llama-bench.cpp 75 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstdlib>
  10. #include <cstring>
  11. #include <ctime>
  12. #include <iterator>
  13. #include <map>
  14. #include <numeric>
  15. #include <regex>
  16. #include <sstream>
  17. #include <string>
  18. #include <thread>
  19. #include <vector>
  20. #include "common.h"
  21. #include "ggml.h"
  22. #include "llama.h"
  23. #ifdef _WIN32
  24. # define WIN32_LEAN_AND_MEAN
  25. # ifndef NOMINMAX
  26. # define NOMINMAX
  27. # endif
  28. # include <windows.h>
  29. #endif
  30. // utils
  31. static uint64_t get_time_ns() {
  32. using clock = std::chrono::high_resolution_clock;
  33. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  34. }
  35. static bool tensor_buft_override_equal(const llama_model_tensor_buft_override& a, const llama_model_tensor_buft_override& b) {
  36. if (a.pattern != b.pattern) {
  37. // cString comparison that may be null
  38. if (a.pattern == nullptr || b.pattern == nullptr) {
  39. return false;
  40. }
  41. if (strcmp(a.pattern, b.pattern) != 0) {
  42. return false;
  43. }
  44. }
  45. if (a.buft != b.buft) {
  46. return false;
  47. }
  48. return true;
  49. }
  50. static bool vec_tensor_buft_override_equal(const std::vector<llama_model_tensor_buft_override>& a, const std::vector<llama_model_tensor_buft_override>& b) {
  51. if (a.size() != b.size()) {
  52. return false;
  53. }
  54. for (size_t i = 0; i < a.size(); i++) {
  55. if (!tensor_buft_override_equal(a[i], b[i])) {
  56. return false;
  57. }
  58. }
  59. return true;
  60. }
  61. static bool vec_vec_tensor_buft_override_equal(const std::vector<std::vector<llama_model_tensor_buft_override>>& a, const std::vector<std::vector<llama_model_tensor_buft_override>>& b) {
  62. if (a.size() != b.size()) {
  63. return false;
  64. }
  65. for (size_t i = 0; i < a.size(); i++) {
  66. if (!vec_tensor_buft_override_equal(a[i], b[i])) {
  67. return false;
  68. }
  69. }
  70. return true;
  71. }
  72. template <class T> static std::string join(const std::vector<T> & values, const std::string & delim) {
  73. std::ostringstream str;
  74. for (size_t i = 0; i < values.size(); i++) {
  75. str << values[i];
  76. if (i < values.size() - 1) {
  77. str << delim;
  78. }
  79. }
  80. return str.str();
  81. }
  82. template <typename T, typename F> static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  83. std::vector<std::string> str_values;
  84. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  85. return str_values;
  86. }
  87. template <typename T> static T avg(const std::vector<T> & v) {
  88. if (v.empty()) {
  89. return 0;
  90. }
  91. T sum = std::accumulate(v.begin(), v.end(), T(0));
  92. return sum / (T) v.size();
  93. }
  94. template <typename T> static T stdev(const std::vector<T> & v) {
  95. if (v.size() <= 1) {
  96. return 0;
  97. }
  98. T mean = avg(v);
  99. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  100. T stdev = std::sqrt(sq_sum / (T) (v.size() - 1) - mean * mean * (T) v.size() / (T) (v.size() - 1));
  101. return stdev;
  102. }
  103. static std::string get_cpu_info() {
  104. std::vector<std::string> cpu_list;
  105. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  106. auto * dev = ggml_backend_dev_get(i);
  107. auto dev_type = ggml_backend_dev_type(dev);
  108. if (dev_type == GGML_BACKEND_DEVICE_TYPE_CPU || dev_type == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
  109. cpu_list.push_back(ggml_backend_dev_description(dev));
  110. }
  111. }
  112. return join(cpu_list, ", ");
  113. }
  114. static std::string get_gpu_info() {
  115. std::vector<std::string> gpu_list;
  116. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  117. auto * dev = ggml_backend_dev_get(i);
  118. auto dev_type = ggml_backend_dev_type(dev);
  119. if (dev_type == GGML_BACKEND_DEVICE_TYPE_GPU) {
  120. gpu_list.push_back(ggml_backend_dev_description(dev));
  121. }
  122. }
  123. return join(gpu_list, ", ");
  124. }
  125. // command line params
  126. enum output_formats { NONE, CSV, JSON, JSONL, MARKDOWN, SQL };
  127. static const char * output_format_str(output_formats format) {
  128. switch (format) {
  129. case NONE:
  130. return "none";
  131. case CSV:
  132. return "csv";
  133. case JSON:
  134. return "json";
  135. case JSONL:
  136. return "jsonl";
  137. case MARKDOWN:
  138. return "md";
  139. case SQL:
  140. return "sql";
  141. default:
  142. GGML_ABORT("invalid output format");
  143. }
  144. }
  145. static bool output_format_from_str(const std::string & s, output_formats & format) {
  146. if (s == "none") {
  147. format = NONE;
  148. } else if (s == "csv") {
  149. format = CSV;
  150. } else if (s == "json") {
  151. format = JSON;
  152. } else if (s == "jsonl") {
  153. format = JSONL;
  154. } else if (s == "md") {
  155. format = MARKDOWN;
  156. } else if (s == "sql") {
  157. format = SQL;
  158. } else {
  159. return false;
  160. }
  161. return true;
  162. }
  163. static const char * split_mode_str(llama_split_mode mode) {
  164. switch (mode) {
  165. case LLAMA_SPLIT_MODE_NONE:
  166. return "none";
  167. case LLAMA_SPLIT_MODE_LAYER:
  168. return "layer";
  169. case LLAMA_SPLIT_MODE_ROW:
  170. return "row";
  171. default:
  172. GGML_ABORT("invalid split mode");
  173. }
  174. }
  175. static std::string pair_str(const std::pair<int, int> & p) {
  176. static char buf[32];
  177. snprintf(buf, sizeof(buf), "%d,%d", p.first, p.second);
  178. return buf;
  179. }
  180. static std::vector<int> parse_int_range(const std::string & s) {
  181. // first[-last[(+|*)step]]
  182. std::regex range_regex(R"(^(\d+)(?:-(\d+)(?:([\+|\*])(\d+))?)?(?:,|$))");
  183. std::smatch match;
  184. std::string::const_iterator search_start(s.cbegin());
  185. std::vector<int> result;
  186. while (std::regex_search(search_start, s.cend(), match, range_regex)) {
  187. int first = std::stoi(match[1]);
  188. int last = match[2].matched ? std::stoi(match[2]) : first;
  189. char op = match[3].matched ? match[3].str()[0] : '+';
  190. int step = match[4].matched ? std::stoi(match[4]) : 1;
  191. for (int i = first; i <= last;) {
  192. result.push_back(i);
  193. if (op == '+') {
  194. i += step;
  195. } else if (op == '*') {
  196. i *= step;
  197. } else {
  198. throw std::invalid_argument("invalid range format");
  199. }
  200. }
  201. search_start = match.suffix().first;
  202. }
  203. if (search_start != s.cend()) {
  204. throw std::invalid_argument("invalid range format");
  205. }
  206. return result;
  207. }
  208. struct cmd_params {
  209. std::vector<std::string> model;
  210. std::vector<int> n_prompt;
  211. std::vector<int> n_gen;
  212. std::vector<std::pair<int, int>> n_pg;
  213. std::vector<int> n_depth;
  214. std::vector<int> n_batch;
  215. std::vector<int> n_ubatch;
  216. std::vector<ggml_type> type_k;
  217. std::vector<ggml_type> type_v;
  218. std::vector<int> n_threads;
  219. std::vector<std::string> cpu_mask;
  220. std::vector<bool> cpu_strict;
  221. std::vector<int> poll;
  222. std::vector<int> n_gpu_layers;
  223. std::vector<std::string> rpc_servers;
  224. std::vector<llama_split_mode> split_mode;
  225. std::vector<int> main_gpu;
  226. std::vector<bool> no_kv_offload;
  227. std::vector<bool> flash_attn;
  228. std::vector<std::vector<float>> tensor_split;
  229. std::vector<std::vector<llama_model_tensor_buft_override>> tensor_buft_overrides;
  230. std::vector<bool> use_mmap;
  231. std::vector<bool> embeddings;
  232. std::vector<bool> no_op_offload;
  233. ggml_numa_strategy numa;
  234. int reps;
  235. ggml_sched_priority prio;
  236. int delay;
  237. bool verbose;
  238. bool progress;
  239. output_formats output_format;
  240. output_formats output_format_stderr;
  241. };
  242. static const cmd_params cmd_params_defaults = {
  243. /* model */ { "models/7B/ggml-model-q4_0.gguf" },
  244. /* n_prompt */ { 512 },
  245. /* n_gen */ { 128 },
  246. /* n_pg */ {},
  247. /* n_depth */ { 0 },
  248. /* n_batch */ { 2048 },
  249. /* n_ubatch */ { 512 },
  250. /* type_k */ { GGML_TYPE_F16 },
  251. /* type_v */ { GGML_TYPE_F16 },
  252. /* n_threads */ { cpu_get_num_math() },
  253. /* cpu_mask */ { "0x0" },
  254. /* cpu_strict */ { false },
  255. /* poll */ { 50 },
  256. /* n_gpu_layers */ { 99 },
  257. /* rpc_servers */ { "" },
  258. /* split_mode */ { LLAMA_SPLIT_MODE_LAYER },
  259. /* main_gpu */ { 0 },
  260. /* no_kv_offload */ { false },
  261. /* flash_attn */ { false },
  262. /* tensor_split */ { std::vector<float>(llama_max_devices(), 0.0f) },
  263. /* tensor_buft_overrides*/ { std::vector<llama_model_tensor_buft_override>{ { nullptr, nullptr } } },
  264. /* use_mmap */ { true },
  265. /* embeddings */ { false },
  266. /* no_op_offload */ { false },
  267. /* numa */ GGML_NUMA_STRATEGY_DISABLED,
  268. /* reps */ 5,
  269. /* prio */ GGML_SCHED_PRIO_NORMAL,
  270. /* delay */ 0,
  271. /* verbose */ false,
  272. /* progress */ false,
  273. /* output_format */ MARKDOWN,
  274. /* output_format_stderr */ NONE,
  275. };
  276. static void print_usage(int /* argc */, char ** argv) {
  277. printf("usage: %s [options]\n", argv[0]);
  278. printf("\n");
  279. printf("options:\n");
  280. printf(" -h, --help\n");
  281. printf(" --numa <distribute|isolate|numactl> numa mode (default: disabled)\n");
  282. printf(" -r, --repetitions <n> number of times to repeat each test (default: %d)\n",
  283. cmd_params_defaults.reps);
  284. printf(" --prio <0|1|2|3> process/thread priority (default: %d)\n",
  285. cmd_params_defaults.prio);
  286. printf(" --delay <0...N> (seconds) delay between each test (default: %d)\n",
  287. cmd_params_defaults.delay);
  288. printf(" -o, --output <csv|json|jsonl|md|sql> output format printed to stdout (default: %s)\n",
  289. output_format_str(cmd_params_defaults.output_format));
  290. printf(" -oe, --output-err <csv|json|jsonl|md|sql> output format printed to stderr (default: %s)\n",
  291. output_format_str(cmd_params_defaults.output_format_stderr));
  292. printf(" -v, --verbose verbose output\n");
  293. printf(" --progress print test progress indicators\n");
  294. printf("\n");
  295. printf("test parameters:\n");
  296. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  297. printf(" -p, --n-prompt <n> (default: %s)\n",
  298. join(cmd_params_defaults.n_prompt, ",").c_str());
  299. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  300. printf(" -pg <pp,tg> (default: %s)\n",
  301. join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
  302. printf(" -d, --n-depth <n> (default: %s)\n",
  303. join(cmd_params_defaults.n_depth, ",").c_str());
  304. printf(" -b, --batch-size <n> (default: %s)\n",
  305. join(cmd_params_defaults.n_batch, ",").c_str());
  306. printf(" -ub, --ubatch-size <n> (default: %s)\n",
  307. join(cmd_params_defaults.n_ubatch, ",").c_str());
  308. printf(" -ctk, --cache-type-k <t> (default: %s)\n",
  309. join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  310. printf(" -ctv, --cache-type-v <t> (default: %s)\n",
  311. join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  312. printf(" -t, --threads <n> (default: %s)\n",
  313. join(cmd_params_defaults.n_threads, ",").c_str());
  314. printf(" -C, --cpu-mask <hex,hex> (default: %s)\n",
  315. join(cmd_params_defaults.cpu_mask, ",").c_str());
  316. printf(" --cpu-strict <0|1> (default: %s)\n",
  317. join(cmd_params_defaults.cpu_strict, ",").c_str());
  318. printf(" --poll <0...100> (default: %s)\n", join(cmd_params_defaults.poll, ",").c_str());
  319. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n",
  320. join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  321. if (llama_supports_rpc()) {
  322. printf(" -rpc, --rpc <rpc_servers> (default: %s)\n",
  323. join(cmd_params_defaults.rpc_servers, ",").c_str());
  324. }
  325. printf(" -sm, --split-mode <none|layer|row> (default: %s)\n",
  326. join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
  327. printf(" -mg, --main-gpu <i> (default: %s)\n",
  328. join(cmd_params_defaults.main_gpu, ",").c_str());
  329. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n",
  330. join(cmd_params_defaults.no_kv_offload, ",").c_str());
  331. printf(" -fa, --flash-attn <0|1> (default: %s)\n",
  332. join(cmd_params_defaults.flash_attn, ",").c_str());
  333. printf(" -mmp, --mmap <0|1> (default: %s)\n",
  334. join(cmd_params_defaults.use_mmap, ",").c_str());
  335. printf(" -embd, --embeddings <0|1> (default: %s)\n",
  336. join(cmd_params_defaults.embeddings, ",").c_str());
  337. printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
  338. printf(" -ot --override-tensors <tensor name pattern>=<buffer type>;...\n");
  339. printf(" (default: disabled)\n");
  340. printf(" -nopo, --no-op-offload <0|1> (default: 0)\n");
  341. printf("\n");
  342. printf(
  343. "Multiple values can be given for each parameter by separating them with ','\n"
  344. "or by specifying the parameter multiple times. Ranges can be given as\n"
  345. "'start-end' or 'start-end+step' or 'start-end*mult'.\n");
  346. }
  347. static ggml_type ggml_type_from_name(const std::string & s) {
  348. if (s == "f16") {
  349. return GGML_TYPE_F16;
  350. }
  351. if (s == "bf16") {
  352. return GGML_TYPE_BF16;
  353. }
  354. if (s == "q8_0") {
  355. return GGML_TYPE_Q8_0;
  356. }
  357. if (s == "q4_0") {
  358. return GGML_TYPE_Q4_0;
  359. }
  360. if (s == "q4_1") {
  361. return GGML_TYPE_Q4_1;
  362. }
  363. if (s == "q5_0") {
  364. return GGML_TYPE_Q5_0;
  365. }
  366. if (s == "q5_1") {
  367. return GGML_TYPE_Q5_1;
  368. }
  369. if (s == "iq4_nl") {
  370. return GGML_TYPE_IQ4_NL;
  371. }
  372. return GGML_TYPE_COUNT;
  373. }
  374. static cmd_params parse_cmd_params(int argc, char ** argv) {
  375. cmd_params params;
  376. std::string arg;
  377. bool invalid_param = false;
  378. const std::string arg_prefix = "--";
  379. const char split_delim = ',';
  380. params.verbose = cmd_params_defaults.verbose;
  381. params.output_format = cmd_params_defaults.output_format;
  382. params.output_format_stderr = cmd_params_defaults.output_format_stderr;
  383. params.reps = cmd_params_defaults.reps;
  384. params.numa = cmd_params_defaults.numa;
  385. params.prio = cmd_params_defaults.prio;
  386. params.delay = cmd_params_defaults.delay;
  387. params.progress = cmd_params_defaults.progress;
  388. for (int i = 1; i < argc; i++) {
  389. arg = argv[i];
  390. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  391. std::replace(arg.begin(), arg.end(), '_', '-');
  392. }
  393. try {
  394. if (arg == "-h" || arg == "--help") {
  395. print_usage(argc, argv);
  396. exit(0);
  397. } else if (arg == "-m" || arg == "--model") {
  398. if (++i >= argc) {
  399. invalid_param = true;
  400. break;
  401. }
  402. auto p = string_split<std::string>(argv[i], split_delim);
  403. params.model.insert(params.model.end(), p.begin(), p.end());
  404. } else if (arg == "-p" || arg == "--n-prompt") {
  405. if (++i >= argc) {
  406. invalid_param = true;
  407. break;
  408. }
  409. auto p = parse_int_range(argv[i]);
  410. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  411. } else if (arg == "-n" || arg == "--n-gen") {
  412. if (++i >= argc) {
  413. invalid_param = true;
  414. break;
  415. }
  416. auto p = parse_int_range(argv[i]);
  417. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  418. } else if (arg == "-pg") {
  419. if (++i >= argc) {
  420. invalid_param = true;
  421. break;
  422. }
  423. auto p = string_split<std::string>(argv[i], ',');
  424. if (p.size() != 2) {
  425. invalid_param = true;
  426. break;
  427. }
  428. params.n_pg.push_back({ std::stoi(p[0]), std::stoi(p[1]) });
  429. } else if (arg == "-d" || arg == "--n-depth") {
  430. if (++i >= argc) {
  431. invalid_param = true;
  432. break;
  433. }
  434. auto p = parse_int_range(argv[i]);
  435. params.n_depth.insert(params.n_depth.end(), p.begin(), p.end());
  436. } else if (arg == "-b" || arg == "--batch-size") {
  437. if (++i >= argc) {
  438. invalid_param = true;
  439. break;
  440. }
  441. auto p = parse_int_range(argv[i]);
  442. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  443. } else if (arg == "-ub" || arg == "--ubatch-size") {
  444. if (++i >= argc) {
  445. invalid_param = true;
  446. break;
  447. }
  448. auto p = parse_int_range(argv[i]);
  449. params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
  450. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  451. if (++i >= argc) {
  452. invalid_param = true;
  453. break;
  454. }
  455. auto p = string_split<std::string>(argv[i], split_delim);
  456. std::vector<ggml_type> types;
  457. for (const auto & t : p) {
  458. ggml_type gt = ggml_type_from_name(t);
  459. if (gt == GGML_TYPE_COUNT) {
  460. invalid_param = true;
  461. break;
  462. }
  463. types.push_back(gt);
  464. }
  465. if (invalid_param) {
  466. break;
  467. }
  468. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  469. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  470. if (++i >= argc) {
  471. invalid_param = true;
  472. break;
  473. }
  474. auto p = string_split<std::string>(argv[i], split_delim);
  475. std::vector<ggml_type> types;
  476. for (const auto & t : p) {
  477. ggml_type gt = ggml_type_from_name(t);
  478. if (gt == GGML_TYPE_COUNT) {
  479. invalid_param = true;
  480. break;
  481. }
  482. types.push_back(gt);
  483. }
  484. if (invalid_param) {
  485. break;
  486. }
  487. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  488. } else if (arg == "-t" || arg == "--threads") {
  489. if (++i >= argc) {
  490. invalid_param = true;
  491. break;
  492. }
  493. auto p = parse_int_range(argv[i]);
  494. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  495. } else if (arg == "-C" || arg == "--cpu-mask") {
  496. if (++i >= argc) {
  497. invalid_param = true;
  498. break;
  499. }
  500. auto p = string_split<std::string>(argv[i], split_delim);
  501. params.cpu_mask.insert(params.cpu_mask.end(), p.begin(), p.end());
  502. } else if (arg == "--cpu-strict") {
  503. if (++i >= argc) {
  504. invalid_param = true;
  505. break;
  506. }
  507. auto p = string_split<bool>(argv[i], split_delim);
  508. params.cpu_strict.insert(params.cpu_strict.end(), p.begin(), p.end());
  509. } else if (arg == "--poll") {
  510. if (++i >= argc) {
  511. invalid_param = true;
  512. break;
  513. }
  514. auto p = parse_int_range(argv[i]);
  515. params.poll.insert(params.poll.end(), p.begin(), p.end());
  516. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  517. if (++i >= argc) {
  518. invalid_param = true;
  519. break;
  520. }
  521. auto p = parse_int_range(argv[i]);
  522. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  523. } else if (llama_supports_rpc() && (arg == "-rpc" || arg == "--rpc")) {
  524. if (++i >= argc) {
  525. invalid_param = true;
  526. break;
  527. }
  528. params.rpc_servers.push_back(argv[i]);
  529. } else if (arg == "-sm" || arg == "--split-mode") {
  530. if (++i >= argc) {
  531. invalid_param = true;
  532. break;
  533. }
  534. auto p = string_split<std::string>(argv[i], split_delim);
  535. std::vector<llama_split_mode> modes;
  536. for (const auto & m : p) {
  537. llama_split_mode mode;
  538. if (m == "none") {
  539. mode = LLAMA_SPLIT_MODE_NONE;
  540. } else if (m == "layer") {
  541. mode = LLAMA_SPLIT_MODE_LAYER;
  542. } else if (m == "row") {
  543. mode = LLAMA_SPLIT_MODE_ROW;
  544. } else {
  545. invalid_param = true;
  546. break;
  547. }
  548. modes.push_back(mode);
  549. }
  550. if (invalid_param) {
  551. break;
  552. }
  553. params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
  554. } else if (arg == "-mg" || arg == "--main-gpu") {
  555. if (++i >= argc) {
  556. invalid_param = true;
  557. break;
  558. }
  559. params.main_gpu = parse_int_range(argv[i]);
  560. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  561. if (++i >= argc) {
  562. invalid_param = true;
  563. break;
  564. }
  565. auto p = string_split<bool>(argv[i], split_delim);
  566. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  567. } else if (arg == "--numa") {
  568. if (++i >= argc) {
  569. invalid_param = true;
  570. break;
  571. }
  572. std::string value(argv[i]);
  573. if (value == "distribute" || value == "") {
  574. params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE;
  575. } else if (value == "isolate") {
  576. params.numa = GGML_NUMA_STRATEGY_ISOLATE;
  577. } else if (value == "numactl") {
  578. params.numa = GGML_NUMA_STRATEGY_NUMACTL;
  579. } else {
  580. invalid_param = true;
  581. break;
  582. }
  583. } else if (arg == "-fa" || arg == "--flash-attn") {
  584. if (++i >= argc) {
  585. invalid_param = true;
  586. break;
  587. }
  588. auto p = string_split<bool>(argv[i], split_delim);
  589. params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end());
  590. } else if (arg == "-mmp" || arg == "--mmap") {
  591. if (++i >= argc) {
  592. invalid_param = true;
  593. break;
  594. }
  595. auto p = string_split<bool>(argv[i], split_delim);
  596. params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
  597. } else if (arg == "-embd" || arg == "--embeddings") {
  598. if (++i >= argc) {
  599. invalid_param = true;
  600. break;
  601. }
  602. auto p = string_split<bool>(argv[i], split_delim);
  603. params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
  604. } else if (arg == "-nopo" || arg == "--no-op-offload") {
  605. if (++i >= argc) {
  606. invalid_param = true;
  607. break;
  608. }
  609. auto p = string_split<bool>(argv[i], split_delim);
  610. params.no_op_offload.insert(params.no_op_offload.end(), p.begin(), p.end());
  611. } else if (arg == "-ts" || arg == "--tensor-split") {
  612. if (++i >= argc) {
  613. invalid_param = true;
  614. break;
  615. }
  616. for (auto ts : string_split<std::string>(argv[i], split_delim)) {
  617. // split string by ; and /
  618. const std::regex regex{ R"([;/]+)" };
  619. std::sregex_token_iterator it{ ts.begin(), ts.end(), regex, -1 };
  620. std::vector<std::string> split_arg{ it, {} };
  621. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  622. std::vector<float> tensor_split(llama_max_devices());
  623. for (size_t i = 0; i < llama_max_devices(); ++i) {
  624. if (i < split_arg.size()) {
  625. tensor_split[i] = std::stof(split_arg[i]);
  626. } else {
  627. tensor_split[i] = 0.0f;
  628. }
  629. }
  630. params.tensor_split.push_back(tensor_split);
  631. }
  632. } else if (arg == "-ot" || arg == "--override-tensor") {
  633. if (++i >= argc) {
  634. invalid_param = true;
  635. break;
  636. }
  637. auto value = argv[i];
  638. /* static */ std::map<std::string, ggml_backend_buffer_type_t> buft_list;
  639. if (buft_list.empty()) {
  640. // enumerate all the devices and add their buffer types to the list
  641. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  642. auto * dev = ggml_backend_dev_get(i);
  643. auto * buft = ggml_backend_dev_buffer_type(dev);
  644. if (buft) {
  645. buft_list[ggml_backend_buft_name(buft)] = buft;
  646. }
  647. }
  648. }
  649. auto override_group_span_len = std::strcspn(value, ",");
  650. bool last_group = false;
  651. do {
  652. if (override_group_span_len == 0) {
  653. // Adds an empty override-tensors for an empty span
  654. params.tensor_buft_overrides.push_back({{}});
  655. if (value[override_group_span_len] == '\0') {
  656. value = &value[override_group_span_len];
  657. last_group = true;
  658. } else {
  659. value = &value[override_group_span_len + 1];
  660. override_group_span_len = std::strcspn(value, ",");
  661. }
  662. continue;
  663. }
  664. // Stamps null terminators into the argv
  665. // value for this option to avoid the
  666. // memory leak present in the implementation
  667. // over in arg.cpp. Acceptable because we
  668. // only parse these args once in this program.
  669. auto override_group = value;
  670. if (value[override_group_span_len] == '\0') {
  671. value = &value[override_group_span_len];
  672. last_group = true;
  673. } else {
  674. value[override_group_span_len] = '\0';
  675. value = &value[override_group_span_len + 1];
  676. }
  677. std::vector<llama_model_tensor_buft_override> group_tensor_buft_overrides{};
  678. auto override_span_len = std::strcspn(override_group, ";");
  679. while (override_span_len > 0) {
  680. auto override = override_group;
  681. if (override_group[override_span_len] != '\0') {
  682. override_group[override_span_len] = '\0';
  683. override_group = &override_group[override_span_len + 1];
  684. } else {
  685. override_group = &override_group[override_span_len];
  686. }
  687. auto tensor_name_span_len = std::strcspn(override, "=");
  688. if (tensor_name_span_len >= override_span_len) {
  689. invalid_param = true;
  690. break;
  691. }
  692. override[tensor_name_span_len] = '\0';
  693. auto tensor_name = override;
  694. auto buffer_type = &override[tensor_name_span_len + 1];
  695. if (buft_list.find(buffer_type) == buft_list.end()) {
  696. printf("Available buffer types:\n");
  697. for (const auto & it : buft_list) {
  698. printf(" %s\n", ggml_backend_buft_name(it.second));
  699. }
  700. invalid_param = true;
  701. break;
  702. }
  703. group_tensor_buft_overrides.push_back({tensor_name, buft_list.at(buffer_type)});
  704. override_span_len = std::strcspn(override_group, ";");
  705. }
  706. if (invalid_param) {
  707. break;
  708. }
  709. group_tensor_buft_overrides.push_back({nullptr,nullptr});
  710. params.tensor_buft_overrides.push_back(group_tensor_buft_overrides);
  711. override_group_span_len = std::strcspn(value, ",");
  712. } while (!last_group);
  713. } else if (arg == "-r" || arg == "--repetitions") {
  714. if (++i >= argc) {
  715. invalid_param = true;
  716. break;
  717. }
  718. params.reps = std::stoi(argv[i]);
  719. } else if (arg == "--prio") {
  720. if (++i >= argc) {
  721. invalid_param = true;
  722. break;
  723. }
  724. params.prio = (enum ggml_sched_priority) std::stoi(argv[i]);
  725. } else if (arg == "--delay") {
  726. if (++i >= argc) {
  727. invalid_param = true;
  728. break;
  729. }
  730. params.delay = std::stoi(argv[i]);
  731. } else if (arg == "-o" || arg == "--output") {
  732. if (++i >= argc) {
  733. invalid_param = true;
  734. break;
  735. }
  736. invalid_param = !output_format_from_str(argv[i], params.output_format);
  737. } else if (arg == "-oe" || arg == "--output-err") {
  738. if (++i >= argc) {
  739. invalid_param = true;
  740. break;
  741. }
  742. invalid_param = !output_format_from_str(argv[i], params.output_format_stderr);
  743. } else if (arg == "-v" || arg == "--verbose") {
  744. params.verbose = true;
  745. } else if (arg == "--progress") {
  746. params.progress = true;
  747. } else {
  748. invalid_param = true;
  749. break;
  750. }
  751. } catch (const std::exception & e) {
  752. fprintf(stderr, "error: %s\n", e.what());
  753. invalid_param = true;
  754. break;
  755. }
  756. }
  757. if (invalid_param) {
  758. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  759. print_usage(argc, argv);
  760. exit(1);
  761. }
  762. // set defaults
  763. if (params.model.empty()) {
  764. params.model = cmd_params_defaults.model;
  765. }
  766. if (params.n_prompt.empty()) {
  767. params.n_prompt = cmd_params_defaults.n_prompt;
  768. }
  769. if (params.n_gen.empty()) {
  770. params.n_gen = cmd_params_defaults.n_gen;
  771. }
  772. if (params.n_pg.empty()) {
  773. params.n_pg = cmd_params_defaults.n_pg;
  774. }
  775. if (params.n_depth.empty()) {
  776. params.n_depth = cmd_params_defaults.n_depth;
  777. }
  778. if (params.n_batch.empty()) {
  779. params.n_batch = cmd_params_defaults.n_batch;
  780. }
  781. if (params.n_ubatch.empty()) {
  782. params.n_ubatch = cmd_params_defaults.n_ubatch;
  783. }
  784. if (params.type_k.empty()) {
  785. params.type_k = cmd_params_defaults.type_k;
  786. }
  787. if (params.type_v.empty()) {
  788. params.type_v = cmd_params_defaults.type_v;
  789. }
  790. if (params.n_gpu_layers.empty()) {
  791. params.n_gpu_layers = cmd_params_defaults.n_gpu_layers;
  792. }
  793. if (params.rpc_servers.empty()) {
  794. params.rpc_servers = cmd_params_defaults.rpc_servers;
  795. }
  796. if (params.split_mode.empty()) {
  797. params.split_mode = cmd_params_defaults.split_mode;
  798. }
  799. if (params.main_gpu.empty()) {
  800. params.main_gpu = cmd_params_defaults.main_gpu;
  801. }
  802. if (params.no_kv_offload.empty()) {
  803. params.no_kv_offload = cmd_params_defaults.no_kv_offload;
  804. }
  805. if (params.flash_attn.empty()) {
  806. params.flash_attn = cmd_params_defaults.flash_attn;
  807. }
  808. if (params.tensor_split.empty()) {
  809. params.tensor_split = cmd_params_defaults.tensor_split;
  810. }
  811. if (params.tensor_buft_overrides.empty()) {
  812. params.tensor_buft_overrides = cmd_params_defaults.tensor_buft_overrides;
  813. }
  814. if (params.use_mmap.empty()) {
  815. params.use_mmap = cmd_params_defaults.use_mmap;
  816. }
  817. if (params.embeddings.empty()) {
  818. params.embeddings = cmd_params_defaults.embeddings;
  819. }
  820. if (params.no_op_offload.empty()) {
  821. params.no_op_offload = cmd_params_defaults.no_op_offload;
  822. }
  823. if (params.n_threads.empty()) {
  824. params.n_threads = cmd_params_defaults.n_threads;
  825. }
  826. if (params.cpu_mask.empty()) {
  827. params.cpu_mask = cmd_params_defaults.cpu_mask;
  828. }
  829. if (params.cpu_strict.empty()) {
  830. params.cpu_strict = cmd_params_defaults.cpu_strict;
  831. }
  832. if (params.poll.empty()) {
  833. params.poll = cmd_params_defaults.poll;
  834. }
  835. return params;
  836. }
  837. struct cmd_params_instance {
  838. std::string model;
  839. int n_prompt;
  840. int n_gen;
  841. int n_depth;
  842. int n_batch;
  843. int n_ubatch;
  844. ggml_type type_k;
  845. ggml_type type_v;
  846. int n_threads;
  847. std::string cpu_mask;
  848. bool cpu_strict;
  849. int poll;
  850. int n_gpu_layers;
  851. std::string rpc_servers_str;
  852. llama_split_mode split_mode;
  853. int main_gpu;
  854. bool no_kv_offload;
  855. bool flash_attn;
  856. std::vector<float> tensor_split;
  857. std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
  858. bool use_mmap;
  859. bool embeddings;
  860. bool no_op_offload;
  861. llama_model_params to_llama_mparams() const {
  862. llama_model_params mparams = llama_model_default_params();
  863. mparams.n_gpu_layers = n_gpu_layers;
  864. if (!rpc_servers_str.empty()) {
  865. auto rpc_servers = string_split<std::string>(rpc_servers_str, ',');
  866. // add RPC devices
  867. if (!rpc_servers.empty()) {
  868. ggml_backend_reg_t rpc_reg = ggml_backend_reg_by_name("RPC");
  869. if (!rpc_reg) {
  870. fprintf(stderr, "%s: failed to find RPC backend\n", __func__);
  871. exit(1);
  872. }
  873. typedef ggml_backend_dev_t (*ggml_backend_rpc_add_device_t)(const char * endpoint);
  874. ggml_backend_rpc_add_device_t ggml_backend_rpc_add_device_fn = (ggml_backend_rpc_add_device_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_device");
  875. if (!ggml_backend_rpc_add_device_fn) {
  876. fprintf(stderr, "%s: failed to find RPC device add function\n", __func__);
  877. exit(1);
  878. }
  879. static std::vector<ggml_backend_dev_t> devices;
  880. devices.clear();
  881. for (const std::string & server : rpc_servers) {
  882. ggml_backend_dev_t dev = ggml_backend_rpc_add_device_fn(server.c_str());
  883. if (dev) {
  884. devices.push_back(dev);
  885. } else {
  886. fprintf(stderr, "%s: failed to add RPC device for server '%s'\n", __func__, server.c_str());
  887. exit(1);
  888. }
  889. }
  890. devices.push_back(nullptr);
  891. mparams.devices = devices.data();
  892. }
  893. }
  894. mparams.split_mode = split_mode;
  895. mparams.main_gpu = main_gpu;
  896. mparams.tensor_split = tensor_split.data();
  897. mparams.use_mmap = use_mmap;
  898. if (tensor_buft_overrides.empty()) {
  899. mparams.tensor_buft_overrides = nullptr;
  900. } else {
  901. GGML_ASSERT(tensor_buft_overrides.back().pattern == nullptr && "Tensor buffer overrides not terminated with empty pattern");
  902. mparams.tensor_buft_overrides = tensor_buft_overrides.data();
  903. }
  904. return mparams;
  905. }
  906. bool equal_mparams(const cmd_params_instance & other) const {
  907. return model == other.model && n_gpu_layers == other.n_gpu_layers && rpc_servers_str == other.rpc_servers_str &&
  908. split_mode == other.split_mode && main_gpu == other.main_gpu && use_mmap == other.use_mmap &&
  909. tensor_split == other.tensor_split && vec_tensor_buft_override_equal(tensor_buft_overrides, other.tensor_buft_overrides);
  910. }
  911. llama_context_params to_llama_cparams() const {
  912. llama_context_params cparams = llama_context_default_params();
  913. cparams.n_ctx = n_prompt + n_gen + n_depth;
  914. cparams.n_batch = n_batch;
  915. cparams.n_ubatch = n_ubatch;
  916. cparams.type_k = type_k;
  917. cparams.type_v = type_v;
  918. cparams.offload_kqv = !no_kv_offload;
  919. cparams.flash_attn = flash_attn;
  920. cparams.embeddings = embeddings;
  921. cparams.op_offload = !no_op_offload;
  922. return cparams;
  923. }
  924. };
  925. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  926. std::vector<cmd_params_instance> instances;
  927. // this ordering minimizes the number of times that each model needs to be reloaded
  928. // clang-format off
  929. for (const auto & m : params.model)
  930. for (const auto & nl : params.n_gpu_layers)
  931. for (const auto & rpc : params.rpc_servers)
  932. for (const auto & sm : params.split_mode)
  933. for (const auto & mg : params.main_gpu)
  934. for (const auto & ts : params.tensor_split)
  935. for (const auto & ot : params.tensor_buft_overrides)
  936. for (const auto & mmp : params.use_mmap)
  937. for (const auto & embd : params.embeddings)
  938. for (const auto & nopo : params.no_op_offload)
  939. for (const auto & nb : params.n_batch)
  940. for (const auto & nub : params.n_ubatch)
  941. for (const auto & tk : params.type_k)
  942. for (const auto & tv : params.type_v)
  943. for (const auto & nkvo : params.no_kv_offload)
  944. for (const auto & fa : params.flash_attn)
  945. for (const auto & nt : params.n_threads)
  946. for (const auto & cm : params.cpu_mask)
  947. for (const auto & cs : params.cpu_strict)
  948. for (const auto & nd : params.n_depth)
  949. for (const auto & pl : params.poll) {
  950. for (const auto & n_prompt : params.n_prompt) {
  951. if (n_prompt == 0) {
  952. continue;
  953. }
  954. cmd_params_instance instance = {
  955. /* .model = */ m,
  956. /* .n_prompt = */ n_prompt,
  957. /* .n_gen = */ 0,
  958. /* .n_depth = */ nd,
  959. /* .n_batch = */ nb,
  960. /* .n_ubatch = */ nub,
  961. /* .type_k = */ tk,
  962. /* .type_v = */ tv,
  963. /* .n_threads = */ nt,
  964. /* .cpu_mask = */ cm,
  965. /* .cpu_strict = */ cs,
  966. /* .poll = */ pl,
  967. /* .n_gpu_layers = */ nl,
  968. /* .rpc_servers = */ rpc,
  969. /* .split_mode = */ sm,
  970. /* .main_gpu = */ mg,
  971. /* .no_kv_offload= */ nkvo,
  972. /* .flash_attn = */ fa,
  973. /* .tensor_split = */ ts,
  974. /* .tensor_buft_overrides = */ ot,
  975. /* .use_mmap = */ mmp,
  976. /* .embeddings = */ embd,
  977. /* .no_op_offload= */ nopo,
  978. };
  979. instances.push_back(instance);
  980. }
  981. for (const auto & n_gen : params.n_gen) {
  982. if (n_gen == 0) {
  983. continue;
  984. }
  985. cmd_params_instance instance = {
  986. /* .model = */ m,
  987. /* .n_prompt = */ 0,
  988. /* .n_gen = */ n_gen,
  989. /* .n_depth = */ nd,
  990. /* .n_batch = */ nb,
  991. /* .n_ubatch = */ nub,
  992. /* .type_k = */ tk,
  993. /* .type_v = */ tv,
  994. /* .n_threads = */ nt,
  995. /* .cpu_mask = */ cm,
  996. /* .cpu_strict = */ cs,
  997. /* .poll = */ pl,
  998. /* .n_gpu_layers = */ nl,
  999. /* .rpc_servers = */ rpc,
  1000. /* .split_mode = */ sm,
  1001. /* .main_gpu = */ mg,
  1002. /* .no_kv_offload= */ nkvo,
  1003. /* .flash_attn = */ fa,
  1004. /* .tensor_split = */ ts,
  1005. /* .tensor_buft_overrides = */ ot,
  1006. /* .use_mmap = */ mmp,
  1007. /* .embeddings = */ embd,
  1008. /* .no_op_offload= */ nopo,
  1009. };
  1010. instances.push_back(instance);
  1011. }
  1012. for (const auto & n_pg : params.n_pg) {
  1013. if (n_pg.first == 0 && n_pg.second == 0) {
  1014. continue;
  1015. }
  1016. cmd_params_instance instance = {
  1017. /* .model = */ m,
  1018. /* .n_prompt = */ n_pg.first,
  1019. /* .n_gen = */ n_pg.second,
  1020. /* .n_depth = */ nd,
  1021. /* .n_batch = */ nb,
  1022. /* .n_ubatch = */ nub,
  1023. /* .type_k = */ tk,
  1024. /* .type_v = */ tv,
  1025. /* .n_threads = */ nt,
  1026. /* .cpu_mask = */ cm,
  1027. /* .cpu_strict = */ cs,
  1028. /* .poll = */ pl,
  1029. /* .n_gpu_layers = */ nl,
  1030. /* .rpc_servers = */ rpc,
  1031. /* .split_mode = */ sm,
  1032. /* .main_gpu = */ mg,
  1033. /* .no_kv_offload= */ nkvo,
  1034. /* .flash_attn = */ fa,
  1035. /* .tensor_split = */ ts,
  1036. /* .tensor_buft_overrides = */ ot,
  1037. /* .use_mmap = */ mmp,
  1038. /* .embeddings = */ embd,
  1039. /* .no_op_offload= */ nopo,
  1040. };
  1041. instances.push_back(instance);
  1042. }
  1043. }
  1044. // clang-format on
  1045. return instances;
  1046. }
  1047. struct test {
  1048. static const std::string build_commit;
  1049. static const int build_number;
  1050. const std::string cpu_info;
  1051. const std::string gpu_info;
  1052. std::string model_filename;
  1053. std::string model_type;
  1054. uint64_t model_size;
  1055. uint64_t model_n_params;
  1056. int n_batch;
  1057. int n_ubatch;
  1058. int n_threads;
  1059. std::string cpu_mask;
  1060. bool cpu_strict;
  1061. int poll;
  1062. ggml_type type_k;
  1063. ggml_type type_v;
  1064. int n_gpu_layers;
  1065. llama_split_mode split_mode;
  1066. int main_gpu;
  1067. bool no_kv_offload;
  1068. bool flash_attn;
  1069. std::vector<float> tensor_split;
  1070. std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
  1071. bool use_mmap;
  1072. bool embeddings;
  1073. bool no_op_offload;
  1074. int n_prompt;
  1075. int n_gen;
  1076. int n_depth;
  1077. std::string test_time;
  1078. std::vector<uint64_t> samples_ns;
  1079. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) :
  1080. cpu_info(get_cpu_info()),
  1081. gpu_info(get_gpu_info()) {
  1082. model_filename = inst.model;
  1083. char buf[128];
  1084. llama_model_desc(lmodel, buf, sizeof(buf));
  1085. model_type = buf;
  1086. model_size = llama_model_size(lmodel);
  1087. model_n_params = llama_model_n_params(lmodel);
  1088. n_batch = inst.n_batch;
  1089. n_ubatch = inst.n_ubatch;
  1090. n_threads = inst.n_threads;
  1091. cpu_mask = inst.cpu_mask;
  1092. cpu_strict = inst.cpu_strict;
  1093. poll = inst.poll;
  1094. type_k = inst.type_k;
  1095. type_v = inst.type_v;
  1096. n_gpu_layers = inst.n_gpu_layers;
  1097. split_mode = inst.split_mode;
  1098. main_gpu = inst.main_gpu;
  1099. no_kv_offload = inst.no_kv_offload;
  1100. flash_attn = inst.flash_attn;
  1101. tensor_split = inst.tensor_split;
  1102. tensor_buft_overrides = inst.tensor_buft_overrides;
  1103. use_mmap = inst.use_mmap;
  1104. embeddings = inst.embeddings;
  1105. no_op_offload = inst.no_op_offload;
  1106. n_prompt = inst.n_prompt;
  1107. n_gen = inst.n_gen;
  1108. n_depth = inst.n_depth;
  1109. // RFC 3339 date-time format
  1110. time_t t = time(NULL);
  1111. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  1112. test_time = buf;
  1113. (void) ctx;
  1114. }
  1115. uint64_t avg_ns() const { return ::avg(samples_ns); }
  1116. uint64_t stdev_ns() const { return ::stdev(samples_ns); }
  1117. std::vector<double> get_ts() const {
  1118. int n_tokens = n_prompt + n_gen;
  1119. std::vector<double> ts;
  1120. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts),
  1121. [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  1122. return ts;
  1123. }
  1124. double avg_ts() const { return ::avg(get_ts()); }
  1125. double stdev_ts() const { return ::stdev(get_ts()); }
  1126. static std::string get_backend() {
  1127. std::vector<std::string> backends;
  1128. for (size_t i = 0; i < ggml_backend_reg_count(); i++) {
  1129. auto * reg = ggml_backend_reg_get(i);
  1130. std::string name = ggml_backend_reg_name(reg);
  1131. if (name != "CPU") {
  1132. backends.push_back(ggml_backend_reg_name(reg));
  1133. }
  1134. }
  1135. return backends.empty() ? "CPU" : join(backends, ",");
  1136. }
  1137. static const std::vector<std::string> & get_fields() {
  1138. static const std::vector<std::string> fields = {
  1139. "build_commit", "build_number", "cpu_info", "gpu_info", "backends", "model_filename",
  1140. "model_type", "model_size", "model_n_params", "n_batch", "n_ubatch", "n_threads",
  1141. "cpu_mask", "cpu_strict", "poll", "type_k", "type_v", "n_gpu_layers",
  1142. "split_mode", "main_gpu", "no_kv_offload", "flash_attn", "tensor_split", "tensor_buft_overrides",
  1143. "use_mmap", "embeddings", "no_op_offload", "n_prompt", "n_gen", "n_depth", "test_time",
  1144. "avg_ns", "stddev_ns", "avg_ts", "stddev_ts",
  1145. };
  1146. return fields;
  1147. }
  1148. enum field_type { STRING, BOOL, INT, FLOAT };
  1149. static field_type get_field_type(const std::string & field) {
  1150. if (field == "build_number" || field == "n_batch" || field == "n_ubatch" || field == "n_threads" ||
  1151. field == "poll" || field == "model_size" || field == "model_n_params" || field == "n_gpu_layers" ||
  1152. field == "main_gpu" || field == "n_prompt" || field == "n_gen" || field == "n_depth" ||
  1153. field == "avg_ns" || field == "stddev_ns" || field == "no_op_offload") {
  1154. return INT;
  1155. }
  1156. if (field == "f16_kv" || field == "no_kv_offload" || field == "cpu_strict" || field == "flash_attn" ||
  1157. field == "use_mmap" || field == "embeddings") {
  1158. return BOOL;
  1159. }
  1160. if (field == "avg_ts" || field == "stddev_ts") {
  1161. return FLOAT;
  1162. }
  1163. return STRING;
  1164. }
  1165. std::vector<std::string> get_values() const {
  1166. std::string tensor_split_str;
  1167. std::string tensor_buft_overrides_str;
  1168. int max_nonzero = 0;
  1169. for (size_t i = 0; i < llama_max_devices(); i++) {
  1170. if (tensor_split[i] > 0) {
  1171. max_nonzero = i;
  1172. }
  1173. }
  1174. for (int i = 0; i <= max_nonzero; i++) {
  1175. char buf[32];
  1176. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  1177. tensor_split_str += buf;
  1178. if (i < max_nonzero) {
  1179. tensor_split_str += "/";
  1180. }
  1181. }
  1182. if (tensor_buft_overrides.size() == 1) {
  1183. // Last element of tensor_buft_overrides is always a null pattern
  1184. // so if it is only one element long, it must be a null pattern.
  1185. GGML_ASSERT(tensor_buft_overrides[0].pattern == nullptr);
  1186. tensor_buft_overrides_str += "none";
  1187. } else {
  1188. for (size_t i = 0; i < tensor_buft_overrides.size()-1; i++) {
  1189. // Last element of tensor_buft_overrides is always a null pattern
  1190. if (tensor_buft_overrides[i].pattern == nullptr) {
  1191. tensor_buft_overrides_str += "none";
  1192. } else {
  1193. tensor_buft_overrides_str += tensor_buft_overrides[i].pattern;
  1194. tensor_buft_overrides_str += "=";
  1195. tensor_buft_overrides_str += ggml_backend_buft_name(tensor_buft_overrides[i].buft);
  1196. }
  1197. if (i + 2 < tensor_buft_overrides.size()) {
  1198. tensor_buft_overrides_str += ";";
  1199. }
  1200. }
  1201. }
  1202. std::vector<std::string> values = { build_commit,
  1203. std::to_string(build_number),
  1204. cpu_info,
  1205. gpu_info,
  1206. get_backend(),
  1207. model_filename,
  1208. model_type,
  1209. std::to_string(model_size),
  1210. std::to_string(model_n_params),
  1211. std::to_string(n_batch),
  1212. std::to_string(n_ubatch),
  1213. std::to_string(n_threads),
  1214. cpu_mask,
  1215. std::to_string(cpu_strict),
  1216. std::to_string(poll),
  1217. ggml_type_name(type_k),
  1218. ggml_type_name(type_v),
  1219. std::to_string(n_gpu_layers),
  1220. split_mode_str(split_mode),
  1221. std::to_string(main_gpu),
  1222. std::to_string(no_kv_offload),
  1223. std::to_string(flash_attn),
  1224. tensor_split_str,
  1225. tensor_buft_overrides_str,
  1226. std::to_string(use_mmap),
  1227. std::to_string(embeddings),
  1228. std::to_string(no_op_offload),
  1229. std::to_string(n_prompt),
  1230. std::to_string(n_gen),
  1231. std::to_string(n_depth),
  1232. test_time,
  1233. std::to_string(avg_ns()),
  1234. std::to_string(stdev_ns()),
  1235. std::to_string(avg_ts()),
  1236. std::to_string(stdev_ts()) };
  1237. return values;
  1238. }
  1239. std::map<std::string, std::string> get_map() const {
  1240. std::map<std::string, std::string> map;
  1241. auto fields = get_fields();
  1242. auto values = get_values();
  1243. std::transform(fields.begin(), fields.end(), values.begin(), std::inserter(map, map.end()),
  1244. std::make_pair<const std::string &, const std::string &>);
  1245. return map;
  1246. }
  1247. };
  1248. const std::string test::build_commit = LLAMA_COMMIT;
  1249. const int test::build_number = LLAMA_BUILD_NUMBER;
  1250. struct printer {
  1251. virtual ~printer() {}
  1252. FILE * fout;
  1253. virtual void print_header(const cmd_params & params) { (void) params; }
  1254. virtual void print_test(const test & t) = 0;
  1255. virtual void print_footer() {}
  1256. };
  1257. struct csv_printer : public printer {
  1258. static std::string escape_csv(const std::string & field) {
  1259. std::string escaped = "\"";
  1260. for (auto c : field) {
  1261. if (c == '"') {
  1262. escaped += "\"";
  1263. }
  1264. escaped += c;
  1265. }
  1266. escaped += "\"";
  1267. return escaped;
  1268. }
  1269. void print_header(const cmd_params & params) override {
  1270. std::vector<std::string> fields = test::get_fields();
  1271. fprintf(fout, "%s\n", join(fields, ",").c_str());
  1272. (void) params;
  1273. }
  1274. void print_test(const test & t) override {
  1275. std::vector<std::string> values = t.get_values();
  1276. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  1277. fprintf(fout, "%s\n", join(values, ",").c_str());
  1278. }
  1279. };
  1280. static std::string escape_json(const std::string & value) {
  1281. std::string escaped;
  1282. for (auto c : value) {
  1283. if (c == '"') {
  1284. escaped += "\\\"";
  1285. } else if (c == '\\') {
  1286. escaped += "\\\\";
  1287. } else if (c <= 0x1f) {
  1288. char buf[8];
  1289. snprintf(buf, sizeof(buf), "\\u%04x", c);
  1290. escaped += buf;
  1291. } else {
  1292. escaped += c;
  1293. }
  1294. }
  1295. return escaped;
  1296. }
  1297. static std::string format_json_value(const std::string & field, const std::string & value) {
  1298. switch (test::get_field_type(field)) {
  1299. case test::STRING:
  1300. return "\"" + escape_json(value) + "\"";
  1301. case test::BOOL:
  1302. return value == "0" ? "false" : "true";
  1303. default:
  1304. return value;
  1305. }
  1306. }
  1307. struct json_printer : public printer {
  1308. bool first = true;
  1309. void print_header(const cmd_params & params) override {
  1310. fprintf(fout, "[\n");
  1311. (void) params;
  1312. }
  1313. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  1314. assert(fields.size() == values.size());
  1315. for (size_t i = 0; i < fields.size(); i++) {
  1316. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(),
  1317. format_json_value(fields.at(i), values.at(i)).c_str());
  1318. }
  1319. }
  1320. void print_test(const test & t) override {
  1321. if (first) {
  1322. first = false;
  1323. } else {
  1324. fprintf(fout, ",\n");
  1325. }
  1326. fprintf(fout, " {\n");
  1327. print_fields(test::get_fields(), t.get_values());
  1328. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  1329. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  1330. fprintf(fout, " }");
  1331. fflush(fout);
  1332. }
  1333. void print_footer() override { fprintf(fout, "\n]\n"); }
  1334. };
  1335. struct jsonl_printer : public printer {
  1336. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  1337. assert(fields.size() == values.size());
  1338. for (size_t i = 0; i < fields.size(); i++) {
  1339. fprintf(fout, "\"%s\": %s, ", fields.at(i).c_str(), format_json_value(fields.at(i), values.at(i)).c_str());
  1340. }
  1341. }
  1342. void print_test(const test & t) override {
  1343. fprintf(fout, "{");
  1344. print_fields(test::get_fields(), t.get_values());
  1345. fprintf(fout, "\"samples_ns\": [ %s ],", join(t.samples_ns, ", ").c_str());
  1346. fprintf(fout, "\"samples_ts\": [ %s ]", join(t.get_ts(), ", ").c_str());
  1347. fprintf(fout, "}\n");
  1348. fflush(fout);
  1349. }
  1350. };
  1351. struct markdown_printer : public printer {
  1352. std::vector<std::string> fields;
  1353. static int get_field_width(const std::string & field) {
  1354. if (field == "model") {
  1355. return -30;
  1356. }
  1357. if (field == "t/s") {
  1358. return 20;
  1359. }
  1360. if (field == "size" || field == "params") {
  1361. return 10;
  1362. }
  1363. if (field == "n_gpu_layers") {
  1364. return 3;
  1365. }
  1366. if (field == "n_threads") {
  1367. return 7;
  1368. }
  1369. if (field == "n_batch") {
  1370. return 7;
  1371. }
  1372. if (field == "n_ubatch") {
  1373. return 8;
  1374. }
  1375. if (field == "type_k" || field == "type_v") {
  1376. return 6;
  1377. }
  1378. if (field == "split_mode") {
  1379. return 5;
  1380. }
  1381. if (field == "flash_attn") {
  1382. return 2;
  1383. }
  1384. if (field == "use_mmap") {
  1385. return 4;
  1386. }
  1387. if (field == "test") {
  1388. return 15;
  1389. }
  1390. if (field == "no_op_offload") {
  1391. return 4;
  1392. }
  1393. int width = std::max((int) field.length(), 10);
  1394. if (test::get_field_type(field) == test::STRING) {
  1395. return -width;
  1396. }
  1397. return width;
  1398. }
  1399. static std::string get_field_display_name(const std::string & field) {
  1400. if (field == "n_gpu_layers") {
  1401. return "ngl";
  1402. }
  1403. if (field == "split_mode") {
  1404. return "sm";
  1405. }
  1406. if (field == "n_threads") {
  1407. return "threads";
  1408. }
  1409. if (field == "no_kv_offload") {
  1410. return "nkvo";
  1411. }
  1412. if (field == "flash_attn") {
  1413. return "fa";
  1414. }
  1415. if (field == "use_mmap") {
  1416. return "mmap";
  1417. }
  1418. if (field == "embeddings") {
  1419. return "embd";
  1420. }
  1421. if (field == "no_op_offload") {
  1422. return "nopo";
  1423. }
  1424. if (field == "tensor_split") {
  1425. return "ts";
  1426. }
  1427. if (field == "tensor_buft_overrides") {
  1428. return "ot";
  1429. }
  1430. return field;
  1431. }
  1432. void print_header(const cmd_params & params) override {
  1433. // select fields to print
  1434. fields.emplace_back("model");
  1435. fields.emplace_back("size");
  1436. fields.emplace_back("params");
  1437. fields.emplace_back("backend");
  1438. bool is_cpu_backend = test::get_backend().find("CPU") != std::string::npos ||
  1439. test::get_backend().find("BLAS") != std::string::npos;
  1440. if (!is_cpu_backend) {
  1441. fields.emplace_back("n_gpu_layers");
  1442. }
  1443. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  1444. fields.emplace_back("n_threads");
  1445. }
  1446. if (params.cpu_mask.size() > 1 || params.cpu_mask != cmd_params_defaults.cpu_mask) {
  1447. fields.emplace_back("cpu_mask");
  1448. }
  1449. if (params.cpu_strict.size() > 1 || params.cpu_strict != cmd_params_defaults.cpu_strict) {
  1450. fields.emplace_back("cpu_strict");
  1451. }
  1452. if (params.poll.size() > 1 || params.poll != cmd_params_defaults.poll) {
  1453. fields.emplace_back("poll");
  1454. }
  1455. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  1456. fields.emplace_back("n_batch");
  1457. }
  1458. if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
  1459. fields.emplace_back("n_ubatch");
  1460. }
  1461. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  1462. fields.emplace_back("type_k");
  1463. }
  1464. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  1465. fields.emplace_back("type_v");
  1466. }
  1467. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  1468. fields.emplace_back("main_gpu");
  1469. }
  1470. if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
  1471. fields.emplace_back("split_mode");
  1472. }
  1473. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  1474. fields.emplace_back("no_kv_offload");
  1475. }
  1476. if (params.flash_attn.size() > 1 || params.flash_attn != cmd_params_defaults.flash_attn) {
  1477. fields.emplace_back("flash_attn");
  1478. }
  1479. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  1480. fields.emplace_back("tensor_split");
  1481. }
  1482. if (params.tensor_buft_overrides.size() > 1 || !vec_vec_tensor_buft_override_equal(params.tensor_buft_overrides, cmd_params_defaults.tensor_buft_overrides)) {
  1483. fields.emplace_back("tensor_buft_overrides");
  1484. }
  1485. if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
  1486. fields.emplace_back("use_mmap");
  1487. }
  1488. if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
  1489. fields.emplace_back("embeddings");
  1490. }
  1491. if (params.no_op_offload.size() > 1 || params.no_op_offload != cmd_params_defaults.no_op_offload) {
  1492. fields.emplace_back("no_op_offload");
  1493. }
  1494. fields.emplace_back("test");
  1495. fields.emplace_back("t/s");
  1496. fprintf(fout, "|");
  1497. for (const auto & field : fields) {
  1498. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  1499. }
  1500. fprintf(fout, "\n");
  1501. fprintf(fout, "|");
  1502. for (const auto & field : fields) {
  1503. int width = get_field_width(field);
  1504. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  1505. }
  1506. fprintf(fout, "\n");
  1507. }
  1508. void print_test(const test & t) override {
  1509. std::map<std::string, std::string> vmap = t.get_map();
  1510. fprintf(fout, "|");
  1511. for (const auto & field : fields) {
  1512. std::string value;
  1513. char buf[128];
  1514. if (field == "model") {
  1515. value = t.model_type;
  1516. } else if (field == "size") {
  1517. if (t.model_size < 1024 * 1024 * 1024) {
  1518. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  1519. } else {
  1520. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  1521. }
  1522. value = buf;
  1523. } else if (field == "params") {
  1524. if (t.model_n_params < 1000 * 1000 * 1000) {
  1525. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  1526. } else {
  1527. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  1528. }
  1529. value = buf;
  1530. } else if (field == "backend") {
  1531. value = test::get_backend();
  1532. } else if (field == "test") {
  1533. if (t.n_prompt > 0 && t.n_gen == 0) {
  1534. snprintf(buf, sizeof(buf), "pp%d", t.n_prompt);
  1535. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  1536. snprintf(buf, sizeof(buf), "tg%d", t.n_gen);
  1537. } else {
  1538. snprintf(buf, sizeof(buf), "pp%d+tg%d", t.n_prompt, t.n_gen);
  1539. }
  1540. if (t.n_depth > 0) {
  1541. int len = strlen(buf);
  1542. snprintf(buf + len, sizeof(buf) - len, " @ d%d", t.n_depth);
  1543. }
  1544. value = buf;
  1545. } else if (field == "t/s") {
  1546. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  1547. value = buf;
  1548. } else if (vmap.find(field) != vmap.end()) {
  1549. value = vmap.at(field);
  1550. } else {
  1551. assert(false);
  1552. exit(1);
  1553. }
  1554. int width = get_field_width(field);
  1555. if (field == "t/s") {
  1556. // HACK: the utf-8 character is 2 bytes
  1557. width += 1;
  1558. }
  1559. fprintf(fout, " %*s |", width, value.c_str());
  1560. }
  1561. fprintf(fout, "\n");
  1562. }
  1563. void print_footer() override {
  1564. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  1565. }
  1566. };
  1567. struct sql_printer : public printer {
  1568. static std::string get_sql_field_type(const std::string & field) {
  1569. switch (test::get_field_type(field)) {
  1570. case test::STRING:
  1571. return "TEXT";
  1572. case test::BOOL:
  1573. case test::INT:
  1574. return "INTEGER";
  1575. case test::FLOAT:
  1576. return "REAL";
  1577. default:
  1578. assert(false);
  1579. exit(1);
  1580. }
  1581. }
  1582. void print_header(const cmd_params & params) override {
  1583. std::vector<std::string> fields = test::get_fields();
  1584. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  1585. for (size_t i = 0; i < fields.size(); i++) {
  1586. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(),
  1587. i < fields.size() - 1 ? "," : "");
  1588. }
  1589. fprintf(fout, ");\n");
  1590. fprintf(fout, "\n");
  1591. (void) params;
  1592. }
  1593. void print_test(const test & t) override {
  1594. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  1595. fprintf(fout, "VALUES (");
  1596. std::vector<std::string> values = t.get_values();
  1597. for (size_t i = 0; i < values.size(); i++) {
  1598. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  1599. }
  1600. fprintf(fout, ");\n");
  1601. }
  1602. };
  1603. static void test_prompt(llama_context * ctx, int n_prompt, int n_batch, int n_threads) {
  1604. llama_set_n_threads(ctx, n_threads, n_threads);
  1605. const llama_model * model = llama_get_model(ctx);
  1606. const llama_vocab * vocab = llama_model_get_vocab(model);
  1607. const int32_t n_vocab = llama_vocab_n_tokens(vocab);
  1608. std::vector<llama_token> tokens(n_batch);
  1609. int n_processed = 0;
  1610. while (n_processed < n_prompt) {
  1611. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  1612. tokens[0] = n_processed == 0 && llama_vocab_get_add_bos(vocab) ? llama_vocab_bos(vocab) : std::rand() % n_vocab;
  1613. for (int i = 1; i < n_tokens; i++) {
  1614. tokens[i] = std::rand() % n_vocab;
  1615. }
  1616. llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens));
  1617. n_processed += n_tokens;
  1618. }
  1619. llama_synchronize(ctx);
  1620. }
  1621. static void test_gen(llama_context * ctx, int n_gen, int n_threads) {
  1622. llama_set_n_threads(ctx, n_threads, n_threads);
  1623. const llama_model * model = llama_get_model(ctx);
  1624. const llama_vocab * vocab = llama_model_get_vocab(model);
  1625. const int32_t n_vocab = llama_vocab_n_tokens(vocab);
  1626. llama_token token = llama_vocab_get_add_bos(vocab) ? llama_vocab_bos(vocab) : std::rand() % n_vocab;
  1627. for (int i = 0; i < n_gen; i++) {
  1628. llama_decode(ctx, llama_batch_get_one(&token, 1));
  1629. llama_synchronize(ctx);
  1630. token = std::rand() % n_vocab;
  1631. }
  1632. }
  1633. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  1634. (void) level;
  1635. (void) text;
  1636. (void) user_data;
  1637. }
  1638. static std::unique_ptr<printer> create_printer(output_formats format) {
  1639. switch (format) {
  1640. case NONE:
  1641. return nullptr;
  1642. case CSV:
  1643. return std::unique_ptr<printer>(new csv_printer());
  1644. case JSON:
  1645. return std::unique_ptr<printer>(new json_printer());
  1646. case JSONL:
  1647. return std::unique_ptr<printer>(new jsonl_printer());
  1648. case MARKDOWN:
  1649. return std::unique_ptr<printer>(new markdown_printer());
  1650. case SQL:
  1651. return std::unique_ptr<printer>(new sql_printer());
  1652. }
  1653. GGML_ABORT("fatal error");
  1654. }
  1655. int main(int argc, char ** argv) {
  1656. // try to set locale for unicode characters in markdown
  1657. setlocale(LC_CTYPE, ".UTF-8");
  1658. #if !defined(NDEBUG)
  1659. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  1660. #endif
  1661. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  1662. fprintf(stderr, "warning: debug build, performance may be affected\n");
  1663. #endif
  1664. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  1665. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  1666. #endif
  1667. cmd_params params = parse_cmd_params(argc, argv);
  1668. // initialize backends
  1669. ggml_backend_load_all();
  1670. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  1671. if (!cpu_dev) {
  1672. fprintf(stderr, "%s: error: CPU backend is not loaded\n", __func__);
  1673. return 1;
  1674. }
  1675. auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
  1676. auto * ggml_threadpool_new_fn = (decltype(ggml_threadpool_new) *) ggml_backend_reg_get_proc_address(cpu_reg, "ggml_threadpool_new");
  1677. auto * ggml_threadpool_free_fn = (decltype(ggml_threadpool_free) *) ggml_backend_reg_get_proc_address(cpu_reg, "ggml_threadpool_free");
  1678. // initialize llama.cpp
  1679. if (!params.verbose) {
  1680. llama_log_set(llama_null_log_callback, NULL);
  1681. }
  1682. llama_backend_init();
  1683. llama_numa_init(params.numa);
  1684. set_process_priority(params.prio);
  1685. // initialize printer
  1686. std::unique_ptr<printer> p = create_printer(params.output_format);
  1687. std::unique_ptr<printer> p_err = create_printer(params.output_format_stderr);
  1688. if (p) {
  1689. p->fout = stdout;
  1690. p->print_header(params);
  1691. }
  1692. if (p_err) {
  1693. p_err->fout = stderr;
  1694. p_err->print_header(params);
  1695. }
  1696. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1697. llama_model * lmodel = nullptr;
  1698. const cmd_params_instance * prev_inst = nullptr;
  1699. int params_idx = 0;
  1700. auto params_count = params_instances.size();
  1701. for (const auto & inst : params_instances) {
  1702. params_idx++;
  1703. if (params.progress) {
  1704. fprintf(stderr, "llama-bench: benchmark %d/%zu: starting\n", params_idx, params_count);
  1705. }
  1706. // keep the same model between tests when possible
  1707. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1708. if (lmodel) {
  1709. llama_model_free(lmodel);
  1710. }
  1711. lmodel = llama_model_load_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1712. if (lmodel == NULL) {
  1713. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1714. return 1;
  1715. }
  1716. prev_inst = &inst;
  1717. }
  1718. llama_context * ctx = llama_init_from_model(lmodel, inst.to_llama_cparams());
  1719. if (ctx == NULL) {
  1720. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1721. llama_model_free(lmodel);
  1722. return 1;
  1723. }
  1724. test t(inst, lmodel, ctx);
  1725. llama_kv_self_clear(ctx);
  1726. // cool off before the test
  1727. if (params.delay) {
  1728. std::this_thread::sleep_for(std::chrono::seconds(params.delay));
  1729. }
  1730. struct ggml_threadpool_params tpp = ggml_threadpool_params_default(t.n_threads);
  1731. if (!parse_cpu_mask(t.cpu_mask, tpp.cpumask)) {
  1732. fprintf(stderr, "%s: failed to parse cpu-mask: %s\n", __func__, t.cpu_mask.c_str());
  1733. exit(1);
  1734. }
  1735. tpp.strict_cpu = t.cpu_strict;
  1736. tpp.poll = t.poll;
  1737. tpp.prio = params.prio;
  1738. struct ggml_threadpool * threadpool = ggml_threadpool_new_fn(&tpp);
  1739. if (!threadpool) {
  1740. fprintf(stderr, "%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
  1741. exit(1);
  1742. }
  1743. llama_attach_threadpool(ctx, threadpool, NULL);
  1744. // warmup run
  1745. if (t.n_prompt > 0) {
  1746. if (params.progress) {
  1747. fprintf(stderr, "llama-bench: benchmark %d/%zu: warmup prompt run\n", params_idx, params_count);
  1748. }
  1749. //test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
  1750. test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
  1751. }
  1752. if (t.n_gen > 0) {
  1753. if (params.progress) {
  1754. fprintf(stderr, "llama-bench: benchmark %d/%zu: warmup generation run\n", params_idx, params_count);
  1755. }
  1756. test_gen(ctx, 1, t.n_threads);
  1757. }
  1758. for (int i = 0; i < params.reps; i++) {
  1759. llama_kv_self_clear(ctx);
  1760. if (t.n_depth > 0) {
  1761. if (params.progress) {
  1762. fprintf(stderr, "llama-bench: benchmark %d/%zu: depth run %d/%d\n", params_idx, params_count,
  1763. i + 1, params.reps);
  1764. }
  1765. test_prompt(ctx, t.n_depth, t.n_batch, t.n_threads);
  1766. }
  1767. uint64_t t_start = get_time_ns();
  1768. if (t.n_prompt > 0) {
  1769. if (params.progress) {
  1770. fprintf(stderr, "llama-bench: benchmark %d/%zu: prompt run %d/%d\n", params_idx, params_count,
  1771. i + 1, params.reps);
  1772. }
  1773. test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
  1774. }
  1775. if (t.n_gen > 0) {
  1776. if (params.progress) {
  1777. fprintf(stderr, "llama-bench: benchmark %d/%zu: generation run %d/%d\n", params_idx, params_count,
  1778. i + 1, params.reps);
  1779. }
  1780. test_gen(ctx, t.n_gen, t.n_threads);
  1781. }
  1782. uint64_t t_ns = get_time_ns() - t_start;
  1783. t.samples_ns.push_back(t_ns);
  1784. }
  1785. if (p) {
  1786. p->print_test(t);
  1787. fflush(p->fout);
  1788. }
  1789. if (p_err) {
  1790. p_err->print_test(t);
  1791. fflush(p_err->fout);
  1792. }
  1793. llama_perf_context_print(ctx);
  1794. llama_free(ctx);
  1795. ggml_threadpool_free_fn(threadpool);
  1796. }
  1797. llama_model_free(lmodel);
  1798. if (p) {
  1799. p->print_footer();
  1800. }
  1801. if (p_err) {
  1802. p_err->print_footer();
  1803. }
  1804. llama_backend_free();
  1805. return 0;
  1806. }