ggml-opencl.cpp 198 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964
  1. #define CL_TARGET_OPENCL_VERSION GGML_OPENCL_TARGET_VERSION
  2. #define CL_USE_DEPRECATED_OPENCL_1_2_APIS
  3. // suppress warnings in CL headers for GCC and Clang
  4. #pragma GCC diagnostic ignored "-Woverlength-strings"
  5. #ifdef __clang__
  6. #pragma GCC diagnostic ignored "-Wgnu-anonymous-struct"
  7. #endif
  8. #include "ggml-opencl.h"
  9. #include "ggml-backend.h"
  10. #include "ggml-impl.h"
  11. #include "ggml-backend-impl.h"
  12. #include "ggml.h"
  13. #include <CL/cl.h>
  14. #include <string.h>
  15. #include <cstddef>
  16. #include <cstdint>
  17. #include <atomic>
  18. #include <fstream>
  19. #include <limits>
  20. #include <vector>
  21. #include <string>
  22. #include <cmath>
  23. #include <memory>
  24. #include <charconv>
  25. #undef MIN
  26. #undef MAX
  27. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  28. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  29. #define UNUSED(x) (void)(x)
  30. #define CL_CHECK(err) \
  31. do { \
  32. cl_int err_ = (err); \
  33. if (err_ != CL_SUCCESS) { \
  34. GGML_LOG_ERROR("ggml_opencl: %s error %d at %s:%d\n", \
  35. #err, err_, __FILE__, __LINE__); \
  36. GGML_ASSERT(0); \
  37. } \
  38. } while (0)
  39. //------------------------------------------------------------------------------
  40. // OpenCL
  41. //------------------------------------------------------------------------------
  42. bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor);
  43. enum GPU_FAMILY {
  44. ADRENO,
  45. INTEL,
  46. UNKNOWN,
  47. };
  48. enum ADRENO_GPU_GEN {
  49. ADRENO_UNKNOWN,
  50. A7X,
  51. A8X,
  52. X1E,
  53. };
  54. enum ADRENO_CL_COMPILER_TYPE {
  55. E031,
  56. DX,
  57. };
  58. struct ggml_cl_version {
  59. cl_uint major = 0;
  60. cl_uint minor = 0;
  61. };
  62. struct ggml_cl_compiler_version {
  63. ADRENO_CL_COMPILER_TYPE type;
  64. int major = -1;
  65. int minor = -1;
  66. int patch = -1;
  67. bool same(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
  68. return major == x && minor == y && patch == z && type == t;
  69. }
  70. bool newer_than(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
  71. return major*10000 + minor*100 + patch > x*10000 + y*100 + z && type == t;
  72. }
  73. bool newer_than_or_same(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
  74. return same(t, x, y, z) || newer_than(t, x, y, z);
  75. }
  76. };
  77. // Parses a version string of form "XX.YY ". On an error returns ggml_cl_version with all zeroes.
  78. static ggml_cl_version parse_cl_version(std::string_view str) {
  79. size_t major_str_begin = 0;
  80. size_t major_str_end = str.find(".", major_str_begin);
  81. if (major_str_end == std::string::npos) {
  82. return {};
  83. }
  84. size_t minor_str_begin = major_str_end + 1;
  85. size_t minor_str_end = str.find(" ", minor_str_begin);
  86. if (minor_str_end == std::string::npos) {
  87. return {};
  88. }
  89. cl_uint version_major;
  90. if (std::from_chars(str.data() + major_str_begin, str.data() + major_str_end, version_major).ec != std::errc{}) {
  91. return {};
  92. }
  93. cl_uint version_minor;
  94. if (std::from_chars(str.data() + minor_str_begin, str.data() + minor_str_end, version_minor).ec != std::errc{}) {
  95. return {};
  96. }
  97. return { version_major, version_minor };
  98. }
  99. // Returns OpenCL platform's version. On an error returns ggml_cl_version with all zeroes.
  100. static ggml_cl_version get_opencl_platform_version(cl_platform_id platform) {
  101. size_t param_size;
  102. CL_CHECK(clGetPlatformInfo(platform, CL_PLATFORM_VERSION, 0, nullptr, &param_size));
  103. std::unique_ptr<char[]> param_storage(new char[param_size]);
  104. CL_CHECK(clGetPlatformInfo(platform, CL_PLATFORM_VERSION, param_size, param_storage.get(), nullptr));
  105. auto param_value = std::string_view(param_storage.get(), param_size);
  106. const std::string version_prefix = "OpenCL "; // Suffix: "XX.YY <platform-specific-info>"
  107. if (param_value.find(version_prefix) != 0) {
  108. return {};
  109. }
  110. param_value.remove_prefix(version_prefix.length());
  111. return parse_cl_version(param_value);
  112. }
  113. // Return a version to use in OpenCL C compilation. On an error returns ggml_cl_version with all zeroes.
  114. static ggml_cl_version get_opencl_c_version(ggml_cl_version platform_version, cl_device_id device) {
  115. size_t param_size;
  116. #if CL_TARGET_OPENCL_VERSION >= 300
  117. if (platform_version.major >= 3) {
  118. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_ALL_VERSIONS, 0, nullptr, &param_size));
  119. if (!param_size) {
  120. return {};
  121. }
  122. std::unique_ptr<cl_name_version[]> versions(new cl_name_version[param_size]);
  123. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_ALL_VERSIONS, param_size, versions.get(), nullptr));
  124. unsigned versions_count = param_size / sizeof(cl_name_version);
  125. cl_version version_max = 0;
  126. for (unsigned i = 0; i < versions_count; i++) {
  127. version_max = std::max<cl_version>(versions[i].version, version_max);
  128. }
  129. return { CL_VERSION_MAJOR(version_max), CL_VERSION_MINOR(version_max) };
  130. }
  131. #else
  132. GGML_UNUSED(platform_version);
  133. #endif // CL_TARGET_OPENCL_VERSION >= 300
  134. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_VERSION, 0, nullptr, &param_size));
  135. if (!param_size) {
  136. return {};
  137. }
  138. std::unique_ptr<char[]> param_storage(new char[param_size]);
  139. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_VERSION, param_size, param_storage.get(), nullptr));
  140. auto param_value = std::string_view(param_storage.get(), param_size);
  141. const std::string version_prefix = "OpenCL C "; // Suffix: "XX.YY <platform-specific-info>"
  142. if (param_value.find(version_prefix) != 0) {
  143. return {};
  144. }
  145. param_value.remove_prefix(version_prefix.length());
  146. return parse_cl_version(param_value);
  147. }
  148. static ADRENO_GPU_GEN get_adreno_gpu_gen(const char *device_name) {
  149. if (strstr(device_name, "730") ||
  150. strstr(device_name, "740") ||
  151. strstr(device_name, "750")) {
  152. return ADRENO_GPU_GEN::A7X;
  153. }
  154. if (strstr(device_name, "830")) {
  155. return ADRENO_GPU_GEN::A8X;
  156. }
  157. if (strstr(device_name, "X1")) {
  158. return ADRENO_GPU_GEN::X1E;
  159. }
  160. return ADRENO_GPU_GEN::ADRENO_UNKNOWN;
  161. }
  162. static ggml_cl_compiler_version get_adreno_cl_compiler_version(const char *driver_version) {
  163. std::string driver_ver_str(driver_version);
  164. ADRENO_CL_COMPILER_TYPE type = ADRENO_CL_COMPILER_TYPE::E031;
  165. size_t compiler_ver_pos = driver_ver_str.find("E031");
  166. size_t compiler_ver_len = 13;
  167. size_t compiler_major_offset = 5;
  168. size_t compiler_minor_offset = 8;
  169. size_t compiler_patch_offset = 11;
  170. if (compiler_ver_pos == std::string::npos) {
  171. compiler_ver_pos = driver_ver_str.find("DX");
  172. if (compiler_ver_pos == std::string::npos) {
  173. return {};
  174. }
  175. type = ADRENO_CL_COMPILER_TYPE::DX;
  176. compiler_ver_len = 11;
  177. compiler_major_offset = 3;
  178. }
  179. std::string compiler_ver_str = driver_ver_str.substr(compiler_ver_pos, compiler_ver_len);
  180. int major = std::atoi(compiler_ver_str.substr(compiler_major_offset, 2).c_str());
  181. int minor = std::atoi(compiler_ver_str.substr(compiler_minor_offset, 2).c_str());
  182. int patch = std::atoi(compiler_ver_str.substr(compiler_patch_offset, 2).c_str());
  183. return { type, major, minor, patch };
  184. }
  185. // backend device context
  186. struct ggml_backend_opencl_device_context {
  187. cl_platform_id platform;
  188. std::string platform_name;
  189. cl_device_id device;
  190. std::string device_name;
  191. };
  192. // backend context
  193. struct ggml_backend_opencl_context {
  194. cl_device_id device;
  195. std::string device_name;
  196. std::string driver_version;
  197. GPU_FAMILY gpu_family;
  198. ADRENO_GPU_GEN adreno_gen;
  199. cl_int alignment;
  200. size_t max_alloc_size;
  201. bool fp16_support;
  202. bool has_vector_subgroup_broadcast;
  203. ggml_cl_compiler_version adreno_cl_compiler_version;
  204. int adreno_wave_size;
  205. cl_context context;
  206. cl_command_queue queue;
  207. cl_program program_add;
  208. cl_program program_clamp;
  209. cl_program program_cpy;
  210. cl_program program_cvt;
  211. cl_program program_diag_mask_inf;
  212. cl_program program_gelu;
  213. cl_program program_gemv_noshuffle_general;
  214. cl_program program_gemv_noshuffle;
  215. cl_program program_get_rows;
  216. cl_program program_im2col_f16;
  217. cl_program program_im2col_f32;
  218. cl_program program_mul_mat_Ab_Bi_8x4;
  219. cl_program program_mul_mv_q4_0_f32;
  220. cl_program program_mul_mv_q4_0_f32_v;
  221. cl_program program_mul_mv_q4_0_f32_8x_flat;
  222. cl_program program_mul_mv_q4_0_f32_1d_8x_flat;
  223. cl_program program_mul_mv_q4_0_f32_1d_16x_flat;
  224. cl_program program_mul_mv_q6_K;
  225. cl_program program_mul_mv_f16_f16;
  226. cl_program program_mul_mv_f16_f32_1row;
  227. cl_program program_mul_mv_f16_f32_l4;
  228. cl_program program_mul_mv_f16_f32;
  229. cl_program program_mul_mv_f32_f32;
  230. cl_program program_mul;
  231. cl_program program_norm;
  232. cl_program program_relu;
  233. cl_program program_rms_norm;
  234. cl_program program_rope;
  235. cl_program program_scale;
  236. cl_program program_silu;
  237. cl_program program_softmax_f32;
  238. cl_program program_softmax_f16;
  239. cl_program program_softmax_4_f32;
  240. cl_program program_softmax_4_f16;
  241. cl_kernel kernel_add, kernel_add_row;
  242. cl_kernel kernel_mul, kernel_mul_row;
  243. cl_kernel kernel_scale;
  244. cl_kernel kernel_silu, kernel_silu_4;
  245. cl_kernel kernel_gelu, kernel_gelu_4;
  246. cl_kernel kernel_gelu_quick, kernel_gelu_quick_4;
  247. cl_kernel kernel_relu;
  248. cl_kernel kernel_clamp;
  249. cl_kernel kernel_norm;
  250. cl_kernel kernel_rms_norm;
  251. cl_kernel kernel_diag_mask_inf, kernel_diag_mask_inf_8;
  252. cl_kernel kernel_soft_max, kernel_soft_max_4;
  253. cl_kernel kernel_soft_max_f16, kernel_soft_max_4_f16;
  254. cl_kernel kernel_get_rows_f32, kernel_get_rows_f16, kernel_get_rows_q4_0;
  255. cl_kernel kernel_rope_norm_f32, kernel_rope_norm_f16, kernel_rope_neox_f32, kernel_rope_neox_f16;
  256. cl_kernel kernel_rope_multi_f32, kernel_rope_multi_f16, kernel_rope_vision_f32, kernel_rope_vision_f16;
  257. cl_kernel kernel_cpy_f16_f16, kernel_cpy_f16_f32, kernel_cpy_f32_f16, kernel_cpy_f32_f32;
  258. cl_kernel kernel_mul_mat_f32_f32;
  259. cl_kernel kernel_mul_mat_f16_f16;
  260. cl_kernel kernel_mul_mat_f16_f32_1row;
  261. cl_kernel kernel_mul_mat_f16_f32;
  262. cl_kernel kernel_mul_mat_f16_f32_l4;
  263. cl_kernel kernel_mul_mat_q4_0_f32, kernel_mul_mat_q4_0_f32_v;
  264. cl_kernel kernel_convert_block_q4_0, kernel_restore_block_q4_0;
  265. cl_kernel kernel_mul_mat_q4_0_f32_8x_flat;
  266. cl_kernel kernel_convert_block_q4_0_noshuffle;
  267. cl_kernel kernel_mul_mat_q4_0_f32_1d_8x_flat, kernel_mul_mat_q4_0_f32_1d_16x_flat;
  268. cl_kernel kernel_mul_mv_q6_K_f32;
  269. cl_kernel kernel_im2col_f32, kernel_im2col_f16;
  270. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  271. // Transpose kernels
  272. cl_program program_transpose;
  273. cl_kernel kernel_transpose_32;
  274. cl_kernel kernel_transpose_32_16;
  275. cl_kernel kernel_transpose_16;
  276. cl_mem A_s_d_max; // max scale buffer size for transpose
  277. cl_mem A_q_d_max; // max weight buffer size for transpose
  278. cl_mem B_d_max; // max activation buffer size for transpose
  279. // Gemm and Gemv related programs, kernels, etc
  280. cl_program program_CL_gemm;
  281. cl_program program_CL_gemv_general;
  282. cl_program program_CL_gemv_4096_1_11008;
  283. cl_program program_CL_gemv_4096_1_4096;
  284. cl_program program_CL_gemv_11008_1_4096;
  285. cl_program program_CL_gemv_32000_1_4096;
  286. cl_kernel CL_mul_mat_Ab_Bi_8x4;
  287. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general;
  288. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008;
  289. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
  290. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
  291. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
  292. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  293. };
  294. static ggml_backend_device g_ggml_backend_opencl_device;
  295. static ggml_backend_opencl_device_context g_ggml_ctx_dev_main {
  296. /*.platform =*/ nullptr,
  297. /*.platform_nane =*/ "",
  298. /*.device =*/ nullptr,
  299. /*.device_name =*/ "",
  300. };
  301. static int ggml_backend_opencl_n_devices = 0;
  302. // Profiling
  303. #ifdef GGML_OPENCL_PROFILING
  304. struct ProfilingInfo {
  305. std::string op_name;
  306. std::string kernel_name;
  307. cl_kernel kernel;
  308. cl_event evt;
  309. cl_ulong cmd_queued;
  310. cl_ulong cmd_submit;
  311. cl_ulong cmd_start;
  312. cl_ulong cmd_end;
  313. cl_ulong overhead_start;
  314. cl_ulong overhead_end;
  315. // For the times below, see spec for clGetEventProfilingInfo
  316. // The time kernel spent in cmd queue - SUBMIT - QUEUED
  317. cl_ulong cmd_queued_duration_ns;
  318. // The time kernel spent for submission - START - SUBMIT
  319. cl_ulong cmd_submit_duration_ns;
  320. // Kernel execution time in nanoseconds - END - START
  321. cl_ulong cmd_duration_ns;
  322. // The time for the kernel to complete - COMPLETE - END
  323. cl_ulong cmd_complete_duration_ns;
  324. // Total time to finish the kernel - COMPELTE - QUEUED
  325. cl_ulong cmd_total_duration_ns;
  326. // Global and local work sizes.
  327. size_t global_size[3];
  328. size_t local_size[3];
  329. // Op output size.
  330. size_t output_size[4];
  331. };
  332. std::vector<ProfilingInfo> g_profiling_info;
  333. #endif
  334. inline std::string read_file(const std::string &path) {
  335. std::ifstream ifs(path);
  336. if (!ifs) {
  337. return "";
  338. }
  339. std::string text;
  340. ifs.seekg(0, std::ios::end);
  341. text.resize(ifs.tellg());
  342. ifs.seekg(0, std::ios::beg);
  343. ifs.read(&text[0], text.size());
  344. return text;
  345. }
  346. static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer, const std::string &compile_opts) {
  347. cl_program p;
  348. char *program_log;
  349. size_t program_size;
  350. size_t log_size;
  351. int err;
  352. program_size = strlen(program_buffer);
  353. p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err);
  354. if(err < 0) {
  355. GGML_LOG_ERROR("OpenCL error creating program");
  356. exit(1);
  357. }
  358. err = clBuildProgram(p, 0, NULL, compile_opts.c_str(), NULL, NULL);
  359. if(err < 0) {
  360. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
  361. program_log = (char*) malloc(log_size + 1);
  362. program_log[log_size] = '\0';
  363. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
  364. GGML_LOG_ERROR("ggml_opencl: kernel compile error:\n\n%s\n", program_log);
  365. free(program_log);
  366. exit(1);
  367. }
  368. return p;
  369. }
  370. static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_version opencl_c_version) {
  371. cl_int err;
  372. // compiler options for general kernels
  373. auto opencl_c_std =
  374. std::string("CL") + std::to_string(opencl_c_version.major) + "." + std::to_string(opencl_c_version.minor);
  375. std::string compile_opts = std::string("-cl-std=") + opencl_c_std +
  376. " -cl-mad-enable -cl-unsafe-math-optimizations"
  377. " -cl-finite-math-only -cl-fast-relaxed-math";
  378. GGML_LOG_INFO("ggml_opencl: loading OpenCL kernels");
  379. // add
  380. {
  381. #ifdef GGML_OPENCL_EMBED_KERNELS
  382. const std::string kernel_src {
  383. #include "add.cl.h"
  384. };
  385. #else
  386. const std::string kernel_src = read_file("add.cl");
  387. #endif
  388. backend_ctx->program_add =
  389. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  390. CL_CHECK((backend_ctx->kernel_add = clCreateKernel(backend_ctx->program_add, "kernel_add", &err), err));
  391. CL_CHECK((backend_ctx->kernel_add_row = clCreateKernel(backend_ctx->program_add, "kernel_add_row", &err), err));
  392. GGML_LOG_CONT(".");
  393. }
  394. // clamp
  395. {
  396. #ifdef GGML_OPENCL_EMBED_KERNELS
  397. const std::string kernel_src {
  398. #include "clamp.cl.h"
  399. };
  400. #else
  401. const std::string kernel_src = read_file("clamp.cl");
  402. #endif
  403. backend_ctx->program_clamp =
  404. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  405. CL_CHECK((backend_ctx->kernel_clamp = clCreateKernel(backend_ctx->program_clamp, "kernel_clamp", &err), err));
  406. GGML_LOG_CONT(".");
  407. }
  408. // cpy
  409. {
  410. #ifdef GGML_OPENCL_EMBED_KERNELS
  411. const std::string kernel_src {
  412. #include "cpy.cl.h"
  413. };
  414. #else
  415. const std::string kernel_src = read_file("cpy.cl");
  416. #endif
  417. backend_ctx->program_cpy =
  418. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  419. CL_CHECK((backend_ctx->kernel_cpy_f16_f16 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f16_f16", &err), err));
  420. CL_CHECK((backend_ctx->kernel_cpy_f16_f32 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f16_f32", &err), err));
  421. CL_CHECK((backend_ctx->kernel_cpy_f32_f16 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f32_f16", &err), err));
  422. CL_CHECK((backend_ctx->kernel_cpy_f32_f32 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f32_f32", &err), err));
  423. GGML_LOG_CONT(".");
  424. }
  425. // cvt
  426. {
  427. #ifdef GGML_OPENCL_EMBED_KERNELS
  428. const std::string kernel_src {
  429. #include "cvt.cl.h"
  430. };
  431. #else
  432. const std::string kernel_src = read_file("cvt.cl");
  433. #endif
  434. backend_ctx->program_cvt =
  435. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  436. CL_CHECK((backend_ctx->kernel_convert_block_q4_0_noshuffle = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0_noshuffle", &err), err));
  437. CL_CHECK((backend_ctx->kernel_convert_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0", &err), err));
  438. CL_CHECK((backend_ctx->kernel_restore_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q4_0", &err), err));
  439. GGML_LOG_CONT(".");
  440. }
  441. // diag_mask_inf
  442. {
  443. #ifdef GGML_OPENCL_EMBED_KERNELS
  444. const std::string kernel_src {
  445. #include "diag_mask_inf.cl.h"
  446. };
  447. #else
  448. const std::string kernel_src = read_file("diag_mask_inf.cl");
  449. #endif
  450. backend_ctx->program_diag_mask_inf =
  451. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  452. CL_CHECK((backend_ctx->kernel_diag_mask_inf_8 = clCreateKernel(backend_ctx->program_diag_mask_inf, "kernel_diag_mask_inf_8", &err), err));
  453. CL_CHECK((backend_ctx->kernel_diag_mask_inf = clCreateKernel(backend_ctx->program_diag_mask_inf, "kernel_diag_mask_inf", &err), err));
  454. GGML_LOG_CONT(".");
  455. }
  456. // gelu
  457. {
  458. #ifdef GGML_OPENCL_EMBED_KERNELS
  459. const std::string kernel_src {
  460. #include "gelu.cl.h"
  461. };
  462. #else
  463. const std::string kernel_src = read_file("gelu.cl");
  464. #endif
  465. backend_ctx->program_gelu =
  466. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  467. CL_CHECK((backend_ctx->kernel_gelu = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu", &err), err));
  468. CL_CHECK((backend_ctx->kernel_gelu_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_4", &err), err));
  469. CL_CHECK((backend_ctx->kernel_gelu_quick = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_quick", &err), err));
  470. CL_CHECK((backend_ctx->kernel_gelu_quick_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_quick_4", &err), err));
  471. GGML_LOG_CONT(".");
  472. }
  473. // get_rows
  474. {
  475. #ifdef GGML_OPENCL_EMBED_KERNELS
  476. const std::string kernel_src {
  477. #include "get_rows.cl.h"
  478. };
  479. #else
  480. const std::string kernel_src = read_file("get_rows.cl");
  481. #endif
  482. backend_ctx->program_get_rows =
  483. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  484. CL_CHECK((backend_ctx->kernel_get_rows_f32 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_f32", &err), err));
  485. CL_CHECK((backend_ctx->kernel_get_rows_f16 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_f16", &err), err));
  486. CL_CHECK((backend_ctx->kernel_get_rows_q4_0 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_q4_0", &err), err));
  487. GGML_LOG_CONT(".");
  488. }
  489. // im2col_f32
  490. {
  491. #ifdef GGML_OPENCL_EMBED_KERNELS
  492. const std::string kernel_src {
  493. #include "im2col_f32.cl.h"
  494. };
  495. #else
  496. const std::string kernel_src = read_file("im2col_f32.cl");
  497. #endif
  498. backend_ctx->program_im2col_f32 =
  499. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  500. CL_CHECK((backend_ctx->kernel_im2col_f32 = clCreateKernel(backend_ctx->program_im2col_f32, "kernel_im2col_f32", &err), err));
  501. GGML_LOG_CONT(".");
  502. }
  503. // im2col_f16
  504. {
  505. #ifdef GGML_OPENCL_EMBED_KERNELS
  506. const std::string kernel_src {
  507. #include "im2col_f16.cl.h"
  508. };
  509. #else
  510. const std::string kernel_src = read_file("im2col_f16.cl");
  511. #endif
  512. backend_ctx->program_im2col_f16 =
  513. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  514. CL_CHECK((backend_ctx->kernel_im2col_f16 = clCreateKernel(backend_ctx->program_im2col_f16, "kernel_im2col_f16", &err), err));
  515. GGML_LOG_CONT(".");
  516. }
  517. // mul_mv_q4_0_f32
  518. {
  519. #ifdef GGML_OPENCL_EMBED_KERNELS
  520. const std::string kernel_src {
  521. #include "mul_mv_q4_0_f32.cl.h"
  522. };
  523. #else
  524. const std::string kernel_src = read_file("mul_mv_q4_0_f32.cl");
  525. #endif
  526. backend_ctx->program_mul_mv_q4_0_f32 =
  527. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  528. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32 = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32, "kernel_mul_mat_q4_0_f32", &err), err));
  529. GGML_LOG_CONT(".");
  530. }
  531. // mul_mv_q4_0_f32_v
  532. {
  533. #ifdef GGML_OPENCL_EMBED_KERNELS
  534. const std::string kernel_src {
  535. #include "mul_mv_q4_0_f32_v.cl.h"
  536. };
  537. #else
  538. const std::string kernel_src = read_file("mul_mv_q4_0_f32_v.cl");
  539. #endif
  540. backend_ctx->program_mul_mv_q4_0_f32_v =
  541. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  542. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_v = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_v, "kernel_mul_mat_q4_0_f32_v", &err), err));
  543. GGML_LOG_CONT(".");
  544. }
  545. // mul_mv_q4_0_f32_8x_flat
  546. {
  547. #ifdef GGML_OPENCL_EMBED_KERNELS
  548. const std::string kernel_src {
  549. #include "mul_mv_q4_0_f32_8x_flat.cl.h"
  550. };
  551. #else
  552. const std::string kernel_src = read_file("mul_mv_q4_0_f32_8x_flat.cl");
  553. #endif
  554. backend_ctx->program_mul_mv_q4_0_f32_8x_flat =
  555. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  556. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_8x_flat, "kernel_mul_mat_q4_0_f32_8x_flat", &err), err));
  557. GGML_LOG_CONT(".");
  558. }
  559. // mul_mv_q4_0_f32_1d_8x_flat
  560. // This kernel does not compiler on Adreno cl compiler 38.01. Skip it for
  561. // those compiler versions since it is anyway not used for Adreno.
  562. if (backend_ctx->gpu_family != ADRENO ||
  563. backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) ||
  564. backend_ctx->adreno_cl_compiler_version.type == DX) {
  565. #ifdef GGML_OPENCL_EMBED_KERNELS
  566. const std::string kernel_src {
  567. #include "mul_mv_q4_0_f32_1d_8x_flat.cl.h"
  568. };
  569. #else
  570. const std::string kernel_src = read_file("mul_mv_q4_0_f32_1d_8x_flat.cl");
  571. #endif
  572. backend_ctx->program_mul_mv_q4_0_f32_1d_8x_flat =
  573. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  574. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_1d_8x_flat, "kernel_mul_mat_q4_0_f32_1d_8x_flat", &err), err));
  575. GGML_LOG_CONT(".");
  576. }
  577. // mul_mv_q4_0_f32_1d_16x_flat
  578. // This kernel does not compiler on Adreno cl compiler 38.01. Skip it for
  579. // those compiler versions since it is anyway not used for Adreno.
  580. if (backend_ctx->gpu_family != ADRENO ||
  581. backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) ||
  582. backend_ctx->adreno_cl_compiler_version.type == DX) {
  583. #ifdef GGML_OPENCL_EMBED_KERNELS
  584. const std::string kernel_src {
  585. #include "mul_mv_q4_0_f32_1d_16x_flat.cl.h"
  586. };
  587. #else
  588. const std::string kernel_src = read_file("mul_mv_q4_0_f32_1d_16x_flat.cl");
  589. #endif
  590. backend_ctx->program_mul_mv_q4_0_f32_1d_16x_flat =
  591. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  592. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_1d_16x_flat, "kernel_mul_mat_q4_0_f32_1d_16x_flat", &err), err));
  593. GGML_LOG_CONT(".");
  594. }
  595. // mul_mv_q6_k
  596. {
  597. #ifdef GGML_OPENCL_EMBED_KERNELS
  598. const std::string kernel_src {
  599. #include "mul_mv_q6_k.cl.h"
  600. };
  601. #else
  602. const std::string kernel_src = read_file("mul_mv_q6_k.cl");
  603. #endif
  604. backend_ctx->program_mul_mv_q6_K =
  605. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  606. CL_CHECK((backend_ctx->kernel_mul_mv_q6_K_f32 = clCreateKernel(backend_ctx->program_mul_mv_q6_K, "kernel_mul_mv_q6_K_f32", &err), err));
  607. GGML_LOG_CONT(".");
  608. }
  609. // mul_mv_f16_f16
  610. {
  611. #ifdef GGML_OPENCL_EMBED_KERNELS
  612. const std::string kernel_src {
  613. #include "mul_mv_f16_f16.cl.h"
  614. };
  615. #else
  616. const std::string kernel_src = read_file("mul_mv_f16_f16.cl");
  617. #endif
  618. backend_ctx->program_mul_mv_f16_f16 =
  619. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  620. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f16 = clCreateKernel(backend_ctx->program_mul_mv_f16_f16, "kernel_mul_mat_f16_f16", &err), err));
  621. GGML_LOG_CONT(".");
  622. }
  623. // mul_mv_f16_f32_1row
  624. {
  625. #ifdef GGML_OPENCL_EMBED_KERNELS
  626. const std::string kernel_src {
  627. #include "mul_mv_f16_f32_1row.cl.h"
  628. };
  629. #else
  630. const std::string kernel_src = read_file("mul_mv_f16_f32_1row.cl");
  631. #endif
  632. backend_ctx->program_mul_mv_f16_f32_1row =
  633. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  634. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_1row = clCreateKernel(backend_ctx->program_mul_mv_f16_f32_1row, "kernel_mul_mat_f16_f32_1row", &err), err));
  635. GGML_LOG_CONT(".");
  636. }
  637. // mul_mv_f16_f32_l4
  638. {
  639. #ifdef GGML_OPENCL_EMBED_KERNELS
  640. const std::string kernel_src {
  641. #include "mul_mv_f16_f32_l4.cl.h"
  642. };
  643. #else
  644. const std::string kernel_src = read_file("mul_mv_f16_f32_l4.cl");
  645. #endif
  646. backend_ctx->program_mul_mv_f16_f32_l4 =
  647. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  648. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_l4 = clCreateKernel(backend_ctx->program_mul_mv_f16_f32_l4, "kernel_mul_mat_f16_f32_l4", &err), err));
  649. GGML_LOG_CONT(".");
  650. }
  651. // mul_mv_f16_f32
  652. {
  653. #ifdef GGML_OPENCL_EMBED_KERNELS
  654. const std::string kernel_src {
  655. #include "mul_mv_f16_f32.cl.h"
  656. };
  657. #else
  658. const std::string kernel_src = read_file("mul_mv_f16_f32.cl");
  659. #endif
  660. backend_ctx->program_mul_mv_f16_f32 =
  661. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  662. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32 = clCreateKernel(backend_ctx->program_mul_mv_f16_f32, "kernel_mul_mat_f16_f32", &err), err));
  663. GGML_LOG_CONT(".");
  664. }
  665. // mul_mv_f32_f32
  666. {
  667. #ifdef GGML_OPENCL_EMBED_KERNELS
  668. const std::string kernel_src {
  669. #include "mul_mv_f32_f32.cl.h"
  670. };
  671. #else
  672. const std::string kernel_src = read_file("mul_mv_f32_f32.cl");
  673. #endif
  674. backend_ctx->program_mul_mv_f32_f32 =
  675. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  676. CL_CHECK((backend_ctx->kernel_mul_mat_f32_f32 = clCreateKernel(backend_ctx->program_mul_mv_f32_f32, "kernel_mul_mat_f32_f32", &err), err));
  677. GGML_LOG_CONT(".");
  678. }
  679. // mul
  680. {
  681. #ifdef GGML_OPENCL_EMBED_KERNELS
  682. const std::string kernel_src {
  683. #include "mul.cl.h"
  684. };
  685. #else
  686. const std::string kernel_src = read_file("mul.cl");
  687. #endif
  688. backend_ctx->program_mul =
  689. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  690. CL_CHECK((backend_ctx->kernel_mul = clCreateKernel(backend_ctx->program_mul, "kernel_mul", &err), err));
  691. CL_CHECK((backend_ctx->kernel_mul_row = clCreateKernel(backend_ctx->program_mul, "kernel_mul_row", &err), err));
  692. GGML_LOG_CONT(".");
  693. }
  694. // norm
  695. {
  696. #ifdef GGML_OPENCL_EMBED_KERNELS
  697. const std::string kernel_src {
  698. #include "norm.cl.h"
  699. };
  700. #else
  701. const std::string kernel_src = read_file("norm.cl");
  702. #endif
  703. backend_ctx->program_norm =
  704. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  705. CL_CHECK((backend_ctx->kernel_norm = clCreateKernel(backend_ctx->program_norm, "kernel_norm", &err), err));
  706. GGML_LOG_CONT(".");
  707. }
  708. // relu
  709. {
  710. #ifdef GGML_OPENCL_EMBED_KERNELS
  711. const std::string kernel_src {
  712. #include "relu.cl.h"
  713. };
  714. #else
  715. const std::string kernel_src = read_file("relu.cl");
  716. #endif
  717. backend_ctx->program_relu =
  718. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  719. CL_CHECK((backend_ctx->kernel_relu = clCreateKernel(backend_ctx->program_relu, "kernel_relu", &err), err));
  720. GGML_LOG_CONT(".");
  721. }
  722. // rms_norm
  723. {
  724. #ifdef GGML_OPENCL_EMBED_KERNELS
  725. const std::string kernel_src {
  726. #include "rms_norm.cl.h"
  727. };
  728. #else
  729. const std::string kernel_src = read_file("rms_norm.cl");
  730. #endif
  731. backend_ctx->program_rms_norm =
  732. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  733. CL_CHECK((backend_ctx->kernel_rms_norm = clCreateKernel(backend_ctx->program_rms_norm, "kernel_rms_norm", &err), err));
  734. GGML_LOG_CONT(".");
  735. }
  736. // rope
  737. {
  738. #ifdef GGML_OPENCL_EMBED_KERNELS
  739. const std::string kernel_src {
  740. #include "rope.cl.h"
  741. };
  742. #else
  743. const std::string kernel_src = read_file("rope.cl");
  744. #endif
  745. backend_ctx->program_rope =
  746. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  747. CL_CHECK((backend_ctx->kernel_rope_norm_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_norm_f32", &err), err));
  748. CL_CHECK((backend_ctx->kernel_rope_norm_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_norm_f16", &err), err));
  749. CL_CHECK((backend_ctx->kernel_rope_neox_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_neox_f32", &err), err));
  750. CL_CHECK((backend_ctx->kernel_rope_neox_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_neox_f16", &err), err));
  751. CL_CHECK((backend_ctx->kernel_rope_multi_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_multi_f32", &err), err));
  752. CL_CHECK((backend_ctx->kernel_rope_multi_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_multi_f16", &err), err));
  753. CL_CHECK((backend_ctx->kernel_rope_vision_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_vision_f32", &err), err));
  754. CL_CHECK((backend_ctx->kernel_rope_vision_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_vision_f16", &err), err));
  755. GGML_LOG_CONT(".");
  756. }
  757. // scale
  758. {
  759. #ifdef GGML_OPENCL_EMBED_KERNELS
  760. const std::string kernel_src {
  761. #include "scale.cl.h"
  762. };
  763. #else
  764. const std::string kernel_src = read_file("scale.cl");
  765. #endif
  766. backend_ctx->program_scale =
  767. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  768. CL_CHECK((backend_ctx->kernel_scale = clCreateKernel(backend_ctx->program_scale, "kernel_scale", &err), err));
  769. GGML_LOG_CONT(".");
  770. }
  771. // silu
  772. {
  773. #ifdef GGML_OPENCL_EMBED_KERNELS
  774. const std::string kernel_src {
  775. #include "silu.cl.h"
  776. };
  777. #else
  778. const std::string kernel_src = read_file("silu.cl");
  779. #endif
  780. backend_ctx->program_silu =
  781. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  782. CL_CHECK((backend_ctx->kernel_silu = clCreateKernel(backend_ctx->program_silu, "kernel_silu", &err), err));
  783. CL_CHECK((backend_ctx->kernel_silu_4 = clCreateKernel(backend_ctx->program_silu, "kernel_silu_4", &err), err));
  784. GGML_LOG_CONT(".");
  785. }
  786. // softmax_f32
  787. {
  788. #ifdef GGML_OPENCL_EMBED_KERNELS
  789. const std::string kernel_src {
  790. #include "softmax_f32.cl.h"
  791. };
  792. #else
  793. const std::string kernel_src = read_file("softmax_f32.cl");
  794. #endif
  795. backend_ctx->program_softmax_f32 =
  796. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  797. CL_CHECK((backend_ctx->kernel_soft_max = clCreateKernel(backend_ctx->program_softmax_f32, "kernel_soft_max", &err), err));
  798. GGML_LOG_CONT(".");
  799. }
  800. // softmax_f16
  801. {
  802. #ifdef GGML_OPENCL_EMBED_KERNELS
  803. const std::string kernel_src {
  804. #include "softmax_f16.cl.h"
  805. };
  806. #else
  807. const std::string kernel_src = read_file("softmax_f16.cl");
  808. #endif
  809. backend_ctx->program_softmax_f16 =
  810. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  811. CL_CHECK((backend_ctx->kernel_soft_max_f16 = clCreateKernel(backend_ctx->program_softmax_f16, "kernel_soft_max_f16", &err), err));
  812. GGML_LOG_CONT(".");
  813. }
  814. // softmax_4_f32
  815. {
  816. #ifdef GGML_OPENCL_EMBED_KERNELS
  817. const std::string kernel_src {
  818. #include "softmax_4_f32.cl.h"
  819. };
  820. #else
  821. const std::string kernel_src = read_file("softmax_4_f32.cl");
  822. #endif
  823. backend_ctx->program_softmax_4_f32 =
  824. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  825. CL_CHECK((backend_ctx->kernel_soft_max_4 = clCreateKernel(backend_ctx->program_softmax_4_f32, "kernel_soft_max_4", &err), err));
  826. GGML_LOG_CONT(".");
  827. }
  828. // softmax_4_f16
  829. {
  830. #ifdef GGML_OPENCL_EMBED_KERNELS
  831. const std::string kernel_src {
  832. #include "softmax_4_f16.cl.h"
  833. };
  834. #else
  835. const std::string kernel_src = read_file("softmax_4_f16.cl");
  836. #endif
  837. backend_ctx->program_softmax_4_f16 =
  838. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  839. CL_CHECK((backend_ctx->kernel_soft_max_4_f16 = clCreateKernel(backend_ctx->program_softmax_4_f16, "kernel_soft_max_4_f16", &err), err));
  840. GGML_LOG_CONT(".");
  841. }
  842. // Adreno kernels
  843. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  844. // transpose
  845. {
  846. #ifdef GGML_OPENCL_EMBED_KERNELS
  847. const std::string kernel_src {
  848. #include "transpose.cl.h"
  849. };
  850. #else
  851. const std::string kernel_src = read_file("transpose.cl");
  852. #endif
  853. backend_ctx->program_transpose =
  854. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  855. CL_CHECK((backend_ctx->kernel_transpose_32_16 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_32_16", &err), err));
  856. CL_CHECK((backend_ctx->kernel_transpose_32 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_32", &err), err));
  857. CL_CHECK((backend_ctx->kernel_transpose_16 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_16", &err), err));
  858. GGML_LOG_CONT(".");
  859. }
  860. // gemv_noshuffle_general
  861. {
  862. std::string CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  863. " -cl-mad-enable "
  864. " -DSIMDGROUP_WIDTH=" +
  865. std::to_string(backend_ctx->adreno_wave_size);
  866. if (backend_ctx->has_vector_subgroup_broadcast) {
  867. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  868. }
  869. #ifdef GGML_OPENCL_EMBED_KERNELS
  870. const std::string kernel_src_CL_gemv_general {
  871. #include "gemv_noshuffle_general.cl.h"
  872. };
  873. #else
  874. const std::string kernel_src_CL_gemv_general = read_file("gemv_noshuffle_general.cl");
  875. #endif
  876. backend_ctx->program_CL_gemv_general = build_program_from_source(
  877. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv_general.c_str(), CL_gemv_compile_opts);
  878. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general = clCreateKernel(backend_ctx->program_CL_gemv_general, "kernel_gemv_noshuffle", &err), err));
  879. GGML_LOG_CONT(".");
  880. }
  881. // gemv_noshuffle
  882. {
  883. // Gemv 2048, 16384
  884. std::string CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  885. " -cl-mad-enable "
  886. " -DLINE_STRIDE_A=2048 "
  887. " -DBLOCK_STRIDE_A=16384 "
  888. " -DSIMDGROUP_WIDTH=" +
  889. std::to_string(backend_ctx->adreno_wave_size);
  890. if (backend_ctx->has_vector_subgroup_broadcast) {
  891. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  892. }
  893. #ifdef GGML_OPENCL_EMBED_KERNELS
  894. const std::string kernel_src_CL_gemv {
  895. #include "gemv_noshuffle.cl.h"
  896. };
  897. #else
  898. const std::string kernel_src_CL_gemv = read_file("gemv_noshuffle.cl");
  899. #endif
  900. backend_ctx->program_CL_gemv_4096_1_4096 = build_program_from_source(
  901. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  902. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_4096, "kernel_gemv_noshuffle", &err), err));
  903. GGML_LOG_CONT(".");
  904. // Gemv 2048, 16384
  905. CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  906. " -cl-mad-enable "
  907. " -DLINE_STRIDE_A=2048 "
  908. " -DBLOCK_STRIDE_A=16384 "
  909. " -DSIMDGROUP_WIDTH=" +
  910. std::to_string(backend_ctx->adreno_wave_size);
  911. if (backend_ctx->has_vector_subgroup_broadcast) {
  912. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  913. }
  914. backend_ctx->program_CL_gemv_4096_1_11008 = build_program_from_source(
  915. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  916. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_11008, "kernel_gemv_noshuffle", &err), err));
  917. GGML_LOG_CONT(".");
  918. // Gemv 5504, 44032
  919. CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  920. " -cl-mad-enable "
  921. " -DLINE_STRIDE_A=5504 "
  922. " -DBLOCK_STRIDE_A=44032 "
  923. " -DSIMDGROUP_WIDTH=" +
  924. std::to_string(backend_ctx->adreno_wave_size);
  925. if (backend_ctx->has_vector_subgroup_broadcast) {
  926. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  927. }
  928. backend_ctx->program_CL_gemv_11008_1_4096 = build_program_from_source(
  929. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  930. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_11008_1_4096, "kernel_gemv_noshuffle", &err), err));
  931. GGML_LOG_CONT(".");
  932. // Gemv 16000, 128000
  933. CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  934. " -cl-mad-enable "
  935. " -DLINE_STRIDE_A=16000 "
  936. " -DBLOCK_STRIDE_A=128000 "
  937. " -DSIMDGROUP_WIDTH=" +
  938. std::to_string(backend_ctx->adreno_wave_size);
  939. if (backend_ctx->has_vector_subgroup_broadcast) {
  940. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  941. }
  942. backend_ctx->program_CL_gemv_32000_1_4096 = build_program_from_source(
  943. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  944. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_32000_1_4096, "kernel_gemv_noshuffle", &err), err));
  945. GGML_LOG_CONT(".");
  946. }
  947. // mul_mat_Ab_Bi_8x4
  948. {
  949. #ifdef GGML_OPENCL_EMBED_KERNELS
  950. const std::string kernel_src_CL_gemm {
  951. #include "mul_mat_Ab_Bi_8x4.cl.h"
  952. };
  953. #else
  954. const std::string kernel_src_CL_gemm = read_file("mul_mat_Ab_Bi_8x4.cl");
  955. #endif
  956. backend_ctx->program_CL_gemm = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_CL_gemm.c_str(), compile_opts);
  957. CL_CHECK((backend_ctx->CL_mul_mat_Ab_Bi_8x4 = clCreateKernel(backend_ctx->program_CL_gemm, "kernel_mul_mat_Ab_Bi_8x4", &err), err));
  958. GGML_LOG_CONT(".");
  959. }
  960. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  961. GGML_LOG_CONT("\n");
  962. }
  963. static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
  964. static bool initialized = false;
  965. static ggml_backend_opencl_context *backend_ctx = nullptr;
  966. if (initialized) {
  967. return backend_ctx;
  968. }
  969. ggml_backend_opencl_device_context *dev_ctx = (ggml_backend_opencl_device_context *)dev->context;
  970. GGML_ASSERT(dev_ctx);
  971. GGML_ASSERT(dev_ctx->platform == nullptr);
  972. GGML_ASSERT(dev_ctx->device == nullptr);
  973. GGML_ASSERT(backend_ctx == nullptr);
  974. initialized = true;
  975. backend_ctx = new ggml_backend_opencl_context();
  976. backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN;
  977. cl_int err;
  978. #ifdef GGML_OPENCL_PROFILING
  979. GGML_LOG_INFO("ggml_opencl: OpenCL profiling enabled\n");
  980. #endif
  981. struct cl_device;
  982. struct cl_platform {
  983. cl_platform_id id;
  984. unsigned number;
  985. char name[128];
  986. char vendor[128];
  987. struct cl_device * devices;
  988. unsigned n_devices;
  989. struct cl_device * default_device;
  990. };
  991. struct cl_device {
  992. struct cl_platform * platform;
  993. cl_device_id id;
  994. unsigned number;
  995. cl_device_type type;
  996. char name[128];
  997. char version[128];
  998. };
  999. enum { NPLAT = 16, NDEV = 16 };
  1000. struct cl_platform platforms[NPLAT];
  1001. unsigned n_platforms = 0;
  1002. struct cl_device devices[NDEV];
  1003. unsigned n_devices = 0;
  1004. struct cl_device * default_device = NULL;
  1005. cl_platform_id platform_ids[NPLAT];
  1006. if (clGetPlatformIDs(NPLAT, platform_ids, &n_platforms) != CL_SUCCESS) {
  1007. GGML_LOG_ERROR("ggml_opencl: plaform IDs not available.\n");
  1008. return backend_ctx;
  1009. }
  1010. for (unsigned i = 0; i < n_platforms; i++) {
  1011. struct cl_platform * p = &platforms[i];
  1012. p->number = i;
  1013. p->id = platform_ids[i];
  1014. CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL));
  1015. CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL));
  1016. cl_device_id device_ids[NDEV];
  1017. cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices);
  1018. if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) {
  1019. p->n_devices = 0;
  1020. } else {
  1021. CL_CHECK(clGetDeviceIDsError);
  1022. }
  1023. p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL;
  1024. p->default_device = NULL;
  1025. for (unsigned j = 0; j < p->n_devices; j++) {
  1026. struct cl_device * d = &devices[n_devices];
  1027. d->number = n_devices++;
  1028. d->id = device_ids[j];
  1029. d->platform = p;
  1030. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL));
  1031. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL));
  1032. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_VERSION, sizeof(d->version), &d->version, NULL));
  1033. if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) {
  1034. p->default_device = d;
  1035. }
  1036. }
  1037. if (default_device == NULL && p->default_device != NULL) {
  1038. default_device = p->default_device;
  1039. }
  1040. }
  1041. if (n_devices == 0) {
  1042. GGML_LOG_ERROR("ggml_opencl: could find any OpenCL devices.\n");
  1043. return backend_ctx;
  1044. }
  1045. char * user_platform_string = getenv("GGML_OPENCL_PLATFORM");
  1046. char * user_device_string = getenv("GGML_OPENCL_DEVICE");
  1047. int user_platform_number = -1;
  1048. int user_device_number = -1;
  1049. unsigned n;
  1050. if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) {
  1051. user_platform_number = (int)n;
  1052. }
  1053. if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) {
  1054. user_device_number = (int)n;
  1055. }
  1056. if (user_platform_number != -1 && user_device_number != -1) {
  1057. cl_platform* platform = &platforms[user_platform_number];
  1058. if ((unsigned)user_device_number >= platform->n_devices) {
  1059. GGML_LOG_ERROR("ggml_opencl: invalid device number %d\n", user_device_number);
  1060. exit(1);
  1061. }
  1062. default_device = &platform->devices[user_device_number];
  1063. } else {
  1064. struct cl_device * selected_devices = devices;
  1065. unsigned n_selected_devices = n_devices;
  1066. if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) {
  1067. for (unsigned i = 0; i < n_platforms; i++) {
  1068. struct cl_platform * p = &platforms[i];
  1069. if (strstr(p->name, user_platform_string) != NULL ||
  1070. strstr(p->vendor, user_platform_string) != NULL) {
  1071. user_platform_number = (int)i;
  1072. break;
  1073. }
  1074. }
  1075. if (user_platform_number == -1) {
  1076. GGML_LOG_ERROR("ggml_opencl: no platform matching '%s' was found.\n", user_platform_string);
  1077. exit(1);
  1078. }
  1079. }
  1080. if (user_platform_number != -1) {
  1081. struct cl_platform * p = &platforms[user_platform_number];
  1082. selected_devices = p->devices;
  1083. n_selected_devices = p->n_devices;
  1084. default_device = p->default_device;
  1085. if (n_selected_devices == 0) {
  1086. GGML_LOG_ERROR("ggml_opencl: selected platform '%s' does not have any devices.\n", p->name);
  1087. exit(1);
  1088. }
  1089. }
  1090. if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) {
  1091. for (unsigned i = 0; i < n_selected_devices; i++) {
  1092. struct cl_device * d = &selected_devices[i];
  1093. if (strstr(d->name, user_device_string) != NULL) {
  1094. user_device_number = d->number;
  1095. break;
  1096. }
  1097. }
  1098. if (user_device_number == -1) {
  1099. GGML_LOG_ERROR("ggml_opencl: no device matching '%s' was found.\n", user_device_string);
  1100. exit(1);
  1101. }
  1102. }
  1103. if (user_device_number != -1) {
  1104. selected_devices = &devices[user_device_number];
  1105. n_selected_devices = 1;
  1106. default_device = &selected_devices[0];
  1107. }
  1108. GGML_ASSERT(n_selected_devices > 0);
  1109. if (default_device == NULL) {
  1110. default_device = &selected_devices[0];
  1111. }
  1112. }
  1113. GGML_LOG_INFO("ggml_opencl: selecting platform: '%s'\n", default_device->platform->name);
  1114. GGML_LOG_INFO("ggml_opencl: selecting device: '%s (%s)'\n", default_device->name, default_device->version);
  1115. if (default_device->type != CL_DEVICE_TYPE_GPU) {
  1116. GGML_LOG_WARN("ggml_opencl: warning, not a GPU: '%s'.\n", default_device->name);
  1117. }
  1118. dev_ctx->platform = default_device->platform->id;
  1119. dev_ctx->device = default_device->id;
  1120. backend_ctx->device = default_device->id;
  1121. if (strstr(default_device->name, "Adreno") ||
  1122. strstr(default_device->name, "Qualcomm") ||
  1123. strstr(default_device->version, "Adreno")) {
  1124. backend_ctx->gpu_family = GPU_FAMILY::ADRENO;
  1125. // Usually device version contains the detailed device name
  1126. backend_ctx->adreno_gen = get_adreno_gpu_gen(default_device->version);
  1127. if (backend_ctx->adreno_gen == ADRENO_GPU_GEN::ADRENO_UNKNOWN) {
  1128. backend_ctx->adreno_gen = get_adreno_gpu_gen(default_device->name);
  1129. }
  1130. // Use wave size of 64 for all Adreno GPUs.
  1131. backend_ctx->adreno_wave_size = 64;
  1132. } else if (strstr(default_device->name, "Intel")) {
  1133. backend_ctx->gpu_family = GPU_FAMILY::INTEL;
  1134. } else {
  1135. GGML_LOG_ERROR("Unsupported GPU: %s\n", default_device->name);
  1136. backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN;
  1137. return backend_ctx;
  1138. }
  1139. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  1140. if (backend_ctx->gpu_family != GPU_FAMILY::ADRENO) {
  1141. GGML_LOG_ERROR("ggml_opencl: Adreno-specific kernels should not be enabled for non-Adreno GPUs; "
  1142. "run on an Adreno GPU or recompile with CMake option `-DGGML_OPENCL_USE_ADRENO_KERNELS=OFF`\n");
  1143. return backend_ctx;
  1144. }
  1145. #endif
  1146. // Populate backend device name
  1147. dev_ctx->platform_name = default_device->platform->name;
  1148. dev_ctx->device_name = default_device->name;
  1149. backend_ctx->device_name = default_device->name;
  1150. // A local ref of cl_device_id for convenience
  1151. cl_device_id device = backend_ctx->device;
  1152. ggml_cl_version platform_version = get_opencl_platform_version(default_device->platform->id);
  1153. // Check device OpenCL version, OpenCL 2.0 or above is required
  1154. ggml_cl_version opencl_c_version = get_opencl_c_version(platform_version, device);
  1155. if (opencl_c_version.major < 2) {
  1156. GGML_LOG_ERROR("ggml_opencl: OpenCL 2.0 or above is required\n");
  1157. return backend_ctx;
  1158. }
  1159. // Check driver version
  1160. size_t driver_version_str_size;
  1161. clGetDeviceInfo(device, CL_DRIVER_VERSION, 0, NULL, &driver_version_str_size);
  1162. char *driver_version = (char *)alloca(driver_version_str_size + 1);
  1163. clGetDeviceInfo(device, CL_DRIVER_VERSION, driver_version_str_size, driver_version, NULL);
  1164. driver_version[driver_version_str_size] = '\0';
  1165. GGML_LOG_INFO("ggml_opencl: OpenCL driver: %s\n", driver_version);
  1166. backend_ctx->driver_version = driver_version;
  1167. backend_ctx->adreno_cl_compiler_version = get_adreno_cl_compiler_version(driver_version);
  1168. backend_ctx->has_vector_subgroup_broadcast =
  1169. backend_ctx->adreno_cl_compiler_version.major >= 47 ||
  1170. backend_ctx->adreno_cl_compiler_version.major == 17;
  1171. GGML_LOG_INFO("ggml_opencl: vector subgroup broadcast support: %s\n",
  1172. backend_ctx->has_vector_subgroup_broadcast ? "true" : "false");
  1173. size_t ext_str_size;
  1174. clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size);
  1175. char *ext_buffer = (char *)alloca(ext_str_size + 1);
  1176. clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL);
  1177. ext_buffer[ext_str_size] = '\0'; // ensure it is null terminated
  1178. // Check if ext_buffer contains cl_khr_fp16
  1179. backend_ctx->fp16_support = strstr(ext_buffer, "cl_khr_fp16") != NULL;
  1180. GGML_LOG_INFO("ggml_opencl: device FP16 support: %s\n", backend_ctx->fp16_support ? "true" : "false");
  1181. // fp16 is required
  1182. if (!backend_ctx->fp16_support) {
  1183. GGML_LOG_ERROR("ggml_opencl: device does not support FP16\n");
  1184. return backend_ctx;
  1185. }
  1186. // If OpenCL 3.0 is supported, then check for cl_khr_subgroups, which becomes
  1187. // optional in OpenCL 3.0 (cl_khr_subgroup is mandatory in OpenCL 2.x)
  1188. if (opencl_c_version.major == 3 && strstr(ext_buffer, "cl_khr_subgroups") == NULL &&
  1189. strstr(ext_buffer, "cl_intel_subgroups") == NULL) {
  1190. GGML_LOG_ERROR("ggml_opencl: device does not support subgroups (cl_khr_subgroups or cl_intel_subgroups) "
  1191. "(note that subgroups is an optional feature in OpenCL 3.0)\n");
  1192. return backend_ctx;
  1193. }
  1194. cl_uint base_align_in_bits;
  1195. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_MEM_BASE_ADDR_ALIGN, sizeof(cl_uint), &base_align_in_bits, NULL));
  1196. GGML_ASSERT(base_align_in_bits % 8u == 0);
  1197. backend_ctx->alignment = base_align_in_bits / 8u;
  1198. GGML_LOG_INFO("ggml_opencl: mem base addr align: %u\n", backend_ctx->alignment);
  1199. clGetDeviceInfo(device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(size_t), &backend_ctx->max_alloc_size, NULL);
  1200. GGML_LOG_INFO("ggml_opencl: max mem alloc size: %zu MB\n", backend_ctx->max_alloc_size/1024/1024);
  1201. // Check SVM.
  1202. cl_device_svm_capabilities svm_caps;
  1203. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_SVM_CAPABILITIES, sizeof(cl_device_svm_capabilities), &svm_caps, 0));
  1204. GGML_LOG_INFO("ggml_opencl: SVM coarse grain buffer support: %s\n",
  1205. svm_caps & CL_DEVICE_SVM_COARSE_GRAIN_BUFFER ? "true" : "false");
  1206. GGML_LOG_INFO("ggml_opencl: SVM fine grain buffer support: %s\n",
  1207. svm_caps & CL_DEVICE_SVM_FINE_GRAIN_BUFFER ? "true" : "false");
  1208. GGML_LOG_INFO("ggml_opencl: SVM fine grain system support: %s\n",
  1209. svm_caps & CL_DEVICE_SVM_FINE_GRAIN_SYSTEM ? "true" : "false");
  1210. GGML_LOG_INFO("ggml_opencl: SVM atomics support: %s\n",
  1211. svm_caps & CL_DEVICE_SVM_ATOMICS ? "true" : "false");
  1212. // Print out configurations
  1213. #ifdef GGML_OPENCL_SOA_Q
  1214. GGML_LOG_INFO("ggml_opencl: flattening quantized weights representation as struct of arrays (GGML_OPENCL_SOA_Q)\n");
  1215. #endif // GGML_OPENCL_SOA_Q
  1216. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  1217. GGML_LOG_INFO("ggml_opencl: using kernels optimized for Adreno (GGML_OPENCL_USE_ADRENO_KERNELS)\n");
  1218. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  1219. cl_context_properties properties[] = {
  1220. (intptr_t)CL_CONTEXT_PLATFORM, (intptr_t)dev_ctx->platform, 0
  1221. };
  1222. CL_CHECK((backend_ctx->context = clCreateContext(properties, 1, &device, NULL, NULL, &err), err));
  1223. // A local ref of cl_context for convenience
  1224. cl_context context = backend_ctx->context;
  1225. //CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err),
  1226. // (err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err :
  1227. // (queue = clCreateCommandQueue(context, device, 0, &err), err)
  1228. //)));
  1229. cl_command_queue_properties command_queue_props = 0;
  1230. #ifdef GGML_OPENCL_PROFILING
  1231. command_queue_props |= CL_QUEUE_PROFILING_ENABLE;
  1232. #endif
  1233. CL_CHECK((backend_ctx->queue = clCreateCommandQueue(context, device, command_queue_props, &err), err));
  1234. // Load kernels
  1235. load_cl_kernels(backend_ctx, opencl_c_version);
  1236. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  1237. // Allocate intermediate buffers and images
  1238. size_t required_A_q_d_bytes = 311164928;
  1239. size_t required_A_s_d_bytes = 38895616;
  1240. size_t required_B_d_bytes = 45088768;
  1241. // Ensure buffer sizes do not exceed the maximum allocation size
  1242. size_t max_A_q_d_bytes = MIN(required_A_q_d_bytes, backend_ctx->max_alloc_size);
  1243. size_t max_A_s_d_bytes = MIN(required_A_s_d_bytes, backend_ctx->max_alloc_size);
  1244. size_t max_B_d_bytes = MIN(required_B_d_bytes, backend_ctx->max_alloc_size);
  1245. if (required_A_q_d_bytes > backend_ctx->max_alloc_size) {
  1246. GGML_LOG_WARN("ggml_opencl: A_q_d buffer size reduced from %zu to %zu due to device limitations.\n",
  1247. required_A_q_d_bytes, max_A_q_d_bytes);
  1248. }
  1249. if (required_A_s_d_bytes > backend_ctx->max_alloc_size) {
  1250. GGML_LOG_WARN("ggml_opencl: A_s_d buffer size reduced from %zu to %zu due to device limitations.\n",
  1251. required_A_s_d_bytes, max_A_s_d_bytes);
  1252. }
  1253. if (required_B_d_bytes > backend_ctx->max_alloc_size) {
  1254. GGML_LOG_WARN("ggml_opencl: B_d buffer size reduced from %zu to %zu due to device limitations.\n",
  1255. required_B_d_bytes, max_B_d_bytes);
  1256. }
  1257. CL_CHECK((backend_ctx->A_q_d_max = clCreateBuffer(context, 0, max_A_q_d_bytes, NULL, &err), err));
  1258. CL_CHECK((backend_ctx->A_s_d_max = clCreateBuffer(context, 0, max_A_s_d_bytes, NULL, &err), err));
  1259. CL_CHECK((backend_ctx->B_d_max = clCreateBuffer(context, 0, max_B_d_bytes, NULL, &err), err));
  1260. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  1261. // For now we support a single devices
  1262. ggml_backend_opencl_n_devices = 1;
  1263. return backend_ctx;
  1264. }
  1265. static void ggml_cl2_free(void) {
  1266. #ifdef GGML_OPENCL_PROFILING
  1267. FILE * fperf = fopen("cl_profiling.csv", "w");
  1268. if (!fperf) {
  1269. GGML_LOG_ERROR("Failed to open cl_profiling.csv\n");
  1270. return;
  1271. }
  1272. // Populate profiling info
  1273. for (ProfilingInfo & info : g_profiling_info) {
  1274. cl_ulong cmd_queued;
  1275. cl_ulong cmd_submit;
  1276. cl_ulong cmd_start;
  1277. cl_ulong cmd_end;
  1278. cl_ulong cmd_complete;
  1279. CL_CHECK(clWaitForEvents(1, &info.evt));
  1280. CL_CHECK(clGetEventProfilingInfo(
  1281. info.evt, CL_PROFILING_COMMAND_QUEUED, sizeof(cl_ulong), &cmd_queued, NULL));
  1282. CL_CHECK(clGetEventProfilingInfo(
  1283. info.evt, CL_PROFILING_COMMAND_SUBMIT, sizeof(cl_ulong), &cmd_submit, NULL));
  1284. CL_CHECK(clGetEventProfilingInfo(
  1285. info.evt, CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &cmd_start, NULL));
  1286. CL_CHECK(clGetEventProfilingInfo(
  1287. info.evt, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &cmd_end, NULL));
  1288. CL_CHECK(clGetEventProfilingInfo(
  1289. info.evt, CL_PROFILING_COMMAND_COMPLETE, sizeof(cl_ulong), &cmd_complete, NULL));
  1290. CL_CHECK(clReleaseEvent(info.evt));
  1291. char kernel_name[512];
  1292. CL_CHECK(clGetKernelInfo(info.kernel, CL_KERNEL_FUNCTION_NAME,
  1293. sizeof(kernel_name), kernel_name, NULL));
  1294. info.kernel_name = kernel_name;
  1295. info.cmd_queued = cmd_queued;
  1296. info.cmd_submit = cmd_submit;
  1297. info.cmd_start = cmd_start;
  1298. info.cmd_end = cmd_end;
  1299. info.cmd_queued_duration_ns = cmd_submit - cmd_queued;
  1300. info.cmd_submit_duration_ns = cmd_start - cmd_submit;
  1301. info.cmd_duration_ns = cmd_end - cmd_start;
  1302. info.cmd_complete_duration_ns = cmd_complete - cmd_end;
  1303. info.cmd_total_duration_ns = cmd_complete - cmd_queued;
  1304. }
  1305. // Dump a csv
  1306. float total_kernel_time = 0;
  1307. fprintf(fperf, "op name, kernel name, queued duration (ms), submit duration(ms), exec duration (ms), complete duration (ms), total duration (ms), global size, local size, output size\n");
  1308. for (const ProfilingInfo & info : g_profiling_info) {
  1309. total_kernel_time += info.cmd_duration_ns/1.e6f;
  1310. fprintf(fperf, "%s,%s,%f,%f,%f,%f,%f,%zux%zux%zu,%zux%zux%zu,%zux%zux%zux%zu\n",
  1311. info.op_name.c_str(), info.kernel_name.c_str(),
  1312. info.cmd_queued_duration_ns/1.e6f,
  1313. info.cmd_submit_duration_ns/1.e6f,
  1314. info.cmd_duration_ns/1.e6f,
  1315. info.cmd_complete_duration_ns/1.e6f,
  1316. info.cmd_total_duration_ns/1.e6f,
  1317. info.global_size[0], info.global_size[1], info.global_size[2],
  1318. info.local_size[0], info.local_size[1], info.local_size[2],
  1319. info.output_size[0], info.output_size[1], info.output_size[2], info.output_size[3]);
  1320. }
  1321. fclose(fperf);
  1322. GGML_LOG_INFO("ggml_opencl: total kernel time: %f\n", total_kernel_time);
  1323. // Dump a simple chrome trace
  1324. FILE* ftrace = fopen("cl_trace.json", "w");
  1325. if (!ftrace) {
  1326. GGML_LOG_ERROR("Failed to open cl_trace.json\n");
  1327. return;
  1328. }
  1329. fprintf(ftrace, "[\n");
  1330. for (const ProfilingInfo & info : g_profiling_info) {
  1331. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"B\", \"ts\": %lu, \"pid\": \"\", \"tid\": \"Host\"},\n",
  1332. info.kernel_name.c_str(), info.cmd_queued/1000);
  1333. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"E\", \"ts\": %lu, \"pid\": \"\", \"tid\": \"Host\"},\n",
  1334. info.kernel_name.c_str(), info.cmd_submit/1000);
  1335. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"B\", \"ts\": %lu, \"pid\": \"\", \"tid\": \"Device\"},\n",
  1336. info.kernel_name.c_str(), info.cmd_start/1000);
  1337. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"E\", \"ts\": %lu, \"pid\": \"\", \"tid\": \"Device\"},\n",
  1338. info.kernel_name.c_str(), info.cmd_end/1000);
  1339. }
  1340. fclose(ftrace);
  1341. #endif
  1342. }
  1343. //------------------------------------------------------------------------------
  1344. // Tensor extra management
  1345. //------------------------------------------------------------------------------
  1346. struct ggml_tensor_extra_cl {
  1347. // The buffer object that holds the data.
  1348. cl_mem data_device;
  1349. // The offset into the buffer object. This is primarily for scratch buffer
  1350. // and view operation.
  1351. // NB: this offset no longer includes view offset (view_offs). Whenever this
  1352. // offset is used, view_offs should be considered.
  1353. cl_ulong offset;
  1354. // The actual size of the cl_mem object. This is needed when returning the
  1355. // block to the pool.
  1356. size_t actual_size;
  1357. void reset() {
  1358. data_device = nullptr;
  1359. offset = 0;
  1360. actual_size = 0;
  1361. }
  1362. };
  1363. // Additional tensor extra structs for quantized tensors.
  1364. // These tensors are loaded from files and should not be allocated in scratch --
  1365. // they should always be allocated from the pool. Hence, they do not have an
  1366. // `offset`, which indicate their locations in the scratch buffer.
  1367. struct ggml_tensor_extra_cl_q4_0 {
  1368. // Quantized values.
  1369. cl_mem q = nullptr;
  1370. // Quantized values in image1d_buffer_t.
  1371. cl_mem q_img = nullptr;
  1372. // Scales.
  1373. cl_mem d = nullptr;
  1374. // Scales in image1d_buffer_t.
  1375. cl_mem d_img = nullptr;
  1376. // Size of quantized values.
  1377. size_t size_q = 0;
  1378. // Size of scales.
  1379. size_t size_d = 0;
  1380. ~ggml_tensor_extra_cl_q4_0() {
  1381. reset();
  1382. }
  1383. void reset() {
  1384. // q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer.
  1385. // They must be properly released so that the original buffer can be
  1386. // properly released to avoid memory leak.
  1387. if (q != nullptr) {
  1388. CL_CHECK(clReleaseMemObject(q));
  1389. q = nullptr;
  1390. }
  1391. if (d != nullptr) {
  1392. CL_CHECK(clReleaseMemObject(d));
  1393. d = nullptr;
  1394. }
  1395. // Currently, q_img and d_img are only initialized when SMALL_ALLOC is
  1396. // enabled. They point to the images in ggml_backend_opencl_buffer_context.
  1397. // So, there is no need to release them here.
  1398. // TODO: initialize them for non SMALL_PATH path, or remove them.
  1399. q_img = nullptr;
  1400. d_img = nullptr;
  1401. size_q = 0;
  1402. size_d = 0;
  1403. }
  1404. };
  1405. //------------------------------------------------------------------------------
  1406. // Backend API
  1407. //------------------------------------------------------------------------------
  1408. //
  1409. // backend
  1410. //
  1411. static const char * ggml_backend_opencl_name(ggml_backend_t backend) {
  1412. return "OpenCL";
  1413. UNUSED(backend);
  1414. }
  1415. static void ggml_backend_opencl_free(ggml_backend_t backend) {
  1416. ggml_cl2_free();
  1417. GGML_UNUSED(backend);
  1418. }
  1419. static void ggml_backend_opencl_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  1420. GGML_UNUSED(backend);
  1421. GGML_UNUSED(tensor);
  1422. GGML_UNUSED(data);
  1423. GGML_UNUSED(offset);
  1424. GGML_UNUSED(size);
  1425. }
  1426. static void ggml_backend_opencl_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  1427. GGML_UNUSED(backend);
  1428. GGML_UNUSED(tensor);
  1429. GGML_UNUSED(data);
  1430. GGML_UNUSED(offset);
  1431. GGML_UNUSED(size);
  1432. }
  1433. static bool ggml_backend_opencl_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) {
  1434. GGML_UNUSED(backend);
  1435. GGML_UNUSED(src);
  1436. GGML_UNUSED(dst);
  1437. return false;
  1438. }
  1439. static void ggml_backend_opencl_synchronize(ggml_backend_t backend) {
  1440. GGML_UNUSED(backend);
  1441. }
  1442. static ggml_status ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
  1443. for (int i = 0; i < cgraph->n_nodes; i++) {
  1444. ggml_tensor * node = cgraph->nodes[i];
  1445. if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
  1446. continue;
  1447. }
  1448. bool ok = ggml_cl_compute_forward(backend, node);
  1449. if (!ok) {
  1450. GGML_LOG_ERROR("%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
  1451. }
  1452. GGML_ASSERT(ok);
  1453. }
  1454. return GGML_STATUS_SUCCESS;
  1455. }
  1456. static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
  1457. GGML_UNUSED(dev);
  1458. switch (op->op) {
  1459. case GGML_OP_NONE:
  1460. return true;
  1461. case GGML_OP_GET_ROWS:
  1462. switch (op->src[0]->type) {
  1463. case GGML_TYPE_F32:
  1464. case GGML_TYPE_F16:
  1465. return true;
  1466. case GGML_TYPE_Q4_0:
  1467. #ifdef GGML_OPENCL_SOA_Q
  1468. // We do not support flattened Q4_0 (and possibly other Q's)
  1469. return false;
  1470. #else // GGML_OPENCL_SOA_Q
  1471. return true;
  1472. #endif // GGML_OPENCL_SOA_Q
  1473. default:
  1474. return false;
  1475. }
  1476. case GGML_OP_CPY:
  1477. case GGML_OP_DUP:
  1478. case GGML_OP_CONT:
  1479. switch (op->src[0]->type) {
  1480. case GGML_TYPE_F32:
  1481. switch (op->type) {
  1482. case GGML_TYPE_F16:
  1483. case GGML_TYPE_F32:
  1484. return true;
  1485. default:
  1486. return false;
  1487. }
  1488. case GGML_TYPE_F16:
  1489. switch (op->type) {
  1490. case GGML_TYPE_F16:
  1491. case GGML_TYPE_F32:
  1492. return true;
  1493. default:
  1494. return false;
  1495. }
  1496. default:
  1497. return false;
  1498. }
  1499. case GGML_OP_ADD:
  1500. case GGML_OP_SCALE:
  1501. case GGML_OP_MUL:
  1502. return op->src[0]->type == GGML_TYPE_F32;
  1503. case GGML_OP_UNARY:
  1504. switch (ggml_get_unary_op(op)) {
  1505. case GGML_UNARY_OP_GELU:
  1506. case GGML_UNARY_OP_SILU:
  1507. case GGML_UNARY_OP_RELU:
  1508. case GGML_UNARY_OP_GELU_QUICK:
  1509. return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
  1510. default:
  1511. return false;
  1512. }
  1513. case GGML_OP_CLAMP:
  1514. return op->src[0]->type == GGML_TYPE_F32;
  1515. case GGML_OP_SOFT_MAX:
  1516. case GGML_OP_NORM:
  1517. case GGML_OP_RMS_NORM:
  1518. return true;
  1519. case GGML_OP_MUL_MAT:
  1520. if (op->src[0]->type == GGML_TYPE_F16) {
  1521. return true;
  1522. } else if (op->src[0]->type == GGML_TYPE_F32) {
  1523. return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
  1524. } else if (op->src[0]->type == GGML_TYPE_Q4_0 ||
  1525. op->src[0]->type == GGML_TYPE_Q6_K) {
  1526. return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
  1527. }
  1528. return false;
  1529. case GGML_OP_RESHAPE:
  1530. case GGML_OP_VIEW:
  1531. case GGML_OP_PERMUTE:
  1532. case GGML_OP_TRANSPOSE:
  1533. return true;
  1534. case GGML_OP_DIAG_MASK_INF:
  1535. return op->ne[3] == 1;
  1536. case GGML_OP_ROPE: {
  1537. const int mode = ((const int32_t *) op->op_params)[2];
  1538. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  1539. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  1540. if (is_mrope && !is_vision) {
  1541. if (op->src[0]->type == GGML_TYPE_F32 ||
  1542. op->src[0]->type == GGML_TYPE_F16) {
  1543. return true;
  1544. }
  1545. return false;
  1546. }
  1547. if (is_vision) {
  1548. if (op->src[0]->type == GGML_TYPE_F32 ||
  1549. op->src[0]->type == GGML_TYPE_F16) {
  1550. return true;
  1551. }
  1552. return false;
  1553. }
  1554. return true;
  1555. }
  1556. case GGML_OP_IM2COL:
  1557. return true;
  1558. default:
  1559. return false;
  1560. }
  1561. }
  1562. // Forward declaration - implementation appears later in the file.
  1563. static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type);
  1564. static ggml_guid_t ggml_backend_opencl_guid() {
  1565. static ggml_guid guid = { 0xde, 0xe0, 0x70, 0xa2, 0x73, 0x4e, 0x4d, 0xbc, 0xb0, 0xc7, 0x4f, 0xd4, 0x6d, 0x4e, 0x90, 0xfe };
  1566. return &guid;
  1567. }
  1568. static ggml_backend_i ggml_backend_opencl_i = {
  1569. /* .get_name = */ ggml_backend_opencl_name,
  1570. /* .free = */ ggml_backend_opencl_free,
  1571. /* .set_tensor_async = */ NULL, /* ggml_backend_opencl_set_tensor_async */
  1572. /* .get_tensor_async = */ NULL, /* ggml_backend_opencl_get_tensor_async */
  1573. /* .cpy_tensor_async = */ NULL, /* ggml_backend_opencl_cpy_tensor_async */
  1574. /* .synchronize = */ NULL, /* ggml_backend_opencl_synchronize */
  1575. /* .graph_plan_create = */ NULL,
  1576. /* .graph_plan_free = */ NULL,
  1577. /* .graph_plan_update = */ NULL,
  1578. /* .graph_plan_compute = */ NULL,
  1579. /* .graph_compute = */ ggml_backend_opencl_graph_compute,
  1580. /* .event_record = */ NULL,
  1581. /* .event_wait = */ NULL,
  1582. };
  1583. ggml_backend_t ggml_backend_opencl_init(void) {
  1584. ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_opencl_reg(), 0);
  1585. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);
  1586. ggml_backend_t backend = new ggml_backend {
  1587. /* .guid = */ ggml_backend_opencl_guid(),
  1588. /* .interface = */ ggml_backend_opencl_i,
  1589. /* .device = */ dev,
  1590. /* .context = */ backend_ctx
  1591. };
  1592. return backend;
  1593. }
  1594. bool ggml_backend_is_opencl(ggml_backend_t backend) {
  1595. return backend && backend->iface.get_name == ggml_backend_opencl_name;
  1596. }
  1597. //
  1598. // buffer
  1599. //
  1600. struct ggml_backend_opencl_buffer_context {
  1601. // A buffer context can hold multiple cl_mem objects. This is for flattening
  1602. // quantized weights and should be used with GGML_OPENCL_SMALL_ALLOC where
  1603. // each tensor is allocated a separate buffer. When flattening is enabled
  1604. // with small allocation, each tensor is backed by two cl_mem objects (for
  1605. // quants and scales) packed into a backend_opencl_buffer.
  1606. ggml_backend_opencl_buffer_context(cl_mem buf)
  1607. : name("OpenCL") {
  1608. buffer.push_back(buf);
  1609. }
  1610. ~ggml_backend_opencl_buffer_context() {
  1611. for (cl_mem buf : buffer) {
  1612. CL_CHECK(clReleaseMemObject(buf));
  1613. }
  1614. for (cl_mem im : img) {
  1615. CL_CHECK(clReleaseMemObject(im));
  1616. }
  1617. // Delete all extras to trigger their destructors
  1618. for (ggml_tensor_extra_cl * e : temp_tensor_extras) {
  1619. delete e;
  1620. }
  1621. for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
  1622. delete e;
  1623. }
  1624. for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0) {
  1625. delete e;
  1626. }
  1627. for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
  1628. delete e;
  1629. }
  1630. }
  1631. ggml_tensor_extra_cl * ggml_opencl_alloc_temp_tensor_extra() {
  1632. ggml_tensor_extra_cl * extra;
  1633. if (temp_tensor_extras.empty()) {
  1634. extra = new ggml_tensor_extra_cl();
  1635. } else {
  1636. extra = temp_tensor_extras.back();
  1637. temp_tensor_extras.pop_back();
  1638. }
  1639. temp_tensor_extras_in_use.push_back(extra);
  1640. extra->reset();
  1641. return extra;
  1642. }
  1643. ggml_tensor_extra_cl_q4_0 * ggml_opencl_alloc_temp_tensor_extra_q4_0() {
  1644. ggml_tensor_extra_cl_q4_0 * extra;
  1645. if (temp_tensor_extras_q4_0.empty()) {
  1646. extra = new ggml_tensor_extra_cl_q4_0();
  1647. } else {
  1648. extra = temp_tensor_extras_q4_0.back();
  1649. temp_tensor_extras_q4_0.pop_back();
  1650. }
  1651. temp_tensor_extras_q4_0_in_use.push_back(extra);
  1652. extra->reset();
  1653. return extra;
  1654. }
  1655. void reset() {
  1656. for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
  1657. temp_tensor_extras.push_back(e);
  1658. }
  1659. temp_tensor_extras_in_use.clear();
  1660. for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
  1661. temp_tensor_extras_q4_0.push_back(e);
  1662. }
  1663. temp_tensor_extras_q4_0_in_use.clear();
  1664. }
  1665. // Pools for extras. Available extras are in `temp_tensor_extras`. Extras
  1666. // being used are in `temp_tensor_extras_in_use`. At the first run, new
  1667. // extras get created and put in `in_use`. When the buffer is reset via
  1668. // the `reset` callback, all extras in `in_use` get moved to available extras
  1669. // for reuse.
  1670. std::vector<ggml_tensor_extra_cl *> temp_tensor_extras;
  1671. std::vector<ggml_tensor_extra_cl *> temp_tensor_extras_in_use;
  1672. std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0;
  1673. std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0_in_use;
  1674. // The buffer_context is initially created by ggml_backend_buft_alloc_buffer
  1675. // before any tensor is initialized (at the beginning of alloc_tensor_range).
  1676. // Hence, there is alway a buffer object in this vector. When each tensor is
  1677. // being initialized, this original buffer object will be released if both
  1678. // flattening and small allocation are enabled, and additional buffer
  1679. // objects will be created in init_tensor to represent flattened quantized
  1680. // weights.
  1681. std::vector<cl_mem> buffer;
  1682. // These are image1d_buffer_t objects that wrap around the quants and scales.
  1683. // For Q4_0 quantization, there should be two of them - one for quants and
  1684. // one for scales. They should be populated only when flattening and small
  1685. // allocation are enabled.
  1686. std::vector<cl_mem> img;
  1687. std::string name;
  1688. };
  1689. static void ggml_backend_opencl_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  1690. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  1691. delete ctx;
  1692. }
  1693. static void * ggml_backend_opencl_buffer_get_base(ggml_backend_buffer_t buffer) {
  1694. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer->buft->device);
  1695. return (void *) (uintptr_t) backend_ctx->alignment;
  1696. }
  1697. static enum ggml_status ggml_backend_opencl_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
  1698. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  1699. ggml_cl2_init(buffer->buft->device);
  1700. if (tensor->view_src != nullptr) {
  1701. GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft);
  1702. ggml_tensor_extra_cl * view_extra = (ggml_tensor_extra_cl *) tensor->view_src->extra;
  1703. GGML_ASSERT(view_extra && "view_extra is nullptr?");
  1704. // Reuse extra of the parent tensor. The offset of this view tensor
  1705. // becomes `extra->offset + view_offs` and needs to be calculated when
  1706. // it is used. This changes is needed because of the change to
  1707. // ggml_alloc.c in https://github.com/ggerganov/llama.cpp/pull/7640.
  1708. // `buffer` passed in here will always be `tensor->buffer`. It is OK
  1709. // to allocate extras from the same buffer context for ordinary
  1710. // intermediate tensors. But for views into kv cache tensors, doing so
  1711. // would mess up the extras used by kv cache.
  1712. // Before #7640, `buffer` is for intermediate tensors, which is always
  1713. // different from that of kv cache tensors.
  1714. //
  1715. // NB: now extra->offset no longer accounts for view_offs.
  1716. // NB: this should not apply to weight tensors (for end-to-end runs, but
  1717. // may apply for test-backend-ops).
  1718. // FIXME: if any unexpected results are seen, double check the offset -
  1719. // there could be other places that need fix.
  1720. tensor->extra = view_extra;
  1721. } else {
  1722. {
  1723. size_t offset = (char *) tensor->data - (char *) ggml_backend_opencl_buffer_get_base(buffer);
  1724. ggml_tensor_extra_cl * extra = ctx->ggml_opencl_alloc_temp_tensor_extra();
  1725. extra->offset = offset;
  1726. extra->data_device = ctx->buffer[0];
  1727. extra->actual_size = ggml_nbytes(tensor);
  1728. tensor->extra = extra;
  1729. }
  1730. }
  1731. return GGML_STATUS_SUCCESS;
  1732. }
  1733. // The optimized gemm and gemv kernels are used for large matrices without batch.
  1734. // tensor is the quantized weights matrix.
  1735. inline bool use_adreno_kernels(const ggml_backend_opencl_context *backend_ctx, const ggml_tensor *tensor) {
  1736. int64_t threshold_ne0 = 512;
  1737. int64_t threshold_ne1 = 512;
  1738. if (!backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) &&
  1739. backend_ctx->adreno_cl_compiler_version.type != DX) {
  1740. threshold_ne0 = 128;
  1741. threshold_ne1 = 128;
  1742. }
  1743. return tensor->ne[0] >= threshold_ne0 && tensor->ne[1] >= threshold_ne1 &&
  1744. tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1745. }
  1746. static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  1747. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
  1748. cl_context context = backend_ctx->context;
  1749. cl_command_queue queue = backend_ctx->queue;
  1750. #ifdef GGML_OPENCL_SOA_Q
  1751. // We separate the quantized bits and scale from block_q4_0 by using an
  1752. // additional kernel, where each thread handles a block. We first read the
  1753. // original weights into a temporary buffer, then create two separate
  1754. // buffers for quantized bits and scales, which are then populated by the
  1755. // conversion kernel.
  1756. if (tensor->type == GGML_TYPE_Q4_0) {
  1757. // Tensors should have been preallocated, therefore they should
  1758. // already have ggml_tensor_extra_cl as extra.
  1759. ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
  1760. GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
  1761. // Allocate the new extra and create aliases from the original.
  1762. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  1763. ggml_tensor_extra_cl_q4_0 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_q4_0();
  1764. size_t size_d = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(ggml_fp16_t);
  1765. size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*ggml_blck_size(tensor->type)/2;
  1766. GGML_ASSERT(size_d + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");
  1767. cl_int err;
  1768. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  1769. ggml_nbytes(tensor), NULL, &err);
  1770. CL_CHECK(err);
  1771. CL_CHECK(clEnqueueWriteBuffer(
  1772. queue, data_device, CL_TRUE, 0,
  1773. ggml_nbytes(tensor), data, 0, NULL, NULL));
  1774. // We consider the specified offset arg as always, although For weights
  1775. // the offset arg should be 0 (we do not assert this).
  1776. //GGML_ASSERT(offset == 0);
  1777. // We create subbuffers from the original tensor buffer for scales and
  1778. // quants - i.e., scales and quants are aliases into the buffer obejct
  1779. // that backs the original tensor. This is a cleaner way to adapt to the
  1780. // new memory management.
  1781. // In the old code, we allocate new buffers for scales and quants
  1782. // respectively, which could still be done but would result in double
  1783. // allocation; properly deallocating the preallocated buffer that backs
  1784. // the tensors is tricky and would leak the backend specific information
  1785. // into the general backend code.
  1786. // Does this create misaligned subbuffers (alignment is 1024) in certain
  1787. // cases ?
  1788. cl_buffer_region region;
  1789. // The original tensor memory is divided into scales and quants, i.e.,
  1790. // we first store scales, then quants.
  1791. // Create subbuffer for scales.
  1792. region.origin = extra_orig->offset + tensor->view_offs + offset;
  1793. region.size = size_d;
  1794. extra->d = clCreateSubBuffer(
  1795. extra_orig->data_device, CL_MEM_READ_WRITE,
  1796. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  1797. CL_CHECK(err);
  1798. // Create subbuffer for quants.
  1799. region.origin = extra_orig->offset + tensor->view_offs + offset + size_d;
  1800. region.size = size_q;
  1801. extra->q = clCreateSubBuffer(
  1802. extra_orig->data_device, CL_MEM_READ_WRITE,
  1803. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  1804. CL_CHECK(err);
  1805. //cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
  1806. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  1807. cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
  1808. // The optimized kernels need weights in natural order, so unshuffle.
  1809. if (use_adreno_kernels(backend_ctx, tensor)) {
  1810. kernel = backend_ctx->kernel_convert_block_q4_0_noshuffle;
  1811. }
  1812. #else
  1813. cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
  1814. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  1815. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
  1816. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
  1817. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->d));
  1818. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  1819. size_t local_work_size[] = {64, 1, 1};
  1820. cl_event evt;
  1821. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  1822. CL_CHECK(clWaitForEvents(1, &evt));
  1823. CL_CHECK(clReleaseMemObject(data_device));
  1824. tensor->extra = extra;
  1825. // transpose the weights and scales
  1826. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  1827. // Only do transpose for large, non batched matrix
  1828. // TODO: use preallocated images instead of sub-buffer then image
  1829. if (use_adreno_kernels(backend_ctx, tensor)) {
  1830. // <----------------------------------------------------------------------------------> //
  1831. // start transpose
  1832. // <----------------------------------------------------------------------------------> //
  1833. int M = tensor->ne[1]; // ne01
  1834. int K = tensor->ne[0]; // ne00
  1835. //For matrix-vector multiplication kernel, we assume K is a multiple of 32
  1836. GGML_ASSERT(K % 32 == 0);
  1837. //For transpose kernels, we assume K is a multiple of 4 (satisfied by prior assert), and M is a multiple of 4
  1838. GGML_ASSERT(M % 4 == 0);
  1839. // transpose is out of place, so we need to allocate transposed buffers
  1840. // <----------------------------------------------------------------------------------> //
  1841. // use sub_buffer of max buffer size instead
  1842. size_t q_size_bytes = K * M / 8 * sizeof(float);
  1843. cl_buffer_region region;
  1844. region.origin = 0;
  1845. region.size = q_size_bytes;
  1846. cl_mem qT_d = clCreateSubBuffer(
  1847. backend_ctx->A_q_d_max,
  1848. 0,
  1849. CL_BUFFER_CREATE_TYPE_REGION,
  1850. &region,
  1851. &err);
  1852. // cl_mem qT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, q_size_bytes, NULL, &err);
  1853. CL_CHECK(err);
  1854. // size_t d_size_bytes = M * (K / 32) / 2 * sizeof(float);
  1855. size_t d_size_bytes = M * (K / 32) * 2;
  1856. region.origin = 0;
  1857. region.size = d_size_bytes;
  1858. cl_mem dT_d = clCreateSubBuffer(
  1859. backend_ctx->A_s_d_max,
  1860. 0,
  1861. CL_BUFFER_CREATE_TYPE_REGION,
  1862. &region,
  1863. &err);
  1864. // cl_mem dT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, d_size_bytes, NULL, &err);
  1865. CL_CHECK(err);
  1866. // <----------------------------------------------------------------------------------> //
  1867. // create images from the buffers
  1868. // <----------------------------------------------------------------------------------> //
  1869. cl_mem q_d_image1D;
  1870. cl_mem d_d_image1D;
  1871. cl_mem qT_d_image1D;
  1872. cl_mem dT_d_image1D;
  1873. cl_image_format img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  1874. cl_image_desc img_desc_1d;
  1875. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  1876. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  1877. img_desc_1d.image_width = M * K / 4 / 4;
  1878. img_desc_1d.buffer = extra->q;
  1879. q_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  1880. CL_CHECK(err);
  1881. img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  1882. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  1883. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  1884. img_desc_1d.image_width = M * K / 4 / 4;
  1885. img_desc_1d.buffer = qT_d;
  1886. qT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  1887. CL_CHECK(err);
  1888. img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  1889. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  1890. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  1891. img_desc_1d.image_width = M * K / 32 / 4;
  1892. img_desc_1d.buffer = extra->d;
  1893. d_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  1894. CL_CHECK(err);
  1895. img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  1896. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  1897. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  1898. img_desc_1d.image_width = M * K / 32 / 4;
  1899. img_desc_1d.buffer = dT_d;
  1900. dT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  1901. CL_CHECK(err);
  1902. // <----------------------------------------------------------------------------------> //
  1903. // set up and call the transpose kernels
  1904. // <----------------------------------------------------------------------------------> //
  1905. // weights
  1906. int height_q = M / 4;
  1907. int width_q = K / 4 / 4;
  1908. kernel = backend_ctx->kernel_transpose_16;
  1909. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &q_d_image1D));
  1910. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &qT_d_image1D));
  1911. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_q));
  1912. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_q));
  1913. size_t local_size_q[3] = {4, 16, 1};
  1914. size_t global_size_q[3] = {static_cast<size_t>(width_q), static_cast<size_t>(height_q), 1};
  1915. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_q, local_size_q, 0, NULL, &evt));
  1916. CL_CHECK(clWaitForEvents(1, &evt));
  1917. // scales
  1918. int height_s = M / 4;
  1919. int width_s = K / 32 / 4;
  1920. kernel = backend_ctx->kernel_transpose_16;
  1921. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_d_image1D));
  1922. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &dT_d_image1D));
  1923. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_s));
  1924. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_s));
  1925. size_t local_size_s[3] = {4, 16, 1};
  1926. size_t global_size_s[3] = {static_cast<size_t>(width_s), static_cast<size_t>(height_s), 1};
  1927. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_s, local_size_s, 0, NULL, &evt));
  1928. CL_CHECK(clWaitForEvents(1, &evt));
  1929. // <----------------------------------------------------------------------------------> //
  1930. // copy transposed buffer contents to original buffers
  1931. // <----------------------------------------------------------------------------------> //
  1932. // weights
  1933. CL_CHECK(clEnqueueCopyBuffer(queue, qT_d, extra->q, 0, 0, q_size_bytes, 0, NULL, &evt));
  1934. CL_CHECK(clWaitForEvents(1, &evt));
  1935. // scales
  1936. CL_CHECK(clEnqueueCopyBuffer(queue, dT_d, extra->d, 0, 0, d_size_bytes, 0, NULL, &evt));
  1937. CL_CHECK(clWaitForEvents(1, &evt));
  1938. // <----------------------------------------------------------------------------------> //
  1939. // deallocate transpose buffers
  1940. // <----------------------------------------------------------------------------------> //
  1941. CL_CHECK(clReleaseMemObject(qT_d));
  1942. CL_CHECK(clReleaseMemObject(dT_d));
  1943. // deallocate temporary images
  1944. CL_CHECK(clReleaseMemObject(q_d_image1D));
  1945. CL_CHECK(clReleaseMemObject(d_d_image1D));
  1946. CL_CHECK(clReleaseMemObject(qT_d_image1D));
  1947. CL_CHECK(clReleaseMemObject(dT_d_image1D));
  1948. // <----------------------------------------------------------------------------------> //
  1949. // end transpose
  1950. // <----------------------------------------------------------------------------------> //
  1951. }
  1952. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  1953. return;
  1954. }
  1955. #endif // GGML_OPENCL_SOA_Q
  1956. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  1957. GGML_ASSERT(extra);
  1958. CL_CHECK(clEnqueueWriteBuffer(
  1959. queue, extra->data_device, CL_TRUE, extra->offset + offset,
  1960. size, data, 0, NULL, NULL));
  1961. GGML_UNUSED(buffer);
  1962. }
  1963. static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  1964. GGML_ASSERT(tensor->extra);
  1965. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
  1966. cl_context context = backend_ctx->context;
  1967. cl_command_queue queue = backend_ctx->queue;
  1968. // Make sure all previously submitted commands are finished.
  1969. CL_CHECK(clFinish(queue));
  1970. #ifdef GGML_OPENCL_SOA_Q
  1971. // In end-to-end runs, get_tensor is usually used to get back the logits,
  1972. // where we can simply do clEnqueueReadBuffer since they are f32.
  1973. // However, in test-backend-ops, the GPU graph is copied to the CPU backend,
  1974. // which requires reading back quantized weight tensors.
  1975. // To properly support this, we need to restore block_q4_0 struct arrays
  1976. // from the flattened buffers.
  1977. if (tensor->type == GGML_TYPE_Q4_0) {
  1978. ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *)tensor->extra;
  1979. cl_int err;
  1980. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  1981. ggml_nbytes(tensor), NULL, &err);
  1982. CL_CHECK(err);
  1983. cl_kernel kernel = backend_ctx->kernel_restore_block_q4_0;
  1984. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
  1985. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->d));
  1986. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
  1987. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  1988. size_t local_work_size[] = {1, 1, 1};
  1989. cl_event evt;
  1990. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
  1991. global_work_size, local_work_size, 0, NULL, &evt));
  1992. CL_CHECK(clWaitForEvents(1, &evt));
  1993. CL_CHECK(clEnqueueReadBuffer(
  1994. queue, data_device, CL_TRUE, offset,
  1995. size, data, 0, NULL, NULL));
  1996. CL_CHECK(clReleaseMemObject(data_device));
  1997. return;
  1998. }
  1999. #endif // GGML_OPENCL_SOA_Q
  2000. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  2001. CL_CHECK(clEnqueueReadBuffer(
  2002. queue, extra->data_device, CL_TRUE, extra->offset + tensor->view_offs + offset,
  2003. size, data, 0, NULL, NULL));
  2004. GGML_UNUSED(buffer);
  2005. }
  2006. static void ggml_backend_opencl_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  2007. ggml_backend_dev_t dev = buffer->buft->device;
  2008. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);
  2009. cl_command_queue queue = backend_ctx->queue;
  2010. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  2011. for (cl_mem buf : ctx->buffer) {
  2012. CL_CHECK(clEnqueueFillBuffer(queue, buf, &value, sizeof(value), 0, buffer->size, 0, NULL, NULL));
  2013. }
  2014. CL_CHECK(clFinish(queue));
  2015. }
  2016. static void ggml_backend_opencl_buffer_reset(ggml_backend_buffer_t buffer) {
  2017. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  2018. ctx->reset();
  2019. }
  2020. static ggml_backend_buffer_i ggml_backend_opencl_buffer_interface = {
  2021. /* .free_buffer = */ ggml_backend_opencl_buffer_free_buffer,
  2022. /* .get_base = */ ggml_backend_opencl_buffer_get_base,
  2023. /* .init_tensor = */ ggml_backend_opencl_buffer_init_tensor,
  2024. /* .memset_tensor = */ NULL,
  2025. /* .set_tensor = */ ggml_backend_opencl_buffer_set_tensor,
  2026. /* .get_tensor = */ ggml_backend_opencl_buffer_get_tensor,
  2027. /* .cpy_tensor = */ NULL,
  2028. /* .clear = */ ggml_backend_opencl_buffer_clear,
  2029. /* .reset = */ ggml_backend_opencl_buffer_reset,
  2030. };
  2031. //
  2032. // buffer type
  2033. //
  2034. static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type) {
  2035. return "OpenCL";
  2036. GGML_UNUSED(buffer_type);
  2037. }
  2038. static ggml_backend_buffer_t ggml_backend_opencl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buffer_type, size_t size) {
  2039. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer_type->device);
  2040. // clCreateBuffer returns -61 for size 0
  2041. size = std::max(size, (size_t)1);
  2042. cl_int err;
  2043. cl_mem mem = clCreateBuffer(backend_ctx->context, CL_MEM_READ_WRITE, size, NULL, &err);
  2044. if (err != CL_SUCCESS) {
  2045. GGML_LOG_INFO("%s: failed to allocate %.2f MiB\n", __func__, size / 1024.0 / 1024.0);
  2046. return nullptr;
  2047. }
  2048. ggml_backend_opencl_buffer_context * ctx = new ggml_backend_opencl_buffer_context(mem);
  2049. return ggml_backend_buffer_init(buffer_type, ggml_backend_opencl_buffer_interface, ctx, size);
  2050. }
  2051. static size_t ggml_backend_opencl_buffer_type_get_alignment(ggml_backend_buffer_type_t buffer_type) {
  2052. // FIXME: not thread safe, device may not be initialized yet
  2053. static cl_uint alignment = -1;
  2054. if (alignment == (cl_uint)-1) {
  2055. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device);
  2056. alignment = backend_ctx->alignment;
  2057. }
  2058. return alignment;
  2059. }
  2060. static size_t ggml_backend_opencl_buffer_type_get_max_size(ggml_backend_buffer_type_t buffer_type) {
  2061. static size_t max_size = -1;
  2062. if (max_size == (size_t)-1) {
  2063. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device);
  2064. max_size = backend_ctx->max_alloc_size;
  2065. }
  2066. return max_size;
  2067. }
  2068. static bool ggml_backend_opencl_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  2069. return ggml_backend_is_opencl(backend);
  2070. UNUSED(buft);
  2071. }
  2072. static ggml_backend_buffer_type_i ggml_backend_opencl_buffer_type_interface = {
  2073. /* .get_name = */ ggml_backend_opencl_buffer_type_get_name,
  2074. /* .alloc_buffer = */ ggml_backend_opencl_buffer_type_alloc_buffer,
  2075. /* .get_alignment = */ ggml_backend_opencl_buffer_type_get_alignment,
  2076. /* .get_max_size = */ ggml_backend_opencl_buffer_type_get_max_size,
  2077. /* .get_alloc_size = */ NULL,
  2078. /* .is_host = */ NULL,
  2079. };
  2080. ggml_backend_buffer_type_t ggml_backend_opencl_buffer_type() {
  2081. static ggml_backend_buffer_type buffer_type = {
  2082. /* .iface = */ ggml_backend_opencl_buffer_type_interface,
  2083. /* .device = */ &g_ggml_backend_opencl_device,
  2084. /* .context = */ nullptr,
  2085. };
  2086. return &buffer_type;
  2087. }
  2088. //
  2089. // backend device
  2090. //
  2091. static const char * ggml_backend_opencl_device_get_name(ggml_backend_dev_t dev) {
  2092. return "GPUOpenCL";
  2093. GGML_UNUSED(dev);
  2094. }
  2095. static const char * ggml_backend_opencl_device_get_description(ggml_backend_dev_t dev) {
  2096. ggml_backend_opencl_device_context *dev_ctx = (ggml_backend_opencl_device_context *) dev->context;
  2097. return dev_ctx->device_name.c_str();
  2098. }
  2099. static void ggml_backend_opencl_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
  2100. *free = 1;
  2101. *total = 1;
  2102. GGML_UNUSED(dev);
  2103. }
  2104. static enum ggml_backend_dev_type ggml_backend_opencl_device_get_type(ggml_backend_dev_t dev) {
  2105. return GGML_BACKEND_DEVICE_TYPE_GPU;
  2106. GGML_UNUSED(dev);
  2107. }
  2108. static void ggml_backend_opencl_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
  2109. props->name = ggml_backend_opencl_device_get_name(dev);
  2110. props->description = ggml_backend_opencl_device_get_description(dev);
  2111. props->type = ggml_backend_opencl_device_get_type(dev);
  2112. ggml_backend_opencl_device_get_memory(dev, &props->memory_free, &props->memory_total);
  2113. props->caps = ggml_backend_dev_caps {
  2114. /* .async = */ false,
  2115. /* .host_buffer = */ false,
  2116. /* .buffer_from_host_ptr = */ false,
  2117. /* .events = */ false,
  2118. };
  2119. }
  2120. static ggml_backend_t ggml_backend_opencl_device_init(ggml_backend_dev_t dev, const char * params) {
  2121. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(dev);
  2122. ggml_backend_t backend = new ggml_backend {
  2123. /* .guid = */ ggml_backend_opencl_guid(),
  2124. /* .interface = */ ggml_backend_opencl_i,
  2125. /* .device = */ dev,
  2126. /* .context = */ backend_ctx,
  2127. };
  2128. return backend;
  2129. GGML_UNUSED(params);
  2130. }
  2131. static ggml_backend_buffer_type_t ggml_backend_opencl_device_get_buffer_type(ggml_backend_dev_t dev) {
  2132. return ggml_backend_opencl_buffer_type();
  2133. GGML_UNUSED(dev);
  2134. }
  2135. static ggml_backend_buffer_t ggml_backend_opencl_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
  2136. GGML_UNUSED(dev);
  2137. GGML_UNUSED(ptr);
  2138. GGML_UNUSED(size);
  2139. GGML_UNUSED(max_tensor_size);
  2140. return nullptr;
  2141. }
  2142. static bool ggml_backend_opencl_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
  2143. return ggml_opencl_supports_op(dev, op);
  2144. }
  2145. static bool ggml_backend_opencl_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
  2146. return buft->iface.get_name == ggml_backend_opencl_buffer_type_get_name;
  2147. GGML_UNUSED(dev);
  2148. }
  2149. static struct ggml_backend_device_i ggml_backend_opencl_device_i = {
  2150. /* .get_name = */ ggml_backend_opencl_device_get_name,
  2151. /* .get_description = */ ggml_backend_opencl_device_get_description,
  2152. /* .get_memory = */ ggml_backend_opencl_device_get_memory,
  2153. /* .get_type = */ ggml_backend_opencl_device_get_type,
  2154. /* .get_props = */ ggml_backend_opencl_device_get_props,
  2155. /* .init_backend = */ ggml_backend_opencl_device_init,
  2156. /* .get_buffer_type = */ ggml_backend_opencl_device_get_buffer_type,
  2157. /* .get_host_buffer_type = */ NULL,
  2158. /* .buffer_from_host_ptr = */ ggml_backend_opencl_device_buffer_from_ptr,
  2159. /* .supports_op = */ ggml_backend_opencl_device_supports_op,
  2160. /* .supports_buft = */ ggml_backend_opencl_device_supports_buft,
  2161. /* .offload_op = */ NULL,
  2162. /* .event_new = */ NULL,
  2163. /* .event_free = */ NULL,
  2164. /* .event_synchronize = */ NULL,
  2165. };
  2166. // Backend registry
  2167. static const char * ggml_backend_opencl_reg_get_name(ggml_backend_reg_t reg) {
  2168. return "OpenCL";
  2169. GGML_UNUSED(reg);
  2170. }
  2171. static size_t ggml_backend_opencl_reg_device_count(ggml_backend_reg_t reg) {
  2172. return ggml_backend_opencl_n_devices;
  2173. GGML_UNUSED(reg);
  2174. }
  2175. static ggml_backend_dev_t ggml_backend_opencl_reg_device_get(ggml_backend_reg_t reg, size_t index) {
  2176. GGML_ASSERT(index == 0);
  2177. return &g_ggml_backend_opencl_device;
  2178. GGML_UNUSED(reg);
  2179. GGML_UNUSED(index);
  2180. }
  2181. static struct ggml_backend_reg_i ggml_backend_opencl_reg_i = {
  2182. /* .get_name = */ ggml_backend_opencl_reg_get_name,
  2183. /* .device_count = */ ggml_backend_opencl_reg_device_count,
  2184. /* .device_get = */ ggml_backend_opencl_reg_device_get,
  2185. /* .get_proc_address = */ NULL,
  2186. };
  2187. ggml_backend_reg_t ggml_backend_opencl_reg(void) {
  2188. // TODO: make this thread-safe somehow?
  2189. static ggml_backend_reg reg;
  2190. static bool initialized = false;
  2191. if (!initialized) {
  2192. reg = ggml_backend_reg {
  2193. /* .api_version = */ GGML_BACKEND_API_VERSION,
  2194. /* .iface = */ ggml_backend_opencl_reg_i,
  2195. /* .context = */ NULL,
  2196. };
  2197. g_ggml_backend_opencl_device = ggml_backend_device {
  2198. /* .iface = */ ggml_backend_opencl_device_i,
  2199. /* .reg = */ &reg,
  2200. /* .context = */ &g_ggml_ctx_dev_main,
  2201. };
  2202. ggml_cl2_init(&g_ggml_backend_opencl_device);
  2203. initialized = true;
  2204. }
  2205. return &reg;
  2206. }
  2207. GGML_BACKEND_DL_IMPL(ggml_backend_opencl_reg)
  2208. //------------------------------------------------------------------------------
  2209. // Debugging utils
  2210. //------------------------------------------------------------------------------
  2211. #if 0
  2212. #define QK4_0 32
  2213. typedef struct {
  2214. ggml_fp16_t d; // delta
  2215. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  2216. } block_q4_0;
  2217. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2,
  2218. "wrong q4_0 block size/padding");
  2219. #include <math.h>
  2220. #ifdef __cplusplus
  2221. #include "half.hpp"
  2222. #endif
  2223. static void dump_tensor(ggml_backend_t backend, const struct ggml_tensor * tensor) {
  2224. void * buf = malloc(ggml_nbytes(tensor));
  2225. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  2226. cl_command_queue queue = backend_ctx->queue;
  2227. #ifdef GGML_OPENCL_SOA_Q
  2228. void * buf_q;
  2229. void * buf_d;
  2230. #endif
  2231. // Make sure everything is done.
  2232. CL_CHECK(clFinish(queue));
  2233. #ifdef GGML_OPENCL_SOA_Q
  2234. if (tensor->type == GGML_TYPE_Q4_0) {
  2235. ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *) tensor->extra;
  2236. GGML_ASSERT(extra);
  2237. size_t size_q = ggml_nelements(tensor)/QK4_0 * QK4_0/2;
  2238. size_t size_d = ggml_nelements(tensor)/QK4_0 * sizeof(ggml_fp16_t);
  2239. GGML_ASSERT(size_q + size_d == ggml_nbytes(tensor));
  2240. buf_q = malloc(size_q);
  2241. buf_d = malloc(size_d);
  2242. CL_CHECK(clEnqueueReadBuffer(queue, extra->q, CL_TRUE, 0, size_q, buf_q, 0, NULL, NULL));
  2243. CL_CHECK(clEnqueueReadBuffer(queue, extra->d, CL_TRUE, 0, size_d, buf_d, 0, NULL, NULL));
  2244. CL_CHECK(clFinish(queue));
  2245. } else {
  2246. // Read out the tensor from GPU memory.
  2247. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  2248. GGML_ASSERT(extra);
  2249. CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE,
  2250. extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL));
  2251. CL_CHECK(clFinish(queue));
  2252. }
  2253. #else
  2254. // Read out the tensor from GPU memory.
  2255. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  2256. GGML_ASSERT(extra);
  2257. CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE,
  2258. extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL));
  2259. CL_CHECK(clFinish(queue));
  2260. #endif // GGML_OPENCL_SOA_Q
  2261. // Open file and dump.
  2262. char fname[512];
  2263. sprintf(fname, "./tensor-dumps/%s.txt", tensor->name);
  2264. FILE * f = fopen(fname, "w");
  2265. if (!f) {
  2266. printf("Failed to open %s\n", fname);
  2267. return;
  2268. }
  2269. if (tensor->type == GGML_TYPE_F32) {
  2270. float * data = (float *) buf;
  2271. for (int i = 0; i < ggml_nelements(tensor); ++i) {
  2272. if (isnan(data[i])) {
  2273. printf("NaN found: %s\n", tensor->name);
  2274. break;
  2275. }
  2276. fprintf(f, "%f\n", data[i]);
  2277. }
  2278. } else if (tensor->type == GGML_TYPE_I32) {
  2279. int * data = (int *) buf;
  2280. for (int i = 0; i < ggml_nelements(tensor); ++i) {
  2281. if (isnan(data[i])) {
  2282. printf("NaN found: %s\n", tensor->name);
  2283. break;
  2284. }
  2285. fprintf(f, "%d\n", data[i]);
  2286. }
  2287. } else if (tensor->type == GGML_TYPE_F16) {
  2288. #ifdef __cplusplus
  2289. half_float::half * data = (half_float::half *) buf;
  2290. for (int i = 0; i < ggml_nelements(tensor); ++i) {
  2291. if (std::isnan(data[i])) {
  2292. printf("NaN found: %s\n", tensor->name);
  2293. break;
  2294. }
  2295. fprintf(f, "%f\n", float(data[i]));
  2296. }
  2297. #endif
  2298. } else if (tensor->type == GGML_TYPE_Q4_0) {
  2299. #ifdef GGML_OPENCL_SOA_Q
  2300. ggml_fp16_t * data_d = (ggml_fp16_t *)buf_d;
  2301. unsigned char * data_q = (unsigned char *)buf_q;
  2302. for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) {
  2303. fprintf(f, "%04x, ", data_d[i]);
  2304. for (int k = 0; k < QK4_0/2; ++k) {
  2305. fprintf(f, "%02x, ", data_q[k]);
  2306. }
  2307. fprintf(f, "\n");
  2308. data_q += QK4_0/2;
  2309. }
  2310. free(buf_d);
  2311. free(buf_q);
  2312. #else
  2313. block_q4_0 * data = (block_q4_0 *) buf;
  2314. for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) {
  2315. fprintf(f, "%04x, ", data[i].d);
  2316. for (int k = 0; k < QK4_0/2; ++k) {
  2317. fprintf(f, "%02x, ", data[i].qs[k]);
  2318. }
  2319. fprintf(f, "\n");
  2320. }
  2321. #endif // GGML_OPENCL_SOA_Q
  2322. }
  2323. free(buf);
  2324. fflush(f);
  2325. fclose(f);
  2326. }
  2327. #else
  2328. #define dump_tensor(tensor)
  2329. #endif
  2330. //------------------------------------------------------------------------------
  2331. // Profiling utility
  2332. //------------------------------------------------------------------------------
  2333. #ifdef GGML_OPENCL_PROFILING
  2334. static void populateProfilingInfo(
  2335. ProfilingInfo& info, cl_event evt, cl_kernel kernel,
  2336. size_t global_size[3], size_t local_size[3],
  2337. const ggml_tensor * tensor) {
  2338. info.op_name = tensor->name;
  2339. info.kernel = kernel;
  2340. info.evt = evt;
  2341. info.local_size[0] = local_size[0];
  2342. info.local_size[1] = local_size[1];
  2343. info.local_size[2] = local_size[2];
  2344. info.global_size[0] = global_size[0];
  2345. info.global_size[1] = global_size[1];
  2346. info.global_size[2] = global_size[2];
  2347. info.output_size[0] = tensor->ne[0];
  2348. info.output_size[1] = tensor->ne[1];
  2349. info.output_size[2] = tensor->ne[2];
  2350. info.output_size[3] = tensor->ne[3];
  2351. }
  2352. #endif
  2353. //------------------------------------------------------------------------------
  2354. // Ops
  2355. //------------------------------------------------------------------------------
  2356. static bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
  2357. const int64_t ne10 = src1->ne[0];
  2358. const int64_t ne0 = dst->ne[0];
  2359. const int64_t ne1 = dst->ne[1];
  2360. // TODO: find the optimal values for these
  2361. return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
  2362. src1->type == GGML_TYPE_F32 &&
  2363. dst->type == GGML_TYPE_F32 &&
  2364. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32);
  2365. }
  2366. static void ggml_cl_nop(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2367. UNUSED(backend);
  2368. UNUSED(src0);
  2369. UNUSED(src1);
  2370. UNUSED(dst);
  2371. }
  2372. static void ggml_cl_get_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2373. GGML_ASSERT(src0);
  2374. GGML_ASSERT(src0->extra);
  2375. GGML_ASSERT(src1);
  2376. GGML_ASSERT(src1->extra);
  2377. GGML_ASSERT(dst);
  2378. GGML_ASSERT(dst->extra);
  2379. const int ne00 = src0 ? src0->ne[0] : 0;
  2380. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  2381. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  2382. const int ne10 = src1 ? src1->ne[0] : 0;
  2383. const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
  2384. const int ne11 = src1 ? src1->ne[1] : 0;
  2385. const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
  2386. const cl_ulong nb1 = dst ? dst->nb[1] : 0;
  2387. const cl_ulong nb2 = dst ? dst->nb[2] : 0;
  2388. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  2389. cl_command_queue queue = backend_ctx->queue;
  2390. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  2391. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  2392. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  2393. cl_ulong offset0 = extra0->offset + src0->view_offs;
  2394. cl_ulong offset1 = extra1->offset + src1->view_offs;
  2395. cl_ulong offsetd = extrad->offset + dst->view_offs;
  2396. cl_kernel kernel;
  2397. switch (src0->type) {
  2398. case GGML_TYPE_F32:
  2399. kernel = backend_ctx->kernel_get_rows_f32;
  2400. break;
  2401. case GGML_TYPE_F16:
  2402. kernel = backend_ctx->kernel_get_rows_f16;
  2403. break;
  2404. case GGML_TYPE_Q4_0:
  2405. kernel = backend_ctx->kernel_get_rows_q4_0;
  2406. break;
  2407. default:
  2408. GGML_ASSERT(false && "not implemented");
  2409. }
  2410. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  2411. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  2412. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  2413. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  2414. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  2415. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  2416. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  2417. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  2418. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  2419. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  2420. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb10));
  2421. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb11));
  2422. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb1));
  2423. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb2));
  2424. size_t global_work_size[] = {(size_t)ne10, (size_t)ne11, 1};
  2425. size_t local_work_size[] = {1, 1, 1};
  2426. #ifdef GGML_OPENCL_PROFILING
  2427. cl_event evt;
  2428. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  2429. g_profiling_info.emplace_back();
  2430. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  2431. #else
  2432. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  2433. #endif
  2434. }
  2435. static void ggml_cl_add(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2436. GGML_ASSERT(src0);
  2437. GGML_ASSERT(src0->extra);
  2438. GGML_ASSERT(src1);
  2439. GGML_ASSERT(src1->extra);
  2440. GGML_ASSERT(dst);
  2441. GGML_ASSERT(dst->extra);
  2442. const int ne00 = src0 ? src0->ne[0] : 0;
  2443. const int ne01 = src0 ? src0->ne[1] : 0;
  2444. const int ne02 = src0 ? src0->ne[2] : 0;
  2445. const int ne03 = src0 ? src0->ne[3] : 0;
  2446. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  2447. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  2448. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  2449. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  2450. const int ne10 = src1 ? src1->ne[0] : 0;
  2451. const int ne11 = src1 ? src1->ne[1] : 0;
  2452. const int ne12 = src1 ? src1->ne[2] : 0;
  2453. const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
  2454. const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
  2455. const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
  2456. const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
  2457. const cl_ulong nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
  2458. const int ne0 = dst ? dst->ne[0] : 0;
  2459. const int ne1 = dst ? dst->ne[1] : 0;
  2460. const int ne2 = dst ? dst->ne[2] : 0;
  2461. const int ne3 = dst ? dst->ne[3] : 0;
  2462. const cl_ulong nb0 = dst ? dst->nb[0] : 0;
  2463. const cl_ulong nb1 = dst ? dst->nb[1] : 0;
  2464. const cl_ulong nb2 = dst ? dst->nb[2] : 0;
  2465. const cl_ulong nb3 = dst ? dst->nb[3] : 0;
  2466. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  2467. cl_command_queue queue = backend_ctx->queue;
  2468. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  2469. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  2470. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  2471. cl_ulong offset0 = extra0->offset + src0->view_offs;
  2472. cl_ulong offset1 = extra1->offset + src1->view_offs;
  2473. cl_ulong offsetd = extrad->offset + dst->view_offs;
  2474. bool bcast_row = false;
  2475. cl_kernel kernel;
  2476. if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
  2477. GGML_ASSERT(ggml_is_contiguous(src0));
  2478. // src1 is a row
  2479. GGML_ASSERT(ne11 == 1);
  2480. bcast_row = true;
  2481. int ne = ne00 / 4;
  2482. kernel = backend_ctx->kernel_add_row;
  2483. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  2484. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  2485. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  2486. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  2487. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  2488. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  2489. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  2490. } else {
  2491. kernel = backend_ctx->kernel_add;
  2492. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  2493. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  2494. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  2495. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  2496. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  2497. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  2498. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  2499. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  2500. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  2501. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
  2502. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
  2503. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
  2504. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  2505. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
  2506. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
  2507. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
  2508. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
  2509. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
  2510. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
  2511. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
  2512. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
  2513. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
  2514. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
  2515. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
  2516. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
  2517. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
  2518. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
  2519. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
  2520. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
  2521. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
  2522. }
  2523. if (bcast_row) {
  2524. int n = ggml_nelements(dst)/4;
  2525. size_t global_work_size[] = {(size_t)n, 1, 1};
  2526. size_t local_work_size[] = {64, 1, 1};
  2527. #ifdef GGML_OPENCL_PROFILING
  2528. cl_event evt;
  2529. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  2530. g_profiling_info.emplace_back();
  2531. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  2532. #else
  2533. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  2534. #endif
  2535. } else {
  2536. unsigned int nth = MIN(64, ne0);
  2537. size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
  2538. size_t local_work_size[] = {nth, 1, 1};
  2539. #ifdef GGML_OPENCL_PROFILING
  2540. cl_event evt;
  2541. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  2542. g_profiling_info.emplace_back();
  2543. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  2544. #else
  2545. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  2546. #endif
  2547. }
  2548. }
  2549. static void ggml_cl_mul(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2550. GGML_ASSERT(src0);
  2551. GGML_ASSERT(src0->extra);
  2552. GGML_ASSERT(src1);
  2553. GGML_ASSERT(src1->extra);
  2554. GGML_ASSERT(dst);
  2555. GGML_ASSERT(dst->extra);
  2556. const int ne00 = src0 ? src0->ne[0] : 0;
  2557. const int ne01 = src0 ? src0->ne[1] : 0;
  2558. const int ne02 = src0 ? src0->ne[2] : 0;
  2559. const int ne03 = src0 ? src0->ne[3] : 0;
  2560. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  2561. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  2562. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  2563. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  2564. const int ne10 = src1 ? src1->ne[0] : 0;
  2565. const int ne11 = src1 ? src1->ne[1] : 0;
  2566. const int ne12 = src1 ? src1->ne[2] : 0;
  2567. const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
  2568. const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
  2569. const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
  2570. const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
  2571. const cl_ulong nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
  2572. const int ne0 = dst ? dst->ne[0] : 0;
  2573. const int ne1 = dst ? dst->ne[1] : 0;
  2574. const int ne2 = dst ? dst->ne[2] : 0;
  2575. const int ne3 = dst ? dst->ne[3] : 0;
  2576. const cl_ulong nb0 = dst ? dst->nb[0] : 0;
  2577. const cl_ulong nb1 = dst ? dst->nb[1] : 0;
  2578. const cl_ulong nb2 = dst ? dst->nb[2] : 0;
  2579. const cl_ulong nb3 = dst ? dst->nb[3] : 0;
  2580. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  2581. cl_command_queue queue = backend_ctx->queue;
  2582. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  2583. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  2584. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  2585. cl_ulong offset0 = extra0->offset + src0->view_offs;
  2586. cl_ulong offset1 = extra1->offset + src1->view_offs;
  2587. cl_ulong offsetd = extrad->offset + dst->view_offs;
  2588. bool bcast_row = false;
  2589. cl_kernel kernel;
  2590. if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
  2591. GGML_ASSERT(ggml_is_contiguous(src0));
  2592. // src1 is a row
  2593. GGML_ASSERT(ne11 == 1);
  2594. bcast_row = true;
  2595. int ne = ne00 / 4;
  2596. kernel = backend_ctx->kernel_mul_row;
  2597. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  2598. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  2599. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  2600. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  2601. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  2602. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  2603. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  2604. } else {
  2605. kernel = backend_ctx->kernel_mul;
  2606. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  2607. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  2608. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  2609. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  2610. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  2611. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  2612. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  2613. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  2614. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  2615. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
  2616. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
  2617. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
  2618. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  2619. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
  2620. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
  2621. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
  2622. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
  2623. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
  2624. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
  2625. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
  2626. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
  2627. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
  2628. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
  2629. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
  2630. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
  2631. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
  2632. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
  2633. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
  2634. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
  2635. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
  2636. }
  2637. if (bcast_row) {
  2638. int n = ggml_nelements(dst)/4;
  2639. size_t global_work_size[] = {(size_t)n, 1, 1};
  2640. size_t local_work_size[] = {64, 1, 1};
  2641. #ifdef GGML_OPENCL_PROFILING
  2642. cl_event evt;
  2643. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  2644. g_profiling_info.emplace_back();
  2645. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  2646. #else
  2647. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  2648. #endif
  2649. } else {
  2650. unsigned int nth = MIN(64, ne0);
  2651. size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
  2652. size_t local_work_size[] = {nth, 1, 1};
  2653. #ifdef GGML_OPENCL_PROFILING
  2654. cl_event evt;
  2655. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  2656. g_profiling_info.emplace_back();
  2657. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  2658. #else
  2659. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  2660. #endif
  2661. }
  2662. }
  2663. static void ggml_cl_gelu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2664. GGML_ASSERT(src0);
  2665. GGML_ASSERT(src0->extra);
  2666. GGML_ASSERT(dst);
  2667. GGML_ASSERT(dst->extra);
  2668. UNUSED(src1);
  2669. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  2670. cl_command_queue queue = backend_ctx->queue;
  2671. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  2672. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  2673. cl_ulong offset0 = extra0->offset + src0->view_offs;
  2674. cl_ulong offsetd = extrad->offset + dst->view_offs;
  2675. cl_kernel kernel;
  2676. int n = ggml_nelements(dst);
  2677. if (n % 4 == 0) {
  2678. kernel = backend_ctx->kernel_gelu_4;
  2679. n /= 4;
  2680. } else {
  2681. kernel = backend_ctx->kernel_gelu;
  2682. }
  2683. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  2684. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  2685. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  2686. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  2687. size_t global_work_size[] = {(size_t)n, 1, 1};
  2688. size_t local_work_size[] = {64, 1, 1};
  2689. #ifdef GGML_OPENCL_PROFILING
  2690. cl_event evt;
  2691. clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt);
  2692. g_profiling_info.emplace_back();
  2693. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  2694. #else
  2695. clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL);
  2696. #endif
  2697. }
  2698. static void ggml_cl_gelu_quick(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2699. GGML_ASSERT(src0);
  2700. GGML_ASSERT(src0->extra);
  2701. GGML_ASSERT(dst);
  2702. GGML_ASSERT(dst->extra);
  2703. UNUSED(src1);
  2704. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  2705. cl_command_queue queue = backend_ctx->queue;
  2706. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  2707. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  2708. cl_ulong offset0 = extra0->offset + src0->view_offs;
  2709. cl_ulong offsetd = extrad->offset + dst->view_offs;
  2710. cl_kernel kernel;
  2711. int n = ggml_nelements(dst);
  2712. if (n % 4 == 0) {
  2713. kernel = backend_ctx->kernel_gelu_quick_4;
  2714. n /= 4;
  2715. } else {
  2716. kernel = backend_ctx->kernel_gelu_quick;
  2717. }
  2718. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  2719. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  2720. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  2721. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  2722. size_t global_work_size[] = {(size_t)n, 1, 1};
  2723. size_t local_work_size[] = {64, 1, 1};
  2724. #ifdef GGML_OPENCL_PROFILING
  2725. cl_event evt;
  2726. clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt);
  2727. g_profiling_info.emplace_back();
  2728. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  2729. #else
  2730. clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL);
  2731. #endif
  2732. }
  2733. static void ggml_cl_silu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2734. GGML_ASSERT(src0);
  2735. GGML_ASSERT(src0->extra);
  2736. GGML_ASSERT(dst);
  2737. GGML_ASSERT(dst->extra);
  2738. UNUSED(src1);
  2739. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  2740. cl_command_queue queue = backend_ctx->queue;
  2741. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  2742. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  2743. cl_ulong offset0 = extra0->offset + src0->view_offs;
  2744. cl_ulong offsetd = extrad->offset + dst->view_offs;
  2745. cl_kernel kernel;
  2746. int n = ggml_nelements(dst);
  2747. if (n % 4 == 0) {
  2748. kernel = backend_ctx->kernel_silu_4;
  2749. n /= 4;
  2750. } else {
  2751. kernel = backend_ctx->kernel_silu;
  2752. }
  2753. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  2754. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  2755. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  2756. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  2757. size_t global_work_size[] = {(size_t)n, 1, 1};
  2758. size_t local_work_size[] = {64, 1, 1};
  2759. #ifdef GGML_OPENCL_PROFILING
  2760. cl_event evt;
  2761. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  2762. g_profiling_info.emplace_back();
  2763. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  2764. #else
  2765. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  2766. #endif
  2767. }
  2768. static void ggml_cl_relu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2769. GGML_ASSERT(src0);
  2770. GGML_ASSERT(src0->extra);
  2771. GGML_ASSERT(dst);
  2772. GGML_ASSERT(dst->extra);
  2773. UNUSED(src1);
  2774. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  2775. cl_command_queue queue = backend_ctx->queue;
  2776. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  2777. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  2778. cl_ulong offset0 = extra0->offset + src0->view_offs;
  2779. cl_ulong offsetd = extrad->offset + dst->view_offs;
  2780. cl_kernel kernel = backend_ctx->kernel_relu;
  2781. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  2782. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  2783. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  2784. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  2785. const int64_t n = ggml_nelements(dst);
  2786. size_t global_work_size[] = {(size_t)n, 1, 1};
  2787. size_t local_work_size[] = {64, 1, 1};
  2788. #ifdef GGML_OPENCL_PROFILING
  2789. cl_event evt;
  2790. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  2791. g_profiling_info.emplace_back();
  2792. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  2793. #else
  2794. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  2795. #endif
  2796. }
  2797. static void ggml_cl_clamp(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2798. GGML_ASSERT(src0);
  2799. GGML_ASSERT(src0->extra);
  2800. GGML_ASSERT(dst);
  2801. GGML_ASSERT(dst->extra);
  2802. UNUSED(src1);
  2803. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  2804. cl_command_queue queue = backend_ctx->queue;
  2805. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  2806. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  2807. cl_ulong offset0 = extra0->offset + src0->view_offs;
  2808. cl_ulong offsetd = extrad->offset + dst->view_offs;
  2809. float min;
  2810. float max;
  2811. memcpy(&min, ((int32_t *) dst->op_params) + 0, sizeof(float));
  2812. memcpy(&max, ((int32_t *) dst->op_params) + 1, sizeof(float));
  2813. cl_kernel kernel = backend_ctx->kernel_clamp;
  2814. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  2815. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  2816. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  2817. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  2818. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &min));
  2819. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(float), &max));
  2820. const int64_t n = ggml_nelements(dst);
  2821. size_t global_work_size[] = {(size_t)n, 1, 1};
  2822. size_t local_work_size[] = {64, 1, 1};
  2823. #ifdef GGML_OPENCL_PROFILING
  2824. cl_event evt;
  2825. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  2826. g_profiling_info.emplace_back();
  2827. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  2828. #else
  2829. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  2830. #endif
  2831. }
  2832. static void ggml_cl_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2833. GGML_ASSERT(src0);
  2834. GGML_ASSERT(src0->extra);
  2835. GGML_ASSERT(dst);
  2836. GGML_ASSERT(dst->extra);
  2837. UNUSED(src1);
  2838. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  2839. cl_command_queue queue = backend_ctx->queue;
  2840. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  2841. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  2842. cl_ulong offset0 = extra0->offset + src0->view_offs;
  2843. cl_ulong offsetd = extrad->offset + dst->view_offs;
  2844. float eps;
  2845. memcpy(&eps, dst->op_params, sizeof(float));
  2846. const int ne00 = src0 ? src0->ne[0] : 0;
  2847. const int ne01 = src0 ? src0->ne[1] : 0;
  2848. const int ne02 = src0 ? src0->ne[2] : 0;
  2849. const int ne03 = src0 ? src0->ne[3] : 0;
  2850. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  2851. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  2852. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  2853. const int nth = MIN(64, ne00);
  2854. cl_kernel kernel = backend_ctx->kernel_norm;
  2855. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  2856. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  2857. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  2858. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  2859. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  2860. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  2861. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  2862. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  2863. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  2864. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  2865. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  2866. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(float), &eps));
  2867. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float)*nth, NULL));
  2868. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  2869. size_t local_work_size[] = {(size_t)nth, 1, 1};
  2870. #ifdef GGML_OPENCL_PROFILING
  2871. cl_event evt;
  2872. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  2873. g_profiling_info.emplace_back();
  2874. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  2875. #else
  2876. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  2877. #endif
  2878. }
  2879. static void ggml_cl_rms_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2880. GGML_ASSERT(src0);
  2881. GGML_ASSERT(src0->extra);
  2882. GGML_ASSERT(dst);
  2883. GGML_ASSERT(dst->extra);
  2884. UNUSED(src1);
  2885. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  2886. cl_command_queue queue = backend_ctx->queue;
  2887. //ggml_backend_opencl_device_context * dev_ctx =
  2888. // (ggml_backend_opencl_device_context *)backend->device->context;
  2889. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  2890. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  2891. cl_ulong offset0 = extra0->offset + src0->view_offs;
  2892. cl_ulong offsetd = extrad->offset + dst->view_offs;
  2893. float eps;
  2894. memcpy(&eps, dst->op_params, sizeof(float));
  2895. const int ne00 = src0 ? src0->ne[0] : 0;
  2896. const int ne01 = src0 ? src0->ne[1] : 0;
  2897. const int ne02 = src0 ? src0->ne[2] : 0;
  2898. const int ne03 = src0 ? src0->ne[3] : 0;
  2899. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  2900. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  2901. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  2902. GGML_ASSERT(ne00 % 4 == 0);
  2903. const int nth = MIN(64, ne00);
  2904. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  2905. size_t local_work_size[] = {(size_t)nth, 1, 1};
  2906. cl_kernel kernel = backend_ctx->kernel_rms_norm;
  2907. // Note, this kernel declares local memory in kernel args and the size
  2908. // depends on subgroup size.
  2909. // Note, this requires OpenCL 2.1 and above
  2910. // For now we use fixed subgroup size to simplify support for OpenCL 2.0.
  2911. size_t sgs;
  2912. //CL_CHECK(clGetKernelSubGroupInfo(kernel, dev_ctx->device,
  2913. // CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_NDRANGE,
  2914. // sizeof(local_work_size), local_work_size,
  2915. // sizeof(size_t), &sgs, NULL));
  2916. if (backend_ctx->gpu_family == ADRENO) {
  2917. sgs = 64;
  2918. } else if (backend_ctx->gpu_family == INTEL) {
  2919. sgs = 32;
  2920. } else {
  2921. GGML_ASSERT(false && "Unsupported GPU");
  2922. }
  2923. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  2924. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  2925. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  2926. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  2927. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  2928. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  2929. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  2930. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  2931. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  2932. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  2933. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  2934. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(float), &eps));
  2935. // This is local memory - the size depends on subgroup size.
  2936. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float)*nth/sgs, NULL));
  2937. #ifdef GGML_OPENCL_PROFILING
  2938. cl_event evt;
  2939. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  2940. g_profiling_info.emplace_back();
  2941. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  2942. #else
  2943. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  2944. #endif
  2945. }
  2946. static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2947. GGML_ASSERT(src0);
  2948. GGML_ASSERT(src0->extra);
  2949. GGML_ASSERT(src1);
  2950. GGML_ASSERT(src1->extra);
  2951. GGML_ASSERT(dst);
  2952. GGML_ASSERT(dst->extra);
  2953. const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
  2954. const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
  2955. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  2956. cl_command_queue queue = backend_ctx->queue;
  2957. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  2958. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  2959. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  2960. cl_ulong offset0 = extra0->offset + src0->view_offs;
  2961. cl_ulong offset1 = extra1->offset + src1->view_offs;
  2962. cl_ulong offsetd = extrad->offset + dst->view_offs;
  2963. #ifdef GGML_OPENCL_SOA_Q
  2964. ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
  2965. #endif
  2966. const int ne00 = src0 ? src0->ne[0] : 0;
  2967. const int ne01 = src0 ? src0->ne[1] : 0;
  2968. const int ne02 = src0 ? src0->ne[2] : 0;
  2969. const int ne03 = src0 ? src0->ne[3] : 0;
  2970. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  2971. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  2972. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  2973. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  2974. const int ne10 = src1 ? src1->ne[0] : 0;
  2975. const int ne11 = src1 ? src1->ne[1] : 0;
  2976. const int ne12 = src1 ? src1->ne[2] : 0;
  2977. const int ne13 = src1 ? src1->ne[3] : 0;
  2978. const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
  2979. const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
  2980. const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
  2981. const cl_ulong nb13 = src1 ? src1->nb[3] : 0;
  2982. const int ne0 = dst ? dst->ne[0] : 0;
  2983. const int ne1 = dst ? dst->ne[1] : 0;
  2984. int r2 = ne12/ne02;
  2985. int r3 = ne13/ne03;
  2986. GGML_ASSERT(ne00 == ne10);
  2987. int nth0 = 32;
  2988. int nth1 = 1;
  2989. int nrows = 1;
  2990. // The number of values produced by each subgroup
  2991. int ndst = 4;
  2992. cl_kernel kernel;
  2993. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  2994. cl_context context = backend_ctx->context;
  2995. if (ne01 && ne1 && use_adreno_kernels(backend_ctx, src0)) {
  2996. // init CL objects
  2997. // <--------------------------------------------> //
  2998. cl_int status;
  2999. cl_image_format img_fmt_1d;
  3000. cl_image_desc img_desc_1d;
  3001. cl_buffer_region region;
  3002. cl_mem A_image1d = nullptr;
  3003. cl_mem B_image1d = nullptr;
  3004. cl_mem B_sub_buffer = nullptr;
  3005. cl_mem C_d = nullptr;
  3006. // for B transpose
  3007. cl_mem B_d = nullptr;
  3008. cl_mem B_d_input_image = nullptr;
  3009. // <--------------------------------------------> //
  3010. // define matrix dimensions
  3011. // <--------------------------------------------> //
  3012. int M = ne01;
  3013. int N = ne1;
  3014. int K = ne00;
  3015. int padding;
  3016. // <--------------------------------------------> //
  3017. // q4_0 x fp32
  3018. if(src0t == GGML_TYPE_Q4_0 && src1t == GGML_TYPE_F32) {
  3019. // TODO: remove duplicate definitions of image description + format -- move to top
  3020. // create an image for A
  3021. // <--------------------------------------------> //
  3022. if (N == 1) {
  3023. img_fmt_1d = { CL_R, CL_UNSIGNED_INT32};
  3024. } else {
  3025. img_fmt_1d = { CL_R, CL_FLOAT};
  3026. }
  3027. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  3028. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  3029. img_desc_1d.image_width = M * K / 2 / 4; // Divide by 4 for char -> float
  3030. img_desc_1d.buffer = extra0_q4_0->q;
  3031. A_image1d = clCreateImage(
  3032. context,
  3033. CL_MEM_READ_ONLY,
  3034. &img_fmt_1d,
  3035. &img_desc_1d,
  3036. NULL,
  3037. &status);
  3038. CL_CHECK(status);
  3039. // <--------------------------------------------> //
  3040. // create a sub_buffer for B
  3041. // <--------------------------------------------> //
  3042. region.origin = (extra1->offset);
  3043. region.size = K * N * sizeof(float);
  3044. B_sub_buffer = clCreateSubBuffer(
  3045. extra1->data_device,
  3046. 0,
  3047. CL_BUFFER_CREATE_TYPE_REGION,
  3048. &region,
  3049. &status);
  3050. CL_CHECK(status);
  3051. // <--------------------------------------------> //
  3052. // transpose activation for Skyler's gemm
  3053. if (N != 1) {
  3054. //how many extra elements beyond multiple of 8
  3055. int extra_elements = N % 8;
  3056. //how much padding to add
  3057. padding = 0;
  3058. if (extra_elements > 0){
  3059. padding = 8 - extra_elements;
  3060. }
  3061. // Specify the starting offset (in bytes)
  3062. region.origin = 0;
  3063. // Specify the size of the sub-buffer (divide by 2 for FP16)
  3064. region.size = K * (N + padding) * sizeof(float)/2;
  3065. B_d = clCreateSubBuffer(
  3066. backend_ctx->B_d_max,
  3067. 0,
  3068. CL_BUFFER_CREATE_TYPE_REGION,
  3069. &region,
  3070. &status);
  3071. CL_CHECK(status);
  3072. cl_image_format image_format_B_d_input = { CL_RGBA, CL_FLOAT };
  3073. cl_image_desc image_desc_B_d_input = {
  3074. CL_MEM_OBJECT_IMAGE1D_BUFFER,
  3075. static_cast<size_t>(K * N / 4),
  3076. 0, 0, 0, 0, 0, 0, 0, { B_sub_buffer }
  3077. };
  3078. B_d_input_image = clCreateImage(
  3079. context,
  3080. 0,
  3081. &image_format_B_d_input,
  3082. &image_desc_B_d_input,
  3083. NULL,
  3084. &status);
  3085. CL_CHECK(status);
  3086. cl_image_format image_format_B_d_output = { CL_RGBA, CL_HALF_FLOAT }; //(CL_HALF_FLOAT for FP16)
  3087. cl_image_desc image_desc_B_d_output = {
  3088. CL_MEM_OBJECT_IMAGE1D_BUFFER,
  3089. static_cast<size_t>(K * (N + padding)/4),
  3090. 0, 0, 0, 0, 0, 0, 0, { B_d }
  3091. };
  3092. B_image1d = clCreateImage(
  3093. context,
  3094. 0,
  3095. &image_format_B_d_output,
  3096. &image_desc_B_d_output,
  3097. NULL,
  3098. &status);
  3099. CL_CHECK(status);
  3100. int height_B = N/4;
  3101. if (height_B == 0) {
  3102. height_B = 1;
  3103. }
  3104. int width_B = K/4;
  3105. int padded_height_B = (N + padding)/4;
  3106. kernel = backend_ctx->kernel_transpose_32_16;
  3107. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &B_d_input_image));
  3108. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &B_image1d));
  3109. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_B));
  3110. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_B));
  3111. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &padded_height_B));
  3112. size_t local_size_t[2] = { 1, 16 };
  3113. //WGS tuning
  3114. if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) {
  3115. local_size_t[0]=4;
  3116. local_size_t[1]=8;
  3117. } else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) {
  3118. local_size_t[0]=2;
  3119. local_size_t[1]=8;
  3120. } else if(ne0 == 4096 && ne1 == 128 && ne10 == 11008) {
  3121. local_size_t[0]=1;
  3122. local_size_t[1]=8;
  3123. } else if(ne0 == 32000 && ne1 == 128 && ne10 == 4096) {
  3124. local_size_t[0]=2;
  3125. local_size_t[1]=8;
  3126. }
  3127. size_t global_size_t[2] = {
  3128. static_cast<size_t>(width_B),
  3129. static_cast<size_t>(padded_height_B)
  3130. };
  3131. #ifdef GGML_OPENCL_PROFILING
  3132. cl_event evt;
  3133. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 2, NULL, global_size_t, local_size_t, 0, NULL, &evt));
  3134. g_profiling_info.emplace_back();
  3135. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_size_t, local_size_t, dst);
  3136. #else
  3137. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 2, NULL, global_size_t, local_size_t, 0, NULL, NULL));
  3138. #endif
  3139. } else {
  3140. // no need to transpose B in other cases
  3141. // create an image for B from sub_buffer
  3142. // <--------------------------------------------> //
  3143. img_fmt_1d = {CL_RGBA, CL_FLOAT};
  3144. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  3145. img_desc_1d.image_width = K * N / 4;
  3146. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  3147. img_desc_1d.buffer = B_sub_buffer;
  3148. B_image1d = clCreateImage(
  3149. context,
  3150. CL_MEM_READ_ONLY,
  3151. &img_fmt_1d,
  3152. &img_desc_1d,
  3153. NULL,
  3154. &status);
  3155. CL_CHECK(status);
  3156. // <--------------------------------------------> //
  3157. }
  3158. // choose gemm or gemv kernel
  3159. // <--------------------------------------------> //
  3160. if (N == 1) {
  3161. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general;
  3162. if (M == 4096 && K == 4096) {
  3163. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
  3164. } else if (M == 4096 && K == 11008) {
  3165. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008;
  3166. } else if (M == 11008 && K == 4096) {
  3167. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
  3168. } else if (M == 32000 && K == 4096) {
  3169. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
  3170. }
  3171. } else {
  3172. kernel = backend_ctx->CL_mul_mat_Ab_Bi_8x4;
  3173. }
  3174. // <--------------------------------------------> //
  3175. // set kernel args
  3176. // <--------------------------------------------> //
  3177. cl_uint k_arg = 0;
  3178. if (N == 1) {
  3179. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &A_image1d));
  3180. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extra0_q4_0->d));
  3181. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &B_image1d));
  3182. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extra1->offset));
  3183. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extrad->data_device));
  3184. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extrad->offset));
  3185. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne00));
  3186. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne01));
  3187. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne02));
  3188. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne10));
  3189. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne12));
  3190. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne0));
  3191. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne1));
  3192. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r2));
  3193. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r3));
  3194. } else {
  3195. region.origin = extrad->offset; // Specify the starting offset (in bytes)
  3196. region.size = M * N * sizeof(float); // Specify the size of the sub-buffer
  3197. C_d = clCreateSubBuffer(extrad->data_device, CL_MEM_WRITE_ONLY, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
  3198. CL_CHECK(status);
  3199. int padded_N = ne1 + padding;
  3200. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q)); //A_q_dextra0_q4_0->q
  3201. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d)); //A_s_d
  3202. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &B_image1d)); //B_d
  3203. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &C_d)); //C_d
  3204. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne01)); //M
  3205. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &padded_N)); //N with padding
  3206. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00)); //K
  3207. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne1)); //N without padding
  3208. }
  3209. // <--------------------------------------------> //
  3210. // choose workgroup size
  3211. // <--------------------------------------------> //
  3212. size_t global_work_size[3] = {
  3213. 64, static_cast<size_t>((M+63)/64), static_cast<size_t>((N+31)/32)};
  3214. size_t local_work_size[3] = {64, 2, 4};
  3215. global_work_size[0] = (size_t)(ceil((float)ne1/8));
  3216. global_work_size[1] = (size_t)(ne01/4);
  3217. global_work_size[2] = (size_t)(1);
  3218. local_work_size[0] = (size_t)(1); //4x32 for FP32
  3219. local_work_size[1] = (size_t)(128);
  3220. local_work_size[2] = (size_t)(1);
  3221. //WGS tuning
  3222. if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) {
  3223. local_work_size[0] = 1;
  3224. local_work_size[1] = 128;
  3225. } else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) {
  3226. local_work_size[0] = 2;
  3227. local_work_size[1] = 64;
  3228. } else if (ne0 == 4096 && ne1 == 128 && ne10 == 11008) {
  3229. local_work_size[0] = 2;
  3230. local_work_size[1] = 64;
  3231. } else if (ne0 == 32000 && ne1 == 128 && ne10 == 4096) {
  3232. local_work_size[0] = 2;
  3233. local_work_size[1] = 64;
  3234. }
  3235. if (N == 1) {
  3236. size_t wavesize = backend_ctx->adreno_wave_size;
  3237. local_work_size[0] = wavesize; // localsize
  3238. local_work_size[1] = 4; // reduce factor
  3239. local_work_size[2] = 1;
  3240. global_work_size[0] = (((M / 2) + wavesize - 1) / wavesize) * wavesize;
  3241. global_work_size[1] = 4; // reduce factor
  3242. global_work_size[2] = 1;
  3243. }
  3244. // <--------------------------------------------> //
  3245. // enqueue kernel with profiling
  3246. // <--------------------------------------------> //
  3247. #ifdef GGML_OPENCL_PROFILING
  3248. cl_event evt;
  3249. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3250. g_profiling_info.emplace_back();
  3251. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  3252. // enqueue kernel without profiling
  3253. #else
  3254. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  3255. #endif
  3256. // <--------------------------------------------> //
  3257. // deallocate sub buffers and images
  3258. // <--------------------------------------------> //
  3259. CL_CHECK(clReleaseMemObject(A_image1d));
  3260. CL_CHECK(clReleaseMemObject(B_sub_buffer));
  3261. CL_CHECK(clReleaseMemObject(B_image1d));
  3262. if (N != 1) {
  3263. CL_CHECK(clReleaseMemObject(B_d));
  3264. CL_CHECK(clReleaseMemObject(B_d_input_image));
  3265. CL_CHECK(clReleaseMemObject(C_d));
  3266. }
  3267. // <--------------------------------------------> //
  3268. return;
  3269. }
  3270. } // if (ne01 && ne1)
  3271. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  3272. if (!ggml_is_transposed(src0) &&
  3273. !ggml_is_transposed(src1) &&
  3274. src1t == GGML_TYPE_F32 &&
  3275. ne00%32 == 0 &&
  3276. ne11 > 2) {
  3277. #ifdef GGML_OPENCL_SOA_Q
  3278. // Set up kernel.
  3279. switch(src0t) {
  3280. case GGML_TYPE_Q4_0:
  3281. // This should have been satisfied.
  3282. GGML_ASSERT(ne11 == ne1);
  3283. GGML_ASSERT(ne01 == ne0);
  3284. if (backend_ctx->gpu_family == INTEL) {
  3285. nth0 = 16;
  3286. nth1 = 1;
  3287. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat;
  3288. } else if (backend_ctx->gpu_family == ADRENO) {
  3289. nth0 = 64;
  3290. nth1 = 1;
  3291. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat;
  3292. } else {
  3293. GGML_ASSERT(false && "TODO: Unknown GPU");
  3294. }
  3295. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
  3296. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
  3297. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3298. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3299. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3300. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3301. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  3302. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  3303. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  3304. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  3305. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  3306. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  3307. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  3308. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  3309. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  3310. break;
  3311. default:
  3312. break;
  3313. }
  3314. // Launch kernel.
  3315. if (src0t == GGML_TYPE_Q4_0) {
  3316. size_t global_work_size[] = {(size_t)(ne01 + 7)/8*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
  3317. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  3318. if (backend_ctx->gpu_family == INTEL) {
  3319. // Set global size for Intel. It uses 16x output values.
  3320. global_work_size[0] = (size_t)(ne01 + 15)/16*nth0;
  3321. global_work_size[1] = (size_t)ne11*nth1;
  3322. global_work_size[2] = (size_t)ne12*ne13;
  3323. }
  3324. #ifdef GGML_OPENCL_PROFILING
  3325. cl_event evt;
  3326. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3327. g_profiling_info.emplace_back();
  3328. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  3329. #else
  3330. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  3331. #endif
  3332. return;
  3333. }
  3334. #else // GGML_OPENCL_SOA_Q
  3335. // TODO: add block_q4_0 variant.
  3336. #endif // GGML_OPENCL_SOA_Q
  3337. }
  3338. // use custom matrix x vector kernel
  3339. switch (src0t) {
  3340. case GGML_TYPE_F32:
  3341. //GGML_ASSERT(ne02 == ne12);
  3342. GGML_ASSERT(src1t == GGML_TYPE_F32);
  3343. kernel = backend_ctx->kernel_mul_mat_f32_f32;
  3344. nrows = 4;
  3345. if (backend_ctx->gpu_family == INTEL) {
  3346. nth0 = 32;
  3347. nth1 = 1;
  3348. } else if (backend_ctx->gpu_family == ADRENO) {
  3349. nth0 = 64;
  3350. nth1 = 1;
  3351. } else {
  3352. GGML_ASSERT(false && "TODO: Unknown GPU");
  3353. }
  3354. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3355. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3356. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3357. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3358. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3359. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3360. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  3361. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  3362. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  3363. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00));
  3364. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  3365. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  3366. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
  3367. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  3368. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  3369. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  3370. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
  3371. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  3372. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  3373. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  3374. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
  3375. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
  3376. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
  3377. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
  3378. break;
  3379. case GGML_TYPE_F16:
  3380. //GGML_ASSERT(ne02 == ne12);
  3381. if (backend_ctx->gpu_family == INTEL) {
  3382. nth0 = 32;
  3383. nth1 = 1;
  3384. } else if (backend_ctx->gpu_family == ADRENO) {
  3385. nth0 = 64;
  3386. nth1 = 1;
  3387. } else {
  3388. GGML_ASSERT(false && "TODO: Unknown GPU");
  3389. }
  3390. if (src1t == GGML_TYPE_F32) {
  3391. if (ne11 * ne12 < 4) {
  3392. kernel = backend_ctx->kernel_mul_mat_f16_f32_1row;
  3393. } else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
  3394. kernel = backend_ctx->kernel_mul_mat_f16_f32_l4;
  3395. nrows = ne11;
  3396. } else {
  3397. kernel = backend_ctx->kernel_mul_mat_f16_f32;
  3398. nrows = 4;
  3399. }
  3400. } else {
  3401. kernel = backend_ctx->kernel_mul_mat_f16_f16;
  3402. nrows = 4;
  3403. }
  3404. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3405. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3406. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3407. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3408. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3409. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3410. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  3411. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  3412. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  3413. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00));
  3414. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  3415. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  3416. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
  3417. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  3418. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  3419. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  3420. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
  3421. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  3422. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  3423. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  3424. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
  3425. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
  3426. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
  3427. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
  3428. break;
  3429. case GGML_TYPE_Q4_0:
  3430. // This should have been satisfied.
  3431. GGML_ASSERT(ne11 == ne1);
  3432. GGML_ASSERT(ne01 == ne0);
  3433. #ifdef GGML_OPENCL_SOA_Q
  3434. if (backend_ctx->gpu_family == INTEL) {
  3435. nth0 = 16;
  3436. nth1 = 1;
  3437. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat;
  3438. ndst = 8;
  3439. } else if (backend_ctx->gpu_family == ADRENO) {
  3440. nth0 = 64;
  3441. nth1 = 1;
  3442. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat;
  3443. ndst =8;
  3444. } else {
  3445. GGML_ASSERT(false && "TODO: Unknown GPU");
  3446. }
  3447. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
  3448. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
  3449. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3450. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3451. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3452. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3453. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  3454. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  3455. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  3456. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  3457. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  3458. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  3459. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  3460. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  3461. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  3462. #else // GGML_OPENCL_SOA_Q
  3463. if (backend_ctx->gpu_family == INTEL) {
  3464. // Use 1D local size. Each workgroup is a SIMD group. Each SIMD
  3465. // group produces N_DST (4 for Q4_0 kernel) values in the result.
  3466. // The number of workgroups on dim 0 (the leading dimension) is
  3467. // the nearest multiple of 4 that covers ne0 (equals ne01).
  3468. nth0 = 16;
  3469. nth1 = 1;
  3470. kernel = backend_ctx->kernel_mul_mat_q4_0_f32;
  3471. ndst = 4;
  3472. } else if (backend_ctx->gpu_family == ADRENO) {
  3473. nth0 = 64;
  3474. nth1 = 1;
  3475. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_v;
  3476. ndst = 4;
  3477. } else {
  3478. GGML_ASSERT(false && "TODO: Unknown GPU");
  3479. }
  3480. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3481. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3482. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3483. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3484. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3485. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3486. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  3487. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  3488. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  3489. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  3490. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  3491. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  3492. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  3493. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  3494. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  3495. #endif // GGML_OPENCL_SOA_Q
  3496. break;
  3497. case GGML_TYPE_Q4_1:
  3498. case GGML_TYPE_Q8_0:
  3499. case GGML_TYPE_Q2_K:
  3500. case GGML_TYPE_Q3_K:
  3501. case GGML_TYPE_Q4_K:
  3502. case GGML_TYPE_Q5_K:
  3503. case GGML_TYPE_Q6_K:
  3504. kernel = backend_ctx->kernel_mul_mv_q6_K_f32;
  3505. if (backend_ctx->gpu_family == INTEL) {
  3506. nth0 = 2;
  3507. nth1 = 16;
  3508. } else if (backend_ctx->gpu_family == ADRENO) {
  3509. nth0 = 2;
  3510. nth1 = 64;
  3511. } else {
  3512. GGML_ASSERT(false && "TODO: Unknown GPU");
  3513. }
  3514. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3515. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3516. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3517. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3518. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3519. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3520. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  3521. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  3522. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  3523. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  3524. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  3525. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  3526. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  3527. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  3528. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  3529. break;
  3530. default:
  3531. GGML_ASSERT(false && "not implemented");
  3532. }
  3533. if (src0t == GGML_TYPE_Q4_0 ||
  3534. src0t == GGML_TYPE_Q4_1 ||
  3535. src0t == GGML_TYPE_Q8_0 ||
  3536. src0t == GGML_TYPE_Q2_K) {
  3537. // Each SIMD group produces N_DST values in the result. Assuming each
  3538. // workgroup has N_SIMDGROUP SIMD groups, then each workgroup will
  3539. // produce N_DST*N_SIMDGROUP values in the result. Hence, the grid size
  3540. // (number of workgroups) will be a nearest multiple of
  3541. // N_DST*N_SIMDGROUP to cover the size of the dimension. Below, 4 is
  3542. // N_DST*N_SIMDGROUP (see the kernel for Q4_0 matmul).
  3543. size_t global_work_size[] = {(size_t)(ne01 + ndst-1)/ndst*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
  3544. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  3545. #ifdef GGML_OPENCL_PROFILING
  3546. cl_event evt;
  3547. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3548. g_profiling_info.emplace_back();
  3549. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  3550. #else
  3551. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  3552. #endif
  3553. } else if (src0t == GGML_TYPE_Q4_K) {
  3554. GGML_ASSERT(false && "not implemented");
  3555. } else if (src0t == GGML_TYPE_Q3_K) {
  3556. GGML_ASSERT(false && "not implemented");
  3557. } else if (src0t == GGML_TYPE_Q5_K) {
  3558. GGML_ASSERT(false && "not implemented");
  3559. } else if (src0t == GGML_TYPE_Q6_K) {
  3560. size_t global_work_size[] = {(size_t)(ne01+1)/2*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
  3561. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  3562. #ifdef GGML_OPENCL_PROFILING
  3563. cl_event evt;
  3564. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3565. g_profiling_info.emplace_back();
  3566. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  3567. #else
  3568. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  3569. #endif
  3570. } else {
  3571. int64_t ny = (ne11 + nrows - 1)/nrows;
  3572. size_t global_work_size[] = {(size_t)ne01*nth0, (size_t)ny*nth1, (size_t)ne12*ne13};
  3573. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  3574. #ifdef GGML_OPENCL_PROFILING
  3575. cl_event evt;
  3576. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3577. g_profiling_info.emplace_back();
  3578. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  3579. #else
  3580. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  3581. #endif
  3582. }
  3583. }
  3584. static void ggml_cl_scale(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3585. GGML_ASSERT(src0);
  3586. GGML_ASSERT(src0->extra);
  3587. GGML_ASSERT(dst);
  3588. GGML_ASSERT(dst->extra);
  3589. GGML_UNUSED(src1);
  3590. GGML_ASSERT(ggml_is_contiguous(src0));
  3591. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3592. cl_command_queue queue = backend_ctx->queue;
  3593. float scale;
  3594. memcpy(&scale, dst->op_params, sizeof(scale));
  3595. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3596. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3597. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3598. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3599. cl_kernel kernel = backend_ctx->kernel_scale;
  3600. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3601. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3602. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  3603. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  3604. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &scale));
  3605. int n = ggml_nelements(dst)/4;
  3606. size_t global_work_size[] = {(size_t)n, 1, 1};
  3607. size_t local_work_size[] = {64, 1, 1};
  3608. #ifdef GGML_OPENCL_PROFILING
  3609. cl_event evt;
  3610. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3611. g_profiling_info.emplace_back();
  3612. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  3613. #else
  3614. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  3615. #endif
  3616. }
  3617. static void ggml_cl_cpy(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3618. GGML_ASSERT(src0);
  3619. GGML_ASSERT(src0->extra);
  3620. GGML_ASSERT(src1);
  3621. GGML_ASSERT(src1->extra);
  3622. // GGML_OP_CPY happens between src0 and src1.
  3623. // GGML_OP_DUP and GGML_OP_CONT happen between src0 and dst.
  3624. UNUSED(dst);
  3625. const int ne00 = src0 ? src0->ne[0] : 0;
  3626. const int ne01 = src0 ? src0->ne[1] : 0;
  3627. const int ne02 = src0 ? src0->ne[2] : 0;
  3628. const int ne03 = src0 ? src0->ne[3] : 0;
  3629. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  3630. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  3631. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  3632. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  3633. const int ne10 = src1 ? src1->ne[0] : 0;
  3634. const int ne11 = src1 ? src1->ne[1] : 0;
  3635. const int ne12 = src1 ? src1->ne[2] : 0;
  3636. const int ne13 = src1 ? src1->ne[3] : 0;
  3637. const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
  3638. const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
  3639. const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
  3640. const cl_ulong nb13 = src1 ? src1->nb[3] : 0;
  3641. const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
  3642. const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
  3643. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3644. cl_command_queue queue = backend_ctx->queue;
  3645. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3646. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  3647. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3648. cl_ulong offset1 = extra1->offset + src1->view_offs;
  3649. cl_kernel kernel;
  3650. switch (src0t) {
  3651. case GGML_TYPE_F32:
  3652. switch (src1t) {
  3653. case GGML_TYPE_F16:
  3654. kernel = backend_ctx->kernel_cpy_f32_f16;
  3655. break;
  3656. case GGML_TYPE_F32:
  3657. kernel = backend_ctx->kernel_cpy_f32_f32;
  3658. break;
  3659. default:
  3660. GGML_ASSERT(false && "not implemented");
  3661. }
  3662. break;
  3663. case GGML_TYPE_F16:
  3664. switch (src1t) {
  3665. case GGML_TYPE_F16:
  3666. kernel = backend_ctx->kernel_cpy_f16_f16;
  3667. break;
  3668. case GGML_TYPE_F32:
  3669. kernel = backend_ctx->kernel_cpy_f16_f32;
  3670. break;
  3671. default:
  3672. GGML_ASSERT(false && "not implemented");
  3673. }
  3674. break;
  3675. default:
  3676. GGML_ASSERT(false && "not implemented");
  3677. }
  3678. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3679. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3680. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3681. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3682. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  3683. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  3684. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  3685. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  3686. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
  3687. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  3688. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
  3689. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
  3690. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10));
  3691. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11));
  3692. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12));
  3693. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13));
  3694. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
  3695. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  3696. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  3697. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  3698. const int nth = MIN(64, ne00);
  3699. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  3700. size_t local_work_size[] = {(size_t)nth, 1, 1};
  3701. #ifdef GGML_OPENCL_PROFILING
  3702. cl_event evt;
  3703. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3704. g_profiling_info.emplace_back();
  3705. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, src1);
  3706. #else
  3707. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  3708. #endif
  3709. }
  3710. static void ggml_cl_dup(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3711. ggml_cl_cpy(backend, src0, dst, nullptr);
  3712. UNUSED(src1);
  3713. }
  3714. static void ggml_cl_diag_mask_inf(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3715. GGML_ASSERT(src0);
  3716. GGML_ASSERT(src0->extra);
  3717. GGML_ASSERT(dst);
  3718. GGML_ASSERT(dst->extra);
  3719. UNUSED(src1);
  3720. int n_past = ((int32_t *)(dst->op_params))[0];
  3721. const int ne00 = src0 ? src0->ne[0] : 0;
  3722. const int ne01 = src0 ? src0->ne[1] : 0;
  3723. const int ne02 = src0 ? src0->ne[2] : 0;
  3724. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3725. cl_command_queue queue = backend_ctx->queue;
  3726. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3727. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3728. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3729. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3730. cl_kernel kernel;
  3731. if (ne00%8 == 0) {
  3732. kernel = backend_ctx->kernel_diag_mask_inf_8;
  3733. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3734. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3735. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  3736. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  3737. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  3738. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  3739. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &n_past));
  3740. size_t global_work_size[] = {(size_t)ne00*ne01*ne02/8, 1, 1};
  3741. size_t local_work_size[] = {64, 1, 1};
  3742. #ifdef GGML_OPENCL_PROFILING
  3743. cl_event evt;
  3744. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3745. g_profiling_info.emplace_back();
  3746. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  3747. #else
  3748. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  3749. #endif
  3750. } else {
  3751. kernel = backend_ctx->kernel_diag_mask_inf;
  3752. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3753. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3754. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  3755. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  3756. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  3757. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  3758. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &n_past));
  3759. size_t global_work_size[] = {(size_t)ne00, (size_t)ne01, (size_t)ne02};
  3760. size_t local_work_size[] = {64, 1, 1};
  3761. #ifdef GGML_OPENCL_PROFILING
  3762. cl_event evt;
  3763. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3764. g_profiling_info.emplace_back();
  3765. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  3766. #else
  3767. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  3768. #endif
  3769. }
  3770. }
  3771. static void ggml_cl_soft_max(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3772. GGML_ASSERT(src0);
  3773. GGML_ASSERT(src0->extra);
  3774. GGML_ASSERT(dst);
  3775. GGML_ASSERT(dst->extra);
  3776. // Softmax can now fuse KQ mask and KQ scale, which used to be two additional
  3777. // ops before softmax. It now also fuses alibi if `max_bias > 0`. For llama,
  3778. // alibi is not used; however, for some other models, it is used.
  3779. // KQ_mask
  3780. if (src1) {
  3781. GGML_ASSERT(src1);
  3782. GGML_ASSERT(src1->extra);
  3783. }
  3784. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3785. cl_command_queue queue = backend_ctx->queue;
  3786. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3787. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3788. ggml_tensor_extra_cl * extra1 = src1 ? (ggml_tensor_extra_cl *)src1->extra : nullptr;
  3789. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3790. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3791. cl_ulong offset1 = extra1 ? extra1->offset + src1->view_offs : offset0;
  3792. const int ne00 = src0 ? src0->ne[0] : 0;
  3793. const int ne01 = src0 ? src0->ne[1] : 0;
  3794. const int ne02 = src0 ? src0->ne[2] : 0;
  3795. const int ne03 = src0 ? src0->ne[3] : 0;
  3796. float scale, max_bias;
  3797. memcpy(&scale, dst->op_params + 0, sizeof(float));
  3798. memcpy(&max_bias, dst->op_params + 1, sizeof(float));
  3799. const int nrows_x = ggml_nrows(src0);
  3800. const int nrows_y = src0->ne[1];
  3801. const int n_head = nrows_x/nrows_y;
  3802. const int n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
  3803. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  3804. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  3805. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  3806. // Local size must be wave size. Each workgroup is a wave, working on a row,
  3807. // where a row corresponds to leading dimension.
  3808. int nth = MIN(32, ne00);
  3809. if (backend_ctx->gpu_family == INTEL) {
  3810. // This is the same as the initial value.
  3811. nth = MIN(32, ne00);
  3812. }
  3813. else if (backend_ctx->gpu_family == ADRENO) {
  3814. nth = 64;
  3815. } else {
  3816. GGML_ASSERT(false && "TODO: Unknown GPU");
  3817. }
  3818. cl_kernel kernel;
  3819. if (ne00%4 == 0) {
  3820. if (use_f16) {
  3821. kernel = backend_ctx->kernel_soft_max_4_f16;
  3822. } else {
  3823. kernel = backend_ctx->kernel_soft_max_4;
  3824. }
  3825. } else {
  3826. if (use_f16) {
  3827. kernel = backend_ctx->kernel_soft_max_f16;
  3828. } else {
  3829. kernel = backend_ctx->kernel_soft_max;
  3830. }
  3831. }
  3832. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3833. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3834. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), extra1 ? &extra1->data_device : &extra0->data_device));
  3835. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3836. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3837. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3838. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  3839. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  3840. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  3841. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(float), &scale));
  3842. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(float), &max_bias));
  3843. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(float), &m0));
  3844. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float), &m1));
  3845. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &n_head_log2));
  3846. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  3847. size_t local_work_size[] = {(size_t)nth, 1, 1};
  3848. #ifdef GGML_OPENCL_PROFILING
  3849. cl_event evt;
  3850. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3851. g_profiling_info.emplace_back();
  3852. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  3853. #else
  3854. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  3855. #endif
  3856. }
  3857. static void ggml_cl_rope(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3858. GGML_ASSERT(src0);
  3859. GGML_ASSERT(src0->extra);
  3860. GGML_ASSERT(src1);
  3861. GGML_ASSERT(src1->extra);
  3862. GGML_ASSERT(dst);
  3863. GGML_ASSERT(dst->extra);
  3864. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3865. cl_command_queue queue = backend_ctx->queue;
  3866. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3867. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  3868. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3869. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3870. cl_ulong offset1 = extra1->offset + src1->view_offs;
  3871. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3872. ggml_tensor * src2 = dst->src[2];
  3873. ggml_tensor_extra_cl * extra2 = src2 ? (ggml_tensor_extra_cl *)src2->extra : nullptr;
  3874. cl_ulong offset2 = extra2 ? extra2->offset + src2->view_offs : offset0;
  3875. const int ne00 = src0 ? src0->ne[0] : 0;
  3876. const int ne01 = src0 ? src0->ne[1] : 0;
  3877. const int ne02 = src0 ? src0->ne[2] : 0;
  3878. const int ne03 = src0 ? src0->ne[3] : 0;
  3879. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  3880. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  3881. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  3882. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  3883. const int ne10 = src1 ? src1->ne[0] : 0;
  3884. const int ne11 = src1 ? src1->ne[1] : 0; UNUSED(ne11);
  3885. const int ne12 = src1 ? src1->ne[2] : 0; UNUSED(ne12);
  3886. const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
  3887. const int ne0 = dst ? dst->ne[0] : 0;
  3888. const int ne1 = dst ? dst->ne[1] : 0;
  3889. const int ne2 = dst ? dst->ne[2] : 0;
  3890. const int ne3 = dst ? dst->ne[3] : 0;
  3891. const cl_ulong nb0 = dst ? dst->nb[0] : 0;
  3892. const cl_ulong nb1 = dst ? dst->nb[1] : 0;
  3893. const cl_ulong nb2 = dst ? dst->nb[2] : 0;
  3894. const cl_ulong nb3 = dst ? dst->nb[3] : 0;
  3895. GGML_ASSERT(ne10 % ne02 == 0);
  3896. GGML_ASSERT(ne10 >= ne02);
  3897. int nth = MIN(64, ne00);
  3898. const int n_past = ((int *) dst->op_params)[0];
  3899. const int n_dims = ((int *) dst->op_params)[1];
  3900. const int mode = ((int *) dst->op_params)[2];
  3901. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  3902. float freq_base;
  3903. float freq_scale;
  3904. float ext_factor;
  3905. float attn_factor;
  3906. float beta_fast;
  3907. float beta_slow;
  3908. int32_t sections[4];
  3909. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  3910. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  3911. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  3912. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  3913. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  3914. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  3915. memcpy(&sections, (int32_t *) dst->op_params + 11, sizeof(int32_t)*4);
  3916. const bool is_neox = mode & 2;
  3917. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  3918. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  3919. if (is_mrope) {
  3920. GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
  3921. }
  3922. if (is_vision) {
  3923. GGML_ASSERT(n_dims == ne00/2);
  3924. }
  3925. cl_kernel kernel;
  3926. if (is_neox) {
  3927. switch (src0->type) {
  3928. case GGML_TYPE_F32:
  3929. kernel = backend_ctx->kernel_rope_neox_f32;
  3930. break;
  3931. case GGML_TYPE_F16:
  3932. kernel = backend_ctx->kernel_rope_neox_f16;
  3933. break;
  3934. default:
  3935. GGML_ASSERT(false);
  3936. };
  3937. } else if (is_mrope && !is_vision) {
  3938. switch (src0->type) {
  3939. case GGML_TYPE_F32:
  3940. kernel = backend_ctx->kernel_rope_multi_f32;
  3941. break;
  3942. case GGML_TYPE_F16:
  3943. kernel = backend_ctx->kernel_rope_multi_f16;
  3944. break;
  3945. default:
  3946. GGML_ASSERT(false);
  3947. };
  3948. } else if (is_vision) {
  3949. switch (src0->type) {
  3950. case GGML_TYPE_F32:
  3951. kernel = backend_ctx->kernel_rope_vision_f32;
  3952. break;
  3953. case GGML_TYPE_F16:
  3954. kernel = backend_ctx->kernel_rope_vision_f16;
  3955. break;
  3956. default:
  3957. GGML_ASSERT(false);
  3958. }
  3959. } else {
  3960. switch (src0->type) {
  3961. case GGML_TYPE_F32:
  3962. kernel = backend_ctx->kernel_rope_norm_f32;
  3963. break;
  3964. case GGML_TYPE_F16:
  3965. kernel = backend_ctx->kernel_rope_norm_f16;
  3966. break;
  3967. default:
  3968. GGML_ASSERT(false);
  3969. };
  3970. }
  3971. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3972. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3973. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3974. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3975. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), extra2 ? &extra2->data_device : &extra0->data_device));
  3976. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  3977. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  3978. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  3979. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  3980. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  3981. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
  3982. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne03));
  3983. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb00));
  3984. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb01));
  3985. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb02));
  3986. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb03));
  3987. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne0));
  3988. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne1));
  3989. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne2));
  3990. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne3));
  3991. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb0));
  3992. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb1));
  3993. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb2));
  3994. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &nb3));
  3995. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &n_past));
  3996. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &n_dims));
  3997. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &n_ctx_orig));
  3998. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(float), &freq_base));
  3999. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(float), &freq_scale));
  4000. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(float), &ext_factor));
  4001. CL_CHECK(clSetKernelArg(kernel, 30, sizeof(float), &attn_factor));
  4002. CL_CHECK(clSetKernelArg(kernel, 31, sizeof(float), &beta_fast));
  4003. CL_CHECK(clSetKernelArg(kernel, 32, sizeof(float), &beta_slow));
  4004. if (is_mrope || is_vision) {
  4005. CL_CHECK(clSetKernelArg(kernel, 33, sizeof(int32_t)*4, &sections));
  4006. }
  4007. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  4008. size_t local_work_size[] = {(size_t)nth, 1, 1};
  4009. #ifdef GGML_OPENCL_PROFILING
  4010. cl_event evt;
  4011. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  4012. g_profiling_info.emplace_back();
  4013. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  4014. #else
  4015. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  4016. #endif
  4017. }
  4018. static void ggml_cl_im2col(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4019. GGML_ASSERT(src0);
  4020. GGML_ASSERT(src1);
  4021. GGML_ASSERT(src1->extra);
  4022. GGML_ASSERT(dst);
  4023. GGML_ASSERT(dst->extra);
  4024. // src0 - filter, src1 - input
  4025. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  4026. GGML_ASSERT(dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
  4027. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4028. cl_command_queue queue = backend_ctx->queue;
  4029. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4030. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4031. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4032. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4033. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  4034. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  4035. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  4036. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  4037. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  4038. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  4039. const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
  4040. const cl_long IC = src1->ne[is_2D ? 2 : 1];
  4041. const cl_long IH = is_2D ? src1->ne[1] : 1;
  4042. const cl_long IW = src1->ne[0];
  4043. const cl_long KH = is_2D ? src0->ne[1] : 1;
  4044. const cl_long KW = src0->ne[0];
  4045. const cl_long OH = is_2D ? dst->ne[2] : 1;
  4046. const cl_long OW = dst->ne[1];
  4047. // nb is byte offset, src is type float32
  4048. const cl_ulong delta_offset = src1->nb[is_2D ? 2 : 1]/4;
  4049. const cl_long batch = src1->ne[is_2D ? 3 : 2];
  4050. const cl_ulong batch_offset = src1->nb[is_2D ? 3 : 2]/4;
  4051. const cl_long pelements = OW*KW*KH;
  4052. const cl_long CHW = IC*KH*KW;
  4053. cl_kernel kernel;
  4054. if(dst->type == GGML_TYPE_F16) {
  4055. kernel = backend_ctx->kernel_im2col_f16;
  4056. } else {
  4057. kernel = backend_ctx->kernel_im2col_f32;
  4058. }
  4059. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra1->data_device));
  4060. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset1));
  4061. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4062. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4063. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &batch_offset));
  4064. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &delta_offset));
  4065. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_long), &IW));
  4066. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_long), &IH));
  4067. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_long), &IC));
  4068. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_long), &OW));
  4069. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_long), &OH));
  4070. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_long), &KW));
  4071. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_long), &KH));
  4072. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_long), &pelements));
  4073. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_long), &CHW));
  4074. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &s0));
  4075. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &s1));
  4076. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &p0));
  4077. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &p1));
  4078. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &d0));
  4079. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &d1));
  4080. const int num_blocks = (pelements + 256 - 1) / 256;
  4081. size_t global_work_size[] = {(size_t)num_blocks*256, (size_t)OH, (size_t)batch*IC};
  4082. size_t local_work_size[] = {256, 1, 1};
  4083. #ifdef GGML_OPENCL_PROFILING
  4084. cl_event evt;
  4085. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  4086. g_profiling_info.emplace_back();
  4087. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  4088. #else
  4089. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  4090. #endif
  4091. }
  4092. //------------------------------------------------------------------------------
  4093. // Op offloading
  4094. //------------------------------------------------------------------------------
  4095. typedef void (*ggml_cl_func_t)(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
  4096. bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor) {
  4097. ggml_cl_func_t func = nullptr;
  4098. ggml_tensor * src0 = tensor->src[0];
  4099. ggml_tensor * src1 = tensor->src[1];
  4100. const bool any_on_device = tensor->extra
  4101. || (src0 != nullptr && src0->extra)
  4102. || (src1 != nullptr && src1->extra);
  4103. switch (tensor->op) {
  4104. case GGML_OP_GET_ROWS:
  4105. if (!any_on_device) {
  4106. return false;
  4107. }
  4108. func = ggml_cl_get_rows;
  4109. break;
  4110. case GGML_OP_CPY:
  4111. if (!any_on_device) {
  4112. return false;
  4113. }
  4114. func = ggml_cl_cpy;
  4115. break;
  4116. case GGML_OP_DUP:
  4117. case GGML_OP_CONT:
  4118. if (!any_on_device) {
  4119. return false;
  4120. }
  4121. func = ggml_cl_dup;
  4122. break;
  4123. case GGML_OP_ADD:
  4124. if (!any_on_device) {
  4125. return false;
  4126. }
  4127. func = ggml_cl_add;
  4128. break;
  4129. case GGML_OP_MUL:
  4130. if (!any_on_device) {
  4131. return false;
  4132. }
  4133. func = ggml_cl_mul;
  4134. break;
  4135. case GGML_OP_UNARY:
  4136. switch (ggml_get_unary_op(tensor)) {
  4137. case GGML_UNARY_OP_GELU:
  4138. if (!any_on_device) {
  4139. return false;
  4140. }
  4141. func = ggml_cl_gelu;
  4142. break;
  4143. case GGML_UNARY_OP_GELU_QUICK:
  4144. if (!any_on_device) {
  4145. return false;
  4146. }
  4147. func = ggml_cl_gelu_quick;
  4148. break;
  4149. case GGML_UNARY_OP_SILU:
  4150. if (!any_on_device) {
  4151. return false;
  4152. }
  4153. func = ggml_cl_silu;
  4154. break;
  4155. case GGML_UNARY_OP_RELU:
  4156. if (!any_on_device) {
  4157. return false;
  4158. }
  4159. func = ggml_cl_relu;
  4160. break;
  4161. default:
  4162. return false;
  4163. } break;
  4164. case GGML_OP_CLAMP:
  4165. if (!any_on_device) {
  4166. return false;
  4167. }
  4168. func = ggml_cl_clamp;
  4169. break;
  4170. case GGML_OP_NORM:
  4171. if (!any_on_device) {
  4172. return false;
  4173. }
  4174. func = ggml_cl_norm;
  4175. break;
  4176. case GGML_OP_RMS_NORM:
  4177. if (!any_on_device) {
  4178. return false;
  4179. }
  4180. func = ggml_cl_rms_norm;
  4181. break;
  4182. case GGML_OP_MUL_MAT:
  4183. if (!any_on_device && !ggml_cl_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
  4184. return false;
  4185. }
  4186. func = ggml_cl_mul_mat;
  4187. break;
  4188. case GGML_OP_SCALE:
  4189. if (!any_on_device) {
  4190. return false;
  4191. }
  4192. func = ggml_cl_scale;
  4193. break;
  4194. case GGML_OP_RESHAPE:
  4195. case GGML_OP_VIEW:
  4196. case GGML_OP_PERMUTE:
  4197. case GGML_OP_TRANSPOSE:
  4198. if (!any_on_device) {
  4199. return false;
  4200. }
  4201. func = ggml_cl_nop;
  4202. break;
  4203. case GGML_OP_DIAG_MASK_INF:
  4204. if (!any_on_device) {
  4205. return false;
  4206. }
  4207. func = ggml_cl_diag_mask_inf;
  4208. break;
  4209. case GGML_OP_SOFT_MAX:
  4210. if (!any_on_device) {
  4211. return false;
  4212. }
  4213. func = ggml_cl_soft_max;
  4214. break;
  4215. case GGML_OP_ROPE:
  4216. if (!any_on_device) {
  4217. return false;
  4218. }
  4219. func = ggml_cl_rope;
  4220. break;
  4221. case GGML_OP_IM2COL:
  4222. if (!any_on_device) {
  4223. return false;
  4224. }
  4225. func = ggml_cl_im2col;
  4226. break;
  4227. default:
  4228. return false;
  4229. }
  4230. func(backend, tensor->src[0], tensor->src[1], tensor);
  4231. return true;
  4232. }