml_set_op_params(result, &eps, sizeof(eps));
  4764. result->op = GGML_OP_RMS_NORM_BACK;
  4765. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4766. result->src[0] = a;
  4767. result->src[1] = b;
  4768. return result;
  4769. }
  4770. // ggml_group_norm
  4771. static struct ggml_tensor * ggml_group_norm_impl(
  4772. struct ggml_context * ctx,
  4773. struct ggml_tensor * a,
  4774. int n_groups,
  4775. float eps,
  4776. bool inplace) {
  4777. bool is_node = false;
  4778. if (!inplace && (a->grad)) {
  4779. GGML_ABORT("fatal error"); // TODO: implement backward
  4780. is_node = true;
  4781. }
  4782. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4783. ggml_set_op_params_i32(result, 0, n_groups);
  4784. ggml_set_op_params_f32(result, 1, eps);
  4785. result->op = GGML_OP_GROUP_NORM;
  4786. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4787. result->src[0] = a;
  4788. return result;
  4789. }
  4790. struct ggml_tensor * ggml_group_norm(
  4791. struct ggml_context * ctx,
  4792. struct ggml_tensor * a,
  4793. int n_groups,
  4794. float eps) {
  4795. return ggml_group_norm_impl(ctx, a, n_groups, eps, false);
  4796. }
  4797. struct ggml_tensor * ggml_group_norm_inplace(
  4798. struct ggml_context * ctx,
  4799. struct ggml_tensor * a,
  4800. int n_groups,
  4801. float eps) {
  4802. return ggml_group_norm_impl(ctx, a, n_groups, eps, true);
  4803. }
  4804. // ggml_mul_mat
  4805. struct ggml_tensor * ggml_mul_mat(
  4806. struct ggml_context * ctx,
  4807. struct ggml_tensor * a,
  4808. struct ggml_tensor * b) {
  4809. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4810. GGML_ASSERT(!ggml_is_transposed(a));
  4811. bool is_node = false;
  4812. if (a->grad || b->grad) {
  4813. is_node = true;
  4814. }
  4815. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4816. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4817. result->op = GGML_OP_MUL_MAT;
  4818. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4819. result->src[0] = a;
  4820. result->src[1] = b;
  4821. return result;
  4822. }
  4823. void ggml_mul_mat_set_prec(
  4824. struct ggml_tensor * a,
  4825. enum ggml_prec prec) {
  4826. GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
  4827. const int32_t prec_i32 = (int32_t) prec;
  4828. ggml_set_op_params_i32(a, 0, prec_i32);
  4829. }
  4830. // ggml_mul_mat_id
  4831. /*
  4832. c = ggml_mul_mat_id(ctx, as, b, ids);
  4833. as -> [cols, rows, n_expert]
  4834. ids -> [n_experts_used, n_tokens] (i32)
  4835. b -> [cols, n_expert_used, n_tokens]
  4836. c -> [rows, n_expert_used, n_tokens]
  4837. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  4838. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  4839. */
  4840. struct ggml_tensor * ggml_mul_mat_id(
  4841. struct ggml_context * ctx,
  4842. struct ggml_tensor * as,
  4843. struct ggml_tensor * b,
  4844. struct ggml_tensor * ids) {
  4845. GGML_ASSERT(!ggml_is_transposed(as));
  4846. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  4847. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  4848. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  4849. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  4850. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  4851. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  4852. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  4853. bool is_node = false;
  4854. if (as->grad || b->grad) {
  4855. is_node = true;
  4856. }
  4857. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  4858. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4859. result->op = GGML_OP_MUL_MAT_ID;
  4860. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4861. result->src[0] = as;
  4862. result->src[1] = b;
  4863. result->src[2] = ids;
  4864. return result;
  4865. }
  4866. // ggml_out_prod
  4867. struct ggml_tensor * ggml_out_prod(
  4868. struct ggml_context * ctx,
  4869. struct ggml_tensor * a,
  4870. struct ggml_tensor * b) {
  4871. GGML_ASSERT(ggml_can_out_prod(a, b));
  4872. GGML_ASSERT(!ggml_is_transposed(a));
  4873. bool is_node = false;
  4874. if (a->grad || b->grad) {
  4875. is_node = true;
  4876. }
  4877. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  4878. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  4879. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4880. result->op = GGML_OP_OUT_PROD;
  4881. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4882. result->src[0] = a;
  4883. result->src[1] = b;
  4884. return result;
  4885. }
  4886. // ggml_scale
  4887. static struct ggml_tensor * ggml_scale_impl(
  4888. struct ggml_context * ctx,
  4889. struct ggml_tensor * a,
  4890. float s,
  4891. bool inplace) {
  4892. GGML_ASSERT(ggml_is_padded_1d(a));
  4893. bool is_node = false;
  4894. if (a->grad) {
  4895. is_node = true;
  4896. }
  4897. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4898. ggml_set_op_params(result, &s, sizeof(s));
  4899. result->op = GGML_OP_SCALE;
  4900. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4901. result->src[0] = a;
  4902. return result;
  4903. }
  4904. struct ggml_tensor * ggml_scale(
  4905. struct ggml_context * ctx,
  4906. struct ggml_tensor * a,
  4907. float s) {
  4908. return ggml_scale_impl(ctx, a, s, false);
  4909. }
  4910. struct ggml_tensor * ggml_scale_inplace(
  4911. struct ggml_context * ctx,
  4912. struct ggml_tensor * a,
  4913. float s) {
  4914. return ggml_scale_impl(ctx, a, s, true);
  4915. }
  4916. // ggml_set
  4917. static struct ggml_tensor * ggml_set_impl(
  4918. struct ggml_context * ctx,
  4919. struct ggml_tensor * a,
  4920. struct ggml_tensor * b,
  4921. size_t nb1,
  4922. size_t nb2,
  4923. size_t nb3,
  4924. size_t offset,
  4925. bool inplace) {
  4926. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4927. bool is_node = false;
  4928. if (a->grad || b->grad) {
  4929. is_node = true;
  4930. }
  4931. // make a view of the destination
  4932. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4933. GGML_ASSERT(offset < (size_t)(1 << 30));
  4934. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4935. ggml_set_op_params(result, params, sizeof(params));
  4936. result->op = GGML_OP_SET;
  4937. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4938. result->src[0] = a;
  4939. result->src[1] = b;
  4940. return result;
  4941. }
  4942. struct ggml_tensor * ggml_set(
  4943. struct ggml_context * ctx,
  4944. struct ggml_tensor * a,
  4945. struct ggml_tensor * b,
  4946. size_t nb1,
  4947. size_t nb2,
  4948. size_t nb3,
  4949. size_t offset) {
  4950. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4951. }
  4952. struct ggml_tensor * ggml_set_inplace(
  4953. struct ggml_context * ctx,
  4954. struct ggml_tensor * a,
  4955. struct ggml_tensor * b,
  4956. size_t nb1,
  4957. size_t nb2,
  4958. size_t nb3,
  4959. size_t offset) {
  4960. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4961. }
  4962. struct ggml_tensor * ggml_set_1d(
  4963. struct ggml_context * ctx,
  4964. struct ggml_tensor * a,
  4965. struct ggml_tensor * b,
  4966. size_t offset) {
  4967. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4968. }
  4969. struct ggml_tensor * ggml_set_1d_inplace(
  4970. struct ggml_context * ctx,
  4971. struct ggml_tensor * a,
  4972. struct ggml_tensor * b,
  4973. size_t offset) {
  4974. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4975. }
  4976. struct ggml_tensor * ggml_set_2d(
  4977. struct ggml_context * ctx,
  4978. struct ggml_tensor * a,
  4979. struct ggml_tensor * b,
  4980. size_t nb1,
  4981. size_t offset) {
  4982. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4983. }
  4984. struct ggml_tensor * ggml_set_2d_inplace(
  4985. struct ggml_context * ctx,
  4986. struct ggml_tensor * a,
  4987. struct ggml_tensor * b,
  4988. size_t nb1,
  4989. size_t offset) {
  4990. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  4991. }
  4992. // ggml_cpy
  4993. static struct ggml_tensor * ggml_cpy_impl(
  4994. struct ggml_context * ctx,
  4995. struct ggml_tensor * a,
  4996. struct ggml_tensor * b) {
  4997. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4998. bool is_node = false;
  4999. if (a->grad || b->grad) {
  5000. // inplace is false and either one have a grad
  5001. is_node = true;
  5002. }
  5003. // make a view of the destination
  5004. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  5005. if (strlen(b->name) > 0) {
  5006. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  5007. } else {
  5008. ggml_format_name(result, "%s (copy)", a->name);
  5009. }
  5010. result->op = GGML_OP_CPY;
  5011. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5012. result->src[0] = a;
  5013. result->src[1] = b;
  5014. return result;
  5015. }
  5016. struct ggml_tensor * ggml_cpy(
  5017. struct ggml_context * ctx,
  5018. struct ggml_tensor * a,
  5019. struct ggml_tensor * b) {
  5020. return ggml_cpy_impl(ctx, a, b);
  5021. }
  5022. struct ggml_tensor * ggml_cast(
  5023. struct ggml_context * ctx,
  5024. struct ggml_tensor * a,
  5025. enum ggml_type type) {
  5026. bool is_node = false;
  5027. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  5028. ggml_format_name(result, "%s (copy)", a->name);
  5029. result->op = GGML_OP_CPY;
  5030. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5031. result->src[0] = a;
  5032. result->src[1] = result;
  5033. return result;
  5034. }
  5035. // ggml_cont
  5036. static struct ggml_tensor * ggml_cont_impl(
  5037. struct ggml_context * ctx,
  5038. struct ggml_tensor * a) {
  5039. bool is_node = false;
  5040. if (a->grad) {
  5041. is_node = true;
  5042. }
  5043. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5044. ggml_format_name(result, "%s (cont)", a->name);
  5045. result->op = GGML_OP_CONT;
  5046. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5047. result->src[0] = a;
  5048. return result;
  5049. }
  5050. struct ggml_tensor * ggml_cont(
  5051. struct ggml_context * ctx,
  5052. struct ggml_tensor * a) {
  5053. return ggml_cont_impl(ctx, a);
  5054. }
  5055. // make contiguous, with new shape
  5056. GGML_API struct ggml_tensor * ggml_cont_1d(
  5057. struct ggml_context * ctx,
  5058. struct ggml_tensor * a,
  5059. int64_t ne0) {
  5060. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  5061. }
  5062. GGML_API struct ggml_tensor * ggml_cont_2d(
  5063. struct ggml_context * ctx,
  5064. struct ggml_tensor * a,
  5065. int64_t ne0,
  5066. int64_t ne1) {
  5067. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  5068. }
  5069. GGML_API struct ggml_tensor * ggml_cont_3d(
  5070. struct ggml_context * ctx,
  5071. struct ggml_tensor * a,
  5072. int64_t ne0,
  5073. int64_t ne1,
  5074. int64_t ne2) {
  5075. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  5076. }
  5077. struct ggml_tensor * ggml_cont_4d(
  5078. struct ggml_context * ctx,
  5079. struct ggml_tensor * a,
  5080. int64_t ne0,
  5081. int64_t ne1,
  5082. int64_t ne2,
  5083. int64_t ne3) {
  5084. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  5085. bool is_node = false;
  5086. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  5087. ggml_format_name(result, "%s (cont)", a->name);
  5088. result->op = GGML_OP_CONT;
  5089. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5090. result->src[0] = a;
  5091. return result;
  5092. }
  5093. // ggml_reshape
  5094. struct ggml_tensor * ggml_reshape(
  5095. struct ggml_context * ctx,
  5096. struct ggml_tensor * a,
  5097. struct ggml_tensor * b) {
  5098. GGML_ASSERT(ggml_is_contiguous(a));
  5099. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  5100. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5101. bool is_node = false;
  5102. if (a->grad) {
  5103. is_node = true;
  5104. }
  5105. if (b->grad) {
  5106. // gradient propagation is not supported
  5107. //GGML_ABORT("fatal error");
  5108. }
  5109. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  5110. ggml_format_name(result, "%s (reshaped)", a->name);
  5111. result->op = GGML_OP_RESHAPE;
  5112. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5113. result->src[0] = a;
  5114. return result;
  5115. }
  5116. struct ggml_tensor * ggml_reshape_1d(
  5117. struct ggml_context * ctx,
  5118. struct ggml_tensor * a,
  5119. int64_t ne0) {
  5120. GGML_ASSERT(ggml_is_contiguous(a));
  5121. GGML_ASSERT(ggml_nelements(a) == ne0);
  5122. bool is_node = false;
  5123. if (a->grad) {
  5124. is_node = true;
  5125. }
  5126. const int64_t ne[1] = { ne0 };
  5127. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  5128. ggml_format_name(result, "%s (reshaped)", a->name);
  5129. result->op = GGML_OP_RESHAPE;
  5130. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5131. result->src[0] = a;
  5132. return result;
  5133. }
  5134. struct ggml_tensor * ggml_reshape_2d(
  5135. struct ggml_context * ctx,
  5136. struct ggml_tensor * a,
  5137. int64_t ne0,
  5138. int64_t ne1) {
  5139. GGML_ASSERT(ggml_is_contiguous(a));
  5140. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  5141. bool is_node = false;
  5142. if (a->grad) {
  5143. is_node = true;
  5144. }
  5145. const int64_t ne[2] = { ne0, ne1 };
  5146. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  5147. ggml_format_name(result, "%s (reshaped)", a->name);
  5148. result->op = GGML_OP_RESHAPE;
  5149. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5150. result->src[0] = a;
  5151. return result;
  5152. }
  5153. struct ggml_tensor * ggml_reshape_3d(
  5154. struct ggml_context * ctx,
  5155. struct ggml_tensor * a,
  5156. int64_t ne0,
  5157. int64_t ne1,
  5158. int64_t ne2) {
  5159. GGML_ASSERT(ggml_is_contiguous(a));
  5160. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5161. bool is_node = false;
  5162. if (a->grad) {
  5163. is_node = true;
  5164. }
  5165. const int64_t ne[3] = { ne0, ne1, ne2 };
  5166. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  5167. ggml_format_name(result, "%s (reshaped)", a->name);
  5168. result->op = GGML_OP_RESHAPE;
  5169. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5170. result->src[0] = a;
  5171. return result;
  5172. }
  5173. struct ggml_tensor * ggml_reshape_4d(
  5174. struct ggml_context * ctx,
  5175. struct ggml_tensor * a,
  5176. int64_t ne0,
  5177. int64_t ne1,
  5178. int64_t ne2,
  5179. int64_t ne3) {
  5180. GGML_ASSERT(ggml_is_contiguous(a));
  5181. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5182. bool is_node = false;
  5183. if (a->grad) {
  5184. is_node = true;
  5185. }
  5186. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5187. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  5188. ggml_format_name(result, "%s (reshaped)", a->name);
  5189. result->op = GGML_OP_RESHAPE;
  5190. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5191. result->src[0] = a;
  5192. return result;
  5193. }
  5194. static struct ggml_tensor * ggml_view_impl(
  5195. struct ggml_context * ctx,
  5196. struct ggml_tensor * a,
  5197. int n_dims,
  5198. const int64_t * ne,
  5199. size_t offset) {
  5200. bool is_node = false;
  5201. if (a->grad) {
  5202. is_node = true;
  5203. }
  5204. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  5205. ggml_format_name(result, "%s (view)", a->name);
  5206. ggml_set_op_params(result, &offset, sizeof(offset));
  5207. result->op = GGML_OP_VIEW;
  5208. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5209. result->src[0] = a;
  5210. return result;
  5211. }
  5212. // ggml_view_1d
  5213. struct ggml_tensor * ggml_view_1d(
  5214. struct ggml_context * ctx,
  5215. struct ggml_tensor * a,
  5216. int64_t ne0,
  5217. size_t offset) {
  5218. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  5219. return result;
  5220. }
  5221. // ggml_view_2d
  5222. struct ggml_tensor * ggml_view_2d(
  5223. struct ggml_context * ctx,
  5224. struct ggml_tensor * a,
  5225. int64_t ne0,
  5226. int64_t ne1,
  5227. size_t nb1,
  5228. size_t offset) {
  5229. const int64_t ne[2] = { ne0, ne1 };
  5230. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  5231. result->nb[1] = nb1;
  5232. result->nb[2] = result->nb[1]*ne1;
  5233. result->nb[3] = result->nb[2];
  5234. return result;
  5235. }
  5236. // ggml_view_3d
  5237. struct ggml_tensor * ggml_view_3d(
  5238. struct ggml_context * ctx,
  5239. struct ggml_tensor * a,
  5240. int64_t ne0,
  5241. int64_t ne1,
  5242. int64_t ne2,
  5243. size_t nb1,
  5244. size_t nb2,
  5245. size_t offset) {
  5246. const int64_t ne[3] = { ne0, ne1, ne2 };
  5247. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  5248. result->nb[1] = nb1;
  5249. result->nb[2] = nb2;
  5250. result->nb[3] = result->nb[2]*ne2;
  5251. return result;
  5252. }
  5253. // ggml_view_4d
  5254. struct ggml_tensor * ggml_view_4d(
  5255. struct ggml_context * ctx,
  5256. struct ggml_tensor * a,
  5257. int64_t ne0,
  5258. int64_t ne1,
  5259. int64_t ne2,
  5260. int64_t ne3,
  5261. size_t nb1,
  5262. size_t nb2,
  5263. size_t nb3,
  5264. size_t offset) {
  5265. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5266. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  5267. result->nb[1] = nb1;
  5268. result->nb[2] = nb2;
  5269. result->nb[3] = nb3;
  5270. return result;
  5271. }
  5272. // ggml_permute
  5273. struct ggml_tensor * ggml_permute(
  5274. struct ggml_context * ctx,
  5275. struct ggml_tensor * a,
  5276. int axis0,
  5277. int axis1,
  5278. int axis2,
  5279. int axis3) {
  5280. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5281. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5282. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5283. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5284. GGML_ASSERT(axis0 != axis1);
  5285. GGML_ASSERT(axis0 != axis2);
  5286. GGML_ASSERT(axis0 != axis3);
  5287. GGML_ASSERT(axis1 != axis2);
  5288. GGML_ASSERT(axis1 != axis3);
  5289. GGML_ASSERT(axis2 != axis3);
  5290. bool is_node = false;
  5291. if (a->grad) {
  5292. is_node = true;
  5293. }
  5294. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5295. ggml_format_name(result, "%s (permuted)", a->name);
  5296. int ne[GGML_MAX_DIMS];
  5297. int nb[GGML_MAX_DIMS];
  5298. ne[axis0] = a->ne[0];
  5299. ne[axis1] = a->ne[1];
  5300. ne[axis2] = a->ne[2];
  5301. ne[axis3] = a->ne[3];
  5302. nb[axis0] = a->nb[0];
  5303. nb[axis1] = a->nb[1];
  5304. nb[axis2] = a->nb[2];
  5305. nb[axis3] = a->nb[3];
  5306. result->ne[0] = ne[0];
  5307. result->ne[1] = ne[1];
  5308. result->ne[2] = ne[2];
  5309. result->ne[3] = ne[3];
  5310. result->nb[0] = nb[0];
  5311. result->nb[1] = nb[1];
  5312. result->nb[2] = nb[2];
  5313. result->nb[3] = nb[3];
  5314. result->op = GGML_OP_PERMUTE;
  5315. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5316. result->src[0] = a;
  5317. int32_t params[] = { axis0, axis1, axis2, axis3 };
  5318. ggml_set_op_params(result, params, sizeof(params));
  5319. return result;
  5320. }
  5321. // ggml_transpose
  5322. struct ggml_tensor * ggml_transpose(
  5323. struct ggml_context * ctx,
  5324. struct ggml_tensor * a) {
  5325. bool is_node = false;
  5326. if (a->grad) {
  5327. is_node = true;
  5328. }
  5329. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5330. ggml_format_name(result, "%s (transposed)", a->name);
  5331. result->ne[0] = a->ne[1];
  5332. result->ne[1] = a->ne[0];
  5333. result->nb[0] = a->nb[1];
  5334. result->nb[1] = a->nb[0];
  5335. result->op = GGML_OP_TRANSPOSE;
  5336. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5337. result->src[0] = a;
  5338. return result;
  5339. }
  5340. // ggml_get_rows
  5341. struct ggml_tensor * ggml_get_rows(
  5342. struct ggml_context * ctx,
  5343. struct ggml_tensor * a,
  5344. struct ggml_tensor * b) {
  5345. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5346. GGML_ASSERT(b->ne[3] == 1);
  5347. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5348. bool is_node = false;
  5349. if (a->grad || b->grad) {
  5350. is_node = true;
  5351. }
  5352. // TODO: implement non F32 return
  5353. enum ggml_type type = GGML_TYPE_F32;
  5354. if (a->type == GGML_TYPE_I32) {
  5355. type = a->type;
  5356. }
  5357. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  5358. result->op = GGML_OP_GET_ROWS;
  5359. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5360. result->src[0] = a;
  5361. result->src[1] = b;
  5362. return result;
  5363. }
  5364. // ggml_get_rows_back
  5365. struct ggml_tensor * ggml_get_rows_back(
  5366. struct ggml_context * ctx,
  5367. struct ggml_tensor * a,
  5368. struct ggml_tensor * b,
  5369. struct ggml_tensor * c) {
  5370. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5371. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5372. bool is_node = false;
  5373. if (a->grad || b->grad) {
  5374. is_node = true;
  5375. }
  5376. // TODO: implement non F32 return
  5377. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5378. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5379. result->op = GGML_OP_GET_ROWS_BACK;
  5380. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5381. result->src[0] = a;
  5382. result->src[1] = b;
  5383. return result;
  5384. }
  5385. // ggml_diag
  5386. struct ggml_tensor * ggml_diag(
  5387. struct ggml_context * ctx,
  5388. struct ggml_tensor * a) {
  5389. GGML_ASSERT(a->ne[1] == 1);
  5390. bool is_node = false;
  5391. if (a->grad) {
  5392. is_node = true;
  5393. }
  5394. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5395. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  5396. result->op = GGML_OP_DIAG;
  5397. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5398. result->src[0] = a;
  5399. return result;
  5400. }
  5401. // ggml_diag_mask_inf
  5402. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5403. struct ggml_context * ctx,
  5404. struct ggml_tensor * a,
  5405. int n_past,
  5406. bool inplace) {
  5407. bool is_node = false;
  5408. if (a->grad) {
  5409. is_node = true;
  5410. }
  5411. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5412. int32_t params[] = { n_past };
  5413. ggml_set_op_params(result, params, sizeof(params));
  5414. result->op = GGML_OP_DIAG_MASK_INF;
  5415. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5416. result->src[0] = a;
  5417. return result;
  5418. }
  5419. struct ggml_tensor * ggml_diag_mask_inf(
  5420. struct ggml_context * ctx,
  5421. struct ggml_tensor * a,
  5422. int n_past) {
  5423. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5424. }
  5425. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5426. struct ggml_context * ctx,
  5427. struct ggml_tensor * a,
  5428. int n_past) {
  5429. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5430. }
  5431. // ggml_diag_mask_zero
  5432. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5433. struct ggml_context * ctx,
  5434. struct ggml_tensor * a,
  5435. int n_past,
  5436. bool inplace) {
  5437. bool is_node = false;
  5438. if (a->grad) {
  5439. is_node = true;
  5440. }
  5441. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5442. int32_t params[] = { n_past };
  5443. ggml_set_op_params(result, params, sizeof(params));
  5444. result->op = GGML_OP_DIAG_MASK_ZERO;
  5445. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5446. result->src[0] = a;
  5447. return result;
  5448. }
  5449. struct ggml_tensor * ggml_diag_mask_zero(
  5450. struct ggml_context * ctx,
  5451. struct ggml_tensor * a,
  5452. int n_past) {
  5453. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5454. }
  5455. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5456. struct ggml_context * ctx,
  5457. struct ggml_tensor * a,
  5458. int n_past) {
  5459. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5460. }
  5461. // ggml_soft_max
  5462. static struct ggml_tensor * ggml_soft_max_impl(
  5463. struct ggml_context * ctx,
  5464. struct ggml_tensor * a,
  5465. struct ggml_tensor * mask,
  5466. float scale,
  5467. float max_bias,
  5468. bool inplace) {
  5469. GGML_ASSERT(ggml_is_contiguous(a));
  5470. if (mask) {
  5471. GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
  5472. GGML_ASSERT(ggml_is_contiguous(mask));
  5473. GGML_ASSERT(ggml_is_matrix(mask));
  5474. GGML_ASSERT(mask->ne[0] == a->ne[0]);
  5475. GGML_ASSERT(mask->ne[1] >= a->ne[1]);
  5476. }
  5477. if (max_bias > 0.0f) {
  5478. GGML_ASSERT(mask);
  5479. }
  5480. bool is_node = false;
  5481. if (a->grad) {
  5482. is_node = true;
  5483. }
  5484. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5485. float params[] = { scale, max_bias };
  5486. ggml_set_op_params(result, params, sizeof(params));
  5487. result->op = GGML_OP_SOFT_MAX;
  5488. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5489. result->src[0] = a;
  5490. result->src[1] = mask;
  5491. return result;
  5492. }
  5493. struct ggml_tensor * ggml_soft_max(
  5494. struct ggml_context * ctx,
  5495. struct ggml_tensor * a) {
  5496. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
  5497. }
  5498. struct ggml_tensor * ggml_soft_max_inplace(
  5499. struct ggml_context * ctx,
  5500. struct ggml_tensor * a) {
  5501. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
  5502. }
  5503. struct ggml_tensor * ggml_soft_max_ext(
  5504. struct ggml_context * ctx,
  5505. struct ggml_tensor * a,
  5506. struct ggml_tensor * mask,
  5507. float scale,
  5508. float max_bias) {
  5509. return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
  5510. }
  5511. // ggml_soft_max_back
  5512. static struct ggml_tensor * ggml_soft_max_back_impl(
  5513. struct ggml_context * ctx,
  5514. struct ggml_tensor * a,
  5515. struct ggml_tensor * b,
  5516. bool inplace) {
  5517. bool is_node = false;
  5518. if (a->grad || b->grad) {
  5519. is_node = true; // TODO : implement backward pass
  5520. }
  5521. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5522. result->op = GGML_OP_SOFT_MAX_BACK;
  5523. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5524. result->src[0] = a;
  5525. result->src[1] = b;
  5526. return result;
  5527. }
  5528. struct ggml_tensor * ggml_soft_max_back(
  5529. struct ggml_context * ctx,
  5530. struct ggml_tensor * a,
  5531. struct ggml_tensor * b) {
  5532. return ggml_soft_max_back_impl(ctx, a, b, false);
  5533. }
  5534. struct ggml_tensor * ggml_soft_max_back_inplace(
  5535. struct ggml_context * ctx,
  5536. struct ggml_tensor * a,
  5537. struct ggml_tensor * b) {
  5538. return ggml_soft_max_back_impl(ctx, a, b, true);
  5539. }
  5540. // ggml_rope
  5541. static struct ggml_tensor * ggml_rope_impl(
  5542. struct ggml_context * ctx,
  5543. struct ggml_tensor * a,
  5544. struct ggml_tensor * b,
  5545. struct ggml_tensor * c,
  5546. int n_dims,
  5547. int mode,
  5548. int n_ctx_orig,
  5549. float freq_base,
  5550. float freq_scale,
  5551. float ext_factor,
  5552. float attn_factor,
  5553. float beta_fast,
  5554. float beta_slow,
  5555. bool inplace) {
  5556. GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
  5557. GGML_ASSERT(ggml_is_vector(b));
  5558. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5559. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5560. if (c) {
  5561. GGML_ASSERT(c->type == GGML_TYPE_F32);
  5562. GGML_ASSERT(c->ne[0] >= n_dims / 2);
  5563. }
  5564. bool is_node = false;
  5565. if (a->grad) {
  5566. is_node = true;
  5567. }
  5568. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5569. int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
  5570. memcpy(params + 5, &freq_base, sizeof(float));
  5571. memcpy(params + 6, &freq_scale, sizeof(float));
  5572. memcpy(params + 7, &ext_factor, sizeof(float));
  5573. memcpy(params + 8, &attn_factor, sizeof(float));
  5574. memcpy(params + 9, &beta_fast, sizeof(float));
  5575. memcpy(params + 10, &beta_slow, sizeof(float));
  5576. ggml_set_op_params(result, params, sizeof(params));
  5577. result->op = GGML_OP_ROPE;
  5578. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5579. result->src[0] = a;
  5580. result->src[1] = b;
  5581. result->src[2] = c;
  5582. return result;
  5583. }
  5584. struct ggml_tensor * ggml_rope(
  5585. struct ggml_context * ctx,
  5586. struct ggml_tensor * a,
  5587. struct ggml_tensor * b,
  5588. int n_dims,
  5589. int mode) {
  5590. return ggml_rope_impl(
  5591. ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, false
  5592. );
  5593. }
  5594. struct ggml_tensor * ggml_rope_inplace(
  5595. struct ggml_context * ctx,
  5596. struct ggml_tensor * a,
  5597. struct ggml_tensor * b,
  5598. int n_dims,
  5599. int mode) {
  5600. return ggml_rope_impl(
  5601. ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, true
  5602. );
  5603. }
  5604. struct ggml_tensor * ggml_rope_ext(
  5605. struct ggml_context * ctx,
  5606. struct ggml_tensor * a,
  5607. struct ggml_tensor * b,
  5608. struct ggml_tensor * c,
  5609. int n_dims,
  5610. int mode,
  5611. int n_ctx_orig,
  5612. float freq_base,
  5613. float freq_scale,
  5614. float ext_factor,
  5615. float attn_factor,
  5616. float beta_fast,
  5617. float beta_slow) {
  5618. return ggml_rope_impl(
  5619. ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5620. ext_factor, attn_factor, beta_fast, beta_slow, false
  5621. );
  5622. }
  5623. struct ggml_tensor * ggml_rope_ext_inplace(
  5624. struct ggml_context * ctx,
  5625. struct ggml_tensor * a,
  5626. struct ggml_tensor * b,
  5627. struct ggml_tensor * c,
  5628. int n_dims,
  5629. int mode,
  5630. int n_ctx_orig,
  5631. float freq_base,
  5632. float freq_scale,
  5633. float ext_factor,
  5634. float attn_factor,
  5635. float beta_fast,
  5636. float beta_slow) {
  5637. return ggml_rope_impl(
  5638. ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5639. ext_factor, attn_factor, beta_fast, beta_slow, true
  5640. );
  5641. }
  5642. struct ggml_tensor * ggml_rope_custom(
  5643. struct ggml_context * ctx,
  5644. struct ggml_tensor * a,
  5645. struct ggml_tensor * b,
  5646. int n_dims,
  5647. int mode,
  5648. int n_ctx_orig,
  5649. float freq_base,
  5650. float freq_scale,
  5651. float ext_factor,
  5652. float attn_factor,
  5653. float beta_fast,
  5654. float beta_slow) {
  5655. return ggml_rope_impl(
  5656. ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5657. ext_factor, attn_factor, beta_fast, beta_slow, false
  5658. );
  5659. }
  5660. struct ggml_tensor * ggml_rope_custom_inplace(
  5661. struct ggml_context * ctx,
  5662. struct ggml_tensor * a,
  5663. struct ggml_tensor * b,
  5664. int n_dims,
  5665. int mode,
  5666. int n_ctx_orig,
  5667. float freq_base,
  5668. float freq_scale,
  5669. float ext_factor,
  5670. float attn_factor,
  5671. float beta_fast,
  5672. float beta_slow) {
  5673. return ggml_rope_impl(
  5674. ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5675. ext_factor, attn_factor, beta_fast, beta_slow, true
  5676. );
  5677. }
  5678. // ggml_rope_back
  5679. struct ggml_tensor * ggml_rope_back(
  5680. struct ggml_context * ctx,
  5681. struct ggml_tensor * a,
  5682. struct ggml_tensor * b,
  5683. struct ggml_tensor * c,
  5684. int n_dims,
  5685. int mode,
  5686. int n_ctx_orig,
  5687. float freq_base,
  5688. float freq_scale,
  5689. float ext_factor,
  5690. float attn_factor,
  5691. float beta_fast,
  5692. float beta_slow) {
  5693. GGML_ASSERT(ggml_is_vector(b));
  5694. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5695. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5696. bool is_node = false;
  5697. if (a->grad) {
  5698. GGML_ASSERT(false && "backwards pass not implemented");
  5699. is_node = false;
  5700. }
  5701. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5702. int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
  5703. memcpy(params + 5, &freq_base, sizeof(float));
  5704. memcpy(params + 6, &freq_scale, sizeof(float));
  5705. memcpy(params + 7, &ext_factor, sizeof(float));
  5706. memcpy(params + 8, &attn_factor, sizeof(float));
  5707. memcpy(params + 9, &beta_fast, sizeof(float));
  5708. memcpy(params + 10, &beta_slow, sizeof(float));
  5709. ggml_set_op_params(result, params, sizeof(params));
  5710. result->op = GGML_OP_ROPE_BACK;
  5711. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5712. result->src[0] = a;
  5713. result->src[1] = b;
  5714. result->src[2] = c;
  5715. return result;
  5716. }
  5717. // ggml_clamp
  5718. struct ggml_tensor * ggml_clamp(
  5719. struct ggml_context * ctx,
  5720. struct ggml_tensor * a,
  5721. float min,
  5722. float max) {
  5723. bool is_node = false;
  5724. if (a->grad) {
  5725. GGML_ABORT("fatal error"); // TODO: implement backward
  5726. is_node = true;
  5727. }
  5728. // TODO: when implement backward, fix this:
  5729. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5730. float params[] = { min, max };
  5731. ggml_set_op_params(result, params, sizeof(params));
  5732. result->op = GGML_OP_CLAMP;
  5733. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5734. result->src[0] = a;
  5735. return result;
  5736. }
  5737. // ggml_conv_1d
  5738. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5739. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5740. }
  5741. GGML_API struct ggml_tensor * ggml_conv_1d(
  5742. struct ggml_context * ctx,
  5743. struct ggml_tensor * a,
  5744. struct ggml_tensor * b,
  5745. int s0,
  5746. int p0,
  5747. int d0) {
  5748. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  5749. struct ggml_tensor * result =
  5750. ggml_mul_mat(ctx,
  5751. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  5752. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  5753. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  5754. return result;
  5755. }
  5756. // ggml_conv_1d_ph
  5757. struct ggml_tensor* ggml_conv_1d_ph(
  5758. struct ggml_context * ctx,
  5759. struct ggml_tensor * a,
  5760. struct ggml_tensor * b,
  5761. int s,
  5762. int d) {
  5763. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5764. }
  5765. // ggml_conv_transpose_1d
  5766. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5767. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  5768. }
  5769. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  5770. struct ggml_context * ctx,
  5771. struct ggml_tensor * a,
  5772. struct ggml_tensor * b,
  5773. int s0,
  5774. int p0,
  5775. int d0) {
  5776. GGML_ASSERT(ggml_is_matrix(b));
  5777. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5778. GGML_ASSERT(a->ne[3] == 1);
  5779. GGML_ASSERT(p0 == 0);
  5780. GGML_ASSERT(d0 == 1);
  5781. bool is_node = false;
  5782. if (a->grad || b->grad) {
  5783. GGML_ABORT("fatal error"); // TODO: implement backward
  5784. is_node = true;
  5785. }
  5786. const int64_t ne[4] = {
  5787. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  5788. a->ne[1], b->ne[2], 1,
  5789. };
  5790. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5791. int32_t params[] = { s0, p0, d0 };
  5792. ggml_set_op_params(result, params, sizeof(params));
  5793. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  5794. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5795. result->src[0] = a;
  5796. result->src[1] = b;
  5797. return result;
  5798. }
  5799. // ggml_conv_depthwise
  5800. struct ggml_tensor * ggml_conv_depthwise_2d(
  5801. struct ggml_context * ctx,
  5802. struct ggml_tensor * a,
  5803. struct ggml_tensor * b,
  5804. int s0,
  5805. int s1,
  5806. int p0,
  5807. int p1,
  5808. int d0,
  5809. int d1) {
  5810. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  5811. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  5812. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  5813. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  5814. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  5815. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  5816. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  5817. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  5818. return result;
  5819. }
  5820. // ggml_conv_2d
  5821. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5822. // a: [OC,IC, KH, KW]
  5823. // b: [N, IC, IH, IW]
  5824. // result: [N, OH, OW, IC*KH*KW]
  5825. struct ggml_tensor * ggml_im2col(
  5826. struct ggml_context * ctx,
  5827. struct ggml_tensor * a,
  5828. struct ggml_tensor * b,
  5829. int s0,
  5830. int s1,
  5831. int p0,
  5832. int p1,
  5833. int d0,
  5834. int d1,
  5835. bool is_2D,
  5836. enum ggml_type dst_type) {
  5837. if(is_2D) {
  5838. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5839. } else {
  5840. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5841. GGML_ASSERT(b->ne[3] == 1);
  5842. }
  5843. bool is_node = false;
  5844. if (/*a->grad ||*/ b->grad) { // a is only used for its shape, not its data
  5845. is_node = true;
  5846. }
  5847. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  5848. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  5849. GGML_ASSERT((!is_2D || OH > 0) && "b too small compared to a");
  5850. GGML_ASSERT((OW > 0) && "b too small compared to a");
  5851. const int64_t ne[4] = {
  5852. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  5853. OW,
  5854. is_2D ? OH : b->ne[2],
  5855. is_2D ? b->ne[3] : 1,
  5856. };
  5857. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  5858. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5859. ggml_set_op_params(result, params, sizeof(params));
  5860. result->op = GGML_OP_IM2COL;
  5861. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5862. result->src[0] = a;
  5863. result->src[1] = b;
  5864. return result;
  5865. }
  5866. struct ggml_tensor * ggml_im2col_back(
  5867. struct ggml_context * ctx,
  5868. struct ggml_tensor * a,
  5869. struct ggml_tensor * b,
  5870. int64_t * ne,
  5871. int s0,
  5872. int s1,
  5873. int p0,
  5874. int p1,
  5875. int d0,
  5876. int d1,
  5877. bool is_2D) {
  5878. bool is_node = false;
  5879. if (/*a->grad ||*/ b->grad) { // a is only used for its shape, not its data
  5880. is_node = true;
  5881. }
  5882. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5883. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5884. ggml_set_op_params(result, params, sizeof(params));
  5885. result->op = GGML_OP_IM2COL_BACK;
  5886. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5887. result->src[0] = a;
  5888. result->src[1] = b;
  5889. return result;
  5890. }
  5891. // a: [OC,IC, KH, KW]
  5892. // b: [N, IC, IH, IW]
  5893. // result: [N, OC, OH, OW]
  5894. struct ggml_tensor * ggml_conv_2d(
  5895. struct ggml_context * ctx,
  5896. struct ggml_tensor * a,
  5897. struct ggml_tensor * b,
  5898. int s0,
  5899. int s1,
  5900. int p0,
  5901. int p1,
  5902. int d0,
  5903. int d1) {
  5904. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, a->type); // [N, OH, OW, IC * KH * KW]
  5905. struct ggml_tensor * result =
  5906. ggml_mul_mat(ctx,
  5907. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  5908. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  5909. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  5910. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  5911. return result;
  5912. }
  5913. // ggml_conv_2d_sk_p0
  5914. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5915. struct ggml_context * ctx,
  5916. struct ggml_tensor * a,
  5917. struct ggml_tensor * b) {
  5918. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5919. }
  5920. // ggml_conv_2d_s1_ph
  5921. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5922. struct ggml_context * ctx,
  5923. struct ggml_tensor * a,
  5924. struct ggml_tensor * b) {
  5925. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5926. }
  5927. // ggml_conv_transpose_2d_p0
  5928. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5929. return (ins - 1) * s - 2 * p + ks;
  5930. }
  5931. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5932. struct ggml_context * ctx,
  5933. struct ggml_tensor * a,
  5934. struct ggml_tensor * b,
  5935. int stride) {
  5936. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5937. bool is_node = false;
  5938. if (a->grad || b->grad) {
  5939. GGML_ABORT("fatal error"); // TODO: implement backward
  5940. is_node = true;
  5941. }
  5942. const int64_t ne[4] = {
  5943. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5944. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5945. a->ne[2], b->ne[3],
  5946. };
  5947. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5948. ggml_set_op_params_i32(result, 0, stride);
  5949. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5950. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5951. result->src[0] = a;
  5952. result->src[1] = b;
  5953. return result;
  5954. }
  5955. // ggml_pool_*
  5956. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  5957. return (ins + 2 * p - ks) / s + 1;
  5958. }
  5959. // ggml_pool_1d
  5960. struct ggml_tensor * ggml_pool_1d(
  5961. struct ggml_context * ctx,
  5962. struct ggml_tensor * a,
  5963. enum ggml_op_pool op,
  5964. int k0,
  5965. int s0,
  5966. int p0) {
  5967. bool is_node = false;
  5968. if (a->grad) {
  5969. GGML_ABORT("fatal error"); // TODO: implement backward
  5970. is_node = true;
  5971. }
  5972. const int64_t ne[4] = {
  5973. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5974. a->ne[1],
  5975. a->ne[2],
  5976. a->ne[3],
  5977. };
  5978. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5979. int32_t params[] = { op, k0, s0, p0 };
  5980. ggml_set_op_params(result, params, sizeof(params));
  5981. result->op = GGML_OP_POOL_1D;
  5982. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5983. result->src[0] = a;
  5984. return result;
  5985. }
  5986. // ggml_pool_2d
  5987. struct ggml_tensor * ggml_pool_2d(
  5988. struct ggml_context * ctx,
  5989. struct ggml_tensor * a,
  5990. enum ggml_op_pool op,
  5991. int k0,
  5992. int k1,
  5993. int s0,
  5994. int s1,
  5995. float p0,
  5996. float p1) {
  5997. bool is_node = false;
  5998. if (a->grad) {
  5999. is_node = true;
  6000. }
  6001. struct ggml_tensor * result;
  6002. const int64_t ne[4] = {
  6003. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  6004. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  6005. a->ne[2],
  6006. a->ne[3],
  6007. };
  6008. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6009. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  6010. ggml_set_op_params(result, params, sizeof(params));
  6011. result->op = GGML_OP_POOL_2D;
  6012. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6013. result->src[0] = a;
  6014. return result;
  6015. }
  6016. struct ggml_tensor * ggml_pool_2d_back(
  6017. struct ggml_context * ctx,
  6018. struct ggml_tensor * a,
  6019. struct ggml_tensor * af,
  6020. enum ggml_op_pool op,
  6021. int k0,
  6022. int k1,
  6023. int s0,
  6024. int s1,
  6025. float p0,
  6026. float p1) {
  6027. bool is_node = false;
  6028. if (a->grad) {
  6029. is_node = true;
  6030. }
  6031. struct ggml_tensor * result;
  6032. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, af->ne);
  6033. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  6034. ggml_set_op_params(result, params, sizeof(params));
  6035. result->op = GGML_OP_POOL_2D_BACK;
  6036. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6037. result->src[0] = a;
  6038. result->src[1] = af;
  6039. return result;
  6040. }
  6041. // ggml_upscale
  6042. static struct ggml_tensor * ggml_upscale_impl(
  6043. struct ggml_context * ctx,
  6044. struct ggml_tensor * a,
  6045. int ne0,
  6046. int ne1,
  6047. int ne2,
  6048. int ne3) {
  6049. bool is_node = false;
  6050. if (a->grad) {
  6051. GGML_ABORT("fatal error"); // TODO: implement backward
  6052. is_node = true;
  6053. }
  6054. GGML_ASSERT(a->ne[0] <= ne0);
  6055. GGML_ASSERT(a->ne[1] <= ne1);
  6056. GGML_ASSERT(a->ne[2] <= ne2);
  6057. GGML_ASSERT(a->ne[3] <= ne3);
  6058. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  6059. ne0,
  6060. ne1,
  6061. ne2,
  6062. ne3
  6063. );
  6064. result->op = GGML_OP_UPSCALE;
  6065. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6066. result->src[0] = a;
  6067. return result;
  6068. }
  6069. struct ggml_tensor * ggml_upscale(
  6070. struct ggml_context * ctx,
  6071. struct ggml_tensor * a,
  6072. int scale_factor) {
  6073. return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
  6074. }
  6075. struct ggml_tensor * ggml_upscale_ext(
  6076. struct ggml_context * ctx,
  6077. struct ggml_tensor * a,
  6078. int ne0,
  6079. int ne1,
  6080. int ne2,
  6081. int ne3) {
  6082. return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
  6083. }
  6084. // ggml_pad
  6085. struct ggml_tensor * ggml_pad(
  6086. struct ggml_context * ctx,
  6087. struct ggml_tensor * a,
  6088. int p0, int p1, int p2, int p3) {
  6089. bool is_node = false;
  6090. if (a->grad) {
  6091. GGML_ABORT("fatal error"); // TODO: implement backward
  6092. is_node = true;
  6093. }
  6094. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  6095. a->ne[0] + p0,
  6096. a->ne[1] + p1,
  6097. a->ne[2] + p2,
  6098. a->ne[3] + p3);
  6099. result->op = GGML_OP_PAD;
  6100. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6101. result->src[0] = a;
  6102. return result;
  6103. }
  6104. // ggml_arange
  6105. struct ggml_tensor * ggml_arange(
  6106. struct ggml_context * ctx,
  6107. float start,
  6108. float stop,
  6109. float step) {
  6110. GGML_ASSERT(stop > start);
  6111. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  6112. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  6113. result->op = GGML_OP_ARANGE;
  6114. ggml_set_op_params_f32(result, 0, start);
  6115. ggml_set_op_params_f32(result, 1, stop);
  6116. ggml_set_op_params_f32(result, 2, step);
  6117. return result;
  6118. }
  6119. // ggml_timestep_embedding
  6120. struct ggml_tensor * ggml_timestep_embedding(
  6121. struct ggml_context * ctx,
  6122. struct ggml_tensor * timesteps,
  6123. int dim,
  6124. int max_period) {
  6125. bool is_node = false;
  6126. if (timesteps->grad) {
  6127. GGML_ABORT("fatal error"); // TODO: implement backward
  6128. is_node = true;
  6129. }
  6130. int actual_dim = dim;
  6131. if (dim % 2 != 0) {
  6132. actual_dim = dim + 1;
  6133. }
  6134. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  6135. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  6136. ggml_set_op_params_i32(result, 0, dim);
  6137. ggml_set_op_params_i32(result, 1, max_period);
  6138. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6139. result->src[0] = timesteps;
  6140. return result;
  6141. }
  6142. // ggml_argsort
  6143. struct ggml_tensor * ggml_argsort(
  6144. struct ggml_context * ctx,
  6145. struct ggml_tensor * a,
  6146. enum ggml_sort_order order) {
  6147. bool is_node = false;
  6148. if (a->grad) {
  6149. GGML_ABORT("fatal error"); // TODO: not implemented
  6150. is_node = true;
  6151. }
  6152. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  6153. ggml_set_op_params_i32(result, 0, (int32_t) order);
  6154. result->op = GGML_OP_ARGSORT;
  6155. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6156. result->src[0] = a;
  6157. return result;
  6158. }
  6159. // ggml_top_k
  6160. struct ggml_tensor * ggml_top_k(
  6161. struct ggml_context * ctx,
  6162. struct ggml_tensor * a,
  6163. int k) {
  6164. GGML_ASSERT(a->ne[0] >= k);
  6165. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  6166. result = ggml_view_4d(ctx, result,
  6167. k, result->ne[1], result->ne[2], result->ne[3],
  6168. result->nb[1], result->nb[2], result->nb[3],
  6169. 0);
  6170. return result;
  6171. }
  6172. // ggml_flash_attn_ext
  6173. struct ggml_tensor * ggml_flash_attn_ext(
  6174. struct ggml_context * ctx,
  6175. struct ggml_tensor * q,
  6176. struct ggml_tensor * k,
  6177. struct ggml_tensor * v,
  6178. struct ggml_tensor * mask,
  6179. float scale,
  6180. float max_bias,
  6181. float logit_softcap) {
  6182. GGML_ASSERT(ggml_can_mul_mat(k, q));
  6183. // TODO: check if vT can be multiplied by (k*qT)
  6184. if (mask) {
  6185. GGML_ASSERT(ggml_is_contiguous(mask));
  6186. GGML_ASSERT(mask->ne[2] == 1);
  6187. GGML_ASSERT(mask->ne[3] == 1);
  6188. GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
  6189. "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
  6190. //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
  6191. }
  6192. if (max_bias > 0.0f) {
  6193. GGML_ASSERT(mask);
  6194. }
  6195. bool is_node = false;
  6196. if (q->grad || k->grad || v->grad) {
  6197. is_node = true;
  6198. }
  6199. // permute(0, 2, 1, 3)
  6200. int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
  6201. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6202. float params[] = { scale, max_bias, logit_softcap };
  6203. ggml_set_op_params(result, params, sizeof(params));
  6204. result->op = GGML_OP_FLASH_ATTN_EXT;
  6205. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6206. result->src[0] = q;
  6207. result->src[1] = k;
  6208. result->src[2] = v;
  6209. result->src[3] = mask;
  6210. return result;
  6211. }
  6212. void ggml_flash_attn_ext_set_prec(
  6213. struct ggml_tensor * a,
  6214. enum ggml_prec prec) {
  6215. GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
  6216. const int32_t prec_i32 = (int32_t) prec;
  6217. ggml_set_op_params_i32(a, 3, prec_i32); // scale is on first pos, max_bias on second
  6218. }
  6219. // ggml_flash_attn_back
  6220. struct ggml_tensor * ggml_flash_attn_back(
  6221. struct ggml_context * ctx,
  6222. struct ggml_tensor * q,
  6223. struct ggml_tensor * k,
  6224. struct ggml_tensor * v,
  6225. struct ggml_tensor * d,
  6226. bool masked) {
  6227. GGML_ABORT("TODO: adapt to ggml_flash_attn_ext() changes");
  6228. GGML_ASSERT(ggml_can_mul_mat(k, q));
  6229. // TODO: check if vT can be multiplied by (k*qT)
  6230. // d shape [D,N,ne2,ne3]
  6231. // q shape [D,N,ne2,ne3]
  6232. // k shape [D,M,kvne2,ne3]
  6233. // v shape [M,D,kvne2,ne3]
  6234. const int64_t D = q->ne[0];
  6235. const int64_t N = q->ne[1];
  6236. const int64_t M = k->ne[1];
  6237. const int64_t ne2 = q->ne[2];
  6238. const int64_t ne3 = q->ne[3];
  6239. const int64_t kvne2 = k->ne[2];
  6240. GGML_ASSERT(k->ne[0] == D);
  6241. GGML_ASSERT(v->ne[0] == M);
  6242. GGML_ASSERT(v->ne[1] == D);
  6243. GGML_ASSERT(d->ne[0] == D);
  6244. GGML_ASSERT(d->ne[1] == N);
  6245. GGML_ASSERT(k->ne[2] == kvne2);
  6246. GGML_ASSERT(k->ne[3] == ne3);
  6247. GGML_ASSERT(v->ne[2] == kvne2);
  6248. GGML_ASSERT(v->ne[3] == ne3);
  6249. GGML_ASSERT(d->ne[2] == ne2);
  6250. GGML_ASSERT(d->ne[3] == ne3);
  6251. GGML_ASSERT(ne2 % kvne2 == 0);
  6252. bool is_node = false;
  6253. if (q->grad || k->grad || v->grad) {
  6254. // when using this operation (in backwards pass) these grads are set.
  6255. // we don't want to create (big) grad of our result, so is_node is false.
  6256. is_node = false;
  6257. }
  6258. // store gradients of q, k and v as continuous tensors concatenated in result.
  6259. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  6260. const int64_t elem_q = ggml_nelements(q);
  6261. const int64_t elem_k = ggml_nelements(k);
  6262. const int64_t elem_v = ggml_nelements(v);
  6263. enum ggml_type result_type = GGML_TYPE_F32;
  6264. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  6265. const size_t tsize = ggml_type_size(result_type);
  6266. const size_t offs_q = 0;
  6267. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  6268. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  6269. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  6270. const size_t nelements = (end + tsize - 1)/tsize;
  6271. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  6272. int32_t masked_i = masked ? 1 : 0;
  6273. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  6274. result->op = GGML_OP_FLASH_ATTN_BACK;
  6275. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6276. result->src[0] = q;
  6277. result->src[1] = k;
  6278. result->src[2] = v;
  6279. result->src[3] = d;
  6280. return result;
  6281. }
  6282. // ggml_ssm_conv
  6283. struct ggml_tensor * ggml_ssm_conv(
  6284. struct ggml_context * ctx,
  6285. struct ggml_tensor * sx,
  6286. struct ggml_tensor * c) {
  6287. GGML_ASSERT(ggml_is_3d(sx));
  6288. GGML_ASSERT(ggml_is_matrix(c));
  6289. const int64_t d_conv = c->ne[0];
  6290. const int64_t d_inner = c->ne[1];
  6291. const int64_t n_t = sx->ne[0] - d_conv + 1; // tokens per sequence
  6292. const int64_t n_s = sx->ne[2];
  6293. // TODO: maybe support other strides than 1?
  6294. GGML_ASSERT(sx->ne[0] == d_conv - 1 + n_t);
  6295. GGML_ASSERT(sx->ne[1] == d_inner);
  6296. GGML_ASSERT(n_t >= 0);
  6297. bool is_node = false;
  6298. if (sx->grad || c->grad) {
  6299. GGML_ABORT("fatal error"); // TODO: implement
  6300. is_node = true;
  6301. }
  6302. struct ggml_tensor * result = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_t, n_s);
  6303. result->op = GGML_OP_SSM_CONV;
  6304. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6305. result->src[0] = sx;
  6306. result->src[1] = c;
  6307. return result;
  6308. }
  6309. // ggml_ssm_scan
  6310. struct ggml_tensor * ggml_ssm_scan(
  6311. struct ggml_context * ctx,
  6312. struct ggml_tensor * s,
  6313. struct ggml_tensor * x,
  6314. struct ggml_tensor * dt,
  6315. struct ggml_tensor * A,
  6316. struct ggml_tensor * B,
  6317. struct ggml_tensor * C) {
  6318. GGML_ASSERT(ggml_is_contiguous(s));
  6319. GGML_ASSERT(ggml_is_contiguous(x));
  6320. GGML_ASSERT(ggml_is_contiguous(dt));
  6321. GGML_ASSERT(ggml_is_contiguous(A));
  6322. GGML_ASSERT(ggml_is_matrix(A));
  6323. GGML_ASSERT(ggml_is_3d(B));
  6324. GGML_ASSERT(ggml_is_3d(s));
  6325. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  6326. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  6327. GGML_ASSERT(ggml_are_same_shape(x, dt));
  6328. GGML_ASSERT(ggml_are_same_shape(B, C));
  6329. {
  6330. const int64_t d_state = s->ne[0];
  6331. const int64_t d_inner = s->ne[1];
  6332. const int64_t n_seq_tokens = x->ne[1];
  6333. const int64_t n_seqs = x->ne[2];
  6334. GGML_ASSERT(s->ne[2] == n_seqs);
  6335. GGML_ASSERT(x->ne[0] == d_inner);
  6336. GGML_ASSERT(A->ne[0] == d_state);
  6337. GGML_ASSERT(A->ne[1] == d_inner);
  6338. GGML_ASSERT(B->ne[0] == d_state);
  6339. GGML_ASSERT(B->ne[1] == n_seq_tokens);
  6340. GGML_ASSERT(B->ne[2] == n_seqs);
  6341. }
  6342. bool is_node = false;
  6343. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad) {
  6344. GGML_ABORT("fatal error"); // TODO: implement
  6345. is_node = true;
  6346. }
  6347. // concatenated y + ssm_states
  6348. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  6349. result->op = GGML_OP_SSM_SCAN;
  6350. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6351. result->src[0] = s;
  6352. result->src[1] = x;
  6353. result->src[2] = dt;
  6354. result->src[3] = A;
  6355. result->src[4] = B;
  6356. result->src[5] = C;
  6357. return result;
  6358. }
  6359. // ggml_win_part
  6360. struct ggml_tensor * ggml_win_part(
  6361. struct ggml_context * ctx,
  6362. struct ggml_tensor * a,
  6363. int w) {
  6364. GGML_ASSERT(a->ne[3] == 1);
  6365. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6366. bool is_node = false;
  6367. if (a->grad) {
  6368. GGML_ABORT("fatal error"); // TODO: implement backward
  6369. is_node = true;
  6370. }
  6371. // padding
  6372. const int px = (w - a->ne[1]%w)%w;
  6373. const int py = (w - a->ne[2]%w)%w;
  6374. const int npx = (px + a->ne[1])/w;
  6375. const int npy = (py + a->ne[2])/w;
  6376. const int np = npx*npy;
  6377. const int64_t ne[4] = { a->ne[0], w, w, np, };
  6378. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6379. int32_t params[] = { npx, npy, w };
  6380. ggml_set_op_params(result, params, sizeof(params));
  6381. result->op = GGML_OP_WIN_PART;
  6382. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6383. result->src[0] = a;
  6384. return result;
  6385. }
  6386. // ggml_win_unpart
  6387. struct ggml_tensor * ggml_win_unpart(
  6388. struct ggml_context * ctx,
  6389. struct ggml_tensor * a,
  6390. int w0,
  6391. int h0,
  6392. int w) {
  6393. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6394. bool is_node = false;
  6395. if (a->grad) {
  6396. GGML_ABORT("fatal error"); // TODO: implement backward
  6397. is_node = true;
  6398. }
  6399. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  6400. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6401. int32_t params[] = { w };
  6402. ggml_set_op_params(result, params, sizeof(params));
  6403. result->op = GGML_OP_WIN_UNPART;
  6404. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6405. result->src[0] = a;
  6406. return result;
  6407. }
  6408. // ggml_get_rel_pos
  6409. struct ggml_tensor * ggml_get_rel_pos(
  6410. struct ggml_context * ctx,
  6411. struct ggml_tensor * a,
  6412. int qh,
  6413. int kh) {
  6414. GGML_ASSERT(qh == kh);
  6415. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  6416. bool is_node = false;
  6417. if (a->grad) {
  6418. GGML_ABORT("fatal error"); // TODO: implement backward
  6419. is_node = true;
  6420. }
  6421. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  6422. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  6423. result->op = GGML_OP_GET_REL_POS;
  6424. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6425. result->src[0] = a;
  6426. return result;
  6427. }
  6428. // ggml_add_rel_pos
  6429. static struct ggml_tensor * ggml_add_rel_pos_impl(
  6430. struct ggml_context * ctx,
  6431. struct ggml_tensor * a,
  6432. struct ggml_tensor * pw,
  6433. struct ggml_tensor * ph,
  6434. bool inplace) {
  6435. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6436. GGML_ASSERT(ggml_is_contiguous(a));
  6437. GGML_ASSERT(ggml_is_contiguous(pw));
  6438. GGML_ASSERT(ggml_is_contiguous(ph));
  6439. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6440. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6441. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6442. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6443. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6444. bool is_node = false;
  6445. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  6446. is_node = true;
  6447. }
  6448. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6449. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6450. result->op = GGML_OP_ADD_REL_POS;
  6451. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6452. result->src[0] = a;
  6453. result->src[1] = pw;
  6454. result->src[2] = ph;
  6455. return result;
  6456. }
  6457. struct ggml_tensor * ggml_add_rel_pos(
  6458. struct ggml_context * ctx,
  6459. struct ggml_tensor * a,
  6460. struct ggml_tensor * pw,
  6461. struct ggml_tensor * ph) {
  6462. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6463. }
  6464. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6465. struct ggml_context * ctx,
  6466. struct ggml_tensor * a,
  6467. struct ggml_tensor * pw,
  6468. struct ggml_tensor * ph) {
  6469. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6470. }
  6471. // ggml_rwkv_wkv
  6472. struct ggml_tensor * ggml_rwkv_wkv(
  6473. struct ggml_context * ctx,
  6474. struct ggml_tensor * k,
  6475. struct ggml_tensor * v,
  6476. struct ggml_tensor * r,
  6477. struct ggml_tensor * tf,
  6478. struct ggml_tensor * td,
  6479. struct ggml_tensor * state) {
  6480. GGML_ASSERT(ggml_is_contiguous(k));
  6481. GGML_ASSERT(ggml_is_contiguous(v));
  6482. GGML_ASSERT(ggml_is_contiguous(r));
  6483. GGML_ASSERT(ggml_is_contiguous(tf));
  6484. GGML_ASSERT(ggml_is_contiguous(td));
  6485. GGML_ASSERT(ggml_is_contiguous(state));
  6486. const int64_t S = k->ne[0];
  6487. const int64_t H = k->ne[2];
  6488. const int64_t n_tokens = k->ne[3];
  6489. const int64_t n_seqs = state->ne[1];
  6490. {
  6491. GGML_ASSERT(k->ne[1] == 1);
  6492. GGML_ASSERT(v->ne[0] == 1 && v->ne[1] == S && v->ne[2] == H && v->ne[3] == n_tokens);
  6493. GGML_ASSERT(r->ne[0] == 1 && r->ne[1] == S && r->ne[2] == H && r->ne[3] == n_tokens);
  6494. // TODO: RWKV v4 and v5
  6495. GGML_ASSERT(td->ne[0] == 1 && td->ne[1] == S && td->ne[2] == H && td->ne[3] == n_tokens);
  6496. GGML_ASSERT(ggml_nelements(state) == S * S * H * n_seqs);
  6497. }
  6498. bool is_node = false;
  6499. if (k->grad || v->grad || r->grad || tf->grad || td->grad || state->grad) {
  6500. GGML_ABORT("fatal error"); // TODO: implement backward
  6501. is_node = true;
  6502. }
  6503. // concat output and new_state
  6504. const int64_t ne[4] = { S * H, n_tokens + S * n_seqs, 1, 1 };
  6505. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6506. result->op = GGML_OP_RWKV_WKV;
  6507. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6508. result->src[0] = k;
  6509. result->src[1] = v;
  6510. result->src[2] = r;
  6511. result->src[3] = tf;
  6512. result->src[4] = td;
  6513. result->src[5] = state;
  6514. return result;
  6515. }
  6516. // ggml_unary
  6517. static struct ggml_tensor * ggml_unary_impl(
  6518. struct ggml_context * ctx,
  6519. struct ggml_tensor * a,
  6520. enum ggml_unary_op op,
  6521. bool inplace) {
  6522. GGML_ASSERT(ggml_is_contiguous_1(a));
  6523. bool is_node = false;
  6524. if (!inplace && (a->grad)) {
  6525. is_node = true;
  6526. }
  6527. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6528. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6529. result->op = GGML_OP_UNARY;
  6530. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6531. result->src[0] = a;
  6532. return result;
  6533. }
  6534. struct ggml_tensor * ggml_unary(
  6535. struct ggml_context * ctx,
  6536. struct ggml_tensor * a,
  6537. enum ggml_unary_op op) {
  6538. return ggml_unary_impl(ctx, a, op, false);
  6539. }
  6540. struct ggml_tensor * ggml_unary_inplace(
  6541. struct ggml_context * ctx,
  6542. struct ggml_tensor * a,
  6543. enum ggml_unary_op op) {
  6544. return ggml_unary_impl(ctx, a, op, true);
  6545. }
  6546. // ggml_map_unary
  6547. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6548. struct ggml_context * ctx,
  6549. struct ggml_tensor * a,
  6550. const ggml_unary_op_f32_t fun,
  6551. bool inplace) {
  6552. bool is_node = false;
  6553. if (!inplace && a->grad) {
  6554. is_node = true;
  6555. }
  6556. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6557. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6558. result->op = GGML_OP_MAP_UNARY;
  6559. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6560. result->src[0] = a;
  6561. return result;
  6562. }
  6563. struct ggml_tensor * ggml_map_unary_f32(
  6564. struct ggml_context * ctx,
  6565. struct ggml_tensor * a,
  6566. const ggml_unary_op_f32_t fun) {
  6567. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6568. }
  6569. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6570. struct ggml_context * ctx,
  6571. struct ggml_tensor * a,
  6572. const ggml_unary_op_f32_t fun) {
  6573. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6574. }
  6575. // ggml_map_binary
  6576. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6577. struct ggml_context * ctx,
  6578. struct ggml_tensor * a,
  6579. struct ggml_tensor * b,
  6580. const ggml_binary_op_f32_t fun,
  6581. bool inplace) {
  6582. GGML_ASSERT(ggml_are_same_shape(a, b));
  6583. bool is_node = false;
  6584. if (!inplace && (a->grad || b->grad)) {
  6585. is_node = true;
  6586. }
  6587. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6588. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6589. result->op = GGML_OP_MAP_BINARY;
  6590. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6591. result->src[0] = a;
  6592. result->src[1] = b;
  6593. return result;
  6594. }
  6595. struct ggml_tensor * ggml_map_binary_f32(
  6596. struct ggml_context * ctx,
  6597. struct ggml_tensor * a,
  6598. struct ggml_tensor * b,
  6599. const ggml_binary_op_f32_t fun) {
  6600. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6601. }
  6602. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6603. struct ggml_context * ctx,
  6604. struct ggml_tensor * a,
  6605. struct ggml_tensor * b,
  6606. const ggml_binary_op_f32_t fun) {
  6607. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6608. }
  6609. // ggml_map_custom1_f32
  6610. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6611. struct ggml_context * ctx,
  6612. struct ggml_tensor * a,
  6613. const ggml_custom1_op_f32_t fun,
  6614. bool inplace) {
  6615. bool is_node = false;
  6616. if (!inplace && a->grad) {
  6617. is_node = true;
  6618. }
  6619. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6620. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6621. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6622. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6623. result->src[0] = a;
  6624. return result;
  6625. }
  6626. struct ggml_tensor * ggml_map_custom1_f32(
  6627. struct ggml_context * ctx,
  6628. struct ggml_tensor * a,
  6629. const ggml_custom1_op_f32_t fun) {
  6630. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6631. }
  6632. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6633. struct ggml_context * ctx,
  6634. struct ggml_tensor * a,
  6635. const ggml_custom1_op_f32_t fun) {
  6636. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6637. }
  6638. // ggml_map_custom2_f32
  6639. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6640. struct ggml_context * ctx,
  6641. struct ggml_tensor * a,
  6642. struct ggml_tensor * b,
  6643. const ggml_custom2_op_f32_t fun,
  6644. bool inplace) {
  6645. bool is_node = false;
  6646. if (!inplace && (a->grad || b->grad)) {
  6647. is_node = true;
  6648. }
  6649. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6650. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6651. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6652. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6653. result->src[0] = a;
  6654. result->src[1] = b;
  6655. return result;
  6656. }
  6657. struct ggml_tensor * ggml_map_custom2_f32(
  6658. struct ggml_context * ctx,
  6659. struct ggml_tensor * a,
  6660. struct ggml_tensor * b,
  6661. const ggml_custom2_op_f32_t fun) {
  6662. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6663. }
  6664. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6665. struct ggml_context * ctx,
  6666. struct ggml_tensor * a,
  6667. struct ggml_tensor * b,
  6668. const ggml_custom2_op_f32_t fun) {
  6669. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6670. }
  6671. // ggml_map_custom3_f32
  6672. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6673. struct ggml_context * ctx,
  6674. struct ggml_tensor * a,
  6675. struct ggml_tensor * b,
  6676. struct ggml_tensor * c,
  6677. const ggml_custom3_op_f32_t fun,
  6678. bool inplace) {
  6679. bool is_node = false;
  6680. if (!inplace && (a->grad || b->grad || c->grad)) {
  6681. is_node = true;
  6682. }
  6683. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6684. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6685. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6686. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6687. result->src[0] = a;
  6688. result->src[1] = b;
  6689. result->src[2] = c;
  6690. return result;
  6691. }
  6692. struct ggml_tensor * ggml_map_custom3_f32(
  6693. struct ggml_context * ctx,
  6694. struct ggml_tensor * a,
  6695. struct ggml_tensor * b,
  6696. struct ggml_tensor * c,
  6697. const ggml_custom3_op_f32_t fun) {
  6698. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6699. }
  6700. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6701. struct ggml_context * ctx,
  6702. struct ggml_tensor * a,
  6703. struct ggml_tensor * b,
  6704. struct ggml_tensor * c,
  6705. const ggml_custom3_op_f32_t fun) {
  6706. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6707. }
  6708. // ggml_map_custom1
  6709. struct ggml_map_custom1_op_params {
  6710. ggml_custom1_op_t fun;
  6711. int n_tasks;
  6712. void * userdata;
  6713. };
  6714. static struct ggml_tensor * ggml_map_custom1_impl(
  6715. struct ggml_context * ctx,
  6716. struct ggml_tensor * a,
  6717. const ggml_custom1_op_t fun,
  6718. int n_tasks,
  6719. void * userdata,
  6720. bool inplace) {
  6721. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6722. bool is_node = false;
  6723. if (!inplace && a->grad) {
  6724. is_node = true;
  6725. }
  6726. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6727. struct ggml_map_custom1_op_params params = {
  6728. /*.fun =*/ fun,
  6729. /*.n_tasks =*/ n_tasks,
  6730. /*.userdata =*/ userdata
  6731. };
  6732. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6733. result->op = GGML_OP_MAP_CUSTOM1;
  6734. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6735. result->src[0] = a;
  6736. return result;
  6737. }
  6738. struct ggml_tensor * ggml_map_custom1(
  6739. struct ggml_context * ctx,
  6740. struct ggml_tensor * a,
  6741. const ggml_custom1_op_t fun,
  6742. int n_tasks,
  6743. void * userdata) {
  6744. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6745. }
  6746. struct ggml_tensor * ggml_map_custom1_inplace(
  6747. struct ggml_context * ctx,
  6748. struct ggml_tensor * a,
  6749. const ggml_custom1_op_t fun,
  6750. int n_tasks,
  6751. void * userdata) {
  6752. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6753. }
  6754. // ggml_map_custom2
  6755. struct ggml_map_custom2_op_params {
  6756. ggml_custom2_op_t fun;
  6757. int n_tasks;
  6758. void * userdata;
  6759. };
  6760. static struct ggml_tensor * ggml_map_custom2_impl(
  6761. struct ggml_context * ctx,
  6762. struct ggml_tensor * a,
  6763. struct ggml_tensor * b,
  6764. const ggml_custom2_op_t fun,
  6765. int n_tasks,
  6766. void * userdata,
  6767. bool inplace) {
  6768. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6769. bool is_node = false;
  6770. if (!inplace && (a->grad || b->grad)) {
  6771. is_node = true;
  6772. }
  6773. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6774. struct ggml_map_custom2_op_params params = {
  6775. /*.fun =*/ fun,
  6776. /*.n_tasks =*/ n_tasks,
  6777. /*.userdata =*/ userdata
  6778. };
  6779. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6780. result->op = GGML_OP_MAP_CUSTOM2;
  6781. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6782. result->src[0] = a;
  6783. result->src[1] = b;
  6784. return result;
  6785. }
  6786. struct ggml_tensor * ggml_map_custom2(
  6787. struct ggml_context * ctx,
  6788. struct ggml_tensor * a,
  6789. struct ggml_tensor * b,
  6790. const ggml_custom2_op_t fun,
  6791. int n_tasks,
  6792. void * userdata) {
  6793. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6794. }
  6795. struct ggml_tensor * ggml_map_custom2_inplace(
  6796. struct ggml_context * ctx,
  6797. struct ggml_tensor * a,
  6798. struct ggml_tensor * b,
  6799. const ggml_custom2_op_t fun,
  6800. int n_tasks,
  6801. void * userdata) {
  6802. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6803. }
  6804. // ggml_map_custom3
  6805. struct ggml_map_custom3_op_params {
  6806. ggml_custom3_op_t fun;
  6807. int n_tasks;
  6808. void * userdata;
  6809. };
  6810. static struct ggml_tensor * ggml_map_custom3_impl(
  6811. struct ggml_context * ctx,
  6812. struct ggml_tensor * a,
  6813. struct ggml_tensor * b,
  6814. struct ggml_tensor * c,
  6815. const ggml_custom3_op_t fun,
  6816. int n_tasks,
  6817. void * userdata,
  6818. bool inplace) {
  6819. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6820. bool is_node = false;
  6821. if (!inplace && (a->grad || b->grad || c->grad)) {
  6822. is_node = true;
  6823. }
  6824. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6825. struct ggml_map_custom3_op_params params = {
  6826. /*.fun =*/ fun,
  6827. /*.n_tasks =*/ n_tasks,
  6828. /*.userdata =*/ userdata
  6829. };
  6830. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6831. result->op = GGML_OP_MAP_CUSTOM3;
  6832. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6833. result->src[0] = a;
  6834. result->src[1] = b;
  6835. result->src[2] = c;
  6836. return result;
  6837. }
  6838. struct ggml_tensor * ggml_map_custom3(
  6839. struct ggml_context * ctx,
  6840. struct ggml_tensor * a,
  6841. struct ggml_tensor * b,
  6842. struct ggml_tensor * c,
  6843. const ggml_custom3_op_t fun,
  6844. int n_tasks,
  6845. void * userdata) {
  6846. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6847. }
  6848. struct ggml_tensor * ggml_map_custom3_inplace(
  6849. struct ggml_context * ctx,
  6850. struct ggml_tensor * a,
  6851. struct ggml_tensor * b,
  6852. struct ggml_tensor * c,
  6853. const ggml_custom3_op_t fun,
  6854. int n_tasks,
  6855. void * userdata) {
  6856. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6857. }
  6858. // ggml_cross_entropy_loss
  6859. struct ggml_tensor * ggml_cross_entropy_loss(
  6860. struct ggml_context * ctx,
  6861. struct ggml_tensor * a,
  6862. struct ggml_tensor * b) {
  6863. GGML_ASSERT(ggml_are_same_shape(a, b));
  6864. bool is_node = false;
  6865. if (a->grad || b->grad) {
  6866. is_node = true;
  6867. }
  6868. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6869. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6870. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6871. result->src[0] = a;
  6872. result->src[1] = b;
  6873. return result;
  6874. }
  6875. // ggml_cross_entropy_loss_back
  6876. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6877. struct ggml_context * ctx,
  6878. struct ggml_tensor * a,
  6879. struct ggml_tensor * b,
  6880. struct ggml_tensor * c) {
  6881. GGML_ASSERT(ggml_are_same_shape(a, b));
  6882. GGML_ASSERT(ggml_is_scalar(c));
  6883. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6884. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6885. result->grad = NULL;
  6886. result->src[0] = a;
  6887. result->src[1] = b;
  6888. result->src[2] = c;
  6889. return result;
  6890. }
  6891. // opt_step_adamw
  6892. struct ggml_tensor * ggml_opt_step_adamw(
  6893. struct ggml_context * ctx,
  6894. struct ggml_tensor * a,
  6895. float alpha,
  6896. float beta1,
  6897. float beta2,
  6898. float eps,
  6899. float wd) {
  6900. GGML_ASSERT(a->grad);
  6901. GGML_ASSERT(alpha > 0.0f);
  6902. GGML_ASSERT(beta1 >= 0.0f && beta1 <= 1.0f);
  6903. GGML_ASSERT(beta2 >= 0.0f && beta2 <= 1.0f);
  6904. GGML_ASSERT(eps >= 0.0f);
  6905. GGML_ASSERT(wd >= 0.0f && wd <= 1.0f);
  6906. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  6907. result->op = GGML_OP_OPT_STEP_ADAMW;
  6908. result->grad = NULL;
  6909. result->src[0] = a;
  6910. result->src[1] = a->grad;
  6911. result->src[2] = ggml_dup_tensor(ctx, a->grad);
  6912. result->src[3] = ggml_dup_tensor(ctx, a->grad);
  6913. const int64_t iter = 1;
  6914. memcpy(&result->op_params[0], &iter, sizeof(int64_t));
  6915. ggml_set_op_params_f32(result, 2, alpha);
  6916. ggml_set_op_params_f32(result, 3, beta1);
  6917. ggml_set_op_params_f32(result, 4, beta2);
  6918. ggml_set_op_params_f32(result, 5, eps);
  6919. ggml_set_op_params_f32(result, 6, wd);
  6920. return result;
  6921. }
  6922. ////////////////////////////////////////////////////////////////////////////////
  6923. void ggml_set_param(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  6924. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  6925. GGML_ASSERT(tensor->grad == NULL);
  6926. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6927. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  6928. }
  6929. void ggml_set_loss(struct ggml_tensor * tensor) {
  6930. GGML_ASSERT(ggml_is_scalar(tensor));
  6931. GGML_ASSERT(tensor->type == GGML_TYPE_F32);
  6932. GGML_ASSERT(tensor->grad);
  6933. tensor->flags |= GGML_TENSOR_FLAG_LOSS;
  6934. }
  6935. // ggml_compute_forward_dup
  6936. static void ggml_compute_forward_dup_same_cont(
  6937. const struct ggml_compute_params * params,
  6938. struct ggml_tensor * dst) {
  6939. const struct ggml_tensor * src0 = dst->src[0];
  6940. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6941. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6942. GGML_ASSERT(src0->type == dst->type);
  6943. const size_t nb0 = ggml_type_size(src0->type);
  6944. const int ith = params->ith; // thread index
  6945. const int nth = params->nth; // number of threads
  6946. // parallelize by elements
  6947. const int ne = ggml_nelements(dst);
  6948. const int dr = (ne + nth - 1) / nth;
  6949. const int ie0 = dr * ith;
  6950. const int ie1 = MIN(ie0 + dr, ne);
  6951. if (ie0 < ie1) {
  6952. memcpy(
  6953. ((char *) dst->data + ie0*nb0),
  6954. ((char *) src0->data + ie0*nb0),
  6955. (ie1 - ie0) * nb0);
  6956. }
  6957. }
  6958. static void ggml_compute_forward_dup_f16(
  6959. const struct ggml_compute_params * params,
  6960. struct ggml_tensor * dst) {
  6961. const struct ggml_tensor * src0 = dst->src[0];
  6962. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6963. GGML_TENSOR_UNARY_OP_LOCALS
  6964. const int ith = params->ith; // thread index
  6965. const int nth = params->nth; // number of threads
  6966. // parallelize by rows
  6967. const int nr = ne01;
  6968. // number of rows per thread
  6969. const int dr = (nr + nth - 1) / nth;
  6970. // row range for this thread
  6971. const int ir0 = dr * ith;
  6972. const int ir1 = MIN(ir0 + dr, nr);
  6973. if (src0->type == dst->type &&
  6974. ne00 == ne0 &&
  6975. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6976. // copy by rows
  6977. const size_t rs = ne00*nb00;
  6978. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6979. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6980. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6981. memcpy(
  6982. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6983. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6984. rs);
  6985. }
  6986. }
  6987. }
  6988. return;
  6989. }
  6990. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6991. if (ggml_is_contiguous(dst)) {
  6992. if (nb00 == sizeof(ggml_fp16_t)) {
  6993. if (dst->type == GGML_TYPE_F16) {
  6994. size_t id = 0;
  6995. const size_t rs = ne00 * nb00;
  6996. char * dst_ptr = (char *) dst->data;
  6997. for (int i03 = 0; i03 < ne03; i03++) {
  6998. for (int i02 = 0; i02 < ne02; i02++) {
  6999. id += rs * ir0;
  7000. for (int i01 = ir0; i01 < ir1; i01++) {
  7001. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7002. memcpy(dst_ptr + id, src0_ptr, rs);
  7003. id += rs;
  7004. }
  7005. id += rs * (ne01 - ir1);
  7006. }
  7007. }
  7008. } else if (dst->type == GGML_TYPE_F32) {
  7009. size_t id = 0;
  7010. float * dst_ptr = (float *) dst->data;
  7011. for (int i03 = 0; i03 < ne03; i03++) {
  7012. for (int i02 = 0; i02 < ne02; i02++) {
  7013. id += ne00 * ir0;
  7014. for (int i01 = ir0; i01 < ir1; i01++) {
  7015. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7016. for (int i00 = 0; i00 < ne00; i00++) {
  7017. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  7018. id++;
  7019. }
  7020. }
  7021. id += ne00 * (ne01 - ir1);
  7022. }
  7023. }
  7024. } else if (type_traits[dst->type].from_float) {
  7025. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  7026. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7027. size_t id = 0;
  7028. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  7029. char * dst_ptr = (char *) dst->data;
  7030. for (int i03 = 0; i03 < ne03; i03++) {
  7031. for (int i02 = 0; i02 < ne02; i02++) {
  7032. id += rs * ir0;
  7033. for (int i01 = ir0; i01 < ir1; i01++) {
  7034. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7035. for (int i00 = 0; i00 < ne00; i00++) {
  7036. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  7037. }
  7038. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  7039. id += rs;
  7040. }
  7041. id += rs * (ne01 - ir1);
  7042. }
  7043. }
  7044. } else {
  7045. GGML_ABORT("fatal error"); // TODO: implement
  7046. }
  7047. } else {
  7048. //printf("%s: this is not optimal - fix me\n", __func__);
  7049. if (dst->type == GGML_TYPE_F32) {
  7050. size_t id = 0;
  7051. float * dst_ptr = (float *) dst->data;
  7052. for (int i03 = 0; i03 < ne03; i03++) {
  7053. for (int i02 = 0; i02 < ne02; i02++) {
  7054. id += ne00 * ir0;
  7055. for (int i01 = ir0; i01 < ir1; i01++) {
  7056. for (int i00 = 0; i00 < ne00; i00++) {
  7057. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7058. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  7059. id++;
  7060. }
  7061. }
  7062. id += ne00 * (ne01 - ir1);
  7063. }
  7064. }
  7065. } else if (dst->type == GGML_TYPE_F16) {
  7066. size_t id = 0;
  7067. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7068. for (int i03 = 0; i03 < ne03; i03++) {
  7069. for (int i02 = 0; i02 < ne02; i02++) {
  7070. id += ne00 * ir0;
  7071. for (int i01 = ir0; i01 < ir1; i01++) {
  7072. for (int i00 = 0; i00 < ne00; i00++) {
  7073. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7074. dst_ptr[id] = *src0_ptr;
  7075. id++;
  7076. }
  7077. }
  7078. id += ne00 * (ne01 - ir1);
  7079. }
  7080. }
  7081. } else {
  7082. GGML_ABORT("fatal error"); // TODO: implement
  7083. }
  7084. }
  7085. return;
  7086. }
  7087. // dst counters
  7088. int64_t i10 = 0;
  7089. int64_t i11 = 0;
  7090. int64_t i12 = 0;
  7091. int64_t i13 = 0;
  7092. if (dst->type == GGML_TYPE_F16) {
  7093. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7094. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7095. i10 += ne00 * ir0;
  7096. while (i10 >= ne0) {
  7097. i10 -= ne0;
  7098. if (++i11 == ne1) {
  7099. i11 = 0;
  7100. if (++i12 == ne2) {
  7101. i12 = 0;
  7102. if (++i13 == ne3) {
  7103. i13 = 0;
  7104. }
  7105. }
  7106. }
  7107. }
  7108. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7109. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7110. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7111. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7112. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  7113. if (++i10 == ne00) {
  7114. i10 = 0;
  7115. if (++i11 == ne01) {
  7116. i11 = 0;
  7117. if (++i12 == ne02) {
  7118. i12 = 0;
  7119. if (++i13 == ne03) {
  7120. i13 = 0;
  7121. }
  7122. }
  7123. }
  7124. }
  7125. }
  7126. }
  7127. i10 += ne00 * (ne01 - ir1);
  7128. while (i10 >= ne0) {
  7129. i10 -= ne0;
  7130. if (++i11 == ne1) {
  7131. i11 = 0;
  7132. if (++i12 == ne2) {
  7133. i12 = 0;
  7134. if (++i13 == ne3) {
  7135. i13 = 0;
  7136. }
  7137. }
  7138. }
  7139. }
  7140. }
  7141. }
  7142. } else if (dst->type == GGML_TYPE_F32) {
  7143. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7144. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7145. i10 += ne00 * ir0;
  7146. while (i10 >= ne0) {
  7147. i10 -= ne0;
  7148. if (++i11 == ne1) {
  7149. i11 = 0;
  7150. if (++i12 == ne2) {
  7151. i12 = 0;
  7152. if (++i13 == ne3) {
  7153. i13 = 0;
  7154. }
  7155. }
  7156. }
  7157. }
  7158. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7159. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7160. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7161. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7162. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  7163. if (++i10 == ne0) {
  7164. i10 = 0;
  7165. if (++i11 == ne1) {
  7166. i11 = 0;
  7167. if (++i12 == ne2) {
  7168. i12 = 0;
  7169. if (++i13 == ne3) {
  7170. i13 = 0;
  7171. }
  7172. }
  7173. }
  7174. }
  7175. }
  7176. }
  7177. i10 += ne00 * (ne01 - ir1);
  7178. while (i10 >= ne0) {
  7179. i10 -= ne0;
  7180. if (++i11 == ne1) {
  7181. i11 = 0;
  7182. if (++i12 == ne2) {
  7183. i12 = 0;
  7184. if (++i13 == ne3) {
  7185. i13 = 0;
  7186. }
  7187. }
  7188. }
  7189. }
  7190. }
  7191. }
  7192. } else {
  7193. GGML_ABORT("fatal error"); // TODO: implement
  7194. }
  7195. }
  7196. static void ggml_compute_forward_dup_bf16(
  7197. const struct ggml_compute_params * params,
  7198. struct ggml_tensor * dst) {
  7199. const struct ggml_tensor * src0 = dst->src[0];
  7200. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7201. GGML_TENSOR_UNARY_OP_LOCALS
  7202. const int ith = params->ith; // thread index
  7203. const int nth = params->nth; // number of threads
  7204. // parallelize by rows
  7205. const int nr = ne01;
  7206. // number of rows per thread
  7207. const int dr = (nr + nth - 1) / nth;
  7208. // row range for this thread
  7209. const int ir0 = dr * ith;
  7210. const int ir1 = MIN(ir0 + dr, nr);
  7211. if (src0->type == dst->type &&
  7212. ne00 == ne0 &&
  7213. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  7214. // copy by rows
  7215. const size_t rs = ne00*nb00;
  7216. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7217. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7218. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7219. memcpy(
  7220. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7221. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7222. rs);
  7223. }
  7224. }
  7225. }
  7226. return;
  7227. }
  7228. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  7229. if (ggml_is_contiguous(dst)) {
  7230. if (nb00 == sizeof(ggml_bf16_t)) {
  7231. if (dst->type == GGML_TYPE_BF16) {
  7232. size_t id = 0;
  7233. const size_t rs = ne00 * nb00;
  7234. char * dst_ptr = (char *) dst->data;
  7235. for (int i03 = 0; i03 < ne03; i03++) {
  7236. for (int i02 = 0; i02 < ne02; i02++) {
  7237. id += rs * ir0;
  7238. for (int i01 = ir0; i01 < ir1; i01++) {
  7239. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7240. memcpy(dst_ptr + id, src0_ptr, rs);
  7241. id += rs;
  7242. }
  7243. id += rs * (ne01 - ir1);
  7244. }
  7245. }
  7246. } else if (dst->type == GGML_TYPE_F16) {
  7247. size_t id = 0;
  7248. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7249. for (int i03 = 0; i03 < ne03; i03++) {
  7250. for (int i02 = 0; i02 < ne02; i02++) {
  7251. id += ne00 * ir0;
  7252. for (int i01 = ir0; i01 < ir1; i01++) {
  7253. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7254. for (int i00 = 0; i00 < ne00; i00++) {
  7255. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  7256. id++;
  7257. }
  7258. }
  7259. id += ne00 * (ne01 - ir1);
  7260. }
  7261. }
  7262. } else if (dst->type == GGML_TYPE_F32) {
  7263. size_t id = 0;
  7264. float * dst_ptr = (float *) dst->data;
  7265. for (int i03 = 0; i03 < ne03; i03++) {
  7266. for (int i02 = 0; i02 < ne02; i02++) {
  7267. id += ne00 * ir0;
  7268. for (int i01 = ir0; i01 < ir1; i01++) {
  7269. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7270. for (int i00 = 0; i00 < ne00; i00++) {
  7271. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  7272. id++;
  7273. }
  7274. }
  7275. id += ne00 * (ne01 - ir1);
  7276. }
  7277. }
  7278. } else if (type_traits[dst->type].from_float) {
  7279. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  7280. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7281. size_t id = 0;
  7282. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  7283. char * dst_ptr = (char *) dst->data;
  7284. for (int i03 = 0; i03 < ne03; i03++) {
  7285. for (int i02 = 0; i02 < ne02; i02++) {
  7286. id += rs * ir0;
  7287. for (int i01 = ir0; i01 < ir1; i01++) {
  7288. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7289. for (int i00 = 0; i00 < ne00; i00++) {
  7290. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  7291. }
  7292. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  7293. id += rs;
  7294. }
  7295. id += rs * (ne01 - ir1);
  7296. }
  7297. }
  7298. } else {
  7299. GGML_ABORT("fatal error"); // TODO: implement
  7300. }
  7301. } else {
  7302. //printf("%s: this is not optimal - fix me\n", __func__);
  7303. if (dst->type == GGML_TYPE_F32) {
  7304. size_t id = 0;
  7305. float * dst_ptr = (float *) dst->data;
  7306. for (int i03 = 0; i03 < ne03; i03++) {
  7307. for (int i02 = 0; i02 < ne02; i02++) {
  7308. id += ne00 * ir0;
  7309. for (int i01 = ir0; i01 < ir1; i01++) {
  7310. for (int i00 = 0; i00 < ne00; i00++) {
  7311. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7312. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  7313. id++;
  7314. }
  7315. }
  7316. id += ne00 * (ne01 - ir1);
  7317. }
  7318. }
  7319. } else if (dst->type == GGML_TYPE_BF16) {
  7320. size_t id = 0;
  7321. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  7322. for (int i03 = 0; i03 < ne03; i03++) {
  7323. for (int i02 = 0; i02 < ne02; i02++) {
  7324. id += ne00 * ir0;
  7325. for (int i01 = ir0; i01 < ir1; i01++) {
  7326. for (int i00 = 0; i00 < ne00; i00++) {
  7327. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7328. dst_ptr[id] = *src0_ptr;
  7329. id++;
  7330. }
  7331. }
  7332. id += ne00 * (ne01 - ir1);
  7333. }
  7334. }
  7335. } else if (dst->type == GGML_TYPE_F16) {
  7336. size_t id = 0;
  7337. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7338. for (int i03 = 0; i03 < ne03; i03++) {
  7339. for (int i02 = 0; i02 < ne02; i02++) {
  7340. id += ne00 * ir0;
  7341. for (int i01 = ir0; i01 < ir1; i01++) {
  7342. for (int i00 = 0; i00 < ne00; i00++) {
  7343. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7344. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  7345. id++;
  7346. }
  7347. }
  7348. id += ne00 * (ne01 - ir1);
  7349. }
  7350. }
  7351. } else {
  7352. GGML_ABORT("fatal error"); // TODO: implement
  7353. }
  7354. }
  7355. return;
  7356. }
  7357. // dst counters
  7358. int64_t i10 = 0;
  7359. int64_t i11 = 0;
  7360. int64_t i12 = 0;
  7361. int64_t i13 = 0;
  7362. if (dst->type == GGML_TYPE_BF16) {
  7363. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7364. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7365. i10 += ne00 * ir0;
  7366. while (i10 >= ne0) {
  7367. i10 -= ne0;
  7368. if (++i11 == ne1) {
  7369. i11 = 0;
  7370. if (++i12 == ne2) {
  7371. i12 = 0;
  7372. if (++i13 == ne3) {
  7373. i13 = 0;
  7374. }
  7375. }
  7376. }
  7377. }
  7378. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7379. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7380. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7381. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7382. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  7383. if (++i10 == ne00) {
  7384. i10 = 0;
  7385. if (++i11 == ne01) {
  7386. i11 = 0;
  7387. if (++i12 == ne02) {
  7388. i12 = 0;
  7389. if (++i13 == ne03) {
  7390. i13 = 0;
  7391. }
  7392. }
  7393. }
  7394. }
  7395. }
  7396. }
  7397. i10 += ne00 * (ne01 - ir1);
  7398. while (i10 >= ne0) {
  7399. i10 -= ne0;
  7400. if (++i11 == ne1) {
  7401. i11 = 0;
  7402. if (++i12 == ne2) {
  7403. i12 = 0;
  7404. if (++i13 == ne3) {
  7405. i13 = 0;
  7406. }
  7407. }
  7408. }
  7409. }
  7410. }
  7411. }
  7412. } else if (dst->type == GGML_TYPE_F16) {
  7413. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7414. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7415. i10 += ne00 * ir0;
  7416. while (i10 >= ne0) {
  7417. i10 -= ne0;
  7418. if (++i11 == ne1) {
  7419. i11 = 0;
  7420. if (++i12 == ne2) {
  7421. i12 = 0;
  7422. if (++i13 == ne3) {
  7423. i13 = 0;
  7424. }
  7425. }
  7426. }
  7427. }
  7428. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7429. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7430. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7431. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7432. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  7433. if (++i10 == ne0) {
  7434. i10 = 0;
  7435. if (++i11 == ne1) {
  7436. i11 = 0;
  7437. if (++i12 == ne2) {
  7438. i12 = 0;
  7439. if (++i13 == ne3) {
  7440. i13 = 0;
  7441. }
  7442. }
  7443. }
  7444. }
  7445. }
  7446. }
  7447. i10 += ne00 * (ne01 - ir1);
  7448. while (i10 >= ne0) {
  7449. i10 -= ne0;
  7450. if (++i11 == ne1) {
  7451. i11 = 0;
  7452. if (++i12 == ne2) {
  7453. i12 = 0;
  7454. if (++i13 == ne3) {
  7455. i13 = 0;
  7456. }
  7457. }
  7458. }
  7459. }
  7460. }
  7461. }
  7462. } else if (dst->type == GGML_TYPE_F32) {
  7463. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7464. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7465. i10 += ne00 * ir0;
  7466. while (i10 >= ne0) {
  7467. i10 -= ne0;
  7468. if (++i11 == ne1) {
  7469. i11 = 0;
  7470. if (++i12 == ne2) {
  7471. i12 = 0;
  7472. if (++i13 == ne3) {
  7473. i13 = 0;
  7474. }
  7475. }
  7476. }
  7477. }
  7478. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7479. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7480. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7481. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7482. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  7483. if (++i10 == ne0) {
  7484. i10 = 0;
  7485. if (++i11 == ne1) {
  7486. i11 = 0;
  7487. if (++i12 == ne2) {
  7488. i12 = 0;
  7489. if (++i13 == ne3) {
  7490. i13 = 0;
  7491. }
  7492. }
  7493. }
  7494. }
  7495. }
  7496. }
  7497. i10 += ne00 * (ne01 - ir1);
  7498. while (i10 >= ne0) {
  7499. i10 -= ne0;
  7500. if (++i11 == ne1) {
  7501. i11 = 0;
  7502. if (++i12 == ne2) {
  7503. i12 = 0;
  7504. if (++i13 == ne3) {
  7505. i13 = 0;
  7506. }
  7507. }
  7508. }
  7509. }
  7510. }
  7511. }
  7512. } else {
  7513. GGML_ABORT("fatal error"); // TODO: implement
  7514. }
  7515. }
  7516. static void ggml_compute_forward_dup_f32(
  7517. const struct ggml_compute_params * params,
  7518. struct ggml_tensor * dst) {
  7519. const struct ggml_tensor * src0 = dst->src[0];
  7520. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7521. GGML_TENSOR_UNARY_OP_LOCALS
  7522. const int ith = params->ith; // thread index
  7523. const int nth = params->nth; // number of threads
  7524. // parallelize by rows
  7525. const int nr = ne01;
  7526. // number of rows per thread
  7527. const int dr = (nr + nth - 1) / nth;
  7528. // row range for this thread
  7529. const int ir0 = dr * ith;
  7530. const int ir1 = MIN(ir0 + dr, nr);
  7531. if (src0->type == dst->type &&
  7532. ne00 == ne0 &&
  7533. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  7534. // copy by rows
  7535. const size_t rs = ne00*nb00;
  7536. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7537. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7538. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7539. memcpy(
  7540. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7541. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7542. rs);
  7543. }
  7544. }
  7545. }
  7546. return;
  7547. }
  7548. if (ggml_is_contiguous(dst)) {
  7549. // TODO: simplify
  7550. if (nb00 == sizeof(float)) {
  7551. if (dst->type == GGML_TYPE_F32) {
  7552. size_t id = 0;
  7553. const size_t rs = ne00 * nb00;
  7554. char * dst_ptr = (char *) dst->data;
  7555. for (int i03 = 0; i03 < ne03; i03++) {
  7556. for (int i02 = 0; i02 < ne02; i02++) {
  7557. id += rs * ir0;
  7558. for (int i01 = ir0; i01 < ir1; i01++) {
  7559. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7560. memcpy(dst_ptr + id, src0_ptr, rs);
  7561. id += rs;
  7562. }
  7563. id += rs * (ne01 - ir1);
  7564. }
  7565. }
  7566. } else if (type_traits[dst->type].from_float) {
  7567. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  7568. size_t id = 0;
  7569. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  7570. char * dst_ptr = (char *) dst->data;
  7571. for (int i03 = 0; i03 < ne03; i03++) {
  7572. for (int i02 = 0; i02 < ne02; i02++) {
  7573. id += rs * ir0;
  7574. for (int i01 = ir0; i01 < ir1; i01++) {
  7575. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7576. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  7577. id += rs;
  7578. }
  7579. id += rs * (ne01 - ir1);
  7580. }
  7581. }
  7582. } else {
  7583. GGML_ABORT("fatal error"); // TODO: implement
  7584. }
  7585. } else {
  7586. //printf("%s: this is not optimal - fix me\n", __func__);
  7587. if (dst->type == GGML_TYPE_F32) {
  7588. size_t id = 0;
  7589. float * dst_ptr = (float *) dst->data;
  7590. for (int i03 = 0; i03 < ne03; i03++) {
  7591. for (int i02 = 0; i02 < ne02; i02++) {
  7592. id += ne00 * ir0;
  7593. for (int i01 = ir0; i01 < ir1; i01++) {
  7594. for (int i00 = 0; i00 < ne00; i00++) {
  7595. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7596. dst_ptr[id] = *src0_ptr;
  7597. id++;
  7598. }
  7599. }
  7600. id += ne00 * (ne01 - ir1);
  7601. }
  7602. }
  7603. } else if (dst->type == GGML_TYPE_F16) {
  7604. size_t id = 0;
  7605. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7606. for (int i03 = 0; i03 < ne03; i03++) {
  7607. for (int i02 = 0; i02 < ne02; i02++) {
  7608. id += ne00 * ir0;
  7609. for (int i01 = ir0; i01 < ir1; i01++) {
  7610. for (int i00 = 0; i00 < ne00; i00++) {
  7611. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7612. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  7613. id++;
  7614. }
  7615. }
  7616. id += ne00 * (ne01 - ir1);
  7617. }
  7618. }
  7619. } else if (dst->type == GGML_TYPE_BF16) {
  7620. size_t id = 0;
  7621. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  7622. for (int i03 = 0; i03 < ne03; i03++) {
  7623. for (int i02 = 0; i02 < ne02; i02++) {
  7624. id += ne00 * ir0;
  7625. for (int i01 = ir0; i01 < ir1; i01++) {
  7626. for (int i00 = 0; i00 < ne00; i00++) {
  7627. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7628. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  7629. id++;
  7630. }
  7631. }
  7632. id += ne00 * (ne01 - ir1);
  7633. }
  7634. }
  7635. } else {
  7636. GGML_ABORT("fatal error"); // TODO: implement
  7637. }
  7638. }
  7639. return;
  7640. }
  7641. // dst counters
  7642. int64_t i10 = 0;
  7643. int64_t i11 = 0;
  7644. int64_t i12 = 0;
  7645. int64_t i13 = 0;
  7646. if (dst->type == GGML_TYPE_F32) {
  7647. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7648. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7649. i10 += ne00 * ir0;
  7650. while (i10 >= ne0) {
  7651. i10 -= ne0;
  7652. if (++i11 == ne1) {
  7653. i11 = 0;
  7654. if (++i12 == ne2) {
  7655. i12 = 0;
  7656. if (++i13 == ne3) {
  7657. i13 = 0;
  7658. }
  7659. }
  7660. }
  7661. }
  7662. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7663. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7664. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7665. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7666. memcpy(dst_ptr, src0_ptr, sizeof(float));
  7667. if (++i10 == ne0) {
  7668. i10 = 0;
  7669. if (++i11 == ne1) {
  7670. i11 = 0;
  7671. if (++i12 == ne2) {
  7672. i12 = 0;
  7673. if (++i13 == ne3) {
  7674. i13 = 0;
  7675. }
  7676. }
  7677. }
  7678. }
  7679. }
  7680. }
  7681. i10 += ne00 * (ne01 - ir1);
  7682. while (i10 >= ne0) {
  7683. i10 -= ne0;
  7684. if (++i11 == ne1) {
  7685. i11 = 0;
  7686. if (++i12 == ne2) {
  7687. i12 = 0;
  7688. if (++i13 == ne3) {
  7689. i13 = 0;
  7690. }
  7691. }
  7692. }
  7693. }
  7694. }
  7695. }
  7696. } else if (dst->type == GGML_TYPE_F16) {
  7697. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7698. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7699. i10 += ne00 * ir0;
  7700. while (i10 >= ne0) {
  7701. i10 -= ne0;
  7702. if (++i11 == ne1) {
  7703. i11 = 0;
  7704. if (++i12 == ne2) {
  7705. i12 = 0;
  7706. if (++i13 == ne3) {
  7707. i13 = 0;
  7708. }
  7709. }
  7710. }
  7711. }
  7712. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7713. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7714. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7715. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7716. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  7717. if (++i10 == ne0) {
  7718. i10 = 0;
  7719. if (++i11 == ne1) {
  7720. i11 = 0;
  7721. if (++i12 == ne2) {
  7722. i12 = 0;
  7723. if (++i13 == ne3) {
  7724. i13 = 0;
  7725. }
  7726. }
  7727. }
  7728. }
  7729. }
  7730. }
  7731. i10 += ne00 * (ne01 - ir1);
  7732. while (i10 >= ne0) {
  7733. i10 -= ne0;
  7734. if (++i11 == ne1) {
  7735. i11 = 0;
  7736. if (++i12 == ne2) {
  7737. i12 = 0;
  7738. if (++i13 == ne3) {
  7739. i13 = 0;
  7740. }
  7741. }
  7742. }
  7743. }
  7744. }
  7745. }
  7746. } else if (dst->type == GGML_TYPE_BF16) {
  7747. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7748. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7749. i10 += ne00 * ir0;
  7750. while (i10 >= ne0) {
  7751. i10 -= ne0;
  7752. if (++i11 == ne1) {
  7753. i11 = 0;
  7754. if (++i12 == ne2) {
  7755. i12 = 0;
  7756. if (++i13 == ne3) {
  7757. i13 = 0;
  7758. }
  7759. }
  7760. }
  7761. }
  7762. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7763. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7764. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7765. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7766. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  7767. if (++i10 == ne0) {
  7768. i10 = 0;
  7769. if (++i11 == ne1) {
  7770. i11 = 0;
  7771. if (++i12 == ne2) {
  7772. i12 = 0;
  7773. if (++i13 == ne3) {
  7774. i13 = 0;
  7775. }
  7776. }
  7777. }
  7778. }
  7779. }
  7780. }
  7781. i10 += ne00 * (ne01 - ir1);
  7782. while (i10 >= ne0) {
  7783. i10 -= ne0;
  7784. if (++i11 == ne1) {
  7785. i11 = 0;
  7786. if (++i12 == ne2) {
  7787. i12 = 0;
  7788. if (++i13 == ne3) {
  7789. i13 = 0;
  7790. }
  7791. }
  7792. }
  7793. }
  7794. }
  7795. }
  7796. } else {
  7797. GGML_ABORT("fatal error"); // TODO: implement
  7798. }
  7799. }
  7800. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  7801. static void ggml_compute_forward_dup_bytes(
  7802. const struct ggml_compute_params * params,
  7803. struct ggml_tensor * dst) {
  7804. const struct ggml_tensor * src0 = dst->src[0];
  7805. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7806. GGML_ASSERT(src0->type == dst->type);
  7807. GGML_TENSOR_UNARY_OP_LOCALS;
  7808. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  7809. ggml_compute_forward_dup_same_cont(params, dst);
  7810. return;
  7811. }
  7812. const size_t type_size = ggml_type_size(src0->type);
  7813. const int ith = params->ith; // thread index
  7814. const int nth = params->nth; // number of threads
  7815. // parallelize by rows
  7816. const int nr = ne01;
  7817. // number of rows per thread
  7818. const int dr = (nr + nth - 1) / nth;
  7819. // row range for this thread
  7820. const int ir0 = dr * ith;
  7821. const int ir1 = MIN(ir0 + dr, nr);
  7822. if (src0->type == dst->type &&
  7823. ne00 == ne0 &&
  7824. nb00 == type_size && nb0 == type_size) {
  7825. // copy by rows
  7826. const size_t rs = ne00 * type_size;
  7827. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7828. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7829. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7830. memcpy(
  7831. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7832. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7833. rs);
  7834. }
  7835. }
  7836. }
  7837. return;
  7838. }
  7839. if (ggml_is_contiguous(dst)) {
  7840. size_t id = 0;
  7841. char * dst_ptr = (char *) dst->data;
  7842. const size_t rs = ne00 * type_size;
  7843. if (nb00 == type_size) {
  7844. // src0 is contigous on first dimension, copy by rows
  7845. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7846. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7847. id += rs * ir0;
  7848. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7849. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7850. memcpy(dst_ptr + id, src0_ptr, rs);
  7851. id += rs;
  7852. }
  7853. id += rs * (ne01 - ir1);
  7854. }
  7855. }
  7856. } else {
  7857. //printf("%s: this is not optimal - fix me\n", __func__);
  7858. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7859. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7860. id += rs * ir0;
  7861. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7862. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7863. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  7864. memcpy(dst_ptr + id, src0_ptr, type_size);
  7865. id += type_size;
  7866. }
  7867. }
  7868. id += rs * (ne01 - ir1);
  7869. }
  7870. }
  7871. }
  7872. return;
  7873. }
  7874. // dst counters
  7875. int64_t i10 = 0;
  7876. int64_t i11 = 0;
  7877. int64_t i12 = 0;
  7878. int64_t i13 = 0;
  7879. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7880. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7881. i10 += ne00 * ir0;
  7882. while (i10 >= ne0) {
  7883. i10 -= ne0;
  7884. if (++i11 == ne1) {
  7885. i11 = 0;
  7886. if (++i12 == ne2) {
  7887. i12 = 0;
  7888. if (++i13 == ne3) {
  7889. i13 = 0;
  7890. }
  7891. }
  7892. }
  7893. }
  7894. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7895. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7896. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7897. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7898. memcpy(dst_ptr, src0_ptr, type_size);
  7899. if (++i10 == ne0) {
  7900. i10 = 0;
  7901. if (++i11 == ne1) {
  7902. i11 = 0;
  7903. if (++i12 == ne2) {
  7904. i12 = 0;
  7905. if (++i13 == ne3) {
  7906. i13 = 0;
  7907. }
  7908. }
  7909. }
  7910. }
  7911. }
  7912. }
  7913. i10 += ne00 * (ne01 - ir1);
  7914. while (i10 >= ne0) {
  7915. i10 -= ne0;
  7916. if (++i11 == ne1) {
  7917. i11 = 0;
  7918. if (++i12 == ne2) {
  7919. i12 = 0;
  7920. if (++i13 == ne3) {
  7921. i13 = 0;
  7922. }
  7923. }
  7924. }
  7925. }
  7926. }
  7927. }
  7928. }
  7929. static void ggml_compute_forward_dup(
  7930. const struct ggml_compute_params * params,
  7931. struct ggml_tensor * dst) {
  7932. const struct ggml_tensor * src0 = dst->src[0];
  7933. if (src0->type == dst->type) {
  7934. ggml_compute_forward_dup_bytes(params, dst);
  7935. return;
  7936. }
  7937. switch (src0->type) {
  7938. case GGML_TYPE_F16:
  7939. {
  7940. ggml_compute_forward_dup_f16(params, dst);
  7941. } break;
  7942. case GGML_TYPE_BF16:
  7943. {
  7944. ggml_compute_forward_dup_bf16(params, dst);
  7945. } break;
  7946. case GGML_TYPE_F32:
  7947. {
  7948. ggml_compute_forward_dup_f32(params, dst);
  7949. } break;
  7950. default:
  7951. {
  7952. GGML_ABORT("fatal error");
  7953. }
  7954. }
  7955. }
  7956. // ggml_compute_forward_add
  7957. static void ggml_compute_forward_add_f32(
  7958. const struct ggml_compute_params * params,
  7959. struct ggml_tensor * dst) {
  7960. const struct ggml_tensor * src0 = dst->src[0];
  7961. const struct ggml_tensor * src1 = dst->src[1];
  7962. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7963. const int ith = params->ith;
  7964. const int nth = params->nth;
  7965. const int nr = ggml_nrows(src0);
  7966. GGML_TENSOR_BINARY_OP_LOCALS
  7967. GGML_ASSERT( nb0 == sizeof(float));
  7968. GGML_ASSERT(nb00 == sizeof(float));
  7969. // rows per thread
  7970. const int dr = (nr + nth - 1)/nth;
  7971. // row range for this thread
  7972. const int ir0 = dr*ith;
  7973. const int ir1 = MIN(ir0 + dr, nr);
  7974. if (nb10 == sizeof(float)) {
  7975. for (int ir = ir0; ir < ir1; ++ir) {
  7976. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7977. const int64_t i03 = ir/(ne02*ne01);
  7978. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7979. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7980. const int64_t i13 = i03 % ne13;
  7981. const int64_t i12 = i02 % ne12;
  7982. const int64_t i11 = i01 % ne11;
  7983. const int64_t nr0 = ne00 / ne10;
  7984. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7985. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7986. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7987. for (int64_t r = 0; r < nr0; ++r) {
  7988. #ifdef GGML_USE_ACCELERATE
  7989. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7990. #else
  7991. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7992. #endif
  7993. }
  7994. }
  7995. } else {
  7996. // src1 is not contiguous
  7997. for (int ir = ir0; ir < ir1; ++ir) {
  7998. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7999. const int64_t i03 = ir/(ne02*ne01);
  8000. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8001. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8002. const int64_t i13 = i03 % ne13;
  8003. const int64_t i12 = i02 % ne12;
  8004. const int64_t i11 = i01 % ne11;
  8005. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8006. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8007. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  8008. const int64_t i10 = i0 % ne10;
  8009. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8010. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  8011. }
  8012. }
  8013. }
  8014. }
  8015. static void ggml_compute_forward_add_f16_f32(
  8016. const struct ggml_compute_params * params,
  8017. struct ggml_tensor * dst) {
  8018. const struct ggml_tensor * src0 = dst->src[0];
  8019. const struct ggml_tensor * src1 = dst->src[1];
  8020. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8021. const int ith = params->ith;
  8022. const int nth = params->nth;
  8023. const int nr = ggml_nrows(src0);
  8024. GGML_TENSOR_BINARY_OP_LOCALS
  8025. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8026. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8027. if (dst->type == GGML_TYPE_F32) {
  8028. GGML_ASSERT( nb0 == sizeof(float));
  8029. }
  8030. else {
  8031. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  8032. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  8033. }
  8034. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8035. // rows per thread
  8036. const int dr = (nr + nth - 1)/nth;
  8037. // row range for this thread
  8038. const int ir0 = dr*ith;
  8039. const int ir1 = MIN(ir0 + dr, nr);
  8040. if (nb10 == sizeof(float)) {
  8041. if (dst->type == GGML_TYPE_F16) {
  8042. for (int ir = ir0; ir < ir1; ++ir) {
  8043. // src0, src1 and dst are same shape => same indices
  8044. const int i3 = ir/(ne2*ne1);
  8045. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8046. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8047. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8048. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8049. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  8050. for (int i = 0; i < ne0; i++) {
  8051. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  8052. }
  8053. }
  8054. } else {
  8055. for (int ir = ir0; ir < ir1; ++ir) {
  8056. // src0, src1 and dst are same shape => same indices
  8057. const int i3 = ir/(ne2*ne1);
  8058. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8059. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8060. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8061. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8062. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  8063. for (int i = 0; i < ne0; i++) {
  8064. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  8065. }
  8066. }
  8067. }
  8068. }
  8069. else {
  8070. // src1 is not contiguous
  8071. GGML_ABORT("fatal error");
  8072. }
  8073. }
  8074. static void ggml_compute_forward_add_bf16_f32(
  8075. const struct ggml_compute_params * params,
  8076. struct ggml_tensor * dst) {
  8077. const struct ggml_tensor * src0 = dst->src[0];
  8078. const struct ggml_tensor * src1 = dst->src[1];
  8079. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8080. const int ith = params->ith;
  8081. const int nth = params->nth;
  8082. const int nr = ggml_nrows(src0);
  8083. GGML_TENSOR_BINARY_OP_LOCALS
  8084. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8085. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8086. if (dst->type == GGML_TYPE_F32) {
  8087. GGML_ASSERT( nb0 == sizeof(float));
  8088. }
  8089. else {
  8090. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8091. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8092. }
  8093. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8094. // rows per thread
  8095. const int dr = (nr + nth - 1)/nth;
  8096. // row range for this thread
  8097. const int ir0 = dr*ith;
  8098. const int ir1 = MIN(ir0 + dr, nr);
  8099. if (nb10 == sizeof(float)) {
  8100. if (dst->type == GGML_TYPE_BF16) {
  8101. for (int ir = ir0; ir < ir1; ++ir) {
  8102. // src0, src1 and dst are same shape => same indices
  8103. const int i3 = ir/(ne2*ne1);
  8104. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8105. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8106. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8107. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8108. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  8109. for (int i = 0; i < ne0; i++) {
  8110. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  8111. }
  8112. }
  8113. } else {
  8114. for (int ir = ir0; ir < ir1; ++ir) {
  8115. // src0, src1 and dst are same shape => same indices
  8116. const int i3 = ir/(ne2*ne1);
  8117. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8118. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8119. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8120. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8121. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  8122. for (int i = 0; i < ne0; i++) {
  8123. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  8124. }
  8125. }
  8126. }
  8127. }
  8128. else {
  8129. // src1 is not contiguous
  8130. GGML_ABORT("fatal error");
  8131. }
  8132. }
  8133. static void ggml_compute_forward_add_f16_f16(
  8134. const struct ggml_compute_params * params,
  8135. struct ggml_tensor * dst) {
  8136. const struct ggml_tensor * src0 = dst->src[0];
  8137. const struct ggml_tensor * src1 = dst->src[1];
  8138. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8139. const int ith = params->ith;
  8140. const int nth = params->nth;
  8141. const int nr = ggml_nrows(src0);
  8142. GGML_TENSOR_BINARY_OP_LOCALS
  8143. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8144. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  8145. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  8146. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  8147. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8148. // rows per thread
  8149. const int dr = (nr + nth - 1)/nth;
  8150. // row range for this thread
  8151. const int ir0 = dr*ith;
  8152. const int ir1 = MIN(ir0 + dr, nr);
  8153. if (nb10 == sizeof(ggml_fp16_t)) {
  8154. for (int ir = ir0; ir < ir1; ++ir) {
  8155. // src0, src1 and dst are same shape => same indices
  8156. const int i3 = ir/(ne2*ne1);
  8157. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8158. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8159. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8160. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8161. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  8162. for (int i = 0; i < ne0; i++) {
  8163. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  8164. }
  8165. }
  8166. }
  8167. else {
  8168. // src1 is not contiguous
  8169. GGML_ABORT("fatal error");
  8170. }
  8171. }
  8172. static void ggml_compute_forward_add_bf16_bf16(
  8173. const struct ggml_compute_params * params,
  8174. struct ggml_tensor * dst) {
  8175. const struct ggml_tensor * src0 = dst->src[0];
  8176. const struct ggml_tensor * src1 = dst->src[1];
  8177. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8178. const int ith = params->ith;
  8179. const int nth = params->nth;
  8180. const int nr = ggml_nrows(src0);
  8181. GGML_TENSOR_BINARY_OP_LOCALS
  8182. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8183. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  8184. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8185. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8186. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8187. // rows per thread
  8188. const int dr = (nr + nth - 1)/nth;
  8189. // row range for this thread
  8190. const int ir0 = dr*ith;
  8191. const int ir1 = MIN(ir0 + dr, nr);
  8192. if (nb10 == sizeof(ggml_bf16_t)) {
  8193. for (int ir = ir0; ir < ir1; ++ir) {
  8194. // src0, src1 and dst are same shape => same indices
  8195. const int i3 = ir/(ne2*ne1);
  8196. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8197. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8198. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8199. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8200. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  8201. for (int i = 0; i < ne0; i++) {
  8202. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  8203. }
  8204. }
  8205. }
  8206. else {
  8207. // src1 is not contiguous
  8208. GGML_ABORT("fatal error");
  8209. }
  8210. }
  8211. static void ggml_compute_forward_add_q_f32(
  8212. const struct ggml_compute_params * params,
  8213. struct ggml_tensor * dst) {
  8214. const struct ggml_tensor * src0 = dst->src[0];
  8215. const struct ggml_tensor * src1 = dst->src[1];
  8216. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8217. const int nr = ggml_nrows(src0);
  8218. GGML_TENSOR_BINARY_OP_LOCALS
  8219. const int ith = params->ith;
  8220. const int nth = params->nth;
  8221. const enum ggml_type type = src0->type;
  8222. const enum ggml_type dtype = dst->type;
  8223. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8224. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  8225. // we don't support permuted src0 or src1
  8226. GGML_ASSERT(nb00 == ggml_type_size(type));
  8227. GGML_ASSERT(nb10 == sizeof(float));
  8228. // dst cannot be transposed or permuted
  8229. GGML_ASSERT(nb0 <= nb1);
  8230. GGML_ASSERT(nb1 <= nb2);
  8231. GGML_ASSERT(nb2 <= nb3);
  8232. GGML_ASSERT(ggml_is_quantized(src0->type));
  8233. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8234. // rows per thread
  8235. const int dr = (nr + nth - 1)/nth;
  8236. // row range for this thread
  8237. const int ir0 = dr*ith;
  8238. const int ir1 = MIN(ir0 + dr, nr);
  8239. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  8240. for (int ir = ir0; ir < ir1; ++ir) {
  8241. // src0 indices
  8242. const int i03 = ir/(ne02*ne01);
  8243. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8244. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8245. // src1 and dst are same shape as src0 => same indices
  8246. const int i13 = i03;
  8247. const int i12 = i02;
  8248. const int i11 = i01;
  8249. const int i3 = i03;
  8250. const int i2 = i02;
  8251. const int i1 = i01;
  8252. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8253. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  8254. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8255. assert(ne00 % 32 == 0);
  8256. // unquantize row from src0 to temp buffer
  8257. dequantize_row_q(src0_row, wdata, ne00);
  8258. // add src1
  8259. ggml_vec_acc_f32(ne00, wdata, src1_row);
  8260. // quantize row to dst
  8261. if (quantize_row_q != NULL) {
  8262. quantize_row_q(wdata, dst_row, ne00);
  8263. } else {
  8264. memcpy(dst_row, wdata, ne0*nb0);
  8265. }
  8266. }
  8267. }
  8268. static void ggml_compute_forward_add(
  8269. const struct ggml_compute_params * params,
  8270. struct ggml_tensor * dst) {
  8271. const struct ggml_tensor * src0 = dst->src[0];
  8272. const struct ggml_tensor * src1 = dst->src[1];
  8273. switch (src0->type) {
  8274. case GGML_TYPE_F32:
  8275. {
  8276. if (src1->type == GGML_TYPE_F32) {
  8277. ggml_compute_forward_add_f32(params, dst);
  8278. }
  8279. else {
  8280. GGML_ABORT("fatal error");
  8281. }
  8282. } break;
  8283. case GGML_TYPE_F16:
  8284. {
  8285. if (src1->type == GGML_TYPE_F16) {
  8286. ggml_compute_forward_add_f16_f16(params, dst);
  8287. }
  8288. else if (src1->type == GGML_TYPE_F32) {
  8289. ggml_compute_forward_add_f16_f32(params, dst);
  8290. }
  8291. else {
  8292. GGML_ABORT("fatal error");
  8293. }
  8294. } break;
  8295. case GGML_TYPE_BF16:
  8296. {
  8297. if (src1->type == GGML_TYPE_BF16) {
  8298. ggml_compute_forward_add_bf16_bf16(params, dst);
  8299. }
  8300. else if (src1->type == GGML_TYPE_F32) {
  8301. ggml_compute_forward_add_bf16_f32(params, dst);
  8302. }
  8303. else {
  8304. GGML_ABORT("fatal error");
  8305. }
  8306. } break;
  8307. case GGML_TYPE_Q4_0:
  8308. case GGML_TYPE_Q4_1:
  8309. case GGML_TYPE_Q5_0:
  8310. case GGML_TYPE_Q5_1:
  8311. case GGML_TYPE_Q8_0:
  8312. case GGML_TYPE_Q2_K:
  8313. case GGML_TYPE_Q3_K:
  8314. case GGML_TYPE_Q4_K:
  8315. case GGML_TYPE_Q5_K:
  8316. case GGML_TYPE_Q6_K:
  8317. case GGML_TYPE_TQ1_0:
  8318. case GGML_TYPE_TQ2_0:
  8319. case GGML_TYPE_IQ2_XXS:
  8320. case GGML_TYPE_IQ2_XS:
  8321. case GGML_TYPE_IQ3_XXS:
  8322. case GGML_TYPE_IQ1_S:
  8323. case GGML_TYPE_IQ1_M:
  8324. case GGML_TYPE_IQ4_NL:
  8325. case GGML_TYPE_IQ4_XS:
  8326. case GGML_TYPE_IQ3_S:
  8327. case GGML_TYPE_IQ2_S:
  8328. case GGML_TYPE_Q4_0_4_4:
  8329. case GGML_TYPE_Q4_0_4_8:
  8330. case GGML_TYPE_Q4_0_8_8:
  8331. {
  8332. ggml_compute_forward_add_q_f32(params, dst);
  8333. } break;
  8334. default:
  8335. {
  8336. GGML_ABORT("fatal error");
  8337. }
  8338. }
  8339. }
  8340. // ggml_compute_forward_add1
  8341. static void ggml_compute_forward_add1_f32(
  8342. const struct ggml_compute_params * params,
  8343. struct ggml_tensor * dst) {
  8344. const struct ggml_tensor * src0 = dst->src[0];
  8345. const struct ggml_tensor * src1 = dst->src[1];
  8346. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8347. GGML_ASSERT(ggml_is_scalar(src1));
  8348. const int ith = params->ith;
  8349. const int nth = params->nth;
  8350. const int nr = ggml_nrows(src0);
  8351. GGML_TENSOR_UNARY_OP_LOCALS
  8352. GGML_ASSERT( nb0 == sizeof(float));
  8353. GGML_ASSERT(nb00 == sizeof(float));
  8354. // rows per thread
  8355. const int dr = (nr + nth - 1)/nth;
  8356. // row range for this thread
  8357. const int ir0 = dr*ith;
  8358. const int ir1 = MIN(ir0 + dr, nr);
  8359. for (int ir = ir0; ir < ir1; ++ir) {
  8360. // src0 and dst are same shape => same indices
  8361. const int i3 = ir/(ne2*ne1);
  8362. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8363. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8364. #ifdef GGML_USE_ACCELERATE
  8365. UNUSED(ggml_vec_add1_f32);
  8366. vDSP_vadd(
  8367. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8368. (float *) ((char *) src1->data), 0,
  8369. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8370. ne0);
  8371. #else
  8372. ggml_vec_add1_f32(ne0,
  8373. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8374. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8375. *(float *) src1->data);
  8376. #endif
  8377. }
  8378. }
  8379. static void ggml_compute_forward_add1_f16_f32(
  8380. const struct ggml_compute_params * params,
  8381. struct ggml_tensor * dst) {
  8382. const struct ggml_tensor * src0 = dst->src[0];
  8383. const struct ggml_tensor * src1 = dst->src[1];
  8384. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8385. GGML_ASSERT(ggml_is_scalar(src1));
  8386. // scalar to add
  8387. const float v = *(float *) src1->data;
  8388. const int ith = params->ith;
  8389. const int nth = params->nth;
  8390. const int nr = ggml_nrows(src0);
  8391. GGML_TENSOR_UNARY_OP_LOCALS
  8392. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8393. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8394. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  8395. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  8396. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8397. // rows per thread
  8398. const int dr = (nr + nth - 1)/nth;
  8399. // row range for this thread
  8400. const int ir0 = dr*ith;
  8401. const int ir1 = MIN(ir0 + dr, nr);
  8402. for (int ir = ir0; ir < ir1; ++ir) {
  8403. // src0 and dst are same shape => same indices
  8404. const int i3 = ir/(ne2*ne1);
  8405. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8406. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8407. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8408. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8409. for (int i = 0; i < ne0; i++) {
  8410. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  8411. }
  8412. }
  8413. }
  8414. static void ggml_compute_forward_add1_f16_f16(
  8415. const struct ggml_compute_params * params,
  8416. struct ggml_tensor * dst) {
  8417. const struct ggml_tensor * src0 = dst->src[0];
  8418. const struct ggml_tensor * src1 = dst->src[1];
  8419. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8420. GGML_ASSERT(ggml_is_scalar(src1));
  8421. // scalar to add
  8422. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  8423. const int ith = params->ith;
  8424. const int nth = params->nth;
  8425. const int nr = ggml_nrows(src0);
  8426. GGML_TENSOR_UNARY_OP_LOCALS
  8427. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8428. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  8429. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  8430. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  8431. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8432. // rows per thread
  8433. const int dr = (nr + nth - 1)/nth;
  8434. // row range for this thread
  8435. const int ir0 = dr*ith;
  8436. const int ir1 = MIN(ir0 + dr, nr);
  8437. for (int ir = ir0; ir < ir1; ++ir) {
  8438. // src0 and dst are same shape => same indices
  8439. const int i3 = ir/(ne2*ne1);
  8440. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8441. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8442. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8443. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8444. for (int i = 0; i < ne0; i++) {
  8445. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  8446. }
  8447. }
  8448. }
  8449. static void ggml_compute_forward_add1_q_f32(
  8450. const struct ggml_compute_params * params,
  8451. struct ggml_tensor * dst) {
  8452. const struct ggml_tensor * src0 = dst->src[0];
  8453. const struct ggml_tensor * src1 = dst->src[1];
  8454. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8455. GGML_ASSERT(ggml_is_scalar(src1));
  8456. // scalar to add
  8457. const float v = *(float *) src1->data;
  8458. const int ith = params->ith;
  8459. const int nth = params->nth;
  8460. const int nr = ggml_nrows(src0);
  8461. GGML_TENSOR_UNARY_OP_LOCALS
  8462. const enum ggml_type type = src0->type;
  8463. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8464. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  8465. // we don't support permuted src0
  8466. GGML_ASSERT(nb00 == ggml_type_size(type));
  8467. // dst cannot be transposed or permuted
  8468. GGML_ASSERT(nb0 <= nb1);
  8469. GGML_ASSERT(nb1 <= nb2);
  8470. GGML_ASSERT(nb2 <= nb3);
  8471. GGML_ASSERT(ggml_is_quantized(src0->type));
  8472. GGML_ASSERT(dst->type == src0->type);
  8473. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8474. // rows per thread
  8475. const int dr = (nr + nth - 1)/nth;
  8476. // row range for this thread
  8477. const int ir0 = dr*ith;
  8478. const int ir1 = MIN(ir0 + dr, nr);
  8479. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8480. for (int ir = ir0; ir < ir1; ++ir) {
  8481. // src0 and dst are same shape => same indices
  8482. const int i3 = ir/(ne2*ne1);
  8483. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8484. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8485. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  8486. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  8487. assert(ne0 % 32 == 0);
  8488. // unquantize row from src0 to temp buffer
  8489. dequantize_row_q(src0_row, wdata, ne0);
  8490. // add src1
  8491. ggml_vec_acc1_f32(ne0, wdata, v);
  8492. // quantize row to dst
  8493. quantize_row_q(wdata, dst_row, ne0);
  8494. }
  8495. }
  8496. static void ggml_compute_forward_add1_bf16_f32(
  8497. const struct ggml_compute_params * params,
  8498. struct ggml_tensor * dst) {
  8499. const struct ggml_tensor * src0 = dst->src[0];
  8500. const struct ggml_tensor * src1 = dst->src[1];
  8501. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8502. GGML_ASSERT(ggml_is_scalar(src1));
  8503. // scalar to add
  8504. const float v = *(float *) src1->data;
  8505. const int ith = params->ith;
  8506. const int nth = params->nth;
  8507. const int nr = ggml_nrows(src0);
  8508. GGML_TENSOR_UNARY_OP_LOCALS
  8509. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8510. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8511. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8512. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8513. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8514. // rows per thread
  8515. const int dr = (nr + nth - 1)/nth;
  8516. // row range for this thread
  8517. const int ir0 = dr*ith;
  8518. const int ir1 = MIN(ir0 + dr, nr);
  8519. for (int ir = ir0; ir < ir1; ++ir) {
  8520. // src0 and dst are same shape => same indices
  8521. const int i3 = ir/(ne2*ne1);
  8522. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8523. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8524. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8525. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8526. for (int i = 0; i < ne0; i++) {
  8527. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8528. }
  8529. }
  8530. }
  8531. static void ggml_compute_forward_add1_bf16_bf16(
  8532. const struct ggml_compute_params * params,
  8533. struct ggml_tensor * dst) {
  8534. const struct ggml_tensor * src0 = dst->src[0];
  8535. const struct ggml_tensor * src1 = dst->src[1];
  8536. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8537. GGML_ASSERT(ggml_is_scalar(src1));
  8538. // scalar to add
  8539. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  8540. const int ith = params->ith;
  8541. const int nth = params->nth;
  8542. const int nr = ggml_nrows(src0);
  8543. GGML_TENSOR_UNARY_OP_LOCALS
  8544. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8545. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  8546. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8547. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8548. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8549. // rows per thread
  8550. const int dr = (nr + nth - 1)/nth;
  8551. // row range for this thread
  8552. const int ir0 = dr*ith;
  8553. const int ir1 = MIN(ir0 + dr, nr);
  8554. for (int ir = ir0; ir < ir1; ++ir) {
  8555. // src0 and dst are same shape => same indices
  8556. const int i3 = ir/(ne2*ne1);
  8557. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8558. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8559. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8560. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8561. for (int i = 0; i < ne0; i++) {
  8562. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8563. }
  8564. }
  8565. }
  8566. static void ggml_compute_forward_add1(
  8567. const struct ggml_compute_params * params,
  8568. struct ggml_tensor * dst) {
  8569. const struct ggml_tensor * src0 = dst->src[0];
  8570. const struct ggml_tensor * src1 = dst->src[1];
  8571. switch (src0->type) {
  8572. case GGML_TYPE_F32:
  8573. {
  8574. ggml_compute_forward_add1_f32(params, dst);
  8575. } break;
  8576. case GGML_TYPE_F16:
  8577. {
  8578. if (src1->type == GGML_TYPE_F16) {
  8579. ggml_compute_forward_add1_f16_f16(params, dst);
  8580. }
  8581. else if (src1->type == GGML_TYPE_F32) {
  8582. ggml_compute_forward_add1_f16_f32(params, dst);
  8583. }
  8584. else {
  8585. GGML_ABORT("fatal error");
  8586. }
  8587. } break;
  8588. case GGML_TYPE_BF16:
  8589. {
  8590. if (src1->type == GGML_TYPE_BF16) {
  8591. ggml_compute_forward_add1_bf16_bf16(params, dst);
  8592. }
  8593. else if (src1->type == GGML_TYPE_F32) {
  8594. ggml_compute_forward_add1_bf16_f32(params, dst);
  8595. }
  8596. else {
  8597. GGML_ABORT("fatal error");
  8598. }
  8599. } break;
  8600. case GGML_TYPE_Q4_0:
  8601. case GGML_TYPE_Q4_1:
  8602. case GGML_TYPE_Q5_0:
  8603. case GGML_TYPE_Q5_1:
  8604. case GGML_TYPE_Q8_0:
  8605. case GGML_TYPE_Q8_1:
  8606. case GGML_TYPE_Q2_K:
  8607. case GGML_TYPE_Q3_K:
  8608. case GGML_TYPE_Q4_K:
  8609. case GGML_TYPE_Q5_K:
  8610. case GGML_TYPE_Q6_K:
  8611. case GGML_TYPE_TQ1_0:
  8612. case GGML_TYPE_TQ2_0:
  8613. case GGML_TYPE_IQ2_XXS:
  8614. case GGML_TYPE_IQ2_XS:
  8615. case GGML_TYPE_IQ3_XXS:
  8616. case GGML_TYPE_IQ1_S:
  8617. case GGML_TYPE_IQ1_M:
  8618. case GGML_TYPE_IQ4_NL:
  8619. case GGML_TYPE_IQ4_XS:
  8620. case GGML_TYPE_IQ3_S:
  8621. case GGML_TYPE_IQ2_S:
  8622. case GGML_TYPE_Q4_0_4_4:
  8623. case GGML_TYPE_Q4_0_4_8:
  8624. case GGML_TYPE_Q4_0_8_8:
  8625. {
  8626. ggml_compute_forward_add1_q_f32(params, dst);
  8627. } break;
  8628. default:
  8629. {
  8630. GGML_ABORT("fatal error");
  8631. }
  8632. }
  8633. }
  8634. // ggml_compute_forward_acc
  8635. static void ggml_compute_forward_acc_f32(
  8636. const struct ggml_compute_params * params,
  8637. struct ggml_tensor * dst) {
  8638. const struct ggml_tensor * src0 = dst->src[0];
  8639. const struct ggml_tensor * src1 = dst->src[1];
  8640. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8641. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8642. // view src0 and dst with these strides and data offset inbytes during acc
  8643. // nb0 is implicitly element_size because src0 and dst are contiguous
  8644. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8645. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8646. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8647. size_t offset = ((int32_t *) dst->op_params)[3];
  8648. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8649. if (!inplace) {
  8650. if (params->ith == 0) {
  8651. // memcpy needs to be synchronized across threads to avoid race conditions.
  8652. // => do it in INIT phase
  8653. memcpy(
  8654. ((char *) dst->data),
  8655. ((char *) src0->data),
  8656. ggml_nbytes(dst));
  8657. }
  8658. ggml_barrier(params->threadpool);
  8659. }
  8660. const int ith = params->ith;
  8661. const int nth = params->nth;
  8662. const int nr = ggml_nrows(src1);
  8663. const int nc = src1->ne[0];
  8664. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8665. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8666. // src0 and dst as viewed during acc
  8667. const size_t nb0 = ggml_element_size(src0);
  8668. const size_t nb00 = nb0;
  8669. const size_t nb01 = nb1;
  8670. const size_t nb02 = nb2;
  8671. const size_t nb03 = nb3;
  8672. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  8673. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  8674. GGML_ASSERT(nb10 == sizeof(float));
  8675. // rows per thread
  8676. const int dr = (nr + nth - 1)/nth;
  8677. // row range for this thread
  8678. const int ir0 = dr*ith;
  8679. const int ir1 = MIN(ir0 + dr, nr);
  8680. for (int ir = ir0; ir < ir1; ++ir) {
  8681. // src0 and dst are viewed with shape of src1 and offset
  8682. // => same indices
  8683. const int i3 = ir/(ne12*ne11);
  8684. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8685. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8686. #ifdef GGML_USE_ACCELERATE
  8687. vDSP_vadd(
  8688. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  8689. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8690. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  8691. #else
  8692. ggml_vec_add_f32(nc,
  8693. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8694. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  8695. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8696. #endif
  8697. }
  8698. }
  8699. static void ggml_compute_forward_acc(
  8700. const struct ggml_compute_params * params,
  8701. struct ggml_tensor * dst) {
  8702. const struct ggml_tensor * src0 = dst->src[0];
  8703. switch (src0->type) {
  8704. case GGML_TYPE_F32:
  8705. {
  8706. ggml_compute_forward_acc_f32(params, dst);
  8707. } break;
  8708. case GGML_TYPE_F16:
  8709. case GGML_TYPE_BF16:
  8710. case GGML_TYPE_Q4_0:
  8711. case GGML_TYPE_Q4_1:
  8712. case GGML_TYPE_Q5_0:
  8713. case GGML_TYPE_Q5_1:
  8714. case GGML_TYPE_Q8_0:
  8715. case GGML_TYPE_Q8_1:
  8716. case GGML_TYPE_Q2_K:
  8717. case GGML_TYPE_Q3_K:
  8718. case GGML_TYPE_Q4_K:
  8719. case GGML_TYPE_Q5_K:
  8720. case GGML_TYPE_Q6_K:
  8721. case GGML_TYPE_TQ1_0:
  8722. case GGML_TYPE_TQ2_0:
  8723. case GGML_TYPE_IQ2_XXS:
  8724. case GGML_TYPE_IQ2_XS:
  8725. case GGML_TYPE_IQ3_XXS:
  8726. case GGML_TYPE_IQ1_S:
  8727. case GGML_TYPE_IQ1_M:
  8728. case GGML_TYPE_IQ4_NL:
  8729. case GGML_TYPE_IQ4_XS:
  8730. case GGML_TYPE_IQ3_S:
  8731. case GGML_TYPE_IQ2_S:
  8732. case GGML_TYPE_Q4_0_4_4:
  8733. case GGML_TYPE_Q4_0_4_8:
  8734. case GGML_TYPE_Q4_0_8_8:
  8735. default:
  8736. {
  8737. GGML_ABORT("fatal error");
  8738. }
  8739. }
  8740. }
  8741. // ggml_compute_forward_sub
  8742. static void ggml_compute_forward_sub_f32(
  8743. const struct ggml_compute_params * params,
  8744. struct ggml_tensor * dst) {
  8745. const struct ggml_tensor * src0 = dst->src[0];
  8746. const struct ggml_tensor * src1 = dst->src[1];
  8747. assert(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8748. const int ith = params->ith;
  8749. const int nth = params->nth;
  8750. const int nr = ggml_nrows(src0);
  8751. GGML_TENSOR_BINARY_OP_LOCALS
  8752. GGML_ASSERT( nb0 == sizeof(float));
  8753. GGML_ASSERT(nb00 == sizeof(float));
  8754. // rows per thread
  8755. const int dr = (nr + nth - 1)/nth;
  8756. // row range for this thread
  8757. const int ir0 = dr*ith;
  8758. const int ir1 = MIN(ir0 + dr, nr);
  8759. if (nb10 == sizeof(float)) {
  8760. for (int ir = ir0; ir < ir1; ++ir) {
  8761. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8762. const int64_t i03 = ir/(ne02*ne01);
  8763. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8764. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8765. const int64_t i13 = i03 % ne13;
  8766. const int64_t i12 = i02 % ne12;
  8767. const int64_t i11 = i01 % ne11;
  8768. const int64_t nr0 = ne00 / ne10;
  8769. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8770. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8771. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8772. for (int64_t r = 0; r < nr0; ++r) {
  8773. #ifdef GGML_USE_ACCELERATE
  8774. vDSP_vsub(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8775. #else
  8776. ggml_vec_sub_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8777. #endif
  8778. }
  8779. }
  8780. } else {
  8781. // src1 is not contiguous
  8782. for (int ir = ir0; ir < ir1; ++ir) {
  8783. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8784. const int64_t i03 = ir/(ne02*ne01);
  8785. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8786. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8787. const int64_t i13 = i03 % ne13;
  8788. const int64_t i12 = i02 % ne12;
  8789. const int64_t i11 = i01 % ne11;
  8790. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8791. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8792. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  8793. const int64_t i10 = i0 % ne10;
  8794. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8795. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  8796. }
  8797. }
  8798. }
  8799. }
  8800. static void ggml_compute_forward_sub(
  8801. const struct ggml_compute_params * params,
  8802. struct ggml_tensor * dst) {
  8803. const struct ggml_tensor * src0 = dst->src[0];
  8804. switch (src0->type) {
  8805. case GGML_TYPE_F32:
  8806. {
  8807. ggml_compute_forward_sub_f32(params, dst);
  8808. } break;
  8809. default:
  8810. {
  8811. GGML_ABORT("fatal error");
  8812. }
  8813. }
  8814. }
  8815. // ggml_compute_forward_mul
  8816. static void ggml_compute_forward_mul_f32(
  8817. const struct ggml_compute_params * params,
  8818. struct ggml_tensor * dst) {
  8819. const struct ggml_tensor * src0 = dst->src[0];
  8820. const struct ggml_tensor * src1 = dst->src[1];
  8821. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8822. const int ith = params->ith;
  8823. const int nth = params->nth;
  8824. const int64_t nr = ggml_nrows(src0);
  8825. GGML_TENSOR_BINARY_OP_LOCALS
  8826. GGML_ASSERT( nb0 == sizeof(float));
  8827. GGML_ASSERT(nb00 == sizeof(float));
  8828. if (nb10 == sizeof(float)) {
  8829. for (int64_t ir = ith; ir < nr; ir += nth) {
  8830. // src0 and dst are same shape => same indices
  8831. const int64_t i03 = ir/(ne02*ne01);
  8832. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8833. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8834. const int64_t i13 = i03 % ne13;
  8835. const int64_t i12 = i02 % ne12;
  8836. const int64_t i11 = i01 % ne11;
  8837. const int64_t nr0 = ne00 / ne10;
  8838. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8839. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8840. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8841. for (int64_t r = 0 ; r < nr0; ++r) {
  8842. #ifdef GGML_USE_ACCELERATE
  8843. UNUSED(ggml_vec_mul_f32);
  8844. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  8845. #else
  8846. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8847. #endif
  8848. }
  8849. }
  8850. } else {
  8851. // src1 is not contiguous
  8852. for (int64_t ir = ith; ir < nr; ir += nth) {
  8853. // src0 and dst are same shape => same indices
  8854. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8855. const int64_t i03 = ir/(ne02*ne01);
  8856. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8857. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8858. const int64_t i13 = i03 % ne13;
  8859. const int64_t i12 = i02 % ne12;
  8860. const int64_t i11 = i01 % ne11;
  8861. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8862. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8863. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8864. const int64_t i10 = i0 % ne10;
  8865. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8866. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8867. }
  8868. }
  8869. }
  8870. }
  8871. static void ggml_compute_forward_mul(
  8872. const struct ggml_compute_params * params,
  8873. struct ggml_tensor * dst) {
  8874. const struct ggml_tensor * src0 = dst->src[0];
  8875. const struct ggml_tensor * src1 = dst->src[1];
  8876. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8877. switch (src0->type) {
  8878. case GGML_TYPE_F32:
  8879. {
  8880. ggml_compute_forward_mul_f32(params, dst);
  8881. } break;
  8882. default:
  8883. {
  8884. GGML_ABORT("fatal error");
  8885. }
  8886. }
  8887. }
  8888. // ggml_compute_forward_div
  8889. static void ggml_compute_forward_div_f32(
  8890. const struct ggml_compute_params * params,
  8891. struct ggml_tensor * dst) {
  8892. const struct ggml_tensor * src0 = dst->src[0];
  8893. const struct ggml_tensor * src1 = dst->src[1];
  8894. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8895. const int ith = params->ith;
  8896. const int nth = params->nth;
  8897. const int64_t nr = ggml_nrows(src0);
  8898. GGML_TENSOR_BINARY_OP_LOCALS
  8899. GGML_ASSERT( nb0 == sizeof(float));
  8900. GGML_ASSERT(nb00 == sizeof(float));
  8901. if (nb10 == sizeof(float)) {
  8902. for (int64_t ir = ith; ir < nr; ir += nth) {
  8903. // src0 and dst are same shape => same indices
  8904. const int64_t i03 = ir/(ne02*ne01);
  8905. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8906. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8907. const int64_t i13 = i03 % ne13;
  8908. const int64_t i12 = i02 % ne12;
  8909. const int64_t i11 = i01 % ne11;
  8910. const int64_t nr0 = ne00 / ne10;
  8911. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8912. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8913. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8914. for (int64_t r = 0; r < nr0; ++r) {
  8915. #ifdef GGML_USE_ACCELERATE
  8916. UNUSED(ggml_vec_div_f32);
  8917. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8918. #else
  8919. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8920. #endif
  8921. }
  8922. }
  8923. } else {
  8924. // src1 is not contiguous
  8925. for (int64_t ir = ith; ir < nr; ir += nth) {
  8926. // src0 and dst are same shape => same indices
  8927. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8928. const int64_t i03 = ir/(ne02*ne01);
  8929. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8930. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8931. const int64_t i13 = i03 % ne13;
  8932. const int64_t i12 = i02 % ne12;
  8933. const int64_t i11 = i01 % ne11;
  8934. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8935. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8936. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8937. const int64_t i10 = i0 % ne10;
  8938. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8939. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8940. }
  8941. }
  8942. }
  8943. }
  8944. static void ggml_compute_forward_div(
  8945. const struct ggml_compute_params * params,
  8946. struct ggml_tensor * dst) {
  8947. const struct ggml_tensor * src0 = dst->src[0];
  8948. switch (src0->type) {
  8949. case GGML_TYPE_F32:
  8950. {
  8951. ggml_compute_forward_div_f32(params, dst);
  8952. } break;
  8953. default:
  8954. {
  8955. GGML_ABORT("fatal error");
  8956. }
  8957. }
  8958. }
  8959. // ggml_compute_forward_sqr
  8960. static void ggml_compute_forward_sqr_f32(
  8961. const struct ggml_compute_params * params,
  8962. struct ggml_tensor * dst) {
  8963. const struct ggml_tensor * src0 = dst->src[0];
  8964. if (params->ith != 0) {
  8965. return;
  8966. }
  8967. assert(ggml_are_same_shape(src0, dst));
  8968. const int n = ggml_nrows(src0);
  8969. const int nc = src0->ne[0];
  8970. assert( dst->nb[0] == sizeof(float));
  8971. assert(src0->nb[0] == sizeof(float));
  8972. for (int i = 0; i < n; i++) {
  8973. ggml_vec_sqr_f32(nc,
  8974. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8975. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8976. }
  8977. }
  8978. static void ggml_compute_forward_sqr(
  8979. const struct ggml_compute_params * params,
  8980. struct ggml_tensor * dst) {
  8981. const struct ggml_tensor * src0 = dst->src[0];
  8982. switch (src0->type) {
  8983. case GGML_TYPE_F32:
  8984. {
  8985. ggml_compute_forward_sqr_f32(params, dst);
  8986. } break;
  8987. default:
  8988. {
  8989. GGML_ABORT("fatal error");
  8990. }
  8991. }
  8992. }
  8993. // ggml_compute_forward_sqrt
  8994. static void ggml_compute_forward_sqrt_f32(
  8995. const struct ggml_compute_params * params,
  8996. struct ggml_tensor * dst) {
  8997. const struct ggml_tensor * src0 = dst->src[0];
  8998. if (params->ith != 0) {
  8999. return;
  9000. }
  9001. assert(ggml_are_same_shape(src0, dst));
  9002. const int n = ggml_nrows(src0);
  9003. const int nc = src0->ne[0];
  9004. assert( dst->nb[0] == sizeof(float));
  9005. assert(src0->nb[0] == sizeof(float));
  9006. for (int i = 0; i < n; i++) {
  9007. ggml_vec_sqrt_f32(nc,
  9008. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9009. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9010. }
  9011. }
  9012. static void ggml_compute_forward_sqrt(
  9013. const struct ggml_compute_params * params,
  9014. struct ggml_tensor * dst) {
  9015. const struct ggml_tensor * src0 = dst->src[0];
  9016. switch (src0->type) {
  9017. case GGML_TYPE_F32:
  9018. {
  9019. ggml_compute_forward_sqrt_f32(params, dst);
  9020. } break;
  9021. default:
  9022. {
  9023. GGML_ABORT("fatal error");
  9024. }
  9025. }
  9026. }
  9027. // ggml_compute_forward_log
  9028. static void ggml_compute_forward_log_f32(
  9029. const struct ggml_compute_params * params,
  9030. struct ggml_tensor * dst) {
  9031. const struct ggml_tensor * src0 = dst->src[0];
  9032. if (params->ith != 0) {
  9033. return;
  9034. }
  9035. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9036. const int n = ggml_nrows(src0);
  9037. const int nc = src0->ne[0];
  9038. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9039. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9040. for (int i = 0; i < n; i++) {
  9041. ggml_vec_log_f32(nc,
  9042. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9043. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9044. }
  9045. }
  9046. static void ggml_compute_forward_log(
  9047. const struct ggml_compute_params * params,
  9048. struct ggml_tensor * dst) {
  9049. const struct ggml_tensor * src0 = dst->src[0];
  9050. switch (src0->type) {
  9051. case GGML_TYPE_F32:
  9052. {
  9053. ggml_compute_forward_log_f32(params, dst);
  9054. } break;
  9055. default:
  9056. {
  9057. GGML_ABORT("fatal error");
  9058. }
  9059. }
  9060. }
  9061. // ggml_compute_forward_sin
  9062. static void ggml_compute_forward_sin_f32(
  9063. const struct ggml_compute_params * params,
  9064. struct ggml_tensor * dst) {
  9065. const struct ggml_tensor * src0 = dst->src[0];
  9066. if (params->ith != 0) {
  9067. return;
  9068. }
  9069. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9070. const int n = ggml_nrows(src0);
  9071. const int nc = src0->ne[0];
  9072. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9073. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9074. for (int i = 0; i < n; i++) {
  9075. ggml_vec_sin_f32(nc,
  9076. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9077. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9078. }
  9079. }
  9080. static void ggml_compute_forward_sin(
  9081. const struct ggml_compute_params * params,
  9082. struct ggml_tensor * dst) {
  9083. const struct ggml_tensor * src0 = dst->src[0];
  9084. switch (src0->type) {
  9085. case GGML_TYPE_F32:
  9086. {
  9087. ggml_compute_forward_sin_f32(params, dst);
  9088. } break;
  9089. default:
  9090. {
  9091. GGML_ABORT("fatal error");
  9092. }
  9093. }
  9094. }
  9095. // ggml_compute_forward_cos
  9096. static void ggml_compute_forward_cos_f32(
  9097. const struct ggml_compute_params * params,
  9098. struct ggml_tensor * dst) {
  9099. const struct ggml_tensor * src0 = dst->src[0];
  9100. if (params->ith != 0) {
  9101. return;
  9102. }
  9103. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9104. const int n = ggml_nrows(src0);
  9105. const int nc = src0->ne[0];
  9106. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9107. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9108. for (int i = 0; i < n; i++) {
  9109. ggml_vec_cos_f32(nc,
  9110. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9111. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9112. }
  9113. }
  9114. static void ggml_compute_forward_cos(
  9115. const struct ggml_compute_params * params,
  9116. struct ggml_tensor * dst) {
  9117. const struct ggml_tensor * src0 = dst->src[0];
  9118. switch (src0->type) {
  9119. case GGML_TYPE_F32:
  9120. {
  9121. ggml_compute_forward_cos_f32(params, dst);
  9122. } break;
  9123. default:
  9124. {
  9125. GGML_ABORT("fatal error");
  9126. }
  9127. }
  9128. }
  9129. // ggml_compute_forward_sum
  9130. static void ggml_compute_forward_sum_f32(
  9131. const struct ggml_compute_params * params,
  9132. struct ggml_tensor * dst) {
  9133. const struct ggml_tensor * src0 = dst->src[0];
  9134. if (params->ith != 0) {
  9135. return;
  9136. }
  9137. assert(ggml_is_scalar(dst));
  9138. assert(src0->nb[0] == sizeof(float));
  9139. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  9140. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  9141. ggml_float sum = 0;
  9142. ggml_float row_sum = 0;
  9143. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9144. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9145. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9146. ggml_vec_sum_f32_ggf(ne00,
  9147. &row_sum,
  9148. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  9149. sum += row_sum;
  9150. }
  9151. }
  9152. }
  9153. ((float *) dst->data)[0] = sum;
  9154. }
  9155. static void ggml_compute_forward_sum_f16(
  9156. const struct ggml_compute_params * params,
  9157. struct ggml_tensor * dst) {
  9158. const struct ggml_tensor * src0 = dst->src[0];
  9159. if (params->ith != 0) {
  9160. return;
  9161. }
  9162. assert(ggml_is_scalar(dst));
  9163. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  9164. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  9165. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  9166. float sum = 0;
  9167. float row_sum = 0;
  9168. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9169. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9170. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9171. ggml_vec_sum_f16_ggf(ne00,
  9172. &row_sum,
  9173. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  9174. sum += row_sum;
  9175. }
  9176. }
  9177. }
  9178. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  9179. }
  9180. static void ggml_compute_forward_sum_bf16(
  9181. const struct ggml_compute_params * params,
  9182. struct ggml_tensor * dst) {
  9183. const struct ggml_tensor * src0 = dst->src[0];
  9184. if (params->ith != 0) {
  9185. return;
  9186. }
  9187. assert(ggml_is_scalar(dst));
  9188. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  9189. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  9190. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  9191. float sum = 0;
  9192. float row_sum = 0;
  9193. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9194. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9195. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9196. ggml_vec_sum_bf16_ggf(ne00,
  9197. &row_sum,
  9198. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  9199. sum += row_sum;
  9200. }
  9201. }
  9202. }
  9203. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  9204. }
  9205. static void ggml_compute_forward_sum(
  9206. const struct ggml_compute_params * params,
  9207. struct ggml_tensor * dst) {
  9208. const struct ggml_tensor * src0 = dst->src[0];
  9209. switch (src0->type) {
  9210. case GGML_TYPE_F32:
  9211. {
  9212. ggml_compute_forward_sum_f32(params, dst);
  9213. } break;
  9214. case GGML_TYPE_F16:
  9215. {
  9216. ggml_compute_forward_sum_f16(params, dst);
  9217. } break;
  9218. case GGML_TYPE_BF16:
  9219. {
  9220. ggml_compute_forward_sum_bf16(params, dst);
  9221. } break;
  9222. default:
  9223. {
  9224. GGML_ABORT("fatal error");
  9225. }
  9226. }
  9227. }
  9228. // ggml_compute_forward_sum_rows
  9229. static void ggml_compute_forward_sum_rows_f32(
  9230. const struct ggml_compute_params * params,
  9231. struct ggml_tensor * dst) {
  9232. const struct ggml_tensor * src0 = dst->src[0];
  9233. if (params->ith != 0) {
  9234. return;
  9235. }
  9236. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9237. GGML_ASSERT(dst->nb[0] == sizeof(float));
  9238. GGML_TENSOR_UNARY_OP_LOCALS
  9239. GGML_ASSERT(ne0 == 1);
  9240. GGML_ASSERT(ne1 == ne01);
  9241. GGML_ASSERT(ne2 == ne02);
  9242. GGML_ASSERT(ne3 == ne03);
  9243. for (int64_t i3 = 0; i3 < ne03; i3++) {
  9244. for (int64_t i2 = 0; i2 < ne02; i2++) {
  9245. for (int64_t i1 = 0; i1 < ne01; i1++) {
  9246. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  9247. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  9248. float row_sum = 0;
  9249. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  9250. dst_row[0] = row_sum;
  9251. }
  9252. }
  9253. }
  9254. }
  9255. static void ggml_compute_forward_sum_rows(
  9256. const struct ggml_compute_params * params,
  9257. struct ggml_tensor * dst) {
  9258. const struct ggml_tensor * src0 = dst->src[0];
  9259. switch (src0->type) {
  9260. case GGML_TYPE_F32:
  9261. {
  9262. ggml_compute_forward_sum_rows_f32(params, dst);
  9263. } break;
  9264. default:
  9265. {
  9266. GGML_ABORT("fatal error");
  9267. }
  9268. }
  9269. }
  9270. // ggml_compute_forward_mean
  9271. static void ggml_compute_forward_mean_f32(
  9272. const struct ggml_compute_params * params,
  9273. struct ggml_tensor * dst) {
  9274. const struct ggml_tensor * src0 = dst->src[0];
  9275. if (params->ith != 0) {
  9276. return;
  9277. }
  9278. assert(src0->nb[0] == sizeof(float));
  9279. GGML_TENSOR_UNARY_OP_LOCALS
  9280. assert(ne0 == 1);
  9281. assert(ne1 == ne01);
  9282. assert(ne2 == ne02);
  9283. assert(ne3 == ne03);
  9284. UNUSED(ne0);
  9285. UNUSED(ne1);
  9286. UNUSED(ne2);
  9287. UNUSED(ne3);
  9288. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9289. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9290. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9291. ggml_vec_sum_f32(ne00,
  9292. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  9293. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  9294. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  9295. }
  9296. }
  9297. }
  9298. }
  9299. static void ggml_compute_forward_mean(
  9300. const struct ggml_compute_params * params,
  9301. struct ggml_tensor * dst) {
  9302. const struct ggml_tensor * src0 = dst->src[0];
  9303. switch (src0->type) {
  9304. case GGML_TYPE_F32:
  9305. {
  9306. ggml_compute_forward_mean_f32(params, dst);
  9307. } break;
  9308. default:
  9309. {
  9310. GGML_ABORT("fatal error");
  9311. }
  9312. }
  9313. }
  9314. // ggml_compute_forward_argmax
  9315. static void ggml_compute_forward_argmax_f32(
  9316. const struct ggml_compute_params * params,
  9317. struct ggml_tensor * dst) {
  9318. const struct ggml_tensor * src0 = dst->src[0];
  9319. if (params->ith != 0) {
  9320. return;
  9321. }
  9322. assert(src0->nb[0] == sizeof(float));
  9323. assert(dst->nb[0] == sizeof(float));
  9324. const int64_t ne00 = src0->ne[0];
  9325. const int64_t ne01 = src0->ne[1];
  9326. const size_t nb01 = src0->nb[1];
  9327. const size_t nb0 = dst->nb[0];
  9328. for (int64_t i1 = 0; i1 < ne01; i1++) {
  9329. float * src = (float *) ((char *) src0->data + i1*nb01);
  9330. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  9331. int v = 0;
  9332. ggml_vec_argmax_f32(ne00, &v, src);
  9333. dst_[0] = v;
  9334. }
  9335. }
  9336. static void ggml_compute_forward_argmax(
  9337. const struct ggml_compute_params * params,
  9338. struct ggml_tensor * dst) {
  9339. const struct ggml_tensor * src0 = dst->src[0];
  9340. switch (src0->type) {
  9341. case GGML_TYPE_F32:
  9342. {
  9343. ggml_compute_forward_argmax_f32(params, dst);
  9344. } break;
  9345. default:
  9346. {
  9347. GGML_ABORT("fatal error");
  9348. }
  9349. }
  9350. }
  9351. // ggml_compute_forward_repeat
  9352. static void ggml_compute_forward_repeat_f32(
  9353. const struct ggml_compute_params * params,
  9354. struct ggml_tensor * dst) {
  9355. const struct ggml_tensor * src0 = dst->src[0];
  9356. if (params->ith != 0) {
  9357. return;
  9358. }
  9359. GGML_ASSERT(ggml_can_repeat(src0, dst));
  9360. GGML_TENSOR_UNARY_OP_LOCALS
  9361. // guaranteed to be an integer due to the check in ggml_can_repeat
  9362. const int nr0 = (int)(ne0/ne00);
  9363. const int nr1 = (int)(ne1/ne01);
  9364. const int nr2 = (int)(ne2/ne02);
  9365. const int nr3 = (int)(ne3/ne03);
  9366. // TODO: support for transposed / permuted tensors
  9367. GGML_ASSERT(nb0 == sizeof(float));
  9368. GGML_ASSERT(nb00 == sizeof(float));
  9369. // TODO: maybe this is not optimal?
  9370. for (int i3 = 0; i3 < nr3; i3++) {
  9371. for (int k3 = 0; k3 < ne03; k3++) {
  9372. for (int i2 = 0; i2 < nr2; i2++) {
  9373. for (int k2 = 0; k2 < ne02; k2++) {
  9374. for (int i1 = 0; i1 < nr1; i1++) {
  9375. for (int k1 = 0; k1 < ne01; k1++) {
  9376. for (int i0 = 0; i0 < nr0; i0++) {
  9377. ggml_vec_cpy_f32(ne00,
  9378. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  9379. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  9380. }
  9381. }
  9382. }
  9383. }
  9384. }
  9385. }
  9386. }
  9387. }
  9388. static void ggml_compute_forward_repeat_f16(
  9389. const struct ggml_compute_params * params,
  9390. struct ggml_tensor * dst) {
  9391. const struct ggml_tensor * src0 = dst->src[0];
  9392. if (params->ith != 0) {
  9393. return;
  9394. }
  9395. GGML_ASSERT(ggml_can_repeat(src0, dst));
  9396. GGML_TENSOR_UNARY_OP_LOCALS
  9397. // guaranteed to be an integer due to the check in ggml_can_repeat
  9398. const int nr0 = (int)(ne0/ne00);
  9399. const int nr1 = (int)(ne1/ne01);
  9400. const int nr2 = (int)(ne2/ne02);
  9401. const int nr3 = (int)(ne3/ne03);
  9402. // TODO: support for transposed / permuted tensors
  9403. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9404. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9405. // TODO: maybe this is not optimal?
  9406. for (int i3 = 0; i3 < nr3; i3++) {
  9407. for (int k3 = 0; k3 < ne03; k3++) {
  9408. for (int i2 = 0; i2 < nr2; i2++) {
  9409. for (int k2 = 0; k2 < ne02; k2++) {
  9410. for (int i1 = 0; i1 < nr1; i1++) {
  9411. for (int k1 = 0; k1 < ne01; k1++) {
  9412. for (int i0 = 0; i0 < nr0; i0++) {
  9413. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  9414. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  9415. // ggml_vec_cpy_f16(ne00, y, x)
  9416. for (int i = 0; i < ne00; ++i) {
  9417. y[i] = x[i];
  9418. }
  9419. }
  9420. }
  9421. }
  9422. }
  9423. }
  9424. }
  9425. }
  9426. }
  9427. static void ggml_compute_forward_repeat(
  9428. const struct ggml_compute_params * params,
  9429. struct ggml_tensor * dst) {
  9430. const struct ggml_tensor * src0 = dst->src[0];
  9431. switch (src0->type) {
  9432. case GGML_TYPE_F16:
  9433. case GGML_TYPE_BF16:
  9434. case GGML_TYPE_I16:
  9435. {
  9436. ggml_compute_forward_repeat_f16(params, dst);
  9437. } break;
  9438. case GGML_TYPE_F32:
  9439. case GGML_TYPE_I32:
  9440. {
  9441. ggml_compute_forward_repeat_f32(params, dst);
  9442. } break;
  9443. default:
  9444. {
  9445. GGML_ABORT("fatal error");
  9446. }
  9447. }
  9448. }
  9449. // ggml_compute_forward_repeat_back
  9450. static void ggml_compute_forward_repeat_back_f32(
  9451. const struct ggml_compute_params * params,
  9452. struct ggml_tensor * dst) {
  9453. const struct ggml_tensor * src0 = dst->src[0];
  9454. if (params->ith != 0) {
  9455. return;
  9456. }
  9457. GGML_ASSERT(ggml_can_repeat(dst, src0));
  9458. GGML_TENSOR_UNARY_OP_LOCALS
  9459. // guaranteed to be an integer due to the check in ggml_can_repeat
  9460. const int nr0 = (int)(ne00/ne0);
  9461. const int nr1 = (int)(ne01/ne1);
  9462. const int nr2 = (int)(ne02/ne2);
  9463. const int nr3 = (int)(ne03/ne3);
  9464. // TODO: support for transposed / permuted tensors
  9465. GGML_ASSERT(nb0 == sizeof(float));
  9466. GGML_ASSERT(nb00 == sizeof(float));
  9467. if (ggml_is_contiguous(dst)) {
  9468. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9469. } else {
  9470. for (int k3 = 0; k3 < ne3; k3++) {
  9471. for (int k2 = 0; k2 < ne2; k2++) {
  9472. for (int k1 = 0; k1 < ne1; k1++) {
  9473. ggml_vec_set_f32(ne0,
  9474. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  9475. 0);
  9476. }
  9477. }
  9478. }
  9479. }
  9480. // TODO: maybe this is not optimal?
  9481. for (int i3 = 0; i3 < nr3; i3++) {
  9482. for (int k3 = 0; k3 < ne3; k3++) {
  9483. for (int i2 = 0; i2 < nr2; i2++) {
  9484. for (int k2 = 0; k2 < ne2; k2++) {
  9485. for (int i1 = 0; i1 < nr1; i1++) {
  9486. for (int k1 = 0; k1 < ne1; k1++) {
  9487. for (int i0 = 0; i0 < nr0; i0++) {
  9488. ggml_vec_acc_f32(ne0,
  9489. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  9490. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  9491. }
  9492. }
  9493. }
  9494. }
  9495. }
  9496. }
  9497. }
  9498. }
  9499. static void ggml_compute_forward_repeat_back(
  9500. const struct ggml_compute_params * params,
  9501. struct ggml_tensor * dst) {
  9502. const struct ggml_tensor * src0 = dst->src[0];
  9503. switch (src0->type) {
  9504. case GGML_TYPE_F32:
  9505. {
  9506. ggml_compute_forward_repeat_back_f32(params, dst);
  9507. } break;
  9508. default:
  9509. {
  9510. GGML_ABORT("fatal error");
  9511. }
  9512. }
  9513. }
  9514. // ggml_compute_forward_concat
  9515. static void ggml_compute_forward_concat_f32(
  9516. const struct ggml_compute_params * params,
  9517. struct ggml_tensor * dst) {
  9518. const struct ggml_tensor * src0 = dst->src[0];
  9519. const struct ggml_tensor * src1 = dst->src[1];
  9520. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9521. const int ith = params->ith;
  9522. const int nth = params->nth;
  9523. GGML_TENSOR_BINARY_OP_LOCALS
  9524. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  9525. GGML_ASSERT(dim >= 0 && dim < 4);
  9526. int64_t o[4] = {0, 0, 0, 0};
  9527. o[dim] = src0->ne[dim];
  9528. const float * x;
  9529. // TODO: smarter multi-theading
  9530. for (int i3 = 0; i3 < ne3; i3++) {
  9531. for (int i2 = ith; i2 < ne2; i2 += nth) {
  9532. for (int i1 = 0; i1 < ne1; i1++) {
  9533. for (int i0 = 0; i0 < ne0; i0++) {
  9534. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  9535. x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
  9536. } else {
  9537. x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
  9538. }
  9539. float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  9540. *y = *x;
  9541. }
  9542. }
  9543. }
  9544. }
  9545. }
  9546. static void ggml_compute_forward_concat(
  9547. const struct ggml_compute_params * params,
  9548. struct ggml_tensor * dst) {
  9549. const struct ggml_tensor * src0 = dst->src[0];
  9550. switch (src0->type) {
  9551. case GGML_TYPE_F32:
  9552. case GGML_TYPE_I32:
  9553. {
  9554. ggml_compute_forward_concat_f32(params, dst);
  9555. } break;
  9556. default:
  9557. {
  9558. GGML_ABORT("fatal error");
  9559. }
  9560. }
  9561. }
  9562. // ggml_compute_forward_abs
  9563. static void ggml_compute_forward_abs_f32(
  9564. const struct ggml_compute_params * params,
  9565. struct ggml_tensor * dst) {
  9566. const struct ggml_tensor * src0 = dst->src[0];
  9567. if (params->ith != 0) {
  9568. return;
  9569. }
  9570. assert(ggml_is_contiguous_1(src0));
  9571. assert(ggml_is_contiguous_1(dst));
  9572. assert(ggml_are_same_shape(src0, dst));
  9573. const int n = ggml_nrows(src0);
  9574. const int nc = src0->ne[0];
  9575. for (int i = 0; i < n; i++) {
  9576. ggml_vec_abs_f32(nc,
  9577. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9578. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9579. }
  9580. }
  9581. static void ggml_compute_forward_abs(
  9582. const struct ggml_compute_params * params,
  9583. struct ggml_tensor * dst) {
  9584. const struct ggml_tensor * src0 = dst->src[0];
  9585. switch (src0->type) {
  9586. case GGML_TYPE_F32:
  9587. {
  9588. ggml_compute_forward_abs_f32(params, dst);
  9589. } break;
  9590. default:
  9591. {
  9592. GGML_ABORT("fatal error");
  9593. }
  9594. }
  9595. }
  9596. // ggml_compute_forward_sgn
  9597. static void ggml_compute_forward_sgn_f32(
  9598. const struct ggml_compute_params * params,
  9599. struct ggml_tensor * dst) {
  9600. const struct ggml_tensor * src0 = dst->src[0];
  9601. if (params->ith != 0) {
  9602. return;
  9603. }
  9604. assert(ggml_is_contiguous_1(src0));
  9605. assert(ggml_is_contiguous_1(dst));
  9606. assert(ggml_are_same_shape(src0, dst));
  9607. const int n = ggml_nrows(src0);
  9608. const int nc = src0->ne[0];
  9609. for (int i = 0; i < n; i++) {
  9610. ggml_vec_sgn_f32(nc,
  9611. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9612. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9613. }
  9614. }
  9615. static void ggml_compute_forward_sgn(
  9616. const struct ggml_compute_params * params,
  9617. struct ggml_tensor * dst) {
  9618. const struct ggml_tensor * src0 = dst->src[0];
  9619. switch (src0->type) {
  9620. case GGML_TYPE_F32:
  9621. {
  9622. ggml_compute_forward_sgn_f32(params, dst);
  9623. } break;
  9624. default:
  9625. {
  9626. GGML_ABORT("fatal error");
  9627. }
  9628. }
  9629. }
  9630. // ggml_compute_forward_neg
  9631. static void ggml_compute_forward_neg_f32(
  9632. const struct ggml_compute_params * params,
  9633. struct ggml_tensor * dst) {
  9634. const struct ggml_tensor * src0 = dst->src[0];
  9635. if (params->ith != 0) {
  9636. return;
  9637. }
  9638. assert(ggml_is_contiguous_1(src0));
  9639. assert(ggml_is_contiguous_1(dst));
  9640. assert(ggml_are_same_shape(src0, dst));
  9641. const int n = ggml_nrows(src0);
  9642. const int nc = src0->ne[0];
  9643. for (int i = 0; i < n; i++) {
  9644. ggml_vec_neg_f32(nc,
  9645. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9646. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9647. }
  9648. }
  9649. static void ggml_compute_forward_neg(
  9650. const struct ggml_compute_params * params,
  9651. struct ggml_tensor * dst) {
  9652. const struct ggml_tensor * src0 = dst->src[0];
  9653. switch (src0->type) {
  9654. case GGML_TYPE_F32:
  9655. {
  9656. ggml_compute_forward_neg_f32(params, dst);
  9657. } break;
  9658. default:
  9659. {
  9660. GGML_ABORT("fatal error");
  9661. }
  9662. }
  9663. }
  9664. // ggml_compute_forward_step
  9665. static void ggml_compute_forward_step_f32(
  9666. const struct ggml_compute_params * params,
  9667. struct ggml_tensor * dst) {
  9668. const struct ggml_tensor * src0 = dst->src[0];
  9669. if (params->ith != 0) {
  9670. return;
  9671. }
  9672. assert(ggml_is_contiguous_1(src0));
  9673. assert(ggml_is_contiguous_1(dst));
  9674. assert(ggml_are_same_shape(src0, dst));
  9675. const int n = ggml_nrows(src0);
  9676. const int nc = src0->ne[0];
  9677. for (int i = 0; i < n; i++) {
  9678. ggml_vec_step_f32(nc,
  9679. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9680. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9681. }
  9682. }
  9683. static void ggml_compute_forward_step(
  9684. const struct ggml_compute_params * params,
  9685. struct ggml_tensor * dst) {
  9686. const struct ggml_tensor * src0 = dst->src[0];
  9687. switch (src0->type) {
  9688. case GGML_TYPE_F32:
  9689. {
  9690. ggml_compute_forward_step_f32(params, dst);
  9691. } break;
  9692. default:
  9693. {
  9694. GGML_ABORT("fatal error");
  9695. }
  9696. }
  9697. }
  9698. // ggml_compute_forward_tanh
  9699. static void ggml_compute_forward_tanh_f32(
  9700. const struct ggml_compute_params * params,
  9701. struct ggml_tensor * dst) {
  9702. const struct ggml_tensor * src0 = dst->src[0];
  9703. if (params->ith != 0) {
  9704. return;
  9705. }
  9706. assert(ggml_is_contiguous_1(src0));
  9707. assert(ggml_is_contiguous_1(dst));
  9708. assert(ggml_are_same_shape(src0, dst));
  9709. const int n = ggml_nrows(src0);
  9710. const int nc = src0->ne[0];
  9711. for (int i = 0; i < n; i++) {
  9712. ggml_vec_tanh_f32(nc,
  9713. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9714. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9715. }
  9716. }
  9717. static void ggml_compute_forward_tanh(
  9718. const struct ggml_compute_params * params,
  9719. struct ggml_tensor * dst) {
  9720. const struct ggml_tensor * src0 = dst->src[0];
  9721. switch (src0->type) {
  9722. case GGML_TYPE_F32:
  9723. {
  9724. ggml_compute_forward_tanh_f32(params, dst);
  9725. } break;
  9726. default:
  9727. {
  9728. GGML_ABORT("fatal error");
  9729. }
  9730. }
  9731. }
  9732. // ggml_compute_forward_elu
  9733. static void ggml_compute_forward_elu_f32(
  9734. const struct ggml_compute_params * params,
  9735. struct ggml_tensor * dst) {
  9736. const struct ggml_tensor * src0 = dst->src[0];
  9737. if (params->ith != 0) {
  9738. return;
  9739. }
  9740. assert(ggml_is_contiguous_1(src0));
  9741. assert(ggml_is_contiguous_1(dst));
  9742. assert(ggml_are_same_shape(src0, dst));
  9743. const int n = ggml_nrows(src0);
  9744. const int nc = src0->ne[0];
  9745. for (int i = 0; i < n; i++) {
  9746. ggml_vec_elu_f32(nc,
  9747. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9748. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9749. }
  9750. }
  9751. static void ggml_compute_forward_elu(
  9752. const struct ggml_compute_params * params,
  9753. struct ggml_tensor * dst) {
  9754. const struct ggml_tensor * src0 = dst->src[0];
  9755. switch (src0->type) {
  9756. case GGML_TYPE_F32:
  9757. {
  9758. ggml_compute_forward_elu_f32(params, dst);
  9759. } break;
  9760. default:
  9761. {
  9762. GGML_ABORT("fatal error");
  9763. }
  9764. }
  9765. }
  9766. // ggml_compute_forward_relu
  9767. static void ggml_compute_forward_relu_f32(
  9768. const struct ggml_compute_params * params,
  9769. struct ggml_tensor * dst) {
  9770. const struct ggml_tensor * src0 = dst->src[0];
  9771. if (params->ith != 0) {
  9772. return;
  9773. }
  9774. assert(ggml_is_contiguous_1(src0));
  9775. assert(ggml_is_contiguous_1(dst));
  9776. assert(ggml_are_same_shape(src0, dst));
  9777. const int n = ggml_nrows(src0);
  9778. const int nc = src0->ne[0];
  9779. for (int i = 0; i < n; i++) {
  9780. ggml_vec_relu_f32(nc,
  9781. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9782. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9783. }
  9784. }
  9785. static void ggml_compute_forward_relu(
  9786. const struct ggml_compute_params * params,
  9787. struct ggml_tensor * dst) {
  9788. const struct ggml_tensor * src0 = dst->src[0];
  9789. switch (src0->type) {
  9790. case GGML_TYPE_F32:
  9791. {
  9792. ggml_compute_forward_relu_f32(params, dst);
  9793. } break;
  9794. default:
  9795. {
  9796. GGML_ABORT("fatal error");
  9797. }
  9798. }
  9799. }
  9800. // ggml_compute_forward_sigmoid
  9801. static void ggml_compute_forward_sigmoid_f32(
  9802. const struct ggml_compute_params * params,
  9803. struct ggml_tensor * dst) {
  9804. const struct ggml_tensor * src0 = dst->src[0];
  9805. if (params->ith != 0) {
  9806. return;
  9807. }
  9808. assert(ggml_is_contiguous_1(src0));
  9809. assert(ggml_is_contiguous_1(dst));
  9810. assert(ggml_are_same_shape(src0, dst));
  9811. const int n = ggml_nrows(src0);
  9812. const int nc = src0->ne[0];
  9813. for (int i = 0; i < n; i++) {
  9814. ggml_vec_sigmoid_f32(nc,
  9815. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9816. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9817. }
  9818. }
  9819. static void ggml_compute_forward_sigmoid(
  9820. const struct ggml_compute_params * params,
  9821. struct ggml_tensor * dst) {
  9822. const struct ggml_tensor * src0 = dst->src[0];
  9823. switch (src0->type) {
  9824. case GGML_TYPE_F32:
  9825. {
  9826. ggml_compute_forward_sigmoid_f32(params, dst);
  9827. } break;
  9828. default:
  9829. {
  9830. GGML_ABORT("fatal error");
  9831. }
  9832. }
  9833. }
  9834. // ggml_compute_forward_gelu
  9835. static void ggml_compute_forward_gelu_f32(
  9836. const struct ggml_compute_params * params,
  9837. struct ggml_tensor * dst) {
  9838. const struct ggml_tensor * src0 = dst->src[0];
  9839. assert(ggml_is_contiguous_1(src0));
  9840. assert(ggml_is_contiguous_1(dst));
  9841. assert(ggml_are_same_shape(src0, dst));
  9842. const int ith = params->ith;
  9843. const int nth = params->nth;
  9844. const int nc = src0->ne[0];
  9845. const int nr = ggml_nrows(src0);
  9846. // rows per thread
  9847. const int dr = (nr + nth - 1)/nth;
  9848. // row range for this thread
  9849. const int ir0 = dr*ith;
  9850. const int ir1 = MIN(ir0 + dr, nr);
  9851. for (int i1 = ir0; i1 < ir1; i1++) {
  9852. ggml_vec_gelu_f32(nc,
  9853. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9854. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9855. #ifndef NDEBUG
  9856. for (int k = 0; k < nc; k++) {
  9857. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9858. UNUSED(x);
  9859. assert(!isnan(x));
  9860. assert(!isinf(x));
  9861. }
  9862. #endif
  9863. }
  9864. }
  9865. static void ggml_compute_forward_gelu(
  9866. const struct ggml_compute_params * params,
  9867. struct ggml_tensor * dst) {
  9868. const struct ggml_tensor * src0 = dst->src[0];
  9869. switch (src0->type) {
  9870. case GGML_TYPE_F32:
  9871. {
  9872. ggml_compute_forward_gelu_f32(params, dst);
  9873. } break;
  9874. default:
  9875. {
  9876. GGML_ABORT("fatal error");
  9877. }
  9878. }
  9879. }
  9880. // ggml_compute_forward_gelu_quick
  9881. static void ggml_compute_forward_gelu_quick_f32(
  9882. const struct ggml_compute_params * params,
  9883. struct ggml_tensor * dst) {
  9884. const struct ggml_tensor * src0 = dst->src[0];
  9885. assert(ggml_is_contiguous_1(src0));
  9886. assert(ggml_is_contiguous_1(dst));
  9887. assert(ggml_are_same_shape(src0, dst));
  9888. const int ith = params->ith;
  9889. const int nth = params->nth;
  9890. const int nc = src0->ne[0];
  9891. const int nr = ggml_nrows(src0);
  9892. // rows per thread
  9893. const int dr = (nr + nth - 1)/nth;
  9894. // row range for this thread
  9895. const int ir0 = dr*ith;
  9896. const int ir1 = MIN(ir0 + dr, nr);
  9897. for (int i1 = ir0; i1 < ir1; i1++) {
  9898. ggml_vec_gelu_quick_f32(nc,
  9899. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9900. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9901. #ifndef NDEBUG
  9902. for (int k = 0; k < nc; k++) {
  9903. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9904. UNUSED(x);
  9905. assert(!isnan(x));
  9906. assert(!isinf(x));
  9907. }
  9908. #endif
  9909. }
  9910. }
  9911. static void ggml_compute_forward_gelu_quick(
  9912. const struct ggml_compute_params * params,
  9913. struct ggml_tensor * dst) {
  9914. const struct ggml_tensor * src0 = dst->src[0];
  9915. switch (src0->type) {
  9916. case GGML_TYPE_F32:
  9917. {
  9918. ggml_compute_forward_gelu_quick_f32(params, dst);
  9919. } break;
  9920. default:
  9921. {
  9922. GGML_ABORT("fatal error");
  9923. }
  9924. }
  9925. }
  9926. // ggml_compute_forward_silu
  9927. static void ggml_compute_forward_silu_f32(
  9928. const struct ggml_compute_params * params,
  9929. struct ggml_tensor * dst) {
  9930. const struct ggml_tensor * src0 = dst->src[0];
  9931. assert(ggml_is_contiguous_1(src0));
  9932. assert(ggml_is_contiguous_1(dst));
  9933. assert(ggml_are_same_shape(src0, dst));
  9934. const int ith = params->ith;
  9935. const int nth = params->nth;
  9936. const int nc = src0->ne[0];
  9937. const int nr = ggml_nrows(src0);
  9938. // rows per thread
  9939. const int dr = (nr + nth - 1)/nth;
  9940. // row range for this thread
  9941. const int ir0 = dr*ith;
  9942. const int ir1 = MIN(ir0 + dr, nr);
  9943. for (int i1 = ir0; i1 < ir1; i1++) {
  9944. ggml_vec_silu_f32(nc,
  9945. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9946. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9947. #ifndef NDEBUG
  9948. for (int k = 0; k < nc; k++) {
  9949. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  9950. UNUSED(x);
  9951. assert(!isnan(x));
  9952. assert(!isinf(x));
  9953. }
  9954. #endif
  9955. }
  9956. }
  9957. static void ggml_compute_forward_silu(
  9958. const struct ggml_compute_params * params,
  9959. struct ggml_tensor * dst) {
  9960. const struct ggml_tensor * src0 = dst->src[0];
  9961. switch (src0->type) {
  9962. case GGML_TYPE_F32:
  9963. {
  9964. ggml_compute_forward_silu_f32(params, dst);
  9965. } break;
  9966. default:
  9967. {
  9968. GGML_ABORT("fatal error");
  9969. }
  9970. }
  9971. }
  9972. // ggml_compute_forward_leaky_relu
  9973. static void ggml_compute_forward_leaky_relu_f32(
  9974. const struct ggml_compute_params * params,
  9975. struct ggml_tensor * dst) {
  9976. const struct ggml_tensor * src0 = dst->src[0];
  9977. if (params->ith != 0) {
  9978. return;
  9979. }
  9980. assert(ggml_is_contiguous_1(src0));
  9981. assert(ggml_is_contiguous_1(dst));
  9982. assert(ggml_are_same_shape(src0, dst));
  9983. const int n = ggml_nrows(src0);
  9984. const int nc = src0->ne[0];
  9985. float negative_slope;
  9986. memcpy(&negative_slope, dst->op_params, sizeof(float));
  9987. assert(dst->nb[0] == sizeof(float));
  9988. assert(src0->nb[0] == sizeof(float));
  9989. for (int i = 0; i < n; i++) {
  9990. ggml_vec_leaky_relu_f32(nc,
  9991. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9992. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  9993. }
  9994. }
  9995. static void ggml_compute_forward_leaky_relu(
  9996. const struct ggml_compute_params * params,
  9997. struct ggml_tensor * dst) {
  9998. const struct ggml_tensor * src0 = dst->src[0];
  9999. switch (src0->type) {
  10000. case GGML_TYPE_F32:
  10001. {
  10002. ggml_compute_forward_leaky_relu_f32(params, dst);
  10003. } break;
  10004. default:
  10005. {
  10006. GGML_ABORT("fatal error");
  10007. }
  10008. }
  10009. }
  10010. // ggml_compute_forward_silu_back
  10011. static void ggml_compute_forward_silu_back_f32(
  10012. const struct ggml_compute_params * params,
  10013. struct ggml_tensor * dst) {
  10014. const struct ggml_tensor * src0 = dst->src[0];
  10015. const struct ggml_tensor * grad = dst->src[1];
  10016. assert(ggml_is_contiguous_1(grad));
  10017. assert(ggml_is_contiguous_1(src0));
  10018. assert(ggml_is_contiguous_1(dst));
  10019. assert(ggml_are_same_shape(src0, dst));
  10020. assert(ggml_are_same_shape(src0, grad));
  10021. const int ith = params->ith;
  10022. const int nth = params->nth;
  10023. const int nc = src0->ne[0];
  10024. const int nr = ggml_nrows(src0);
  10025. // rows per thread
  10026. const int dr = (nr + nth - 1)/nth;
  10027. // row range for this thread
  10028. const int ir0 = dr*ith;
  10029. const int ir1 = MIN(ir0 + dr, nr);
  10030. for (int i1 = ir0; i1 < ir1; i1++) {
  10031. ggml_vec_silu_backward_f32(nc,
  10032. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  10033. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  10034. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  10035. #ifndef NDEBUG
  10036. for (int k = 0; k < nc; k++) {
  10037. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  10038. UNUSED(x);
  10039. assert(!isnan(x));
  10040. assert(!isinf(x));
  10041. }
  10042. #endif
  10043. }
  10044. }
  10045. static void ggml_compute_forward_silu_back(
  10046. const struct ggml_compute_params * params,
  10047. struct ggml_tensor * dst) {
  10048. const struct ggml_tensor * src0 = dst->src[0];
  10049. switch (src0->type) {
  10050. case GGML_TYPE_F32:
  10051. {
  10052. ggml_compute_forward_silu_back_f32(params, dst);
  10053. } break;
  10054. default:
  10055. {
  10056. GGML_ABORT("fatal error");
  10057. }
  10058. }
  10059. }
  10060. static void ggml_compute_forward_hardswish_f32(
  10061. const struct ggml_compute_params * params,
  10062. struct ggml_tensor * dst) {
  10063. const struct ggml_tensor * src0 = dst->src[0];
  10064. if (params->ith != 0) {
  10065. return;
  10066. }
  10067. assert(ggml_is_contiguous_1(src0));
  10068. assert(ggml_is_contiguous_1(dst));
  10069. assert(ggml_are_same_shape(src0, dst));
  10070. const int n = ggml_nrows(src0);
  10071. const int nc = src0->ne[0];
  10072. for (int i = 0; i < n; i++) {
  10073. ggml_vec_hardswish_f32(nc,
  10074. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10075. (float *) ((char *) src0->data + i*(src0->nb[1])));
  10076. }
  10077. }
  10078. static void ggml_compute_forward_hardswish(
  10079. const struct ggml_compute_params * params,
  10080. struct ggml_tensor * dst) {
  10081. const struct ggml_tensor * src0 = dst->src[0];
  10082. switch (src0->type) {
  10083. case GGML_TYPE_F32:
  10084. {
  10085. ggml_compute_forward_hardswish_f32(params, dst);
  10086. } break;
  10087. default:
  10088. {
  10089. GGML_ABORT("fatal error");
  10090. }
  10091. }
  10092. }
  10093. static void ggml_compute_forward_hardsigmoid_f32(
  10094. const struct ggml_compute_params * params,
  10095. struct ggml_tensor * dst) {
  10096. const struct ggml_tensor * src0 = dst->src[0];
  10097. if (params->ith != 0) {
  10098. return;
  10099. }
  10100. assert(ggml_is_contiguous_1(src0));
  10101. assert(ggml_is_contiguous_1(dst));
  10102. assert(ggml_are_same_shape(src0, dst));
  10103. const int n = ggml_nrows(src0);
  10104. const int nc = src0->ne[0];
  10105. for (int i = 0; i < n; i++) {
  10106. ggml_vec_hardsigmoid_f32(nc,
  10107. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10108. (float *) ((char *) src0->data + i*(src0->nb[1])));
  10109. }
  10110. }
  10111. static void ggml_compute_forward_hardsigmoid(
  10112. const struct ggml_compute_params * params,
  10113. struct ggml_tensor * dst) {
  10114. const struct ggml_tensor * src0 = dst->src[0];
  10115. switch (src0->type) {
  10116. case GGML_TYPE_F32:
  10117. {
  10118. ggml_compute_forward_hardsigmoid_f32(params, dst);
  10119. } break;
  10120. default:
  10121. {
  10122. GGML_ABORT("fatal error");
  10123. }
  10124. }
  10125. }
  10126. static void ggml_compute_forward_exp_f32(
  10127. const struct ggml_compute_params * params,
  10128. struct ggml_tensor * dst) {
  10129. const struct ggml_tensor * src0 = dst->src[0];
  10130. if (params->ith != 0) {
  10131. return;
  10132. }
  10133. assert(ggml_is_contiguous_1(src0));
  10134. assert(ggml_is_contiguous_1(dst));
  10135. assert(ggml_are_same_shape(src0, dst));
  10136. const int n = ggml_nrows(src0);
  10137. const int nc = src0->ne[0];
  10138. for (int i = 0; i < n; i++) {
  10139. ggml_vec_exp_f32(nc,
  10140. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10141. (float *) ((char *) src0->data + i*(src0->nb[1])));
  10142. }
  10143. }
  10144. static void ggml_compute_forward_exp(
  10145. const struct ggml_compute_params * params,
  10146. struct ggml_tensor * dst) {
  10147. const struct ggml_tensor * src0 = dst->src[0];
  10148. switch (src0->type) {
  10149. case GGML_TYPE_F32:
  10150. {
  10151. ggml_compute_forward_exp_f32(params, dst);
  10152. } break;
  10153. default:
  10154. {
  10155. GGML_ABORT("fatal error");
  10156. }
  10157. }
  10158. }
  10159. // ggml_compute_forward_norm
  10160. static void ggml_compute_forward_norm_f32(
  10161. const struct ggml_compute_params * params,
  10162. struct ggml_tensor * dst) {
  10163. const struct ggml_tensor * src0 = dst->src[0];
  10164. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10165. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10166. const int ith = params->ith;
  10167. const int nth = params->nth;
  10168. GGML_TENSOR_UNARY_OP_LOCALS
  10169. float eps;
  10170. memcpy(&eps, dst->op_params, sizeof(float));
  10171. GGML_ASSERT(eps > 0.0f);
  10172. // TODO: optimize
  10173. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10174. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10175. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  10176. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  10177. ggml_float sum = 0.0;
  10178. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10179. sum += (ggml_float)x[i00];
  10180. }
  10181. float mean = sum/ne00;
  10182. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  10183. ggml_float sum2 = 0.0;
  10184. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10185. float v = x[i00] - mean;
  10186. y[i00] = v;
  10187. sum2 += (ggml_float)(v*v);
  10188. }
  10189. float variance = sum2/ne00;
  10190. const float scale = 1.0f/sqrtf(variance + eps);
  10191. ggml_vec_scale_f32(ne00, y, scale);
  10192. }
  10193. }
  10194. }
  10195. }
  10196. static void ggml_compute_forward_norm(
  10197. const struct ggml_compute_params * params,
  10198. struct ggml_tensor * dst) {
  10199. const struct ggml_tensor * src0 = dst->src[0];
  10200. switch (src0->type) {
  10201. case GGML_TYPE_F32:
  10202. {
  10203. ggml_compute_forward_norm_f32(params, dst);
  10204. } break;
  10205. default:
  10206. {
  10207. GGML_ABORT("fatal error");
  10208. }
  10209. }
  10210. }
  10211. // ggml_compute_forward_group_rms_norm
  10212. static void ggml_compute_forward_rms_norm_f32(
  10213. const struct ggml_compute_params * params,
  10214. struct ggml_tensor * dst) {
  10215. const struct ggml_tensor * src0 = dst->src[0];
  10216. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10217. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10218. const int ith = params->ith;
  10219. const int nth = params->nth;
  10220. GGML_TENSOR_UNARY_OP_LOCALS
  10221. float eps;
  10222. memcpy(&eps, dst->op_params, sizeof(float));
  10223. GGML_ASSERT(eps > 0.0f);
  10224. // TODO: optimize
  10225. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10226. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10227. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  10228. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  10229. ggml_float sum = 0.0;
  10230. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10231. sum += (ggml_float)(x[i00] * x[i00]);
  10232. }
  10233. const float mean = sum/ne00;
  10234. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  10235. memcpy(y, x, ne00 * sizeof(float));
  10236. // for (int i00 = 0; i00 < ne00; i00++) {
  10237. // y[i00] = x[i00];
  10238. // }
  10239. const float scale = 1.0f/sqrtf(mean + eps);
  10240. ggml_vec_scale_f32(ne00, y, scale);
  10241. }
  10242. }
  10243. }
  10244. }
  10245. static void ggml_compute_forward_rms_norm(
  10246. const struct ggml_compute_params * params,
  10247. struct ggml_tensor * dst) {
  10248. const struct ggml_tensor * src0 = dst->src[0];
  10249. switch (src0->type) {
  10250. case GGML_TYPE_F32:
  10251. {
  10252. ggml_compute_forward_rms_norm_f32(params, dst);
  10253. } break;
  10254. default:
  10255. {
  10256. GGML_ABORT("fatal error");
  10257. }
  10258. }
  10259. }
  10260. static void ggml_compute_forward_rms_norm_back_f32(
  10261. const struct ggml_compute_params * params,
  10262. struct ggml_tensor * dst) {
  10263. const struct ggml_tensor * src0 = dst->src[0];
  10264. const struct ggml_tensor * src1 = dst->src[1];
  10265. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  10266. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10267. const int ith = params->ith;
  10268. const int nth = params->nth;
  10269. GGML_TENSOR_BINARY_OP_LOCALS
  10270. float eps;
  10271. memcpy(&eps, dst->op_params, sizeof(float));
  10272. // TODO: optimize
  10273. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10274. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10275. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  10276. // src1 is same shape as src0 => same indices
  10277. const int64_t i11 = i01;
  10278. const int64_t i12 = i02;
  10279. const int64_t i13 = i03;
  10280. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  10281. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  10282. ggml_float sum_xx = 0.0;
  10283. ggml_float sum_xdz = 0.0;
  10284. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10285. sum_xx += (ggml_float)(x[i00] * x[i00]);
  10286. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  10287. }
  10288. //const float mean = (float)(sum_xx)/ne00;
  10289. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  10290. const float sum_eps = (float)(sum_xx) + eps*ne00;
  10291. //const float mean_xdz = (float)(sum_xdz)/ne00;
  10292. // we could cache rms from forward pass to improve performance.
  10293. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  10294. //const float rms = sqrtf(mean_eps);
  10295. const float rrms = 1.0f / sqrtf(mean_eps);
  10296. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  10297. {
  10298. // z = rms_norm(x)
  10299. //
  10300. // rms_norm(src0) =
  10301. // scale(
  10302. // src0,
  10303. // div(
  10304. // 1,
  10305. // sqrt(
  10306. // add(
  10307. // scale(
  10308. // sum(
  10309. // sqr(
  10310. // src0)),
  10311. // (1.0/N)),
  10312. // eps))));
  10313. // postorder:
  10314. // ## op args grad
  10315. // 00 param src0 grad[#00]
  10316. // 01 const 1
  10317. // 02 sqr (#00) grad[#02]
  10318. // 03 sum (#02) grad[#03]
  10319. // 04 const 1/N
  10320. // 05 scale (#03, #04) grad[#05]
  10321. // 06 const eps
  10322. // 07 add (#05, #06) grad[#07]
  10323. // 08 sqrt (#07) grad[#08]
  10324. // 09 div (#01,#08) grad[#09]
  10325. // 10 scale (#00,#09) grad[#10]
  10326. //
  10327. // backward pass, given grad[#10]
  10328. // #10: scale
  10329. // grad[#00] += scale(grad[#10],#09)
  10330. // grad[#09] += sum(mul(grad[#10],#00))
  10331. // #09: div
  10332. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  10333. // #08: sqrt
  10334. // grad[#07] += mul(grad[#08], div(0.5, #08))
  10335. // #07: add
  10336. // grad[#05] += grad[#07]
  10337. // #05: scale
  10338. // grad[#03] += scale(grad[#05],#04)
  10339. // #03: sum
  10340. // grad[#02] += repeat(grad[#03], #02)
  10341. // #02:
  10342. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  10343. //
  10344. // substitute and simplify:
  10345. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  10346. // grad[#02] = repeat(grad[#03], #02)
  10347. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  10348. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  10349. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  10350. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  10351. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  10352. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  10353. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  10354. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  10355. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  10356. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  10357. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  10358. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  10359. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  10360. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  10361. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  10362. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  10363. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  10364. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  10365. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  10366. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  10367. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  10368. // a = b*c + d*e
  10369. // a = b*c*f/f + d*e*f/f
  10370. // a = (b*c*f + d*e*f)*(1/f)
  10371. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  10372. // a = (b + d*e/c)*c
  10373. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  10374. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  10375. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  10376. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  10377. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  10378. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  10379. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  10380. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  10381. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  10382. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  10383. }
  10384. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  10385. // post-order:
  10386. // dx := x
  10387. // dx := scale(dx,-mean_xdz/mean_eps)
  10388. // dx := add(dx, dz)
  10389. // dx := scale(dx, rrms)
  10390. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  10391. ggml_vec_cpy_f32 (ne00, dx, x);
  10392. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  10393. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  10394. ggml_vec_acc_f32 (ne00, dx, dz);
  10395. ggml_vec_scale_f32(ne00, dx, rrms);
  10396. }
  10397. }
  10398. }
  10399. }
  10400. static void ggml_compute_forward_rms_norm_back(
  10401. const struct ggml_compute_params * params,
  10402. struct ggml_tensor * dst) {
  10403. const struct ggml_tensor * src0 = dst->src[0];
  10404. switch (src0->type) {
  10405. case GGML_TYPE_F32:
  10406. {
  10407. ggml_compute_forward_rms_norm_back_f32(params, dst);
  10408. } break;
  10409. default:
  10410. {
  10411. GGML_ABORT("fatal error");
  10412. }
  10413. }
  10414. }
  10415. // ggml_compute_forward_group_norm
  10416. static void ggml_compute_forward_group_norm_f32(
  10417. const struct ggml_compute_params * params,
  10418. struct ggml_tensor * dst) {
  10419. const struct ggml_tensor * src0 = dst->src[0];
  10420. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10421. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10422. const int ith = params->ith;
  10423. const int nth = params->nth;
  10424. GGML_TENSOR_UNARY_OP_LOCALS
  10425. // TODO: optimize
  10426. float eps;
  10427. memcpy(&eps, dst->op_params + 1, sizeof(float));
  10428. int n_channels = src0->ne[2];
  10429. int n_groups = dst->op_params[0];
  10430. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  10431. for (int i = ith; i < n_groups; i += nth) {
  10432. int start = i * n_channels_per_group;
  10433. int end = start + n_channels_per_group;
  10434. if (end > n_channels) {
  10435. end = n_channels;
  10436. }
  10437. int step = end - start;
  10438. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10439. ggml_float sum = 0.0;
  10440. for (int64_t i02 = start; i02 < end; i02++) {
  10441. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10442. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  10443. ggml_float sumr = 0.0;
  10444. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10445. sumr += (ggml_float)x[i00];
  10446. }
  10447. sum += sumr;
  10448. }
  10449. }
  10450. const float mean = sum / (ne00 * ne01 * step);
  10451. ggml_float sum2 = 0.0;
  10452. for (int64_t i02 = start; i02 < end; i02++) {
  10453. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10454. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  10455. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  10456. ggml_float sumr = 0.0;
  10457. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10458. float v = x[i00] - mean;
  10459. y[i00] = v;
  10460. sumr += (ggml_float)(v * v);
  10461. }
  10462. sum2 += sumr;
  10463. }
  10464. }
  10465. const float variance = sum2 / (ne00 * ne01 * step);
  10466. const float scale = 1.0f / sqrtf(variance + eps);
  10467. for (int64_t i02 = start; i02 < end; i02++) {
  10468. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10469. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  10470. ggml_vec_scale_f32(ne00, y, scale);
  10471. }
  10472. }
  10473. }
  10474. }
  10475. }
  10476. static void ggml_compute_forward_group_norm(
  10477. const struct ggml_compute_params * params,
  10478. struct ggml_tensor * dst) {
  10479. const struct ggml_tensor * src0 = dst->src[0];
  10480. switch (src0->type) {
  10481. case GGML_TYPE_F32:
  10482. {
  10483. ggml_compute_forward_group_norm_f32(params, dst);
  10484. } break;
  10485. default:
  10486. {
  10487. GGML_ABORT("fatal error");
  10488. }
  10489. }
  10490. }
  10491. // ggml_compute_forward_mul_mat
  10492. static void ggml_compute_forward_mul_mat_one_chunk(
  10493. const struct ggml_compute_params * params,
  10494. struct ggml_tensor * dst,
  10495. const int64_t num_rows_per_vec_dot,
  10496. const int64_t ir0_start,
  10497. const int64_t ir0_end,
  10498. const int64_t ir1_start,
  10499. const int64_t ir1_end) {
  10500. const struct ggml_tensor * src0 = dst->src[0];
  10501. const struct ggml_tensor * src1 = dst->src[1];
  10502. GGML_TENSOR_BINARY_OP_LOCALS
  10503. const enum ggml_type type = src0->type;
  10504. const bool src1_cont = ggml_is_contiguous(src1);
  10505. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10506. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10507. // broadcast factors
  10508. const int64_t r2 = ne12 / ne02;
  10509. const int64_t r3 = ne13 / ne03;
  10510. //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
  10511. // threads with no work simply yield (not sure if it helps)
  10512. if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
  10513. return;
  10514. }
  10515. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10516. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10517. assert(ne12 % ne02 == 0);
  10518. assert(ne13 % ne03 == 0);
  10519. // block-tiling attempt
  10520. const int64_t blck_0 = 16;
  10521. const int64_t blck_1 = 16;
  10522. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  10523. // attempt to reduce false-sharing (does not seem to make a difference)
  10524. // 16 * 2, accounting for mmla kernels
  10525. float tmp[32];
  10526. for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
  10527. for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
  10528. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
  10529. const int64_t i13 = (ir1 / (ne12 * ne1));
  10530. const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
  10531. const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
  10532. // broadcast src0 into src1
  10533. const int64_t i03 = i13 / r3;
  10534. const int64_t i02 = i12 / r2;
  10535. const int64_t i1 = i11;
  10536. const int64_t i2 = i12;
  10537. const int64_t i3 = i13;
  10538. const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
  10539. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10540. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10541. // the original src1 data pointer, so we should index using the indices directly
  10542. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10543. const char * src1_col = (const char*)wdata +
  10544. (src1_cont || src1->type != vec_dot_type
  10545. ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
  10546. : (i11 * nb11 + i12 * nb12 + i13 * nb13));
  10547. float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
  10548. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
  10549. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10550. //}
  10551. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
  10552. vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
  10553. }
  10554. for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
  10555. memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
  10556. }
  10557. }
  10558. }
  10559. }
  10560. }
  10561. static void ggml_compute_forward_mul_mat(
  10562. const struct ggml_compute_params * params,
  10563. struct ggml_tensor * dst) {
  10564. const struct ggml_tensor * src0 = dst->src[0];
  10565. const struct ggml_tensor * src1 = dst->src[1];
  10566. GGML_TENSOR_BINARY_OP_LOCALS
  10567. const int ith = params->ith;
  10568. const int nth = params->nth;
  10569. const enum ggml_type type = src0->type;
  10570. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10571. ggml_from_float_t const from_float = type_traits[vec_dot_type].from_float;
  10572. ggml_from_float_to_mat_t const from_float_to_mat = type_traits[vec_dot_type].from_float_to_mat;
  10573. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  10574. int64_t const matmul_num_cols = type_traits[type].ncols;
  10575. int64_t const blck_size_interleave = type_traits[type].blck_size_interleave;
  10576. ggml_gemv_t const gemv = type_traits[type].gemv;
  10577. ggml_gemm_t const gemm = type_traits[type].gemm;
  10578. GGML_ASSERT(ne0 == ne01);
  10579. GGML_ASSERT(ne1 == ne11);
  10580. GGML_ASSERT(ne2 == ne12);
  10581. GGML_ASSERT(ne3 == ne13);
  10582. // we don't support permuted src0 or src1
  10583. GGML_ASSERT(nb00 == ggml_type_size(type));
  10584. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10585. // dst cannot be transposed or permuted
  10586. GGML_ASSERT(nb0 == sizeof(float));
  10587. GGML_ASSERT(nb0 <= nb1);
  10588. GGML_ASSERT(nb1 <= nb2);
  10589. GGML_ASSERT(nb2 <= nb3);
  10590. // nb01 >= nb00 - src0 is not transposed
  10591. // compute by src0 rows
  10592. #if GGML_USE_LLAMAFILE
  10593. // broadcast factors
  10594. const int64_t r2 = ne12 / ne02;
  10595. const int64_t r3 = ne13 / ne03;
  10596. const bool src1_cont = ggml_is_contiguous(src1);
  10597. if (src1_cont) {
  10598. for (int64_t i13 = 0; i13 < ne13; i13++)
  10599. for (int64_t i12 = 0; i12 < ne12; i12++)
  10600. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10601. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10602. nb01/ggml_type_size(src0->type),
  10603. (const char *)src1->data + i12*nb12 + i13*nb13,
  10604. nb11/ggml_type_size(src1->type),
  10605. (char *)dst->data + i12*nb2 + i13*nb3,
  10606. nb1/ggml_type_size(dst->type),
  10607. ith, nth,
  10608. src0->type,
  10609. src1->type,
  10610. dst->type))
  10611. goto UseGgmlGemm1;
  10612. return;
  10613. }
  10614. UseGgmlGemm1:;
  10615. #endif
  10616. if (src1->type != vec_dot_type) {
  10617. char * wdata = params->wdata;
  10618. const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
  10619. const size_t nbw2 = nbw1*ne11;
  10620. const size_t nbw3 = nbw2*ne12;
  10621. assert(params->wsize >= ne13*nbw3);
  10622. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10623. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10624. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10625. int64_t i11_processed = 0;
  10626. if ((ggml_n_dims(src1) == 2) && from_float_to_mat && gemm) {
  10627. for (int64_t i11 = ith * 4; i11 < ne11 - ne11 % 4; i11 += nth * 4) {
  10628. from_float_to_mat((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  10629. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  10630. 4, ne10, blck_size_interleave);
  10631. }
  10632. i11_processed = ne11 - ne11 % 4;
  10633. }
  10634. for (int64_t i11 = i11_processed + ith; i11 < ne11; i11 += nth) {
  10635. from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  10636. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  10637. ne10);
  10638. }
  10639. }
  10640. }
  10641. }
  10642. if (ith == 0) {
  10643. // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
  10644. atomic_store_explicit(&params->threadpool->current_chunk, nth, memory_order_relaxed);
  10645. }
  10646. ggml_barrier(params->threadpool);
  10647. #if GGML_USE_LLAMAFILE
  10648. if (src1->type != vec_dot_type) {
  10649. const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10650. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10651. for (int64_t i13 = 0; i13 < ne13; i13++)
  10652. for (int64_t i12 = 0; i12 < ne12; i12++)
  10653. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10654. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10655. nb01/ggml_type_size(src0->type),
  10656. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  10657. row_size/ggml_type_size(vec_dot_type),
  10658. (char *)dst->data + i12*nb2 + i13*nb3,
  10659. nb1/ggml_type_size(dst->type),
  10660. ith, nth,
  10661. src0->type,
  10662. vec_dot_type,
  10663. dst->type))
  10664. goto UseGgmlGemm2;
  10665. return;
  10666. }
  10667. UseGgmlGemm2:;
  10668. #endif
  10669. // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
  10670. const int64_t nr0 = ne0;
  10671. // This is the size of the rest of the dimensions of the result
  10672. const int64_t nr1 = ne1 * ne2 * ne3;
  10673. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  10674. int64_t num_rows_per_vec_dot = vec_dot_num_rows;
  10675. // TODO: currently the mmla kernels support only even numbered rows/cols.
  10676. // this check can be removed once they are extended to support odd numbered rows/cols too
  10677. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  10678. num_rows_per_vec_dot = 1;
  10679. }
  10680. // Now select a reasonable chunk size.
  10681. int chunk_size = 16;
  10682. // We need to step up the size if it's small
  10683. if (nr0 == 1 || nr1 == 1) {
  10684. chunk_size = 64;
  10685. }
  10686. // distribute the work across the inner or outer loop based on which one is larger
  10687. // The number of chunks in the 0/1 dim.
  10688. // CEIL(nr0/chunk_size)
  10689. int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
  10690. int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
  10691. // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
  10692. // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
  10693. // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
  10694. if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
  10695. // distribute the thread work across the inner or outer loop based on which one is larger
  10696. nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10697. nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10698. }
  10699. // The number of elements in each chunk
  10700. const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
  10701. const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
  10702. if ((ggml_n_dims(src0) == 2) && gemv) {
  10703. const void * src1_wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10704. const size_t src1_col_stride = ggml_is_contiguous(src1) || src1->type != vec_dot_type ? ggml_row_size(vec_dot_type, ne10) : nb11;
  10705. int64_t src0_start = (ith * ne01) / nth;
  10706. int64_t src0_end = ((ith + 1) * ne01) / nth;
  10707. src0_start = (src0_start % matmul_num_cols) ? src0_start + matmul_num_cols - (src0_start % matmul_num_cols): src0_start;
  10708. src0_end = (src0_end % matmul_num_cols) ? src0_end + matmul_num_cols - (src0_end % matmul_num_cols): src0_end;
  10709. if (src0_start >= src0_end) return;
  10710. // If there are more than three rows in src1, use gemm; otherwise, use gemv.
  10711. if (gemm && (ne11 > 3)) {
  10712. gemm(ne00, (float *)((char *) dst->data) + src0_start, ne01, (const char *) src0->data + src0_start * nb01,
  10713. (const char *) src1_wdata, ne11 - ne11 % 4, src0_end - src0_start);
  10714. }
  10715. for (int iter = gemm ? ne11 - ne11 % 4 : 0; iter < ne11; iter++) {
  10716. gemv(ne00, (float *)((char *) dst->data + (iter * nb1)) + src0_start, ne01,
  10717. (const char *) src0->data + src0_start * nb01, (const char *) src1_wdata + (src1_col_stride * iter), 1,
  10718. src0_end - src0_start);
  10719. }
  10720. return;
  10721. }
  10722. // The first chunk comes from our thread_id, the rest will get auto-assigned.
  10723. int current_chunk = ith;
  10724. while (current_chunk < nchunk0 * nchunk1) {
  10725. const int64_t ith0 = current_chunk % nchunk0;
  10726. const int64_t ith1 = current_chunk / nchunk0;
  10727. const int64_t ir0_start = dr0 * ith0;
  10728. const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
  10729. const int64_t ir1_start = dr1 * ith1;
  10730. const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
  10731. ggml_compute_forward_mul_mat_one_chunk(params, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
  10732. if (nth >= nchunk0 * nchunk1) {
  10733. break;
  10734. }
  10735. current_chunk = atomic_fetch_add_explicit(&params->threadpool->current_chunk, 1, memory_order_relaxed);
  10736. }
  10737. }
  10738. // ggml_compute_forward_mul_mat_id
  10739. static void ggml_compute_forward_mul_mat_id(
  10740. const struct ggml_compute_params * params,
  10741. struct ggml_tensor * dst) {
  10742. const struct ggml_tensor * src0 = dst->src[0];
  10743. const struct ggml_tensor * src1 = dst->src[1];
  10744. const struct ggml_tensor * ids = dst->src[2];
  10745. GGML_TENSOR_BINARY_OP_LOCALS
  10746. const int ith = params->ith;
  10747. const int nth = params->nth;
  10748. const enum ggml_type type = src0->type;
  10749. const bool src1_cont = ggml_is_contiguous(src1);
  10750. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10751. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10752. ggml_from_float_t const from_float = type_traits[vec_dot_type].from_float;
  10753. int64_t const matmul_num_cols = type_traits[type].ncols;
  10754. ggml_gemv_t const gemv = type_traits[type].gemv;
  10755. // we don't support permuted src0 or src1
  10756. GGML_ASSERT(nb00 == ggml_type_size(type));
  10757. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10758. // dst cannot be transposed or permuted
  10759. GGML_ASSERT(nb0 == sizeof(float));
  10760. GGML_ASSERT(nb0 <= nb1);
  10761. GGML_ASSERT(nb1 <= nb2);
  10762. GGML_ASSERT(nb2 <= nb3);
  10763. // row groups
  10764. const int n_ids = ids->ne[0]; // n_expert_used
  10765. const int n_as = ne02; // n_expert
  10766. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  10767. (char *) params->wdata :
  10768. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  10769. struct mmid_row_mapping {
  10770. int32_t i1;
  10771. int32_t i2;
  10772. };
  10773. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  10774. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  10775. if (src1->type != vec_dot_type) {
  10776. char * wdata = params->wdata;
  10777. const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
  10778. const size_t nbw2 = nbw1*ne11;
  10779. const size_t nbw3 = nbw2*ne12;
  10780. assert(params->wsize >= ne13*nbw3);
  10781. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10782. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10783. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10784. for (int64_t i11 = ith; i11 < ne11; i11 += nth) {
  10785. from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  10786. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  10787. ne10);
  10788. }
  10789. }
  10790. }
  10791. }
  10792. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  10793. if (ith == 0) {
  10794. // initialize matrix_row_counts
  10795. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  10796. // group rows by src0 matrix
  10797. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  10798. for (int id = 0; id < n_ids; ++id) {
  10799. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  10800. assert(i02 >= 0 && i02 < n_as);
  10801. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  10802. matrix_row_counts[i02] += 1;
  10803. }
  10804. }
  10805. }
  10806. ggml_barrier(params->threadpool);
  10807. // compute each matrix multiplication in sequence
  10808. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  10809. const int64_t cne1 = matrix_row_counts[cur_a];
  10810. if (cne1 == 0) {
  10811. continue;
  10812. }
  10813. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  10814. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10815. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10816. const int64_t nr0 = ne01; // src0 rows
  10817. const int64_t nr1 = cne1; // src1 rows
  10818. if (((ggml_n_dims(src0) - 1) == 2) && gemv) {
  10819. int64_t src0_cur_start = (ith * ne01) / nth;
  10820. int64_t src0_cur_end = ((ith + 1) * ne01) / nth;
  10821. src0_cur_start = (src0_cur_start % matmul_num_cols) ? src0_cur_start + matmul_num_cols - (src0_cur_start % matmul_num_cols): src0_cur_start;
  10822. src0_cur_end = (src0_cur_end % matmul_num_cols) ? src0_cur_end + matmul_num_cols - (src0_cur_end % matmul_num_cols): src0_cur_end;
  10823. if (src0_cur_start >= src0_cur_end) return;
  10824. for (int ir1 = 0; ir1 < nr1; ir1++) {
  10825. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, ir1);
  10826. const int id = row_mapping.i1; // selected expert index
  10827. const int64_t i11 = id % ne11;
  10828. const int64_t i12 = row_mapping.i2; // row index in src1
  10829. const int64_t i1 = id; // selected expert index
  10830. const int64_t i2 = i12; // row
  10831. const char * src1_col = (const char *) wdata +
  10832. (src1_cont || src1->type != vec_dot_type
  10833. ? (i11 + i12 * ne11) * row_size
  10834. : (i11 * nb11 + i12 * nb12));
  10835. gemv(ne00, (float *)((char *) dst->data + (i1 * nb1 + i2 * nb2)) + src0_cur_start, ne01,
  10836. (const char *) src0_cur + src0_cur_start * nb01, src1_col, 1, src0_cur_end - src0_cur_start);
  10837. }
  10838. continue;
  10839. }
  10840. // distribute the thread work across the inner or outer loop based on which one is larger
  10841. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10842. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10843. const int64_t ith0 = ith % nth0;
  10844. const int64_t ith1 = ith / nth0;
  10845. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  10846. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  10847. const int64_t ir010 = dr0*ith0;
  10848. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  10849. const int64_t ir110 = dr1*ith1;
  10850. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  10851. // threads with no work simply yield (not sure if it helps)
  10852. //if (ir010 >= ir011 || ir110 >= ir111) {
  10853. // sched_yield();
  10854. // continue;
  10855. //}
  10856. // block-tiling attempt
  10857. const int64_t blck_0 = 16;
  10858. const int64_t blck_1 = 16;
  10859. // attempt to reduce false-sharing (does not seem to make a difference)
  10860. float tmp[16];
  10861. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  10862. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  10863. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  10864. const int64_t _i12 = ir1; // logical row index for this expert
  10865. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  10866. const int id = row_mapping.i1; // selected expert index
  10867. const int64_t i11 = id % ne11;
  10868. const int64_t i12 = row_mapping.i2; // row index in src1
  10869. const int64_t i1 = id; // selected expert index
  10870. const int64_t i2 = i12; // row
  10871. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10872. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10873. // the original src1 data pointer, so we should index using the indices directly
  10874. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10875. const char * src1_col = (const char *) wdata +
  10876. (src1_cont || src1->type != vec_dot_type
  10877. ? (i11 + i12*ne11)*row_size
  10878. : (i11*nb11 + i12*nb12));
  10879. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  10880. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10881. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10882. //}
  10883. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10884. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  10885. }
  10886. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  10887. }
  10888. }
  10889. }
  10890. }
  10891. #undef MMID_MATRIX_ROW
  10892. }
  10893. // ggml_compute_forward_out_prod
  10894. static void ggml_compute_forward_out_prod_f32(
  10895. const struct ggml_compute_params * params,
  10896. struct ggml_tensor * dst) {
  10897. const struct ggml_tensor * src0 = dst->src[0];
  10898. const struct ggml_tensor * src1 = dst->src[1];
  10899. GGML_TENSOR_BINARY_OP_LOCALS
  10900. const int ith = params->ith;
  10901. const int nth = params->nth;
  10902. GGML_ASSERT(ne0 == ne00);
  10903. GGML_ASSERT(ne1 == ne10);
  10904. GGML_ASSERT(ne2 == ne02);
  10905. GGML_ASSERT(ne02 == ne12);
  10906. GGML_ASSERT(ne3 == ne13);
  10907. GGML_ASSERT(ne03 == ne13);
  10908. // we don't support permuted src0 or src1
  10909. GGML_ASSERT(nb00 == sizeof(float));
  10910. // dst cannot be transposed or permuted
  10911. GGML_ASSERT(nb0 == sizeof(float));
  10912. // GGML_ASSERT(nb0 <= nb1);
  10913. // GGML_ASSERT(nb1 <= nb2);
  10914. // GGML_ASSERT(nb2 <= nb3);
  10915. // nb01 >= nb00 - src0 is not transposed
  10916. // compute by src0 rows
  10917. if (ith == 0) {
  10918. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10919. }
  10920. ggml_barrier(params->threadpool);
  10921. // dst[:,:,:,:] = 0
  10922. // for i2,i3:
  10923. // for i1:
  10924. // for i01:
  10925. // for i0:
  10926. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10927. // parallelize by last three dimensions
  10928. // total rows in dst
  10929. const int64_t nr = ne1*ne2*ne3;
  10930. // rows per thread
  10931. const int64_t dr = (nr + nth - 1)/nth;
  10932. // row range for this thread
  10933. const int64_t ir0 = dr*ith;
  10934. const int64_t ir1 = MIN(ir0 + dr, nr);
  10935. // block-tiling attempt
  10936. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  10937. const int64_t blck_1 = 16;
  10938. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  10939. const int64_t bir1 = MIN(bir + blck_1, ir1);
  10940. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  10941. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  10942. for (int64_t ir = bir; ir < bir1; ++ir) {
  10943. // dst indices
  10944. const int64_t i3 = ir/(ne2*ne1);
  10945. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10946. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10947. const int64_t i02 = i2;
  10948. const int64_t i03 = i3;
  10949. //const int64_t i10 = i1;
  10950. const int64_t i12 = i2;
  10951. const int64_t i13 = i3;
  10952. #if GGML_VEC_MAD_UNROLL > 2
  10953. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  10954. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  10955. const int64_t i11 = i01;
  10956. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10957. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10958. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10959. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  10960. }
  10961. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  10962. const int64_t i11 = i01;
  10963. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10964. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10965. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10966. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10967. }
  10968. #else
  10969. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  10970. const int64_t i11 = i01;
  10971. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10972. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10973. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10974. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10975. }
  10976. #endif
  10977. }
  10978. }
  10979. }
  10980. }
  10981. static void ggml_compute_forward_out_prod_q_f32(
  10982. const struct ggml_compute_params * params,
  10983. struct ggml_tensor * dst) {
  10984. const struct ggml_tensor * src0 = dst->src[0];
  10985. const struct ggml_tensor * src1 = dst->src[1];
  10986. GGML_TENSOR_BINARY_OP_LOCALS;
  10987. const int ith = params->ith;
  10988. const int nth = params->nth;
  10989. const enum ggml_type type = src0->type;
  10990. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10991. GGML_ASSERT(ne02 == ne12);
  10992. GGML_ASSERT(ne03 == ne13);
  10993. GGML_ASSERT(ne2 == ne12);
  10994. GGML_ASSERT(ne3 == ne13);
  10995. // we don't support permuted src0 dim0
  10996. GGML_ASSERT(nb00 == ggml_type_size(type));
  10997. // dst dim0 cannot be transposed or permuted
  10998. GGML_ASSERT(nb0 == sizeof(float));
  10999. // GGML_ASSERT(nb0 <= nb1);
  11000. // GGML_ASSERT(nb1 <= nb2);
  11001. // GGML_ASSERT(nb2 <= nb3);
  11002. GGML_ASSERT(ne0 == ne00);
  11003. GGML_ASSERT(ne1 == ne10);
  11004. GGML_ASSERT(ne2 == ne02);
  11005. GGML_ASSERT(ne3 == ne03);
  11006. // nb01 >= nb00 - src0 is not transposed
  11007. // compute by src0 rows
  11008. if (ith == 0) {
  11009. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  11010. }
  11011. ggml_barrier(params->threadpool);
  11012. // parallelize by last three dimensions
  11013. // total rows in dst
  11014. const int64_t nr = ne1*ne2*ne3;
  11015. // rows per thread
  11016. const int64_t dr = (nr + nth - 1)/nth;
  11017. // row range for this thread
  11018. const int64_t ir0 = dr*ith;
  11019. const int64_t ir1 = MIN(ir0 + dr, nr);
  11020. // dst[:,:,:,:] = 0
  11021. // for i2,i3:
  11022. // for i1:
  11023. // for i01:
  11024. // for i0:
  11025. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  11026. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  11027. for (int64_t ir = ir0; ir < ir1; ++ir) {
  11028. // dst indices
  11029. const int64_t i3 = ir/(ne2*ne1);
  11030. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  11031. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  11032. const int64_t i02 = i2;
  11033. const int64_t i03 = i3;
  11034. //const int64_t i10 = i1;
  11035. const int64_t i12 = i2;
  11036. const int64_t i13 = i3;
  11037. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  11038. const int64_t i11 = i01;
  11039. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  11040. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  11041. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  11042. dequantize_row_q(s0, wdata, ne0);
  11043. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  11044. }
  11045. }
  11046. }
  11047. static void ggml_compute_forward_out_prod(
  11048. const struct ggml_compute_params * params,
  11049. struct ggml_tensor * dst) {
  11050. const struct ggml_tensor * src0 = dst->src[0];
  11051. switch (src0->type) {
  11052. case GGML_TYPE_Q4_0:
  11053. case GGML_TYPE_Q4_1:
  11054. case GGML_TYPE_Q5_0:
  11055. case GGML_TYPE_Q5_1:
  11056. case GGML_TYPE_Q8_0:
  11057. case GGML_TYPE_Q2_K:
  11058. case GGML_TYPE_Q3_K:
  11059. case GGML_TYPE_Q4_K:
  11060. case GGML_TYPE_Q5_K:
  11061. case GGML_TYPE_Q6_K:
  11062. case GGML_TYPE_TQ1_0:
  11063. case GGML_TYPE_TQ2_0:
  11064. case GGML_TYPE_IQ2_XXS:
  11065. case GGML_TYPE_IQ2_XS:
  11066. case GGML_TYPE_IQ3_XXS:
  11067. case GGML_TYPE_IQ1_S:
  11068. case GGML_TYPE_IQ1_M:
  11069. case GGML_TYPE_IQ4_NL:
  11070. case GGML_TYPE_IQ4_XS:
  11071. case GGML_TYPE_IQ3_S:
  11072. case GGML_TYPE_IQ2_S:
  11073. case GGML_TYPE_Q4_0_4_4:
  11074. case GGML_TYPE_Q4_0_4_8:
  11075. case GGML_TYPE_Q4_0_8_8:
  11076. {
  11077. ggml_compute_forward_out_prod_q_f32(params, dst);
  11078. } break;
  11079. case GGML_TYPE_F16:
  11080. {
  11081. GGML_ABORT("fatal error"); // todo
  11082. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  11083. }
  11084. case GGML_TYPE_F32:
  11085. {
  11086. ggml_compute_forward_out_prod_f32(params, dst);
  11087. } break;
  11088. default:
  11089. {
  11090. GGML_ABORT("fatal error");
  11091. }
  11092. }
  11093. }
  11094. // ggml_compute_forward_scale
  11095. static void ggml_compute_forward_scale_f32(
  11096. const struct ggml_compute_params * params,
  11097. struct ggml_tensor * dst) {
  11098. const struct ggml_tensor * src0 = dst->src[0];
  11099. GGML_ASSERT(ggml_is_contiguous(src0));
  11100. GGML_ASSERT(ggml_is_contiguous(dst));
  11101. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11102. // scale factor
  11103. float v;
  11104. memcpy(&v, dst->op_params, sizeof(float));
  11105. const int ith = params->ith;
  11106. const int nth = params->nth;
  11107. const int nc = src0->ne[0];
  11108. const int nr = ggml_nrows(src0);
  11109. // rows per thread
  11110. const int dr = (nr + nth - 1)/nth;
  11111. // row range for this thread
  11112. const int ir0 = dr*ith;
  11113. const int ir1 = MIN(ir0 + dr, nr);
  11114. const size_t nb01 = src0->nb[1];
  11115. const size_t nb1 = dst->nb[1];
  11116. for (int i1 = ir0; i1 < ir1; i1++) {
  11117. if (dst->data != src0->data) {
  11118. // src0 is same shape as dst => same indices
  11119. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  11120. }
  11121. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  11122. }
  11123. }
  11124. static void ggml_compute_forward_scale(
  11125. const struct ggml_compute_params * params,
  11126. struct ggml_tensor * dst) {
  11127. const struct ggml_tensor * src0 = dst->src[0];
  11128. switch (src0->type) {
  11129. case GGML_TYPE_F32:
  11130. {
  11131. ggml_compute_forward_scale_f32(params, dst);
  11132. } break;
  11133. default:
  11134. {
  11135. GGML_ABORT("fatal error");
  11136. }
  11137. }
  11138. }
  11139. // ggml_compute_forward_set
  11140. static void ggml_compute_forward_set_f32(
  11141. const struct ggml_compute_params * params,
  11142. struct ggml_tensor * dst) {
  11143. const struct ggml_tensor * src0 = dst->src[0];
  11144. const struct ggml_tensor * src1 = dst->src[1];
  11145. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11146. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  11147. // view src0 and dst with these strides and data offset inbytes during set
  11148. // nb0 is implicitly element_size because src0 and dst are contiguous
  11149. size_t nb1 = ((int32_t *) dst->op_params)[0];
  11150. size_t nb2 = ((int32_t *) dst->op_params)[1];
  11151. size_t nb3 = ((int32_t *) dst->op_params)[2];
  11152. size_t offset = ((int32_t *) dst->op_params)[3];
  11153. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  11154. if (!inplace) {
  11155. if (params->ith == 0) {
  11156. // memcpy needs to be synchronized across threads to avoid race conditions.
  11157. // => do it in INIT phase
  11158. memcpy(
  11159. ((char *) dst->data),
  11160. ((char *) src0->data),
  11161. ggml_nbytes(dst));
  11162. }
  11163. ggml_barrier(params->threadpool);
  11164. }
  11165. const int ith = params->ith;
  11166. const int nth = params->nth;
  11167. const int nr = ggml_nrows(src1);
  11168. const int nc = src1->ne[0];
  11169. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  11170. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  11171. // src0 and dst as viewed during set
  11172. const size_t nb0 = ggml_element_size(src0);
  11173. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  11174. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  11175. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  11176. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  11177. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  11178. GGML_ASSERT(nb10 == sizeof(float));
  11179. // rows per thread
  11180. const int dr = (nr + nth - 1)/nth;
  11181. // row range for this thread
  11182. const int ir0 = dr*ith;
  11183. const int ir1 = MIN(ir0 + dr, nr);
  11184. for (int ir = ir0; ir < ir1; ++ir) {
  11185. // src0 and dst are viewed with shape of src1 and offset
  11186. // => same indices
  11187. const int i3 = ir/(ne12*ne11);
  11188. const int i2 = (ir - i3*ne12*ne11)/ne11;
  11189. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  11190. ggml_vec_cpy_f32(nc,
  11191. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  11192. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  11193. }
  11194. }
  11195. static void ggml_compute_forward_set(
  11196. const struct ggml_compute_params * params,
  11197. struct ggml_tensor * dst) {
  11198. const struct ggml_tensor * src0 = dst->src[0];
  11199. switch (src0->type) {
  11200. case GGML_TYPE_F32:
  11201. {
  11202. ggml_compute_forward_set_f32(params, dst);
  11203. } break;
  11204. case GGML_TYPE_F16:
  11205. case GGML_TYPE_BF16:
  11206. case GGML_TYPE_Q4_0:
  11207. case GGML_TYPE_Q4_1:
  11208. case GGML_TYPE_Q5_0:
  11209. case GGML_TYPE_Q5_1:
  11210. case GGML_TYPE_Q8_0:
  11211. case GGML_TYPE_Q8_1:
  11212. case GGML_TYPE_Q2_K:
  11213. case GGML_TYPE_Q3_K:
  11214. case GGML_TYPE_Q4_K:
  11215. case GGML_TYPE_Q5_K:
  11216. case GGML_TYPE_Q6_K:
  11217. case GGML_TYPE_TQ1_0:
  11218. case GGML_TYPE_TQ2_0:
  11219. case GGML_TYPE_IQ2_XXS:
  11220. case GGML_TYPE_IQ2_XS:
  11221. case GGML_TYPE_IQ3_XXS:
  11222. case GGML_TYPE_IQ1_S:
  11223. case GGML_TYPE_IQ1_M:
  11224. case GGML_TYPE_IQ4_NL:
  11225. case GGML_TYPE_IQ4_XS:
  11226. case GGML_TYPE_IQ3_S:
  11227. case GGML_TYPE_IQ2_S:
  11228. case GGML_TYPE_Q4_0_4_4:
  11229. case GGML_TYPE_Q4_0_4_8:
  11230. case GGML_TYPE_Q4_0_8_8:
  11231. default:
  11232. {
  11233. GGML_ABORT("fatal error");
  11234. }
  11235. }
  11236. }
  11237. // ggml_compute_forward_cpy
  11238. static void ggml_compute_forward_cpy(
  11239. const struct ggml_compute_params * params,
  11240. struct ggml_tensor * dst) {
  11241. ggml_compute_forward_dup(params, dst);
  11242. }
  11243. // ggml_compute_forward_cont
  11244. static void ggml_compute_forward_cont(
  11245. const struct ggml_compute_params * params,
  11246. struct ggml_tensor * dst) {
  11247. ggml_compute_forward_dup(params, dst);
  11248. }
  11249. // ggml_compute_forward_reshape
  11250. static void ggml_compute_forward_reshape(
  11251. const struct ggml_compute_params * params,
  11252. struct ggml_tensor * dst) {
  11253. // NOP
  11254. UNUSED(params);
  11255. UNUSED(dst);
  11256. }
  11257. // ggml_compute_forward_view
  11258. static void ggml_compute_forward_view(
  11259. const struct ggml_compute_params * params,
  11260. const struct ggml_tensor * dst) {
  11261. // NOP
  11262. UNUSED(params);
  11263. UNUSED(dst);
  11264. }
  11265. // ggml_compute_forward_permute
  11266. static void ggml_compute_forward_permute(
  11267. const struct ggml_compute_params * params,
  11268. const struct ggml_tensor * dst) {
  11269. // NOP
  11270. UNUSED(params);
  11271. UNUSED(dst);
  11272. }
  11273. // ggml_compute_forward_transpose
  11274. static void ggml_compute_forward_transpose(
  11275. const struct ggml_compute_params * params,
  11276. const struct ggml_tensor * dst) {
  11277. // NOP
  11278. UNUSED(params);
  11279. UNUSED(dst);
  11280. }
  11281. // ggml_compute_forward_get_rows
  11282. static void ggml_compute_forward_get_rows_q(
  11283. const struct ggml_compute_params * params,
  11284. struct ggml_tensor * dst) {
  11285. const struct ggml_tensor * src0 = dst->src[0];
  11286. const struct ggml_tensor * src1 = dst->src[1];
  11287. GGML_TENSOR_BINARY_OP_LOCALS
  11288. const int64_t nc = ne00;
  11289. const int64_t nr = ggml_nelements(src1);
  11290. const enum ggml_type type = src0->type;
  11291. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  11292. assert(ne0 == nc);
  11293. assert(ne02 == ne11);
  11294. assert(nb00 == ggml_type_size(type));
  11295. assert(ggml_nrows(dst) == nr);
  11296. const int ith = params->ith;
  11297. const int nth = params->nth;
  11298. // rows per thread
  11299. const int dr = (nr + nth - 1)/nth;
  11300. // row range for this thread
  11301. const int ir0 = dr*ith;
  11302. const int ir1 = MIN(ir0 + dr, nr);
  11303. for (int64_t i = ir0; i < ir1; ++i) {
  11304. const int64_t i12 = i/(ne11*ne10);
  11305. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11306. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11307. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11308. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  11309. dequantize_row_q(
  11310. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11311. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11312. }
  11313. }
  11314. static void ggml_compute_forward_get_rows_f16(
  11315. const struct ggml_compute_params * params,
  11316. struct ggml_tensor * dst) {
  11317. const struct ggml_tensor * src0 = dst->src[0];
  11318. const struct ggml_tensor * src1 = dst->src[1];
  11319. GGML_TENSOR_BINARY_OP_LOCALS
  11320. const int64_t nc = ne00;
  11321. const int64_t nr = ggml_nelements(src1);
  11322. assert(ne0 == nc);
  11323. assert(ne02 == ne11);
  11324. assert(nb00 == sizeof(ggml_fp16_t));
  11325. assert(ggml_nrows(dst) == nr);
  11326. const int ith = params->ith;
  11327. const int nth = params->nth;
  11328. // rows per thread
  11329. const int dr = (nr + nth - 1)/nth;
  11330. // row range for this thread
  11331. const int ir0 = dr*ith;
  11332. const int ir1 = MIN(ir0 + dr, nr);
  11333. for (int64_t i = ir0; i < ir1; ++i) {
  11334. const int64_t i12 = i/(ne11*ne10);
  11335. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11336. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11337. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11338. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  11339. ggml_fp16_to_fp32_row(
  11340. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11341. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11342. }
  11343. }
  11344. static void ggml_compute_forward_get_rows_bf16(
  11345. const struct ggml_compute_params * params,
  11346. struct ggml_tensor * dst) {
  11347. const struct ggml_tensor * src0 = dst->src[0];
  11348. const struct ggml_tensor * src1 = dst->src[1];
  11349. GGML_TENSOR_BINARY_OP_LOCALS
  11350. const int64_t nc = ne00;
  11351. const int64_t nr = ggml_nelements(src1);
  11352. assert(ne0 == nc);
  11353. assert(ne02 == ne11);
  11354. assert(nb00 == sizeof(ggml_bf16_t));
  11355. assert(ggml_nrows(dst) == nr);
  11356. const int ith = params->ith;
  11357. const int nth = params->nth;
  11358. // rows per thread
  11359. const int dr = (nr + nth - 1)/nth;
  11360. // row range for this thread
  11361. const int ir0 = dr*ith;
  11362. const int ir1 = MIN(ir0 + dr, nr);
  11363. for (int64_t i = ir0; i < ir1; ++i) {
  11364. const int64_t i12 = i/(ne11*ne10);
  11365. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11366. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11367. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11368. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  11369. ggml_bf16_to_fp32_row(
  11370. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11371. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11372. }
  11373. }
  11374. static void ggml_compute_forward_get_rows_f32(
  11375. const struct ggml_compute_params * params,
  11376. struct ggml_tensor * dst) {
  11377. const struct ggml_tensor * src0 = dst->src[0];
  11378. const struct ggml_tensor * src1 = dst->src[1];
  11379. GGML_TENSOR_BINARY_OP_LOCALS
  11380. const int64_t nc = ne00;
  11381. const int64_t nr = ggml_nelements(src1);
  11382. assert(ne0 == nc);
  11383. assert(ne02 == ne11);
  11384. assert(nb00 == sizeof(float));
  11385. assert(ggml_nrows(dst) == nr);
  11386. const int ith = params->ith;
  11387. const int nth = params->nth;
  11388. // rows per thread
  11389. const int dr = (nr + nth - 1)/nth;
  11390. // row range for this thread
  11391. const int ir0 = dr*ith;
  11392. const int ir1 = MIN(ir0 + dr, nr);
  11393. for (int64_t i = ir0; i < ir1; ++i) {
  11394. const int64_t i12 = i/(ne11*ne10);
  11395. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11396. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11397. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11398. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  11399. ggml_vec_cpy_f32(nc,
  11400. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  11401. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  11402. }
  11403. }
  11404. static void ggml_compute_forward_get_rows(
  11405. const struct ggml_compute_params * params,
  11406. struct ggml_tensor * dst) {
  11407. const struct ggml_tensor * src0 = dst->src[0];
  11408. switch (src0->type) {
  11409. case GGML_TYPE_Q4_0:
  11410. case GGML_TYPE_Q4_1:
  11411. case GGML_TYPE_Q5_0:
  11412. case GGML_TYPE_Q5_1:
  11413. case GGML_TYPE_Q8_0:
  11414. case GGML_TYPE_Q8_1:
  11415. case GGML_TYPE_Q2_K:
  11416. case GGML_TYPE_Q3_K:
  11417. case GGML_TYPE_Q4_K:
  11418. case GGML_TYPE_Q5_K:
  11419. case GGML_TYPE_Q6_K:
  11420. case GGML_TYPE_TQ1_0:
  11421. case GGML_TYPE_TQ2_0:
  11422. case GGML_TYPE_IQ2_XXS:
  11423. case GGML_TYPE_IQ2_XS:
  11424. case GGML_TYPE_IQ3_XXS:
  11425. case GGML_TYPE_IQ1_S:
  11426. case GGML_TYPE_IQ1_M:
  11427. case GGML_TYPE_IQ4_NL:
  11428. case GGML_TYPE_IQ4_XS:
  11429. case GGML_TYPE_IQ3_S:
  11430. case GGML_TYPE_IQ2_S:
  11431. case GGML_TYPE_Q4_0_4_4:
  11432. case GGML_TYPE_Q4_0_4_8:
  11433. case GGML_TYPE_Q4_0_8_8:
  11434. {
  11435. ggml_compute_forward_get_rows_q(params, dst);
  11436. } break;
  11437. case GGML_TYPE_F16:
  11438. {
  11439. ggml_compute_forward_get_rows_f16(params, dst);
  11440. } break;
  11441. case GGML_TYPE_BF16:
  11442. {
  11443. ggml_compute_forward_get_rows_bf16(params, dst);
  11444. } break;
  11445. case GGML_TYPE_F32:
  11446. case GGML_TYPE_I32:
  11447. {
  11448. ggml_compute_forward_get_rows_f32(params, dst);
  11449. } break;
  11450. default:
  11451. {
  11452. GGML_ABORT("fatal error");
  11453. }
  11454. }
  11455. //static bool first = true;
  11456. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11457. //if (first) {
  11458. // first = false;
  11459. //} else {
  11460. // for (int k = 0; k < dst->ne[1]; ++k) {
  11461. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11462. // for (int i = 0; i < 16; ++i) {
  11463. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11464. // }
  11465. // printf("\n");
  11466. // }
  11467. // printf("\n");
  11468. // }
  11469. // printf("\n");
  11470. // exit(0);
  11471. //}
  11472. }
  11473. // ggml_compute_forward_get_rows_back
  11474. static void ggml_compute_forward_get_rows_back_f32_f16(
  11475. const struct ggml_compute_params * params,
  11476. struct ggml_tensor * dst) {
  11477. const struct ggml_tensor * src0 = dst->src[0];
  11478. const struct ggml_tensor * src1 = dst->src[1];
  11479. if (params->ith != 0) {
  11480. return;
  11481. }
  11482. GGML_ASSERT(ggml_is_contiguous(dst));
  11483. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11484. memset(dst->data, 0, ggml_nbytes(dst));
  11485. const int nc = src0->ne[0];
  11486. const int nr = ggml_nelements(src1);
  11487. GGML_ASSERT( dst->ne[0] == nc);
  11488. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  11489. for (int i = 0; i < nr; ++i) {
  11490. const int r = ((int32_t *) src1->data)[i];
  11491. for (int j = 0; j < nc; ++j) {
  11492. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  11493. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  11494. }
  11495. }
  11496. }
  11497. static void ggml_compute_forward_get_rows_back_f32(
  11498. const struct ggml_compute_params * params,
  11499. struct ggml_tensor * dst) {
  11500. const struct ggml_tensor * src0 = dst->src[0];
  11501. const struct ggml_tensor * src1 = dst->src[1];
  11502. if (params->ith != 0) {
  11503. return;
  11504. }
  11505. GGML_ASSERT(ggml_is_contiguous(dst));
  11506. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11507. memset(dst->data, 0, ggml_nbytes(dst));
  11508. const int nc = src0->ne[0];
  11509. const int nr = ggml_nelements(src1);
  11510. GGML_ASSERT( dst->ne[0] == nc);
  11511. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11512. for (int i = 0; i < nr; ++i) {
  11513. const int r = ((int32_t *) src1->data)[i];
  11514. ggml_vec_add_f32(nc,
  11515. (float *) ((char *) dst->data + r*dst->nb[1]),
  11516. (float *) ((char *) dst->data + r*dst->nb[1]),
  11517. (float *) ((char *) src0->data + i*src0->nb[1]));
  11518. }
  11519. }
  11520. static void ggml_compute_forward_get_rows_back(
  11521. const struct ggml_compute_params * params,
  11522. struct ggml_tensor * dst) {
  11523. const struct ggml_tensor * src0 = dst->src[0];
  11524. switch (src0->type) {
  11525. case GGML_TYPE_F16:
  11526. {
  11527. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  11528. } break;
  11529. case GGML_TYPE_F32:
  11530. {
  11531. ggml_compute_forward_get_rows_back_f32(params, dst);
  11532. } break;
  11533. default:
  11534. {
  11535. GGML_ABORT("fatal error");
  11536. }
  11537. }
  11538. //static bool first = true;
  11539. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11540. //if (first) {
  11541. // first = false;
  11542. //} else {
  11543. // for (int k = 0; k < dst->ne[1]; ++k) {
  11544. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11545. // for (int i = 0; i < 16; ++i) {
  11546. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11547. // }
  11548. // printf("\n");
  11549. // }
  11550. // printf("\n");
  11551. // }
  11552. // printf("\n");
  11553. // exit(0);
  11554. //}
  11555. }
  11556. // ggml_compute_forward_diag
  11557. static void ggml_compute_forward_diag_f32(
  11558. const struct ggml_compute_params * params,
  11559. struct ggml_tensor * dst) {
  11560. const struct ggml_tensor * src0 = dst->src[0];
  11561. if (params->ith != 0) {
  11562. return;
  11563. }
  11564. // TODO: handle transposed/permuted matrices
  11565. GGML_TENSOR_UNARY_OP_LOCALS
  11566. GGML_ASSERT(ne00 == ne0);
  11567. GGML_ASSERT(ne00 == ne1);
  11568. GGML_ASSERT(ne01 == 1);
  11569. GGML_ASSERT(ne02 == ne2);
  11570. GGML_ASSERT(ne03 == ne3);
  11571. GGML_ASSERT(nb00 == sizeof(float));
  11572. GGML_ASSERT(nb0 == sizeof(float));
  11573. for (int i3 = 0; i3 < ne3; i3++) {
  11574. for (int i2 = 0; i2 < ne2; i2++) {
  11575. for (int i1 = 0; i1 < ne1; i1++) {
  11576. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  11577. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  11578. for (int i0 = 0; i0 < i1; i0++) {
  11579. d[i0] = 0;
  11580. }
  11581. d[i1] = s[i1];
  11582. for (int i0 = i1+1; i0 < ne0; i0++) {
  11583. d[i0] = 0;
  11584. }
  11585. }
  11586. }
  11587. }
  11588. }
  11589. static void ggml_compute_forward_diag(
  11590. const struct ggml_compute_params * params,
  11591. struct ggml_tensor * dst) {
  11592. const struct ggml_tensor * src0 = dst->src[0];
  11593. switch (src0->type) {
  11594. case GGML_TYPE_F32:
  11595. {
  11596. ggml_compute_forward_diag_f32(params, dst);
  11597. } break;
  11598. default:
  11599. {
  11600. GGML_ABORT("fatal error");
  11601. }
  11602. }
  11603. }
  11604. // ggml_compute_forward_diag_mask_inf
  11605. static void ggml_compute_forward_diag_mask_f32(
  11606. const struct ggml_compute_params * params,
  11607. struct ggml_tensor * dst,
  11608. const float value) {
  11609. const struct ggml_tensor * src0 = dst->src[0];
  11610. const int ith = params->ith;
  11611. const int nth = params->nth;
  11612. const int n_past = ((int32_t *) dst->op_params)[0];
  11613. const bool inplace = src0->data == dst->data;
  11614. GGML_ASSERT(n_past >= 0);
  11615. if (!inplace) {
  11616. if (ith == 0) {
  11617. // memcpy needs to be synchronized across threads to avoid race conditions.
  11618. // => do it in INIT phase
  11619. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  11620. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  11621. memcpy(
  11622. ((char *) dst->data),
  11623. ((char *) src0->data),
  11624. ggml_nbytes(dst));
  11625. }
  11626. ggml_barrier(params->threadpool);
  11627. }
  11628. // TODO: handle transposed/permuted matrices
  11629. const int n = ggml_nrows(src0);
  11630. const int nc = src0->ne[0];
  11631. const int nr = src0->ne[1];
  11632. const int nz = n/nr;
  11633. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11634. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11635. for (int k = 0; k < nz; k++) {
  11636. for (int j = ith; j < nr; j += nth) {
  11637. for (int i = n_past; i < nc; i++) {
  11638. if (i > n_past + j) {
  11639. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  11640. }
  11641. }
  11642. }
  11643. }
  11644. }
  11645. static void ggml_compute_forward_diag_mask_inf(
  11646. const struct ggml_compute_params * params,
  11647. struct ggml_tensor * dst) {
  11648. const struct ggml_tensor * src0 = dst->src[0];
  11649. switch (src0->type) {
  11650. case GGML_TYPE_F32:
  11651. {
  11652. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  11653. } break;
  11654. default:
  11655. {
  11656. GGML_ABORT("fatal error");
  11657. }
  11658. }
  11659. }
  11660. static void ggml_compute_forward_diag_mask_zero(
  11661. const struct ggml_compute_params * params,
  11662. struct ggml_tensor * dst) {
  11663. const struct ggml_tensor * src0 = dst->src[0];
  11664. switch (src0->type) {
  11665. case GGML_TYPE_F32:
  11666. {
  11667. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  11668. } break;
  11669. default:
  11670. {
  11671. GGML_ABORT("fatal error");
  11672. }
  11673. }
  11674. }
  11675. // ggml_compute_forward_soft_max
  11676. static void ggml_compute_forward_soft_max_f32(
  11677. const struct ggml_compute_params * params,
  11678. struct ggml_tensor * dst) {
  11679. const struct ggml_tensor * src0 = dst->src[0];
  11680. const struct ggml_tensor * src1 = dst->src[1];
  11681. assert(ggml_is_contiguous(dst));
  11682. assert(ggml_are_same_shape(src0, dst));
  11683. float scale = 1.0f;
  11684. float max_bias = 0.0f;
  11685. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  11686. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  11687. // TODO: handle transposed/permuted matrices
  11688. const int ith = params->ith;
  11689. const int nth = params->nth;
  11690. GGML_TENSOR_UNARY_OP_LOCALS
  11691. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  11692. // TODO: is this supposed to be ceil instead of floor?
  11693. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  11694. const uint32_t n_head = ne02;
  11695. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  11696. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  11697. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  11698. const int nc = src0->ne[0];
  11699. const int nr = ggml_nrows(src0);
  11700. // rows per thread
  11701. const int dr = (nr + nth - 1)/nth;
  11702. // row range for this thread
  11703. const int ir0 = dr*ith;
  11704. const int ir1 = MIN(ir0 + dr, nr);
  11705. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  11706. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  11707. for (int i1 = ir0; i1 < ir1; i1++) {
  11708. // ALiBi
  11709. const uint32_t h = (i1/ne01)%ne02; // head
  11710. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  11711. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  11712. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  11713. // broadcast the mask across rows
  11714. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11715. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11716. ggml_vec_cpy_f32 (nc, wp, sp);
  11717. ggml_vec_scale_f32(nc, wp, scale);
  11718. if (mp_f32) {
  11719. if (use_f16) {
  11720. for (int i = 0; i < nc; ++i) {
  11721. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  11722. }
  11723. } else {
  11724. for (int i = 0; i < nc; ++i) {
  11725. wp[i] += slope*mp_f32[i];
  11726. }
  11727. }
  11728. }
  11729. #ifndef NDEBUG
  11730. for (int i = 0; i < nc; ++i) {
  11731. //printf("p[%d] = %f\n", i, p[i]);
  11732. assert(!isnan(wp[i]));
  11733. }
  11734. #endif
  11735. float max = -INFINITY;
  11736. ggml_vec_max_f32(nc, &max, wp);
  11737. ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
  11738. assert(sum > 0.0);
  11739. sum = 1.0/sum;
  11740. ggml_vec_scale_f32(nc, dp, sum);
  11741. #ifndef NDEBUG
  11742. for (int i = 0; i < nc; ++i) {
  11743. assert(!isnan(dp[i]));
  11744. assert(!isinf(dp[i]));
  11745. }
  11746. #endif
  11747. }
  11748. }
  11749. static void ggml_compute_forward_soft_max(
  11750. const struct ggml_compute_params * params,
  11751. struct ggml_tensor * dst) {
  11752. const struct ggml_tensor * src0 = dst->src[0];
  11753. switch (src0->type) {
  11754. case GGML_TYPE_F32:
  11755. {
  11756. ggml_compute_forward_soft_max_f32(params, dst);
  11757. } break;
  11758. default:
  11759. {
  11760. GGML_ABORT("fatal error");
  11761. }
  11762. }
  11763. }
  11764. // ggml_compute_forward_soft_max_back
  11765. static void ggml_compute_forward_soft_max_back_f32(
  11766. const struct ggml_compute_params * params,
  11767. struct ggml_tensor * dst) {
  11768. const struct ggml_tensor * src0 = dst->src[0];
  11769. const struct ggml_tensor * src1 = dst->src[1];
  11770. GGML_ASSERT(ggml_is_contiguous(src0));
  11771. GGML_ASSERT(ggml_is_contiguous(src1));
  11772. GGML_ASSERT(ggml_is_contiguous(dst));
  11773. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11774. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  11775. // TODO: handle transposed/permuted matrices
  11776. const int ith = params->ith;
  11777. const int nth = params->nth;
  11778. const int nc = src0->ne[0];
  11779. const int nr = ggml_nrows(src0);
  11780. // rows per thread
  11781. const int dr = (nr + nth - 1)/nth;
  11782. // row range for this thread
  11783. const int ir0 = dr*ith;
  11784. const int ir1 = MIN(ir0 + dr, nr);
  11785. for (int i1 = ir0; i1 < ir1; i1++) {
  11786. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  11787. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  11788. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  11789. #ifndef NDEBUG
  11790. for (int i = 0; i < nc; ++i) {
  11791. //printf("p[%d] = %f\n", i, p[i]);
  11792. assert(!isnan(dy[i]));
  11793. assert(!isnan(y[i]));
  11794. }
  11795. #endif
  11796. // Jii = yi - yi*yi
  11797. // Jij = -yi*yj
  11798. // J = diag(y)-y.T*y
  11799. // dx = J * dy
  11800. // dxk = sum_i(Jki * dyi)
  11801. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  11802. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  11803. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  11804. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  11805. // dxk = -yk * dot(y, dy) + yk*dyk
  11806. // dxk = yk * (- dot(y, dy) + dyk)
  11807. // dxk = yk * (dyk - dot(y, dy))
  11808. //
  11809. // post-order:
  11810. // dot_y_dy := dot(y, dy)
  11811. // dx := dy
  11812. // dx := dx - dot_y_dy
  11813. // dx := dx * y
  11814. // linear runtime, no additional memory
  11815. float dot_y_dy = 0;
  11816. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  11817. ggml_vec_cpy_f32 (nc, dx, dy);
  11818. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  11819. ggml_vec_mul_f32 (nc, dx, dx, y);
  11820. #ifndef NDEBUG
  11821. for (int i = 0; i < nc; ++i) {
  11822. assert(!isnan(dx[i]));
  11823. assert(!isinf(dx[i]));
  11824. }
  11825. #endif
  11826. }
  11827. }
  11828. static void ggml_compute_forward_soft_max_back(
  11829. const struct ggml_compute_params * params,
  11830. struct ggml_tensor * dst) {
  11831. const struct ggml_tensor * src0 = dst->src[0];
  11832. switch (src0->type) {
  11833. case GGML_TYPE_F32:
  11834. {
  11835. ggml_compute_forward_soft_max_back_f32(params, dst);
  11836. } break;
  11837. default:
  11838. {
  11839. GGML_ABORT("fatal error");
  11840. }
  11841. }
  11842. }
  11843. // ggml_compute_forward_clamp
  11844. static void ggml_compute_forward_clamp_f32(
  11845. const struct ggml_compute_params * params,
  11846. struct ggml_tensor * dst) {
  11847. const struct ggml_tensor * src0 = dst->src[0];
  11848. if (params->ith != 0) {
  11849. return;
  11850. }
  11851. float min;
  11852. float max;
  11853. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  11854. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  11855. const int ith = params->ith;
  11856. const int nth = params->nth;
  11857. const int n = ggml_nrows(src0);
  11858. const int nc = src0->ne[0];
  11859. const size_t nb00 = src0->nb[0];
  11860. const size_t nb01 = src0->nb[1];
  11861. const size_t nb0 = dst->nb[0];
  11862. const size_t nb1 = dst->nb[1];
  11863. GGML_ASSERT( nb0 == sizeof(float));
  11864. GGML_ASSERT(nb00 == sizeof(float));
  11865. for (int j = ith; j < n; j += nth) {
  11866. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  11867. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  11868. for (int i = 0; i < nc; i++) {
  11869. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  11870. }
  11871. }
  11872. }
  11873. static void ggml_compute_forward_clamp(
  11874. const struct ggml_compute_params * params,
  11875. struct ggml_tensor * dst) {
  11876. const struct ggml_tensor * src0 = dst->src[0];
  11877. switch (src0->type) {
  11878. case GGML_TYPE_F32:
  11879. {
  11880. ggml_compute_forward_clamp_f32(params, dst);
  11881. } break;
  11882. case GGML_TYPE_F16:
  11883. case GGML_TYPE_BF16:
  11884. case GGML_TYPE_Q4_0:
  11885. case GGML_TYPE_Q4_1:
  11886. case GGML_TYPE_Q5_0:
  11887. case GGML_TYPE_Q5_1:
  11888. case GGML_TYPE_Q8_0:
  11889. case GGML_TYPE_Q8_1:
  11890. case GGML_TYPE_Q2_K:
  11891. case GGML_TYPE_Q3_K:
  11892. case GGML_TYPE_Q4_K:
  11893. case GGML_TYPE_Q5_K:
  11894. case GGML_TYPE_Q6_K:
  11895. case GGML_TYPE_TQ1_0:
  11896. case GGML_TYPE_TQ2_0:
  11897. case GGML_TYPE_IQ2_XXS:
  11898. case GGML_TYPE_IQ2_XS:
  11899. case GGML_TYPE_IQ3_XXS:
  11900. case GGML_TYPE_IQ1_S:
  11901. case GGML_TYPE_IQ1_M:
  11902. case GGML_TYPE_IQ4_NL:
  11903. case GGML_TYPE_IQ4_XS:
  11904. case GGML_TYPE_IQ3_S:
  11905. case GGML_TYPE_IQ2_S:
  11906. case GGML_TYPE_Q8_K:
  11907. case GGML_TYPE_Q4_0_4_4:
  11908. case GGML_TYPE_Q4_0_4_8:
  11909. case GGML_TYPE_Q4_0_8_8:
  11910. case GGML_TYPE_I8:
  11911. case GGML_TYPE_I16:
  11912. case GGML_TYPE_I32:
  11913. case GGML_TYPE_I64:
  11914. case GGML_TYPE_F64:
  11915. case GGML_TYPE_COUNT:
  11916. {
  11917. GGML_ABORT("fatal error");
  11918. }
  11919. }
  11920. }
  11921. // ggml_compute_forward_rope
  11922. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  11923. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  11924. return 1 - MIN(1, MAX(0, y));
  11925. }
  11926. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  11927. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  11928. static void rope_yarn(
  11929. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  11930. float * cos_theta, float * sin_theta) {
  11931. // Get n-d rotational scaling corrected for extrapolation
  11932. float theta_interp = freq_scale * theta_extrap;
  11933. float theta = theta_interp;
  11934. if (ext_factor != 0.0f) {
  11935. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  11936. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  11937. // Get n-d magnitude scaling corrected for interpolation
  11938. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  11939. }
  11940. *cos_theta = cosf(theta) * mscale;
  11941. *sin_theta = sinf(theta) * mscale;
  11942. }
  11943. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  11944. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  11945. static float ggml_rope_yarn_corr_dim(int n_dims, int n_ctx_orig, float n_rot, float base) {
  11946. return n_dims * logf(n_ctx_orig / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  11947. }
  11948. static void ggml_rope_cache_init(
  11949. float theta_base, float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  11950. float * cache, float sin_sign, float theta_scale) {
  11951. // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
  11952. float theta = theta_base;
  11953. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11954. const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
  11955. rope_yarn(
  11956. theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  11957. );
  11958. cache[i0 + 1] *= sin_sign;
  11959. theta *= theta_scale;
  11960. }
  11961. }
  11962. GGML_CALL void ggml_rope_yarn_corr_dims(
  11963. int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]
  11964. ) {
  11965. // start and end correction dims
  11966. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_fast, freq_base));
  11967. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_slow, freq_base));
  11968. dims[0] = MAX(0, start);
  11969. dims[1] = MIN(n_dims - 1, end);
  11970. }
  11971. static void ggml_compute_forward_rope_f32(
  11972. const struct ggml_compute_params * params,
  11973. struct ggml_tensor * dst,
  11974. const bool forward) {
  11975. const struct ggml_tensor * src0 = dst->src[0];
  11976. const struct ggml_tensor * src1 = dst->src[1];
  11977. const struct ggml_tensor * src2 = dst->src[2];
  11978. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11979. //const int n_past = ((int32_t *) dst->op_params)[0];
  11980. const int n_dims = ((int32_t *) dst->op_params)[1];
  11981. const int mode = ((int32_t *) dst->op_params)[2];
  11982. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  11983. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  11984. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11985. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11986. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11987. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11988. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11989. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11990. GGML_TENSOR_UNARY_OP_LOCALS
  11991. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11992. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11993. GGML_ASSERT(nb00 == sizeof(float));
  11994. const int ith = params->ith;
  11995. const int nth = params->nth;
  11996. const int nr = ggml_nrows(dst);
  11997. GGML_ASSERT(n_dims <= ne0);
  11998. GGML_ASSERT(n_dims % 2 == 0);
  11999. // rows per thread
  12000. const int dr = (nr + nth - 1)/nth;
  12001. // row range for this thread
  12002. const int ir0 = dr*ith;
  12003. const int ir1 = MIN(ir0 + dr, nr);
  12004. // row index used to determine which thread to use
  12005. int ir = 0;
  12006. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  12007. float corr_dims[2];
  12008. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  12009. const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
  12010. const float * freq_factors = NULL;
  12011. if (src2 != NULL) {
  12012. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  12013. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  12014. freq_factors = (const float *) src2->data;
  12015. }
  12016. // backward process uses inverse rotation by cos and sin.
  12017. // cos and sin build a rotation matrix, where the inverse is the transpose.
  12018. // this essentially just switches the sign of sin.
  12019. const float sin_sign = forward ? 1.0f : -1.0f;
  12020. const int32_t * pos = (const int32_t *) src1->data;
  12021. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12022. for (int64_t i2 = 0; i2 < ne2; i2++) {
  12023. const int64_t p = pos[i2];
  12024. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  12025. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  12026. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12027. if (ir++ < ir0) continue;
  12028. if (ir > ir1) break;
  12029. if (!is_neox) {
  12030. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  12031. const float cos_theta = cache[i0 + 0];
  12032. const float sin_theta = cache[i0 + 1];
  12033. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12034. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  12035. const float x0 = src[0];
  12036. const float x1 = src[1];
  12037. dst_data[0] = x0*cos_theta - x1*sin_theta;
  12038. dst_data[1] = x0*sin_theta + x1*cos_theta;
  12039. }
  12040. } else {
  12041. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  12042. const int64_t ic = i0/2;
  12043. const float cos_theta = cache[i0 + 0];
  12044. const float sin_theta = cache[i0 + 1];
  12045. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  12046. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  12047. const float x0 = src[0];
  12048. const float x1 = src[n_dims/2];
  12049. dst_data[0] = x0*cos_theta - x1*sin_theta;
  12050. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  12051. }
  12052. }
  12053. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  12054. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12055. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  12056. dst_data[0] = src[0];
  12057. dst_data[1] = src[1];
  12058. }
  12059. }
  12060. }
  12061. }
  12062. }
  12063. // TODO: deduplicate f16/f32 code
  12064. static void ggml_compute_forward_rope_f16(
  12065. const struct ggml_compute_params * params,
  12066. struct ggml_tensor * dst,
  12067. const bool forward) {
  12068. const struct ggml_tensor * src0 = dst->src[0];
  12069. const struct ggml_tensor * src1 = dst->src[1];
  12070. const struct ggml_tensor * src2 = dst->src[2];
  12071. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  12072. //const int n_past = ((int32_t *) dst->op_params)[0];
  12073. const int n_dims = ((int32_t *) dst->op_params)[1];
  12074. const int mode = ((int32_t *) dst->op_params)[2];
  12075. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  12076. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  12077. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  12078. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  12079. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  12080. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  12081. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  12082. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  12083. GGML_TENSOR_UNARY_OP_LOCALS
  12084. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  12085. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  12086. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  12087. const int ith = params->ith;
  12088. const int nth = params->nth;
  12089. const int nr = ggml_nrows(dst);
  12090. GGML_ASSERT(n_dims <= ne0);
  12091. GGML_ASSERT(n_dims % 2 == 0);
  12092. // rows per thread
  12093. const int dr = (nr + nth - 1)/nth;
  12094. // row range for this thread
  12095. const int ir0 = dr*ith;
  12096. const int ir1 = MIN(ir0 + dr, nr);
  12097. // row index used to determine which thread to use
  12098. int ir = 0;
  12099. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  12100. float corr_dims[2];
  12101. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  12102. const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
  12103. const float * freq_factors = NULL;
  12104. if (src2 != NULL) {
  12105. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  12106. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  12107. freq_factors = (const float *) src2->data;
  12108. }
  12109. // backward process uses inverse rotation by cos and sin.
  12110. // cos and sin build a rotation matrix, where the inverse is the transpose.
  12111. // this essentially just switches the sign of sin.
  12112. const float sin_sign = forward ? 1.0f : -1.0f;
  12113. const int32_t * pos = (const int32_t *) src1->data;
  12114. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12115. for (int64_t i2 = 0; i2 < ne2; i2++) {
  12116. const int64_t p = pos[i2];
  12117. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  12118. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  12119. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12120. if (ir++ < ir0) continue;
  12121. if (ir > ir1) break;
  12122. if (!is_neox) {
  12123. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  12124. const float cos_theta = cache[i0 + 0];
  12125. const float sin_theta = cache[i0 + 1];
  12126. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12127. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  12128. const float x0 = GGML_FP16_TO_FP32(src[0]);
  12129. const float x1 = GGML_FP16_TO_FP32(src[1]);
  12130. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  12131. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  12132. }
  12133. } else {
  12134. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  12135. const int64_t ic = i0/2;
  12136. const float cos_theta = cache[i0 + 0];
  12137. const float sin_theta = cache[i0 + 1];
  12138. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  12139. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  12140. const float x0 = GGML_FP16_TO_FP32(src[0]);
  12141. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  12142. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  12143. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  12144. }
  12145. }
  12146. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  12147. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12148. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  12149. dst_data[0] = src[0];
  12150. dst_data[1] = src[1];
  12151. }
  12152. }
  12153. }
  12154. }
  12155. }
  12156. static void ggml_compute_forward_rope(
  12157. const struct ggml_compute_params * params,
  12158. struct ggml_tensor * dst) {
  12159. const struct ggml_tensor * src0 = dst->src[0];
  12160. switch (src0->type) {
  12161. case GGML_TYPE_F16:
  12162. {
  12163. ggml_compute_forward_rope_f16(params, dst, true);
  12164. } break;
  12165. case GGML_TYPE_F32:
  12166. {
  12167. ggml_compute_forward_rope_f32(params, dst, true);
  12168. } break;
  12169. default:
  12170. {
  12171. GGML_ABORT("fatal error");
  12172. }
  12173. }
  12174. }
  12175. // ggml_compute_forward_rope_back
  12176. static void ggml_compute_forward_rope_back(
  12177. const struct ggml_compute_params * params,
  12178. struct ggml_tensor * dst) {
  12179. const struct ggml_tensor * src0 = dst->src[0];
  12180. switch (src0->type) {
  12181. case GGML_TYPE_F16:
  12182. {
  12183. ggml_compute_forward_rope_f16(params, dst, false);
  12184. } break;
  12185. case GGML_TYPE_F32:
  12186. {
  12187. ggml_compute_forward_rope_f32(params, dst, false);
  12188. } break;
  12189. default:
  12190. {
  12191. GGML_ABORT("fatal error");
  12192. }
  12193. }
  12194. }
  12195. // ggml_compute_forward_conv_transpose_1d
  12196. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  12197. const struct ggml_compute_params * params,
  12198. struct ggml_tensor * dst) {
  12199. const struct ggml_tensor * src0 = dst->src[0];
  12200. const struct ggml_tensor * src1 = dst->src[1];
  12201. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12202. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12203. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12204. GGML_TENSOR_BINARY_OP_LOCALS
  12205. const int ith = params->ith;
  12206. const int nth = params->nth;
  12207. const int nk = ne00*ne01*ne02;
  12208. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12209. GGML_ASSERT(nb10 == sizeof(float));
  12210. if (ith == 0) {
  12211. memset(params->wdata, 0, params->wsize);
  12212. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  12213. {
  12214. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12215. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12216. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12217. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  12218. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  12219. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12220. dst_data[i00*ne02 + i02] = src[i00];
  12221. }
  12222. }
  12223. }
  12224. }
  12225. // permute source data (src1) from (L x Cin) to (Cin x L)
  12226. {
  12227. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12228. ggml_fp16_t * dst_data = wdata;
  12229. for (int64_t i11 = 0; i11 < ne11; i11++) {
  12230. const float * const src = (float *)((char *) src1->data + i11*nb11);
  12231. for (int64_t i10 = 0; i10 < ne10; i10++) {
  12232. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  12233. }
  12234. }
  12235. }
  12236. // need to zero dst since we are accumulating into it
  12237. memset(dst->data, 0, ggml_nbytes(dst));
  12238. }
  12239. ggml_barrier(params->threadpool);
  12240. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  12241. // total rows in dst
  12242. const int nr = ne1;
  12243. // rows per thread
  12244. const int dr = (nr + nth - 1)/nth;
  12245. // row range for this thread
  12246. const int ir0 = dr*ith;
  12247. const int ir1 = MIN(ir0 + dr, nr);
  12248. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12249. ggml_fp16_t * const wdata_src = wdata + nk;
  12250. for (int i1 = ir0; i1 < ir1; i1++) {
  12251. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  12252. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  12253. for (int i10 = 0; i10 < ne10; i10++) {
  12254. const int i1n = i10*ne11;
  12255. for (int i00 = 0; i00 < ne00; i00++) {
  12256. float v = 0;
  12257. ggml_vec_dot_f16(ne02, &v, 0,
  12258. (ggml_fp16_t *) wdata_src + i1n, 0,
  12259. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  12260. dst_data[i10*s0 + i00] += v;
  12261. }
  12262. }
  12263. }
  12264. }
  12265. static void ggml_compute_forward_conv_transpose_1d_f32(
  12266. const struct ggml_compute_params * params,
  12267. struct ggml_tensor * dst) {
  12268. const struct ggml_tensor * src0 = dst->src[0];
  12269. const struct ggml_tensor * src1 = dst->src[1];
  12270. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12271. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12272. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12273. GGML_TENSOR_BINARY_OP_LOCALS
  12274. const int ith = params->ith;
  12275. const int nth = params->nth;
  12276. const int nk = ne00*ne01*ne02;
  12277. GGML_ASSERT(nb00 == sizeof(float));
  12278. GGML_ASSERT(nb10 == sizeof(float));
  12279. if (ith == 0) {
  12280. memset(params->wdata, 0, params->wsize);
  12281. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  12282. {
  12283. float * const wdata = (float *) params->wdata + 0;
  12284. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12285. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12286. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  12287. float * dst_data = wdata + i01*ne00*ne02;
  12288. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12289. dst_data[i00*ne02 + i02] = src[i00];
  12290. }
  12291. }
  12292. }
  12293. }
  12294. // prepare source data (src1)
  12295. {
  12296. float * const wdata = (float *) params->wdata + nk;
  12297. float * dst_data = wdata;
  12298. for (int64_t i11 = 0; i11 < ne11; i11++) {
  12299. const float * const src = (float *)((char *) src1->data + i11*nb11);
  12300. for (int64_t i10 = 0; i10 < ne10; i10++) {
  12301. dst_data[i10*ne11 + i11] = src[i10];
  12302. }
  12303. }
  12304. }
  12305. // need to zero dst since we are accumulating into it
  12306. memset(dst->data, 0, ggml_nbytes(dst));
  12307. }
  12308. ggml_barrier(params->threadpool);
  12309. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  12310. // total rows in dst
  12311. const int nr = ne1;
  12312. // rows per thread
  12313. const int dr = (nr + nth - 1)/nth;
  12314. // row range for this thread
  12315. const int ir0 = dr*ith;
  12316. const int ir1 = MIN(ir0 + dr, nr);
  12317. float * const wdata = (float *) params->wdata + 0;
  12318. float * const wdata_src = wdata + nk;
  12319. for (int i1 = ir0; i1 < ir1; i1++) {
  12320. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  12321. float * wdata_kernel = wdata + i1*ne02*ne00;
  12322. for (int i10 = 0; i10 < ne10; i10++) {
  12323. const int i1n = i10*ne11;
  12324. for (int i00 = 0; i00 < ne00; i00++) {
  12325. float v = 0;
  12326. ggml_vec_dot_f32(ne02, &v, 0,
  12327. wdata_src + i1n, 0,
  12328. wdata_kernel + i00*ne02, 0, 1);
  12329. dst_data[i10*s0 + i00] += v;
  12330. }
  12331. }
  12332. }
  12333. }
  12334. static void ggml_compute_forward_conv_transpose_1d(
  12335. const struct ggml_compute_params * params,
  12336. struct ggml_tensor * dst) {
  12337. const struct ggml_tensor * src0 = dst->src[0];
  12338. switch (src0->type) {
  12339. case GGML_TYPE_F16:
  12340. {
  12341. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  12342. } break;
  12343. case GGML_TYPE_F32:
  12344. {
  12345. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  12346. } break;
  12347. default:
  12348. {
  12349. GGML_ABORT("fatal error");
  12350. }
  12351. }
  12352. }
  12353. // ggml_compute_forward_im2col_f32
  12354. // src0: kernel [OC, IC, KH, KW]
  12355. // src1: image [N, IC, IH, IW]
  12356. // dst: result [N, OH, OW, IC*KH*KW]
  12357. static void ggml_compute_forward_im2col_f32(
  12358. const struct ggml_compute_params * params,
  12359. struct ggml_tensor * dst) {
  12360. const struct ggml_tensor * src0 = dst->src[0];
  12361. const struct ggml_tensor * src1 = dst->src[1];
  12362. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12363. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12364. GGML_TENSOR_BINARY_OP_LOCALS;
  12365. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12366. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12367. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12368. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12369. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12370. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12371. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12372. const int ith = params->ith;
  12373. const int nth = params->nth;
  12374. const int64_t N = is_2D ? ne13 : ne12;
  12375. const int64_t IC = is_2D ? ne12 : ne11;
  12376. const int64_t IH = is_2D ? ne11 : 1;
  12377. const int64_t IW = ne10;
  12378. const int64_t KH = is_2D ? ne01 : 1;
  12379. const int64_t KW = ne00;
  12380. const int64_t OH = is_2D ? ne2 : 1;
  12381. const int64_t OW = ne1;
  12382. int ofs0 = is_2D ? nb13 : nb12;
  12383. int ofs1 = is_2D ? nb12 : nb11;
  12384. GGML_ASSERT(nb10 == sizeof(float));
  12385. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12386. {
  12387. float * const wdata = (float *) dst->data;
  12388. for (int64_t in = 0; in < N; in++) {
  12389. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12390. for (int64_t iow = 0; iow < OW; iow++) {
  12391. for (int64_t iic = ith; iic < IC; iic += nth) {
  12392. // micro kernel
  12393. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12394. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12395. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12396. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12397. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12398. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12399. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12400. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12401. } else {
  12402. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  12403. }
  12404. }
  12405. }
  12406. }
  12407. }
  12408. }
  12409. }
  12410. }
  12411. }
  12412. // ggml_compute_forward_im2col_f16
  12413. // src0: kernel [OC, IC, KH, KW]
  12414. // src1: image [N, IC, IH, IW]
  12415. // dst: result [N, OH, OW, IC*KH*KW]
  12416. static void ggml_compute_forward_im2col_f16(
  12417. const struct ggml_compute_params * params,
  12418. struct ggml_tensor * dst) {
  12419. const struct ggml_tensor * src0 = dst->src[0];
  12420. const struct ggml_tensor * src1 = dst->src[1];
  12421. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12422. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12423. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  12424. GGML_TENSOR_BINARY_OP_LOCALS;
  12425. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12426. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12427. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12428. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12429. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12430. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12431. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12432. const int ith = params->ith;
  12433. const int nth = params->nth;
  12434. const int64_t N = is_2D ? ne13 : ne12;
  12435. const int64_t IC = is_2D ? ne12 : ne11;
  12436. const int64_t IH = is_2D ? ne11 : 1;
  12437. const int64_t IW = ne10;
  12438. const int64_t KH = is_2D ? ne01 : 1;
  12439. const int64_t KW = ne00;
  12440. const int64_t OH = is_2D ? ne2 : 1;
  12441. const int64_t OW = ne1;
  12442. int ofs0 = is_2D ? nb13 : nb12;
  12443. int ofs1 = is_2D ? nb12 : nb11;
  12444. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12445. GGML_ASSERT(nb10 == sizeof(float));
  12446. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12447. {
  12448. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  12449. for (int64_t in = 0; in < N; in++) {
  12450. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12451. for (int64_t iow = 0; iow < OW; iow++) {
  12452. for (int64_t iic = ith; iic < IC; iic += nth) {
  12453. // micro kernel
  12454. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12455. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12456. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12457. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12458. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12459. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12460. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12461. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12462. } else {
  12463. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  12464. }
  12465. }
  12466. }
  12467. }
  12468. }
  12469. }
  12470. }
  12471. }
  12472. }
  12473. static void ggml_compute_forward_im2col(
  12474. const struct ggml_compute_params * params,
  12475. struct ggml_tensor * dst) {
  12476. switch (dst->type) {
  12477. case GGML_TYPE_F16:
  12478. {
  12479. ggml_compute_forward_im2col_f16(params, dst);
  12480. } break;
  12481. case GGML_TYPE_F32:
  12482. {
  12483. ggml_compute_forward_im2col_f32(params, dst);
  12484. } break;
  12485. default:
  12486. {
  12487. GGML_ABORT("fatal error");
  12488. }
  12489. }
  12490. }
  12491. // ggml_compute_forward_im2col_back_f32
  12492. static void ggml_compute_forward_im2col_back_f32(
  12493. const struct ggml_compute_params * params,
  12494. struct ggml_tensor * dst) {
  12495. const struct ggml_tensor * src0 = dst->src[0];
  12496. const struct ggml_tensor * src1 = dst->src[1];
  12497. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12498. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12499. GGML_TENSOR_BINARY_OP_LOCALS;
  12500. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12501. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12502. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12503. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12504. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12505. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12506. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12507. const int ith = params->ith;
  12508. const int nth = params->nth;
  12509. const int64_t N = is_2D ? ne3 : ne2;
  12510. const int64_t IC = is_2D ? ne2 : ne1;
  12511. const int64_t IH = is_2D ? ne1 : 1;
  12512. const int64_t IW = ne0;
  12513. const int64_t KH = is_2D ? ne01 : 1;
  12514. const int64_t KW = ne00;
  12515. const int64_t OH = is_2D ? ne12 : 1;
  12516. const int64_t OW = ne11;
  12517. int ofs0 = is_2D ? nb3 : nb2;
  12518. int ofs1 = is_2D ? nb2 : nb1;
  12519. GGML_ASSERT(nb0 == sizeof(float));
  12520. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12521. {
  12522. float * const wdata = (float *) dst->data;
  12523. for (int64_t in = 0; in < N; in++) {
  12524. for (int64_t iic = ith; iic < IC; iic += nth) {
  12525. for (int64_t iih = 0; iih < IH; iih++) {
  12526. for (int64_t iiw = 0; iiw < IW; iiw++) {
  12527. // micro kernel
  12528. float grad = 0.0f;
  12529. for (int64_t ikh = 0; ikh < KH; ikh++) {
  12530. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12531. // For s0 > 1 some values were skipped over in the forward pass.
  12532. // These values have tmpw % s0 != 0 and need to be skipped in the backwards pass as well.
  12533. const int64_t tmpw = (iiw + p0 - ikw*d0);
  12534. if (tmpw % s0 != 0) {
  12535. continue;
  12536. }
  12537. const int64_t iow = tmpw / s0;
  12538. // Equivalent logic as above except for s1.
  12539. int64_t ioh;
  12540. if (is_2D) {
  12541. const int64_t tmph = iih + p1 - ikh*d1;
  12542. if (tmph % s1 != 0) {
  12543. continue;
  12544. }
  12545. ioh = tmph / s1;
  12546. } else {
  12547. ioh = 0;
  12548. }
  12549. if (iow < 0 || iow >= OW || ioh < 0 || ioh >= OH) {
  12550. continue;
  12551. }
  12552. const float * const src_data = (const float *) src1->data
  12553. + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12554. grad += src_data[iic*(KH*KW) + ikh*KW + ikw];
  12555. }
  12556. }
  12557. float * dst_data = (float *)((char *) wdata + (in*ofs0 + iic*ofs1)); // [IH, IW]
  12558. dst_data[iih*IW + iiw] = grad;
  12559. }
  12560. }
  12561. }
  12562. }
  12563. }
  12564. }
  12565. // ggml_compute_forward_conv_transpose_2d
  12566. static void ggml_compute_forward_conv_transpose_2d(
  12567. const struct ggml_compute_params * params,
  12568. struct ggml_tensor * dst) {
  12569. const struct ggml_tensor * src0 = dst->src[0];
  12570. const struct ggml_tensor * src1 = dst->src[1];
  12571. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12572. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12573. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12574. GGML_TENSOR_BINARY_OP_LOCALS
  12575. const int ith = params->ith;
  12576. const int nth = params->nth;
  12577. const int nk = ne00*ne01*ne02*ne03;
  12578. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12579. GGML_ASSERT(nb10 == sizeof(float));
  12580. if (ith == 0) {
  12581. memset(params->wdata, 0, params->wsize);
  12582. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  12583. {
  12584. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12585. for (int64_t i03 = 0; i03 < ne03; i03++) {
  12586. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12587. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  12588. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  12589. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12590. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12591. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  12592. }
  12593. }
  12594. }
  12595. }
  12596. }
  12597. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  12598. {
  12599. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12600. for (int i12 = 0; i12 < ne12; i12++) {
  12601. for (int i11 = 0; i11 < ne11; i11++) {
  12602. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  12603. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  12604. for (int i10 = 0; i10 < ne10; i10++) {
  12605. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  12606. }
  12607. }
  12608. }
  12609. }
  12610. memset(dst->data, 0, ggml_nbytes(dst));
  12611. }
  12612. ggml_barrier(params->threadpool);
  12613. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  12614. // total patches in dst
  12615. const int np = ne2;
  12616. // patches per thread
  12617. const int dp = (np + nth - 1)/nth;
  12618. // patch range for this thread
  12619. const int ip0 = dp*ith;
  12620. const int ip1 = MIN(ip0 + dp, np);
  12621. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12622. ggml_fp16_t * const wdata_src = wdata + nk;
  12623. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  12624. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  12625. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  12626. for (int i11 = 0; i11 < ne11; i11++) {
  12627. for (int i10 = 0; i10 < ne10; i10++) {
  12628. const int i1n = i11*ne10*ne12 + i10*ne12;
  12629. for (int i01 = 0; i01 < ne01; i01++) {
  12630. for (int i00 = 0; i00 < ne00; i00++) {
  12631. float v = 0;
  12632. ggml_vec_dot_f16(ne03, &v, 0,
  12633. wdata_src + i1n, 0,
  12634. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  12635. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  12636. }
  12637. }
  12638. }
  12639. }
  12640. }
  12641. }
  12642. // ggml_compute_forward_pool_1d_sk_p0
  12643. static void ggml_compute_forward_pool_1d_sk_p0(
  12644. const struct ggml_compute_params * params,
  12645. const enum ggml_op_pool op,
  12646. const int k,
  12647. struct ggml_tensor * dst) {
  12648. const struct ggml_tensor * src = dst->src[0];
  12649. assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
  12650. if (params->ith != 0) {
  12651. return;
  12652. }
  12653. const char * cdata = (const char *)src->data;
  12654. const char * const data_end = cdata + ggml_nbytes(src);
  12655. float * drow = (float *)dst->data;
  12656. const int64_t rs = dst->ne[0];
  12657. while (cdata < data_end) {
  12658. const void * srow = (const void *)cdata;
  12659. int j = 0;
  12660. for (int64_t i = 0; i < rs; ++i) {
  12661. switch (op) {
  12662. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  12663. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  12664. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12665. }
  12666. for (int ki = 0; ki < k; ++ki) {
  12667. const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
  12668. switch (op) {
  12669. case GGML_OP_POOL_AVG: drow[i] += srow_j; break;
  12670. case GGML_OP_POOL_MAX: if (srow_j > drow[i]) drow[i] = srow_j; break;
  12671. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12672. }
  12673. ++j;
  12674. }
  12675. switch (op) {
  12676. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  12677. case GGML_OP_POOL_MAX: break;
  12678. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12679. }
  12680. }
  12681. cdata += src->nb[1];
  12682. drow += rs;
  12683. }
  12684. }
  12685. // ggml_compute_forward_pool_1d
  12686. static void ggml_compute_forward_pool_1d(
  12687. const struct ggml_compute_params * params,
  12688. struct ggml_tensor * dst) {
  12689. const int32_t * opts = (const int32_t *)dst->op_params;
  12690. enum ggml_op_pool op = opts[0];
  12691. const int k0 = opts[1];
  12692. const int s0 = opts[2];
  12693. const int p0 = opts[3];
  12694. GGML_ASSERT(p0 == 0); // padding not supported
  12695. GGML_ASSERT(k0 == s0); // only s = k supported
  12696. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  12697. }
  12698. // ggml_compute_forward_pool_2d
  12699. static void ggml_compute_forward_pool_2d(
  12700. const struct ggml_compute_params * params,
  12701. struct ggml_tensor * dst) {
  12702. const struct ggml_tensor * src = dst->src[0];
  12703. assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
  12704. if (params->ith != 0) {
  12705. return;
  12706. }
  12707. const int32_t * opts = (const int32_t *)dst->op_params;
  12708. enum ggml_op_pool op = opts[0];
  12709. const int k0 = opts[1];
  12710. const int k1 = opts[2];
  12711. const int s0 = opts[3];
  12712. const int s1 = opts[4];
  12713. const int p0 = opts[5];
  12714. const int p1 = opts[6];
  12715. const char * cdata = (const char*)src->data;
  12716. const char * const data_end = cdata + ggml_nbytes(src);
  12717. const int64_t px = dst->ne[0];
  12718. const int64_t py = dst->ne[1];
  12719. const int64_t pa = px * py;
  12720. float * dplane = (float *)dst->data;
  12721. const int ka = k0 * k1;
  12722. const int offset0 = -p0;
  12723. const int offset1 = -p1;
  12724. while (cdata < data_end) {
  12725. for (int oy = 0; oy < py; ++oy) {
  12726. float * const drow = dplane + oy * px;
  12727. for (int ox = 0; ox < px; ++ox) {
  12728. float * const out = drow + ox;
  12729. switch (op) {
  12730. case GGML_OP_POOL_AVG: *out = 0; break;
  12731. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  12732. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12733. }
  12734. const int ix = offset0 + ox * s0;
  12735. const int iy = offset1 + oy * s1;
  12736. for (int ky = 0; ky < k1; ++ky) {
  12737. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  12738. const void * srow = (const void *)(cdata + src->nb[1] * (iy + ky));
  12739. for (int kx = 0; kx < k0; ++kx) {
  12740. int j = ix + kx;
  12741. if (j < 0 || j >= src->ne[0]) continue;
  12742. const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
  12743. switch (op) {
  12744. case GGML_OP_POOL_AVG: *out += srow_j; break;
  12745. case GGML_OP_POOL_MAX: if (srow_j > *out) *out = srow_j; break;
  12746. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12747. }
  12748. }
  12749. }
  12750. switch (op) {
  12751. case GGML_OP_POOL_AVG: *out /= ka; break;
  12752. case GGML_OP_POOL_MAX: break;
  12753. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12754. }
  12755. }
  12756. }
  12757. cdata += src->nb[2];
  12758. dplane += pa;
  12759. }
  12760. }
  12761. // ggml_compute_forward_pool_2d_back
  12762. static void ggml_compute_forward_pool_2d_back(
  12763. const struct ggml_compute_params * params,
  12764. struct ggml_tensor * dst) {
  12765. const struct ggml_tensor * src = dst->src[0];
  12766. const struct ggml_tensor * dstf = dst->src[1]; // forward tensor of dst
  12767. assert(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
  12768. if (params->ith != 0) {
  12769. return;
  12770. }
  12771. const int32_t * opts = (const int32_t *)dst->op_params;
  12772. enum ggml_op_pool op = opts[0];
  12773. const int k0 = opts[1];
  12774. const int k1 = opts[2];
  12775. const int s0 = opts[3];
  12776. const int s1 = opts[4];
  12777. const int p0 = opts[5];
  12778. const int p1 = opts[6];
  12779. char * cdata = (char *) dst->data;
  12780. const char * cdataf = (const char *) dstf->data;
  12781. const char * const data_end = cdata + ggml_nbytes(dst);
  12782. GGML_ASSERT(params->ith == 0);
  12783. memset(cdata, 0, ggml_nbytes(dst));
  12784. const int64_t px = src->ne[0];
  12785. const int64_t py = src->ne[1];
  12786. const int64_t pa = px * py;
  12787. const float * splane = (const float *) src->data;
  12788. const int ka = k0 * k1;
  12789. const int offset0 = -p0;
  12790. const int offset1 = -p1;
  12791. while (cdata < data_end) {
  12792. for (int oy = 0; oy < py; ++oy) {
  12793. const float * const srow = splane + oy * px;
  12794. for (int ox = 0; ox < px; ++ox) {
  12795. const float grad0 = srow[ox];
  12796. const int ix = offset0 + ox * s0;
  12797. const int iy = offset1 + oy * s1;
  12798. if (op == GGML_OP_POOL_MAX) {
  12799. float maxval = -FLT_MAX;
  12800. int kxmax = -1;
  12801. int kymax = -1;
  12802. for (int ky = 0; ky < k1; ++ky) {
  12803. if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
  12804. continue;
  12805. }
  12806. const void * drowf = (const void *)(cdataf + dst->nb[1] * (iy + ky));
  12807. for (int kx = 0; kx < k0; ++kx) {
  12808. int j = ix + kx;
  12809. if (j < 0 || j >= dst->ne[0]) {
  12810. continue;
  12811. }
  12812. const float val = dst->type == GGML_TYPE_F32 ?
  12813. ((const float *) drowf)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t *) drowf)[j]);
  12814. if (val <= maxval) {
  12815. continue;
  12816. }
  12817. maxval = val;
  12818. kxmax = kx;
  12819. kymax = ky;
  12820. }
  12821. }
  12822. if (kxmax == -1 || kymax == -1) {
  12823. continue;
  12824. }
  12825. void * drow = (void *)(cdata + dst->nb[1] * (iy + kymax));
  12826. const int j = ix + kxmax;
  12827. if (dst->type == GGML_TYPE_F32) {
  12828. ((float *) drow)[j] += grad0;
  12829. } else {
  12830. ((ggml_fp16_t *) drow)[j] = GGML_FP32_TO_FP16(grad0 + GGML_FP16_TO_FP32(((const ggml_fp16_t *) drow)[j]));
  12831. }
  12832. } else if (op == GGML_OP_POOL_AVG) {
  12833. const float grad = grad0 / ka;
  12834. for (int ky = 0; ky < k1; ++ky) {
  12835. if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
  12836. continue;
  12837. }
  12838. void * drow = (void *)(cdata + dst->nb[1] * (iy + ky));
  12839. for (int kx = 0; kx < k0; ++kx) {
  12840. int j = ix + kx;
  12841. if (j < 0 || j >= dst->ne[0]) {
  12842. continue;
  12843. }
  12844. if (dst->type == GGML_TYPE_F32) {
  12845. ((float *) drow)[j] += grad;
  12846. } else {
  12847. ((ggml_fp16_t *) drow)[j] += GGML_FP32_TO_FP16(grad);
  12848. }
  12849. }
  12850. }
  12851. } else {
  12852. GGML_ASSERT(false);
  12853. }
  12854. }
  12855. }
  12856. cdata += dst->nb[2];
  12857. cdataf += dst->nb[2];
  12858. splane += pa;
  12859. }
  12860. }
  12861. // ggml_compute_forward_upscale
  12862. static void ggml_compute_forward_upscale_f32(
  12863. const struct ggml_compute_params * params,
  12864. struct ggml_tensor * dst) {
  12865. const struct ggml_tensor * src0 = dst->src[0];
  12866. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12867. const int ith = params->ith;
  12868. const int nth = params->nth;
  12869. GGML_TENSOR_UNARY_OP_LOCALS
  12870. const float sf0 = (float)ne0/src0->ne[0];
  12871. const float sf1 = (float)ne1/src0->ne[1];
  12872. const float sf2 = (float)ne2/src0->ne[2];
  12873. const float sf3 = (float)ne3/src0->ne[3];
  12874. // TODO: optimize
  12875. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12876. const int64_t i03 = i3 / sf3;
  12877. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  12878. const int64_t i02 = i2 / sf2;
  12879. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12880. const int64_t i01 = i1 / sf1;
  12881. for (int64_t i0 = 0; i0 < ne0; i0++) {
  12882. const int64_t i00 = i0 / sf0;
  12883. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  12884. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  12885. *y = *x;
  12886. }
  12887. }
  12888. }
  12889. }
  12890. }
  12891. static void ggml_compute_forward_upscale(
  12892. const struct ggml_compute_params * params,
  12893. struct ggml_tensor * dst) {
  12894. const struct ggml_tensor * src0 = dst->src[0];
  12895. switch (src0->type) {
  12896. case GGML_TYPE_F32:
  12897. {
  12898. ggml_compute_forward_upscale_f32(params, dst);
  12899. } break;
  12900. default:
  12901. {
  12902. GGML_ABORT("fatal error");
  12903. }
  12904. }
  12905. }
  12906. // ggml_compute_forward_pad
  12907. static void ggml_compute_forward_pad_f32(
  12908. const struct ggml_compute_params * params,
  12909. struct ggml_tensor * dst) {
  12910. const struct ggml_tensor * src0 = dst->src[0];
  12911. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12912. GGML_ASSERT( dst->nb[0] == sizeof(float));
  12913. const int ith = params->ith;
  12914. const int nth = params->nth;
  12915. GGML_TENSOR_UNARY_OP_LOCALS
  12916. float * dst_ptr = (float *) dst->data;
  12917. // TODO: optimize
  12918. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12919. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  12920. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12921. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  12922. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  12923. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12924. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  12925. dst_ptr[dst_idx] = *src_ptr;
  12926. } else {
  12927. dst_ptr[dst_idx] = 0;
  12928. }
  12929. }
  12930. }
  12931. }
  12932. }
  12933. }
  12934. static void ggml_compute_forward_pad(
  12935. const struct ggml_compute_params * params,
  12936. struct ggml_tensor * dst) {
  12937. const struct ggml_tensor * src0 = dst->src[0];
  12938. switch (src0->type) {
  12939. case GGML_TYPE_F32:
  12940. {
  12941. ggml_compute_forward_pad_f32(params, dst);
  12942. } break;
  12943. default:
  12944. {
  12945. GGML_ABORT("fatal error");
  12946. }
  12947. }
  12948. }
  12949. // ggml_compute_forward_arange
  12950. static void ggml_compute_forward_arange_f32(
  12951. const struct ggml_compute_params * params,
  12952. struct ggml_tensor * dst) {
  12953. GGML_ASSERT(dst->nb[0] == sizeof(float));
  12954. const int ith = params->ith;
  12955. const int nth = params->nth;
  12956. const float start = ggml_get_op_params_f32(dst, 0);
  12957. const float stop = ggml_get_op_params_f32(dst, 1);
  12958. const float step = ggml_get_op_params_f32(dst, 2);
  12959. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  12960. GGML_ASSERT(ggml_nelements(dst) == steps);
  12961. for (int64_t i = ith; i < steps; i+= nth) {
  12962. float value = start + step * i;
  12963. ((float *)dst->data)[i] = value;
  12964. }
  12965. }
  12966. static void ggml_compute_forward_arange(
  12967. const struct ggml_compute_params * params,
  12968. struct ggml_tensor * dst) {
  12969. switch (dst->type) {
  12970. case GGML_TYPE_F32:
  12971. {
  12972. ggml_compute_forward_arange_f32(params, dst);
  12973. } break;
  12974. default:
  12975. {
  12976. GGML_ABORT("fatal error");
  12977. }
  12978. }
  12979. }
  12980. static void ggml_compute_forward_timestep_embedding_f32(
  12981. const struct ggml_compute_params * params,
  12982. struct ggml_tensor * dst) {
  12983. const struct ggml_tensor * src0 = dst->src[0];
  12984. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12985. const int ith = params->ith;
  12986. const int nth = params->nth;
  12987. GGML_TENSOR_UNARY_OP_LOCALS
  12988. const int dim = ggml_get_op_params_i32(dst, 0);
  12989. const int max_period = ggml_get_op_params_i32(dst, 1);
  12990. int half = dim / 2;
  12991. for (int64_t i = 0; i < ne00; i++) {
  12992. float * embed_data = (float *)((char *) dst->data + i*nb1);
  12993. for (int64_t j = ith; j < half; j += nth) {
  12994. float timestep = ((float *)src0->data)[i];
  12995. float freq = (float)expf(-logf(max_period) * j / half);
  12996. float arg = timestep * freq;
  12997. embed_data[j] = cosf(arg);
  12998. embed_data[j + half] = sinf(arg);
  12999. }
  13000. if (dim % 2 != 0 && ith == 0) {
  13001. embed_data[dim] = 0.f;
  13002. }
  13003. }
  13004. }
  13005. static void ggml_compute_forward_timestep_embedding(
  13006. const struct ggml_compute_params * params,
  13007. struct ggml_tensor * dst) {
  13008. const struct ggml_tensor * src0 = dst->src[0];
  13009. switch (src0->type) {
  13010. case GGML_TYPE_F32:
  13011. {
  13012. ggml_compute_forward_timestep_embedding_f32(params, dst);
  13013. } break;
  13014. default:
  13015. {
  13016. GGML_ABORT("fatal error");
  13017. }
  13018. }
  13019. }
  13020. // ggml_compute_forward_argsort
  13021. static void ggml_compute_forward_argsort_f32(
  13022. const struct ggml_compute_params * params,
  13023. struct ggml_tensor * dst) {
  13024. const struct ggml_tensor * src0 = dst->src[0];
  13025. GGML_TENSOR_UNARY_OP_LOCALS
  13026. GGML_ASSERT(nb0 == sizeof(float));
  13027. const int ith = params->ith;
  13028. const int nth = params->nth;
  13029. const int64_t nr = ggml_nrows(src0);
  13030. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  13031. for (int64_t i = ith; i < nr; i += nth) {
  13032. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  13033. const float * src_data = (float *)((char *) src0->data + i*nb01);
  13034. for (int64_t j = 0; j < ne0; j++) {
  13035. dst_data[j] = j;
  13036. }
  13037. // C doesn't have a functional sort, so we do a bubble sort instead
  13038. for (int64_t j = 0; j < ne0; j++) {
  13039. for (int64_t k = j + 1; k < ne0; k++) {
  13040. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  13041. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  13042. int32_t tmp = dst_data[j];
  13043. dst_data[j] = dst_data[k];
  13044. dst_data[k] = tmp;
  13045. }
  13046. }
  13047. }
  13048. }
  13049. }
  13050. static void ggml_compute_forward_argsort(
  13051. const struct ggml_compute_params * params,
  13052. struct ggml_tensor * dst) {
  13053. const struct ggml_tensor * src0 = dst->src[0];
  13054. switch (src0->type) {
  13055. case GGML_TYPE_F32:
  13056. {
  13057. ggml_compute_forward_argsort_f32(params, dst);
  13058. } break;
  13059. default:
  13060. {
  13061. GGML_ABORT("fatal error");
  13062. }
  13063. }
  13064. }
  13065. // ggml_compute_forward_flash_attn_ext
  13066. static void ggml_compute_forward_flash_attn_ext_f16(
  13067. const struct ggml_compute_params * params,
  13068. const struct ggml_tensor * q,
  13069. const struct ggml_tensor * k,
  13070. const struct ggml_tensor * v,
  13071. const struct ggml_tensor * mask,
  13072. struct ggml_tensor * dst) {
  13073. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  13074. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  13075. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  13076. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  13077. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  13078. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  13079. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13080. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  13081. const int ith = params->ith;
  13082. const int nth = params->nth;
  13083. const int64_t D = neq0;
  13084. const int64_t N = neq1;
  13085. GGML_ASSERT(ne0 == D);
  13086. GGML_ASSERT(ne2 == N);
  13087. // input tensor rows must be contiguous
  13088. GGML_ASSERT(nbq0 == ggml_type_size(q->type));
  13089. GGML_ASSERT(nbk0 == ggml_type_size(k->type));
  13090. GGML_ASSERT(nbv0 == ggml_type_size(v->type));
  13091. GGML_ASSERT(neq0 == D);
  13092. GGML_ASSERT(nek0 == D);
  13093. GGML_ASSERT(nev0 == D);
  13094. GGML_ASSERT(neq1 == N);
  13095. GGML_ASSERT(nev0 == D);
  13096. // dst cannot be transposed or permuted
  13097. GGML_ASSERT(nb0 == sizeof(float));
  13098. GGML_ASSERT(nb0 <= nb1);
  13099. GGML_ASSERT(nb1 <= nb2);
  13100. GGML_ASSERT(nb2 <= nb3);
  13101. // broadcast factors
  13102. const int64_t rk2 = neq2/nek2;
  13103. const int64_t rk3 = neq3/nek3;
  13104. const int64_t rv2 = neq2/nev2;
  13105. const int64_t rv3 = neq3/nev3;
  13106. // parallelize by q rows using ggml_vec_dot_f32
  13107. // total rows in q
  13108. const int nr = neq1*neq2*neq3;
  13109. // rows per thread
  13110. const int dr = (nr + nth - 1)/nth;
  13111. // row range for this thread
  13112. const int ir0 = dr*ith;
  13113. const int ir1 = MIN(ir0 + dr, nr);
  13114. float scale = 1.0f;
  13115. float max_bias = 0.0f;
  13116. float logit_softcap = 0.0f;
  13117. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  13118. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  13119. memcpy(&logit_softcap, (float *) dst->op_params + 2, sizeof(float));
  13120. if (logit_softcap != 0) {
  13121. scale /= logit_softcap;
  13122. }
  13123. const uint32_t n_head = neq2;
  13124. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  13125. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  13126. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  13127. enum ggml_type const k_vec_dot_type = type_traits[k->type].vec_dot_type;
  13128. ggml_from_float_t const q_to_vec_dot = type_traits[k_vec_dot_type].from_float;
  13129. ggml_vec_dot_t const kq_vec_dot = type_traits[k->type].vec_dot;
  13130. ggml_to_float_t const v_to_float = type_traits[v->type].to_float;
  13131. // loop over n_batch and n_head
  13132. for (int ir = ir0; ir < ir1; ++ir) {
  13133. // q indices
  13134. const int iq3 = ir/(neq2*neq1);
  13135. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  13136. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  13137. const uint32_t h = iq2; // head index
  13138. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  13139. float S = 0.0f; // sum
  13140. float M = -INFINITY; // maximum KQ value
  13141. float * VKQ32 = (float *) params->wdata + ith*(3*D + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
  13142. float * V32 = (VKQ32 + 1*D); // (temporary) FP32 V buffer
  13143. ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*D); // (temporary) FP16 VKQ accumulator
  13144. ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*D); // (temporary) buffer for Q converted to quantized/FP16
  13145. if (v->type == GGML_TYPE_F16) {
  13146. memset(VKQ16, 0, D*sizeof(ggml_fp16_t));
  13147. } else {
  13148. memset(VKQ32, 0, D*sizeof(float));
  13149. }
  13150. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  13151. // k indices
  13152. const int ik3 = iq3 / rk3;
  13153. const int ik2 = iq2 / rk2;
  13154. // v indices
  13155. const int iv3 = iq3 / rv3;
  13156. const int iv2 = iq2 / rv2;
  13157. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  13158. q_to_vec_dot(pq, Q_q, D);
  13159. // online softmax / attention
  13160. // loop over n_kv and n_head_kv
  13161. // ref: https://arxiv.org/pdf/2112.05682.pdf
  13162. for (int64_t ic = 0; ic < nek1; ++ic) {
  13163. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  13164. if (mv == -INFINITY) {
  13165. continue;
  13166. }
  13167. float s; // KQ value
  13168. const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
  13169. kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
  13170. s = s*scale; // scale KQ value
  13171. if (logit_softcap != 0.0f) {
  13172. s = logit_softcap*tanhf(s);
  13173. }
  13174. s += mv; // apply mask
  13175. const float Mold = M;
  13176. float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
  13177. float vs = 1.0f; // post-softmax KQ value, expf(s - M)
  13178. const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  13179. if (v->type == GGML_TYPE_F16) {
  13180. if (s > M) {
  13181. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  13182. M = s;
  13183. ms = expf(Mold - M);
  13184. // V = V*expf(Mold - M)
  13185. ggml_vec_scale_f16(D, VKQ16, ms);
  13186. } else {
  13187. // no new maximum, ms == 1.0f, vs != 1.0f
  13188. vs = expf(s - M);
  13189. }
  13190. // V += v*expf(s - M)
  13191. ggml_vec_mad_f16(D, VKQ16, (const ggml_fp16_t *) v_data, vs);
  13192. } else {
  13193. if (s > M) {
  13194. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  13195. M = s;
  13196. ms = expf(Mold - M);
  13197. // V = V*expf(Mold - M)
  13198. ggml_vec_scale_f32(D, VKQ32, ms);
  13199. } else {
  13200. // no new maximum, ms == 1.0f, vs != 1.0f
  13201. vs = expf(s - M);
  13202. }
  13203. v_to_float(v_data, V32, D);
  13204. // V += v*expf(s - M)
  13205. ggml_vec_mad_f32(D, VKQ32, V32, vs);
  13206. }
  13207. S = S*ms + vs; // scale and increment sum with partial sum
  13208. }
  13209. if (v->type == GGML_TYPE_F16) {
  13210. for (int64_t d = 0; d < D; ++d) {
  13211. VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
  13212. }
  13213. }
  13214. // V /= S
  13215. const float S_inv = 1.0f/S;
  13216. ggml_vec_scale_f32(D, VKQ32, S_inv);
  13217. // dst indices
  13218. const int i1 = iq1;
  13219. const int i2 = iq2;
  13220. const int i3 = iq3;
  13221. // original
  13222. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  13223. // permute(0, 2, 1, 3)
  13224. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
  13225. }
  13226. }
  13227. static void ggml_compute_forward_flash_attn_ext(
  13228. const struct ggml_compute_params * params,
  13229. const struct ggml_tensor * q,
  13230. const struct ggml_tensor * k,
  13231. const struct ggml_tensor * v,
  13232. const struct ggml_tensor * mask,
  13233. struct ggml_tensor * dst) {
  13234. switch (dst->op_params[3]) {
  13235. case GGML_PREC_DEFAULT:
  13236. case GGML_PREC_F32:
  13237. {
  13238. // uses F32 accumulators
  13239. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  13240. } break;
  13241. default:
  13242. {
  13243. GGML_ABORT("fatal error");
  13244. }
  13245. }
  13246. }
  13247. // ggml_compute_forward_flash_attn_back
  13248. static void ggml_compute_forward_flash_attn_back_f32(
  13249. const struct ggml_compute_params * params,
  13250. const bool masked,
  13251. struct ggml_tensor * dst) {
  13252. const struct ggml_tensor * q = dst->src[0];
  13253. const struct ggml_tensor * k = dst->src[1];
  13254. const struct ggml_tensor * v = dst->src[2];
  13255. const struct ggml_tensor * d = dst->src[3];
  13256. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  13257. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  13258. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  13259. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  13260. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  13261. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  13262. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  13263. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  13264. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13265. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  13266. const int ith = params->ith;
  13267. const int nth = params->nth;
  13268. const int64_t D = neq0;
  13269. const int64_t N = neq1;
  13270. const int64_t P = nek1 - N;
  13271. const int64_t M = P + N;
  13272. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  13273. const int mxDM = MAX(D, Mup);
  13274. // GGML_ASSERT(ne0 == D);
  13275. // GGML_ASSERT(ne1 == N);
  13276. GGML_ASSERT(P >= 0);
  13277. GGML_ASSERT(nbq0 == sizeof(float));
  13278. GGML_ASSERT(nbk0 == sizeof(float));
  13279. GGML_ASSERT(nbv0 == sizeof(float));
  13280. GGML_ASSERT(neq0 == D);
  13281. GGML_ASSERT(nek0 == D);
  13282. GGML_ASSERT(nev1 == D);
  13283. GGML_ASSERT(ned0 == D);
  13284. GGML_ASSERT(neq1 == N);
  13285. GGML_ASSERT(nek1 == N + P);
  13286. GGML_ASSERT(nev1 == D);
  13287. GGML_ASSERT(ned1 == N);
  13288. // dst cannot be transposed or permuted
  13289. GGML_ASSERT(nb0 == sizeof(float));
  13290. GGML_ASSERT(nb0 <= nb1);
  13291. GGML_ASSERT(nb1 <= nb2);
  13292. GGML_ASSERT(nb2 <= nb3);
  13293. if (ith == 0) {
  13294. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  13295. }
  13296. ggml_barrier(params->threadpool);
  13297. const int64_t elem_q = ggml_nelements(q);
  13298. const int64_t elem_k = ggml_nelements(k);
  13299. enum ggml_type result_type = dst->type;
  13300. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13301. const size_t tsize = ggml_type_size(result_type);
  13302. const size_t offs_q = 0;
  13303. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13304. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13305. void * grad_q = (char *) dst->data;
  13306. void * grad_k = (char *) dst->data + offs_k;
  13307. void * grad_v = (char *) dst->data + offs_v;
  13308. const size_t nbgq1 = nb0*neq0;
  13309. const size_t nbgq2 = nb0*neq0*neq1;
  13310. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  13311. const size_t nbgk1 = nb0*nek0;
  13312. const size_t nbgk2 = nb0*nek0*nek1;
  13313. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  13314. const size_t nbgv1 = nb0*nev0;
  13315. const size_t nbgv2 = nb0*nev0*nev1;
  13316. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  13317. // parallelize by k rows using ggml_vec_dot_f32
  13318. // total rows in k
  13319. const int nr = nek2*nek3;
  13320. // rows per thread
  13321. const int dr = (nr + nth - 1)/nth;
  13322. // row range for this thread
  13323. const int ir0 = dr*ith;
  13324. const int ir1 = MIN(ir0 + dr, nr);
  13325. const float scale = 1.0f/sqrtf(D);
  13326. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  13327. // how often k2 (and v2) is repeated in q2
  13328. int nrep = neq2/nek2;
  13329. for (int ir = ir0; ir < ir1; ++ir) {
  13330. // q indices
  13331. const int ik3 = ir/(nek2);
  13332. const int ik2 = ir - ik3*nek2;
  13333. const int iq3 = ik3;
  13334. const int id3 = ik3;
  13335. const int iv3 = ik3;
  13336. const int iv2 = ik2;
  13337. for (int irep = 0; irep < nrep; ++irep) {
  13338. const int iq2 = ik2 + irep*nek2;
  13339. const int id2 = iq2;
  13340. // (ik2 + irep*nek2) % nek2 == ik2
  13341. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  13342. const int id1 = iq1;
  13343. // not sure about CACHE_LINE_SIZE_F32..
  13344. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  13345. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  13346. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  13347. for (int i = M; i < Mup; ++i) {
  13348. S[i] = -INFINITY;
  13349. }
  13350. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  13351. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13352. // k indices
  13353. const int ik1 = ic;
  13354. // S indices
  13355. const int i1 = ik1;
  13356. ggml_vec_dot_f32(neq0,
  13357. S + i1, 0,
  13358. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  13359. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  13360. }
  13361. // scale
  13362. ggml_vec_scale_f32(masked_begin, S, scale);
  13363. for (int64_t i = masked_begin; i < M; i++) {
  13364. S[i] = -INFINITY;
  13365. }
  13366. // softmax
  13367. // exclude known -INF S[..] values from max and loop
  13368. // dont forget to set their SM values to zero
  13369. {
  13370. float max = -INFINITY;
  13371. ggml_vec_max_f32(masked_begin, &max, S);
  13372. ggml_float sum = 0.0;
  13373. {
  13374. #ifdef GGML_SOFT_MAX_ACCELERATE
  13375. max = -max;
  13376. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  13377. vvexpf(SM, SM, &Mup);
  13378. ggml_vec_sum_f32(Mup, &sum, SM);
  13379. #else
  13380. sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
  13381. #endif
  13382. }
  13383. assert(sum > 0.0);
  13384. sum = 1.0/sum;
  13385. ggml_vec_scale_f32(masked_begin, SM, sum);
  13386. }
  13387. // step-by-step explanation
  13388. {
  13389. // forward-process shape grads from backward process
  13390. // parallel_for ik2,ik3:
  13391. // for irep:
  13392. // iq2 = ik2 + irep*nek2
  13393. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  13394. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  13395. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  13396. // for iq1:
  13397. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  13398. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  13399. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  13400. // S0 = -Inf [D,1,1,1]
  13401. // ~S1[i] = dot(kcur[:D,i], qcur)
  13402. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  13403. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  13404. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13405. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  13406. // ~S5[i] = dot(vcur[:,i], S4)
  13407. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  13408. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  13409. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  13410. // dst backward-/ grad[dst] = d
  13411. //
  13412. // output gradients with their dependencies:
  13413. //
  13414. // grad[kcur] = grad[S1].T @ qcur
  13415. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13416. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13417. // grad[S4] = grad[S5] @ vcur
  13418. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13419. // grad[qcur] = grad[S1] @ kcur
  13420. // grad[vcur] = grad[S5].T @ S4
  13421. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13422. //
  13423. // in post-order:
  13424. //
  13425. // S1 = qcur @ kcur.T
  13426. // S2 = S1 * scale
  13427. // S3 = diag_mask_inf(S2, P)
  13428. // S4 = softmax(S3)
  13429. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13430. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13431. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13432. // grad[qcur] = grad[S1] @ kcur
  13433. // grad[kcur] = grad[S1].T @ qcur
  13434. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13435. //
  13436. // using less variables (SM=S4):
  13437. //
  13438. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  13439. // SM = softmax(S)
  13440. // S = d[:D,iq1,iq2,iq3] @ vcur
  13441. // dot_SM_gradSM = dot(SM, S)
  13442. // S = SM * (S - dot(SM, S))
  13443. // S = diag_mask_zero(S, P) * scale
  13444. //
  13445. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13446. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  13447. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13448. }
  13449. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13450. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13451. // for ic:
  13452. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  13453. // exclude known future zero S[..] values from operation
  13454. ggml_vec_set_f32(masked_begin, S, 0);
  13455. for (int64_t ic = 0; ic < D; ++ic) {
  13456. ggml_vec_mad_f32(masked_begin,
  13457. S,
  13458. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  13459. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13460. }
  13461. // S = SM * (S - dot(SM, S))
  13462. float dot_SM_gradSM = 0;
  13463. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  13464. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  13465. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  13466. // S = diag_mask_zero(S, P) * scale
  13467. // already done by above ggml_vec_set_f32
  13468. // exclude known zero S[..] values from operation
  13469. ggml_vec_scale_f32(masked_begin, S, scale);
  13470. // S shape [M,1]
  13471. // SM shape [M,1]
  13472. // kcur shape [D,M]
  13473. // qcur shape [D,1]
  13474. // vcur shape [M,D]
  13475. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13476. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  13477. // for ic:
  13478. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  13479. // exclude known zero S[..] values from loop
  13480. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13481. ggml_vec_mad_f32(D,
  13482. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  13483. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  13484. S[ic]);
  13485. }
  13486. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  13487. // for ic:
  13488. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  13489. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  13490. // exclude known zero S[..] values from loop
  13491. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13492. ggml_vec_mad_f32(D,
  13493. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  13494. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  13495. S[ic]);
  13496. }
  13497. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13498. // for ic:
  13499. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  13500. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  13501. // exclude known zero SM[..] values from mad
  13502. for (int64_t ic = 0; ic < D; ++ic) {
  13503. ggml_vec_mad_f32(masked_begin,
  13504. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  13505. SM,
  13506. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13507. }
  13508. }
  13509. }
  13510. }
  13511. }
  13512. static void ggml_compute_forward_flash_attn_back(
  13513. const struct ggml_compute_params * params,
  13514. const bool masked,
  13515. struct ggml_tensor * dst) {
  13516. const struct ggml_tensor * q = dst->src[0];
  13517. switch (q->type) {
  13518. case GGML_TYPE_F32:
  13519. {
  13520. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  13521. } break;
  13522. default:
  13523. {
  13524. GGML_ABORT("fatal error");
  13525. }
  13526. }
  13527. }
  13528. // ggml_compute_forward_ssm_conv
  13529. static void ggml_compute_forward_ssm_conv_f32(
  13530. const struct ggml_compute_params * params,
  13531. struct ggml_tensor * dst) {
  13532. const struct ggml_tensor * src0 = dst->src[0]; // conv_x
  13533. const struct ggml_tensor * src1 = dst->src[1]; // conv1d.weight
  13534. const int ith = params->ith;
  13535. const int nth = params->nth;
  13536. const int nc = src1->ne[0]; // d_conv
  13537. const int ncs = src0->ne[0]; // d_conv - 1 + n_t
  13538. const int nr = src0->ne[1]; // d_inner
  13539. const int n_t = dst->ne[1]; // tokens per sequence
  13540. const int n_s = dst->ne[2]; // number of sequences in the batch
  13541. GGML_ASSERT( dst->ne[0] == nr);
  13542. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13543. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13544. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13545. // rows per thread
  13546. const int dr = (nr + nth - 1)/nth;
  13547. // row range for this thread
  13548. const int ir0 = dr*ith;
  13549. const int ir1 = MIN(ir0 + dr, nr);
  13550. const int ir = ir1 - ir0;
  13551. for (int i3 = 0; i3 < n_s; ++i3) {
  13552. for (int i2 = 0; i2 < n_t; ++i2) {
  13553. // {d_conv - 1 + n_t, d_inner, n_seqs}
  13554. // sliding window
  13555. const float * s = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i2*(src0->nb[0]) + i3*(src0->nb[2])); // {d_conv, d_inner, n_s}
  13556. const float * c = (const float *) ((const char *) src1->data + ir0*(src1->nb[1])); // {d_conv, d_inner}
  13557. float * x = (float *) ((char *) dst->data + ir0*(dst->nb[0]) + i2*(dst->nb[1]) + i3*(dst->nb[2])); // {d_inner, n_t, n_s}
  13558. // TODO: transpose the output for smaller strides for big batches?
  13559. // d_inner
  13560. for (int i1 = 0; i1 < ir; ++i1) {
  13561. // rowwise dot product
  13562. // NOTE: not using ggml_vec_dot_f32, because its sum is in double precision
  13563. float sumf = 0.0f;
  13564. // d_conv
  13565. for (int i0 = 0; i0 < nc; ++i0) {
  13566. sumf += s[i0 + i1*ncs] * c[i0 + i1*nc];
  13567. }
  13568. x[i1] = sumf;
  13569. }
  13570. }
  13571. }
  13572. }
  13573. static void ggml_compute_forward_ssm_conv(
  13574. const struct ggml_compute_params * params,
  13575. struct ggml_tensor * dst) {
  13576. switch (dst->src[0]->type) {
  13577. case GGML_TYPE_F32:
  13578. {
  13579. ggml_compute_forward_ssm_conv_f32(params, dst);
  13580. } break;
  13581. default:
  13582. {
  13583. GGML_ABORT("fatal error");
  13584. }
  13585. }
  13586. }
  13587. // ggml_compute_forward_ssm_scan
  13588. static void ggml_compute_forward_ssm_scan_f32(
  13589. const struct ggml_compute_params * params,
  13590. struct ggml_tensor * dst) {
  13591. const struct ggml_tensor * src0 = dst->src[0]; // s
  13592. const struct ggml_tensor * src1 = dst->src[1]; // x
  13593. const struct ggml_tensor * src2 = dst->src[2]; // dt
  13594. const struct ggml_tensor * src3 = dst->src[3]; // A
  13595. const struct ggml_tensor * src4 = dst->src[4]; // B
  13596. const struct ggml_tensor * src5 = dst->src[5]; // C
  13597. const int ith = params->ith;
  13598. const int nth = params->nth;
  13599. const int64_t nc = src0->ne[0]; // d_state
  13600. const int64_t nr = src0->ne[1]; // d_inner
  13601. const int64_t n_t = src1->ne[1]; // number of tokens per sequence
  13602. const int64_t n_s = src0->ne[2]; // number of sequences in the batch
  13603. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  13604. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13605. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13606. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13607. GGML_ASSERT(src3->nb[0] == sizeof(float));
  13608. GGML_ASSERT(src4->nb[0] == sizeof(float));
  13609. GGML_ASSERT(src5->nb[0] == sizeof(float));
  13610. // required for the dot product between s and C
  13611. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13612. // required for per-sequence offsets for states
  13613. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  13614. // required to get correct offset for state destination (i.e. src1->nb[3])
  13615. GGML_ASSERT(src1->nb[3] == src1->ne[0]*src1->ne[1]*src1->ne[2]*sizeof(float));
  13616. // rows per thread
  13617. const int dr = (nr + nth - 1)/nth;
  13618. // row range for this thread
  13619. const int ir0 = dr*ith;
  13620. const int ir1 = MIN(ir0 + dr, nr);
  13621. const int ir = ir1 - ir0;
  13622. for (int i3 = 0; i3 < n_s; ++i3) {
  13623. for (int i2 = 0; i2 < n_t; ++i2) {
  13624. const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
  13625. const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
  13626. const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
  13627. const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  13628. const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
  13629. const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
  13630. float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
  13631. float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
  13632. // use the output as the source for the next token-wise iterations
  13633. if (i2 > 0) { s0 = s; }
  13634. // d_inner
  13635. for (int i1 = 0; i1 < ir; ++i1) {
  13636. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  13637. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  13638. float x_dt = x[i1] * dt_soft_plus;
  13639. float sumf = 0.0f;
  13640. // d_state
  13641. for (int i0 = 0; i0 < nc; ++i0) {
  13642. int i = i0 + i1*nc;
  13643. // state = prev_state * dA + dB * x
  13644. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  13645. // y = rowwise_dotprod(state, C)
  13646. sumf += state * C[i0];
  13647. s[i] = state;
  13648. }
  13649. y[i1] = sumf;
  13650. }
  13651. }
  13652. }
  13653. }
  13654. static void ggml_compute_forward_ssm_scan(
  13655. const struct ggml_compute_params * params,
  13656. struct ggml_tensor * dst) {
  13657. switch (dst->src[0]->type) {
  13658. case GGML_TYPE_F32:
  13659. {
  13660. ggml_compute_forward_ssm_scan_f32(params, dst);
  13661. } break;
  13662. default:
  13663. {
  13664. GGML_ABORT("fatal error");
  13665. }
  13666. }
  13667. }
  13668. // ggml_compute_forward_win_part
  13669. static void ggml_compute_forward_win_part_f32(
  13670. const struct ggml_compute_params * params,
  13671. struct ggml_tensor * dst) {
  13672. UNUSED(params);
  13673. const struct ggml_tensor * src0 = dst->src[0];
  13674. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13675. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13676. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  13677. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  13678. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  13679. assert(ne00 == ne0);
  13680. assert(ne3 == nep0*nep1);
  13681. // TODO: optimize / multi-thread
  13682. for (int py = 0; py < nep1; ++py) {
  13683. for (int px = 0; px < nep0; ++px) {
  13684. const int64_t i3 = py*nep0 + px;
  13685. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13686. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13687. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13688. const int64_t i02 = py*w + i2;
  13689. const int64_t i01 = px*w + i1;
  13690. const int64_t i00 = i0;
  13691. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  13692. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  13693. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  13694. ((float *) dst->data)[i] = 0.0f;
  13695. } else {
  13696. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  13697. }
  13698. }
  13699. }
  13700. }
  13701. }
  13702. }
  13703. }
  13704. static void ggml_compute_forward_win_part(
  13705. const struct ggml_compute_params * params,
  13706. struct ggml_tensor * dst) {
  13707. const struct ggml_tensor * src0 = dst->src[0];
  13708. switch (src0->type) {
  13709. case GGML_TYPE_F32:
  13710. {
  13711. ggml_compute_forward_win_part_f32(params, dst);
  13712. } break;
  13713. default:
  13714. {
  13715. GGML_ABORT("fatal error");
  13716. }
  13717. }
  13718. }
  13719. // ggml_compute_forward_win_unpart
  13720. static void ggml_compute_forward_win_unpart_f32(
  13721. const struct ggml_compute_params * params,
  13722. struct ggml_tensor * dst) {
  13723. UNUSED(params);
  13724. const struct ggml_tensor * src0 = dst->src[0];
  13725. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13726. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13727. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  13728. // padding
  13729. const int px = (w - ne1%w)%w;
  13730. //const int py = (w - ne2%w)%w;
  13731. const int npx = (px + ne1)/w;
  13732. //const int npy = (py + ne2)/w;
  13733. assert(ne0 == ne00);
  13734. // TODO: optimize / multi-thread
  13735. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13736. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13737. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13738. const int ip2 = i2/w;
  13739. const int ip1 = i1/w;
  13740. const int64_t i02 = i2%w;
  13741. const int64_t i01 = i1%w;
  13742. const int64_t i00 = i0;
  13743. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  13744. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  13745. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  13746. }
  13747. }
  13748. }
  13749. }
  13750. static void ggml_compute_forward_win_unpart(
  13751. const struct ggml_compute_params * params,
  13752. struct ggml_tensor * dst) {
  13753. const struct ggml_tensor * src0 = dst->src[0];
  13754. switch (src0->type) {
  13755. case GGML_TYPE_F32:
  13756. {
  13757. ggml_compute_forward_win_unpart_f32(params, dst);
  13758. } break;
  13759. default:
  13760. {
  13761. GGML_ABORT("fatal error");
  13762. }
  13763. }
  13764. }
  13765. //gmml_compute_forward_unary
  13766. static void ggml_compute_forward_unary(
  13767. const struct ggml_compute_params * params,
  13768. struct ggml_tensor * dst) {
  13769. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  13770. switch (op) {
  13771. case GGML_UNARY_OP_ABS:
  13772. {
  13773. ggml_compute_forward_abs(params, dst);
  13774. } break;
  13775. case GGML_UNARY_OP_SGN:
  13776. {
  13777. ggml_compute_forward_sgn(params, dst);
  13778. } break;
  13779. case GGML_UNARY_OP_NEG:
  13780. {
  13781. ggml_compute_forward_neg(params, dst);
  13782. } break;
  13783. case GGML_UNARY_OP_STEP:
  13784. {
  13785. ggml_compute_forward_step(params, dst);
  13786. } break;
  13787. case GGML_UNARY_OP_TANH:
  13788. {
  13789. ggml_compute_forward_tanh(params, dst);
  13790. } break;
  13791. case GGML_UNARY_OP_ELU:
  13792. {
  13793. ggml_compute_forward_elu(params, dst);
  13794. } break;
  13795. case GGML_UNARY_OP_RELU:
  13796. {
  13797. ggml_compute_forward_relu(params, dst);
  13798. } break;
  13799. case GGML_UNARY_OP_SIGMOID:
  13800. {
  13801. ggml_compute_forward_sigmoid(params, dst);
  13802. } break;
  13803. case GGML_UNARY_OP_GELU:
  13804. {
  13805. ggml_compute_forward_gelu(params, dst);
  13806. } break;
  13807. case GGML_UNARY_OP_GELU_QUICK:
  13808. {
  13809. ggml_compute_forward_gelu_quick(params, dst);
  13810. } break;
  13811. case GGML_UNARY_OP_SILU:
  13812. {
  13813. ggml_compute_forward_silu(params, dst);
  13814. } break;
  13815. case GGML_UNARY_OP_HARDSWISH:
  13816. {
  13817. ggml_compute_forward_hardswish(params, dst);
  13818. } break;
  13819. case GGML_UNARY_OP_HARDSIGMOID:
  13820. {
  13821. ggml_compute_forward_hardsigmoid(params, dst);
  13822. } break;
  13823. case GGML_UNARY_OP_EXP:
  13824. {
  13825. ggml_compute_forward_exp(params, dst);
  13826. } break;
  13827. default:
  13828. {
  13829. GGML_ABORT("fatal error");
  13830. }
  13831. }
  13832. }
  13833. // ggml_compute_forward_get_rel_pos
  13834. static void ggml_compute_forward_get_rel_pos_f16(
  13835. const struct ggml_compute_params * params,
  13836. struct ggml_tensor * dst) {
  13837. UNUSED(params);
  13838. const struct ggml_tensor * src0 = dst->src[0];
  13839. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  13840. GGML_TENSOR_UNARY_OP_LOCALS
  13841. const int64_t w = ne1;
  13842. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  13843. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  13844. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13845. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13846. const int64_t pos = (w - i1 - 1) + i2;
  13847. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13848. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  13849. }
  13850. }
  13851. }
  13852. }
  13853. static void ggml_compute_forward_get_rel_pos(
  13854. const struct ggml_compute_params * params,
  13855. struct ggml_tensor * dst) {
  13856. const struct ggml_tensor * src0 = dst->src[0];
  13857. switch (src0->type) {
  13858. case GGML_TYPE_F16:
  13859. case GGML_TYPE_BF16:
  13860. {
  13861. ggml_compute_forward_get_rel_pos_f16(params, dst);
  13862. } break;
  13863. default:
  13864. {
  13865. GGML_ABORT("fatal error");
  13866. }
  13867. }
  13868. }
  13869. // ggml_compute_forward_add_rel_pos
  13870. static void ggml_compute_forward_add_rel_pos_f32(
  13871. const struct ggml_compute_params * params,
  13872. struct ggml_tensor * dst) {
  13873. const struct ggml_tensor * src0 = dst->src[0];
  13874. const struct ggml_tensor * src1 = dst->src[1];
  13875. const struct ggml_tensor * src2 = dst->src[2];
  13876. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  13877. if (!inplace) {
  13878. if (params->ith == 0) {
  13879. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  13880. }
  13881. ggml_barrier(params->threadpool);
  13882. }
  13883. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  13884. float * src1_data = (float *) src1->data;
  13885. float * src2_data = (float *) src2->data;
  13886. float * dst_data = (float *) dst->data;
  13887. const int64_t ne10 = src1->ne[0];
  13888. const int64_t ne11 = src1->ne[1];
  13889. const int64_t ne12 = src1->ne[2];
  13890. const int64_t ne13 = src1->ne[3];
  13891. const int ith = params->ith;
  13892. const int nth = params->nth;
  13893. // total patches in dst
  13894. const int np = ne13;
  13895. // patches per thread
  13896. const int dp = (np + nth - 1)/nth;
  13897. // patch range for this thread
  13898. const int ip0 = dp*ith;
  13899. const int ip1 = MIN(ip0 + dp, np);
  13900. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  13901. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  13902. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  13903. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  13904. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  13905. const int64_t jp0 = jp1 + i10;
  13906. const float src1_e = src1_data[jp0];
  13907. const float src2_e = src2_data[jp0];
  13908. const int64_t jdh = jp0 * ne10;
  13909. const int64_t jdw = jdh - (ne10 - 1) * i10;
  13910. for (int64_t j = 0; j < ne10; ++j) {
  13911. dst_data[jdh + j ] += src2_e;
  13912. dst_data[jdw + j*ne10] += src1_e;
  13913. }
  13914. }
  13915. }
  13916. }
  13917. }
  13918. }
  13919. static void ggml_compute_forward_add_rel_pos(
  13920. const struct ggml_compute_params * params,
  13921. struct ggml_tensor * dst) {
  13922. const struct ggml_tensor * src0 = dst->src[0];
  13923. switch (src0->type) {
  13924. case GGML_TYPE_F32:
  13925. {
  13926. ggml_compute_forward_add_rel_pos_f32(params, dst);
  13927. } break;
  13928. default:
  13929. {
  13930. GGML_ABORT("fatal error");
  13931. }
  13932. }
  13933. }
  13934. // ggml_compute_forward_rwkv_wkv
  13935. static void ggml_compute_forward_rwkv_wkv_f32(
  13936. const struct ggml_compute_params * params,
  13937. struct ggml_tensor * dst) {
  13938. const size_t T = dst->src[1]->ne[3];
  13939. const size_t C = dst->ne[0];
  13940. const size_t H = dst->src[1]->ne[2];
  13941. const size_t n_seqs = dst->src[5]->ne[1];
  13942. float * dst_data = (float *) dst->data;
  13943. float * state = ((float *) dst->data) + C * T;
  13944. if (params->ith != 0) {
  13945. return;
  13946. }
  13947. memset(dst_data, 0, T * C * sizeof(float));
  13948. float * k = (float *) dst->src[0]->data;
  13949. float * v = (float *) dst->src[1]->data;
  13950. float * r = (float *) dst->src[2]->data;
  13951. float * time_faaaa = (float *) dst->src[3]->data;
  13952. float * time_decay = (float *) dst->src[4]->data;
  13953. size_t t_stride = H * (C / H);
  13954. size_t h_stride = C / H;
  13955. size_t h_stride_2d = (C / H) * (C / H);
  13956. // basically fused operations:
  13957. // dst = r @ (time_faaaa * (k @ v) + state),
  13958. // state = time_decay * state + (k @ v),
  13959. // recursive through each token
  13960. for (size_t t = 0; t < T; t++) {
  13961. size_t t_offset = t * t_stride;
  13962. size_t state_offset = (C / H) * C * (t / (T / n_seqs));
  13963. float * state_cur = state + state_offset;
  13964. float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
  13965. for (size_t h = 0; h < H; h++) {
  13966. size_t h_offset = h * h_stride;
  13967. size_t t_h_offset = t_offset + h_offset;
  13968. size_t h_2d_offset = h * h_stride_2d;
  13969. for (size_t i = 0; i < C / H; i++) {
  13970. size_t t_h_i_offset = t_h_offset + i;
  13971. size_t h_i_offset = h_offset + i;
  13972. size_t h_2d_i_offset = h_2d_offset + i * h_stride;
  13973. float k_val = k[t_h_i_offset];
  13974. float r_val = r[t_h_i_offset];
  13975. float time_faaaa_val = time_faaaa[h_i_offset];
  13976. // RWKV v6: different time_decay for each token.
  13977. float time_decay_val = time_decay[t_h_i_offset];
  13978. for (size_t j = 0; j < C / H; j ++) {
  13979. size_t t_h_j_offset = t_h_offset + j;
  13980. size_t h_2d_i_j_offset = h_2d_i_offset + j;
  13981. float v_val = v[t_h_j_offset];
  13982. float kv_val = v_val * k_val;
  13983. float prev_state_val = state_prev[h_2d_i_j_offset];
  13984. float temp_val = kv_val * time_faaaa_val + prev_state_val;
  13985. dst_data[t_h_j_offset] += temp_val * r_val;
  13986. state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
  13987. }
  13988. }
  13989. }
  13990. }
  13991. }
  13992. static void ggml_compute_forward_rwkv_wkv(
  13993. const struct ggml_compute_params * params,
  13994. struct ggml_tensor * dst) {
  13995. const struct ggml_tensor * src0 = dst->src[0];
  13996. switch (src0->type) {
  13997. case GGML_TYPE_F32:
  13998. {
  13999. ggml_compute_forward_rwkv_wkv_f32(params, dst);
  14000. } break;
  14001. default:
  14002. {
  14003. GGML_ABORT("fatal error");
  14004. }
  14005. }
  14006. }
  14007. // ggml_compute_forward_map_unary
  14008. static void ggml_compute_forward_map_unary_f32(
  14009. const struct ggml_compute_params * params,
  14010. struct ggml_tensor * dst,
  14011. const ggml_unary_op_f32_t fun) {
  14012. const struct ggml_tensor * src0 = dst->src[0];
  14013. if (params->ith != 0) {
  14014. return;
  14015. }
  14016. assert(ggml_is_contiguous_1(src0));
  14017. assert(ggml_is_contiguous_1(dst));
  14018. assert(ggml_are_same_shape(src0, dst));
  14019. const int n = ggml_nrows(src0);
  14020. const int nc = src0->ne[0];
  14021. for (int i = 0; i < n; i++) {
  14022. fun(nc,
  14023. (float *) ((char *) dst->data + i*( dst->nb[1])),
  14024. (float *) ((char *) src0->data + i*(src0->nb[1])));
  14025. }
  14026. }
  14027. static void ggml_compute_forward_map_unary(
  14028. const struct ggml_compute_params * params,
  14029. struct ggml_tensor * dst,
  14030. const ggml_unary_op_f32_t fun) {
  14031. const struct ggml_tensor * src0 = dst->src[0];
  14032. switch (src0->type) {
  14033. case GGML_TYPE_F32:
  14034. {
  14035. ggml_compute_forward_map_unary_f32(params, dst, fun);
  14036. } break;
  14037. default:
  14038. {
  14039. GGML_ABORT("fatal error");
  14040. }
  14041. }
  14042. }
  14043. // ggml_compute_forward_map_binary
  14044. static void ggml_compute_forward_map_binary_f32(
  14045. const struct ggml_compute_params * params,
  14046. struct ggml_tensor * dst,
  14047. const ggml_binary_op_f32_t fun) {
  14048. const struct ggml_tensor * src0 = dst->src[0];
  14049. const struct ggml_tensor * src1 = dst->src[1];
  14050. if (params->ith != 0) {
  14051. return;
  14052. }
  14053. assert(ggml_is_contiguous_1(src0));
  14054. assert(ggml_is_contiguous_1(src1));
  14055. assert(ggml_is_contiguous_1(dst));
  14056. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  14057. const int n = ggml_nrows(src0);
  14058. const int nc = src0->ne[0];
  14059. for (int i = 0; i < n; i++) {
  14060. fun(nc,
  14061. (float *) ((char *) dst->data + i*( dst->nb[1])),
  14062. (float *) ((char *) src0->data + i*(src0->nb[1])),
  14063. (float *) ((char *) src1->data + i*(src1->nb[1])));
  14064. }
  14065. }
  14066. static void ggml_compute_forward_map_binary(
  14067. const struct ggml_compute_params * params,
  14068. struct ggml_tensor * dst,
  14069. const ggml_binary_op_f32_t fun) {
  14070. const struct ggml_tensor * src0 = dst->src[0];
  14071. switch (src0->type) {
  14072. case GGML_TYPE_F32:
  14073. {
  14074. ggml_compute_forward_map_binary_f32(params, dst, fun);
  14075. } break;
  14076. default:
  14077. {
  14078. GGML_ABORT("fatal error");
  14079. }
  14080. }
  14081. }
  14082. // ggml_compute_forward_map_custom1
  14083. static void ggml_compute_forward_map_custom1_f32(
  14084. const struct ggml_compute_params * params,
  14085. struct ggml_tensor * dst,
  14086. const ggml_custom1_op_f32_t fun) {
  14087. const struct ggml_tensor * a = dst->src[0];
  14088. if (params->ith != 0) {
  14089. return;
  14090. }
  14091. fun(dst, a);
  14092. }
  14093. // ggml_compute_forward_map_custom2
  14094. static void ggml_compute_forward_map_custom2_f32(
  14095. const struct ggml_compute_params * params,
  14096. struct ggml_tensor * dst,
  14097. const ggml_custom2_op_f32_t fun) {
  14098. const struct ggml_tensor * a = dst->src[0];
  14099. const struct ggml_tensor * b = dst->src[1];
  14100. if (params->ith != 0) {
  14101. return;
  14102. }
  14103. fun(dst, a, b);
  14104. }
  14105. // ggml_compute_forward_map_custom3
  14106. static void ggml_compute_forward_map_custom3_f32(
  14107. const struct ggml_compute_params * params,
  14108. struct ggml_tensor * dst,
  14109. const ggml_custom3_op_f32_t fun) {
  14110. const struct ggml_tensor * a = dst->src[0];
  14111. const struct ggml_tensor * b = dst->src[1];
  14112. const struct ggml_tensor * c = dst->src[1];
  14113. if (params->ith != 0) {
  14114. return;
  14115. }
  14116. fun(dst, a, b, c);
  14117. }
  14118. // ggml_compute_forward_map_custom1
  14119. static void ggml_compute_forward_map_custom1(
  14120. const struct ggml_compute_params * params,
  14121. struct ggml_tensor * dst) {
  14122. const struct ggml_tensor * a = dst->src[0];
  14123. struct ggml_map_custom1_op_params p;
  14124. memcpy(&p, dst->op_params, sizeof(p));
  14125. p.fun(dst, a, params->ith, params->nth, p.userdata);
  14126. }
  14127. // ggml_compute_forward_map_custom2
  14128. static void ggml_compute_forward_map_custom2(
  14129. const struct ggml_compute_params * params,
  14130. struct ggml_tensor * dst) {
  14131. const struct ggml_tensor * a = dst->src[0];
  14132. const struct ggml_tensor * b = dst->src[1];
  14133. struct ggml_map_custom2_op_params p;
  14134. memcpy(&p, dst->op_params, sizeof(p));
  14135. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  14136. }
  14137. // ggml_compute_forward_map_custom3
  14138. static void ggml_compute_forward_map_custom3(
  14139. const struct ggml_compute_params * params,
  14140. struct ggml_tensor * dst) {
  14141. const struct ggml_tensor * a = dst->src[0];
  14142. const struct ggml_tensor * b = dst->src[1];
  14143. const struct ggml_tensor * c = dst->src[2];
  14144. struct ggml_map_custom3_op_params p;
  14145. memcpy(&p, dst->op_params, sizeof(p));
  14146. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  14147. }
  14148. // ggml_compute_forward_cross_entropy_loss
  14149. static void ggml_compute_forward_cross_entropy_loss_f32(
  14150. const struct ggml_compute_params * params,
  14151. struct ggml_tensor * dst) {
  14152. const struct ggml_tensor * src0 = dst->src[0];
  14153. const struct ggml_tensor * src1 = dst->src[1];
  14154. GGML_ASSERT(ggml_is_contiguous(src0));
  14155. GGML_ASSERT(ggml_is_contiguous(src1));
  14156. GGML_ASSERT(ggml_is_scalar(dst));
  14157. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  14158. const int ith = params->ith;
  14159. const int nth = params->nth;
  14160. float * sums = (float *) params->wdata;
  14161. // TODO: handle transposed/permuted matrices
  14162. const int nc = src0->ne[0];
  14163. const int nr = ggml_nrows(src0);
  14164. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  14165. if (ith == 0) {
  14166. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  14167. }
  14168. ggml_barrier(params->threadpool);
  14169. // rows per thread
  14170. const int dr = (nr + nth - 1)/nth;
  14171. // row range for this thread
  14172. const int ir0 = dr*ith;
  14173. const int ir1 = MIN(ir0 + dr, nr);
  14174. for (int i1 = ir0; i1 < ir1; i1++) {
  14175. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  14176. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  14177. float * st = ((float *) params->wdata) + nth + ith*nc;
  14178. #ifndef NDEBUG
  14179. for (int i = 0; i < nc; ++i) {
  14180. //printf("p[%d] = %f\n", i, p[i]);
  14181. assert(!isnan(s0[i]));
  14182. assert(!isnan(s1[i]));
  14183. }
  14184. #endif
  14185. float max = -INFINITY;
  14186. ggml_vec_max_f32(nc, &max, s0);
  14187. ggml_float sum = ggml_vec_log_soft_max_f32(nc, st, s0, max);
  14188. assert(sum >= 0.0);
  14189. ggml_vec_add1_f32(nc, st, st, -sum);
  14190. ggml_vec_mul_f32(nc, st, st, s1);
  14191. float st_sum = 0.0f;
  14192. ggml_vec_sum_f32(nc, &st_sum, st);
  14193. sums[ith] += st_sum;
  14194. #ifndef NDEBUG
  14195. for (int i = 0; i < nc; ++i) {
  14196. assert(!isnan(st[i]));
  14197. assert(!isinf(st[i]));
  14198. }
  14199. #endif
  14200. }
  14201. ggml_barrier(params->threadpool);
  14202. if (ith == 0) {
  14203. float * dp = (float *) dst->data;
  14204. ggml_vec_sum_f32(nth, dp, sums);
  14205. dp[0] *= -1.0f / (float) nr;
  14206. }
  14207. }
  14208. static void ggml_compute_forward_cross_entropy_loss(
  14209. const struct ggml_compute_params * params,
  14210. struct ggml_tensor * dst) {
  14211. const struct ggml_tensor * src0 = dst->src[0];
  14212. switch (src0->type) {
  14213. case GGML_TYPE_F32:
  14214. {
  14215. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  14216. } break;
  14217. default:
  14218. {
  14219. GGML_ABORT("fatal error");
  14220. }
  14221. }
  14222. }
  14223. // ggml_compute_forward_cross_entropy_loss_back
  14224. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  14225. const struct ggml_compute_params * params,
  14226. struct ggml_tensor * dst) {
  14227. const struct ggml_tensor * src0 = dst->src[0];
  14228. const struct ggml_tensor * src1 = dst->src[1];
  14229. const struct ggml_tensor * opt0 = dst->src[2];
  14230. GGML_ASSERT(ggml_is_contiguous(dst));
  14231. GGML_ASSERT(ggml_is_contiguous(src0));
  14232. GGML_ASSERT(ggml_is_contiguous(src1));
  14233. GGML_ASSERT(ggml_is_contiguous(opt0));
  14234. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  14235. const int64_t ith = params->ith;
  14236. const int64_t nth = params->nth;
  14237. // TODO: handle transposed/permuted matrices
  14238. const int64_t nc = src0->ne[0];
  14239. const int64_t nr = ggml_nrows(src0);
  14240. // rows per thread
  14241. const int64_t dr = (nr + nth - 1)/nth;
  14242. // row range for this thread
  14243. const int64_t ir0 = dr*ith;
  14244. const int64_t ir1 = MIN(ir0 + dr, nr);
  14245. const float d_by_nr = ((const float *) opt0->data)[0] / (float) nr;
  14246. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  14247. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  14248. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  14249. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  14250. #ifndef NDEBUG
  14251. for (int i = 0; i < nc; ++i) {
  14252. //printf("p[%d] = %f\n", i, p[i]);
  14253. assert(!isnan(s0[i]));
  14254. assert(!isnan(s1[i]));
  14255. }
  14256. #endif
  14257. // soft_max
  14258. float max = -INFINITY;
  14259. ggml_vec_max_f32(nc, &max, s0);
  14260. ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
  14261. assert(sum > 0.0);
  14262. ggml_vec_scale_f32(nc, ds0, 1.0/sum);
  14263. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  14264. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  14265. ggml_vec_scale_f32(nc, ds0, d_by_nr);
  14266. #ifndef NDEBUG
  14267. for (int i = 0; i < nc; ++i) {
  14268. assert(!isnan(ds0[i]));
  14269. assert(!isinf(ds0[i]));
  14270. }
  14271. #endif
  14272. }
  14273. }
  14274. static void ggml_compute_forward_cross_entropy_loss_back(
  14275. const struct ggml_compute_params * params,
  14276. struct ggml_tensor * dst) {
  14277. const struct ggml_tensor * src0 = dst->src[0];
  14278. switch (src0->type) {
  14279. case GGML_TYPE_F32:
  14280. {
  14281. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  14282. } break;
  14283. default:
  14284. {
  14285. GGML_ABORT("fatal error");
  14286. }
  14287. }
  14288. }
  14289. static void ggml_compute_forward_opt_step_adamw_f32(
  14290. const struct ggml_compute_params * params,
  14291. struct ggml_tensor * dst) {
  14292. const struct ggml_tensor * src0 = dst->src[0];
  14293. const struct ggml_tensor * src0_grad = dst->src[1];
  14294. const struct ggml_tensor * src0_grad_m = dst->src[2];
  14295. const struct ggml_tensor * src0_grad_v = dst->src[3];
  14296. GGML_ASSERT(ggml_are_same_shape(src0, src0_grad));
  14297. const int ith = params->ith;
  14298. const int nth = params->nth;
  14299. const int nr = ggml_nrows(src0);
  14300. GGML_TENSOR_UNARY_OP_LOCALS
  14301. GGML_ASSERT(nb00 == sizeof(float));
  14302. // rows per thread
  14303. const int dr = (nr + nth - 1)/nth;
  14304. // row range for this thread
  14305. const int ir0 = dr*ith;
  14306. const int ir1 = MIN(ir0 + dr, nr);
  14307. /* const float gnorm = 1.0f; */
  14308. int64_t iter; memcpy(&iter, &dst->op_params[0], sizeof(int64_t));
  14309. const float alpha = ggml_get_op_params_f32(dst, 2);
  14310. const float beta1 = ggml_get_op_params_f32(dst, 3);
  14311. const float beta2 = ggml_get_op_params_f32(dst, 4);
  14312. const float eps = ggml_get_op_params_f32(dst, 5);
  14313. const float wd = ggml_get_op_params_f32(dst, 6);
  14314. const float beta1h = alpha/(1.0f - powf(beta1, iter));
  14315. const float beta2h = 1.0f/(1.0f - powf(beta2, iter));
  14316. for (int ir = ir0; ir < ir1; ++ir) {
  14317. const int64_t i03 = ir/(ne02*ne01);
  14318. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  14319. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  14320. const size_t offset = i03*nb03 + i02*nb02 + i01*nb01;
  14321. float * w = (float *) ((char *) src0->data + offset); // weight
  14322. const float * g = (const float *) ((const char *) src0_grad->data + offset); // grad
  14323. float * m = (float *) ((char *) src0_grad_m->data + offset);
  14324. float * v = (float *) ((char *) src0_grad_v->data + offset);
  14325. for (int i00 = 0; i00 < ne00; ++i00) {
  14326. m[i00] = m[i00]*beta1 + g[i00]*(1.0f - beta1);
  14327. v[i00] = v[i00]*beta2 + g[i00]*g[i00]*(1.0f - beta2);
  14328. const float mh = m[i00]*beta1h;
  14329. const float vh = sqrtf(v[i00]*beta2h) + eps;
  14330. // The weight decay is applied independently of the Adam momenta m and v.
  14331. // This is NOT equivalent to l2 regularization that adds w[i00]*w[i00] to the loss.
  14332. // See: https://arxiv.org/pdf/1711.05101v3.pdf
  14333. w[i00] = w[i00]*(1.0f - alpha*wd) - mh/vh;
  14334. }
  14335. }
  14336. ggml_barrier(params->threadpool);
  14337. if (ith != 0) {
  14338. return;
  14339. }
  14340. iter++;
  14341. memcpy(&dst->op_params[0], &iter, sizeof(int64_t));
  14342. }
  14343. static void ggml_compute_forward_opt_step_adamw(
  14344. const struct ggml_compute_params * params,
  14345. struct ggml_tensor * dst) {
  14346. const struct ggml_tensor * src0 = dst->src[0];
  14347. switch (src0->type) {
  14348. case GGML_TYPE_F32:
  14349. {
  14350. ggml_compute_forward_opt_step_adamw_f32(params, dst);
  14351. } break;
  14352. default:
  14353. {
  14354. GGML_ABORT("fatal error");
  14355. }
  14356. }
  14357. }
  14358. /////////////////////////////////
  14359. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  14360. GGML_ASSERT(params);
  14361. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  14362. return;
  14363. }
  14364. switch (tensor->op) {
  14365. case GGML_OP_DUP:
  14366. {
  14367. ggml_compute_forward_dup(params, tensor);
  14368. } break;
  14369. case GGML_OP_ADD:
  14370. {
  14371. ggml_compute_forward_add(params, tensor);
  14372. } break;
  14373. case GGML_OP_ADD1:
  14374. {
  14375. ggml_compute_forward_add1(params, tensor);
  14376. } break;
  14377. case GGML_OP_ACC:
  14378. {
  14379. ggml_compute_forward_acc(params, tensor);
  14380. } break;
  14381. case GGML_OP_SUB:
  14382. {
  14383. ggml_compute_forward_sub(params, tensor);
  14384. } break;
  14385. case GGML_OP_MUL:
  14386. {
  14387. ggml_compute_forward_mul(params, tensor);
  14388. } break;
  14389. case GGML_OP_DIV:
  14390. {
  14391. ggml_compute_forward_div(params, tensor);
  14392. } break;
  14393. case GGML_OP_SQR:
  14394. {
  14395. ggml_compute_forward_sqr(params, tensor);
  14396. } break;
  14397. case GGML_OP_SQRT:
  14398. {
  14399. ggml_compute_forward_sqrt(params, tensor);
  14400. } break;
  14401. case GGML_OP_LOG:
  14402. {
  14403. ggml_compute_forward_log(params, tensor);
  14404. } break;
  14405. case GGML_OP_SIN:
  14406. {
  14407. ggml_compute_forward_sin(params, tensor);
  14408. } break;
  14409. case GGML_OP_COS:
  14410. {
  14411. ggml_compute_forward_cos(params, tensor);
  14412. } break;
  14413. case GGML_OP_SUM:
  14414. {
  14415. ggml_compute_forward_sum(params, tensor);
  14416. } break;
  14417. case GGML_OP_SUM_ROWS:
  14418. {
  14419. ggml_compute_forward_sum_rows(params, tensor);
  14420. } break;
  14421. case GGML_OP_MEAN:
  14422. {
  14423. ggml_compute_forward_mean(params, tensor);
  14424. } break;
  14425. case GGML_OP_ARGMAX:
  14426. {
  14427. ggml_compute_forward_argmax(params, tensor);
  14428. } break;
  14429. case GGML_OP_REPEAT:
  14430. {
  14431. ggml_compute_forward_repeat(params, tensor);
  14432. } break;
  14433. case GGML_OP_REPEAT_BACK:
  14434. {
  14435. ggml_compute_forward_repeat_back(params, tensor);
  14436. } break;
  14437. case GGML_OP_CONCAT:
  14438. {
  14439. ggml_compute_forward_concat(params, tensor);
  14440. } break;
  14441. case GGML_OP_SILU_BACK:
  14442. {
  14443. ggml_compute_forward_silu_back(params, tensor);
  14444. } break;
  14445. case GGML_OP_NORM:
  14446. {
  14447. ggml_compute_forward_norm(params, tensor);
  14448. } break;
  14449. case GGML_OP_RMS_NORM:
  14450. {
  14451. ggml_compute_forward_rms_norm(params, tensor);
  14452. } break;
  14453. case GGML_OP_RMS_NORM_BACK:
  14454. {
  14455. ggml_compute_forward_rms_norm_back(params, tensor);
  14456. } break;
  14457. case GGML_OP_GROUP_NORM:
  14458. {
  14459. ggml_compute_forward_group_norm(params, tensor);
  14460. } break;
  14461. case GGML_OP_MUL_MAT:
  14462. {
  14463. ggml_compute_forward_mul_mat(params, tensor);
  14464. } break;
  14465. case GGML_OP_MUL_MAT_ID:
  14466. {
  14467. ggml_compute_forward_mul_mat_id(params, tensor);
  14468. } break;
  14469. case GGML_OP_OUT_PROD:
  14470. {
  14471. ggml_compute_forward_out_prod(params, tensor);
  14472. } break;
  14473. case GGML_OP_SCALE:
  14474. {
  14475. ggml_compute_forward_scale(params, tensor);
  14476. } break;
  14477. case GGML_OP_SET:
  14478. {
  14479. ggml_compute_forward_set(params, tensor);
  14480. } break;
  14481. case GGML_OP_CPY:
  14482. {
  14483. ggml_compute_forward_cpy(params, tensor);
  14484. } break;
  14485. case GGML_OP_CONT:
  14486. {
  14487. ggml_compute_forward_cont(params, tensor);
  14488. } break;
  14489. case GGML_OP_RESHAPE:
  14490. {
  14491. ggml_compute_forward_reshape(params, tensor);
  14492. } break;
  14493. case GGML_OP_VIEW:
  14494. {
  14495. ggml_compute_forward_view(params, tensor);
  14496. } break;
  14497. case GGML_OP_PERMUTE:
  14498. {
  14499. ggml_compute_forward_permute(params, tensor);
  14500. } break;
  14501. case GGML_OP_TRANSPOSE:
  14502. {
  14503. ggml_compute_forward_transpose(params, tensor);
  14504. } break;
  14505. case GGML_OP_GET_ROWS:
  14506. {
  14507. ggml_compute_forward_get_rows(params, tensor);
  14508. } break;
  14509. case GGML_OP_GET_ROWS_BACK:
  14510. {
  14511. ggml_compute_forward_get_rows_back(params, tensor);
  14512. } break;
  14513. case GGML_OP_DIAG:
  14514. {
  14515. ggml_compute_forward_diag(params, tensor);
  14516. } break;
  14517. case GGML_OP_DIAG_MASK_INF:
  14518. {
  14519. ggml_compute_forward_diag_mask_inf(params, tensor);
  14520. } break;
  14521. case GGML_OP_DIAG_MASK_ZERO:
  14522. {
  14523. ggml_compute_forward_diag_mask_zero(params, tensor);
  14524. } break;
  14525. case GGML_OP_SOFT_MAX:
  14526. {
  14527. ggml_compute_forward_soft_max(params, tensor);
  14528. } break;
  14529. case GGML_OP_SOFT_MAX_BACK:
  14530. {
  14531. ggml_compute_forward_soft_max_back(params, tensor);
  14532. } break;
  14533. case GGML_OP_ROPE:
  14534. {
  14535. ggml_compute_forward_rope(params, tensor);
  14536. } break;
  14537. case GGML_OP_ROPE_BACK:
  14538. {
  14539. ggml_compute_forward_rope_back(params, tensor);
  14540. } break;
  14541. case GGML_OP_CLAMP:
  14542. {
  14543. ggml_compute_forward_clamp(params, tensor);
  14544. } break;
  14545. case GGML_OP_CONV_TRANSPOSE_1D:
  14546. {
  14547. ggml_compute_forward_conv_transpose_1d(params, tensor);
  14548. } break;
  14549. case GGML_OP_IM2COL:
  14550. {
  14551. ggml_compute_forward_im2col(params, tensor);
  14552. } break;
  14553. case GGML_OP_IM2COL_BACK:
  14554. {
  14555. ggml_compute_forward_im2col_back_f32(params, tensor);
  14556. } break;
  14557. case GGML_OP_CONV_TRANSPOSE_2D:
  14558. {
  14559. ggml_compute_forward_conv_transpose_2d(params, tensor);
  14560. } break;
  14561. case GGML_OP_POOL_1D:
  14562. {
  14563. ggml_compute_forward_pool_1d(params, tensor);
  14564. } break;
  14565. case GGML_OP_POOL_2D:
  14566. {
  14567. ggml_compute_forward_pool_2d(params, tensor);
  14568. } break;
  14569. case GGML_OP_POOL_2D_BACK:
  14570. {
  14571. ggml_compute_forward_pool_2d_back(params, tensor);
  14572. } break;
  14573. case GGML_OP_UPSCALE:
  14574. {
  14575. ggml_compute_forward_upscale(params, tensor);
  14576. } break;
  14577. case GGML_OP_PAD:
  14578. {
  14579. ggml_compute_forward_pad(params, tensor);
  14580. } break;
  14581. case GGML_OP_ARANGE:
  14582. {
  14583. ggml_compute_forward_arange(params, tensor);
  14584. } break;
  14585. case GGML_OP_TIMESTEP_EMBEDDING:
  14586. {
  14587. ggml_compute_forward_timestep_embedding(params, tensor);
  14588. } break;
  14589. case GGML_OP_ARGSORT:
  14590. {
  14591. ggml_compute_forward_argsort(params, tensor);
  14592. } break;
  14593. case GGML_OP_LEAKY_RELU:
  14594. {
  14595. ggml_compute_forward_leaky_relu(params, tensor);
  14596. } break;
  14597. case GGML_OP_FLASH_ATTN_EXT:
  14598. {
  14599. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  14600. } break;
  14601. case GGML_OP_FLASH_ATTN_BACK:
  14602. {
  14603. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14604. GGML_ASSERT(t == 0 || t == 1);
  14605. bool masked = t != 0;
  14606. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  14607. } break;
  14608. case GGML_OP_SSM_CONV:
  14609. {
  14610. ggml_compute_forward_ssm_conv(params, tensor);
  14611. } break;
  14612. case GGML_OP_SSM_SCAN:
  14613. {
  14614. ggml_compute_forward_ssm_scan(params, tensor);
  14615. } break;
  14616. case GGML_OP_WIN_PART:
  14617. {
  14618. ggml_compute_forward_win_part(params, tensor);
  14619. } break;
  14620. case GGML_OP_WIN_UNPART:
  14621. {
  14622. ggml_compute_forward_win_unpart(params, tensor);
  14623. } break;
  14624. case GGML_OP_UNARY:
  14625. {
  14626. ggml_compute_forward_unary(params, tensor);
  14627. } break;
  14628. case GGML_OP_GET_REL_POS:
  14629. {
  14630. ggml_compute_forward_get_rel_pos(params, tensor);
  14631. } break;
  14632. case GGML_OP_ADD_REL_POS:
  14633. {
  14634. ggml_compute_forward_add_rel_pos(params, tensor);
  14635. } break;
  14636. case GGML_OP_RWKV_WKV:
  14637. {
  14638. ggml_compute_forward_rwkv_wkv(params, tensor);
  14639. } break;
  14640. case GGML_OP_MAP_UNARY:
  14641. {
  14642. ggml_unary_op_f32_t fun;
  14643. memcpy(&fun, tensor->op_params, sizeof(fun));
  14644. ggml_compute_forward_map_unary(params, tensor, fun);
  14645. }
  14646. break;
  14647. case GGML_OP_MAP_BINARY:
  14648. {
  14649. ggml_binary_op_f32_t fun;
  14650. memcpy(&fun, tensor->op_params, sizeof(fun));
  14651. ggml_compute_forward_map_binary(params, tensor, fun);
  14652. }
  14653. break;
  14654. case GGML_OP_MAP_CUSTOM1_F32:
  14655. {
  14656. ggml_custom1_op_f32_t fun;
  14657. memcpy(&fun, tensor->op_params, sizeof(fun));
  14658. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  14659. }
  14660. break;
  14661. case GGML_OP_MAP_CUSTOM2_F32:
  14662. {
  14663. ggml_custom2_op_f32_t fun;
  14664. memcpy(&fun, tensor->op_params, sizeof(fun));
  14665. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  14666. }
  14667. break;
  14668. case GGML_OP_MAP_CUSTOM3_F32:
  14669. {
  14670. ggml_custom3_op_f32_t fun;
  14671. memcpy(&fun, tensor->op_params, sizeof(fun));
  14672. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  14673. }
  14674. break;
  14675. case GGML_OP_MAP_CUSTOM1:
  14676. {
  14677. ggml_compute_forward_map_custom1(params, tensor);
  14678. }
  14679. break;
  14680. case GGML_OP_MAP_CUSTOM2:
  14681. {
  14682. ggml_compute_forward_map_custom2(params, tensor);
  14683. }
  14684. break;
  14685. case GGML_OP_MAP_CUSTOM3:
  14686. {
  14687. ggml_compute_forward_map_custom3(params, tensor);
  14688. }
  14689. break;
  14690. case GGML_OP_CROSS_ENTROPY_LOSS:
  14691. {
  14692. ggml_compute_forward_cross_entropy_loss(params, tensor);
  14693. }
  14694. break;
  14695. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14696. {
  14697. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  14698. }
  14699. break;
  14700. case GGML_OP_OPT_STEP_ADAMW:
  14701. {
  14702. ggml_compute_forward_opt_step_adamw(params, tensor);
  14703. }
  14704. break;
  14705. case GGML_OP_NONE:
  14706. {
  14707. // nop
  14708. } break;
  14709. case GGML_OP_COUNT:
  14710. {
  14711. GGML_ABORT("fatal error");
  14712. }
  14713. }
  14714. }
  14715. ////////////////////////////////////////////////////////////////////////////////
  14716. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  14717. size = ggml_hash_size(size);
  14718. struct ggml_hash_set result;
  14719. result.size = size;
  14720. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  14721. result.used = GGML_CALLOC(ggml_bitset_size(size), sizeof(ggml_bitset_t));
  14722. return result;
  14723. }
  14724. void ggml_hash_set_reset(struct ggml_hash_set * hash_set) {
  14725. memset(hash_set->used, 0, sizeof(ggml_bitset_t) * ggml_bitset_size(hash_set->size));
  14726. }
  14727. void ggml_hash_set_free(struct ggml_hash_set * hash_set) {
  14728. GGML_FREE(hash_set->used);
  14729. GGML_FREE(hash_set->keys);
  14730. }
  14731. size_t ggml_hash_size(size_t min_sz) {
  14732. // next primes after powers of two
  14733. static const size_t primes[] = {
  14734. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  14735. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  14736. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  14737. 16777259, 33554467, 67108879, 134217757, 268435459,
  14738. 536870923, 1073741827, 2147483659
  14739. };
  14740. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  14741. // find the smallest prime that is larger or equal than min_sz
  14742. size_t l = 0;
  14743. size_t r = n_primes;
  14744. while (l < r) {
  14745. size_t m = (l + r)/2;
  14746. if (primes[m] < min_sz) {
  14747. l = m + 1;
  14748. } else {
  14749. r = m;
  14750. }
  14751. }
  14752. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  14753. return sz;
  14754. }
  14755. struct hash_map {
  14756. struct ggml_hash_set set;
  14757. struct ggml_tensor ** vals;
  14758. };
  14759. static struct hash_map * ggml_new_hash_map(size_t size) {
  14760. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  14761. result->set = ggml_hash_set_new(size);
  14762. result->vals = GGML_CALLOC(result->set.size, sizeof(struct ggml_tensor *));
  14763. return result;
  14764. }
  14765. static void ggml_hash_map_free(struct hash_map * map) {
  14766. ggml_hash_set_free(&map->set);
  14767. GGML_FREE(map->vals);
  14768. GGML_FREE(map);
  14769. }
  14770. // gradient checkpointing
  14771. static struct ggml_tensor * ggml_recompute_graph_node(
  14772. struct ggml_context * ctx,
  14773. struct ggml_cgraph * graph,
  14774. struct hash_map * replacements,
  14775. struct ggml_tensor * node) {
  14776. if (node == NULL) {
  14777. return NULL;
  14778. }
  14779. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14780. return node;
  14781. }
  14782. if (!ggml_hash_contains(&graph->visited_hash_set, node)) {
  14783. return node;
  14784. }
  14785. int count_children = 0;
  14786. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14787. if (node->src[k]) {
  14788. ++count_children;
  14789. }
  14790. }
  14791. if (count_children == 0) {
  14792. return node;
  14793. }
  14794. size_t i = ggml_hash_find(&replacements->set, node);
  14795. GGML_ASSERT(i != GGML_HASHSET_FULL); // assert that not full
  14796. if (replacements->set.keys[i] == node) {
  14797. return replacements->vals[i];
  14798. }
  14799. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  14800. // insert clone into replacements
  14801. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  14802. replacements->set.keys[i] = node;
  14803. replacements->vals[i] = clone;
  14804. clone->op = node->op;
  14805. clone->grad = node->grad;
  14806. clone->flags = node->flags;
  14807. clone->extra = node->extra;
  14808. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  14809. clone->nb[k] = node->nb[k];
  14810. }
  14811. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14812. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  14813. }
  14814. if (node->view_src != NULL) {
  14815. clone->data = (node->view_src->data == NULL)
  14816. ? NULL // view_src not yet allocated
  14817. : (char *) node->view_src->data // view_src already allocated
  14818. + node->view_offs;
  14819. clone->view_src = node->view_src;
  14820. clone->view_offs = node->view_offs;
  14821. }
  14822. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  14823. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  14824. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  14825. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  14826. return clone;
  14827. }
  14828. void ggml_build_backward_gradient_checkpointing(
  14829. struct ggml_context * ctx,
  14830. struct ggml_cgraph * gf,
  14831. struct ggml_cgraph * gb,
  14832. struct ggml_cgraph * gb_tmp,
  14833. struct ggml_tensor * * checkpoints,
  14834. int n_checkpoints) {
  14835. ggml_graph_cpy(gf, gb_tmp);
  14836. ggml_build_backward_expand(ctx, gf, gb_tmp, false, true);
  14837. if (n_checkpoints <= 0) {
  14838. ggml_graph_cpy(gb_tmp, gb);
  14839. return;
  14840. }
  14841. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  14842. // insert checkpoints in replacements
  14843. for (int i = 0; i < n_checkpoints; ++i) {
  14844. size_t k = ggml_hash_find(&replacements->set, checkpoints[i]);
  14845. GGML_ASSERT(k != GGML_HASHSET_FULL); // assert that not full
  14846. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  14847. replacements->set.keys[k] = checkpoints[i];
  14848. replacements->vals[k] = checkpoints[i];
  14849. }
  14850. ggml_graph_cpy(gf, gb);
  14851. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  14852. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  14853. // by recomputing them from checkpoints
  14854. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  14855. struct ggml_tensor * node = gb_tmp->nodes[i];
  14856. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14857. // insert new tensors recomputing src, reusing already made replacements,
  14858. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  14859. // recurse for input tensors,
  14860. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  14861. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  14862. }
  14863. // insert rewritten backward node with replacements made into resulting backward graph gb
  14864. ggml_build_forward_expand(gb, node);
  14865. }
  14866. ggml_hash_map_free(replacements);
  14867. }
  14868. // utility functions to change gradients
  14869. // if a is in acc_table, modify gradients in-place and mark result as gradient accumulator
  14870. // else if a is in zero_table, replace a
  14871. // else, just add/subtract/etc. the gradients
  14872. static struct ggml_tensor * ggml_add_or_set(
  14873. struct ggml_context * ctx,
  14874. struct ggml_tensor * a,
  14875. struct ggml_tensor * b,
  14876. struct ggml_hash_set * zero_table,
  14877. struct ggml_hash_set * acc_table) {
  14878. if (ggml_hash_contains(acc_table, a)) {
  14879. struct ggml_tensor * ret = ggml_add_impl(ctx, a, b, true);
  14880. const size_t insert_result = ggml_hash_insert(acc_table, ret);
  14881. GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
  14882. GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
  14883. return ret;
  14884. }
  14885. if (ggml_hash_contains(zero_table, a)) {
  14886. return b;
  14887. }
  14888. return ggml_add_impl(ctx, a, b, false);
  14889. }
  14890. static struct ggml_tensor * ggml_acc_or_set(
  14891. struct ggml_context * ctx,
  14892. struct ggml_tensor * a,
  14893. struct ggml_tensor * b,
  14894. const size_t nb1,
  14895. const size_t nb2,
  14896. const size_t nb3,
  14897. const size_t offset,
  14898. struct ggml_hash_set * zero_table,
  14899. struct ggml_hash_set * acc_table) {
  14900. if (ggml_hash_contains(acc_table, a)) {
  14901. struct ggml_tensor * ret = ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  14902. const size_t insert_result = ggml_hash_insert(acc_table, ret);
  14903. GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
  14904. GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
  14905. return ret;
  14906. }
  14907. if (ggml_hash_contains(zero_table, a)) {
  14908. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f); // FIXME this is going to produce NaN if a contains inf/NaN
  14909. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  14910. }
  14911. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  14912. }
  14913. static struct ggml_tensor * ggml_add1_or_set(
  14914. struct ggml_context * ctx,
  14915. struct ggml_tensor * a,
  14916. struct ggml_tensor * b,
  14917. struct ggml_hash_set * zero_table,
  14918. struct ggml_hash_set * acc_table) {
  14919. if (ggml_hash_contains(acc_table, a)) {
  14920. struct ggml_tensor * ret = ggml_add1_impl(ctx, a, b, true);
  14921. const size_t insert_result = ggml_hash_insert(acc_table, ret);
  14922. GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
  14923. GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
  14924. return ret;
  14925. }
  14926. if (ggml_hash_contains(zero_table, a)) {
  14927. return ggml_repeat(ctx, b, a);
  14928. }
  14929. return ggml_add1_impl(ctx, a, b, false);
  14930. }
  14931. static struct ggml_tensor * ggml_sub_or_set(
  14932. struct ggml_context * ctx,
  14933. struct ggml_tensor * a,
  14934. struct ggml_tensor * b,
  14935. struct ggml_hash_set * zero_table,
  14936. struct ggml_hash_set * acc_table) {
  14937. if (ggml_hash_contains(acc_table, a)) {
  14938. struct ggml_tensor * ret = ggml_sub_impl(ctx, a, b, true);
  14939. const size_t insert_result = ggml_hash_insert(acc_table, ret);
  14940. GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
  14941. GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
  14942. return ret;
  14943. }
  14944. if (ggml_hash_contains(zero_table, a)) {
  14945. return ggml_neg(ctx, b);
  14946. }
  14947. return ggml_sub_impl(ctx, a, b, false);
  14948. }
  14949. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set * zero_table, struct ggml_hash_set * acc_table) {
  14950. struct ggml_tensor * src0 = tensor->src[0];
  14951. struct ggml_tensor * src1 = tensor->src[1];
  14952. struct ggml_tensor * src2 = tensor->src[2];
  14953. switch (tensor->op) {
  14954. case GGML_OP_DUP:
  14955. {
  14956. if (src0->grad) {
  14957. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
  14958. }
  14959. } break;
  14960. case GGML_OP_ADD:
  14961. {
  14962. if (src0->grad) {
  14963. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
  14964. }
  14965. if (src1->grad) {
  14966. if (ggml_are_same_shape(src0, src1)) {
  14967. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table, acc_table);
  14968. } else {
  14969. src1->grad = ggml_add_or_set(ctx, src1->grad, ggml_repeat_back(ctx, tensor->grad, src1), zero_table, acc_table);
  14970. }
  14971. }
  14972. } break;
  14973. case GGML_OP_ADD1:
  14974. {
  14975. if (src0->grad) {
  14976. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
  14977. }
  14978. if (src1->grad) {
  14979. src1->grad = ggml_add_or_set(ctx,
  14980. src1->grad,
  14981. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  14982. zero_table, acc_table);
  14983. }
  14984. } break;
  14985. case GGML_OP_ACC:
  14986. {
  14987. if (src0->grad) {
  14988. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
  14989. }
  14990. if (src1->grad) {
  14991. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14992. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14993. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14994. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14995. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  14996. tensor->grad,
  14997. src1->grad->ne[0],
  14998. src1->grad->ne[1],
  14999. src1->grad->ne[2],
  15000. src1->grad->ne[3],
  15001. nb1, nb2, nb3, offset);
  15002. src1->grad =
  15003. ggml_add_or_set(ctx,
  15004. src1->grad,
  15005. ggml_reshape(ctx,
  15006. ggml_cont(ctx, tensor_grad_view),
  15007. src1->grad),
  15008. zero_table, acc_table);
  15009. }
  15010. } break;
  15011. case GGML_OP_SUB:
  15012. {
  15013. if (src0->grad) {
  15014. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
  15015. }
  15016. if (src1->grad) {
  15017. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table, acc_table);
  15018. }
  15019. } break;
  15020. case GGML_OP_MUL:
  15021. {
  15022. if (src0->grad) {
  15023. src0->grad =
  15024. ggml_add_or_set(ctx,
  15025. src0->grad,
  15026. ggml_mul(ctx, src1, tensor->grad),
  15027. zero_table, acc_table);
  15028. }
  15029. if (src1->grad) {
  15030. src1->grad =
  15031. ggml_add_or_set(ctx,
  15032. src1->grad,
  15033. ggml_mul(ctx, src0, tensor->grad),
  15034. zero_table, acc_table);
  15035. }
  15036. } break;
  15037. case GGML_OP_DIV:
  15038. {
  15039. if (src0->grad) {
  15040. src0->grad =
  15041. ggml_add_or_set(ctx,
  15042. src0->grad,
  15043. ggml_div(ctx, tensor->grad, src1),
  15044. zero_table, acc_table);
  15045. }
  15046. if (src1->grad) {
  15047. src1->grad =
  15048. ggml_sub_or_set(ctx,
  15049. src1->grad,
  15050. ggml_mul(ctx,
  15051. tensor->grad,
  15052. ggml_div(ctx, tensor, src1)),
  15053. zero_table, acc_table);
  15054. }
  15055. } break;
  15056. case GGML_OP_SQR:
  15057. {
  15058. if (src0->grad) {
  15059. src0->grad =
  15060. ggml_add_or_set(ctx,
  15061. src0->grad,
  15062. ggml_scale(ctx,
  15063. ggml_mul(ctx, src0, tensor->grad),
  15064. 2.0f),
  15065. zero_table, acc_table);
  15066. }
  15067. } break;
  15068. case GGML_OP_SQRT:
  15069. {
  15070. if (src0->grad) {
  15071. src0->grad =
  15072. ggml_add_or_set(ctx,
  15073. src0->grad,
  15074. ggml_scale(ctx,
  15075. ggml_div(ctx,
  15076. tensor->grad,
  15077. tensor),
  15078. 0.5f),
  15079. zero_table, acc_table);
  15080. }
  15081. } break;
  15082. case GGML_OP_LOG:
  15083. {
  15084. if (src0->grad) {
  15085. src0->grad =
  15086. ggml_add_or_set(ctx,
  15087. src0->grad,
  15088. ggml_div(ctx,
  15089. tensor->grad,
  15090. src0),
  15091. zero_table, acc_table);
  15092. }
  15093. } break;
  15094. case GGML_OP_SIN:
  15095. {
  15096. if (src0->grad) {
  15097. src0->grad =
  15098. ggml_add_or_set(ctx,
  15099. src0->grad,
  15100. ggml_mul(ctx,
  15101. tensor->grad,
  15102. ggml_cos(ctx, src0)),
  15103. zero_table, acc_table);
  15104. }
  15105. } break;
  15106. case GGML_OP_COS:
  15107. {
  15108. if (src0->grad) {
  15109. src0->grad =
  15110. ggml_sub_or_set(ctx,
  15111. src0->grad,
  15112. ggml_mul(ctx,
  15113. tensor->grad,
  15114. ggml_sin(ctx, src0)),
  15115. zero_table, acc_table);
  15116. }
  15117. } break;
  15118. case GGML_OP_SUM:
  15119. {
  15120. if (src0->grad) {
  15121. src0->grad =
  15122. ggml_add1_or_set(ctx,
  15123. src0->grad,
  15124. tensor->grad,
  15125. zero_table, acc_table);
  15126. }
  15127. } break;
  15128. case GGML_OP_SUM_ROWS:
  15129. {
  15130. if (src0->grad) {
  15131. src0->grad =
  15132. ggml_add_or_set(ctx,
  15133. src0->grad,
  15134. ggml_repeat(ctx,
  15135. tensor->grad,
  15136. src0->grad),
  15137. zero_table, acc_table);
  15138. }
  15139. } break;
  15140. case GGML_OP_MEAN:
  15141. case GGML_OP_ARGMAX:
  15142. {
  15143. GGML_ABORT("fatal error"); // TODO: implement
  15144. }
  15145. case GGML_OP_REPEAT:
  15146. {
  15147. // necessary for llama
  15148. if (src0->grad) {
  15149. src0->grad = ggml_add_or_set(ctx,
  15150. src0->grad,
  15151. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  15152. zero_table, acc_table);
  15153. }
  15154. } break;
  15155. case GGML_OP_REPEAT_BACK:
  15156. {
  15157. if (src0->grad) {
  15158. // TODO: test this
  15159. src0->grad = ggml_add_or_set(ctx,
  15160. src0->grad,
  15161. ggml_repeat(ctx, tensor->grad, src0->grad),
  15162. zero_table, acc_table);
  15163. }
  15164. } break;
  15165. case GGML_OP_CONCAT:
  15166. {
  15167. GGML_ABORT("fatal error"); // TODO: implement
  15168. }
  15169. case GGML_OP_SILU_BACK:
  15170. {
  15171. GGML_ABORT("fatal error"); // TODO: not implemented
  15172. }
  15173. case GGML_OP_NORM:
  15174. {
  15175. GGML_ABORT("fatal error"); // TODO: not implemented
  15176. }
  15177. case GGML_OP_RMS_NORM:
  15178. {
  15179. // necessary for llama
  15180. if (src0->grad) {
  15181. float eps;
  15182. memcpy(&eps, tensor->op_params, sizeof(float));
  15183. src0->grad = ggml_add_or_set(ctx,
  15184. src0->grad,
  15185. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  15186. zero_table, acc_table);
  15187. }
  15188. } break;
  15189. case GGML_OP_RMS_NORM_BACK:
  15190. {
  15191. GGML_ABORT("fatal error"); // TODO: not implemented
  15192. }
  15193. case GGML_OP_GROUP_NORM:
  15194. {
  15195. GGML_ABORT("fatal error"); // TODO: not implemented
  15196. }
  15197. case GGML_OP_MUL_MAT:
  15198. {
  15199. // https://cs231n.github.io/optimization-2/#staged
  15200. // # forward pass
  15201. // s0 = np.random.randn(5, 10)
  15202. // s1 = np.random.randn(10, 3)
  15203. // t = s0.dot(s1)
  15204. // # now suppose we had the gradient on t from above in the circuit
  15205. // dt = np.random.randn(*t.shape) # same shape as t
  15206. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  15207. // ds1 = t.T.dot(dt)
  15208. // tensor.shape [m,p,qq,rr]
  15209. // src0.shape [n,m,q1,r1]
  15210. // src1.shape [n,p,qq,rr]
  15211. // necessary for llama
  15212. if (src0->grad) {
  15213. struct ggml_tensor * s1_tg =
  15214. ggml_out_prod(ctx, // [n,m,qq,rr]
  15215. src1, // [n,p,qq,rr]
  15216. tensor->grad); // [m,p,qq,rr]
  15217. const int64_t qq = s1_tg->ne[2];
  15218. const int64_t rr = s1_tg->ne[3];
  15219. const int64_t q1 = src0->ne[2];
  15220. const int64_t r1 = src0->ne[3];
  15221. const bool ne2_broadcasted = qq > q1;
  15222. const bool ne3_broadcasted = rr > r1;
  15223. if (ne2_broadcasted || ne3_broadcasted) {
  15224. // sum broadcast repetitions of s1_tg into shape of src0
  15225. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  15226. }
  15227. src0->grad =
  15228. ggml_add_or_set(ctx,
  15229. src0->grad, // [n,m,q1,r1]
  15230. s1_tg, // [n,m,q1,r1]
  15231. zero_table, acc_table);
  15232. }
  15233. if (src1->grad) {
  15234. src1->grad =
  15235. ggml_add_or_set(ctx,
  15236. src1->grad, // [n,p,qq,rr]
  15237. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  15238. // ggml_cont(ctx, // [m,n,q1,r1]
  15239. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  15240. // tensor->grad), // [m,p,qq,rr]
  15241. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  15242. // // avoid transpose of src0, rather transpose smaller tensor->grad
  15243. // // and then use ggml_out_prod
  15244. ggml_out_prod(ctx, // [n,p,qq,rr]
  15245. src0, // [n,m,q1,r1]
  15246. ggml_transpose(ctx, // [p,m,qq,rr]
  15247. tensor->grad)), // [m,p,qq,rr]
  15248. zero_table, acc_table);
  15249. }
  15250. } break;
  15251. case GGML_OP_MUL_MAT_ID:
  15252. {
  15253. GGML_ABORT("fatal error"); // TODO: not implemented
  15254. }
  15255. case GGML_OP_OUT_PROD:
  15256. {
  15257. GGML_ABORT("fatal error"); // TODO: not implemented
  15258. }
  15259. case GGML_OP_SCALE:
  15260. {
  15261. // necessary for llama
  15262. if (src0->grad) {
  15263. float s;
  15264. memcpy(&s, tensor->op_params, sizeof(float));
  15265. src0->grad =
  15266. ggml_add_or_set(ctx,
  15267. src0->grad,
  15268. ggml_scale_impl(ctx, tensor->grad, s, false),
  15269. zero_table, acc_table);
  15270. }
  15271. } break;
  15272. case GGML_OP_SET:
  15273. {
  15274. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  15275. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  15276. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  15277. const size_t offset = ((int32_t *) tensor->op_params)[3];
  15278. struct ggml_tensor * tensor_grad_view = NULL;
  15279. if (src0->grad || src1->grad) {
  15280. GGML_ASSERT(src0->type == tensor->type);
  15281. GGML_ASSERT(tensor->grad->type == tensor->type);
  15282. GGML_ASSERT(!src1->grad || src1->grad->type == tensor->grad->type);
  15283. tensor_grad_view = ggml_view_4d(ctx,
  15284. tensor->grad, src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3],
  15285. nb1, nb2, nb3, offset);
  15286. }
  15287. if (src0->grad) {
  15288. src0->grad = ggml_add_or_set(ctx,
  15289. src0->grad,
  15290. ggml_acc_impl(ctx,
  15291. tensor->grad,
  15292. ggml_neg(ctx, tensor_grad_view),
  15293. nb1, nb2, nb3, offset, false),
  15294. zero_table, acc_table);
  15295. }
  15296. if (src1->grad) {
  15297. src1->grad =
  15298. ggml_add_or_set(ctx,
  15299. src1->grad,
  15300. ggml_reshape(ctx,
  15301. ggml_cont(ctx, tensor_grad_view),
  15302. src1->grad),
  15303. zero_table, acc_table);
  15304. }
  15305. } break;
  15306. case GGML_OP_CPY:
  15307. {
  15308. // necessary for llama
  15309. // cpy overwrites value of src1 by src0 and returns view(src1)
  15310. // the overwriting is mathematically equivalent to:
  15311. // tensor = src0 * 1 + src1 * 0
  15312. if (src0->grad) {
  15313. // dsrc0 = dtensor * 1
  15314. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
  15315. }
  15316. if (src1->grad) {
  15317. // dsrc1 = dtensor * 0 -> noop
  15318. }
  15319. } break;
  15320. case GGML_OP_CONT:
  15321. {
  15322. // same as cpy
  15323. if (src0->grad) {
  15324. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  15325. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  15326. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
  15327. }
  15328. } break;
  15329. case GGML_OP_RESHAPE:
  15330. {
  15331. // necessary for llama
  15332. if (src0->grad) {
  15333. src0->grad =
  15334. ggml_add_or_set(ctx, src0->grad,
  15335. ggml_reshape(ctx,
  15336. ggml_is_contiguous(tensor->grad)
  15337. ? tensor->grad
  15338. : ggml_cont(ctx, tensor->grad),
  15339. src0->grad),
  15340. zero_table, acc_table);
  15341. }
  15342. } break;
  15343. case GGML_OP_VIEW:
  15344. {
  15345. // necessary for llama
  15346. if (src0->grad) {
  15347. size_t offset;
  15348. memcpy(&offset, tensor->op_params, sizeof(offset));
  15349. size_t nb1 = tensor->nb[1];
  15350. size_t nb2 = tensor->nb[2];
  15351. size_t nb3 = tensor->nb[3];
  15352. if (src0->type != src0->grad->type) {
  15353. // gradient is typically F32, but src0 could be other type
  15354. size_t ng = ggml_element_size(src0->grad);
  15355. size_t n0 = ggml_element_size(src0);
  15356. GGML_ASSERT(offset % n0 == 0);
  15357. GGML_ASSERT(nb1 % n0 == 0);
  15358. GGML_ASSERT(nb2 % n0 == 0);
  15359. GGML_ASSERT(nb3 % n0 == 0);
  15360. offset = (offset / n0) * ng;
  15361. nb1 = (nb1 / n0) * ng;
  15362. nb2 = (nb2 / n0) * ng;
  15363. nb3 = (nb3 / n0) * ng;
  15364. }
  15365. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table, acc_table);
  15366. }
  15367. } break;
  15368. case GGML_OP_PERMUTE:
  15369. {
  15370. // necessary for llama
  15371. if (src0->grad) {
  15372. int32_t * axes = (int32_t *) tensor->op_params;
  15373. int axis0 = axes[0] & 0x3;
  15374. int axis1 = axes[1] & 0x3;
  15375. int axis2 = axes[2] & 0x3;
  15376. int axis3 = axes[3] & 0x3;
  15377. int axes_backward[4] = {0,0,0,0};
  15378. axes_backward[axis0] = 0;
  15379. axes_backward[axis1] = 1;
  15380. axes_backward[axis2] = 2;
  15381. axes_backward[axis3] = 3;
  15382. src0->grad =
  15383. ggml_add_or_set(ctx, src0->grad,
  15384. ggml_permute(ctx,
  15385. tensor->grad,
  15386. axes_backward[0],
  15387. axes_backward[1],
  15388. axes_backward[2],
  15389. axes_backward[3]),
  15390. zero_table, acc_table);
  15391. }
  15392. } break;
  15393. case GGML_OP_TRANSPOSE:
  15394. {
  15395. // necessary for llama
  15396. if (src0->grad) {
  15397. src0->grad =
  15398. ggml_add_or_set(ctx, src0->grad,
  15399. ggml_transpose(ctx, tensor->grad),
  15400. zero_table, acc_table);
  15401. }
  15402. } break;
  15403. case GGML_OP_GET_ROWS:
  15404. {
  15405. // necessary for llama (only for tokenizer)
  15406. if (src0->grad) {
  15407. src0->grad =
  15408. ggml_add_or_set(ctx, src0->grad,
  15409. // last ggml_get_rows_back argument src0->grad is only
  15410. // necessary to setup correct output shape
  15411. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  15412. zero_table, acc_table);
  15413. }
  15414. if (src1->grad) {
  15415. // noop
  15416. }
  15417. } break;
  15418. case GGML_OP_GET_ROWS_BACK:
  15419. {
  15420. GGML_ABORT("fatal error"); // TODO: not implemented
  15421. }
  15422. case GGML_OP_DIAG:
  15423. {
  15424. GGML_ABORT("fatal error"); // TODO: not implemented
  15425. }
  15426. case GGML_OP_DIAG_MASK_INF:
  15427. {
  15428. // necessary for llama
  15429. if (src0->grad) {
  15430. const int n_past = ((int32_t *) tensor->op_params)[0];
  15431. src0->grad =
  15432. ggml_add_or_set(ctx, src0->grad,
  15433. /* ggml_diag_mask_inf_impl() shouldn't be here */
  15434. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  15435. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15436. zero_table, acc_table);
  15437. }
  15438. } break;
  15439. case GGML_OP_DIAG_MASK_ZERO:
  15440. {
  15441. // necessary for llama
  15442. if (src0->grad) {
  15443. const int n_past = ((int32_t *) tensor->op_params)[0];
  15444. src0->grad =
  15445. ggml_add_or_set(ctx, src0->grad,
  15446. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15447. zero_table, acc_table);
  15448. }
  15449. } break;
  15450. case GGML_OP_SOFT_MAX:
  15451. {
  15452. // necessary for llama
  15453. if (src0->grad) {
  15454. src0->grad =
  15455. ggml_add_or_set(ctx, src0->grad,
  15456. ggml_soft_max_back(ctx, tensor->grad, tensor),
  15457. zero_table, acc_table);
  15458. }
  15459. } break;
  15460. case GGML_OP_SOFT_MAX_BACK:
  15461. {
  15462. GGML_ABORT("fatal error"); // TODO: not implemented
  15463. }
  15464. case GGML_OP_ROPE:
  15465. {
  15466. // necessary for llama
  15467. if (src0->grad) {
  15468. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15469. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15470. const int mode = ((int32_t *) tensor->op_params)[2];
  15471. //const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15472. const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
  15473. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  15474. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15475. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15476. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15477. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15478. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15479. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15480. src0->grad = ggml_add_or_set(ctx,
  15481. src0->grad,
  15482. ggml_rope_back(ctx,
  15483. tensor->grad,
  15484. src1,
  15485. src2,
  15486. n_dims,
  15487. mode,
  15488. n_ctx_orig,
  15489. freq_base,
  15490. freq_scale,
  15491. ext_factor,
  15492. attn_factor,
  15493. beta_fast,
  15494. beta_slow),
  15495. zero_table, acc_table);
  15496. }
  15497. } break;
  15498. case GGML_OP_ROPE_BACK:
  15499. {
  15500. if (src0->grad) {
  15501. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15502. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15503. const int mode = ((int32_t *) tensor->op_params)[2];
  15504. //const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15505. const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
  15506. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  15507. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15508. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15509. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15510. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15511. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15512. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15513. src0->grad = ggml_add_or_set(ctx,
  15514. src0->grad,
  15515. ggml_rope_impl(ctx,
  15516. tensor->grad,
  15517. src1,
  15518. src2,
  15519. n_dims,
  15520. mode,
  15521. n_ctx_orig,
  15522. freq_base,
  15523. freq_scale,
  15524. ext_factor,
  15525. attn_factor,
  15526. beta_fast,
  15527. beta_slow,
  15528. false),
  15529. zero_table, acc_table);
  15530. }
  15531. } break;
  15532. case GGML_OP_CLAMP:
  15533. {
  15534. GGML_ABORT("fatal error"); // TODO: not implemented
  15535. }
  15536. case GGML_OP_CONV_TRANSPOSE_1D:
  15537. {
  15538. GGML_ABORT("fatal error"); // TODO: not implemented
  15539. }
  15540. case GGML_OP_IM2COL:
  15541. {
  15542. if (src1->grad) {
  15543. const int32_t s0 = ggml_get_op_params_i32(tensor, 0);
  15544. const int32_t s1 = ggml_get_op_params_i32(tensor, 1);
  15545. const int32_t p0 = ggml_get_op_params_i32(tensor, 2);
  15546. const int32_t p1 = ggml_get_op_params_i32(tensor, 3);
  15547. const int32_t d0 = ggml_get_op_params_i32(tensor, 4);
  15548. const int32_t d1 = ggml_get_op_params_i32(tensor, 5);
  15549. const bool is_2D = ggml_get_op_params_i32(tensor, 6) == 1;
  15550. src1->grad = ggml_add_or_set(ctx,
  15551. src1->grad,
  15552. ggml_im2col_back(ctx, src0, tensor->grad, src1->ne, s0, s1, p0, p1, d0, d1, is_2D),
  15553. zero_table, acc_table);
  15554. }
  15555. } break;
  15556. case GGML_OP_IM2COL_BACK:
  15557. {
  15558. GGML_ABORT("fatal error"); // TODO: not implemented
  15559. }
  15560. case GGML_OP_CONV_TRANSPOSE_2D:
  15561. {
  15562. GGML_ABORT("fatal error"); // TODO: not implemented
  15563. }
  15564. case GGML_OP_POOL_1D:
  15565. {
  15566. GGML_ABORT("fatal error"); // TODO: not implemented
  15567. }
  15568. case GGML_OP_POOL_2D:
  15569. {
  15570. if (src0->grad) {
  15571. const enum ggml_op_pool op = ggml_get_op_params_i32(tensor, 0);
  15572. const int32_t k0 = ggml_get_op_params_i32(tensor, 1);
  15573. const int32_t k1 = ggml_get_op_params_i32(tensor, 2);
  15574. const int32_t s0 = ggml_get_op_params_i32(tensor, 3);
  15575. const int32_t s1 = ggml_get_op_params_i32(tensor, 4);
  15576. const int32_t p0 = ggml_get_op_params_i32(tensor, 5);
  15577. const int32_t p1 = ggml_get_op_params_i32(tensor, 6);
  15578. src0->grad = ggml_add_or_set(ctx,
  15579. src0->grad,
  15580. ggml_pool_2d_back(ctx, tensor->grad, src0, op, k0, k1, s0, s1, p0, p1),
  15581. zero_table, acc_table);
  15582. }
  15583. } break;
  15584. case GGML_OP_POOL_2D_BACK:
  15585. {
  15586. GGML_ABORT("fatal error"); // TODO: not implemented
  15587. }
  15588. case GGML_OP_UPSCALE:
  15589. {
  15590. GGML_ABORT("fatal error"); // TODO: not implemented
  15591. }
  15592. case GGML_OP_PAD:
  15593. {
  15594. GGML_ABORT("fatal error"); // TODO: not implemented
  15595. }
  15596. case GGML_OP_ARANGE:
  15597. {
  15598. GGML_ABORT("fatal error"); // TODO: not implemented
  15599. }
  15600. case GGML_OP_TIMESTEP_EMBEDDING:
  15601. {
  15602. GGML_ABORT("fatal error"); // TODO: not implemented
  15603. }
  15604. case GGML_OP_ARGSORT:
  15605. {
  15606. GGML_ABORT("fatal error"); // TODO: not implemented
  15607. }
  15608. case GGML_OP_LEAKY_RELU:
  15609. {
  15610. GGML_ABORT("fatal error"); // TODO: not implemented
  15611. }
  15612. case GGML_OP_FLASH_ATTN_EXT:
  15613. {
  15614. struct ggml_tensor * flash_grad = NULL;
  15615. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  15616. int32_t t = ggml_get_op_params_i32(tensor, 0);
  15617. GGML_ASSERT(t == 0 || t == 1);
  15618. bool masked = t != 0;
  15619. flash_grad =
  15620. ggml_flash_attn_back(ctx,
  15621. src0,
  15622. src1,
  15623. tensor->src[2],
  15624. tensor->grad,
  15625. masked);
  15626. }
  15627. const int64_t elem_q = ggml_nelements(src0);
  15628. const int64_t elem_k = ggml_nelements(src1);
  15629. const int64_t elem_v = ggml_nelements(src2);
  15630. enum ggml_type result_type = flash_grad->type;
  15631. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  15632. const size_t tsize = ggml_type_size(result_type);
  15633. const size_t offs_q = 0;
  15634. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  15635. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  15636. if (src0->grad) {
  15637. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  15638. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  15639. src0->grad = ggml_add_or_set(ctx,
  15640. src0->grad,
  15641. grad_q,
  15642. zero_table, acc_table);
  15643. }
  15644. if (src1->grad) {
  15645. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  15646. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  15647. src1->grad = ggml_add_or_set(ctx,
  15648. src1->grad,
  15649. grad_k,
  15650. zero_table, acc_table);
  15651. }
  15652. if (src2->grad) {
  15653. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  15654. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  15655. src2->grad = ggml_add_or_set(ctx,
  15656. src2->grad,
  15657. grad_v,
  15658. zero_table, acc_table);
  15659. }
  15660. } break;
  15661. case GGML_OP_FLASH_ATTN_BACK:
  15662. {
  15663. GGML_ABORT("fatal error"); // not supported
  15664. }
  15665. case GGML_OP_SSM_CONV:
  15666. case GGML_OP_SSM_SCAN:
  15667. {
  15668. GGML_ABORT("fatal error"); // TODO: not implemented
  15669. }
  15670. case GGML_OP_WIN_PART:
  15671. case GGML_OP_WIN_UNPART:
  15672. case GGML_OP_UNARY:
  15673. {
  15674. switch (ggml_get_unary_op(tensor)) {
  15675. case GGML_UNARY_OP_ABS:
  15676. {
  15677. if (src0->grad) {
  15678. src0->grad =
  15679. ggml_add_or_set(ctx,
  15680. src0->grad,
  15681. ggml_mul(ctx,
  15682. ggml_sgn(ctx, src0),
  15683. tensor->grad),
  15684. zero_table, acc_table);
  15685. }
  15686. } break;
  15687. case GGML_UNARY_OP_SGN:
  15688. {
  15689. if (src0->grad) {
  15690. // noop
  15691. }
  15692. } break;
  15693. case GGML_UNARY_OP_NEG:
  15694. {
  15695. if (src0->grad) {
  15696. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
  15697. }
  15698. } break;
  15699. case GGML_UNARY_OP_STEP:
  15700. {
  15701. if (src0->grad) {
  15702. // noop
  15703. }
  15704. } break;
  15705. case GGML_UNARY_OP_TANH:
  15706. {
  15707. GGML_ABORT("fatal error"); // TODO: not implemented
  15708. }
  15709. case GGML_UNARY_OP_ELU:
  15710. {
  15711. GGML_ABORT("fatal error"); // TODO: not implemented
  15712. }
  15713. case GGML_UNARY_OP_RELU:
  15714. {
  15715. if (src0->grad) {
  15716. src0->grad = ggml_add_or_set(ctx,
  15717. src0->grad,
  15718. ggml_mul(ctx,
  15719. ggml_step(ctx, src0),
  15720. tensor->grad),
  15721. zero_table, acc_table);
  15722. }
  15723. } break;
  15724. case GGML_UNARY_OP_SIGMOID:
  15725. {
  15726. GGML_ABORT("fatal error"); // TODO: not implemented
  15727. }
  15728. case GGML_UNARY_OP_GELU:
  15729. {
  15730. GGML_ABORT("fatal error"); // TODO: not implemented
  15731. }
  15732. case GGML_UNARY_OP_GELU_QUICK:
  15733. {
  15734. GGML_ABORT("fatal error"); // TODO: not implemented
  15735. }
  15736. case GGML_UNARY_OP_SILU:
  15737. {
  15738. // necessary for llama
  15739. if (src0->grad) {
  15740. src0->grad = ggml_add_or_set(ctx,
  15741. src0->grad,
  15742. ggml_silu_back(ctx, src0, tensor->grad),
  15743. zero_table, acc_table);
  15744. }
  15745. } break;
  15746. case GGML_UNARY_OP_EXP:
  15747. {
  15748. if (src0->grad) {
  15749. src0->grad = ggml_add_or_set(ctx,
  15750. src0->grad,
  15751. ggml_mul(ctx, tensor, tensor->grad),
  15752. zero_table, acc_table);
  15753. }
  15754. } break;
  15755. default:
  15756. GGML_ABORT("fatal error");
  15757. }
  15758. } break;
  15759. case GGML_OP_GET_REL_POS:
  15760. case GGML_OP_ADD_REL_POS:
  15761. case GGML_OP_RWKV_WKV:
  15762. case GGML_OP_MAP_UNARY:
  15763. case GGML_OP_MAP_BINARY:
  15764. case GGML_OP_MAP_CUSTOM1_F32:
  15765. case GGML_OP_MAP_CUSTOM2_F32:
  15766. case GGML_OP_MAP_CUSTOM3_F32:
  15767. case GGML_OP_MAP_CUSTOM1:
  15768. case GGML_OP_MAP_CUSTOM2:
  15769. case GGML_OP_MAP_CUSTOM3:
  15770. {
  15771. GGML_ABORT("fatal error"); // not supported
  15772. }
  15773. case GGML_OP_CROSS_ENTROPY_LOSS:
  15774. {
  15775. if (src0->grad) {
  15776. src0->grad = ggml_add_or_set(ctx,
  15777. src0->grad,
  15778. ggml_cross_entropy_loss_back(ctx,
  15779. src0,
  15780. src1,
  15781. tensor->grad),
  15782. zero_table, acc_table);
  15783. }
  15784. } break;
  15785. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15786. {
  15787. GGML_ABORT("fatal error"); // not supported
  15788. }
  15789. case GGML_OP_OPT_STEP_ADAMW:
  15790. {
  15791. GGML_ABORT("fatal error"); // not supported
  15792. }
  15793. case GGML_OP_NONE:
  15794. {
  15795. // nop
  15796. } break;
  15797. case GGML_OP_COUNT:
  15798. {
  15799. GGML_ABORT("fatal error");
  15800. }
  15801. }
  15802. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15803. if (tensor->src[i] && tensor->src[i]->grad) {
  15804. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  15805. }
  15806. }
  15807. }
  15808. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  15809. if (node->grad == NULL) {
  15810. // this usually happens when we generate intermediate nodes from constants in the backward pass
  15811. // it can also happen during forward pass, if the user performs computations with constants
  15812. if (node->op != GGML_OP_NONE) {
  15813. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  15814. }
  15815. }
  15816. // check if already visited
  15817. if (ggml_hash_insert(&cgraph->visited_hash_set, node) == GGML_HASHSET_ALREADY_EXISTS) {
  15818. return;
  15819. }
  15820. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15821. const int k =
  15822. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  15823. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  15824. /* unknown order, just fall back to using i*/ i;
  15825. if (node->src[k]) {
  15826. ggml_visit_parents(cgraph, node->src[k]);
  15827. }
  15828. }
  15829. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  15830. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  15831. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  15832. if (strlen(node->name) == 0) {
  15833. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  15834. }
  15835. cgraph->leafs[cgraph->n_leafs] = node;
  15836. cgraph->n_leafs++;
  15837. } else {
  15838. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  15839. if (strlen(node->name) == 0) {
  15840. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  15841. }
  15842. cgraph->nodes[cgraph->n_nodes] = node;
  15843. if (cgraph->grads) {
  15844. cgraph->grads[cgraph->n_nodes] = node->grad;
  15845. }
  15846. cgraph->n_nodes++;
  15847. }
  15848. }
  15849. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  15850. if (!expand) {
  15851. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  15852. ggml_graph_clear(cgraph);
  15853. }
  15854. const int n0 = cgraph->n_nodes;
  15855. ggml_visit_parents(cgraph, tensor);
  15856. const int n_new = cgraph->n_nodes - n0;
  15857. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  15858. if (n_new > 0) {
  15859. // the last added node should always be starting point
  15860. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  15861. }
  15862. }
  15863. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  15864. ggml_build_forward_impl(cgraph, tensor, true);
  15865. }
  15866. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool accumulate, bool keep) {
  15867. GGML_ASSERT(gf->n_nodes > 0);
  15868. GGML_ASSERT(gf->grads);
  15869. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  15870. if (keep) {
  15871. for (int i = 0; i < gf->n_nodes; i++) {
  15872. struct ggml_tensor * node = gf->nodes[i];
  15873. if (node->grad) {
  15874. node->grad = ggml_dup_tensor(ctx, node);
  15875. gf->grads[i] = node->grad;
  15876. }
  15877. }
  15878. }
  15879. // keep tables of original gradients for replacement/accumulation logic
  15880. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  15881. struct ggml_hash_set acc_table = ggml_hash_set_new(gf->size);
  15882. for (int i = 0; i < gf->n_nodes; i++) {
  15883. struct ggml_tensor * node = gf->nodes[i];
  15884. if (node->grad) {
  15885. {
  15886. const size_t insert_result = ggml_hash_insert(&zero_table, node->grad);
  15887. GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
  15888. GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
  15889. }
  15890. // only gradients of trainable parameters should be accumulated
  15891. if (accumulate && (node->flags & GGML_TENSOR_FLAG_PARAM)) {
  15892. const size_t insert_result = ggml_hash_insert(&acc_table, node->grad);
  15893. GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
  15894. GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
  15895. }
  15896. }
  15897. }
  15898. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  15899. struct ggml_tensor * node = gf->nodes[i];
  15900. // inplace operations to add gradients are not created by ggml_compute_backward except for gradient accumulation
  15901. // use allocator to automatically make inplace operations
  15902. if (node->grad) {
  15903. ggml_compute_backward(ctx, node, &zero_table, &acc_table);
  15904. }
  15905. }
  15906. for (int i = 0; i < gf->n_nodes; i++) {
  15907. struct ggml_tensor * node = gf->nodes[i];
  15908. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15909. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15910. ggml_build_forward_expand(gb, node->grad);
  15911. }
  15912. }
  15913. ggml_hash_set_free(&zero_table);
  15914. ggml_hash_set_free(&acc_table);
  15915. }
  15916. void ggml_build_opt_adamw(
  15917. struct ggml_context * ctx,
  15918. struct ggml_cgraph * gf,
  15919. struct ggml_cgraph * gb,
  15920. float alpha,
  15921. float beta1,
  15922. float beta2,
  15923. float eps,
  15924. float wd) {
  15925. for (int i = 0; i < gf->n_nodes; i++) {
  15926. struct ggml_tensor * node = gf->nodes[i];
  15927. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15928. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15929. struct ggml_tensor * opt_step = ggml_opt_step_adamw(ctx, node, alpha, beta1, beta2, eps, wd);
  15930. ggml_build_forward_expand(gb, opt_step);
  15931. }
  15932. }
  15933. }
  15934. static void * incr_ptr_aligned(void ** p, size_t size, size_t align) {
  15935. void * ptr = *p;
  15936. ptr = (void *) GGML_PAD((uintptr_t) ptr, align);
  15937. *p = (void *) ((char *) ptr + size);
  15938. return ptr;
  15939. }
  15940. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  15941. size_t hash_size = ggml_hash_size(size * 2);
  15942. void * p = 0;
  15943. incr_ptr_aligned(&p, sizeof(struct ggml_cgraph), 1);
  15944. incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // nodes
  15945. incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // leafs
  15946. incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // hash keys
  15947. if (grads) {
  15948. incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // grads
  15949. }
  15950. incr_ptr_aligned(&p, ggml_bitset_size(hash_size) * sizeof(ggml_bitset_t), sizeof(ggml_bitset_t));
  15951. size_t nbytes = (size_t) p;
  15952. return nbytes;
  15953. }
  15954. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  15955. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  15956. }
  15957. size_t ggml_graph_overhead(void) {
  15958. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  15959. }
  15960. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  15961. const size_t obj_size = ggml_graph_nbytes(size, grads);
  15962. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  15963. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  15964. // the size of the hash table is doubled since it needs to hold both nodes and leafs
  15965. size_t hash_size = ggml_hash_size(size * 2);
  15966. void * p = cgraph + 1;
  15967. struct ggml_tensor ** nodes_ptr = incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
  15968. struct ggml_tensor ** leafs_ptr = incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
  15969. struct ggml_tensor ** hash_keys_ptr = incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
  15970. struct ggml_tensor ** grads_ptr = grads ? incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)) : NULL;
  15971. ggml_bitset_t * hash_used = incr_ptr_aligned(&p, ggml_bitset_size(hash_size) * sizeof(ggml_bitset_t), sizeof(ggml_bitset_t));
  15972. // check that we allocated the correct amount of memory
  15973. assert(obj_size == (size_t)((char *)p - (char *)cgraph));
  15974. *cgraph = (struct ggml_cgraph) {
  15975. /*.size =*/ size,
  15976. /*.n_nodes =*/ 0,
  15977. /*.n_leafs =*/ 0,
  15978. /*.nodes =*/ nodes_ptr,
  15979. /*.grads =*/ grads_ptr,
  15980. /*.leafs =*/ leafs_ptr,
  15981. /*.hash_table =*/ { hash_size, hash_used, hash_keys_ptr },
  15982. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  15983. };
  15984. ggml_hash_set_reset(&cgraph->visited_hash_set);
  15985. return cgraph;
  15986. }
  15987. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  15988. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  15989. }
  15990. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  15991. struct ggml_cgraph cgraph = {
  15992. /*.size =*/ 0,
  15993. /*.n_nodes =*/ i1 - i0,
  15994. /*.n_leafs =*/ 0,
  15995. /*.nodes =*/ cgraph0->nodes + i0,
  15996. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  15997. /*.leafs =*/ NULL,
  15998. /*.hash_table =*/ { 0, NULL, NULL },
  15999. /*.order =*/ cgraph0->order,
  16000. };
  16001. return cgraph;
  16002. }
  16003. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  16004. GGML_ASSERT(dst->size >= src->n_leafs);
  16005. GGML_ASSERT(dst->size >= src->n_nodes);
  16006. GGML_ASSERT(dst->visited_hash_set.size >= src->visited_hash_set.size);
  16007. dst->n_leafs = src->n_leafs;
  16008. dst->n_nodes = src->n_nodes;
  16009. dst->order = src->order;
  16010. for (int i = 0; i < src->n_leafs; ++i) {
  16011. dst->leafs[i] = src->leafs[i];
  16012. }
  16013. for (int i = 0; i < src->n_nodes; ++i) {
  16014. dst->nodes[i] = src->nodes[i];
  16015. }
  16016. if (src->grads) {
  16017. GGML_ASSERT(dst->grads != NULL);
  16018. for (int i = 0; i < src->n_nodes; ++i) {
  16019. dst->grads[i] = src->grads[i];
  16020. }
  16021. }
  16022. for (size_t i = 0; i < src->visited_hash_set.size; ++i) {
  16023. // copy all hashset keys (tensors) that are in use
  16024. if (ggml_bitset_get(src->visited_hash_set.used, i)) {
  16025. ggml_hash_insert(&dst->visited_hash_set, src->visited_hash_set.keys[i]);
  16026. }
  16027. }
  16028. }
  16029. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  16030. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  16031. ggml_graph_cpy(cgraph, result);
  16032. return result;
  16033. }
  16034. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  16035. GGML_ASSERT(cgraph->grads != NULL);
  16036. for (int i = 0; i < cgraph->n_nodes; i++) {
  16037. struct ggml_tensor * node = cgraph->nodes[i];
  16038. // initial gradients of loss should be 1, 0 otherwise
  16039. if (node->grad) {
  16040. if (node->flags & GGML_TENSOR_FLAG_LOSS) {
  16041. GGML_ASSERT(node->grad->buffer);
  16042. GGML_ASSERT(node->type == GGML_TYPE_F32);
  16043. GGML_ASSERT(ggml_is_scalar(node));
  16044. const float onef = 1.0f;
  16045. ggml_backend_tensor_set(node->grad, &onef, 0, ggml_nbytes(node->grad));
  16046. } else {
  16047. ggml_set_zero(node->grad);
  16048. }
  16049. }
  16050. GGML_ASSERT(node);
  16051. if (node->op == GGML_OP_OPT_STEP_ADAMW) {
  16052. // set iteration to 1 and clear momenta
  16053. ggml_set_op_params_i32(node, 0, 1);
  16054. ggml_set_zero(node->src[2]);
  16055. ggml_set_zero(node->src[3]);
  16056. }
  16057. }
  16058. }
  16059. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  16060. cgraph->n_leafs = 0;
  16061. cgraph->n_nodes = 0;
  16062. ggml_hash_set_reset(&cgraph->visited_hash_set);
  16063. }
  16064. int ggml_graph_size(struct ggml_cgraph * cgraph) {
  16065. return cgraph->size;
  16066. }
  16067. struct ggml_tensor * ggml_graph_node(struct ggml_cgraph * cgraph, int i) {
  16068. if (i < 0) {
  16069. GGML_ASSERT(cgraph->n_nodes + i >= 0);
  16070. return cgraph->nodes[cgraph->n_nodes + i];
  16071. }
  16072. GGML_ASSERT(i < cgraph->n_nodes);
  16073. return cgraph->nodes[i];
  16074. }
  16075. struct ggml_tensor ** ggml_graph_nodes(struct ggml_cgraph * cgraph) {
  16076. return cgraph->nodes;
  16077. }
  16078. int ggml_graph_n_nodes(struct ggml_cgraph * cgraph) {
  16079. return cgraph->n_nodes;
  16080. }
  16081. void ggml_graph_add_node(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  16082. GGML_ASSERT(cgraph->size > cgraph->n_nodes);
  16083. cgraph->nodes[cgraph->n_nodes] = tensor;
  16084. cgraph->n_nodes++;
  16085. }
  16086. // Android's libc implementation "bionic" does not support setting affinity
  16087. #if defined(__gnu_linux__)
  16088. static void set_numa_thread_affinity(int thread_n) {
  16089. if (!ggml_is_numa()) {
  16090. return;
  16091. }
  16092. int node_num;
  16093. int rv;
  16094. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  16095. switch(g_state.numa.numa_strategy) {
  16096. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  16097. // run thread on node_num thread_n / (threads per node)
  16098. node_num = thread_n % g_state.numa.n_nodes;
  16099. break;
  16100. case GGML_NUMA_STRATEGY_ISOLATE:
  16101. // run thread on current_node
  16102. node_num = g_state.numa.current_node;
  16103. break;
  16104. case GGML_NUMA_STRATEGY_NUMACTL:
  16105. // use the cpuset that numactl gave us
  16106. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  16107. if (rv) {
  16108. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  16109. }
  16110. return;
  16111. default:
  16112. return;
  16113. }
  16114. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  16115. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  16116. CPU_ZERO_S(setsize, cpus);
  16117. for (size_t i = 0; i < node->n_cpus; ++i) {
  16118. CPU_SET_S(node->cpus[i], setsize, cpus);
  16119. }
  16120. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  16121. if (rv) {
  16122. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  16123. }
  16124. CPU_FREE(cpus);
  16125. }
  16126. static void clear_numa_thread_affinity(void) {
  16127. if (!ggml_is_numa()) {
  16128. return;
  16129. }
  16130. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  16131. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  16132. CPU_ZERO_S(setsize, cpus);
  16133. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  16134. CPU_SET_S(i, setsize, cpus);
  16135. }
  16136. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  16137. if (rv) {
  16138. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  16139. }
  16140. CPU_FREE(cpus);
  16141. }
  16142. #else
  16143. // TODO: Windows etc.
  16144. // (the linux implementation may also work on BSD, someone should test)
  16145. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  16146. static void clear_numa_thread_affinity(void) {}
  16147. #endif
  16148. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  16149. int n_tasks = 0;
  16150. if (ggml_is_empty(node)) {
  16151. // no need to multi-thread a no-op
  16152. n_tasks = 1;
  16153. return n_tasks;
  16154. }
  16155. switch (node->op) {
  16156. case GGML_OP_CPY:
  16157. case GGML_OP_DUP:
  16158. case GGML_OP_CONT:
  16159. case GGML_OP_ADD:
  16160. case GGML_OP_ADD1:
  16161. case GGML_OP_ACC:
  16162. {
  16163. n_tasks = n_threads;
  16164. } break;
  16165. case GGML_OP_SUB:
  16166. case GGML_OP_SQR:
  16167. case GGML_OP_SQRT:
  16168. case GGML_OP_LOG:
  16169. case GGML_OP_SIN:
  16170. case GGML_OP_COS:
  16171. case GGML_OP_SUM:
  16172. case GGML_OP_SUM_ROWS:
  16173. case GGML_OP_MEAN:
  16174. case GGML_OP_ARGMAX:
  16175. case GGML_OP_REPEAT:
  16176. case GGML_OP_REPEAT_BACK:
  16177. case GGML_OP_LEAKY_RELU:
  16178. {
  16179. n_tasks = 1;
  16180. } break;
  16181. case GGML_OP_UNARY:
  16182. switch (ggml_get_unary_op(node)) {
  16183. case GGML_UNARY_OP_ABS:
  16184. case GGML_UNARY_OP_SGN:
  16185. case GGML_UNARY_OP_NEG:
  16186. case GGML_UNARY_OP_STEP:
  16187. case GGML_UNARY_OP_TANH:
  16188. case GGML_UNARY_OP_ELU:
  16189. case GGML_UNARY_OP_RELU:
  16190. case GGML_UNARY_OP_SIGMOID:
  16191. case GGML_UNARY_OP_HARDSWISH:
  16192. case GGML_UNARY_OP_HARDSIGMOID:
  16193. case GGML_UNARY_OP_EXP:
  16194. {
  16195. n_tasks = 1;
  16196. } break;
  16197. case GGML_UNARY_OP_GELU:
  16198. case GGML_UNARY_OP_GELU_QUICK:
  16199. case GGML_UNARY_OP_SILU:
  16200. {
  16201. n_tasks = n_threads;
  16202. } break;
  16203. default:
  16204. GGML_ABORT("fatal error");
  16205. }
  16206. break;
  16207. case GGML_OP_SILU_BACK:
  16208. case GGML_OP_MUL:
  16209. case GGML_OP_DIV:
  16210. case GGML_OP_NORM:
  16211. case GGML_OP_RMS_NORM:
  16212. case GGML_OP_RMS_NORM_BACK:
  16213. case GGML_OP_GROUP_NORM:
  16214. case GGML_OP_CONCAT:
  16215. case GGML_OP_MUL_MAT:
  16216. case GGML_OP_MUL_MAT_ID:
  16217. case GGML_OP_OUT_PROD:
  16218. {
  16219. n_tasks = n_threads;
  16220. } break;
  16221. case GGML_OP_GET_ROWS:
  16222. {
  16223. // FIXME: get_rows can use additional threads, but the cost of launching additional threads
  16224. // decreases performance with GPU offloading
  16225. //n_tasks = n_threads;
  16226. n_tasks = 1;
  16227. } break;
  16228. case GGML_OP_SCALE:
  16229. case GGML_OP_SET:
  16230. case GGML_OP_RESHAPE:
  16231. case GGML_OP_VIEW:
  16232. case GGML_OP_PERMUTE:
  16233. case GGML_OP_TRANSPOSE:
  16234. case GGML_OP_GET_ROWS_BACK:
  16235. case GGML_OP_DIAG:
  16236. {
  16237. n_tasks = 1;
  16238. } break;
  16239. case GGML_OP_DIAG_MASK_ZERO:
  16240. case GGML_OP_DIAG_MASK_INF:
  16241. case GGML_OP_SOFT_MAX_BACK:
  16242. case GGML_OP_ROPE:
  16243. case GGML_OP_ROPE_BACK:
  16244. case GGML_OP_ADD_REL_POS:
  16245. {
  16246. n_tasks = n_threads;
  16247. } break;
  16248. case GGML_OP_CLAMP:
  16249. {
  16250. n_tasks = 1; //TODO
  16251. } break;
  16252. case GGML_OP_SOFT_MAX:
  16253. {
  16254. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  16255. } break;
  16256. case GGML_OP_IM2COL:
  16257. case GGML_OP_IM2COL_BACK:
  16258. case GGML_OP_CONV_TRANSPOSE_1D:
  16259. case GGML_OP_CONV_TRANSPOSE_2D:
  16260. {
  16261. n_tasks = n_threads;
  16262. } break;
  16263. case GGML_OP_POOL_1D:
  16264. case GGML_OP_POOL_2D:
  16265. case GGML_OP_POOL_2D_BACK:
  16266. {
  16267. n_tasks = 1;
  16268. } break;
  16269. case GGML_OP_UPSCALE:
  16270. case GGML_OP_PAD:
  16271. case GGML_OP_ARANGE:
  16272. case GGML_OP_TIMESTEP_EMBEDDING:
  16273. case GGML_OP_ARGSORT:
  16274. case GGML_OP_FLASH_ATTN_EXT:
  16275. case GGML_OP_FLASH_ATTN_BACK:
  16276. case GGML_OP_SSM_CONV:
  16277. case GGML_OP_SSM_SCAN:
  16278. {
  16279. n_tasks = n_threads;
  16280. } break;
  16281. case GGML_OP_WIN_PART:
  16282. case GGML_OP_WIN_UNPART:
  16283. case GGML_OP_GET_REL_POS:
  16284. case GGML_OP_RWKV_WKV:
  16285. case GGML_OP_MAP_UNARY:
  16286. case GGML_OP_MAP_BINARY:
  16287. case GGML_OP_MAP_CUSTOM1_F32:
  16288. case GGML_OP_MAP_CUSTOM2_F32:
  16289. case GGML_OP_MAP_CUSTOM3_F32:
  16290. {
  16291. n_tasks = 1;
  16292. } break;
  16293. case GGML_OP_MAP_CUSTOM1:
  16294. {
  16295. struct ggml_map_custom1_op_params p;
  16296. memcpy(&p, node->op_params, sizeof(p));
  16297. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16298. n_tasks = n_threads;
  16299. } else {
  16300. n_tasks = MIN(p.n_tasks, n_threads);
  16301. }
  16302. } break;
  16303. case GGML_OP_MAP_CUSTOM2:
  16304. {
  16305. struct ggml_map_custom2_op_params p;
  16306. memcpy(&p, node->op_params, sizeof(p));
  16307. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16308. n_tasks = n_threads;
  16309. } else {
  16310. n_tasks = MIN(p.n_tasks, n_threads);
  16311. }
  16312. } break;
  16313. case GGML_OP_MAP_CUSTOM3:
  16314. {
  16315. struct ggml_map_custom3_op_params p;
  16316. memcpy(&p, node->op_params, sizeof(p));
  16317. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16318. n_tasks = n_threads;
  16319. } else {
  16320. n_tasks = MIN(p.n_tasks, n_threads);
  16321. }
  16322. } break;
  16323. case GGML_OP_CROSS_ENTROPY_LOSS:
  16324. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  16325. case GGML_OP_OPT_STEP_ADAMW:
  16326. {
  16327. n_tasks = n_threads;
  16328. } break;
  16329. case GGML_OP_NONE:
  16330. {
  16331. n_tasks = 1;
  16332. } break;
  16333. case GGML_OP_COUNT:
  16334. {
  16335. GGML_ABORT("fatal error");
  16336. }
  16337. default:
  16338. {
  16339. fprintf(stderr, "%s: op not implemented: ", __func__);
  16340. if (node->op < GGML_OP_COUNT) {
  16341. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  16342. } else {
  16343. fprintf(stderr, "%d\n", node->op);
  16344. }
  16345. GGML_ABORT("fatal error");
  16346. }
  16347. }
  16348. assert(n_tasks > 0);
  16349. return n_tasks;
  16350. }
  16351. static thread_ret_t ggml_graph_compute_secondary_thread(void* data);
  16352. #if defined(_WIN32)
  16353. #include "windows.h"
  16354. // TODO: support > 64 CPUs
  16355. bool ggml_thread_apply_affinity(bool * mask) {
  16356. HANDLE h = GetCurrentThread();
  16357. uint64_t bitmask = 0ULL;
  16358. assert(GGML_MAX_N_THREADS >= 64);
  16359. for (int32_t i = 0; i < 8; i++) {
  16360. int32_t idx = i * 8;
  16361. uint8_t val = 0;
  16362. val |= mask[idx + 0] << 0;
  16363. val |= mask[idx + 1] << 1;
  16364. val |= mask[idx + 2] << 2;
  16365. val |= mask[idx + 3] << 3;
  16366. val |= mask[idx + 4] << 4;
  16367. val |= mask[idx + 5] << 5;
  16368. val |= mask[idx + 6] << 6;
  16369. val |= mask[idx + 7] << 7;
  16370. bitmask |= (uint64_t)val << idx;
  16371. }
  16372. for (int32_t i = 64; i < GGML_MAX_N_THREADS; i++) {
  16373. if (mask[i]) {
  16374. fprintf(stderr, "warn: setting thread-affinity for > 64 CPUs isn't supported on windows!\n");
  16375. break;
  16376. }
  16377. }
  16378. DWORD_PTR m = (DWORD_PTR)bitmask;
  16379. m = SetThreadAffinityMask(h, m);
  16380. return m != 0;
  16381. }
  16382. static bool ggml_thread_apply_priority(int32_t prio) {
  16383. // Note that on Windows the Process Priority Class must be updated in order to set Thread priority.
  16384. // This is up to the applications.
  16385. DWORD p = THREAD_PRIORITY_NORMAL;
  16386. switch (prio) {
  16387. case GGML_SCHED_PRIO_NORMAL: p = THREAD_PRIORITY_NORMAL; break;
  16388. case GGML_SCHED_PRIO_MEDIUM: p = THREAD_PRIORITY_ABOVE_NORMAL; break;
  16389. case GGML_SCHED_PRIO_HIGH: p = THREAD_PRIORITY_HIGHEST; break;
  16390. case GGML_SCHED_PRIO_REALTIME: p = THREAD_PRIORITY_TIME_CRITICAL; break;
  16391. }
  16392. if (prio == GGML_SCHED_PRIO_NORMAL) {
  16393. // Keep inherited policy/priority
  16394. return true;
  16395. }
  16396. if (!SetThreadPriority(GetCurrentThread(), p)) {
  16397. fprintf(stderr, "warn: failed to set thread priority %d : (%d)\n", prio, (int) GetLastError());
  16398. return false;
  16399. }
  16400. return true;
  16401. }
  16402. #elif defined(__APPLE__)
  16403. #include <sys/types.h>
  16404. #include <sys/resource.h>
  16405. static bool ggml_thread_apply_affinity(const bool * mask) {
  16406. // Not supported on Apple platforms
  16407. UNUSED(mask);
  16408. return true;
  16409. }
  16410. static bool ggml_thread_apply_priority(int32_t prio) {
  16411. struct sched_param p;
  16412. int32_t policy = SCHED_OTHER;
  16413. switch (prio) {
  16414. case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break;
  16415. case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break;
  16416. case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break;
  16417. case GGML_SCHED_PRIO_REALTIME: policy = SCHED_FIFO; p.sched_priority = 90; break;
  16418. }
  16419. if (prio == GGML_SCHED_PRIO_NORMAL) {
  16420. // Keep inherited policy/priority
  16421. return true;
  16422. }
  16423. int32_t err = pthread_setschedparam(pthread_self(), policy, &p);
  16424. if (err != 0) {
  16425. fprintf(stderr, "warn: failed to set thread priority %d : %s (%d)\n", prio, strerror(err), err);
  16426. return false;
  16427. }
  16428. return true;
  16429. }
  16430. #elif defined(__gnu_linux__)
  16431. // TODO: this may not work on BSD, to be verified
  16432. static bool ggml_thread_apply_affinity(const bool * mask) {
  16433. cpu_set_t cpuset;
  16434. int err;
  16435. CPU_ZERO(&cpuset);
  16436. for (uint32_t i = 0; i < GGML_MAX_N_THREADS; i++) {
  16437. if (mask[i]) {
  16438. GGML_PRINT_DEBUG("Thread %lx: adding %d to cpuset\n", pthread_self(), i);
  16439. CPU_SET(i, &cpuset);
  16440. }
  16441. }
  16442. #ifdef __ANDROID__
  16443. err = sched_setaffinity(0, sizeof(cpuset), &cpuset);
  16444. if (err < 0) {
  16445. err = errno;
  16446. }
  16447. #else
  16448. err = pthread_setaffinity_np(pthread_self(), sizeof(cpuset), &cpuset);
  16449. #endif
  16450. if (err != 0) {
  16451. fprintf(stderr, "warn: failed to set affinity mask 0x%llx : %s (%d)\n", (unsigned long long)mask, strerror(err), err);
  16452. return false;
  16453. }
  16454. return true;
  16455. }
  16456. static bool ggml_thread_apply_priority(int32_t prio) {
  16457. struct sched_param p;
  16458. int32_t policy = SCHED_OTHER;
  16459. switch (prio) {
  16460. case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break;
  16461. case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break;
  16462. case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break;
  16463. case GGML_SCHED_PRIO_REALTIME: policy = SCHED_FIFO; p.sched_priority = 90; break;
  16464. }
  16465. if (prio == GGML_SCHED_PRIO_NORMAL) {
  16466. // Keep inherited policy/priority
  16467. return true;
  16468. }
  16469. int32_t err = pthread_setschedparam(pthread_self(), policy, &p);
  16470. if (err != 0) {
  16471. fprintf(stderr, "warn: failed to set thread priority %d : %s (%d)\n", prio, strerror(err), err);
  16472. return false;
  16473. }
  16474. return true;
  16475. }
  16476. #else // unsupported platforms
  16477. static bool ggml_thread_apply_affinity(const bool * mask) {
  16478. UNUSED(mask);
  16479. return true;
  16480. }
  16481. static bool ggml_thread_apply_priority(int32_t prio) {
  16482. UNUSED(prio);
  16483. return true;
  16484. }
  16485. #endif
  16486. static bool ggml_thread_cpumask_is_valid(const bool * mask) {
  16487. for (int i = 0; i < GGML_MAX_N_THREADS; i++) {
  16488. if (mask[i]) { return true; }
  16489. }
  16490. return false;
  16491. }
  16492. static void ggml_thread_cpumask_next(const bool * global_mask, bool * local_mask, bool strict, int32_t* iter) {
  16493. if (!strict) {
  16494. memcpy(local_mask, global_mask, GGML_MAX_N_THREADS);
  16495. return;
  16496. } else {
  16497. memset(local_mask, 0, GGML_MAX_N_THREADS);
  16498. int32_t base_idx = *iter;
  16499. for (int32_t i = 0; i < GGML_MAX_N_THREADS; i++) {
  16500. int32_t idx = base_idx + i;
  16501. if (idx >= GGML_MAX_N_THREADS) {
  16502. // Just a cheaper modulo
  16503. idx -= GGML_MAX_N_THREADS;
  16504. }
  16505. if (global_mask[idx]) {
  16506. local_mask[idx] = 1;
  16507. *iter = idx + 1;
  16508. return;
  16509. }
  16510. }
  16511. }
  16512. }
  16513. void ggml_threadpool_free(struct ggml_threadpool* threadpool) {
  16514. if (!threadpool) return;
  16515. #ifndef GGML_USE_OPENMP
  16516. struct ggml_compute_state* workers = threadpool->workers;
  16517. const int n_threads = threadpool->n_threads_max;
  16518. ggml_mutex_lock(&threadpool->mutex);
  16519. threadpool->stop = true;
  16520. threadpool->pause = false;
  16521. ggml_cond_broadcast(&threadpool->cond);
  16522. ggml_mutex_unlock(&threadpool->mutex);
  16523. for (int j = 1; j < n_threads; j++) {
  16524. int32_t rc = ggml_thread_join(workers[j].thrd, NULL);
  16525. GGML_ASSERT(rc == GGML_EXIT_SUCCESS || rc == GGML_EXIT_ABORTED);
  16526. UNUSED(rc);
  16527. }
  16528. ggml_mutex_destroy(&threadpool->mutex);
  16529. ggml_cond_destroy(&threadpool->cond);
  16530. #endif // GGML_USE_OPENMP
  16531. GGML_ALIGNED_FREE(threadpool->workers);
  16532. GGML_ALIGNED_FREE(threadpool);
  16533. }
  16534. #ifndef GGML_USE_OPENMP
  16535. // pause/resume must be called under mutex
  16536. static void ggml_threadpool_pause_locked(struct ggml_threadpool * threadpool) {
  16537. GGML_PRINT_DEBUG("Pausing threadpool\n");
  16538. threadpool->pause = true;
  16539. ggml_cond_broadcast(&threadpool->cond);
  16540. }
  16541. static void ggml_threadpool_resume_locked(struct ggml_threadpool * threadpool) {
  16542. GGML_PRINT_DEBUG("Resuming threadpool\n");
  16543. threadpool->pause = false;
  16544. ggml_cond_broadcast(&threadpool->cond);
  16545. }
  16546. #endif
  16547. void ggml_threadpool_pause(struct ggml_threadpool * threadpool) {
  16548. #ifndef GGML_USE_OPENMP
  16549. ggml_mutex_lock(&threadpool->mutex);
  16550. if (!threadpool->pause) {
  16551. ggml_threadpool_pause_locked(threadpool);
  16552. }
  16553. ggml_mutex_unlock(&threadpool->mutex);
  16554. #else
  16555. UNUSED(threadpool);
  16556. #endif
  16557. }
  16558. void ggml_threadpool_resume(struct ggml_threadpool * threadpool) {
  16559. #ifndef GGML_USE_OPENMP
  16560. ggml_mutex_lock(&threadpool->mutex);
  16561. if (threadpool->pause) {
  16562. ggml_threadpool_resume_locked(threadpool);
  16563. }
  16564. ggml_mutex_unlock(&threadpool->mutex);
  16565. #else
  16566. UNUSED(threadpool);
  16567. #endif
  16568. }
  16569. struct ggml_cplan ggml_graph_plan(
  16570. const struct ggml_cgraph * cgraph,
  16571. int n_threads,
  16572. struct ggml_threadpool * threadpool) {
  16573. if (threadpool == NULL) {
  16574. GGML_PRINT_DEBUG("Threadpool is not specified. Will create a disposable threadpool : n_threads %d\n", n_threads);
  16575. }
  16576. if (n_threads <= 0) {
  16577. n_threads = threadpool ? threadpool->n_threads_max : GGML_DEFAULT_N_THREADS;
  16578. }
  16579. size_t work_size = 0;
  16580. struct ggml_cplan cplan;
  16581. memset(&cplan, 0, sizeof(struct ggml_cplan));
  16582. int max_tasks = 1;
  16583. // thread scheduling for the different operations + work buffer size estimation
  16584. for (int i = 0; i < cgraph->n_nodes; i++) {
  16585. struct ggml_tensor * node = cgraph->nodes[i];
  16586. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  16587. max_tasks = MAX(max_tasks, n_tasks);
  16588. size_t cur = 0;
  16589. switch (node->op) {
  16590. case GGML_OP_CPY:
  16591. case GGML_OP_DUP:
  16592. {
  16593. if (ggml_is_quantized(node->type) ||
  16594. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  16595. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  16596. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  16597. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16598. }
  16599. } break;
  16600. case GGML_OP_ADD:
  16601. case GGML_OP_ADD1:
  16602. {
  16603. if (ggml_is_quantized(node->src[0]->type)) {
  16604. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16605. }
  16606. } break;
  16607. case GGML_OP_ACC:
  16608. {
  16609. if (ggml_is_quantized(node->src[0]->type)) {
  16610. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  16611. }
  16612. } break;
  16613. case GGML_OP_MUL_MAT:
  16614. {
  16615. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  16616. if (node->src[1]->type != vec_dot_type) {
  16617. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  16618. }
  16619. } break;
  16620. case GGML_OP_MUL_MAT_ID:
  16621. {
  16622. cur = 0;
  16623. const struct ggml_tensor * src0 = node->src[0];
  16624. const struct ggml_tensor * src1 = node->src[1];
  16625. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  16626. if (src1->type != vec_dot_type) {
  16627. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  16628. }
  16629. const int n_as = src0->ne[2];
  16630. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  16631. cur += n_as * sizeof(int64_t); // matrix_row_counts
  16632. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  16633. } break;
  16634. case GGML_OP_OUT_PROD:
  16635. {
  16636. if (ggml_is_quantized(node->src[0]->type)) {
  16637. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16638. }
  16639. } break;
  16640. case GGML_OP_SOFT_MAX:
  16641. case GGML_OP_ROPE:
  16642. {
  16643. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16644. } break;
  16645. case GGML_OP_CONV_TRANSPOSE_1D:
  16646. {
  16647. GGML_ASSERT(node->src[0]->ne[3] == 1);
  16648. GGML_ASSERT(node->src[1]->ne[2] == 1);
  16649. GGML_ASSERT(node->src[1]->ne[3] == 1);
  16650. const int64_t ne00 = node->src[0]->ne[0]; // K
  16651. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  16652. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  16653. const int64_t ne10 = node->src[1]->ne[0]; // L
  16654. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  16655. if ((node->src[0]->type == GGML_TYPE_F16 ||
  16656. node->src[0]->type == GGML_TYPE_BF16) &&
  16657. node->src[1]->type == GGML_TYPE_F32) {
  16658. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  16659. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  16660. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  16661. node->src[1]->type == GGML_TYPE_F32) {
  16662. cur += sizeof(float)*ne00*ne01*ne02;
  16663. cur += sizeof(float)*ne10*ne11;
  16664. } else {
  16665. GGML_ABORT("fatal error");
  16666. }
  16667. } break;
  16668. case GGML_OP_CONV_TRANSPOSE_2D:
  16669. {
  16670. const int64_t ne00 = node->src[0]->ne[0]; // W
  16671. const int64_t ne01 = node->src[0]->ne[1]; // H
  16672. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  16673. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  16674. const int64_t ne10 = node->src[1]->ne[0]; // W
  16675. const int64_t ne11 = node->src[1]->ne[1]; // H
  16676. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  16677. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  16678. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  16679. } break;
  16680. case GGML_OP_FLASH_ATTN_EXT:
  16681. {
  16682. const int64_t ne00 = node->src[0]->ne[0]; // D
  16683. cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
  16684. } break;
  16685. case GGML_OP_FLASH_ATTN_BACK:
  16686. {
  16687. const int64_t D = node->src[0]->ne[0];
  16688. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16689. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  16690. if (node->src[1]->type == GGML_TYPE_F32) {
  16691. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16692. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16693. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16694. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16695. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16696. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16697. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16698. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16699. }
  16700. } break;
  16701. case GGML_OP_CROSS_ENTROPY_LOSS:
  16702. {
  16703. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  16704. } break;
  16705. case GGML_OP_COUNT:
  16706. {
  16707. GGML_ABORT("fatal error");
  16708. }
  16709. default:
  16710. break;
  16711. }
  16712. work_size = MAX(work_size, cur);
  16713. }
  16714. if (work_size > 0) {
  16715. work_size += CACHE_LINE_SIZE*(n_threads);
  16716. }
  16717. cplan.threadpool = threadpool;
  16718. cplan.n_threads = MIN(max_tasks, n_threads);
  16719. cplan.work_size = work_size;
  16720. cplan.work_data = NULL;
  16721. return cplan;
  16722. }
  16723. static thread_ret_t ggml_graph_compute_thread(void * data) {
  16724. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  16725. struct ggml_threadpool * tp = state->threadpool;
  16726. const struct ggml_cgraph * cgraph = tp->cgraph;
  16727. const struct ggml_cplan * cplan = tp->cplan;
  16728. set_numa_thread_affinity(state->ith);
  16729. struct ggml_compute_params params = {
  16730. /*.ith =*/ state->ith,
  16731. /*.nth =*/ atomic_load_explicit(&tp->n_threads_cur, memory_order_relaxed),
  16732. /*.wsize =*/ cplan->work_size,
  16733. /*.wdata =*/ cplan->work_data,
  16734. /*.threadpool=*/ tp,
  16735. };
  16736. for (int node_n = 0; node_n < cgraph->n_nodes && !tp->abort; node_n++) {
  16737. struct ggml_tensor * node = cgraph->nodes[node_n];
  16738. ggml_compute_forward(&params, node);
  16739. if (state->ith == 0 && cplan->abort_callback &&
  16740. cplan->abort_callback(cplan->abort_callback_data)) {
  16741. tp->abort = true;
  16742. tp->ec = GGML_STATUS_ABORTED;
  16743. }
  16744. ggml_barrier(state->threadpool);
  16745. }
  16746. return 0;
  16747. }
  16748. #ifndef GGML_USE_OPENMP
  16749. // check if thread is active
  16750. static inline bool ggml_graph_compute_thread_active(struct ggml_compute_state * state) {
  16751. struct ggml_threadpool * threadpool = state->threadpool;
  16752. int n_threads = atomic_load_explicit(&threadpool->n_threads_cur, memory_order_relaxed);
  16753. return (state->ith < n_threads);
  16754. }
  16755. // check if thread is ready to proceed (exit from polling or sleeping)
  16756. static inline bool ggml_graph_compute_thread_ready(struct ggml_compute_state * state) {
  16757. struct ggml_threadpool * threadpool = state->threadpool;
  16758. if (state->pending || threadpool->stop || threadpool->pause) { return true; }
  16759. // check for new graph/work
  16760. int new_graph = atomic_load_explicit(&threadpool->n_graph, memory_order_relaxed);
  16761. if (new_graph != state->last_graph) {
  16762. state->pending = ggml_graph_compute_thread_active(state);
  16763. state->last_graph = new_graph;
  16764. }
  16765. return state->pending;
  16766. }
  16767. // sync thread state after polling
  16768. static inline void ggml_graph_compute_thread_sync(struct ggml_compute_state * state) {
  16769. // TSAN doesn't support standalone fence yet, we use a dummy read-modify-write instead
  16770. #ifdef GGML_TSAN_ENABLED
  16771. atomic_fetch_add_explicit(&state->threadpool->n_graph, 0, memory_order_seq_cst);
  16772. #else
  16773. atomic_thread_fence(memory_order_seq_cst);
  16774. #endif
  16775. UNUSED(state);
  16776. }
  16777. static inline bool ggml_graph_compute_poll_for_work(struct ggml_compute_state * state) {
  16778. struct ggml_threadpool * threadpool = state->threadpool;
  16779. // Skip polling for unused threads
  16780. if (!ggml_graph_compute_thread_active(state)) {
  16781. return state->pending;
  16782. }
  16783. // This seems to make 0 ... 100 a decent range for polling level across modern processors.
  16784. // Perhaps, we can adjust it dynamically based on load and things.
  16785. const uint64_t n_rounds = 1024UL * 128 * threadpool->poll;
  16786. for (uint64_t i=0; !ggml_graph_compute_thread_ready(state) && i < n_rounds; i++) {
  16787. // No new work. Keep polling.
  16788. ggml_thread_cpu_relax();
  16789. }
  16790. return state->pending;
  16791. }
  16792. static inline bool ggml_graph_compute_check_for_work(struct ggml_compute_state * state) {
  16793. struct ggml_threadpool * threadpool = state->threadpool;
  16794. if (ggml_graph_compute_poll_for_work(state)) {
  16795. ggml_graph_compute_thread_sync(state);
  16796. return state->pending;
  16797. }
  16798. ggml_mutex_lock_shared(&threadpool->mutex);
  16799. while (!ggml_graph_compute_thread_ready(state)) {
  16800. // No new work. Wait for the signal.
  16801. GGML_PRINT_DEBUG("thread #%d waiting for work (sleeping)\n", state->ith);
  16802. ggml_cond_wait(&threadpool->cond, &threadpool->mutex);
  16803. }
  16804. ggml_mutex_unlock_shared(&threadpool->mutex);
  16805. return state->pending;
  16806. }
  16807. static thread_ret_t ggml_graph_compute_secondary_thread(void* data) {
  16808. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  16809. struct ggml_threadpool * threadpool = state->threadpool;
  16810. ggml_thread_apply_priority(threadpool->prio);
  16811. if (ggml_thread_cpumask_is_valid(state->cpumask)) {
  16812. ggml_thread_apply_affinity(state->cpumask);
  16813. }
  16814. while (true) {
  16815. // Check if we need to sleep
  16816. while (threadpool->pause) {
  16817. GGML_PRINT_DEBUG("thread #%d inside pause loop\n", state->ith);
  16818. ggml_mutex_lock_shared(&threadpool->mutex);
  16819. if (threadpool->pause) {
  16820. ggml_cond_wait(&threadpool->cond, &threadpool->mutex);
  16821. }
  16822. GGML_PRINT_DEBUG("thread #%d resuming after wait\n", state->ith);
  16823. ggml_mutex_unlock_shared(&threadpool->mutex);
  16824. }
  16825. // This needs to be checked for after the cond_wait
  16826. if (threadpool->stop) break;
  16827. // Check if there is new work
  16828. // The main thread is the only one that can dispatch new work
  16829. ggml_graph_compute_check_for_work(state);
  16830. if (state->pending) {
  16831. state->pending = false;
  16832. ggml_graph_compute_thread(state);
  16833. }
  16834. }
  16835. return (thread_ret_t) 0;
  16836. }
  16837. // Start processing new graph
  16838. static void ggml_graph_compute_kickoff(struct ggml_threadpool * threadpool, int n_threads)
  16839. {
  16840. // Always take the mutex here because the worker threads are doing hybrid poll/wait
  16841. ggml_mutex_lock(&threadpool->mutex);
  16842. GGML_PRINT_DEBUG("threadpool: n_threads_cur %d n_threads %d\n", threadpool->n_threads_cur, n_threads);
  16843. // Update the number of active threads
  16844. atomic_store_explicit(&threadpool->n_threads_cur, n_threads, memory_order_relaxed);
  16845. // Indicate the graph is ready to be processed
  16846. // We need the full seq-cst fence here because of the polling threads (used in thread_sync)
  16847. atomic_fetch_add_explicit(&threadpool->n_graph, 1, memory_order_seq_cst);
  16848. if (threadpool->pause) {
  16849. // Update main thread prio and affinity to match the threadpool settings
  16850. ggml_thread_apply_priority(threadpool->prio);
  16851. if (ggml_thread_cpumask_is_valid(threadpool->workers[0].cpumask)) {
  16852. ggml_thread_apply_affinity(threadpool->workers[0].cpumask);
  16853. }
  16854. // resume does cond broadcast
  16855. ggml_threadpool_resume_locked(threadpool);
  16856. } else {
  16857. ggml_cond_broadcast(&threadpool->cond);
  16858. }
  16859. ggml_mutex_unlock(&threadpool->mutex);
  16860. }
  16861. #endif // GGML_USE_OPENMP
  16862. void ggml_threadpool_params_init(struct ggml_threadpool_params * p, int n_threads) {
  16863. p->n_threads = n_threads;
  16864. p->prio = 0; // default priority (usually means normal or inherited)
  16865. p->poll = 50; // hybrid-polling enabled
  16866. p->strict_cpu = false; // no strict placement (all threads share same cpumask)
  16867. p->paused = false; // threads are ready to go
  16868. memset(p->cpumask, 0, GGML_MAX_N_THREADS); // all-zero means use the default affinity (usually inherited)
  16869. }
  16870. struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads) {
  16871. struct ggml_threadpool_params p;
  16872. ggml_threadpool_params_init(&p, n_threads);
  16873. return p;
  16874. }
  16875. bool ggml_threadpool_params_match(const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1) {
  16876. if (p0->n_threads != p1->n_threads ) return false;
  16877. if (p0->prio != p1->prio ) return false;
  16878. if (p0->poll != p1->poll ) return false;
  16879. if (p0->strict_cpu != p1->strict_cpu ) return false;
  16880. return memcmp(p0->cpumask, p1->cpumask, GGML_MAX_N_THREADS) == 0;
  16881. }
  16882. static struct ggml_threadpool * ggml_threadpool_new_impl(
  16883. struct ggml_threadpool_params * tpp,
  16884. struct ggml_cgraph * cgraph,
  16885. struct ggml_cplan * cplan) {
  16886. struct ggml_threadpool * threadpool =
  16887. GGML_ALIGNED_MALLOC(sizeof(struct ggml_threadpool));
  16888. {
  16889. threadpool->cgraph = cgraph;
  16890. threadpool->cplan = cplan;
  16891. threadpool->n_graph = 0;
  16892. threadpool->n_barrier = 0;
  16893. threadpool->n_barrier_passed = 0;
  16894. threadpool->current_chunk = 0;
  16895. threadpool->stop = false;
  16896. threadpool->pause = tpp->paused;
  16897. threadpool->abort = false;
  16898. threadpool->workers = NULL;
  16899. threadpool->n_threads_max = tpp->n_threads;
  16900. threadpool->n_threads_cur = tpp->n_threads;
  16901. threadpool->poll = tpp->poll;
  16902. threadpool->prio = tpp->prio;
  16903. threadpool->ec = GGML_STATUS_SUCCESS;
  16904. }
  16905. // Allocate and init workers state
  16906. const size_t workers_size = sizeof(struct ggml_compute_state) * tpp->n_threads;
  16907. struct ggml_compute_state * workers = GGML_ALIGNED_MALLOC(workers_size);
  16908. memset(workers, 0, workers_size);
  16909. for (int j = 0; j < tpp->n_threads; j++) {
  16910. workers[j].threadpool = threadpool;
  16911. workers[j].ith = j;
  16912. }
  16913. threadpool->workers = workers;
  16914. #ifndef GGML_USE_OPENMP
  16915. ggml_mutex_init(&threadpool->mutex);
  16916. ggml_cond_init(&threadpool->cond);
  16917. // Spin the threads for all workers, and update CPU placements.
  16918. // Place the main thread last (towards the higher numbered CPU cores).
  16919. int32_t cpumask_iter = 0;
  16920. for (int j = 1; j < tpp->n_threads; j++) {
  16921. ggml_thread_cpumask_next(tpp->cpumask, workers[j].cpumask, tpp->strict_cpu, &cpumask_iter);
  16922. int32_t rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_secondary_thread, &workers[j]);
  16923. GGML_ASSERT(rc == 0);
  16924. }
  16925. ggml_thread_cpumask_next(tpp->cpumask, workers[0].cpumask, tpp->strict_cpu, &cpumask_iter);
  16926. if (!threadpool->pause) {
  16927. // Update main thread prio and affinity at the start, otherwise we'll do it in resume
  16928. ggml_thread_apply_priority(threadpool->prio);
  16929. if (ggml_thread_cpumask_is_valid(threadpool->workers[0].cpumask)) {
  16930. ggml_thread_apply_affinity(threadpool->workers[0].cpumask);
  16931. }
  16932. }
  16933. #endif // GGML_USE_OPENMP
  16934. return threadpool;
  16935. }
  16936. struct ggml_threadpool * ggml_threadpool_new(struct ggml_threadpool_params * tpp) {
  16937. return ggml_threadpool_new_impl(tpp, NULL, NULL);
  16938. }
  16939. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  16940. GGML_ASSERT(cplan);
  16941. GGML_ASSERT(cplan->n_threads > 0);
  16942. GGML_ASSERT(cplan->work_size == 0 || cplan->work_data != NULL);
  16943. int n_threads = cplan->n_threads;
  16944. struct ggml_threadpool * threadpool = cplan->threadpool;
  16945. bool disposable_threadpool = false;
  16946. if (threadpool == NULL) {
  16947. GGML_PRINT_DEBUG("Threadpool is not specified. Will create a disposable threadpool : n_threads %d\n", n_threads);
  16948. disposable_threadpool = true;
  16949. struct ggml_threadpool_params ttp = ggml_threadpool_params_default(n_threads);
  16950. threadpool = ggml_threadpool_new_impl(&ttp, cgraph, cplan);
  16951. } else {
  16952. // Reset some of the parameters that need resetting
  16953. // No worker threads should be accessing the parameters below at this stage
  16954. threadpool->cgraph = cgraph;
  16955. threadpool->cplan = cplan;
  16956. threadpool->current_chunk = 0;
  16957. threadpool->abort = false;
  16958. threadpool->ec = GGML_STATUS_SUCCESS;
  16959. }
  16960. #ifdef GGML_USE_OPENMP
  16961. if (n_threads > 1) {
  16962. #pragma omp parallel num_threads(n_threads)
  16963. {
  16964. #pragma omp single
  16965. {
  16966. // update the number of threads from the actual number of threads that we got from OpenMP
  16967. n_threads = omp_get_num_threads();
  16968. atomic_store_explicit(&threadpool->n_threads_cur, n_threads, memory_order_relaxed);
  16969. }
  16970. ggml_graph_compute_thread(&threadpool->workers[omp_get_thread_num()]);
  16971. }
  16972. } else {
  16973. atomic_store_explicit(&threadpool->n_threads_cur, 1, memory_order_relaxed);
  16974. ggml_graph_compute_thread(&threadpool->workers[0]);
  16975. }
  16976. #else
  16977. if (n_threads > threadpool->n_threads_max) {
  16978. GGML_PRINT("WARNING: cplan requested more threads (%d) than available (%d)\n", n_threads, threadpool->n_threads_max);
  16979. n_threads = threadpool->n_threads_max;
  16980. }
  16981. // Kick all threads to start the new graph
  16982. ggml_graph_compute_kickoff(threadpool, n_threads);
  16983. // This is a work thread too
  16984. ggml_graph_compute_thread(&threadpool->workers[0]);
  16985. #endif
  16986. // don't leave affinity set on the main thread
  16987. clear_numa_thread_affinity();
  16988. enum ggml_status ret = threadpool->ec;
  16989. if (disposable_threadpool) {
  16990. ggml_threadpool_free(threadpool);
  16991. }
  16992. return ret;
  16993. }
  16994. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  16995. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads, NULL);
  16996. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16997. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16998. return ggml_graph_compute(cgraph, &cplan);
  16999. }
  17000. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  17001. for (int i = 0; i < cgraph->n_leafs; i++) {
  17002. struct ggml_tensor * leaf = cgraph->leafs[i];
  17003. if (strcmp(leaf->name, name) == 0) {
  17004. return leaf;
  17005. }
  17006. }
  17007. for (int i = 0; i < cgraph->n_nodes; i++) {
  17008. struct ggml_tensor * node = cgraph->nodes[i];
  17009. if (strcmp(node->name, name) == 0) {
  17010. return node;
  17011. }
  17012. }
  17013. return NULL;
  17014. }
  17015. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  17016. const int64_t * ne = tensor->ne;
  17017. const size_t * nb = tensor->nb;
  17018. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  17019. ggml_type_name(tensor->type),
  17020. ggml_op_name (tensor->op),
  17021. ggml_n_dims(tensor),
  17022. ne[0], ne[1], ne[2], ne[3],
  17023. nb[0], nb[1], nb[2], nb[3],
  17024. tensor->data,
  17025. tensor->name);
  17026. }
  17027. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  17028. const int64_t * ne = tensor->ne;
  17029. const size_t * nb = tensor->nb;
  17030. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  17031. arg,
  17032. ggml_type_name(tensor->type),
  17033. ggml_op_name (tensor->op),
  17034. ggml_n_dims(tensor),
  17035. ne[0], ne[1], ne[2], ne[3],
  17036. nb[0], nb[1], nb[2], nb[3],
  17037. tensor->data,
  17038. tensor->name);
  17039. }
  17040. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  17041. uint64_t size_eval = 0;
  17042. // compute size of intermediate results
  17043. // TODO: does not take into account scratch buffers !!!!
  17044. for (int i = 0; i < cgraph->n_nodes; ++i) {
  17045. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  17046. }
  17047. // print
  17048. {
  17049. FILE * fout = stdout;
  17050. fprintf(fout, "\n");
  17051. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  17052. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  17053. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  17054. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  17055. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  17056. // header
  17057. fprintf(fout, "\n");
  17058. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  17059. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  17060. for (int i = 0; i < cgraph->n_leafs; ++i) {
  17061. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  17062. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  17063. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  17064. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  17065. }
  17066. // header
  17067. fprintf(fout, "\n");
  17068. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  17069. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  17070. for (int i = 0; i < cgraph->n_nodes; ++i) {
  17071. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  17072. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  17073. if (cgraph->nodes[i]->src[j]) {
  17074. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  17075. }
  17076. }
  17077. fprintf(fout, "\n");
  17078. }
  17079. fprintf(fout, "\n");
  17080. }
  17081. // write binary data
  17082. {
  17083. FILE * fout = ggml_fopen(fname, "wb");
  17084. if (!fout) {
  17085. fprintf(stderr, "%s: failed to open %s: %s\n", __func__, fname, strerror(errno));
  17086. return;
  17087. }
  17088. // header
  17089. {
  17090. const uint32_t magic = GGML_FILE_MAGIC;
  17091. const uint32_t version = GGML_FILE_VERSION;
  17092. const uint32_t n_leafs = cgraph->n_leafs;
  17093. const uint32_t n_nodes = cgraph->n_nodes;
  17094. fwrite(&magic, sizeof(uint32_t), 1, fout);
  17095. fwrite(&version, sizeof(uint32_t), 1, fout);
  17096. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  17097. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  17098. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  17099. }
  17100. // leafs
  17101. {
  17102. for (int i = 0; i < cgraph->n_leafs; ++i) {
  17103. const struct ggml_tensor * tensor = cgraph->leafs[i];
  17104. const uint32_t type = tensor->type;
  17105. const uint32_t op = tensor->op;
  17106. const int32_t flags = tensor->flags;
  17107. fwrite(&type, sizeof(uint32_t), 1, fout);
  17108. fwrite(&op, sizeof(uint32_t), 1, fout);
  17109. fwrite(&flags, sizeof(int32_t), 1, fout);
  17110. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17111. const uint64_t ne = tensor->ne[j];
  17112. const uint64_t nb = tensor->nb[j];
  17113. fwrite(&ne, sizeof(uint64_t), 1, fout);
  17114. fwrite(&nb, sizeof(uint64_t), 1, fout);
  17115. }
  17116. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  17117. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  17118. // dump the data
  17119. // TODO: pad this to 32 byte boundary
  17120. {
  17121. const size_t size = ggml_nbytes(tensor);
  17122. fwrite(tensor->data, sizeof(char), size, fout);
  17123. }
  17124. }
  17125. }
  17126. // nodes
  17127. {
  17128. for (int i = 0; i < cgraph->n_nodes; ++i) {
  17129. const struct ggml_tensor * tensor = cgraph->nodes[i];
  17130. const uint32_t type = tensor->type;
  17131. const uint32_t op = tensor->op;
  17132. const int32_t flags = tensor->flags;
  17133. fwrite(&type, sizeof(uint32_t), 1, fout);
  17134. fwrite(&op, sizeof(uint32_t), 1, fout);
  17135. fwrite(&flags, sizeof(int32_t), 1, fout);
  17136. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17137. const uint64_t ne = tensor->ne[j];
  17138. const uint64_t nb = tensor->nb[j];
  17139. fwrite(&ne, sizeof(uint64_t), 1, fout);
  17140. fwrite(&nb, sizeof(uint64_t), 1, fout);
  17141. }
  17142. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  17143. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  17144. // output the op arguments
  17145. {
  17146. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  17147. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  17148. args[j] = tensor->src[j];
  17149. }
  17150. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  17151. if (args[j]) {
  17152. int32_t idx = -1;
  17153. // check if leaf
  17154. {
  17155. for (int k = 0; k < cgraph->n_leafs; ++k) {
  17156. if (args[j] == cgraph->leafs[k]) {
  17157. idx = k;
  17158. break;
  17159. }
  17160. }
  17161. }
  17162. // check if node
  17163. if (idx == -1) {
  17164. for (int k = 0; k < cgraph->n_nodes; ++k) {
  17165. if (args[j] == cgraph->nodes[k]) {
  17166. idx = cgraph->n_leafs + k;
  17167. break;
  17168. }
  17169. }
  17170. }
  17171. if (idx == -1) {
  17172. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  17173. fclose(fout);
  17174. return;
  17175. }
  17176. fwrite(&idx, sizeof(int32_t), 1, fout);
  17177. } else {
  17178. const int32_t nul = -1;
  17179. fwrite(&nul, sizeof(int32_t), 1, fout);
  17180. }
  17181. }
  17182. }
  17183. // dump the data
  17184. // TODO: pad this to 32 byte boundary
  17185. if ((flags & GGML_TENSOR_FLAG_PARAM)) {
  17186. const size_t size = ggml_nbytes(tensor);
  17187. fwrite(tensor->data, sizeof(char), size, fout);
  17188. }
  17189. }
  17190. }
  17191. fclose(fout);
  17192. }
  17193. }
  17194. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  17195. assert(*ctx_data == NULL);
  17196. assert(*ctx_eval == NULL);
  17197. struct ggml_cgraph * result = NULL;
  17198. struct ggml_tensor * data = NULL;
  17199. // read file into data
  17200. {
  17201. FILE * fin = ggml_fopen(fname, "rb");
  17202. if (!fin) {
  17203. fprintf(stderr, "%s: failed to open %s: %s\n", __func__, fname, strerror(errno));
  17204. return result;
  17205. }
  17206. size_t fsize = 0;
  17207. fseek(fin, 0, SEEK_END);
  17208. fsize = ftell(fin);
  17209. fseek(fin, 0, SEEK_SET);
  17210. // create the data context
  17211. {
  17212. const size_t overhead = 1*ggml_tensor_overhead();
  17213. struct ggml_init_params params = {
  17214. .mem_size = fsize + overhead,
  17215. .mem_buffer = NULL,
  17216. .no_alloc = false,
  17217. };
  17218. *ctx_data = ggml_init(params);
  17219. if (!*ctx_data) {
  17220. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  17221. fclose(fin);
  17222. return result;
  17223. }
  17224. }
  17225. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  17226. {
  17227. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  17228. if (ret != fsize) {
  17229. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  17230. fclose(fin);
  17231. return result;
  17232. }
  17233. }
  17234. fclose(fin);
  17235. }
  17236. // populate result
  17237. {
  17238. char * ptr = (char *) data->data;
  17239. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  17240. if (magic != GGML_FILE_MAGIC) {
  17241. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  17242. return result;
  17243. }
  17244. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  17245. if (version != GGML_FILE_VERSION) {
  17246. fprintf(stderr, "%s: invalid version number\n", __func__);
  17247. return result;
  17248. }
  17249. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  17250. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  17251. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  17252. const int graph_size = MAX(n_leafs, n_nodes);
  17253. // create the data context
  17254. {
  17255. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  17256. struct ggml_init_params params = {
  17257. .mem_size = size_eval + overhead,
  17258. .mem_buffer = NULL,
  17259. .no_alloc = true,
  17260. };
  17261. *ctx_eval = ggml_init(params);
  17262. if (!*ctx_eval) {
  17263. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  17264. return result;
  17265. }
  17266. }
  17267. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  17268. result->n_leafs = n_leafs;
  17269. result->n_nodes = n_nodes;
  17270. // leafs
  17271. {
  17272. uint32_t type;
  17273. uint32_t op;
  17274. int32_t flags;
  17275. for (uint32_t i = 0; i < n_leafs; ++i) {
  17276. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  17277. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  17278. flags = *(const int32_t *) ptr; ptr += sizeof(flags);
  17279. int64_t ne[GGML_MAX_DIMS];
  17280. size_t nb[GGML_MAX_DIMS];
  17281. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17282. uint64_t ne_cur;
  17283. uint64_t nb_cur;
  17284. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  17285. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  17286. ne[j] = ne_cur;
  17287. nb[j] = nb_cur;
  17288. }
  17289. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  17290. tensor->op = (enum ggml_op) op;
  17291. tensor->flags = flags;
  17292. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  17293. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  17294. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17295. tensor->nb[j] = nb[j];
  17296. }
  17297. tensor->data = (void *) ptr; ptr += ggml_nbytes(tensor);
  17298. result->leafs[i] = tensor;
  17299. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  17300. }
  17301. }
  17302. ggml_set_no_alloc(*ctx_eval, false);
  17303. // nodes
  17304. {
  17305. uint32_t type;
  17306. uint32_t op;
  17307. int32_t flags;
  17308. for (uint32_t i = 0; i < n_nodes; ++i) {
  17309. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  17310. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  17311. flags = *(const int32_t *) ptr; ptr += sizeof(flags);
  17312. enum ggml_op eop = (enum ggml_op) op;
  17313. int64_t ne[GGML_MAX_DIMS];
  17314. size_t nb[GGML_MAX_DIMS];
  17315. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17316. uint64_t ne_cur;
  17317. uint64_t nb_cur;
  17318. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  17319. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  17320. ne[j] = ne_cur;
  17321. nb[j] = nb_cur;
  17322. }
  17323. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  17324. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  17325. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  17326. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  17327. // parse args
  17328. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  17329. const int32_t arg_idx = ptr_arg_idx[j];
  17330. if (arg_idx == -1) {
  17331. continue;
  17332. }
  17333. if (arg_idx < result->n_leafs) {
  17334. args[j] = result->leafs[arg_idx];
  17335. } else {
  17336. args[j] = result->nodes[arg_idx - result->n_leafs];
  17337. }
  17338. }
  17339. // create the tensor
  17340. // "view" operations are handled differently
  17341. // TODO: handle inplace ops - currently a copy is always made
  17342. struct ggml_tensor * tensor = NULL;
  17343. switch (eop) {
  17344. // TODO: implement other view ops
  17345. case GGML_OP_RESHAPE:
  17346. {
  17347. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  17348. } break;
  17349. case GGML_OP_VIEW:
  17350. {
  17351. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  17352. size_t offs;
  17353. memcpy(&offs, ptr_op_params, sizeof(offs));
  17354. tensor->data = ((char *) tensor->data) + offs;
  17355. } break;
  17356. case GGML_OP_TRANSPOSE:
  17357. {
  17358. tensor = ggml_transpose(*ctx_eval, args[0]);
  17359. } break;
  17360. case GGML_OP_PERMUTE:
  17361. {
  17362. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  17363. } break;
  17364. default:
  17365. {
  17366. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  17367. tensor->op = eop;
  17368. } break;
  17369. }
  17370. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  17371. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  17372. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17373. tensor->nb[j] = nb[j];
  17374. }
  17375. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  17376. tensor->src[j] = args[j];
  17377. }
  17378. result->nodes[i] = tensor;
  17379. // TODO tensor data is be duplicated due to ggml_new_tensor call above
  17380. if (flags & GGML_TENSOR_FLAG_PARAM) {
  17381. tensor->data = (void *) ptr; ptr += ggml_nbytes(tensor);
  17382. }
  17383. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  17384. }
  17385. }
  17386. }
  17387. return result;
  17388. }
  17389. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  17390. GGML_PRINT("=== GRAPH ===\n");
  17391. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  17392. for (int i = 0; i < cgraph->n_nodes; i++) {
  17393. struct ggml_tensor * node = cgraph->nodes[i];
  17394. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s\n",
  17395. i,
  17396. node->ne[0], node->ne[1], node->ne[2],
  17397. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ");
  17398. }
  17399. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  17400. for (int i = 0; i < cgraph->n_leafs; i++) {
  17401. struct ggml_tensor * node = cgraph->leafs[i];
  17402. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  17403. i,
  17404. node->ne[0], node->ne[1],
  17405. ggml_op_name(node->op),
  17406. ggml_get_name(node));
  17407. }
  17408. GGML_PRINT("========================================\n");
  17409. }
  17410. // check if node is part of the graph
  17411. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  17412. if (cgraph == NULL) {
  17413. return true;
  17414. }
  17415. for (int i = 0; i < cgraph->n_nodes; i++) {
  17416. if (cgraph->nodes[i] == node) {
  17417. return true;
  17418. }
  17419. }
  17420. return false;
  17421. }
  17422. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  17423. for (int i = 0; i < cgraph->n_nodes; i++) {
  17424. struct ggml_tensor * parent = cgraph->nodes[i];
  17425. if (parent->grad == node) {
  17426. return parent;
  17427. }
  17428. }
  17429. return NULL;
  17430. }
  17431. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  17432. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  17433. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  17434. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  17435. gparent0 ? (void *) gparent0 : (void *) parent,
  17436. gparent0 ? "g" : "x",
  17437. gparent ? (void *) gparent : (void *) node,
  17438. gparent ? "g" : "x",
  17439. gparent ? "empty" : "vee",
  17440. gparent ? "dashed" : "solid",
  17441. label);
  17442. }
  17443. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  17444. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  17445. (void *) parent, "x",
  17446. (void *) node, "x",
  17447. label);
  17448. }
  17449. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  17450. char color[16];
  17451. FILE * fp = ggml_fopen(filename, "w");
  17452. GGML_ASSERT(fp);
  17453. fprintf(fp, "digraph G {\n");
  17454. fprintf(fp, " newrank = true;\n");
  17455. fprintf(fp, " rankdir = TB;\n");
  17456. for (int i = 0; i < gb->n_nodes; i++) {
  17457. struct ggml_tensor * node = gb->nodes[i];
  17458. if (ggml_graph_get_parent(gb, node) != NULL) {
  17459. continue;
  17460. }
  17461. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  17462. snprintf(color, sizeof(color), "yellow");
  17463. } else if (node->grad) {
  17464. if (ggml_graph_find(gf, node)) {
  17465. snprintf(color, sizeof(color), "green");
  17466. } else {
  17467. snprintf(color, sizeof(color), "lightblue");
  17468. }
  17469. } else {
  17470. snprintf(color, sizeof(color), "white");
  17471. }
  17472. fprintf(fp, " \"%p\" [ "
  17473. "style = filled; fillcolor = %s; shape = record; "
  17474. "label=\"",
  17475. (void *) node, color);
  17476. if (strlen(node->name) > 0) {
  17477. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  17478. } else {
  17479. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  17480. }
  17481. if (ggml_is_matrix(node)) {
  17482. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  17483. } else {
  17484. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  17485. }
  17486. if (node->grad) {
  17487. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  17488. } else {
  17489. fprintf(fp, "\"; ]\n");
  17490. }
  17491. }
  17492. for (int i = 0; i < gb->n_leafs; i++) {
  17493. struct ggml_tensor * node = gb->leafs[i];
  17494. snprintf(color, sizeof(color), "pink");
  17495. fprintf(fp, " \"%p\" [ "
  17496. "style = filled; fillcolor = %s; shape = record; "
  17497. "label=\"<x>",
  17498. (void *) node, color);
  17499. if (strlen(node->name) > 0) {
  17500. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  17501. } else {
  17502. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  17503. }
  17504. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  17505. if (ggml_nelements(node) < 5 && node->data != NULL) {
  17506. fprintf(fp, " | (");
  17507. for (int j = 0; j < ggml_nelements(node); j++) {
  17508. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  17509. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  17510. }
  17511. else if (node->type == GGML_TYPE_F32 ||
  17512. node->type == GGML_TYPE_F16 ||
  17513. node->type == GGML_TYPE_BF16) {
  17514. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  17515. }
  17516. else {
  17517. fprintf(fp, "#");
  17518. }
  17519. if (j < ggml_nelements(node) - 1) {
  17520. fprintf(fp, ", ");
  17521. }
  17522. }
  17523. fprintf(fp, ")");
  17524. }
  17525. fprintf(fp, "\"; ]\n");
  17526. }
  17527. for (int i = 0; i < gb->n_nodes; i++) {
  17528. struct ggml_tensor * node = gb->nodes[i];
  17529. for (int j = 0; j < GGML_MAX_SRC; j++) {
  17530. if (node->src[j]) {
  17531. char label[16];
  17532. snprintf(label, sizeof(label), "src %d", j);
  17533. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  17534. }
  17535. }
  17536. }
  17537. for (int i = 0; i < gb->n_leafs; i++) {
  17538. struct ggml_tensor * node = gb->leafs[i];
  17539. for (int j = 0; j < GGML_MAX_SRC; j++) {
  17540. if (node->src[j]) {
  17541. char label[16];
  17542. snprintf(label, sizeof(label), "src %d", j);
  17543. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  17544. }
  17545. }
  17546. }
  17547. fprintf(fp, "}\n");
  17548. fclose(fp);
  17549. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  17550. }
  17551. ////////////////////////////////////////////////////////////////////////////////
  17552. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  17553. int i = 0;
  17554. for (int p = 0; p < np; ++p) {
  17555. const int64_t ne = ggml_nelements(ps[p]) ;
  17556. // TODO: add function to set tensor from array
  17557. for (int64_t j = 0; j < ne; ++j) {
  17558. ggml_set_f32_1d(ps[p], j, x[i++]);
  17559. }
  17560. }
  17561. }
  17562. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  17563. int i = 0;
  17564. for (int p = 0; p < np; ++p) {
  17565. const int64_t ne = ggml_nelements(ps[p]) ;
  17566. // TODO: add function to get all elements at once
  17567. for (int64_t j = 0; j < ne; ++j) {
  17568. x[i++] = ggml_get_f32_1d(ps[p], j);
  17569. }
  17570. }
  17571. }
  17572. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  17573. int64_t i = 0;
  17574. for (int p = 0; p < np; ++p) {
  17575. const int64_t ne = ggml_nelements(ps[p]) ;
  17576. // TODO: add function to get all elements at once
  17577. for (int64_t j = 0; j < ne; ++j) {
  17578. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  17579. }
  17580. }
  17581. }
  17582. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  17583. int64_t i = 0;
  17584. for (int p = 0; p < np; ++p) {
  17585. const int64_t ne = ggml_nelements(ps[p]) ;
  17586. // TODO: add function to get all elements at once
  17587. for (int64_t j = 0; j < ne; ++j) {
  17588. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  17589. }
  17590. }
  17591. }
  17592. //
  17593. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  17594. //
  17595. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  17596. //
  17597. static enum ggml_opt_result ggml_opt_adam(
  17598. struct ggml_context * ctx,
  17599. struct ggml_opt_context * opt,
  17600. struct ggml_opt_params params,
  17601. struct ggml_tensor * f,
  17602. struct ggml_cgraph * gf,
  17603. struct ggml_cgraph * gb,
  17604. ggml_opt_callback callback,
  17605. void * callback_data) {
  17606. GGML_ASSERT(ggml_is_scalar(f));
  17607. GGML_ASSERT(f->type == GGML_TYPE_F32);
  17608. // these will store the parameters we want to optimize
  17609. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17610. int np = 0;
  17611. int64_t nx = 0;
  17612. for (int i = 0; i < gf->n_nodes; ++i) {
  17613. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17614. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17615. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17616. ps[np++] = gf->nodes[i];
  17617. nx += ggml_nelements(gf->nodes[i]);
  17618. }
  17619. }
  17620. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  17621. int iter = opt->iter;
  17622. ggml_opt_init(opt->ctx, opt, params, nx);
  17623. opt->iter = iter;
  17624. }
  17625. // constants
  17626. float sched = params.adam.sched;
  17627. const float alpha = params.adam.alpha;
  17628. const float decay = params.adam.decay * alpha;
  17629. const float beta1 = params.adam.beta1;
  17630. const float beta2 = params.adam.beta2;
  17631. const float eps = params.adam.eps;
  17632. const float gclip = params.adam.gclip;
  17633. const int decay_min_ndim = params.adam.decay_min_ndim;
  17634. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17635. const float accum_norm = 1.0f / (float) n_accum;
  17636. float * g = opt->adam.g->data; // gradients
  17637. float * m = opt->adam.m->data; // first moment
  17638. float * v = opt->adam.v->data; // second moment
  17639. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  17640. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads, NULL);
  17641. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17642. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17643. bool cancel = false;
  17644. // compute the function value
  17645. float fx = 0;
  17646. ggml_set_zero(opt->adam.g);
  17647. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17648. if (callback) {
  17649. callback(callback_data, accum_step, &sched, &cancel);
  17650. if (cancel) {
  17651. return GGML_OPT_RESULT_CANCEL;
  17652. }
  17653. }
  17654. // ggml_graph_reset (gf);
  17655. ggml_set_f32 (f->grad, 1.0f);
  17656. ggml_graph_compute(gb, &cplan);
  17657. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17658. fx += ggml_get_f32_1d(f, 0);
  17659. }
  17660. fx *= accum_norm;
  17661. opt->adam.fx_prev = fx;
  17662. opt->adam.fx_best = opt->adam.fx_prev;
  17663. if (pf) {
  17664. pf[opt->iter % params.past] = opt->adam.fx_prev;
  17665. }
  17666. opt->loss_before = opt->adam.fx_prev;
  17667. opt->loss_after = opt->adam.fx_prev;
  17668. // initialize
  17669. if (opt->just_initialized) {
  17670. opt->adam.n_no_improvement = 0;
  17671. opt->just_initialized = false;
  17672. }
  17673. float * fx_best = &opt->adam.fx_best;
  17674. float * fx_prev = &opt->adam.fx_prev;
  17675. int * n_no_improvement = &opt->adam.n_no_improvement;
  17676. int iter0 = opt->iter;
  17677. // run the optimizer
  17678. for (int t = 0; t < params.adam.n_iter; ++t) {
  17679. opt->iter = iter0 + t + 1;
  17680. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  17681. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17682. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  17683. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  17684. for (int i = 0; i < np; ++i) {
  17685. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  17686. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  17687. }
  17688. const int64_t t_start_wall = ggml_time_us();
  17689. const int64_t t_start_cpu = ggml_cycles();
  17690. UNUSED(t_start_wall);
  17691. UNUSED(t_start_cpu);
  17692. {
  17693. float gnorm = 1.0f;
  17694. if (gclip > 0.0f) {
  17695. // gradient clipping
  17696. ggml_float sum = 0.0;
  17697. for (int64_t i = 0; i < nx; ++i) {
  17698. sum += (ggml_float)(g[i]*g[i]);
  17699. }
  17700. ggml_float norm = sqrt(sum);
  17701. if (norm > (ggml_float) gclip) {
  17702. gnorm = (float) ((ggml_float) gclip / norm);
  17703. }
  17704. }
  17705. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  17706. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  17707. int64_t i = 0;
  17708. for (int p = 0; p < np; ++p) {
  17709. const int64_t ne = ggml_nelements(ps[p]);
  17710. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  17711. for (int64_t j = 0; j < ne; ++j) {
  17712. float x = ggml_get_f32_1d(ps[p], j);
  17713. float g_ = g[i]*gnorm;
  17714. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  17715. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  17716. float mh = m[i]*beta1h;
  17717. float vh = v[i]*beta2h;
  17718. vh = sqrtf(vh) + eps;
  17719. x = x*(1.0f - p_decay) - mh/vh;
  17720. ggml_set_f32_1d(ps[p], j, x);
  17721. ++i;
  17722. }
  17723. }
  17724. }
  17725. fx = 0;
  17726. ggml_set_zero(opt->adam.g);
  17727. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17728. if (callback) {
  17729. callback(callback_data, accum_step, &sched, &cancel);
  17730. if (cancel) {
  17731. return GGML_OPT_RESULT_CANCEL;;
  17732. }
  17733. }
  17734. // ggml_graph_reset (gf);
  17735. ggml_set_f32 (f->grad, 1.0f);
  17736. ggml_graph_compute(gb, &cplan);
  17737. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17738. fx += ggml_get_f32_1d(f, 0);
  17739. }
  17740. fx *= accum_norm;
  17741. opt->loss_after = fx;
  17742. // check convergence
  17743. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  17744. GGML_PRINT_DEBUG("converged\n");
  17745. return GGML_OPT_RESULT_OK;
  17746. }
  17747. // delta-based convergence test
  17748. if (pf != NULL) {
  17749. // need at least params.past iterations to start checking for convergence
  17750. if (params.past <= iter0 + t) {
  17751. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  17752. if (fabsf(rate) < params.delta) {
  17753. return GGML_OPT_RESULT_OK;
  17754. }
  17755. }
  17756. pf[(iter0 + t)%params.past] = fx;
  17757. }
  17758. // check for improvement
  17759. if (params.max_no_improvement > 0) {
  17760. if (fx_best[0] > fx) {
  17761. fx_best[0] = fx;
  17762. n_no_improvement[0] = 0;
  17763. } else {
  17764. ++n_no_improvement[0];
  17765. if (n_no_improvement[0] >= params.max_no_improvement) {
  17766. return GGML_OPT_RESULT_OK;
  17767. }
  17768. }
  17769. }
  17770. fx_prev[0] = fx;
  17771. {
  17772. const int64_t t_end_cpu = ggml_cycles();
  17773. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  17774. UNUSED(t_end_cpu);
  17775. const int64_t t_end_wall = ggml_time_us();
  17776. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  17777. UNUSED(t_end_wall);
  17778. }
  17779. }
  17780. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17781. }
  17782. //
  17783. // L-BFGS
  17784. //
  17785. // the L-BFGS implementation below is based on the following implementation:
  17786. //
  17787. // https://github.com/chokkan/liblbfgs
  17788. //
  17789. struct ggml_lbfgs_iteration_data {
  17790. float alpha;
  17791. float ys;
  17792. float * s;
  17793. float * y;
  17794. };
  17795. static enum ggml_opt_result linesearch_backtracking(
  17796. const struct ggml_opt_params * params,
  17797. int nx,
  17798. float * x,
  17799. float * fx,
  17800. float * g,
  17801. float * d,
  17802. float * step,
  17803. const float * xp,
  17804. struct ggml_tensor * f,
  17805. struct ggml_cgraph * gb,
  17806. struct ggml_cplan * cplan,
  17807. const int np,
  17808. struct ggml_tensor * ps[],
  17809. bool * cancel,
  17810. ggml_opt_callback callback,
  17811. void * callback_data) {
  17812. int count = 0;
  17813. float width = 0.0f;
  17814. float dg = 0.0f;
  17815. float finit = 0.0f;
  17816. float dginit = 0.0f;
  17817. float dgtest = 0.0f;
  17818. const float dec = 0.5f;
  17819. const float inc = 2.1f;
  17820. const int n_accum = MAX(1, params->n_gradient_accumulation);
  17821. const float accum_norm = 1.0f / (float) n_accum;
  17822. if (*step <= 0.f) {
  17823. return GGML_LINESEARCH_INVALID_PARAMETERS;
  17824. }
  17825. // compute the initial gradient in the search direction
  17826. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  17827. // make sure that d points to a descent direction
  17828. if (0 < dginit) {
  17829. return GGML_LINESEARCH_FAIL;
  17830. }
  17831. // initialize local variables
  17832. finit = *fx;
  17833. dgtest = params->lbfgs.ftol*dginit;
  17834. while (true) {
  17835. ggml_vec_cpy_f32(nx, x, xp);
  17836. ggml_vec_mad_f32(nx, x, d, *step);
  17837. // evaluate the function and gradient values
  17838. {
  17839. ggml_opt_set_params(np, ps, x);
  17840. *fx = 0;
  17841. memset(g, 0, sizeof(float)*nx);
  17842. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17843. if (callback) {
  17844. // LBFG-S does not support learning rate -> ignore learning schedule
  17845. float sched = 0;
  17846. callback(callback_data, accum_step, &sched, cancel);
  17847. if (*cancel) {
  17848. return GGML_OPT_RESULT_CANCEL;
  17849. }
  17850. }
  17851. // ggml_graph_reset (gf);
  17852. ggml_set_f32 (f->grad, 1.0f);
  17853. ggml_graph_compute(gb, cplan);
  17854. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17855. *fx += ggml_get_f32_1d(f, 0);
  17856. }
  17857. *fx *= accum_norm;
  17858. }
  17859. ++count;
  17860. if (*fx > finit + (*step)*dgtest) {
  17861. width = dec;
  17862. } else {
  17863. // Armijo condition is satisfied
  17864. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  17865. return count;
  17866. }
  17867. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  17868. // check the Wolfe condition
  17869. if (dg < params->lbfgs.wolfe * dginit) {
  17870. width = inc;
  17871. } else {
  17872. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  17873. // regular Wolfe conditions
  17874. return count;
  17875. }
  17876. if(dg > -params->lbfgs.wolfe*dginit) {
  17877. width = dec;
  17878. } else {
  17879. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  17880. return count;
  17881. }
  17882. }
  17883. }
  17884. if (*step < params->lbfgs.min_step) {
  17885. return GGML_LINESEARCH_MINIMUM_STEP;
  17886. }
  17887. if (*step > params->lbfgs.max_step) {
  17888. return GGML_LINESEARCH_MAXIMUM_STEP;
  17889. }
  17890. if (params->lbfgs.max_linesearch <= count) {
  17891. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  17892. }
  17893. (*step) *= width;
  17894. }
  17895. GGML_ABORT("line search failed");
  17896. //return GGML_LINESEARCH_FAIL;
  17897. }
  17898. static enum ggml_opt_result ggml_opt_lbfgs(
  17899. struct ggml_context * ctx,
  17900. struct ggml_opt_context * opt,
  17901. struct ggml_opt_params params,
  17902. struct ggml_tensor * f,
  17903. struct ggml_cgraph * gf,
  17904. struct ggml_cgraph * gb,
  17905. ggml_opt_callback callback,
  17906. void * callback_data) {
  17907. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  17908. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  17909. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  17910. return GGML_OPT_RESULT_INVALID_WOLFE;
  17911. }
  17912. }
  17913. const int m = params.lbfgs.m;
  17914. // these will store the parameters we want to optimize
  17915. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17916. int np = 0;
  17917. int nx = 0;
  17918. for (int i = 0; i < gf->n_nodes; ++i) {
  17919. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17920. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17921. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17922. ps[np++] = gf->nodes[i];
  17923. nx += ggml_nelements(gf->nodes[i]);
  17924. }
  17925. }
  17926. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  17927. int iter = opt->iter;
  17928. ggml_opt_init(ctx, opt, params, nx);
  17929. opt->iter = iter;
  17930. }
  17931. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads, NULL);
  17932. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17933. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17934. float * x = opt->lbfgs.x->data; // current parameters
  17935. float * xp = opt->lbfgs.xp->data; // previous parameters
  17936. float * g = opt->lbfgs.g->data; // current gradient
  17937. float * gp = opt->lbfgs.gp->data; // previous gradient
  17938. float * d = opt->lbfgs.d->data; // search direction
  17939. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  17940. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17941. const float accum_norm = 1.0f / (float) n_accum;
  17942. float fx = 0.0f; // cost function value
  17943. float xnorm = 0.0f; // ||x||
  17944. float gnorm = 0.0f; // ||g||
  17945. // initialize x from the graph nodes
  17946. ggml_opt_get_params(np, ps, x);
  17947. // the L-BFGS memory
  17948. float * lm_alpha = opt->lbfgs.lmal->data;
  17949. float * lm_ys = opt->lbfgs.lmys->data;
  17950. float * lm_s = opt->lbfgs.lms->data;
  17951. float * lm_y = opt->lbfgs.lmy->data;
  17952. bool cancel = false;
  17953. // evaluate the function value and its gradient
  17954. {
  17955. ggml_opt_set_params(np, ps, x);
  17956. fx = 0;
  17957. memset(g, 0, sizeof(float)*nx);
  17958. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17959. if (callback) {
  17960. // LBFG-S does not support learning rate -> ignore learning schedule
  17961. float sched = 0;
  17962. callback(callback_data, accum_step, &sched, &cancel);
  17963. if (cancel) {
  17964. return GGML_OPT_RESULT_CANCEL;
  17965. }
  17966. }
  17967. // ggml_graph_reset (gf);
  17968. ggml_set_f32 (f->grad, 1.0f);
  17969. ggml_graph_compute(gb, &cplan);
  17970. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17971. fx += ggml_get_f32_1d(f, 0);
  17972. }
  17973. fx *= accum_norm;
  17974. opt->loss_before = fx;
  17975. opt->loss_after = fx;
  17976. }
  17977. // search direction = -gradient
  17978. ggml_vec_neg_f32(nx, d, g);
  17979. // ||x||, ||g||
  17980. ggml_vec_norm_f32(nx, &xnorm, x);
  17981. ggml_vec_norm_f32(nx, &gnorm, g);
  17982. if (xnorm < 1.0f) {
  17983. xnorm = 1.0f;
  17984. }
  17985. // already optimized
  17986. if (gnorm/xnorm <= params.lbfgs.eps) {
  17987. return GGML_OPT_RESULT_OK;
  17988. }
  17989. if (opt->just_initialized) {
  17990. if (pf) {
  17991. pf[0] = fx;
  17992. }
  17993. opt->lbfgs.fx_best = fx;
  17994. // initial step
  17995. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  17996. opt->lbfgs.j = 0;
  17997. opt->lbfgs.k = 1;
  17998. opt->lbfgs.end = 0;
  17999. opt->lbfgs.n_no_improvement = 0;
  18000. opt->just_initialized = false;
  18001. }
  18002. float * fx_best = &opt->lbfgs.fx_best;
  18003. float * step = &opt->lbfgs.step;
  18004. int * j = &opt->lbfgs.j;
  18005. int * k = &opt->lbfgs.k;
  18006. int * end = &opt->lbfgs.end;
  18007. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  18008. int ls = 0;
  18009. int bound = 0;
  18010. float ys = 0.0f;
  18011. float yy = 0.0f;
  18012. float beta = 0.0f;
  18013. int it = 0;
  18014. while (true) {
  18015. // store the current position and gradient vectors
  18016. ggml_vec_cpy_f32(nx, xp, x);
  18017. ggml_vec_cpy_f32(nx, gp, g);
  18018. // TODO: instead of passing &cancel here, use the return code of the linesearch
  18019. // to determine if the optimization should be cancelled
  18020. // this is a simple change, but not doing this atm, since I don't have a nice
  18021. // way to test and don't want to break something with so many changes lined up
  18022. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  18023. if (cancel) {
  18024. return GGML_OPT_RESULT_CANCEL;
  18025. }
  18026. if (ls < 0) {
  18027. // linesearch failed - go back to the previous point and return
  18028. ggml_vec_cpy_f32(nx, x, xp);
  18029. ggml_vec_cpy_f32(nx, g, gp);
  18030. return ls;
  18031. }
  18032. opt->loss_after = fx;
  18033. ggml_vec_norm_f32(nx, &xnorm, x);
  18034. ggml_vec_norm_f32(nx, &gnorm, g);
  18035. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  18036. if (xnorm < 1.0f) {
  18037. xnorm = 1.0f;
  18038. }
  18039. if (gnorm/xnorm <= params.lbfgs.eps) {
  18040. // converged
  18041. return GGML_OPT_RESULT_OK;
  18042. }
  18043. // delta-based convergence test
  18044. if (pf != NULL) {
  18045. // need at least params.past iterations to start checking for convergence
  18046. if (params.past <= k[0]) {
  18047. const float rate = (pf[k[0]%params.past] - fx)/fx;
  18048. if (fabsf(rate) < params.delta) {
  18049. return GGML_OPT_RESULT_OK;
  18050. }
  18051. }
  18052. pf[k[0]%params.past] = fx;
  18053. }
  18054. // check for improvement
  18055. if (params.max_no_improvement > 0) {
  18056. if (fx < fx_best[0]) {
  18057. fx_best[0] = fx;
  18058. n_no_improvement[0] = 0;
  18059. } else {
  18060. n_no_improvement[0]++;
  18061. if (n_no_improvement[0] >= params.max_no_improvement) {
  18062. return GGML_OPT_RESULT_OK;
  18063. }
  18064. }
  18065. }
  18066. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  18067. // reached the maximum number of iterations
  18068. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  18069. }
  18070. // update vectors s and y:
  18071. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  18072. // y_{k+1} = g_{k+1} - g_{k}.
  18073. //
  18074. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  18075. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  18076. // compute scalars ys and yy:
  18077. // ys = y^t \cdot s -> 1 / \rho.
  18078. // yy = y^t \cdot y.
  18079. //
  18080. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  18081. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  18082. lm_ys[end[0]] = ys;
  18083. // find new search direction
  18084. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  18085. bound = (m <= k[0]) ? m : k[0];
  18086. k[0]++;
  18087. it++;
  18088. end[0] = (end[0] + 1)%m;
  18089. // initialize search direction with -g
  18090. ggml_vec_neg_f32(nx, d, g);
  18091. j[0] = end[0];
  18092. for (int i = 0; i < bound; ++i) {
  18093. j[0] = (j[0] + m - 1) % m;
  18094. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  18095. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  18096. lm_alpha[j[0]] /= lm_ys[j[0]];
  18097. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  18098. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  18099. }
  18100. ggml_vec_scale_f32(nx, d, ys/yy);
  18101. for (int i = 0; i < bound; ++i) {
  18102. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  18103. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  18104. beta /= lm_ys[j[0]];
  18105. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  18106. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  18107. j[0] = (j[0] + 1)%m;
  18108. }
  18109. step[0] = 1.0;
  18110. }
  18111. GGML_ABORT("lbfgs failed");
  18112. //return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  18113. }
  18114. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  18115. struct ggml_opt_params result;
  18116. switch (type) {
  18117. case GGML_OPT_TYPE_ADAM:
  18118. {
  18119. result = (struct ggml_opt_params) {
  18120. .type = GGML_OPT_TYPE_ADAM,
  18121. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  18122. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  18123. .past = 0,
  18124. .delta = 1e-5f,
  18125. .max_no_improvement = 100,
  18126. .print_forward_graph = true,
  18127. .print_backward_graph = true,
  18128. .n_gradient_accumulation = 1,
  18129. .adam = {
  18130. .n_iter = 10000,
  18131. .sched = 1.000f,
  18132. .decay = 0.0f,
  18133. .decay_min_ndim = 2,
  18134. .alpha = 0.001f,
  18135. .beta1 = 0.9f,
  18136. .beta2 = 0.999f,
  18137. .eps = 1e-8f,
  18138. .eps_f = 1e-5f,
  18139. .eps_g = 1e-3f,
  18140. .gclip = 0.0f,
  18141. },
  18142. };
  18143. } break;
  18144. case GGML_OPT_TYPE_LBFGS:
  18145. {
  18146. result = (struct ggml_opt_params) {
  18147. .type = GGML_OPT_TYPE_LBFGS,
  18148. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  18149. .n_threads = 1,
  18150. .past = 0,
  18151. .delta = 1e-5f,
  18152. .max_no_improvement = 0,
  18153. .print_forward_graph = true,
  18154. .print_backward_graph = true,
  18155. .n_gradient_accumulation = 1,
  18156. .lbfgs = {
  18157. .m = 6,
  18158. .n_iter = 100,
  18159. .max_linesearch = 20,
  18160. .eps = 1e-5f,
  18161. .ftol = 1e-4f,
  18162. .wolfe = 0.9f,
  18163. .min_step = 1e-20f,
  18164. .max_step = 1e+20f,
  18165. .linesearch = GGML_LINESEARCH_DEFAULT,
  18166. },
  18167. };
  18168. } break;
  18169. }
  18170. return result;
  18171. }
  18172. GGML_API void ggml_opt_init(
  18173. struct ggml_context * ctx,
  18174. struct ggml_opt_context * opt,
  18175. struct ggml_opt_params params,
  18176. int64_t nx) {
  18177. opt->ctx = ctx;
  18178. opt->params = params;
  18179. opt->iter = 0;
  18180. opt->nx = nx;
  18181. opt->just_initialized = true;
  18182. if (opt->ctx == NULL) {
  18183. struct ggml_init_params ctx_opt_params;
  18184. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  18185. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  18186. if (opt->params.past > 0) {
  18187. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  18188. }
  18189. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  18190. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  18191. if (opt->params.past > 0) {
  18192. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  18193. }
  18194. }
  18195. ctx_opt_params.mem_buffer = NULL;
  18196. ctx_opt_params.no_alloc = false;
  18197. opt->ctx = ggml_init(ctx_opt_params);
  18198. }
  18199. switch (opt->params.type) {
  18200. case GGML_OPT_TYPE_ADAM:
  18201. {
  18202. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18203. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18204. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18205. opt->adam.pf = params.past > 0
  18206. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  18207. : NULL;
  18208. ggml_set_zero(opt->adam.m);
  18209. ggml_set_zero(opt->adam.v);
  18210. if (opt->adam.pf) {
  18211. ggml_set_zero(opt->adam.pf);
  18212. }
  18213. } break;
  18214. case GGML_OPT_TYPE_LBFGS:
  18215. {
  18216. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18217. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18218. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18219. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18220. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18221. opt->lbfgs.pf = params.past > 0
  18222. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  18223. : NULL;
  18224. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  18225. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  18226. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  18227. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  18228. ggml_set_zero(opt->lbfgs.x);
  18229. ggml_set_zero(opt->lbfgs.xp);
  18230. ggml_set_zero(opt->lbfgs.g);
  18231. ggml_set_zero(opt->lbfgs.gp);
  18232. ggml_set_zero(opt->lbfgs.d);
  18233. if (opt->lbfgs.pf) {
  18234. ggml_set_zero(opt->lbfgs.pf);
  18235. }
  18236. ggml_set_zero(opt->lbfgs.lmal);
  18237. ggml_set_zero(opt->lbfgs.lmys);
  18238. ggml_set_zero(opt->lbfgs.lms);
  18239. ggml_set_zero(opt->lbfgs.lmy);
  18240. } break;
  18241. }
  18242. }
  18243. enum ggml_opt_result ggml_opt(
  18244. struct ggml_context * ctx,
  18245. struct ggml_opt_params params,
  18246. struct ggml_tensor * f) {
  18247. GGML_ASSERT(f->grad && "ggml_set_param called for at least one parent tensor.");
  18248. bool free_ctx = false;
  18249. if (ctx == NULL) {
  18250. struct ggml_init_params params_ctx = {
  18251. .mem_size = 16*1024*1024,
  18252. .mem_buffer = NULL,
  18253. .no_alloc = false,
  18254. };
  18255. ctx = ggml_init(params_ctx);
  18256. if (ctx == NULL) {
  18257. return GGML_OPT_RESULT_NO_CONTEXT;
  18258. }
  18259. free_ctx = true;
  18260. }
  18261. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  18262. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  18263. ggml_opt_init(ctx, opt, params, 0);
  18264. result = ggml_opt_resume(ctx, opt, f);
  18265. if (free_ctx) {
  18266. ggml_free(ctx);
  18267. }
  18268. return result;
  18269. }
  18270. enum ggml_opt_result ggml_opt_resume(
  18271. struct ggml_context * ctx,
  18272. struct ggml_opt_context * opt,
  18273. struct ggml_tensor * f) {
  18274. // build forward + backward compute graphs
  18275. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  18276. ggml_build_forward_expand(gf, f);
  18277. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  18278. ggml_build_backward_expand(ctx, gf, gb, false, true);
  18279. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  18280. }
  18281. enum ggml_opt_result ggml_opt_resume_g(
  18282. struct ggml_context * ctx,
  18283. struct ggml_opt_context * opt,
  18284. struct ggml_tensor * f,
  18285. struct ggml_cgraph * gf,
  18286. struct ggml_cgraph * gb,
  18287. ggml_opt_callback callback,
  18288. void * callback_data) {
  18289. GGML_ASSERT(f->grad && "ggml_set_param must be called for at least one ancestor");
  18290. // build forward + backward compute graphs
  18291. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  18292. switch (opt->params.type) {
  18293. case GGML_OPT_TYPE_ADAM:
  18294. {
  18295. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  18296. } break;
  18297. case GGML_OPT_TYPE_LBFGS:
  18298. {
  18299. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  18300. } break;
  18301. }
  18302. if (opt->params.print_forward_graph) {
  18303. ggml_graph_print (gf);
  18304. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  18305. }
  18306. if (opt->params.print_backward_graph) {
  18307. ggml_graph_print (gb);
  18308. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  18309. }
  18310. return result;
  18311. }
  18312. ////////////////////////////////////////////////////////////////////////////////
  18313. void ggml_set_input(struct ggml_tensor * tensor) {
  18314. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  18315. }
  18316. void ggml_set_output(struct ggml_tensor * tensor) {
  18317. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  18318. }
  18319. ////////////////////////////////////////////////////////////////////////////////
  18320. void ggml_quantize_init(enum ggml_type type) {
  18321. ggml_critical_section_start();
  18322. switch (type) {
  18323. case GGML_TYPE_IQ2_XXS:
  18324. case GGML_TYPE_IQ2_XS:
  18325. case GGML_TYPE_IQ2_S:
  18326. case GGML_TYPE_IQ1_S:
  18327. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  18328. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  18329. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  18330. default: // nothing
  18331. break;
  18332. }
  18333. ggml_critical_section_end();
  18334. }
  18335. void ggml_quantize_free(void) {
  18336. ggml_critical_section_start();
  18337. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  18338. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  18339. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  18340. iq3xs_free_impl(256);
  18341. ggml_critical_section_end();
  18342. }
  18343. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  18344. return
  18345. type == GGML_TYPE_IQ2_XXS ||
  18346. type == GGML_TYPE_IQ2_XS ||
  18347. type == GGML_TYPE_IQ1_S;// ||
  18348. //type == GGML_TYPE_IQ1_M;
  18349. }
  18350. size_t ggml_quantize_chunk(
  18351. enum ggml_type type,
  18352. const float * src,
  18353. void * dst,
  18354. int64_t start,
  18355. int64_t nrows,
  18356. int64_t n_per_row,
  18357. const float * imatrix) {
  18358. const int64_t n = (int64_t) nrows * n_per_row;
  18359. if (ggml_quantize_requires_imatrix(type)) {
  18360. GGML_ASSERT(imatrix != NULL);
  18361. }
  18362. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  18363. GGML_ASSERT(start % n_per_row == 0);
  18364. ggml_quantize_init(type); // this is noop if already initialized
  18365. const size_t start_row = start / n_per_row;
  18366. const size_t row_size = ggml_row_size(type, n_per_row);
  18367. size_t result = 0;
  18368. switch (type) {
  18369. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18370. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18371. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18372. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18373. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18374. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18375. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18376. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18377. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18378. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18379. case GGML_TYPE_TQ1_0: result = quantize_tq1_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18380. case GGML_TYPE_TQ2_0: result = quantize_tq2_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18381. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18382. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18383. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18384. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18385. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18386. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18387. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18388. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18389. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18390. case GGML_TYPE_Q4_0_4_4: result = quantize_q4_0_4x4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18391. case GGML_TYPE_Q4_0_4_8: result = quantize_q4_0_4x8(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18392. case GGML_TYPE_Q4_0_8_8: result = quantize_q4_0_8x8(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18393. case GGML_TYPE_F16:
  18394. {
  18395. size_t elemsize = sizeof(ggml_fp16_t);
  18396. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  18397. result = n * elemsize;
  18398. } break;
  18399. case GGML_TYPE_BF16:
  18400. {
  18401. size_t elemsize = sizeof(ggml_bf16_t);
  18402. ggml_fp32_to_bf16_row_ref(src + start, (ggml_bf16_t *)dst + start, n);
  18403. result = n * elemsize;
  18404. } break;
  18405. case GGML_TYPE_F32:
  18406. {
  18407. size_t elemsize = sizeof(float);
  18408. result = n * elemsize;
  18409. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  18410. } break;
  18411. default:
  18412. assert(false);
  18413. }
  18414. GGML_ASSERT(result == nrows * row_size);
  18415. return result;
  18416. }
  18417. ////////////////////////////////////////////////////////////////////////////////
  18418. struct gguf_str {
  18419. uint64_t n; // GGUFv2
  18420. char * data;
  18421. };
  18422. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  18423. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  18424. [GGUF_TYPE_INT8] = sizeof(int8_t),
  18425. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  18426. [GGUF_TYPE_INT16] = sizeof(int16_t),
  18427. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  18428. [GGUF_TYPE_INT32] = sizeof(int32_t),
  18429. [GGUF_TYPE_FLOAT32] = sizeof(float),
  18430. [GGUF_TYPE_BOOL] = sizeof(bool),
  18431. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  18432. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  18433. [GGUF_TYPE_INT64] = sizeof(int64_t),
  18434. [GGUF_TYPE_FLOAT64] = sizeof(double),
  18435. [GGUF_TYPE_ARRAY] = 0, // undefined
  18436. };
  18437. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  18438. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  18439. [GGUF_TYPE_UINT8] = "u8",
  18440. [GGUF_TYPE_INT8] = "i8",
  18441. [GGUF_TYPE_UINT16] = "u16",
  18442. [GGUF_TYPE_INT16] = "i16",
  18443. [GGUF_TYPE_UINT32] = "u32",
  18444. [GGUF_TYPE_INT32] = "i32",
  18445. [GGUF_TYPE_FLOAT32] = "f32",
  18446. [GGUF_TYPE_BOOL] = "bool",
  18447. [GGUF_TYPE_STRING] = "str",
  18448. [GGUF_TYPE_ARRAY] = "arr",
  18449. [GGUF_TYPE_UINT64] = "u64",
  18450. [GGUF_TYPE_INT64] = "i64",
  18451. [GGUF_TYPE_FLOAT64] = "f64",
  18452. };
  18453. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  18454. union gguf_value {
  18455. uint8_t uint8;
  18456. int8_t int8;
  18457. uint16_t uint16;
  18458. int16_t int16;
  18459. uint32_t uint32;
  18460. int32_t int32;
  18461. float float32;
  18462. uint64_t uint64;
  18463. int64_t int64;
  18464. double float64;
  18465. bool bool_;
  18466. struct gguf_str str;
  18467. struct {
  18468. enum gguf_type type;
  18469. uint64_t n; // GGUFv2
  18470. void * data;
  18471. } arr;
  18472. };
  18473. struct gguf_kv {
  18474. struct gguf_str key;
  18475. enum gguf_type type;
  18476. union gguf_value value;
  18477. };
  18478. struct gguf_header {
  18479. char magic[4];
  18480. uint32_t version;
  18481. uint64_t n_tensors; // GGUFv2
  18482. uint64_t n_kv; // GGUFv2
  18483. };
  18484. struct gguf_tensor_info {
  18485. struct gguf_str name;
  18486. uint32_t n_dims;
  18487. uint64_t ne[GGML_MAX_DIMS];
  18488. enum ggml_type type;
  18489. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  18490. // for writing API
  18491. const void * data;
  18492. size_t size;
  18493. };
  18494. struct gguf_context {
  18495. struct gguf_header header;
  18496. struct gguf_kv * kv;
  18497. struct gguf_tensor_info * infos;
  18498. size_t alignment;
  18499. size_t offset; // offset of `data` from beginning of file
  18500. size_t size; // size of `data` in bytes
  18501. //uint8_t * padding;
  18502. void * data;
  18503. };
  18504. static size_t gguf_type_size(enum gguf_type type) {
  18505. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  18506. return GGUF_TYPE_SIZE[type];
  18507. }
  18508. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  18509. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  18510. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  18511. for (uint32_t i = 0; i < info->n_dims; ++i) {
  18512. GGML_ASSERT(info->ne[i] > 0);
  18513. }
  18514. // prevent overflow for total number of elements
  18515. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  18516. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  18517. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  18518. }
  18519. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  18520. const size_t n = fread(dst, 1, size, file);
  18521. *offset += n;
  18522. return n == size;
  18523. }
  18524. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  18525. p->n = 0;
  18526. p->data = NULL;
  18527. bool ok = true;
  18528. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  18529. // early exit if string length is invalid, prevents from integer overflow
  18530. if (p->n == SIZE_MAX) {
  18531. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  18532. return false;
  18533. }
  18534. p->data = GGML_CALLOC(p->n + 1, 1);
  18535. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  18536. return ok;
  18537. }
  18538. static void gguf_free_kv(struct gguf_kv * kv) {
  18539. if (kv->key.data) {
  18540. GGML_FREE(kv->key.data);
  18541. }
  18542. if (kv->type == GGUF_TYPE_STRING) {
  18543. if (kv->value.str.data) {
  18544. GGML_FREE(kv->value.str.data);
  18545. }
  18546. }
  18547. if (kv->type == GGUF_TYPE_ARRAY) {
  18548. if (kv->value.arr.data) {
  18549. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  18550. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  18551. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  18552. if (str->data) {
  18553. GGML_FREE(str->data);
  18554. }
  18555. }
  18556. }
  18557. GGML_FREE(kv->value.arr.data);
  18558. }
  18559. }
  18560. }
  18561. struct gguf_context * gguf_init_empty(void) {
  18562. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  18563. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  18564. ctx->header.version = GGUF_VERSION;
  18565. ctx->header.n_tensors = 0;
  18566. ctx->header.n_kv = 0;
  18567. ctx->kv = NULL;
  18568. ctx->infos = NULL;
  18569. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18570. ctx->offset = 0;
  18571. ctx->size = 0;
  18572. ctx->data = NULL;
  18573. return ctx;
  18574. }
  18575. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  18576. FILE * file = ggml_fopen(fname, "rb");
  18577. if (!file) {
  18578. fprintf(stderr, "%s: failed to open '%s': '%s'\n", __func__, fname, strerror(errno));
  18579. return NULL;
  18580. }
  18581. // offset from start of file
  18582. size_t offset = 0;
  18583. char magic[4];
  18584. // check the magic before making allocations
  18585. {
  18586. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  18587. for (uint32_t i = 0; i < sizeof(magic); i++) {
  18588. if (magic[i] != GGUF_MAGIC[i]) {
  18589. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  18590. fclose(file);
  18591. return NULL;
  18592. }
  18593. }
  18594. }
  18595. bool ok = true;
  18596. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  18597. // read the header
  18598. {
  18599. strncpy(ctx->header.magic, magic, 4);
  18600. ctx->kv = NULL;
  18601. ctx->infos = NULL;
  18602. ctx->data = NULL;
  18603. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  18604. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  18605. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  18606. if (ctx->header.version == 1) {
  18607. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  18608. fclose(file);
  18609. gguf_free(ctx);
  18610. return NULL;
  18611. }
  18612. // sanity-checks to prevent from integer/buffer overflows
  18613. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  18614. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  18615. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  18616. if (!ok) {
  18617. fprintf(stderr, "%s: failed to read header\n", __func__);
  18618. fclose(file);
  18619. gguf_free(ctx);
  18620. return NULL;
  18621. }
  18622. }
  18623. // read the kv pairs
  18624. {
  18625. const uint64_t n_kv = ctx->header.n_kv;
  18626. // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
  18627. ctx->header.n_kv = 0;
  18628. ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
  18629. for (uint64_t i = 0; i < n_kv; ++i) {
  18630. struct gguf_kv * kv = &ctx->kv[i];
  18631. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  18632. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  18633. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  18634. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  18635. switch (kv->type) {
  18636. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  18637. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  18638. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  18639. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  18640. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  18641. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  18642. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  18643. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  18644. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  18645. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  18646. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  18647. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  18648. case GGUF_TYPE_ARRAY:
  18649. {
  18650. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  18651. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  18652. switch (kv->value.arr.type) {
  18653. case GGUF_TYPE_UINT8:
  18654. case GGUF_TYPE_INT8:
  18655. case GGUF_TYPE_UINT16:
  18656. case GGUF_TYPE_INT16:
  18657. case GGUF_TYPE_UINT32:
  18658. case GGUF_TYPE_INT32:
  18659. case GGUF_TYPE_FLOAT32:
  18660. case GGUF_TYPE_UINT64:
  18661. case GGUF_TYPE_INT64:
  18662. case GGUF_TYPE_FLOAT64:
  18663. case GGUF_TYPE_BOOL:
  18664. {
  18665. // prevent from integer overflow in the malloc below
  18666. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  18667. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18668. fclose(file);
  18669. gguf_free(ctx);
  18670. return NULL;
  18671. }
  18672. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
  18673. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  18674. } break;
  18675. case GGUF_TYPE_STRING:
  18676. {
  18677. // prevent from integer overflow in the malloc below
  18678. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  18679. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18680. fclose(file);
  18681. gguf_free(ctx);
  18682. return NULL;
  18683. }
  18684. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
  18685. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  18686. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  18687. }
  18688. } break;
  18689. case GGUF_TYPE_ARRAY:
  18690. default: GGML_ABORT("invalid type");
  18691. }
  18692. } break;
  18693. default: GGML_ABORT("invalid type");
  18694. }
  18695. if (!ok) {
  18696. break;
  18697. }
  18698. ctx->header.n_kv++;
  18699. }
  18700. if (!ok) {
  18701. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  18702. fclose(file);
  18703. gguf_free(ctx);
  18704. return NULL;
  18705. }
  18706. }
  18707. // read the tensor infos
  18708. if (ctx->header.n_tensors > 0) {
  18709. ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
  18710. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18711. struct gguf_tensor_info * info = &ctx->infos[i];
  18712. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  18713. info->ne[j] = 1;
  18714. }
  18715. ok = ok && gguf_fread_str(file, &info->name, &offset);
  18716. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  18717. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  18718. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18719. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  18720. }
  18721. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  18722. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  18723. // TODO: return an error instead of crashing with GGML_ASSERT
  18724. gguf_tensor_info_sanitize(info);
  18725. // make sure there is no duplicated tensor names
  18726. for (uint64_t j = 0; j < i && ok; ++j) {
  18727. if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
  18728. fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
  18729. ok = false;
  18730. }
  18731. }
  18732. if (!ok) {
  18733. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  18734. fclose(file);
  18735. gguf_free(ctx);
  18736. return NULL;
  18737. }
  18738. }
  18739. }
  18740. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18741. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  18742. if (alignment_idx != -1) {
  18743. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  18744. }
  18745. // we require the data section to be aligned, so take into account any padding
  18746. {
  18747. const size_t offset_pad = offset % ctx->alignment;
  18748. if (offset_pad != 0) {
  18749. offset += ctx->alignment - offset_pad;
  18750. fseek(file, offset, SEEK_SET);
  18751. }
  18752. }
  18753. // store the current file offset - this is where the data section starts
  18754. ctx->offset = offset;
  18755. // compute the total size of the data section, taking into account the alignment
  18756. {
  18757. ctx->size = 0;
  18758. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18759. struct gguf_tensor_info * info = &ctx->infos[i];
  18760. const int64_t ne =
  18761. (int64_t) info->ne[0] *
  18762. (int64_t) info->ne[1] *
  18763. (int64_t) info->ne[2] *
  18764. (int64_t) info->ne[3];
  18765. if (ggml_blck_size(info->type) == 0 || ne % ggml_blck_size(info->type) != 0) {
  18766. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%" PRId64 ")\n",
  18767. __func__, info->name.data, (int) info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  18768. fclose(file);
  18769. gguf_free(ctx);
  18770. return NULL;
  18771. }
  18772. const size_t size_cur = ggml_row_size(info->type, ne);
  18773. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  18774. }
  18775. }
  18776. // load the tensor data only if requested
  18777. if (params.ctx != NULL) {
  18778. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  18779. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  18780. // the ggml_tensor structs to the appropriate locations in the binary blob
  18781. // compute the exact size needed for the new ggml_context
  18782. const size_t mem_size =
  18783. params.no_alloc ?
  18784. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  18785. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  18786. struct ggml_init_params pdata = {
  18787. .mem_size = mem_size,
  18788. .mem_buffer = NULL,
  18789. .no_alloc = params.no_alloc,
  18790. };
  18791. *params.ctx = ggml_init(pdata);
  18792. if (*params.ctx == NULL) {
  18793. fprintf(stderr, "%s: failed to initialize context\n", __func__);
  18794. fclose(file);
  18795. gguf_free(ctx);
  18796. return NULL;
  18797. }
  18798. struct ggml_context * ctx_data = *params.ctx;
  18799. struct ggml_tensor * data = NULL;
  18800. if (!params.no_alloc) {
  18801. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  18802. ok = ok && data != NULL;
  18803. // read the binary blob with the tensor data
  18804. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  18805. if (!ok) {
  18806. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  18807. fclose(file);
  18808. ggml_free(ctx_data);
  18809. gguf_free(ctx);
  18810. return NULL;
  18811. }
  18812. ctx->data = data->data;
  18813. }
  18814. ggml_set_no_alloc(ctx_data, true);
  18815. // create the tensors
  18816. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18817. const int64_t ne[GGML_MAX_DIMS] = {
  18818. ctx->infos[i].ne[0],
  18819. ctx->infos[i].ne[1],
  18820. ctx->infos[i].ne[2],
  18821. ctx->infos[i].ne[3],
  18822. };
  18823. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  18824. ok = ok && cur != NULL;
  18825. if (!ok) {
  18826. break;
  18827. }
  18828. ggml_set_name(cur, ctx->infos[i].name.data);
  18829. // point the data member to the appropriate location in the binary blob using the tensor infos
  18830. if (!params.no_alloc) {
  18831. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  18832. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  18833. }
  18834. }
  18835. if (!ok) {
  18836. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  18837. fclose(file);
  18838. ggml_free(ctx_data);
  18839. gguf_free(ctx);
  18840. return NULL;
  18841. }
  18842. ggml_set_no_alloc(ctx_data, params.no_alloc);
  18843. }
  18844. fclose(file);
  18845. return ctx;
  18846. }
  18847. void gguf_free(struct gguf_context * ctx) {
  18848. if (ctx == NULL) {
  18849. return;
  18850. }
  18851. if (ctx->kv) {
  18852. // free string memory - not great..
  18853. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  18854. gguf_free_kv(&ctx->kv[i]);
  18855. }
  18856. GGML_FREE(ctx->kv);
  18857. }
  18858. if (ctx->infos) {
  18859. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18860. struct gguf_tensor_info * info = &ctx->infos[i];
  18861. if (info->name.data) {
  18862. GGML_FREE(info->name.data);
  18863. }
  18864. }
  18865. GGML_FREE(ctx->infos);
  18866. }
  18867. GGML_FREE(ctx);
  18868. }
  18869. const char * gguf_type_name(enum gguf_type type) {
  18870. return GGUF_TYPE_NAME[type];
  18871. }
  18872. int gguf_get_version(const struct gguf_context * ctx) {
  18873. return ctx->header.version;
  18874. }
  18875. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  18876. return ctx->alignment;
  18877. }
  18878. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  18879. return ctx->offset;
  18880. }
  18881. void * gguf_get_data(const struct gguf_context * ctx) {
  18882. return ctx->data;
  18883. }
  18884. int gguf_get_n_kv(const struct gguf_context * ctx) {
  18885. return ctx->header.n_kv;
  18886. }
  18887. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  18888. // return -1 if key not found
  18889. int keyfound = -1;
  18890. const int n_kv = gguf_get_n_kv(ctx);
  18891. for (int i = 0; i < n_kv; ++i) {
  18892. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  18893. keyfound = i;
  18894. break;
  18895. }
  18896. }
  18897. return keyfound;
  18898. }
  18899. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  18900. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18901. return ctx->kv[key_id].key.data;
  18902. }
  18903. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  18904. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18905. return ctx->kv[key_id].type;
  18906. }
  18907. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  18908. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18909. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18910. return ctx->kv[key_id].value.arr.type;
  18911. }
  18912. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  18913. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18914. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18915. return ctx->kv[key_id].value.arr.data;
  18916. }
  18917. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  18918. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18919. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18920. struct gguf_kv * kv = &ctx->kv[key_id];
  18921. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  18922. return str->data;
  18923. }
  18924. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  18925. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18926. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18927. return ctx->kv[key_id].value.arr.n;
  18928. }
  18929. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  18930. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18931. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  18932. return ctx->kv[key_id].value.uint8;
  18933. }
  18934. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  18935. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18936. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  18937. return ctx->kv[key_id].value.int8;
  18938. }
  18939. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  18940. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18941. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  18942. return ctx->kv[key_id].value.uint16;
  18943. }
  18944. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  18945. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18946. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  18947. return ctx->kv[key_id].value.int16;
  18948. }
  18949. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  18950. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18951. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  18952. return ctx->kv[key_id].value.uint32;
  18953. }
  18954. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  18955. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18956. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  18957. return ctx->kv[key_id].value.int32;
  18958. }
  18959. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  18960. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18961. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  18962. return ctx->kv[key_id].value.float32;
  18963. }
  18964. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  18965. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18966. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  18967. return ctx->kv[key_id].value.uint64;
  18968. }
  18969. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  18970. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18971. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  18972. return ctx->kv[key_id].value.int64;
  18973. }
  18974. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  18975. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18976. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  18977. return ctx->kv[key_id].value.float64;
  18978. }
  18979. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  18980. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18981. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  18982. return ctx->kv[key_id].value.bool_;
  18983. }
  18984. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  18985. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18986. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  18987. return ctx->kv[key_id].value.str.data;
  18988. }
  18989. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  18990. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18991. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  18992. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  18993. return &ctx->kv[key_id].value;
  18994. }
  18995. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  18996. return ctx->header.n_tensors;
  18997. }
  18998. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  18999. // return -1 if tensor not found
  19000. int tensorfound = -1;
  19001. const int n_tensors = gguf_get_n_tensors(ctx);
  19002. for (int i = 0; i < n_tensors; ++i) {
  19003. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  19004. tensorfound = i;
  19005. break;
  19006. }
  19007. }
  19008. return tensorfound;
  19009. }
  19010. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  19011. return ctx->infos[i].offset;
  19012. }
  19013. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  19014. return ctx->infos[i].name.data;
  19015. }
  19016. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  19017. return ctx->infos[i].type;
  19018. }
  19019. // returns the index
  19020. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  19021. const int idx = gguf_find_key(ctx, key);
  19022. if (idx >= 0) {
  19023. return idx;
  19024. }
  19025. const int n_kv = gguf_get_n_kv(ctx);
  19026. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  19027. ctx->kv[n_kv].key.n = strlen(key);
  19028. ctx->kv[n_kv].key.data = strdup(key);
  19029. ctx->header.n_kv++;
  19030. return n_kv;
  19031. }
  19032. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  19033. const int idx = gguf_find_key(ctx, key);
  19034. if (idx >= 0) {
  19035. const int n_kv = gguf_get_n_kv(ctx);
  19036. gguf_free_kv(&ctx->kv[idx]);
  19037. for (int i = idx; i < n_kv-1; ++i) {
  19038. ctx->kv[i] = ctx->kv[i+1];
  19039. }
  19040. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  19041. ctx->header.n_kv--;
  19042. }
  19043. }
  19044. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  19045. const int idx = gguf_get_or_add_key(ctx, key);
  19046. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  19047. ctx->kv[idx].value.uint8 = val;
  19048. }
  19049. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  19050. const int idx = gguf_get_or_add_key(ctx, key);
  19051. ctx->kv[idx].type = GGUF_TYPE_INT8;
  19052. ctx->kv[idx].value.int8 = val;
  19053. }
  19054. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  19055. const int idx = gguf_get_or_add_key(ctx, key);
  19056. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  19057. ctx->kv[idx].value.uint16 = val;
  19058. }
  19059. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  19060. const int idx = gguf_get_or_add_key(ctx, key);
  19061. ctx->kv[idx].type = GGUF_TYPE_INT16;
  19062. ctx->kv[idx].value.int16 = val;
  19063. }
  19064. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  19065. const int idx = gguf_get_or_add_key(ctx, key);
  19066. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  19067. ctx->kv[idx].value.uint32 = val;
  19068. }
  19069. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  19070. const int idx = gguf_get_or_add_key(ctx, key);
  19071. ctx->kv[idx].type = GGUF_TYPE_INT32;
  19072. ctx->kv[idx].value.int32 = val;
  19073. }
  19074. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  19075. const int idx = gguf_get_or_add_key(ctx, key);
  19076. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  19077. ctx->kv[idx].value.float32 = val;
  19078. }
  19079. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  19080. const int idx = gguf_get_or_add_key(ctx, key);
  19081. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  19082. ctx->kv[idx].value.uint64 = val;
  19083. }
  19084. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  19085. const int idx = gguf_get_or_add_key(ctx, key);
  19086. ctx->kv[idx].type = GGUF_TYPE_INT64;
  19087. ctx->kv[idx].value.int64 = val;
  19088. }
  19089. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  19090. const int idx = gguf_get_or_add_key(ctx, key);
  19091. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  19092. ctx->kv[idx].value.float64 = val;
  19093. }
  19094. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  19095. const int idx = gguf_get_or_add_key(ctx, key);
  19096. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  19097. ctx->kv[idx].value.bool_ = val;
  19098. }
  19099. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  19100. const int idx = gguf_get_or_add_key(ctx, key);
  19101. ctx->kv[idx].type = GGUF_TYPE_STRING;
  19102. ctx->kv[idx].value.str.n = strlen(val);
  19103. ctx->kv[idx].value.str.data = strdup(val);
  19104. }
  19105. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  19106. const int idx = gguf_get_or_add_key(ctx, key);
  19107. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  19108. ctx->kv[idx].value.arr.type = type;
  19109. ctx->kv[idx].value.arr.n = n;
  19110. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
  19111. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  19112. }
  19113. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  19114. const int idx = gguf_get_or_add_key(ctx, key);
  19115. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  19116. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  19117. ctx->kv[idx].value.arr.n = n;
  19118. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
  19119. for (int i = 0; i < n; i++) {
  19120. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  19121. str->n = strlen(data[i]);
  19122. str->data = strdup(data[i]);
  19123. }
  19124. }
  19125. // set or add KV pairs from another context
  19126. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  19127. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  19128. switch (src->kv[i].type) {
  19129. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  19130. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  19131. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  19132. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  19133. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  19134. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  19135. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  19136. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  19137. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  19138. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  19139. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  19140. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  19141. case GGUF_TYPE_ARRAY:
  19142. {
  19143. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  19144. const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
  19145. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  19146. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  19147. }
  19148. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  19149. GGML_FREE((void *)data);
  19150. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  19151. GGML_ABORT("nested arrays not supported");
  19152. } else {
  19153. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  19154. }
  19155. } break;
  19156. default: GGML_ABORT("invalid type");
  19157. }
  19158. }
  19159. }
  19160. void gguf_add_tensor(
  19161. struct gguf_context * ctx,
  19162. const struct ggml_tensor * tensor) {
  19163. GGML_ASSERT(tensor);
  19164. if (gguf_find_tensor(ctx, tensor->name) != -1) {
  19165. GGML_ABORT("duplicated tensor name");
  19166. }
  19167. const int idx = ctx->header.n_tensors;
  19168. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  19169. ctx->infos[idx].name.n = strlen(tensor->name);
  19170. ctx->infos[idx].name.data = strdup(tensor->name);
  19171. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  19172. ctx->infos[idx].ne[i] = 1;
  19173. }
  19174. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  19175. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  19176. ctx->infos[idx].ne[i] = tensor->ne[i];
  19177. }
  19178. ctx->infos[idx].type = tensor->type;
  19179. ctx->infos[idx].offset = 0;
  19180. ctx->infos[idx].data = tensor->data;
  19181. ctx->infos[idx].size = ggml_nbytes(tensor);
  19182. if (ctx->header.n_tensors > 0) {
  19183. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  19184. }
  19185. ctx->header.n_tensors++;
  19186. }
  19187. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  19188. const int idx = gguf_find_tensor(ctx, name);
  19189. if (idx < 0) {
  19190. GGML_ABORT("tensor not found");
  19191. }
  19192. ctx->infos[idx].type = type;
  19193. }
  19194. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  19195. const int idx = gguf_find_tensor(ctx, name);
  19196. if (idx < 0) {
  19197. GGML_ABORT("tensor not found");
  19198. }
  19199. ctx->infos[idx].data = data;
  19200. ctx->infos[idx].size = size;
  19201. // update offsets
  19202. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  19203. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  19204. }
  19205. }
  19206. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  19207. // fwrite(&val->n, sizeof(val->n), 1, file);
  19208. // fwrite(val->data, sizeof(char), val->n, file);
  19209. //}
  19210. //
  19211. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  19212. // fwrite(val, sizeof(char), size, file);
  19213. //}
  19214. struct gguf_buf {
  19215. void * data;
  19216. size_t size;
  19217. size_t offset;
  19218. };
  19219. static struct gguf_buf gguf_buf_init(size_t size) {
  19220. struct gguf_buf buf = {
  19221. /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
  19222. /*buf.size =*/ size,
  19223. /*buf.offset =*/ 0,
  19224. };
  19225. return buf;
  19226. }
  19227. static void gguf_buf_free(struct gguf_buf buf) {
  19228. if (buf.data) {
  19229. GGML_FREE(buf.data);
  19230. }
  19231. }
  19232. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  19233. if (buf->offset + size > buf->size) {
  19234. buf->size = 1.5*(buf->offset + size);
  19235. if (buf->data) {
  19236. buf->data = realloc(buf->data, buf->size);
  19237. }
  19238. }
  19239. }
  19240. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  19241. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  19242. if (buf->data) {
  19243. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  19244. }
  19245. buf->offset += sizeof(val->n);
  19246. if (buf->data) {
  19247. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  19248. }
  19249. buf->offset += val->n;
  19250. }
  19251. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  19252. gguf_buf_grow(buf, el_size);
  19253. if (buf->data) {
  19254. memcpy((char *) buf->data + buf->offset, val, el_size);
  19255. }
  19256. buf->offset += el_size;
  19257. }
  19258. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  19259. // write header
  19260. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  19261. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  19262. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  19263. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  19264. // write key-value pairs
  19265. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  19266. struct gguf_kv * kv = &ctx->kv[i];
  19267. gguf_bwrite_str(buf, &kv->key);
  19268. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  19269. switch (kv->type) {
  19270. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  19271. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  19272. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  19273. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  19274. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  19275. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  19276. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  19277. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  19278. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  19279. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  19280. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  19281. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  19282. case GGUF_TYPE_ARRAY:
  19283. {
  19284. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  19285. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  19286. switch (kv->value.arr.type) {
  19287. case GGUF_TYPE_UINT8:
  19288. case GGUF_TYPE_INT8:
  19289. case GGUF_TYPE_UINT16:
  19290. case GGUF_TYPE_INT16:
  19291. case GGUF_TYPE_UINT32:
  19292. case GGUF_TYPE_INT32:
  19293. case GGUF_TYPE_FLOAT32:
  19294. case GGUF_TYPE_UINT64:
  19295. case GGUF_TYPE_INT64:
  19296. case GGUF_TYPE_FLOAT64:
  19297. case GGUF_TYPE_BOOL:
  19298. {
  19299. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  19300. } break;
  19301. case GGUF_TYPE_STRING:
  19302. {
  19303. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  19304. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  19305. }
  19306. } break;
  19307. case GGUF_TYPE_ARRAY:
  19308. default: GGML_ABORT("invalid type");
  19309. }
  19310. } break;
  19311. default: GGML_ABORT("invalid type");
  19312. }
  19313. }
  19314. // write tensor infos
  19315. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  19316. struct gguf_tensor_info * info = &ctx->infos[i];
  19317. gguf_bwrite_str(buf, &info->name);
  19318. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  19319. for (uint32_t j = 0; j < info->n_dims; ++j) {
  19320. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  19321. }
  19322. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  19323. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  19324. }
  19325. // we require the data section to be aligned, so take into account any padding
  19326. {
  19327. const size_t offset = buf->offset;
  19328. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  19329. if (offset_pad != offset) {
  19330. uint8_t pad = 0;
  19331. for (size_t i = 0; i < offset_pad - offset; ++i) {
  19332. gguf_bwrite_el(buf, &pad, sizeof(pad));
  19333. }
  19334. }
  19335. }
  19336. if (only_meta) {
  19337. return;
  19338. }
  19339. size_t offset = 0;
  19340. // write tensor data
  19341. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  19342. struct gguf_tensor_info * info = &ctx->infos[i];
  19343. const size_t size = info->size;
  19344. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  19345. gguf_bwrite_el(buf, info->data, size);
  19346. if (size_pad != size) {
  19347. uint8_t pad = 0;
  19348. for (size_t j = 0; j < size_pad - size; ++j) {
  19349. gguf_bwrite_el(buf, &pad, sizeof(pad));
  19350. }
  19351. }
  19352. GGML_ASSERT(offset == info->offset);
  19353. offset += size_pad;
  19354. }
  19355. }
  19356. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  19357. FILE * file = ggml_fopen(fname, "wb");
  19358. if (!file) {
  19359. GGML_ABORT("failed to open file for writing");
  19360. }
  19361. struct gguf_buf buf = gguf_buf_init(16*1024);
  19362. gguf_write_to_buf(ctx, &buf, only_meta);
  19363. fwrite(buf.data, 1, buf.offset, file);
  19364. gguf_buf_free(buf);
  19365. fclose(file);
  19366. }
  19367. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  19368. // no allocs - only compute size
  19369. struct gguf_buf buf = gguf_buf_init(0);
  19370. gguf_write_to_buf(ctx, &buf, true);
  19371. return buf.offset;
  19372. }
  19373. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  19374. struct gguf_buf buf = gguf_buf_init(16*1024);
  19375. gguf_write_to_buf(ctx, &buf, true);
  19376. memcpy(data, buf.data, buf.offset);
  19377. gguf_buf_free(buf);
  19378. }
  19379. ////////////////////////////////////////////////////////////////////////////////
  19380. int ggml_cpu_has_avx(void) {
  19381. #if defined(__AVX__)
  19382. return 1;
  19383. #else
  19384. return 0;
  19385. #endif
  19386. }
  19387. int ggml_cpu_has_avx_vnni(void) {
  19388. #if defined(__AVXVNNI__)
  19389. return 1;
  19390. #else
  19391. return 0;
  19392. #endif
  19393. }
  19394. int ggml_cpu_has_avx2(void) {
  19395. #if defined(__AVX2__)
  19396. return 1;
  19397. #else
  19398. return 0;
  19399. #endif
  19400. }
  19401. int ggml_cpu_has_avx512(void) {
  19402. #if defined(__AVX512F__)
  19403. return 1;
  19404. #else
  19405. return 0;
  19406. #endif
  19407. }
  19408. int ggml_cpu_has_avx512_vbmi(void) {
  19409. #if defined(__AVX512VBMI__)
  19410. return 1;
  19411. #else
  19412. return 0;
  19413. #endif
  19414. }
  19415. int ggml_cpu_has_avx512_vnni(void) {
  19416. #if defined(__AVX512VNNI__)
  19417. return 1;
  19418. #else
  19419. return 0;
  19420. #endif
  19421. }
  19422. int ggml_cpu_has_avx512_bf16(void) {
  19423. #if defined(__AVX512BF16__)
  19424. return 1;
  19425. #else
  19426. return 0;
  19427. #endif
  19428. }
  19429. int ggml_cpu_has_fma(void) {
  19430. #if defined(__FMA__)
  19431. return 1;
  19432. #else
  19433. return 0;
  19434. #endif
  19435. }
  19436. int ggml_cpu_has_neon(void) {
  19437. #if defined(__ARM_NEON)
  19438. return 1;
  19439. #else
  19440. return 0;
  19441. #endif
  19442. }
  19443. int ggml_cpu_has_sve(void) {
  19444. #if defined(__ARM_FEATURE_SVE)
  19445. return 1;
  19446. #else
  19447. return 0;
  19448. #endif
  19449. }
  19450. int ggml_cpu_has_arm_fma(void) {
  19451. #if defined(__ARM_FEATURE_FMA)
  19452. return 1;
  19453. #else
  19454. return 0;
  19455. #endif
  19456. }
  19457. int ggml_cpu_has_riscv_v(void) {
  19458. #if defined(__riscv_v_intrinsic)
  19459. return 1;
  19460. #else
  19461. return 0;
  19462. #endif
  19463. }
  19464. int ggml_cpu_has_metal(void) {
  19465. #if defined(GGML_USE_METAL)
  19466. return 1;
  19467. #else
  19468. return 0;
  19469. #endif
  19470. }
  19471. int ggml_cpu_has_f16c(void) {
  19472. #if defined(__F16C__)
  19473. return 1;
  19474. #else
  19475. return 0;
  19476. #endif
  19477. }
  19478. int ggml_cpu_has_fp16_va(void) {
  19479. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  19480. return 1;
  19481. #else
  19482. return 0;
  19483. #endif
  19484. }
  19485. int ggml_cpu_has_wasm_simd(void) {
  19486. #if defined(__wasm_simd128__)
  19487. return 1;
  19488. #else
  19489. return 0;
  19490. #endif
  19491. }
  19492. int ggml_cpu_has_blas(void) {
  19493. #if defined(GGML_USE_BLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_SYCL)
  19494. return 1;
  19495. #else
  19496. return 0;
  19497. #endif
  19498. }
  19499. int ggml_cpu_has_cuda(void) {
  19500. #if defined(GGML_USE_CUDA)
  19501. return 1;
  19502. #else
  19503. return 0;
  19504. #endif
  19505. }
  19506. int ggml_cpu_has_vulkan(void) {
  19507. #if defined(GGML_USE_VULKAN)
  19508. return 1;
  19509. #else
  19510. return 0;
  19511. #endif
  19512. }
  19513. int ggml_cpu_has_kompute(void) {
  19514. #if defined(GGML_USE_KOMPUTE)
  19515. return 1;
  19516. #else
  19517. return 0;
  19518. #endif
  19519. }
  19520. int ggml_cpu_has_sycl(void) {
  19521. #if defined(GGML_USE_SYCL)
  19522. return 1;
  19523. #else
  19524. return 0;
  19525. #endif
  19526. }
  19527. int ggml_cpu_has_rpc(void) {
  19528. #if defined(GGML_USE_RPC)
  19529. return 1;
  19530. #else
  19531. return 0;
  19532. #endif
  19533. }
  19534. int ggml_cpu_has_cann(void) {
  19535. #if defined(GGML_USE_CANN)
  19536. return 1;
  19537. #else
  19538. return 0;
  19539. #endif
  19540. }
  19541. int ggml_cpu_has_llamafile(void) {
  19542. #if defined(GGML_USE_LLAMAFILE)
  19543. return 1;
  19544. #else
  19545. return 0;
  19546. #endif
  19547. }
  19548. int ggml_cpu_has_gpublas(void) {
  19549. return ggml_cpu_has_cuda() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() || ggml_cpu_has_sycl();
  19550. }
  19551. int ggml_cpu_has_sse3(void) {
  19552. #if defined(__SSE3__)
  19553. return 1;
  19554. #else
  19555. return 0;
  19556. #endif
  19557. }
  19558. int ggml_cpu_has_ssse3(void) {
  19559. #if defined(__SSSE3__)
  19560. return 1;
  19561. #else
  19562. return 0;
  19563. #endif
  19564. }
  19565. int ggml_cpu_has_vsx(void) {
  19566. #if defined(__POWER9_VECTOR__)
  19567. return 1;
  19568. #else
  19569. return 0;
  19570. #endif
  19571. }
  19572. int ggml_cpu_has_matmul_int8(void) {
  19573. #if defined(__ARM_FEATURE_MATMUL_INT8)
  19574. return 1;
  19575. #else
  19576. return 0;
  19577. #endif
  19578. }
  19579. ////////////////////////////////////////////////////////////////////////////////