| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964 |
- #define CL_TARGET_OPENCL_VERSION GGML_OPENCL_TARGET_VERSION
- #define CL_USE_DEPRECATED_OPENCL_1_2_APIS
- // suppress warnings in CL headers for GCC and Clang
- #pragma GCC diagnostic ignored "-Woverlength-strings"
- #ifdef __clang__
- #pragma GCC diagnostic ignored "-Wgnu-anonymous-struct"
- #endif
- #include "ggml-opencl.h"
- #include "ggml-backend.h"
- #include "ggml-impl.h"
- #include "ggml-backend-impl.h"
- #include "ggml.h"
- #include <CL/cl.h>
- #include <string.h>
- #include <cstddef>
- #include <cstdint>
- #include <atomic>
- #include <fstream>
- #include <limits>
- #include <vector>
- #include <string>
- #include <cmath>
- #include <memory>
- #include <charconv>
- #undef MIN
- #undef MAX
- #define MIN(a, b) ((a) < (b) ? (a) : (b))
- #define MAX(a, b) ((a) > (b) ? (a) : (b))
- #define UNUSED(x) (void)(x)
- #define CL_CHECK(err) \
- do { \
- cl_int err_ = (err); \
- if (err_ != CL_SUCCESS) { \
- GGML_LOG_ERROR("ggml_opencl: %s error %d at %s:%d\n", \
- #err, err_, __FILE__, __LINE__); \
- GGML_ASSERT(0); \
- } \
- } while (0)
- //------------------------------------------------------------------------------
- // OpenCL
- //------------------------------------------------------------------------------
- bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor);
- enum GPU_FAMILY {
- ADRENO,
- INTEL,
- UNKNOWN,
- };
- enum ADRENO_GPU_GEN {
- ADRENO_UNKNOWN,
- A7X,
- A8X,
- X1E,
- };
- enum ADRENO_CL_COMPILER_TYPE {
- E031,
- DX,
- };
- struct ggml_cl_version {
- cl_uint major = 0;
- cl_uint minor = 0;
- };
- struct ggml_cl_compiler_version {
- ADRENO_CL_COMPILER_TYPE type;
- int major = -1;
- int minor = -1;
- int patch = -1;
- bool same(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
- return major == x && minor == y && patch == z && type == t;
- }
- bool newer_than(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
- return major*10000 + minor*100 + patch > x*10000 + y*100 + z && type == t;
- }
- bool newer_than_or_same(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
- return same(t, x, y, z) || newer_than(t, x, y, z);
- }
- };
- // Parses a version string of form "XX.YY ". On an error returns ggml_cl_version with all zeroes.
- static ggml_cl_version parse_cl_version(std::string_view str) {
- size_t major_str_begin = 0;
- size_t major_str_end = str.find(".", major_str_begin);
- if (major_str_end == std::string::npos) {
- return {};
- }
- size_t minor_str_begin = major_str_end + 1;
- size_t minor_str_end = str.find(" ", minor_str_begin);
- if (minor_str_end == std::string::npos) {
- return {};
- }
- cl_uint version_major;
- if (std::from_chars(str.data() + major_str_begin, str.data() + major_str_end, version_major).ec != std::errc{}) {
- return {};
- }
- cl_uint version_minor;
- if (std::from_chars(str.data() + minor_str_begin, str.data() + minor_str_end, version_minor).ec != std::errc{}) {
- return {};
- }
- return { version_major, version_minor };
- }
- // Returns OpenCL platform's version. On an error returns ggml_cl_version with all zeroes.
- static ggml_cl_version get_opencl_platform_version(cl_platform_id platform) {
- size_t param_size;
- CL_CHECK(clGetPlatformInfo(platform, CL_PLATFORM_VERSION, 0, nullptr, ¶m_size));
- std::unique_ptr<char[]> param_storage(new char[param_size]);
- CL_CHECK(clGetPlatformInfo(platform, CL_PLATFORM_VERSION, param_size, param_storage.get(), nullptr));
- auto param_value = std::string_view(param_storage.get(), param_size);
- const std::string version_prefix = "OpenCL "; // Suffix: "XX.YY <platform-specific-info>"
- if (param_value.find(version_prefix) != 0) {
- return {};
- }
- param_value.remove_prefix(version_prefix.length());
- return parse_cl_version(param_value);
- }
- // Return a version to use in OpenCL C compilation. On an error returns ggml_cl_version with all zeroes.
- static ggml_cl_version get_opencl_c_version(ggml_cl_version platform_version, cl_device_id device) {
- size_t param_size;
- #if CL_TARGET_OPENCL_VERSION >= 300
- if (platform_version.major >= 3) {
- CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_ALL_VERSIONS, 0, nullptr, ¶m_size));
- if (!param_size) {
- return {};
- }
- std::unique_ptr<cl_name_version[]> versions(new cl_name_version[param_size]);
- CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_ALL_VERSIONS, param_size, versions.get(), nullptr));
- unsigned versions_count = param_size / sizeof(cl_name_version);
- cl_version version_max = 0;
- for (unsigned i = 0; i < versions_count; i++) {
- version_max = std::max<cl_version>(versions[i].version, version_max);
- }
- return { CL_VERSION_MAJOR(version_max), CL_VERSION_MINOR(version_max) };
- }
- #else
- GGML_UNUSED(platform_version);
- #endif // CL_TARGET_OPENCL_VERSION >= 300
- CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_VERSION, 0, nullptr, ¶m_size));
- if (!param_size) {
- return {};
- }
- std::unique_ptr<char[]> param_storage(new char[param_size]);
- CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_VERSION, param_size, param_storage.get(), nullptr));
- auto param_value = std::string_view(param_storage.get(), param_size);
- const std::string version_prefix = "OpenCL C "; // Suffix: "XX.YY <platform-specific-info>"
- if (param_value.find(version_prefix) != 0) {
- return {};
- }
- param_value.remove_prefix(version_prefix.length());
- return parse_cl_version(param_value);
- }
- static ADRENO_GPU_GEN get_adreno_gpu_gen(const char *device_name) {
- if (strstr(device_name, "730") ||
- strstr(device_name, "740") ||
- strstr(device_name, "750")) {
- return ADRENO_GPU_GEN::A7X;
- }
- if (strstr(device_name, "830")) {
- return ADRENO_GPU_GEN::A8X;
- }
- if (strstr(device_name, "X1")) {
- return ADRENO_GPU_GEN::X1E;
- }
- return ADRENO_GPU_GEN::ADRENO_UNKNOWN;
- }
- static ggml_cl_compiler_version get_adreno_cl_compiler_version(const char *driver_version) {
- std::string driver_ver_str(driver_version);
- ADRENO_CL_COMPILER_TYPE type = ADRENO_CL_COMPILER_TYPE::E031;
- size_t compiler_ver_pos = driver_ver_str.find("E031");
- size_t compiler_ver_len = 13;
- size_t compiler_major_offset = 5;
- size_t compiler_minor_offset = 8;
- size_t compiler_patch_offset = 11;
- if (compiler_ver_pos == std::string::npos) {
- compiler_ver_pos = driver_ver_str.find("DX");
- if (compiler_ver_pos == std::string::npos) {
- return {};
- }
- type = ADRENO_CL_COMPILER_TYPE::DX;
- compiler_ver_len = 11;
- compiler_major_offset = 3;
- }
- std::string compiler_ver_str = driver_ver_str.substr(compiler_ver_pos, compiler_ver_len);
- int major = std::atoi(compiler_ver_str.substr(compiler_major_offset, 2).c_str());
- int minor = std::atoi(compiler_ver_str.substr(compiler_minor_offset, 2).c_str());
- int patch = std::atoi(compiler_ver_str.substr(compiler_patch_offset, 2).c_str());
- return { type, major, minor, patch };
- }
- // backend device context
- struct ggml_backend_opencl_device_context {
- cl_platform_id platform;
- std::string platform_name;
- cl_device_id device;
- std::string device_name;
- };
- // backend context
- struct ggml_backend_opencl_context {
- cl_device_id device;
- std::string device_name;
- std::string driver_version;
- GPU_FAMILY gpu_family;
- ADRENO_GPU_GEN adreno_gen;
- cl_int alignment;
- size_t max_alloc_size;
- bool fp16_support;
- bool has_vector_subgroup_broadcast;
- ggml_cl_compiler_version adreno_cl_compiler_version;
- int adreno_wave_size;
- cl_context context;
- cl_command_queue queue;
- cl_program program_add;
- cl_program program_clamp;
- cl_program program_cpy;
- cl_program program_cvt;
- cl_program program_diag_mask_inf;
- cl_program program_gelu;
- cl_program program_gemv_noshuffle_general;
- cl_program program_gemv_noshuffle;
- cl_program program_get_rows;
- cl_program program_im2col_f16;
- cl_program program_im2col_f32;
- cl_program program_mul_mat_Ab_Bi_8x4;
- cl_program program_mul_mv_q4_0_f32;
- cl_program program_mul_mv_q4_0_f32_v;
- cl_program program_mul_mv_q4_0_f32_8x_flat;
- cl_program program_mul_mv_q4_0_f32_1d_8x_flat;
- cl_program program_mul_mv_q4_0_f32_1d_16x_flat;
- cl_program program_mul_mv_q6_K;
- cl_program program_mul_mv_f16_f16;
- cl_program program_mul_mv_f16_f32_1row;
- cl_program program_mul_mv_f16_f32_l4;
- cl_program program_mul_mv_f16_f32;
- cl_program program_mul_mv_f32_f32;
- cl_program program_mul;
- cl_program program_norm;
- cl_program program_relu;
- cl_program program_rms_norm;
- cl_program program_rope;
- cl_program program_scale;
- cl_program program_silu;
- cl_program program_softmax_f32;
- cl_program program_softmax_f16;
- cl_program program_softmax_4_f32;
- cl_program program_softmax_4_f16;
- cl_kernel kernel_add, kernel_add_row;
- cl_kernel kernel_mul, kernel_mul_row;
- cl_kernel kernel_scale;
- cl_kernel kernel_silu, kernel_silu_4;
- cl_kernel kernel_gelu, kernel_gelu_4;
- cl_kernel kernel_gelu_quick, kernel_gelu_quick_4;
- cl_kernel kernel_relu;
- cl_kernel kernel_clamp;
- cl_kernel kernel_norm;
- cl_kernel kernel_rms_norm;
- cl_kernel kernel_diag_mask_inf, kernel_diag_mask_inf_8;
- cl_kernel kernel_soft_max, kernel_soft_max_4;
- cl_kernel kernel_soft_max_f16, kernel_soft_max_4_f16;
- cl_kernel kernel_get_rows_f32, kernel_get_rows_f16, kernel_get_rows_q4_0;
- cl_kernel kernel_rope_norm_f32, kernel_rope_norm_f16, kernel_rope_neox_f32, kernel_rope_neox_f16;
- cl_kernel kernel_rope_multi_f32, kernel_rope_multi_f16, kernel_rope_vision_f32, kernel_rope_vision_f16;
- cl_kernel kernel_cpy_f16_f16, kernel_cpy_f16_f32, kernel_cpy_f32_f16, kernel_cpy_f32_f32;
- cl_kernel kernel_mul_mat_f32_f32;
- cl_kernel kernel_mul_mat_f16_f16;
- cl_kernel kernel_mul_mat_f16_f32_1row;
- cl_kernel kernel_mul_mat_f16_f32;
- cl_kernel kernel_mul_mat_f16_f32_l4;
- cl_kernel kernel_mul_mat_q4_0_f32, kernel_mul_mat_q4_0_f32_v;
- cl_kernel kernel_convert_block_q4_0, kernel_restore_block_q4_0;
- cl_kernel kernel_mul_mat_q4_0_f32_8x_flat;
- cl_kernel kernel_convert_block_q4_0_noshuffle;
- cl_kernel kernel_mul_mat_q4_0_f32_1d_8x_flat, kernel_mul_mat_q4_0_f32_1d_16x_flat;
- cl_kernel kernel_mul_mv_q6_K_f32;
- cl_kernel kernel_im2col_f32, kernel_im2col_f16;
- #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
- // Transpose kernels
- cl_program program_transpose;
- cl_kernel kernel_transpose_32;
- cl_kernel kernel_transpose_32_16;
- cl_kernel kernel_transpose_16;
- cl_mem A_s_d_max; // max scale buffer size for transpose
- cl_mem A_q_d_max; // max weight buffer size for transpose
- cl_mem B_d_max; // max activation buffer size for transpose
- // Gemm and Gemv related programs, kernels, etc
- cl_program program_CL_gemm;
- cl_program program_CL_gemv_general;
- cl_program program_CL_gemv_4096_1_11008;
- cl_program program_CL_gemv_4096_1_4096;
- cl_program program_CL_gemv_11008_1_4096;
- cl_program program_CL_gemv_32000_1_4096;
- cl_kernel CL_mul_mat_Ab_Bi_8x4;
- cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general;
- cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008;
- cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
- cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
- cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
- #endif // GGML_OPENCL_USE_ADRENO_KERNELS
- };
- static ggml_backend_device g_ggml_backend_opencl_device;
- static ggml_backend_opencl_device_context g_ggml_ctx_dev_main {
- /*.platform =*/ nullptr,
- /*.platform_nane =*/ "",
- /*.device =*/ nullptr,
- /*.device_name =*/ "",
- };
- static int ggml_backend_opencl_n_devices = 0;
- // Profiling
- #ifdef GGML_OPENCL_PROFILING
- struct ProfilingInfo {
- std::string op_name;
- std::string kernel_name;
- cl_kernel kernel;
- cl_event evt;
- cl_ulong cmd_queued;
- cl_ulong cmd_submit;
- cl_ulong cmd_start;
- cl_ulong cmd_end;
- cl_ulong overhead_start;
- cl_ulong overhead_end;
- // For the times below, see spec for clGetEventProfilingInfo
- // The time kernel spent in cmd queue - SUBMIT - QUEUED
- cl_ulong cmd_queued_duration_ns;
- // The time kernel spent for submission - START - SUBMIT
- cl_ulong cmd_submit_duration_ns;
- // Kernel execution time in nanoseconds - END - START
- cl_ulong cmd_duration_ns;
- // The time for the kernel to complete - COMPLETE - END
- cl_ulong cmd_complete_duration_ns;
- // Total time to finish the kernel - COMPELTE - QUEUED
- cl_ulong cmd_total_duration_ns;
- // Global and local work sizes.
- size_t global_size[3];
- size_t local_size[3];
- // Op output size.
- size_t output_size[4];
- };
- std::vector<ProfilingInfo> g_profiling_info;
- #endif
- inline std::string read_file(const std::string &path) {
- std::ifstream ifs(path);
- if (!ifs) {
- return "";
- }
- std::string text;
- ifs.seekg(0, std::ios::end);
- text.resize(ifs.tellg());
- ifs.seekg(0, std::ios::beg);
- ifs.read(&text[0], text.size());
- return text;
- }
- static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer, const std::string &compile_opts) {
- cl_program p;
- char *program_log;
- size_t program_size;
- size_t log_size;
- int err;
- program_size = strlen(program_buffer);
- p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err);
- if(err < 0) {
- GGML_LOG_ERROR("OpenCL error creating program");
- exit(1);
- }
- err = clBuildProgram(p, 0, NULL, compile_opts.c_str(), NULL, NULL);
- if(err < 0) {
- clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
- program_log = (char*) malloc(log_size + 1);
- program_log[log_size] = '\0';
- clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
- GGML_LOG_ERROR("ggml_opencl: kernel compile error:\n\n%s\n", program_log);
- free(program_log);
- exit(1);
- }
- return p;
- }
- static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_version opencl_c_version) {
- cl_int err;
- // compiler options for general kernels
- auto opencl_c_std =
- std::string("CL") + std::to_string(opencl_c_version.major) + "." + std::to_string(opencl_c_version.minor);
- std::string compile_opts = std::string("-cl-std=") + opencl_c_std +
- " -cl-mad-enable -cl-unsafe-math-optimizations"
- " -cl-finite-math-only -cl-fast-relaxed-math";
- GGML_LOG_INFO("ggml_opencl: loading OpenCL kernels");
- // add
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "add.cl.h"
- };
- #else
- const std::string kernel_src = read_file("add.cl");
- #endif
- backend_ctx->program_add =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_add = clCreateKernel(backend_ctx->program_add, "kernel_add", &err), err));
- CL_CHECK((backend_ctx->kernel_add_row = clCreateKernel(backend_ctx->program_add, "kernel_add_row", &err), err));
- GGML_LOG_CONT(".");
- }
- // clamp
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "clamp.cl.h"
- };
- #else
- const std::string kernel_src = read_file("clamp.cl");
- #endif
- backend_ctx->program_clamp =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_clamp = clCreateKernel(backend_ctx->program_clamp, "kernel_clamp", &err), err));
- GGML_LOG_CONT(".");
- }
- // cpy
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "cpy.cl.h"
- };
- #else
- const std::string kernel_src = read_file("cpy.cl");
- #endif
- backend_ctx->program_cpy =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_cpy_f16_f16 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f16_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_cpy_f16_f32 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f16_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_cpy_f32_f16 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f32_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_cpy_f32_f32 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f32_f32", &err), err));
- GGML_LOG_CONT(".");
- }
- // cvt
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "cvt.cl.h"
- };
- #else
- const std::string kernel_src = read_file("cvt.cl");
- #endif
- backend_ctx->program_cvt =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_convert_block_q4_0_noshuffle = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0_noshuffle", &err), err));
- CL_CHECK((backend_ctx->kernel_convert_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0", &err), err));
- CL_CHECK((backend_ctx->kernel_restore_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q4_0", &err), err));
- GGML_LOG_CONT(".");
- }
- // diag_mask_inf
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "diag_mask_inf.cl.h"
- };
- #else
- const std::string kernel_src = read_file("diag_mask_inf.cl");
- #endif
- backend_ctx->program_diag_mask_inf =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_diag_mask_inf_8 = clCreateKernel(backend_ctx->program_diag_mask_inf, "kernel_diag_mask_inf_8", &err), err));
- CL_CHECK((backend_ctx->kernel_diag_mask_inf = clCreateKernel(backend_ctx->program_diag_mask_inf, "kernel_diag_mask_inf", &err), err));
- GGML_LOG_CONT(".");
- }
- // gelu
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "gelu.cl.h"
- };
- #else
- const std::string kernel_src = read_file("gelu.cl");
- #endif
- backend_ctx->program_gelu =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_gelu = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu", &err), err));
- CL_CHECK((backend_ctx->kernel_gelu_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_4", &err), err));
- CL_CHECK((backend_ctx->kernel_gelu_quick = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_quick", &err), err));
- CL_CHECK((backend_ctx->kernel_gelu_quick_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_quick_4", &err), err));
- GGML_LOG_CONT(".");
- }
- // get_rows
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "get_rows.cl.h"
- };
- #else
- const std::string kernel_src = read_file("get_rows.cl");
- #endif
- backend_ctx->program_get_rows =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_get_rows_f32 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_get_rows_f16 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_get_rows_q4_0 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_q4_0", &err), err));
- GGML_LOG_CONT(".");
- }
- // im2col_f32
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "im2col_f32.cl.h"
- };
- #else
- const std::string kernel_src = read_file("im2col_f32.cl");
- #endif
- backend_ctx->program_im2col_f32 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_im2col_f32 = clCreateKernel(backend_ctx->program_im2col_f32, "kernel_im2col_f32", &err), err));
- GGML_LOG_CONT(".");
- }
- // im2col_f16
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "im2col_f16.cl.h"
- };
- #else
- const std::string kernel_src = read_file("im2col_f16.cl");
- #endif
- backend_ctx->program_im2col_f16 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_im2col_f16 = clCreateKernel(backend_ctx->program_im2col_f16, "kernel_im2col_f16", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_q4_0_f32
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_q4_0_f32.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_q4_0_f32.cl");
- #endif
- backend_ctx->program_mul_mv_q4_0_f32 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32 = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32, "kernel_mul_mat_q4_0_f32", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_q4_0_f32_v
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_q4_0_f32_v.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_q4_0_f32_v.cl");
- #endif
- backend_ctx->program_mul_mv_q4_0_f32_v =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_v = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_v, "kernel_mul_mat_q4_0_f32_v", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_q4_0_f32_8x_flat
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_q4_0_f32_8x_flat.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_q4_0_f32_8x_flat.cl");
- #endif
- backend_ctx->program_mul_mv_q4_0_f32_8x_flat =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_8x_flat, "kernel_mul_mat_q4_0_f32_8x_flat", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_q4_0_f32_1d_8x_flat
- // This kernel does not compiler on Adreno cl compiler 38.01. Skip it for
- // those compiler versions since it is anyway not used for Adreno.
- if (backend_ctx->gpu_family != ADRENO ||
- backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) ||
- backend_ctx->adreno_cl_compiler_version.type == DX) {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_q4_0_f32_1d_8x_flat.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_q4_0_f32_1d_8x_flat.cl");
- #endif
- backend_ctx->program_mul_mv_q4_0_f32_1d_8x_flat =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_1d_8x_flat, "kernel_mul_mat_q4_0_f32_1d_8x_flat", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_q4_0_f32_1d_16x_flat
- // This kernel does not compiler on Adreno cl compiler 38.01. Skip it for
- // those compiler versions since it is anyway not used for Adreno.
- if (backend_ctx->gpu_family != ADRENO ||
- backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) ||
- backend_ctx->adreno_cl_compiler_version.type == DX) {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_q4_0_f32_1d_16x_flat.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_q4_0_f32_1d_16x_flat.cl");
- #endif
- backend_ctx->program_mul_mv_q4_0_f32_1d_16x_flat =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_1d_16x_flat, "kernel_mul_mat_q4_0_f32_1d_16x_flat", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_q6_k
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_q6_k.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_q6_k.cl");
- #endif
- backend_ctx->program_mul_mv_q6_K =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mv_q6_K_f32 = clCreateKernel(backend_ctx->program_mul_mv_q6_K, "kernel_mul_mv_q6_K_f32", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_f16_f16
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_f16_f16.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_f16_f16.cl");
- #endif
- backend_ctx->program_mul_mv_f16_f16 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mat_f16_f16 = clCreateKernel(backend_ctx->program_mul_mv_f16_f16, "kernel_mul_mat_f16_f16", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_f16_f32_1row
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_f16_f32_1row.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_f16_f32_1row.cl");
- #endif
- backend_ctx->program_mul_mv_f16_f32_1row =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_1row = clCreateKernel(backend_ctx->program_mul_mv_f16_f32_1row, "kernel_mul_mat_f16_f32_1row", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_f16_f32_l4
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_f16_f32_l4.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_f16_f32_l4.cl");
- #endif
- backend_ctx->program_mul_mv_f16_f32_l4 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_l4 = clCreateKernel(backend_ctx->program_mul_mv_f16_f32_l4, "kernel_mul_mat_f16_f32_l4", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_f16_f32
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_f16_f32.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_f16_f32.cl");
- #endif
- backend_ctx->program_mul_mv_f16_f32 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32 = clCreateKernel(backend_ctx->program_mul_mv_f16_f32, "kernel_mul_mat_f16_f32", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_f32_f32
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_f32_f32.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_f32_f32.cl");
- #endif
- backend_ctx->program_mul_mv_f32_f32 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mat_f32_f32 = clCreateKernel(backend_ctx->program_mul_mv_f32_f32, "kernel_mul_mat_f32_f32", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul.cl");
- #endif
- backend_ctx->program_mul =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul = clCreateKernel(backend_ctx->program_mul, "kernel_mul", &err), err));
- CL_CHECK((backend_ctx->kernel_mul_row = clCreateKernel(backend_ctx->program_mul, "kernel_mul_row", &err), err));
- GGML_LOG_CONT(".");
- }
- // norm
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "norm.cl.h"
- };
- #else
- const std::string kernel_src = read_file("norm.cl");
- #endif
- backend_ctx->program_norm =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_norm = clCreateKernel(backend_ctx->program_norm, "kernel_norm", &err), err));
- GGML_LOG_CONT(".");
- }
- // relu
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "relu.cl.h"
- };
- #else
- const std::string kernel_src = read_file("relu.cl");
- #endif
- backend_ctx->program_relu =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_relu = clCreateKernel(backend_ctx->program_relu, "kernel_relu", &err), err));
- GGML_LOG_CONT(".");
- }
- // rms_norm
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "rms_norm.cl.h"
- };
- #else
- const std::string kernel_src = read_file("rms_norm.cl");
- #endif
- backend_ctx->program_rms_norm =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_rms_norm = clCreateKernel(backend_ctx->program_rms_norm, "kernel_rms_norm", &err), err));
- GGML_LOG_CONT(".");
- }
- // rope
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "rope.cl.h"
- };
- #else
- const std::string kernel_src = read_file("rope.cl");
- #endif
- backend_ctx->program_rope =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_rope_norm_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_norm_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_rope_norm_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_norm_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_rope_neox_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_neox_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_rope_neox_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_neox_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_rope_multi_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_multi_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_rope_multi_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_multi_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_rope_vision_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_vision_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_rope_vision_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_vision_f16", &err), err));
- GGML_LOG_CONT(".");
- }
- // scale
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "scale.cl.h"
- };
- #else
- const std::string kernel_src = read_file("scale.cl");
- #endif
- backend_ctx->program_scale =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_scale = clCreateKernel(backend_ctx->program_scale, "kernel_scale", &err), err));
- GGML_LOG_CONT(".");
- }
- // silu
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "silu.cl.h"
- };
- #else
- const std::string kernel_src = read_file("silu.cl");
- #endif
- backend_ctx->program_silu =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_silu = clCreateKernel(backend_ctx->program_silu, "kernel_silu", &err), err));
- CL_CHECK((backend_ctx->kernel_silu_4 = clCreateKernel(backend_ctx->program_silu, "kernel_silu_4", &err), err));
- GGML_LOG_CONT(".");
- }
- // softmax_f32
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "softmax_f32.cl.h"
- };
- #else
- const std::string kernel_src = read_file("softmax_f32.cl");
- #endif
- backend_ctx->program_softmax_f32 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_soft_max = clCreateKernel(backend_ctx->program_softmax_f32, "kernel_soft_max", &err), err));
- GGML_LOG_CONT(".");
- }
- // softmax_f16
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "softmax_f16.cl.h"
- };
- #else
- const std::string kernel_src = read_file("softmax_f16.cl");
- #endif
- backend_ctx->program_softmax_f16 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_soft_max_f16 = clCreateKernel(backend_ctx->program_softmax_f16, "kernel_soft_max_f16", &err), err));
- GGML_LOG_CONT(".");
- }
- // softmax_4_f32
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "softmax_4_f32.cl.h"
- };
- #else
- const std::string kernel_src = read_file("softmax_4_f32.cl");
- #endif
- backend_ctx->program_softmax_4_f32 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_soft_max_4 = clCreateKernel(backend_ctx->program_softmax_4_f32, "kernel_soft_max_4", &err), err));
- GGML_LOG_CONT(".");
- }
- // softmax_4_f16
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "softmax_4_f16.cl.h"
- };
- #else
- const std::string kernel_src = read_file("softmax_4_f16.cl");
- #endif
- backend_ctx->program_softmax_4_f16 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_soft_max_4_f16 = clCreateKernel(backend_ctx->program_softmax_4_f16, "kernel_soft_max_4_f16", &err), err));
- GGML_LOG_CONT(".");
- }
- // Adreno kernels
- #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
- // transpose
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "transpose.cl.h"
- };
- #else
- const std::string kernel_src = read_file("transpose.cl");
- #endif
- backend_ctx->program_transpose =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_transpose_32_16 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_32_16", &err), err));
- CL_CHECK((backend_ctx->kernel_transpose_32 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_32", &err), err));
- CL_CHECK((backend_ctx->kernel_transpose_16 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_16", &err), err));
- GGML_LOG_CONT(".");
- }
- // gemv_noshuffle_general
- {
- std::string CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
- " -cl-mad-enable "
- " -DSIMDGROUP_WIDTH=" +
- std::to_string(backend_ctx->adreno_wave_size);
- if (backend_ctx->has_vector_subgroup_broadcast) {
- CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
- }
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src_CL_gemv_general {
- #include "gemv_noshuffle_general.cl.h"
- };
- #else
- const std::string kernel_src_CL_gemv_general = read_file("gemv_noshuffle_general.cl");
- #endif
- backend_ctx->program_CL_gemv_general = build_program_from_source(
- backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv_general.c_str(), CL_gemv_compile_opts);
- CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general = clCreateKernel(backend_ctx->program_CL_gemv_general, "kernel_gemv_noshuffle", &err), err));
- GGML_LOG_CONT(".");
- }
- // gemv_noshuffle
- {
- // Gemv 2048, 16384
- std::string CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
- " -cl-mad-enable "
- " -DLINE_STRIDE_A=2048 "
- " -DBLOCK_STRIDE_A=16384 "
- " -DSIMDGROUP_WIDTH=" +
- std::to_string(backend_ctx->adreno_wave_size);
- if (backend_ctx->has_vector_subgroup_broadcast) {
- CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
- }
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src_CL_gemv {
- #include "gemv_noshuffle.cl.h"
- };
- #else
- const std::string kernel_src_CL_gemv = read_file("gemv_noshuffle.cl");
- #endif
- backend_ctx->program_CL_gemv_4096_1_4096 = build_program_from_source(
- backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
- CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_4096, "kernel_gemv_noshuffle", &err), err));
- GGML_LOG_CONT(".");
- // Gemv 2048, 16384
- CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
- " -cl-mad-enable "
- " -DLINE_STRIDE_A=2048 "
- " -DBLOCK_STRIDE_A=16384 "
- " -DSIMDGROUP_WIDTH=" +
- std::to_string(backend_ctx->adreno_wave_size);
- if (backend_ctx->has_vector_subgroup_broadcast) {
- CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
- }
- backend_ctx->program_CL_gemv_4096_1_11008 = build_program_from_source(
- backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
- CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_11008, "kernel_gemv_noshuffle", &err), err));
- GGML_LOG_CONT(".");
- // Gemv 5504, 44032
- CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
- " -cl-mad-enable "
- " -DLINE_STRIDE_A=5504 "
- " -DBLOCK_STRIDE_A=44032 "
- " -DSIMDGROUP_WIDTH=" +
- std::to_string(backend_ctx->adreno_wave_size);
- if (backend_ctx->has_vector_subgroup_broadcast) {
- CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
- }
- backend_ctx->program_CL_gemv_11008_1_4096 = build_program_from_source(
- backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
- CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_11008_1_4096, "kernel_gemv_noshuffle", &err), err));
- GGML_LOG_CONT(".");
- // Gemv 16000, 128000
- CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
- " -cl-mad-enable "
- " -DLINE_STRIDE_A=16000 "
- " -DBLOCK_STRIDE_A=128000 "
- " -DSIMDGROUP_WIDTH=" +
- std::to_string(backend_ctx->adreno_wave_size);
- if (backend_ctx->has_vector_subgroup_broadcast) {
- CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
- }
- backend_ctx->program_CL_gemv_32000_1_4096 = build_program_from_source(
- backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
- CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_32000_1_4096, "kernel_gemv_noshuffle", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mat_Ab_Bi_8x4
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src_CL_gemm {
- #include "mul_mat_Ab_Bi_8x4.cl.h"
- };
- #else
- const std::string kernel_src_CL_gemm = read_file("mul_mat_Ab_Bi_8x4.cl");
- #endif
- backend_ctx->program_CL_gemm = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_CL_gemm.c_str(), compile_opts);
- CL_CHECK((backend_ctx->CL_mul_mat_Ab_Bi_8x4 = clCreateKernel(backend_ctx->program_CL_gemm, "kernel_mul_mat_Ab_Bi_8x4", &err), err));
- GGML_LOG_CONT(".");
- }
- #endif // GGML_OPENCL_USE_ADRENO_KERNELS
- GGML_LOG_CONT("\n");
- }
- static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
- static bool initialized = false;
- static ggml_backend_opencl_context *backend_ctx = nullptr;
- if (initialized) {
- return backend_ctx;
- }
- ggml_backend_opencl_device_context *dev_ctx = (ggml_backend_opencl_device_context *)dev->context;
- GGML_ASSERT(dev_ctx);
- GGML_ASSERT(dev_ctx->platform == nullptr);
- GGML_ASSERT(dev_ctx->device == nullptr);
- GGML_ASSERT(backend_ctx == nullptr);
- initialized = true;
- backend_ctx = new ggml_backend_opencl_context();
- backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN;
- cl_int err;
- #ifdef GGML_OPENCL_PROFILING
- GGML_LOG_INFO("ggml_opencl: OpenCL profiling enabled\n");
- #endif
- struct cl_device;
- struct cl_platform {
- cl_platform_id id;
- unsigned number;
- char name[128];
- char vendor[128];
- struct cl_device * devices;
- unsigned n_devices;
- struct cl_device * default_device;
- };
- struct cl_device {
- struct cl_platform * platform;
- cl_device_id id;
- unsigned number;
- cl_device_type type;
- char name[128];
- char version[128];
- };
- enum { NPLAT = 16, NDEV = 16 };
- struct cl_platform platforms[NPLAT];
- unsigned n_platforms = 0;
- struct cl_device devices[NDEV];
- unsigned n_devices = 0;
- struct cl_device * default_device = NULL;
- cl_platform_id platform_ids[NPLAT];
- if (clGetPlatformIDs(NPLAT, platform_ids, &n_platforms) != CL_SUCCESS) {
- GGML_LOG_ERROR("ggml_opencl: plaform IDs not available.\n");
- return backend_ctx;
- }
- for (unsigned i = 0; i < n_platforms; i++) {
- struct cl_platform * p = &platforms[i];
- p->number = i;
- p->id = platform_ids[i];
- CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL));
- CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL));
- cl_device_id device_ids[NDEV];
- cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices);
- if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) {
- p->n_devices = 0;
- } else {
- CL_CHECK(clGetDeviceIDsError);
- }
- p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL;
- p->default_device = NULL;
- for (unsigned j = 0; j < p->n_devices; j++) {
- struct cl_device * d = &devices[n_devices];
- d->number = n_devices++;
- d->id = device_ids[j];
- d->platform = p;
- CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL));
- CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL));
- CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_VERSION, sizeof(d->version), &d->version, NULL));
- if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) {
- p->default_device = d;
- }
- }
- if (default_device == NULL && p->default_device != NULL) {
- default_device = p->default_device;
- }
- }
- if (n_devices == 0) {
- GGML_LOG_ERROR("ggml_opencl: could find any OpenCL devices.\n");
- return backend_ctx;
- }
- char * user_platform_string = getenv("GGML_OPENCL_PLATFORM");
- char * user_device_string = getenv("GGML_OPENCL_DEVICE");
- int user_platform_number = -1;
- int user_device_number = -1;
- unsigned n;
- if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) {
- user_platform_number = (int)n;
- }
- if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) {
- user_device_number = (int)n;
- }
- if (user_platform_number != -1 && user_device_number != -1) {
- cl_platform* platform = &platforms[user_platform_number];
- if ((unsigned)user_device_number >= platform->n_devices) {
- GGML_LOG_ERROR("ggml_opencl: invalid device number %d\n", user_device_number);
- exit(1);
- }
- default_device = &platform->devices[user_device_number];
- } else {
- struct cl_device * selected_devices = devices;
- unsigned n_selected_devices = n_devices;
- if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) {
- for (unsigned i = 0; i < n_platforms; i++) {
- struct cl_platform * p = &platforms[i];
- if (strstr(p->name, user_platform_string) != NULL ||
- strstr(p->vendor, user_platform_string) != NULL) {
- user_platform_number = (int)i;
- break;
- }
- }
- if (user_platform_number == -1) {
- GGML_LOG_ERROR("ggml_opencl: no platform matching '%s' was found.\n", user_platform_string);
- exit(1);
- }
- }
- if (user_platform_number != -1) {
- struct cl_platform * p = &platforms[user_platform_number];
- selected_devices = p->devices;
- n_selected_devices = p->n_devices;
- default_device = p->default_device;
- if (n_selected_devices == 0) {
- GGML_LOG_ERROR("ggml_opencl: selected platform '%s' does not have any devices.\n", p->name);
- exit(1);
- }
- }
- if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) {
- for (unsigned i = 0; i < n_selected_devices; i++) {
- struct cl_device * d = &selected_devices[i];
- if (strstr(d->name, user_device_string) != NULL) {
- user_device_number = d->number;
- break;
- }
- }
- if (user_device_number == -1) {
- GGML_LOG_ERROR("ggml_opencl: no device matching '%s' was found.\n", user_device_string);
- exit(1);
- }
- }
- if (user_device_number != -1) {
- selected_devices = &devices[user_device_number];
- n_selected_devices = 1;
- default_device = &selected_devices[0];
- }
- GGML_ASSERT(n_selected_devices > 0);
- if (default_device == NULL) {
- default_device = &selected_devices[0];
- }
- }
- GGML_LOG_INFO("ggml_opencl: selecting platform: '%s'\n", default_device->platform->name);
- GGML_LOG_INFO("ggml_opencl: selecting device: '%s (%s)'\n", default_device->name, default_device->version);
- if (default_device->type != CL_DEVICE_TYPE_GPU) {
- GGML_LOG_WARN("ggml_opencl: warning, not a GPU: '%s'.\n", default_device->name);
- }
- dev_ctx->platform = default_device->platform->id;
- dev_ctx->device = default_device->id;
- backend_ctx->device = default_device->id;
- if (strstr(default_device->name, "Adreno") ||
- strstr(default_device->name, "Qualcomm") ||
- strstr(default_device->version, "Adreno")) {
- backend_ctx->gpu_family = GPU_FAMILY::ADRENO;
- // Usually device version contains the detailed device name
- backend_ctx->adreno_gen = get_adreno_gpu_gen(default_device->version);
- if (backend_ctx->adreno_gen == ADRENO_GPU_GEN::ADRENO_UNKNOWN) {
- backend_ctx->adreno_gen = get_adreno_gpu_gen(default_device->name);
- }
- // Use wave size of 64 for all Adreno GPUs.
- backend_ctx->adreno_wave_size = 64;
- } else if (strstr(default_device->name, "Intel")) {
- backend_ctx->gpu_family = GPU_FAMILY::INTEL;
- } else {
- GGML_LOG_ERROR("Unsupported GPU: %s\n", default_device->name);
- backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN;
- return backend_ctx;
- }
- #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
- if (backend_ctx->gpu_family != GPU_FAMILY::ADRENO) {
- GGML_LOG_ERROR("ggml_opencl: Adreno-specific kernels should not be enabled for non-Adreno GPUs; "
- "run on an Adreno GPU or recompile with CMake option `-DGGML_OPENCL_USE_ADRENO_KERNELS=OFF`\n");
- return backend_ctx;
- }
- #endif
- // Populate backend device name
- dev_ctx->platform_name = default_device->platform->name;
- dev_ctx->device_name = default_device->name;
- backend_ctx->device_name = default_device->name;
- // A local ref of cl_device_id for convenience
- cl_device_id device = backend_ctx->device;
- ggml_cl_version platform_version = get_opencl_platform_version(default_device->platform->id);
- // Check device OpenCL version, OpenCL 2.0 or above is required
- ggml_cl_version opencl_c_version = get_opencl_c_version(platform_version, device);
- if (opencl_c_version.major < 2) {
- GGML_LOG_ERROR("ggml_opencl: OpenCL 2.0 or above is required\n");
- return backend_ctx;
- }
- // Check driver version
- size_t driver_version_str_size;
- clGetDeviceInfo(device, CL_DRIVER_VERSION, 0, NULL, &driver_version_str_size);
- char *driver_version = (char *)alloca(driver_version_str_size + 1);
- clGetDeviceInfo(device, CL_DRIVER_VERSION, driver_version_str_size, driver_version, NULL);
- driver_version[driver_version_str_size] = '\0';
- GGML_LOG_INFO("ggml_opencl: OpenCL driver: %s\n", driver_version);
- backend_ctx->driver_version = driver_version;
- backend_ctx->adreno_cl_compiler_version = get_adreno_cl_compiler_version(driver_version);
- backend_ctx->has_vector_subgroup_broadcast =
- backend_ctx->adreno_cl_compiler_version.major >= 47 ||
- backend_ctx->adreno_cl_compiler_version.major == 17;
- GGML_LOG_INFO("ggml_opencl: vector subgroup broadcast support: %s\n",
- backend_ctx->has_vector_subgroup_broadcast ? "true" : "false");
- size_t ext_str_size;
- clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size);
- char *ext_buffer = (char *)alloca(ext_str_size + 1);
- clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL);
- ext_buffer[ext_str_size] = '\0'; // ensure it is null terminated
- // Check if ext_buffer contains cl_khr_fp16
- backend_ctx->fp16_support = strstr(ext_buffer, "cl_khr_fp16") != NULL;
- GGML_LOG_INFO("ggml_opencl: device FP16 support: %s\n", backend_ctx->fp16_support ? "true" : "false");
- // fp16 is required
- if (!backend_ctx->fp16_support) {
- GGML_LOG_ERROR("ggml_opencl: device does not support FP16\n");
- return backend_ctx;
- }
- // If OpenCL 3.0 is supported, then check for cl_khr_subgroups, which becomes
- // optional in OpenCL 3.0 (cl_khr_subgroup is mandatory in OpenCL 2.x)
- if (opencl_c_version.major == 3 && strstr(ext_buffer, "cl_khr_subgroups") == NULL &&
- strstr(ext_buffer, "cl_intel_subgroups") == NULL) {
- GGML_LOG_ERROR("ggml_opencl: device does not support subgroups (cl_khr_subgroups or cl_intel_subgroups) "
- "(note that subgroups is an optional feature in OpenCL 3.0)\n");
- return backend_ctx;
- }
- cl_uint base_align_in_bits;
- CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_MEM_BASE_ADDR_ALIGN, sizeof(cl_uint), &base_align_in_bits, NULL));
- GGML_ASSERT(base_align_in_bits % 8u == 0);
- backend_ctx->alignment = base_align_in_bits / 8u;
- GGML_LOG_INFO("ggml_opencl: mem base addr align: %u\n", backend_ctx->alignment);
- clGetDeviceInfo(device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(size_t), &backend_ctx->max_alloc_size, NULL);
- GGML_LOG_INFO("ggml_opencl: max mem alloc size: %zu MB\n", backend_ctx->max_alloc_size/1024/1024);
- // Check SVM.
- cl_device_svm_capabilities svm_caps;
- CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_SVM_CAPABILITIES, sizeof(cl_device_svm_capabilities), &svm_caps, 0));
- GGML_LOG_INFO("ggml_opencl: SVM coarse grain buffer support: %s\n",
- svm_caps & CL_DEVICE_SVM_COARSE_GRAIN_BUFFER ? "true" : "false");
- GGML_LOG_INFO("ggml_opencl: SVM fine grain buffer support: %s\n",
- svm_caps & CL_DEVICE_SVM_FINE_GRAIN_BUFFER ? "true" : "false");
- GGML_LOG_INFO("ggml_opencl: SVM fine grain system support: %s\n",
- svm_caps & CL_DEVICE_SVM_FINE_GRAIN_SYSTEM ? "true" : "false");
- GGML_LOG_INFO("ggml_opencl: SVM atomics support: %s\n",
- svm_caps & CL_DEVICE_SVM_ATOMICS ? "true" : "false");
- // Print out configurations
- #ifdef GGML_OPENCL_SOA_Q
- GGML_LOG_INFO("ggml_opencl: flattening quantized weights representation as struct of arrays (GGML_OPENCL_SOA_Q)\n");
- #endif // GGML_OPENCL_SOA_Q
- #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
- GGML_LOG_INFO("ggml_opencl: using kernels optimized for Adreno (GGML_OPENCL_USE_ADRENO_KERNELS)\n");
- #endif // GGML_OPENCL_USE_ADRENO_KERNELS
- cl_context_properties properties[] = {
- (intptr_t)CL_CONTEXT_PLATFORM, (intptr_t)dev_ctx->platform, 0
- };
- CL_CHECK((backend_ctx->context = clCreateContext(properties, 1, &device, NULL, NULL, &err), err));
- // A local ref of cl_context for convenience
- cl_context context = backend_ctx->context;
- //CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err),
- // (err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err :
- // (queue = clCreateCommandQueue(context, device, 0, &err), err)
- //)));
- cl_command_queue_properties command_queue_props = 0;
- #ifdef GGML_OPENCL_PROFILING
- command_queue_props |= CL_QUEUE_PROFILING_ENABLE;
- #endif
- CL_CHECK((backend_ctx->queue = clCreateCommandQueue(context, device, command_queue_props, &err), err));
- // Load kernels
- load_cl_kernels(backend_ctx, opencl_c_version);
- #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
- // Allocate intermediate buffers and images
- size_t required_A_q_d_bytes = 311164928;
- size_t required_A_s_d_bytes = 38895616;
- size_t required_B_d_bytes = 45088768;
- // Ensure buffer sizes do not exceed the maximum allocation size
- size_t max_A_q_d_bytes = MIN(required_A_q_d_bytes, backend_ctx->max_alloc_size);
- size_t max_A_s_d_bytes = MIN(required_A_s_d_bytes, backend_ctx->max_alloc_size);
- size_t max_B_d_bytes = MIN(required_B_d_bytes, backend_ctx->max_alloc_size);
- if (required_A_q_d_bytes > backend_ctx->max_alloc_size) {
- GGML_LOG_WARN("ggml_opencl: A_q_d buffer size reduced from %zu to %zu due to device limitations.\n",
- required_A_q_d_bytes, max_A_q_d_bytes);
- }
- if (required_A_s_d_bytes > backend_ctx->max_alloc_size) {
- GGML_LOG_WARN("ggml_opencl: A_s_d buffer size reduced from %zu to %zu due to device limitations.\n",
- required_A_s_d_bytes, max_A_s_d_bytes);
- }
- if (required_B_d_bytes > backend_ctx->max_alloc_size) {
- GGML_LOG_WARN("ggml_opencl: B_d buffer size reduced from %zu to %zu due to device limitations.\n",
- required_B_d_bytes, max_B_d_bytes);
- }
- CL_CHECK((backend_ctx->A_q_d_max = clCreateBuffer(context, 0, max_A_q_d_bytes, NULL, &err), err));
- CL_CHECK((backend_ctx->A_s_d_max = clCreateBuffer(context, 0, max_A_s_d_bytes, NULL, &err), err));
- CL_CHECK((backend_ctx->B_d_max = clCreateBuffer(context, 0, max_B_d_bytes, NULL, &err), err));
- #endif // GGML_OPENCL_USE_ADRENO_KERNELS
- // For now we support a single devices
- ggml_backend_opencl_n_devices = 1;
- return backend_ctx;
- }
- static void ggml_cl2_free(void) {
- #ifdef GGML_OPENCL_PROFILING
- FILE * fperf = fopen("cl_profiling.csv", "w");
- if (!fperf) {
- GGML_LOG_ERROR("Failed to open cl_profiling.csv\n");
- return;
- }
- // Populate profiling info
- for (ProfilingInfo & info : g_profiling_info) {
- cl_ulong cmd_queued;
- cl_ulong cmd_submit;
- cl_ulong cmd_start;
- cl_ulong cmd_end;
- cl_ulong cmd_complete;
- CL_CHECK(clWaitForEvents(1, &info.evt));
- CL_CHECK(clGetEventProfilingInfo(
- info.evt, CL_PROFILING_COMMAND_QUEUED, sizeof(cl_ulong), &cmd_queued, NULL));
- CL_CHECK(clGetEventProfilingInfo(
- info.evt, CL_PROFILING_COMMAND_SUBMIT, sizeof(cl_ulong), &cmd_submit, NULL));
- CL_CHECK(clGetEventProfilingInfo(
- info.evt, CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &cmd_start, NULL));
- CL_CHECK(clGetEventProfilingInfo(
- info.evt, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &cmd_end, NULL));
- CL_CHECK(clGetEventProfilingInfo(
- info.evt, CL_PROFILING_COMMAND_COMPLETE, sizeof(cl_ulong), &cmd_complete, NULL));
- CL_CHECK(clReleaseEvent(info.evt));
- char kernel_name[512];
- CL_CHECK(clGetKernelInfo(info.kernel, CL_KERNEL_FUNCTION_NAME,
- sizeof(kernel_name), kernel_name, NULL));
- info.kernel_name = kernel_name;
- info.cmd_queued = cmd_queued;
- info.cmd_submit = cmd_submit;
- info.cmd_start = cmd_start;
- info.cmd_end = cmd_end;
- info.cmd_queued_duration_ns = cmd_submit - cmd_queued;
- info.cmd_submit_duration_ns = cmd_start - cmd_submit;
- info.cmd_duration_ns = cmd_end - cmd_start;
- info.cmd_complete_duration_ns = cmd_complete - cmd_end;
- info.cmd_total_duration_ns = cmd_complete - cmd_queued;
- }
- // Dump a csv
- float total_kernel_time = 0;
- fprintf(fperf, "op name, kernel name, queued duration (ms), submit duration(ms), exec duration (ms), complete duration (ms), total duration (ms), global size, local size, output size\n");
- for (const ProfilingInfo & info : g_profiling_info) {
- total_kernel_time += info.cmd_duration_ns/1.e6f;
- fprintf(fperf, "%s,%s,%f,%f,%f,%f,%f,%zux%zux%zu,%zux%zux%zu,%zux%zux%zux%zu\n",
- info.op_name.c_str(), info.kernel_name.c_str(),
- info.cmd_queued_duration_ns/1.e6f,
- info.cmd_submit_duration_ns/1.e6f,
- info.cmd_duration_ns/1.e6f,
- info.cmd_complete_duration_ns/1.e6f,
- info.cmd_total_duration_ns/1.e6f,
- info.global_size[0], info.global_size[1], info.global_size[2],
- info.local_size[0], info.local_size[1], info.local_size[2],
- info.output_size[0], info.output_size[1], info.output_size[2], info.output_size[3]);
- }
- fclose(fperf);
- GGML_LOG_INFO("ggml_opencl: total kernel time: %f\n", total_kernel_time);
- // Dump a simple chrome trace
- FILE* ftrace = fopen("cl_trace.json", "w");
- if (!ftrace) {
- GGML_LOG_ERROR("Failed to open cl_trace.json\n");
- return;
- }
- fprintf(ftrace, "[\n");
- for (const ProfilingInfo & info : g_profiling_info) {
- fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"B\", \"ts\": %lu, \"pid\": \"\", \"tid\": \"Host\"},\n",
- info.kernel_name.c_str(), info.cmd_queued/1000);
- fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"E\", \"ts\": %lu, \"pid\": \"\", \"tid\": \"Host\"},\n",
- info.kernel_name.c_str(), info.cmd_submit/1000);
- fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"B\", \"ts\": %lu, \"pid\": \"\", \"tid\": \"Device\"},\n",
- info.kernel_name.c_str(), info.cmd_start/1000);
- fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"E\", \"ts\": %lu, \"pid\": \"\", \"tid\": \"Device\"},\n",
- info.kernel_name.c_str(), info.cmd_end/1000);
- }
- fclose(ftrace);
- #endif
- }
- //------------------------------------------------------------------------------
- // Tensor extra management
- //------------------------------------------------------------------------------
- struct ggml_tensor_extra_cl {
- // The buffer object that holds the data.
- cl_mem data_device;
- // The offset into the buffer object. This is primarily for scratch buffer
- // and view operation.
- // NB: this offset no longer includes view offset (view_offs). Whenever this
- // offset is used, view_offs should be considered.
- cl_ulong offset;
- // The actual size of the cl_mem object. This is needed when returning the
- // block to the pool.
- size_t actual_size;
- void reset() {
- data_device = nullptr;
- offset = 0;
- actual_size = 0;
- }
- };
- // Additional tensor extra structs for quantized tensors.
- // These tensors are loaded from files and should not be allocated in scratch --
- // they should always be allocated from the pool. Hence, they do not have an
- // `offset`, which indicate their locations in the scratch buffer.
- struct ggml_tensor_extra_cl_q4_0 {
- // Quantized values.
- cl_mem q = nullptr;
- // Quantized values in image1d_buffer_t.
- cl_mem q_img = nullptr;
- // Scales.
- cl_mem d = nullptr;
- // Scales in image1d_buffer_t.
- cl_mem d_img = nullptr;
- // Size of quantized values.
- size_t size_q = 0;
- // Size of scales.
- size_t size_d = 0;
- ~ggml_tensor_extra_cl_q4_0() {
- reset();
- }
- void reset() {
- // q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer.
- // They must be properly released so that the original buffer can be
- // properly released to avoid memory leak.
- if (q != nullptr) {
- CL_CHECK(clReleaseMemObject(q));
- q = nullptr;
- }
- if (d != nullptr) {
- CL_CHECK(clReleaseMemObject(d));
- d = nullptr;
- }
- // Currently, q_img and d_img are only initialized when SMALL_ALLOC is
- // enabled. They point to the images in ggml_backend_opencl_buffer_context.
- // So, there is no need to release them here.
- // TODO: initialize them for non SMALL_PATH path, or remove them.
- q_img = nullptr;
- d_img = nullptr;
- size_q = 0;
- size_d = 0;
- }
- };
- //------------------------------------------------------------------------------
- // Backend API
- //------------------------------------------------------------------------------
- //
- // backend
- //
- static const char * ggml_backend_opencl_name(ggml_backend_t backend) {
- return "OpenCL";
- UNUSED(backend);
- }
- static void ggml_backend_opencl_free(ggml_backend_t backend) {
- ggml_cl2_free();
- GGML_UNUSED(backend);
- }
- static void ggml_backend_opencl_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- GGML_UNUSED(backend);
- GGML_UNUSED(tensor);
- GGML_UNUSED(data);
- GGML_UNUSED(offset);
- GGML_UNUSED(size);
- }
- static void ggml_backend_opencl_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- GGML_UNUSED(backend);
- GGML_UNUSED(tensor);
- GGML_UNUSED(data);
- GGML_UNUSED(offset);
- GGML_UNUSED(size);
- }
- static bool ggml_backend_opencl_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) {
- GGML_UNUSED(backend);
- GGML_UNUSED(src);
- GGML_UNUSED(dst);
- return false;
- }
- static void ggml_backend_opencl_synchronize(ggml_backend_t backend) {
- GGML_UNUSED(backend);
- }
- static ggml_status ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
- for (int i = 0; i < cgraph->n_nodes; i++) {
- ggml_tensor * node = cgraph->nodes[i];
- if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
- continue;
- }
- bool ok = ggml_cl_compute_forward(backend, node);
- if (!ok) {
- GGML_LOG_ERROR("%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
- }
- GGML_ASSERT(ok);
- }
- return GGML_STATUS_SUCCESS;
- }
- static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
- GGML_UNUSED(dev);
- switch (op->op) {
- case GGML_OP_NONE:
- return true;
- case GGML_OP_GET_ROWS:
- switch (op->src[0]->type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_F16:
- return true;
- case GGML_TYPE_Q4_0:
- #ifdef GGML_OPENCL_SOA_Q
- // We do not support flattened Q4_0 (and possibly other Q's)
- return false;
- #else // GGML_OPENCL_SOA_Q
- return true;
- #endif // GGML_OPENCL_SOA_Q
- default:
- return false;
- }
- case GGML_OP_CPY:
- case GGML_OP_DUP:
- case GGML_OP_CONT:
- switch (op->src[0]->type) {
- case GGML_TYPE_F32:
- switch (op->type) {
- case GGML_TYPE_F16:
- case GGML_TYPE_F32:
- return true;
- default:
- return false;
- }
- case GGML_TYPE_F16:
- switch (op->type) {
- case GGML_TYPE_F16:
- case GGML_TYPE_F32:
- return true;
- default:
- return false;
- }
- default:
- return false;
- }
- case GGML_OP_ADD:
- case GGML_OP_SCALE:
- case GGML_OP_MUL:
- return op->src[0]->type == GGML_TYPE_F32;
- case GGML_OP_UNARY:
- switch (ggml_get_unary_op(op)) {
- case GGML_UNARY_OP_GELU:
- case GGML_UNARY_OP_SILU:
- case GGML_UNARY_OP_RELU:
- case GGML_UNARY_OP_GELU_QUICK:
- return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
- default:
- return false;
- }
- case GGML_OP_CLAMP:
- return op->src[0]->type == GGML_TYPE_F32;
- case GGML_OP_SOFT_MAX:
- case GGML_OP_NORM:
- case GGML_OP_RMS_NORM:
- return true;
- case GGML_OP_MUL_MAT:
- if (op->src[0]->type == GGML_TYPE_F16) {
- return true;
- } else if (op->src[0]->type == GGML_TYPE_F32) {
- return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
- } else if (op->src[0]->type == GGML_TYPE_Q4_0 ||
- op->src[0]->type == GGML_TYPE_Q6_K) {
- return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
- }
- return false;
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- return true;
- case GGML_OP_DIAG_MASK_INF:
- return op->ne[3] == 1;
- case GGML_OP_ROPE: {
- const int mode = ((const int32_t *) op->op_params)[2];
- const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
- const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
- if (is_mrope && !is_vision) {
- if (op->src[0]->type == GGML_TYPE_F32 ||
- op->src[0]->type == GGML_TYPE_F16) {
- return true;
- }
- return false;
- }
- if (is_vision) {
- if (op->src[0]->type == GGML_TYPE_F32 ||
- op->src[0]->type == GGML_TYPE_F16) {
- return true;
- }
- return false;
- }
- return true;
- }
- case GGML_OP_IM2COL:
- return true;
- default:
- return false;
- }
- }
- // Forward declaration - implementation appears later in the file.
- static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type);
- static ggml_guid_t ggml_backend_opencl_guid() {
- static ggml_guid guid = { 0xde, 0xe0, 0x70, 0xa2, 0x73, 0x4e, 0x4d, 0xbc, 0xb0, 0xc7, 0x4f, 0xd4, 0x6d, 0x4e, 0x90, 0xfe };
- return &guid;
- }
- static ggml_backend_i ggml_backend_opencl_i = {
- /* .get_name = */ ggml_backend_opencl_name,
- /* .free = */ ggml_backend_opencl_free,
- /* .set_tensor_async = */ NULL, /* ggml_backend_opencl_set_tensor_async */
- /* .get_tensor_async = */ NULL, /* ggml_backend_opencl_get_tensor_async */
- /* .cpy_tensor_async = */ NULL, /* ggml_backend_opencl_cpy_tensor_async */
- /* .synchronize = */ NULL, /* ggml_backend_opencl_synchronize */
- /* .graph_plan_create = */ NULL,
- /* .graph_plan_free = */ NULL,
- /* .graph_plan_update = */ NULL,
- /* .graph_plan_compute = */ NULL,
- /* .graph_compute = */ ggml_backend_opencl_graph_compute,
- /* .event_record = */ NULL,
- /* .event_wait = */ NULL,
- };
- ggml_backend_t ggml_backend_opencl_init(void) {
- ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_opencl_reg(), 0);
- ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);
- ggml_backend_t backend = new ggml_backend {
- /* .guid = */ ggml_backend_opencl_guid(),
- /* .interface = */ ggml_backend_opencl_i,
- /* .device = */ dev,
- /* .context = */ backend_ctx
- };
- return backend;
- }
- bool ggml_backend_is_opencl(ggml_backend_t backend) {
- return backend && backend->iface.get_name == ggml_backend_opencl_name;
- }
- //
- // buffer
- //
- struct ggml_backend_opencl_buffer_context {
- // A buffer context can hold multiple cl_mem objects. This is for flattening
- // quantized weights and should be used with GGML_OPENCL_SMALL_ALLOC where
- // each tensor is allocated a separate buffer. When flattening is enabled
- // with small allocation, each tensor is backed by two cl_mem objects (for
- // quants and scales) packed into a backend_opencl_buffer.
- ggml_backend_opencl_buffer_context(cl_mem buf)
- : name("OpenCL") {
- buffer.push_back(buf);
- }
- ~ggml_backend_opencl_buffer_context() {
- for (cl_mem buf : buffer) {
- CL_CHECK(clReleaseMemObject(buf));
- }
- for (cl_mem im : img) {
- CL_CHECK(clReleaseMemObject(im));
- }
- // Delete all extras to trigger their destructors
- for (ggml_tensor_extra_cl * e : temp_tensor_extras) {
- delete e;
- }
- for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
- delete e;
- }
- for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0) {
- delete e;
- }
- for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
- delete e;
- }
- }
- ggml_tensor_extra_cl * ggml_opencl_alloc_temp_tensor_extra() {
- ggml_tensor_extra_cl * extra;
- if (temp_tensor_extras.empty()) {
- extra = new ggml_tensor_extra_cl();
- } else {
- extra = temp_tensor_extras.back();
- temp_tensor_extras.pop_back();
- }
- temp_tensor_extras_in_use.push_back(extra);
- extra->reset();
- return extra;
- }
- ggml_tensor_extra_cl_q4_0 * ggml_opencl_alloc_temp_tensor_extra_q4_0() {
- ggml_tensor_extra_cl_q4_0 * extra;
- if (temp_tensor_extras_q4_0.empty()) {
- extra = new ggml_tensor_extra_cl_q4_0();
- } else {
- extra = temp_tensor_extras_q4_0.back();
- temp_tensor_extras_q4_0.pop_back();
- }
- temp_tensor_extras_q4_0_in_use.push_back(extra);
- extra->reset();
- return extra;
- }
- void reset() {
- for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
- temp_tensor_extras.push_back(e);
- }
- temp_tensor_extras_in_use.clear();
- for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
- temp_tensor_extras_q4_0.push_back(e);
- }
- temp_tensor_extras_q4_0_in_use.clear();
- }
- // Pools for extras. Available extras are in `temp_tensor_extras`. Extras
- // being used are in `temp_tensor_extras_in_use`. At the first run, new
- // extras get created and put in `in_use`. When the buffer is reset via
- // the `reset` callback, all extras in `in_use` get moved to available extras
- // for reuse.
- std::vector<ggml_tensor_extra_cl *> temp_tensor_extras;
- std::vector<ggml_tensor_extra_cl *> temp_tensor_extras_in_use;
- std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0;
- std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0_in_use;
- // The buffer_context is initially created by ggml_backend_buft_alloc_buffer
- // before any tensor is initialized (at the beginning of alloc_tensor_range).
- // Hence, there is alway a buffer object in this vector. When each tensor is
- // being initialized, this original buffer object will be released if both
- // flattening and small allocation are enabled, and additional buffer
- // objects will be created in init_tensor to represent flattened quantized
- // weights.
- std::vector<cl_mem> buffer;
- // These are image1d_buffer_t objects that wrap around the quants and scales.
- // For Q4_0 quantization, there should be two of them - one for quants and
- // one for scales. They should be populated only when flattening and small
- // allocation are enabled.
- std::vector<cl_mem> img;
- std::string name;
- };
- static void ggml_backend_opencl_buffer_free_buffer(ggml_backend_buffer_t buffer) {
- ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
- delete ctx;
- }
- static void * ggml_backend_opencl_buffer_get_base(ggml_backend_buffer_t buffer) {
- ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer->buft->device);
- return (void *) (uintptr_t) backend_ctx->alignment;
- }
- static enum ggml_status ggml_backend_opencl_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
- ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
- ggml_cl2_init(buffer->buft->device);
- if (tensor->view_src != nullptr) {
- GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft);
- ggml_tensor_extra_cl * view_extra = (ggml_tensor_extra_cl *) tensor->view_src->extra;
- GGML_ASSERT(view_extra && "view_extra is nullptr?");
- // Reuse extra of the parent tensor. The offset of this view tensor
- // becomes `extra->offset + view_offs` and needs to be calculated when
- // it is used. This changes is needed because of the change to
- // ggml_alloc.c in https://github.com/ggerganov/llama.cpp/pull/7640.
- // `buffer` passed in here will always be `tensor->buffer`. It is OK
- // to allocate extras from the same buffer context for ordinary
- // intermediate tensors. But for views into kv cache tensors, doing so
- // would mess up the extras used by kv cache.
- // Before #7640, `buffer` is for intermediate tensors, which is always
- // different from that of kv cache tensors.
- //
- // NB: now extra->offset no longer accounts for view_offs.
- // NB: this should not apply to weight tensors (for end-to-end runs, but
- // may apply for test-backend-ops).
- // FIXME: if any unexpected results are seen, double check the offset -
- // there could be other places that need fix.
- tensor->extra = view_extra;
- } else {
- {
- size_t offset = (char *) tensor->data - (char *) ggml_backend_opencl_buffer_get_base(buffer);
- ggml_tensor_extra_cl * extra = ctx->ggml_opencl_alloc_temp_tensor_extra();
- extra->offset = offset;
- extra->data_device = ctx->buffer[0];
- extra->actual_size = ggml_nbytes(tensor);
- tensor->extra = extra;
- }
- }
- return GGML_STATUS_SUCCESS;
- }
- // The optimized gemm and gemv kernels are used for large matrices without batch.
- // tensor is the quantized weights matrix.
- inline bool use_adreno_kernels(const ggml_backend_opencl_context *backend_ctx, const ggml_tensor *tensor) {
- int64_t threshold_ne0 = 512;
- int64_t threshold_ne1 = 512;
- if (!backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) &&
- backend_ctx->adreno_cl_compiler_version.type != DX) {
- threshold_ne0 = 128;
- threshold_ne1 = 128;
- }
- return tensor->ne[0] >= threshold_ne0 && tensor->ne[1] >= threshold_ne1 &&
- tensor->ne[2] == 1 && tensor->ne[3] == 1;
- }
- static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
- cl_context context = backend_ctx->context;
- cl_command_queue queue = backend_ctx->queue;
- #ifdef GGML_OPENCL_SOA_Q
- // We separate the quantized bits and scale from block_q4_0 by using an
- // additional kernel, where each thread handles a block. We first read the
- // original weights into a temporary buffer, then create two separate
- // buffers for quantized bits and scales, which are then populated by the
- // conversion kernel.
- if (tensor->type == GGML_TYPE_Q4_0) {
- // Tensors should have been preallocated, therefore they should
- // already have ggml_tensor_extra_cl as extra.
- ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
- GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
- // Allocate the new extra and create aliases from the original.
- ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
- ggml_tensor_extra_cl_q4_0 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_q4_0();
- size_t size_d = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(ggml_fp16_t);
- size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*ggml_blck_size(tensor->type)/2;
- GGML_ASSERT(size_d + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");
- cl_int err;
- cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
- ggml_nbytes(tensor), NULL, &err);
- CL_CHECK(err);
- CL_CHECK(clEnqueueWriteBuffer(
- queue, data_device, CL_TRUE, 0,
- ggml_nbytes(tensor), data, 0, NULL, NULL));
- // We consider the specified offset arg as always, although For weights
- // the offset arg should be 0 (we do not assert this).
- //GGML_ASSERT(offset == 0);
- // We create subbuffers from the original tensor buffer for scales and
- // quants - i.e., scales and quants are aliases into the buffer obejct
- // that backs the original tensor. This is a cleaner way to adapt to the
- // new memory management.
- // In the old code, we allocate new buffers for scales and quants
- // respectively, which could still be done but would result in double
- // allocation; properly deallocating the preallocated buffer that backs
- // the tensors is tricky and would leak the backend specific information
- // into the general backend code.
- // Does this create misaligned subbuffers (alignment is 1024) in certain
- // cases ?
- cl_buffer_region region;
- // The original tensor memory is divided into scales and quants, i.e.,
- // we first store scales, then quants.
- // Create subbuffer for scales.
- region.origin = extra_orig->offset + tensor->view_offs + offset;
- region.size = size_d;
- extra->d = clCreateSubBuffer(
- extra_orig->data_device, CL_MEM_READ_WRITE,
- CL_BUFFER_CREATE_TYPE_REGION, ®ion, &err);
- CL_CHECK(err);
- // Create subbuffer for quants.
- region.origin = extra_orig->offset + tensor->view_offs + offset + size_d;
- region.size = size_q;
- extra->q = clCreateSubBuffer(
- extra_orig->data_device, CL_MEM_READ_WRITE,
- CL_BUFFER_CREATE_TYPE_REGION, ®ion, &err);
- CL_CHECK(err);
- //cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
- #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
- cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
- // The optimized kernels need weights in natural order, so unshuffle.
- if (use_adreno_kernels(backend_ctx, tensor)) {
- kernel = backend_ctx->kernel_convert_block_q4_0_noshuffle;
- }
- #else
- cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
- #endif // GGML_OPENCL_USE_ADRENO_KERNELS
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->d));
- size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- CL_CHECK(clWaitForEvents(1, &evt));
- CL_CHECK(clReleaseMemObject(data_device));
- tensor->extra = extra;
- // transpose the weights and scales
- #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
- // Only do transpose for large, non batched matrix
- // TODO: use preallocated images instead of sub-buffer then image
- if (use_adreno_kernels(backend_ctx, tensor)) {
- // <----------------------------------------------------------------------------------> //
- // start transpose
- // <----------------------------------------------------------------------------------> //
- int M = tensor->ne[1]; // ne01
- int K = tensor->ne[0]; // ne00
- //For matrix-vector multiplication kernel, we assume K is a multiple of 32
- GGML_ASSERT(K % 32 == 0);
- //For transpose kernels, we assume K is a multiple of 4 (satisfied by prior assert), and M is a multiple of 4
- GGML_ASSERT(M % 4 == 0);
- // transpose is out of place, so we need to allocate transposed buffers
- // <----------------------------------------------------------------------------------> //
- // use sub_buffer of max buffer size instead
- size_t q_size_bytes = K * M / 8 * sizeof(float);
- cl_buffer_region region;
- region.origin = 0;
- region.size = q_size_bytes;
- cl_mem qT_d = clCreateSubBuffer(
- backend_ctx->A_q_d_max,
- 0,
- CL_BUFFER_CREATE_TYPE_REGION,
- ®ion,
- &err);
- // cl_mem qT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, q_size_bytes, NULL, &err);
- CL_CHECK(err);
- // size_t d_size_bytes = M * (K / 32) / 2 * sizeof(float);
- size_t d_size_bytes = M * (K / 32) * 2;
- region.origin = 0;
- region.size = d_size_bytes;
- cl_mem dT_d = clCreateSubBuffer(
- backend_ctx->A_s_d_max,
- 0,
- CL_BUFFER_CREATE_TYPE_REGION,
- ®ion,
- &err);
- // cl_mem dT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, d_size_bytes, NULL, &err);
- CL_CHECK(err);
- // <----------------------------------------------------------------------------------> //
- // create images from the buffers
- // <----------------------------------------------------------------------------------> //
- cl_mem q_d_image1D;
- cl_mem d_d_image1D;
- cl_mem qT_d_image1D;
- cl_mem dT_d_image1D;
- cl_image_format img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
- cl_image_desc img_desc_1d;
- memset(&img_desc_1d, 0, sizeof(img_desc_1d));
- img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
- img_desc_1d.image_width = M * K / 4 / 4;
- img_desc_1d.buffer = extra->q;
- q_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
- CL_CHECK(err);
- img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
- memset(&img_desc_1d, 0, sizeof(img_desc_1d));
- img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
- img_desc_1d.image_width = M * K / 4 / 4;
- img_desc_1d.buffer = qT_d;
- qT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
- CL_CHECK(err);
- img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
- memset(&img_desc_1d, 0, sizeof(img_desc_1d));
- img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
- img_desc_1d.image_width = M * K / 32 / 4;
- img_desc_1d.buffer = extra->d;
- d_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
- CL_CHECK(err);
- img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
- memset(&img_desc_1d, 0, sizeof(img_desc_1d));
- img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
- img_desc_1d.image_width = M * K / 32 / 4;
- img_desc_1d.buffer = dT_d;
- dT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
- CL_CHECK(err);
- // <----------------------------------------------------------------------------------> //
- // set up and call the transpose kernels
- // <----------------------------------------------------------------------------------> //
- // weights
- int height_q = M / 4;
- int width_q = K / 4 / 4;
- kernel = backend_ctx->kernel_transpose_16;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &q_d_image1D));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &qT_d_image1D));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_q));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_q));
- size_t local_size_q[3] = {4, 16, 1};
- size_t global_size_q[3] = {static_cast<size_t>(width_q), static_cast<size_t>(height_q), 1};
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_q, local_size_q, 0, NULL, &evt));
- CL_CHECK(clWaitForEvents(1, &evt));
- // scales
- int height_s = M / 4;
- int width_s = K / 32 / 4;
- kernel = backend_ctx->kernel_transpose_16;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_d_image1D));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &dT_d_image1D));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_s));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_s));
- size_t local_size_s[3] = {4, 16, 1};
- size_t global_size_s[3] = {static_cast<size_t>(width_s), static_cast<size_t>(height_s), 1};
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_s, local_size_s, 0, NULL, &evt));
- CL_CHECK(clWaitForEvents(1, &evt));
- // <----------------------------------------------------------------------------------> //
- // copy transposed buffer contents to original buffers
- // <----------------------------------------------------------------------------------> //
- // weights
- CL_CHECK(clEnqueueCopyBuffer(queue, qT_d, extra->q, 0, 0, q_size_bytes, 0, NULL, &evt));
- CL_CHECK(clWaitForEvents(1, &evt));
- // scales
- CL_CHECK(clEnqueueCopyBuffer(queue, dT_d, extra->d, 0, 0, d_size_bytes, 0, NULL, &evt));
- CL_CHECK(clWaitForEvents(1, &evt));
- // <----------------------------------------------------------------------------------> //
- // deallocate transpose buffers
- // <----------------------------------------------------------------------------------> //
- CL_CHECK(clReleaseMemObject(qT_d));
- CL_CHECK(clReleaseMemObject(dT_d));
- // deallocate temporary images
- CL_CHECK(clReleaseMemObject(q_d_image1D));
- CL_CHECK(clReleaseMemObject(d_d_image1D));
- CL_CHECK(clReleaseMemObject(qT_d_image1D));
- CL_CHECK(clReleaseMemObject(dT_d_image1D));
- // <----------------------------------------------------------------------------------> //
- // end transpose
- // <----------------------------------------------------------------------------------> //
- }
- #endif // GGML_OPENCL_USE_ADRENO_KERNELS
- return;
- }
- #endif // GGML_OPENCL_SOA_Q
- ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
- GGML_ASSERT(extra);
- CL_CHECK(clEnqueueWriteBuffer(
- queue, extra->data_device, CL_TRUE, extra->offset + offset,
- size, data, 0, NULL, NULL));
- GGML_UNUSED(buffer);
- }
- static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- GGML_ASSERT(tensor->extra);
- ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
- cl_context context = backend_ctx->context;
- cl_command_queue queue = backend_ctx->queue;
- // Make sure all previously submitted commands are finished.
- CL_CHECK(clFinish(queue));
- #ifdef GGML_OPENCL_SOA_Q
- // In end-to-end runs, get_tensor is usually used to get back the logits,
- // where we can simply do clEnqueueReadBuffer since they are f32.
- // However, in test-backend-ops, the GPU graph is copied to the CPU backend,
- // which requires reading back quantized weight tensors.
- // To properly support this, we need to restore block_q4_0 struct arrays
- // from the flattened buffers.
- if (tensor->type == GGML_TYPE_Q4_0) {
- ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *)tensor->extra;
- cl_int err;
- cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
- ggml_nbytes(tensor), NULL, &err);
- CL_CHECK(err);
- cl_kernel kernel = backend_ctx->kernel_restore_block_q4_0;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->d));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
- size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
- size_t local_work_size[] = {1, 1, 1};
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
- global_work_size, local_work_size, 0, NULL, &evt));
- CL_CHECK(clWaitForEvents(1, &evt));
- CL_CHECK(clEnqueueReadBuffer(
- queue, data_device, CL_TRUE, offset,
- size, data, 0, NULL, NULL));
- CL_CHECK(clReleaseMemObject(data_device));
- return;
- }
- #endif // GGML_OPENCL_SOA_Q
- ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
- CL_CHECK(clEnqueueReadBuffer(
- queue, extra->data_device, CL_TRUE, extra->offset + tensor->view_offs + offset,
- size, data, 0, NULL, NULL));
- GGML_UNUSED(buffer);
- }
- static void ggml_backend_opencl_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
- ggml_backend_dev_t dev = buffer->buft->device;
- ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);
- cl_command_queue queue = backend_ctx->queue;
- ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
- for (cl_mem buf : ctx->buffer) {
- CL_CHECK(clEnqueueFillBuffer(queue, buf, &value, sizeof(value), 0, buffer->size, 0, NULL, NULL));
- }
- CL_CHECK(clFinish(queue));
- }
- static void ggml_backend_opencl_buffer_reset(ggml_backend_buffer_t buffer) {
- ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
- ctx->reset();
- }
- static ggml_backend_buffer_i ggml_backend_opencl_buffer_interface = {
- /* .free_buffer = */ ggml_backend_opencl_buffer_free_buffer,
- /* .get_base = */ ggml_backend_opencl_buffer_get_base,
- /* .init_tensor = */ ggml_backend_opencl_buffer_init_tensor,
- /* .memset_tensor = */ NULL,
- /* .set_tensor = */ ggml_backend_opencl_buffer_set_tensor,
- /* .get_tensor = */ ggml_backend_opencl_buffer_get_tensor,
- /* .cpy_tensor = */ NULL,
- /* .clear = */ ggml_backend_opencl_buffer_clear,
- /* .reset = */ ggml_backend_opencl_buffer_reset,
- };
- //
- // buffer type
- //
- static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type) {
- return "OpenCL";
- GGML_UNUSED(buffer_type);
- }
- static ggml_backend_buffer_t ggml_backend_opencl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buffer_type, size_t size) {
- ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer_type->device);
- // clCreateBuffer returns -61 for size 0
- size = std::max(size, (size_t)1);
- cl_int err;
- cl_mem mem = clCreateBuffer(backend_ctx->context, CL_MEM_READ_WRITE, size, NULL, &err);
- if (err != CL_SUCCESS) {
- GGML_LOG_INFO("%s: failed to allocate %.2f MiB\n", __func__, size / 1024.0 / 1024.0);
- return nullptr;
- }
- ggml_backend_opencl_buffer_context * ctx = new ggml_backend_opencl_buffer_context(mem);
- return ggml_backend_buffer_init(buffer_type, ggml_backend_opencl_buffer_interface, ctx, size);
- }
- static size_t ggml_backend_opencl_buffer_type_get_alignment(ggml_backend_buffer_type_t buffer_type) {
- // FIXME: not thread safe, device may not be initialized yet
- static cl_uint alignment = -1;
- if (alignment == (cl_uint)-1) {
- ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device);
- alignment = backend_ctx->alignment;
- }
- return alignment;
- }
- static size_t ggml_backend_opencl_buffer_type_get_max_size(ggml_backend_buffer_type_t buffer_type) {
- static size_t max_size = -1;
- if (max_size == (size_t)-1) {
- ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device);
- max_size = backend_ctx->max_alloc_size;
- }
- return max_size;
- }
- static bool ggml_backend_opencl_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
- return ggml_backend_is_opencl(backend);
- UNUSED(buft);
- }
- static ggml_backend_buffer_type_i ggml_backend_opencl_buffer_type_interface = {
- /* .get_name = */ ggml_backend_opencl_buffer_type_get_name,
- /* .alloc_buffer = */ ggml_backend_opencl_buffer_type_alloc_buffer,
- /* .get_alignment = */ ggml_backend_opencl_buffer_type_get_alignment,
- /* .get_max_size = */ ggml_backend_opencl_buffer_type_get_max_size,
- /* .get_alloc_size = */ NULL,
- /* .is_host = */ NULL,
- };
- ggml_backend_buffer_type_t ggml_backend_opencl_buffer_type() {
- static ggml_backend_buffer_type buffer_type = {
- /* .iface = */ ggml_backend_opencl_buffer_type_interface,
- /* .device = */ &g_ggml_backend_opencl_device,
- /* .context = */ nullptr,
- };
- return &buffer_type;
- }
- //
- // backend device
- //
- static const char * ggml_backend_opencl_device_get_name(ggml_backend_dev_t dev) {
- return "GPUOpenCL";
- GGML_UNUSED(dev);
- }
- static const char * ggml_backend_opencl_device_get_description(ggml_backend_dev_t dev) {
- ggml_backend_opencl_device_context *dev_ctx = (ggml_backend_opencl_device_context *) dev->context;
- return dev_ctx->device_name.c_str();
- }
- static void ggml_backend_opencl_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
- *free = 1;
- *total = 1;
- GGML_UNUSED(dev);
- }
- static enum ggml_backend_dev_type ggml_backend_opencl_device_get_type(ggml_backend_dev_t dev) {
- return GGML_BACKEND_DEVICE_TYPE_GPU;
- GGML_UNUSED(dev);
- }
- static void ggml_backend_opencl_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
- props->name = ggml_backend_opencl_device_get_name(dev);
- props->description = ggml_backend_opencl_device_get_description(dev);
- props->type = ggml_backend_opencl_device_get_type(dev);
- ggml_backend_opencl_device_get_memory(dev, &props->memory_free, &props->memory_total);
- props->caps = ggml_backend_dev_caps {
- /* .async = */ false,
- /* .host_buffer = */ false,
- /* .buffer_from_host_ptr = */ false,
- /* .events = */ false,
- };
- }
- static ggml_backend_t ggml_backend_opencl_device_init(ggml_backend_dev_t dev, const char * params) {
- ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(dev);
- ggml_backend_t backend = new ggml_backend {
- /* .guid = */ ggml_backend_opencl_guid(),
- /* .interface = */ ggml_backend_opencl_i,
- /* .device = */ dev,
- /* .context = */ backend_ctx,
- };
- return backend;
- GGML_UNUSED(params);
- }
- static ggml_backend_buffer_type_t ggml_backend_opencl_device_get_buffer_type(ggml_backend_dev_t dev) {
- return ggml_backend_opencl_buffer_type();
- GGML_UNUSED(dev);
- }
- static ggml_backend_buffer_t ggml_backend_opencl_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
- GGML_UNUSED(dev);
- GGML_UNUSED(ptr);
- GGML_UNUSED(size);
- GGML_UNUSED(max_tensor_size);
- return nullptr;
- }
- static bool ggml_backend_opencl_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
- return ggml_opencl_supports_op(dev, op);
- }
- static bool ggml_backend_opencl_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
- return buft->iface.get_name == ggml_backend_opencl_buffer_type_get_name;
- GGML_UNUSED(dev);
- }
- static struct ggml_backend_device_i ggml_backend_opencl_device_i = {
- /* .get_name = */ ggml_backend_opencl_device_get_name,
- /* .get_description = */ ggml_backend_opencl_device_get_description,
- /* .get_memory = */ ggml_backend_opencl_device_get_memory,
- /* .get_type = */ ggml_backend_opencl_device_get_type,
- /* .get_props = */ ggml_backend_opencl_device_get_props,
- /* .init_backend = */ ggml_backend_opencl_device_init,
- /* .get_buffer_type = */ ggml_backend_opencl_device_get_buffer_type,
- /* .get_host_buffer_type = */ NULL,
- /* .buffer_from_host_ptr = */ ggml_backend_opencl_device_buffer_from_ptr,
- /* .supports_op = */ ggml_backend_opencl_device_supports_op,
- /* .supports_buft = */ ggml_backend_opencl_device_supports_buft,
- /* .offload_op = */ NULL,
- /* .event_new = */ NULL,
- /* .event_free = */ NULL,
- /* .event_synchronize = */ NULL,
- };
- // Backend registry
- static const char * ggml_backend_opencl_reg_get_name(ggml_backend_reg_t reg) {
- return "OpenCL";
- GGML_UNUSED(reg);
- }
- static size_t ggml_backend_opencl_reg_device_count(ggml_backend_reg_t reg) {
- return ggml_backend_opencl_n_devices;
- GGML_UNUSED(reg);
- }
- static ggml_backend_dev_t ggml_backend_opencl_reg_device_get(ggml_backend_reg_t reg, size_t index) {
- GGML_ASSERT(index == 0);
- return &g_ggml_backend_opencl_device;
- GGML_UNUSED(reg);
- GGML_UNUSED(index);
- }
- static struct ggml_backend_reg_i ggml_backend_opencl_reg_i = {
- /* .get_name = */ ggml_backend_opencl_reg_get_name,
- /* .device_count = */ ggml_backend_opencl_reg_device_count,
- /* .device_get = */ ggml_backend_opencl_reg_device_get,
- /* .get_proc_address = */ NULL,
- };
- ggml_backend_reg_t ggml_backend_opencl_reg(void) {
- // TODO: make this thread-safe somehow?
- static ggml_backend_reg reg;
- static bool initialized = false;
- if (!initialized) {
- reg = ggml_backend_reg {
- /* .api_version = */ GGML_BACKEND_API_VERSION,
- /* .iface = */ ggml_backend_opencl_reg_i,
- /* .context = */ NULL,
- };
- g_ggml_backend_opencl_device = ggml_backend_device {
- /* .iface = */ ggml_backend_opencl_device_i,
- /* .reg = */ ®,
- /* .context = */ &g_ggml_ctx_dev_main,
- };
- ggml_cl2_init(&g_ggml_backend_opencl_device);
- initialized = true;
- }
- return ®
- }
- GGML_BACKEND_DL_IMPL(ggml_backend_opencl_reg)
- //------------------------------------------------------------------------------
- // Debugging utils
- //------------------------------------------------------------------------------
- #if 0
- #define QK4_0 32
- typedef struct {
- ggml_fp16_t d; // delta
- uint8_t qs[QK4_0 / 2]; // nibbles / quants
- } block_q4_0;
- static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2,
- "wrong q4_0 block size/padding");
- #include <math.h>
- #ifdef __cplusplus
- #include "half.hpp"
- #endif
- static void dump_tensor(ggml_backend_t backend, const struct ggml_tensor * tensor) {
- void * buf = malloc(ggml_nbytes(tensor));
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- #ifdef GGML_OPENCL_SOA_Q
- void * buf_q;
- void * buf_d;
- #endif
- // Make sure everything is done.
- CL_CHECK(clFinish(queue));
- #ifdef GGML_OPENCL_SOA_Q
- if (tensor->type == GGML_TYPE_Q4_0) {
- ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *) tensor->extra;
- GGML_ASSERT(extra);
- size_t size_q = ggml_nelements(tensor)/QK4_0 * QK4_0/2;
- size_t size_d = ggml_nelements(tensor)/QK4_0 * sizeof(ggml_fp16_t);
- GGML_ASSERT(size_q + size_d == ggml_nbytes(tensor));
- buf_q = malloc(size_q);
- buf_d = malloc(size_d);
- CL_CHECK(clEnqueueReadBuffer(queue, extra->q, CL_TRUE, 0, size_q, buf_q, 0, NULL, NULL));
- CL_CHECK(clEnqueueReadBuffer(queue, extra->d, CL_TRUE, 0, size_d, buf_d, 0, NULL, NULL));
- CL_CHECK(clFinish(queue));
- } else {
- // Read out the tensor from GPU memory.
- ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
- GGML_ASSERT(extra);
- CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE,
- extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL));
- CL_CHECK(clFinish(queue));
- }
- #else
- // Read out the tensor from GPU memory.
- ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
- GGML_ASSERT(extra);
- CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE,
- extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL));
- CL_CHECK(clFinish(queue));
- #endif // GGML_OPENCL_SOA_Q
- // Open file and dump.
- char fname[512];
- sprintf(fname, "./tensor-dumps/%s.txt", tensor->name);
- FILE * f = fopen(fname, "w");
- if (!f) {
- printf("Failed to open %s\n", fname);
- return;
- }
- if (tensor->type == GGML_TYPE_F32) {
- float * data = (float *) buf;
- for (int i = 0; i < ggml_nelements(tensor); ++i) {
- if (isnan(data[i])) {
- printf("NaN found: %s\n", tensor->name);
- break;
- }
- fprintf(f, "%f\n", data[i]);
- }
- } else if (tensor->type == GGML_TYPE_I32) {
- int * data = (int *) buf;
- for (int i = 0; i < ggml_nelements(tensor); ++i) {
- if (isnan(data[i])) {
- printf("NaN found: %s\n", tensor->name);
- break;
- }
- fprintf(f, "%d\n", data[i]);
- }
- } else if (tensor->type == GGML_TYPE_F16) {
- #ifdef __cplusplus
- half_float::half * data = (half_float::half *) buf;
- for (int i = 0; i < ggml_nelements(tensor); ++i) {
- if (std::isnan(data[i])) {
- printf("NaN found: %s\n", tensor->name);
- break;
- }
- fprintf(f, "%f\n", float(data[i]));
- }
- #endif
- } else if (tensor->type == GGML_TYPE_Q4_0) {
- #ifdef GGML_OPENCL_SOA_Q
- ggml_fp16_t * data_d = (ggml_fp16_t *)buf_d;
- unsigned char * data_q = (unsigned char *)buf_q;
- for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) {
- fprintf(f, "%04x, ", data_d[i]);
- for (int k = 0; k < QK4_0/2; ++k) {
- fprintf(f, "%02x, ", data_q[k]);
- }
- fprintf(f, "\n");
- data_q += QK4_0/2;
- }
- free(buf_d);
- free(buf_q);
- #else
- block_q4_0 * data = (block_q4_0 *) buf;
- for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) {
- fprintf(f, "%04x, ", data[i].d);
- for (int k = 0; k < QK4_0/2; ++k) {
- fprintf(f, "%02x, ", data[i].qs[k]);
- }
- fprintf(f, "\n");
- }
- #endif // GGML_OPENCL_SOA_Q
- }
- free(buf);
- fflush(f);
- fclose(f);
- }
- #else
- #define dump_tensor(tensor)
- #endif
- //------------------------------------------------------------------------------
- // Profiling utility
- //------------------------------------------------------------------------------
- #ifdef GGML_OPENCL_PROFILING
- static void populateProfilingInfo(
- ProfilingInfo& info, cl_event evt, cl_kernel kernel,
- size_t global_size[3], size_t local_size[3],
- const ggml_tensor * tensor) {
- info.op_name = tensor->name;
- info.kernel = kernel;
- info.evt = evt;
- info.local_size[0] = local_size[0];
- info.local_size[1] = local_size[1];
- info.local_size[2] = local_size[2];
- info.global_size[0] = global_size[0];
- info.global_size[1] = global_size[1];
- info.global_size[2] = global_size[2];
- info.output_size[0] = tensor->ne[0];
- info.output_size[1] = tensor->ne[1];
- info.output_size[2] = tensor->ne[2];
- info.output_size[3] = tensor->ne[3];
- }
- #endif
- //------------------------------------------------------------------------------
- // Ops
- //------------------------------------------------------------------------------
- static bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
- const int64_t ne10 = src1->ne[0];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- // TODO: find the optimal values for these
- return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
- src1->type == GGML_TYPE_F32 &&
- dst->type == GGML_TYPE_F32 &&
- (ne0 >= 32 && ne1 >= 32 && ne10 >= 32);
- }
- static void ggml_cl_nop(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- UNUSED(backend);
- UNUSED(src0);
- UNUSED(src1);
- UNUSED(dst);
- }
- static void ggml_cl_get_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- const int ne00 = src0 ? src0->ne[0] : 0;
- const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
- const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
- const int ne10 = src1 ? src1->ne[0] : 0;
- const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
- const int ne11 = src1 ? src1->ne[1] : 0;
- const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
- const cl_ulong nb1 = dst ? dst->nb[1] : 0;
- const cl_ulong nb2 = dst ? dst->nb[2] : 0;
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel;
- switch (src0->type) {
- case GGML_TYPE_F32:
- kernel = backend_ctx->kernel_get_rows_f32;
- break;
- case GGML_TYPE_F16:
- kernel = backend_ctx->kernel_get_rows_f16;
- break;
- case GGML_TYPE_Q4_0:
- kernel = backend_ctx->kernel_get_rows_q4_0;
- break;
- default:
- GGML_ASSERT(false && "not implemented");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb10));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb1));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb2));
- size_t global_work_size[] = {(size_t)ne10, (size_t)ne11, 1};
- size_t local_work_size[] = {1, 1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- }
- static void ggml_cl_add(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- const int ne00 = src0 ? src0->ne[0] : 0;
- const int ne01 = src0 ? src0->ne[1] : 0;
- const int ne02 = src0 ? src0->ne[2] : 0;
- const int ne03 = src0 ? src0->ne[3] : 0;
- const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
- const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
- const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
- const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
- const int ne10 = src1 ? src1->ne[0] : 0;
- const int ne11 = src1 ? src1->ne[1] : 0;
- const int ne12 = src1 ? src1->ne[2] : 0;
- const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
- const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
- const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
- const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
- const cl_ulong nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
- const int ne0 = dst ? dst->ne[0] : 0;
- const int ne1 = dst ? dst->ne[1] : 0;
- const int ne2 = dst ? dst->ne[2] : 0;
- const int ne3 = dst ? dst->ne[3] : 0;
- const cl_ulong nb0 = dst ? dst->nb[0] : 0;
- const cl_ulong nb1 = dst ? dst->nb[1] : 0;
- const cl_ulong nb2 = dst ? dst->nb[2] : 0;
- const cl_ulong nb3 = dst ? dst->nb[3] : 0;
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- bool bcast_row = false;
- cl_kernel kernel;
- if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- // src1 is a row
- GGML_ASSERT(ne11 == 1);
- bcast_row = true;
- int ne = ne00 / 4;
- kernel = backend_ctx->kernel_add_row;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
- } else {
- kernel = backend_ctx->kernel_add;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
- CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
- CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
- CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
- CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
- CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
- }
- if (bcast_row) {
- int n = ggml_nelements(dst)/4;
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- } else {
- unsigned int nth = MIN(64, ne0);
- size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
- size_t local_work_size[] = {nth, 1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- }
- }
- static void ggml_cl_mul(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- const int ne00 = src0 ? src0->ne[0] : 0;
- const int ne01 = src0 ? src0->ne[1] : 0;
- const int ne02 = src0 ? src0->ne[2] : 0;
- const int ne03 = src0 ? src0->ne[3] : 0;
- const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
- const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
- const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
- const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
- const int ne10 = src1 ? src1->ne[0] : 0;
- const int ne11 = src1 ? src1->ne[1] : 0;
- const int ne12 = src1 ? src1->ne[2] : 0;
- const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
- const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
- const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
- const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
- const cl_ulong nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
- const int ne0 = dst ? dst->ne[0] : 0;
- const int ne1 = dst ? dst->ne[1] : 0;
- const int ne2 = dst ? dst->ne[2] : 0;
- const int ne3 = dst ? dst->ne[3] : 0;
- const cl_ulong nb0 = dst ? dst->nb[0] : 0;
- const cl_ulong nb1 = dst ? dst->nb[1] : 0;
- const cl_ulong nb2 = dst ? dst->nb[2] : 0;
- const cl_ulong nb3 = dst ? dst->nb[3] : 0;
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- bool bcast_row = false;
- cl_kernel kernel;
- if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- // src1 is a row
- GGML_ASSERT(ne11 == 1);
- bcast_row = true;
- int ne = ne00 / 4;
- kernel = backend_ctx->kernel_mul_row;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
- } else {
- kernel = backend_ctx->kernel_mul;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
- CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
- CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
- CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
- CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
- CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
- }
- if (bcast_row) {
- int n = ggml_nelements(dst)/4;
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- } else {
- unsigned int nth = MIN(64, ne0);
- size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
- size_t local_work_size[] = {nth, 1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- }
- }
- static void ggml_cl_gelu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel;
- int n = ggml_nelements(dst);
- if (n % 4 == 0) {
- kernel = backend_ctx->kernel_gelu_4;
- n /= 4;
- } else {
- kernel = backend_ctx->kernel_gelu;
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt);
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL);
- #endif
- }
- static void ggml_cl_gelu_quick(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel;
- int n = ggml_nelements(dst);
- if (n % 4 == 0) {
- kernel = backend_ctx->kernel_gelu_quick_4;
- n /= 4;
- } else {
- kernel = backend_ctx->kernel_gelu_quick;
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt);
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL);
- #endif
- }
- static void ggml_cl_silu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel;
- int n = ggml_nelements(dst);
- if (n % 4 == 0) {
- kernel = backend_ctx->kernel_silu_4;
- n /= 4;
- } else {
- kernel = backend_ctx->kernel_silu;
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- }
- static void ggml_cl_relu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel = backend_ctx->kernel_relu;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- const int64_t n = ggml_nelements(dst);
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- }
- static void ggml_cl_clamp(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- float min;
- float max;
- memcpy(&min, ((int32_t *) dst->op_params) + 0, sizeof(float));
- memcpy(&max, ((int32_t *) dst->op_params) + 1, sizeof(float));
- cl_kernel kernel = backend_ctx->kernel_clamp;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &min));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(float), &max));
- const int64_t n = ggml_nelements(dst);
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- }
- static void ggml_cl_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
- const int ne00 = src0 ? src0->ne[0] : 0;
- const int ne01 = src0 ? src0->ne[1] : 0;
- const int ne02 = src0 ? src0->ne[2] : 0;
- const int ne03 = src0 ? src0->ne[3] : 0;
- const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
- const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
- const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
- const int nth = MIN(64, ne00);
- cl_kernel kernel = backend_ctx->kernel_norm;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(float), &eps));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float)*nth, NULL));
- size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
- size_t local_work_size[] = {(size_t)nth, 1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- }
- static void ggml_cl_rms_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- //ggml_backend_opencl_device_context * dev_ctx =
- // (ggml_backend_opencl_device_context *)backend->device->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
- const int ne00 = src0 ? src0->ne[0] : 0;
- const int ne01 = src0 ? src0->ne[1] : 0;
- const int ne02 = src0 ? src0->ne[2] : 0;
- const int ne03 = src0 ? src0->ne[3] : 0;
- const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
- const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
- const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
- GGML_ASSERT(ne00 % 4 == 0);
- const int nth = MIN(64, ne00);
- size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
- size_t local_work_size[] = {(size_t)nth, 1, 1};
- cl_kernel kernel = backend_ctx->kernel_rms_norm;
- // Note, this kernel declares local memory in kernel args and the size
- // depends on subgroup size.
- // Note, this requires OpenCL 2.1 and above
- // For now we use fixed subgroup size to simplify support for OpenCL 2.0.
- size_t sgs;
- //CL_CHECK(clGetKernelSubGroupInfo(kernel, dev_ctx->device,
- // CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_NDRANGE,
- // sizeof(local_work_size), local_work_size,
- // sizeof(size_t), &sgs, NULL));
- if (backend_ctx->gpu_family == ADRENO) {
- sgs = 64;
- } else if (backend_ctx->gpu_family == INTEL) {
- sgs = 32;
- } else {
- GGML_ASSERT(false && "Unsupported GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(float), &eps));
- // This is local memory - the size depends on subgroup size.
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float)*nth/sgs, NULL));
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- }
- static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
- const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- #ifdef GGML_OPENCL_SOA_Q
- ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
- #endif
- const int ne00 = src0 ? src0->ne[0] : 0;
- const int ne01 = src0 ? src0->ne[1] : 0;
- const int ne02 = src0 ? src0->ne[2] : 0;
- const int ne03 = src0 ? src0->ne[3] : 0;
- const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
- const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
- const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
- const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
- const int ne10 = src1 ? src1->ne[0] : 0;
- const int ne11 = src1 ? src1->ne[1] : 0;
- const int ne12 = src1 ? src1->ne[2] : 0;
- const int ne13 = src1 ? src1->ne[3] : 0;
- const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
- const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
- const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
- const cl_ulong nb13 = src1 ? src1->nb[3] : 0;
- const int ne0 = dst ? dst->ne[0] : 0;
- const int ne1 = dst ? dst->ne[1] : 0;
- int r2 = ne12/ne02;
- int r3 = ne13/ne03;
- GGML_ASSERT(ne00 == ne10);
- int nth0 = 32;
- int nth1 = 1;
- int nrows = 1;
- // The number of values produced by each subgroup
- int ndst = 4;
- cl_kernel kernel;
- #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
- cl_context context = backend_ctx->context;
- if (ne01 && ne1 && use_adreno_kernels(backend_ctx, src0)) {
- // init CL objects
- // <--------------------------------------------> //
- cl_int status;
- cl_image_format img_fmt_1d;
- cl_image_desc img_desc_1d;
- cl_buffer_region region;
- cl_mem A_image1d = nullptr;
- cl_mem B_image1d = nullptr;
- cl_mem B_sub_buffer = nullptr;
- cl_mem C_d = nullptr;
- // for B transpose
- cl_mem B_d = nullptr;
- cl_mem B_d_input_image = nullptr;
- // <--------------------------------------------> //
- // define matrix dimensions
- // <--------------------------------------------> //
- int M = ne01;
- int N = ne1;
- int K = ne00;
- int padding;
- // <--------------------------------------------> //
- // q4_0 x fp32
- if(src0t == GGML_TYPE_Q4_0 && src1t == GGML_TYPE_F32) {
- // TODO: remove duplicate definitions of image description + format -- move to top
- // create an image for A
- // <--------------------------------------------> //
- if (N == 1) {
- img_fmt_1d = { CL_R, CL_UNSIGNED_INT32};
- } else {
- img_fmt_1d = { CL_R, CL_FLOAT};
- }
- memset(&img_desc_1d, 0, sizeof(img_desc_1d));
- img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
- img_desc_1d.image_width = M * K / 2 / 4; // Divide by 4 for char -> float
- img_desc_1d.buffer = extra0_q4_0->q;
- A_image1d = clCreateImage(
- context,
- CL_MEM_READ_ONLY,
- &img_fmt_1d,
- &img_desc_1d,
- NULL,
- &status);
- CL_CHECK(status);
- // <--------------------------------------------> //
- // create a sub_buffer for B
- // <--------------------------------------------> //
- region.origin = (extra1->offset);
- region.size = K * N * sizeof(float);
- B_sub_buffer = clCreateSubBuffer(
- extra1->data_device,
- 0,
- CL_BUFFER_CREATE_TYPE_REGION,
- ®ion,
- &status);
- CL_CHECK(status);
- // <--------------------------------------------> //
- // transpose activation for Skyler's gemm
- if (N != 1) {
- //how many extra elements beyond multiple of 8
- int extra_elements = N % 8;
- //how much padding to add
- padding = 0;
- if (extra_elements > 0){
- padding = 8 - extra_elements;
- }
- // Specify the starting offset (in bytes)
- region.origin = 0;
- // Specify the size of the sub-buffer (divide by 2 for FP16)
- region.size = K * (N + padding) * sizeof(float)/2;
- B_d = clCreateSubBuffer(
- backend_ctx->B_d_max,
- 0,
- CL_BUFFER_CREATE_TYPE_REGION,
- ®ion,
- &status);
- CL_CHECK(status);
- cl_image_format image_format_B_d_input = { CL_RGBA, CL_FLOAT };
- cl_image_desc image_desc_B_d_input = {
- CL_MEM_OBJECT_IMAGE1D_BUFFER,
- static_cast<size_t>(K * N / 4),
- 0, 0, 0, 0, 0, 0, 0, { B_sub_buffer }
- };
- B_d_input_image = clCreateImage(
- context,
- 0,
- &image_format_B_d_input,
- &image_desc_B_d_input,
- NULL,
- &status);
- CL_CHECK(status);
- cl_image_format image_format_B_d_output = { CL_RGBA, CL_HALF_FLOAT }; //(CL_HALF_FLOAT for FP16)
- cl_image_desc image_desc_B_d_output = {
- CL_MEM_OBJECT_IMAGE1D_BUFFER,
- static_cast<size_t>(K * (N + padding)/4),
- 0, 0, 0, 0, 0, 0, 0, { B_d }
- };
- B_image1d = clCreateImage(
- context,
- 0,
- &image_format_B_d_output,
- &image_desc_B_d_output,
- NULL,
- &status);
- CL_CHECK(status);
- int height_B = N/4;
- if (height_B == 0) {
- height_B = 1;
- }
- int width_B = K/4;
- int padded_height_B = (N + padding)/4;
- kernel = backend_ctx->kernel_transpose_32_16;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &B_d_input_image));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &B_image1d));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_B));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_B));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &padded_height_B));
- size_t local_size_t[2] = { 1, 16 };
- //WGS tuning
- if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) {
- local_size_t[0]=4;
- local_size_t[1]=8;
- } else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) {
- local_size_t[0]=2;
- local_size_t[1]=8;
- } else if(ne0 == 4096 && ne1 == 128 && ne10 == 11008) {
- local_size_t[0]=1;
- local_size_t[1]=8;
- } else if(ne0 == 32000 && ne1 == 128 && ne10 == 4096) {
- local_size_t[0]=2;
- local_size_t[1]=8;
- }
- size_t global_size_t[2] = {
- static_cast<size_t>(width_B),
- static_cast<size_t>(padded_height_B)
- };
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 2, NULL, global_size_t, local_size_t, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_size_t, local_size_t, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 2, NULL, global_size_t, local_size_t, 0, NULL, NULL));
- #endif
- } else {
- // no need to transpose B in other cases
- // create an image for B from sub_buffer
- // <--------------------------------------------> //
- img_fmt_1d = {CL_RGBA, CL_FLOAT};
- memset(&img_desc_1d, 0, sizeof(img_desc_1d));
- img_desc_1d.image_width = K * N / 4;
- img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
- img_desc_1d.buffer = B_sub_buffer;
- B_image1d = clCreateImage(
- context,
- CL_MEM_READ_ONLY,
- &img_fmt_1d,
- &img_desc_1d,
- NULL,
- &status);
- CL_CHECK(status);
- // <--------------------------------------------> //
- }
- // choose gemm or gemv kernel
- // <--------------------------------------------> //
- if (N == 1) {
- kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general;
- if (M == 4096 && K == 4096) {
- kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
- } else if (M == 4096 && K == 11008) {
- kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008;
- } else if (M == 11008 && K == 4096) {
- kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
- } else if (M == 32000 && K == 4096) {
- kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
- }
- } else {
- kernel = backend_ctx->CL_mul_mat_Ab_Bi_8x4;
- }
- // <--------------------------------------------> //
- // set kernel args
- // <--------------------------------------------> //
- cl_uint k_arg = 0;
- if (N == 1) {
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &A_image1d));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extra0_q4_0->d));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &B_image1d));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extra1->offset));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extrad->offset));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r3));
- } else {
- region.origin = extrad->offset; // Specify the starting offset (in bytes)
- region.size = M * N * sizeof(float); // Specify the size of the sub-buffer
- C_d = clCreateSubBuffer(extrad->data_device, CL_MEM_WRITE_ONLY, CL_BUFFER_CREATE_TYPE_REGION, ®ion, &status);
- CL_CHECK(status);
- int padded_N = ne1 + padding;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q)); //A_q_dextra0_q4_0->q
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d)); //A_s_d
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &B_image1d)); //B_d
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &C_d)); //C_d
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne01)); //M
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &padded_N)); //N with padding
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00)); //K
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne1)); //N without padding
- }
- // <--------------------------------------------> //
- // choose workgroup size
- // <--------------------------------------------> //
- size_t global_work_size[3] = {
- 64, static_cast<size_t>((M+63)/64), static_cast<size_t>((N+31)/32)};
- size_t local_work_size[3] = {64, 2, 4};
- global_work_size[0] = (size_t)(ceil((float)ne1/8));
- global_work_size[1] = (size_t)(ne01/4);
- global_work_size[2] = (size_t)(1);
- local_work_size[0] = (size_t)(1); //4x32 for FP32
- local_work_size[1] = (size_t)(128);
- local_work_size[2] = (size_t)(1);
- //WGS tuning
- if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) {
- local_work_size[0] = 1;
- local_work_size[1] = 128;
- } else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) {
- local_work_size[0] = 2;
- local_work_size[1] = 64;
- } else if (ne0 == 4096 && ne1 == 128 && ne10 == 11008) {
- local_work_size[0] = 2;
- local_work_size[1] = 64;
- } else if (ne0 == 32000 && ne1 == 128 && ne10 == 4096) {
- local_work_size[0] = 2;
- local_work_size[1] = 64;
- }
- if (N == 1) {
- size_t wavesize = backend_ctx->adreno_wave_size;
- local_work_size[0] = wavesize; // localsize
- local_work_size[1] = 4; // reduce factor
- local_work_size[2] = 1;
- global_work_size[0] = (((M / 2) + wavesize - 1) / wavesize) * wavesize;
- global_work_size[1] = 4; // reduce factor
- global_work_size[2] = 1;
- }
- // <--------------------------------------------> //
- // enqueue kernel with profiling
- // <--------------------------------------------> //
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- // enqueue kernel without profiling
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- // <--------------------------------------------> //
- // deallocate sub buffers and images
- // <--------------------------------------------> //
- CL_CHECK(clReleaseMemObject(A_image1d));
- CL_CHECK(clReleaseMemObject(B_sub_buffer));
- CL_CHECK(clReleaseMemObject(B_image1d));
- if (N != 1) {
- CL_CHECK(clReleaseMemObject(B_d));
- CL_CHECK(clReleaseMemObject(B_d_input_image));
- CL_CHECK(clReleaseMemObject(C_d));
- }
- // <--------------------------------------------> //
- return;
- }
- } // if (ne01 && ne1)
- #endif // GGML_OPENCL_USE_ADRENO_KERNELS
- if (!ggml_is_transposed(src0) &&
- !ggml_is_transposed(src1) &&
- src1t == GGML_TYPE_F32 &&
- ne00%32 == 0 &&
- ne11 > 2) {
- #ifdef GGML_OPENCL_SOA_Q
- // Set up kernel.
- switch(src0t) {
- case GGML_TYPE_Q4_0:
- // This should have been satisfied.
- GGML_ASSERT(ne11 == ne1);
- GGML_ASSERT(ne01 == ne0);
- if (backend_ctx->gpu_family == INTEL) {
- nth0 = 16;
- nth1 = 1;
- kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat;
- } else if (backend_ctx->gpu_family == ADRENO) {
- nth0 = 64;
- nth1 = 1;
- kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
- break;
- default:
- break;
- }
- // Launch kernel.
- if (src0t == GGML_TYPE_Q4_0) {
- size_t global_work_size[] = {(size_t)(ne01 + 7)/8*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
- size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
- if (backend_ctx->gpu_family == INTEL) {
- // Set global size for Intel. It uses 16x output values.
- global_work_size[0] = (size_t)(ne01 + 15)/16*nth0;
- global_work_size[1] = (size_t)ne11*nth1;
- global_work_size[2] = (size_t)ne12*ne13;
- }
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- return;
- }
- #else // GGML_OPENCL_SOA_Q
- // TODO: add block_q4_0 variant.
- #endif // GGML_OPENCL_SOA_Q
- }
- // use custom matrix x vector kernel
- switch (src0t) {
- case GGML_TYPE_F32:
- //GGML_ASSERT(ne02 == ne12);
- GGML_ASSERT(src1t == GGML_TYPE_F32);
- kernel = backend_ctx->kernel_mul_mat_f32_f32;
- nrows = 4;
- if (backend_ctx->gpu_family == INTEL) {
- nth0 = 32;
- nth1 = 1;
- } else if (backend_ctx->gpu_family == ADRENO) {
- nth0 = 64;
- nth1 = 1;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
- break;
- case GGML_TYPE_F16:
- //GGML_ASSERT(ne02 == ne12);
- if (backend_ctx->gpu_family == INTEL) {
- nth0 = 32;
- nth1 = 1;
- } else if (backend_ctx->gpu_family == ADRENO) {
- nth0 = 64;
- nth1 = 1;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- if (src1t == GGML_TYPE_F32) {
- if (ne11 * ne12 < 4) {
- kernel = backend_ctx->kernel_mul_mat_f16_f32_1row;
- } else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
- kernel = backend_ctx->kernel_mul_mat_f16_f32_l4;
- nrows = ne11;
- } else {
- kernel = backend_ctx->kernel_mul_mat_f16_f32;
- nrows = 4;
- }
- } else {
- kernel = backend_ctx->kernel_mul_mat_f16_f16;
- nrows = 4;
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
- break;
- case GGML_TYPE_Q4_0:
- // This should have been satisfied.
- GGML_ASSERT(ne11 == ne1);
- GGML_ASSERT(ne01 == ne0);
- #ifdef GGML_OPENCL_SOA_Q
- if (backend_ctx->gpu_family == INTEL) {
- nth0 = 16;
- nth1 = 1;
- kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat;
- ndst = 8;
- } else if (backend_ctx->gpu_family == ADRENO) {
- nth0 = 64;
- nth1 = 1;
- kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat;
- ndst =8;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
- #else // GGML_OPENCL_SOA_Q
- if (backend_ctx->gpu_family == INTEL) {
- // Use 1D local size. Each workgroup is a SIMD group. Each SIMD
- // group produces N_DST (4 for Q4_0 kernel) values in the result.
- // The number of workgroups on dim 0 (the leading dimension) is
- // the nearest multiple of 4 that covers ne0 (equals ne01).
- nth0 = 16;
- nth1 = 1;
- kernel = backend_ctx->kernel_mul_mat_q4_0_f32;
- ndst = 4;
- } else if (backend_ctx->gpu_family == ADRENO) {
- nth0 = 64;
- nth1 = 1;
- kernel = backend_ctx->kernel_mul_mat_q4_0_f32_v;
- ndst = 4;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
- #endif // GGML_OPENCL_SOA_Q
- break;
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- kernel = backend_ctx->kernel_mul_mv_q6_K_f32;
- if (backend_ctx->gpu_family == INTEL) {
- nth0 = 2;
- nth1 = 16;
- } else if (backend_ctx->gpu_family == ADRENO) {
- nth0 = 2;
- nth1 = 64;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
- break;
- default:
- GGML_ASSERT(false && "not implemented");
- }
- if (src0t == GGML_TYPE_Q4_0 ||
- src0t == GGML_TYPE_Q4_1 ||
- src0t == GGML_TYPE_Q8_0 ||
- src0t == GGML_TYPE_Q2_K) {
- // Each SIMD group produces N_DST values in the result. Assuming each
- // workgroup has N_SIMDGROUP SIMD groups, then each workgroup will
- // produce N_DST*N_SIMDGROUP values in the result. Hence, the grid size
- // (number of workgroups) will be a nearest multiple of
- // N_DST*N_SIMDGROUP to cover the size of the dimension. Below, 4 is
- // N_DST*N_SIMDGROUP (see the kernel for Q4_0 matmul).
- size_t global_work_size[] = {(size_t)(ne01 + ndst-1)/ndst*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
- size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- } else if (src0t == GGML_TYPE_Q4_K) {
- GGML_ASSERT(false && "not implemented");
- } else if (src0t == GGML_TYPE_Q3_K) {
- GGML_ASSERT(false && "not implemented");
- } else if (src0t == GGML_TYPE_Q5_K) {
- GGML_ASSERT(false && "not implemented");
- } else if (src0t == GGML_TYPE_Q6_K) {
- size_t global_work_size[] = {(size_t)(ne01+1)/2*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
- size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- } else {
- int64_t ny = (ne11 + nrows - 1)/nrows;
- size_t global_work_size[] = {(size_t)ne01*nth0, (size_t)ny*nth1, (size_t)ne12*ne13};
- size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- }
- }
- static void ggml_cl_scale(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- GGML_UNUSED(src1);
- GGML_ASSERT(ggml_is_contiguous(src0));
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- float scale;
- memcpy(&scale, dst->op_params, sizeof(scale));
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel = backend_ctx->kernel_scale;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &scale));
- int n = ggml_nelements(dst)/4;
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- }
- static void ggml_cl_cpy(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- // GGML_OP_CPY happens between src0 and src1.
- // GGML_OP_DUP and GGML_OP_CONT happen between src0 and dst.
- UNUSED(dst);
- const int ne00 = src0 ? src0->ne[0] : 0;
- const int ne01 = src0 ? src0->ne[1] : 0;
- const int ne02 = src0 ? src0->ne[2] : 0;
- const int ne03 = src0 ? src0->ne[3] : 0;
- const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
- const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
- const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
- const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
- const int ne10 = src1 ? src1->ne[0] : 0;
- const int ne11 = src1 ? src1->ne[1] : 0;
- const int ne12 = src1 ? src1->ne[2] : 0;
- const int ne13 = src1 ? src1->ne[3] : 0;
- const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
- const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
- const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
- const cl_ulong nb13 = src1 ? src1->nb[3] : 0;
- const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
- const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_kernel kernel;
- switch (src0t) {
- case GGML_TYPE_F32:
- switch (src1t) {
- case GGML_TYPE_F16:
- kernel = backend_ctx->kernel_cpy_f32_f16;
- break;
- case GGML_TYPE_F32:
- kernel = backend_ctx->kernel_cpy_f32_f32;
- break;
- default:
- GGML_ASSERT(false && "not implemented");
- }
- break;
- case GGML_TYPE_F16:
- switch (src1t) {
- case GGML_TYPE_F16:
- kernel = backend_ctx->kernel_cpy_f16_f16;
- break;
- case GGML_TYPE_F32:
- kernel = backend_ctx->kernel_cpy_f16_f32;
- break;
- default:
- GGML_ASSERT(false && "not implemented");
- }
- break;
- default:
- GGML_ASSERT(false && "not implemented");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
- const int nth = MIN(64, ne00);
- size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
- size_t local_work_size[] = {(size_t)nth, 1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, src1);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- }
- static void ggml_cl_dup(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cl_cpy(backend, src0, dst, nullptr);
- UNUSED(src1);
- }
- static void ggml_cl_diag_mask_inf(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- int n_past = ((int32_t *)(dst->op_params))[0];
- const int ne00 = src0 ? src0->ne[0] : 0;
- const int ne01 = src0 ? src0->ne[1] : 0;
- const int ne02 = src0 ? src0->ne[2] : 0;
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel;
- if (ne00%8 == 0) {
- kernel = backend_ctx->kernel_diag_mask_inf_8;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &n_past));
- size_t global_work_size[] = {(size_t)ne00*ne01*ne02/8, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- } else {
- kernel = backend_ctx->kernel_diag_mask_inf;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &n_past));
- size_t global_work_size[] = {(size_t)ne00, (size_t)ne01, (size_t)ne02};
- size_t local_work_size[] = {64, 1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- }
- }
- static void ggml_cl_soft_max(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- // Softmax can now fuse KQ mask and KQ scale, which used to be two additional
- // ops before softmax. It now also fuses alibi if `max_bias > 0`. For llama,
- // alibi is not used; however, for some other models, it is used.
- // KQ_mask
- if (src1) {
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- }
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- ggml_tensor_extra_cl * extra1 = src1 ? (ggml_tensor_extra_cl *)src1->extra : nullptr;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_ulong offset1 = extra1 ? extra1->offset + src1->view_offs : offset0;
- const int ne00 = src0 ? src0->ne[0] : 0;
- const int ne01 = src0 ? src0->ne[1] : 0;
- const int ne02 = src0 ? src0->ne[2] : 0;
- const int ne03 = src0 ? src0->ne[3] : 0;
- float scale, max_bias;
- memcpy(&scale, dst->op_params + 0, sizeof(float));
- memcpy(&max_bias, dst->op_params + 1, sizeof(float));
- const int nrows_x = ggml_nrows(src0);
- const int nrows_y = src0->ne[1];
- const int n_head = nrows_x/nrows_y;
- const int n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
- const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
- const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
- // Local size must be wave size. Each workgroup is a wave, working on a row,
- // where a row corresponds to leading dimension.
- int nth = MIN(32, ne00);
- if (backend_ctx->gpu_family == INTEL) {
- // This is the same as the initial value.
- nth = MIN(32, ne00);
- }
- else if (backend_ctx->gpu_family == ADRENO) {
- nth = 64;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- cl_kernel kernel;
- if (ne00%4 == 0) {
- if (use_f16) {
- kernel = backend_ctx->kernel_soft_max_4_f16;
- } else {
- kernel = backend_ctx->kernel_soft_max_4;
- }
- } else {
- if (use_f16) {
- kernel = backend_ctx->kernel_soft_max_f16;
- } else {
- kernel = backend_ctx->kernel_soft_max;
- }
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), extra1 ? &extra1->data_device : &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(float), &scale));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(float), &max_bias));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(float), &m0));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float), &m1));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &n_head_log2));
- size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
- size_t local_work_size[] = {(size_t)nth, 1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- }
- static void ggml_cl_rope(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- ggml_tensor * src2 = dst->src[2];
- ggml_tensor_extra_cl * extra2 = src2 ? (ggml_tensor_extra_cl *)src2->extra : nullptr;
- cl_ulong offset2 = extra2 ? extra2->offset + src2->view_offs : offset0;
- const int ne00 = src0 ? src0->ne[0] : 0;
- const int ne01 = src0 ? src0->ne[1] : 0;
- const int ne02 = src0 ? src0->ne[2] : 0;
- const int ne03 = src0 ? src0->ne[3] : 0;
- const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
- const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
- const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
- const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
- const int ne10 = src1 ? src1->ne[0] : 0;
- const int ne11 = src1 ? src1->ne[1] : 0; UNUSED(ne11);
- const int ne12 = src1 ? src1->ne[2] : 0; UNUSED(ne12);
- const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
- const int ne0 = dst ? dst->ne[0] : 0;
- const int ne1 = dst ? dst->ne[1] : 0;
- const int ne2 = dst ? dst->ne[2] : 0;
- const int ne3 = dst ? dst->ne[3] : 0;
- const cl_ulong nb0 = dst ? dst->nb[0] : 0;
- const cl_ulong nb1 = dst ? dst->nb[1] : 0;
- const cl_ulong nb2 = dst ? dst->nb[2] : 0;
- const cl_ulong nb3 = dst ? dst->nb[3] : 0;
- GGML_ASSERT(ne10 % ne02 == 0);
- GGML_ASSERT(ne10 >= ne02);
- int nth = MIN(64, ne00);
- const int n_past = ((int *) dst->op_params)[0];
- const int n_dims = ((int *) dst->op_params)[1];
- const int mode = ((int *) dst->op_params)[2];
- const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
- float freq_base;
- float freq_scale;
- float ext_factor;
- float attn_factor;
- float beta_fast;
- float beta_slow;
- int32_t sections[4];
- memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
- memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
- memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
- memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
- memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
- memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
- memcpy(§ions, (int32_t *) dst->op_params + 11, sizeof(int32_t)*4);
- const bool is_neox = mode & 2;
- const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
- const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
- if (is_mrope) {
- GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
- }
- if (is_vision) {
- GGML_ASSERT(n_dims == ne00/2);
- }
- cl_kernel kernel;
- if (is_neox) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- kernel = backend_ctx->kernel_rope_neox_f32;
- break;
- case GGML_TYPE_F16:
- kernel = backend_ctx->kernel_rope_neox_f16;
- break;
- default:
- GGML_ASSERT(false);
- };
- } else if (is_mrope && !is_vision) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- kernel = backend_ctx->kernel_rope_multi_f32;
- break;
- case GGML_TYPE_F16:
- kernel = backend_ctx->kernel_rope_multi_f16;
- break;
- default:
- GGML_ASSERT(false);
- };
- } else if (is_vision) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- kernel = backend_ctx->kernel_rope_vision_f32;
- break;
- case GGML_TYPE_F16:
- kernel = backend_ctx->kernel_rope_vision_f16;
- break;
- default:
- GGML_ASSERT(false);
- }
- } else {
- switch (src0->type) {
- case GGML_TYPE_F32:
- kernel = backend_ctx->kernel_rope_norm_f32;
- break;
- case GGML_TYPE_F16:
- kernel = backend_ctx->kernel_rope_norm_f16;
- break;
- default:
- GGML_ASSERT(false);
- };
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), extra2 ? &extra2->data_device : &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne03));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne2));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne3));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb0));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb1));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb2));
- CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &nb3));
- CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &n_past));
- CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &n_dims));
- CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &n_ctx_orig));
- CL_CHECK(clSetKernelArg(kernel, 27, sizeof(float), &freq_base));
- CL_CHECK(clSetKernelArg(kernel, 28, sizeof(float), &freq_scale));
- CL_CHECK(clSetKernelArg(kernel, 29, sizeof(float), &ext_factor));
- CL_CHECK(clSetKernelArg(kernel, 30, sizeof(float), &attn_factor));
- CL_CHECK(clSetKernelArg(kernel, 31, sizeof(float), &beta_fast));
- CL_CHECK(clSetKernelArg(kernel, 32, sizeof(float), &beta_slow));
- if (is_mrope || is_vision) {
- CL_CHECK(clSetKernelArg(kernel, 33, sizeof(int32_t)*4, §ions));
- }
- size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
- size_t local_work_size[] = {(size_t)nth, 1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- }
- static void ggml_cl_im2col(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- // src0 - filter, src1 - input
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
- const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
- const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
- const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
- const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
- const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
- const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
- const cl_long IC = src1->ne[is_2D ? 2 : 1];
- const cl_long IH = is_2D ? src1->ne[1] : 1;
- const cl_long IW = src1->ne[0];
- const cl_long KH = is_2D ? src0->ne[1] : 1;
- const cl_long KW = src0->ne[0];
- const cl_long OH = is_2D ? dst->ne[2] : 1;
- const cl_long OW = dst->ne[1];
- // nb is byte offset, src is type float32
- const cl_ulong delta_offset = src1->nb[is_2D ? 2 : 1]/4;
- const cl_long batch = src1->ne[is_2D ? 3 : 2];
- const cl_ulong batch_offset = src1->nb[is_2D ? 3 : 2]/4;
- const cl_long pelements = OW*KW*KH;
- const cl_long CHW = IC*KH*KW;
- cl_kernel kernel;
- if(dst->type == GGML_TYPE_F16) {
- kernel = backend_ctx->kernel_im2col_f16;
- } else {
- kernel = backend_ctx->kernel_im2col_f32;
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &batch_offset));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &delta_offset));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_long), &IW));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_long), &IH));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_long), &IC));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_long), &OW));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_long), &OH));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_long), &KW));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_long), &KH));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_long), &pelements));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_long), &CHW));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &s0));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &s1));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &p0));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &p1));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &d0));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &d1));
- const int num_blocks = (pelements + 256 - 1) / 256;
- size_t global_work_size[] = {(size_t)num_blocks*256, (size_t)OH, (size_t)batch*IC};
- size_t local_work_size[] = {256, 1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- }
- //------------------------------------------------------------------------------
- // Op offloading
- //------------------------------------------------------------------------------
- typedef void (*ggml_cl_func_t)(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
- bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor) {
- ggml_cl_func_t func = nullptr;
- ggml_tensor * src0 = tensor->src[0];
- ggml_tensor * src1 = tensor->src[1];
- const bool any_on_device = tensor->extra
- || (src0 != nullptr && src0->extra)
- || (src1 != nullptr && src1->extra);
- switch (tensor->op) {
- case GGML_OP_GET_ROWS:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_get_rows;
- break;
- case GGML_OP_CPY:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_cpy;
- break;
- case GGML_OP_DUP:
- case GGML_OP_CONT:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_dup;
- break;
- case GGML_OP_ADD:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_add;
- break;
- case GGML_OP_MUL:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_mul;
- break;
- case GGML_OP_UNARY:
- switch (ggml_get_unary_op(tensor)) {
- case GGML_UNARY_OP_GELU:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_gelu;
- break;
- case GGML_UNARY_OP_GELU_QUICK:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_gelu_quick;
- break;
- case GGML_UNARY_OP_SILU:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_silu;
- break;
- case GGML_UNARY_OP_RELU:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_relu;
- break;
- default:
- return false;
- } break;
- case GGML_OP_CLAMP:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_clamp;
- break;
- case GGML_OP_NORM:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_norm;
- break;
- case GGML_OP_RMS_NORM:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_rms_norm;
- break;
- case GGML_OP_MUL_MAT:
- if (!any_on_device && !ggml_cl_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
- return false;
- }
- func = ggml_cl_mul_mat;
- break;
- case GGML_OP_SCALE:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_scale;
- break;
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_nop;
- break;
- case GGML_OP_DIAG_MASK_INF:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_diag_mask_inf;
- break;
- case GGML_OP_SOFT_MAX:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_soft_max;
- break;
- case GGML_OP_ROPE:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_rope;
- break;
- case GGML_OP_IM2COL:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_im2col;
- break;
- default:
- return false;
- }
- func(backend, tensor->src[0], tensor->src[1], tensor);
- return true;
- }
|