main.cpp 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923
  1. #include "arg.h"
  2. #include "common.h"
  3. #include "console.h"
  4. #include "log.h"
  5. #include "sampling.h"
  6. #include "llama.h"
  7. #include <cstdio>
  8. #include <cstring>
  9. #include <ctime>
  10. #include <fstream>
  11. #include <iostream>
  12. #include <sstream>
  13. #include <string>
  14. #include <vector>
  15. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  16. #include <signal.h>
  17. #include <unistd.h>
  18. #elif defined (_WIN32)
  19. #define WIN32_LEAN_AND_MEAN
  20. #ifndef NOMINMAX
  21. #define NOMINMAX
  22. #endif
  23. #include <windows.h>
  24. #include <signal.h>
  25. #endif
  26. #if defined(_MSC_VER)
  27. #pragma warning(disable: 4244 4267) // possible loss of data
  28. #endif
  29. static const char * DEFAULT_SYSTEM_MESSAGE = "You are a helpful assistant";
  30. static llama_context ** g_ctx;
  31. static llama_model ** g_model;
  32. static common_sampler ** g_smpl;
  33. static common_params * g_params;
  34. static std::vector<llama_token> * g_input_tokens;
  35. static std::ostringstream * g_output_ss;
  36. static std::vector<llama_token> * g_output_tokens;
  37. static bool is_interacting = false;
  38. static bool need_insert_eot = false;
  39. static void print_usage(int argc, char ** argv) {
  40. (void) argc;
  41. LOG("\nexample usage:\n");
  42. LOG("\n text generation: %s -m your_model.gguf -p \"I believe the meaning of life is\" -n 128\n", argv[0]);
  43. LOG("\n chat (conversation): %s -m your_model.gguf -p \"You are a helpful assistant\" -cnv\n", argv[0]);
  44. LOG("\n");
  45. }
  46. static bool file_exists(const std::string & path) {
  47. std::ifstream f(path.c_str());
  48. return f.good();
  49. }
  50. static bool file_is_empty(const std::string & path) {
  51. std::ifstream f;
  52. f.exceptions(std::ifstream::failbit | std::ifstream::badbit);
  53. f.open(path.c_str(), std::ios::in | std::ios::binary | std::ios::ate);
  54. return f.tellg() == 0;
  55. }
  56. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
  57. static void sigint_handler(int signo) {
  58. if (signo == SIGINT) {
  59. if (!is_interacting && g_params->interactive) {
  60. is_interacting = true;
  61. need_insert_eot = true;
  62. } else {
  63. console::cleanup();
  64. LOG("\n");
  65. common_perf_print(*g_ctx, *g_smpl);
  66. // make sure all logs are flushed
  67. LOG("Interrupted by user\n");
  68. common_log_pause(common_log_main());
  69. _exit(130);
  70. }
  71. }
  72. }
  73. #endif
  74. static std::string chat_add_and_format(struct llama_model * model, std::vector<common_chat_msg> & chat_msgs, const std::string & role, const std::string & content) {
  75. common_chat_msg new_msg{role, content};
  76. auto formatted = common_chat_format_single(model, g_params->chat_template, chat_msgs, new_msg, role == "user");
  77. chat_msgs.push_back({role, content});
  78. LOG_DBG("formatted: '%s'\n", formatted.c_str());
  79. return formatted;
  80. }
  81. int main(int argc, char ** argv) {
  82. common_params params;
  83. g_params = &params;
  84. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_MAIN, print_usage)) {
  85. return 1;
  86. }
  87. common_init();
  88. auto & sparams = params.sampling;
  89. // save choice to use color for later
  90. // (note for later: this is a slightly awkward choice)
  91. console::init(params.simple_io, params.use_color);
  92. atexit([]() { console::cleanup(); });
  93. if (params.logits_all) {
  94. LOG_ERR("************\n");
  95. LOG_ERR("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
  96. LOG_ERR("************\n\n");
  97. return 0;
  98. }
  99. if (params.embedding) {
  100. LOG_ERR("************\n");
  101. LOG_ERR("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
  102. LOG_ERR("************\n\n");
  103. return 0;
  104. }
  105. if (params.n_ctx != 0 && params.n_ctx < 8) {
  106. LOG_WRN("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
  107. params.n_ctx = 8;
  108. }
  109. if (params.rope_freq_base != 0.0) {
  110. LOG_WRN("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
  111. }
  112. if (params.rope_freq_scale != 0.0) {
  113. LOG_WRN("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
  114. }
  115. LOG_INF("%s: llama backend init\n", __func__);
  116. llama_backend_init();
  117. llama_numa_init(params.numa);
  118. llama_model * model = nullptr;
  119. llama_context * ctx = nullptr;
  120. common_sampler * smpl = nullptr;
  121. g_model = &model;
  122. g_ctx = &ctx;
  123. g_smpl = &smpl;
  124. std::vector<common_chat_msg> chat_msgs;
  125. // load the model and apply lora adapter, if any
  126. LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__);
  127. common_init_result llama_init = common_init_from_params(params);
  128. model = llama_init.model.get();
  129. ctx = llama_init.context.get();
  130. if (model == NULL) {
  131. LOG_ERR("%s: error: unable to load model\n", __func__);
  132. return 1;
  133. }
  134. const llama_vocab * vocab = llama_model_get_vocab(model);
  135. LOG_INF("%s: llama threadpool init, n_threads = %d\n", __func__, (int) params.cpuparams.n_threads);
  136. auto * reg = ggml_backend_dev_backend_reg(ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU));
  137. auto * ggml_threadpool_new_fn = (decltype(ggml_threadpool_new) *) ggml_backend_reg_get_proc_address(reg, "ggml_threadpool_new");
  138. auto * ggml_threadpool_free_fn = (decltype(ggml_threadpool_free) *) ggml_backend_reg_get_proc_address(reg, "ggml_threadpool_free");
  139. struct ggml_threadpool_params tpp_batch =
  140. ggml_threadpool_params_from_cpu_params(params.cpuparams_batch);
  141. struct ggml_threadpool_params tpp =
  142. ggml_threadpool_params_from_cpu_params(params.cpuparams);
  143. set_process_priority(params.cpuparams.priority);
  144. struct ggml_threadpool * threadpool_batch = NULL;
  145. if (!ggml_threadpool_params_match(&tpp, &tpp_batch)) {
  146. threadpool_batch = ggml_threadpool_new_fn(&tpp_batch);
  147. if (!threadpool_batch) {
  148. LOG_ERR("%s: batch threadpool create failed : n_threads %d\n", __func__, tpp_batch.n_threads);
  149. return 1;
  150. }
  151. // Start the non-batch threadpool in the paused state
  152. tpp.paused = true;
  153. }
  154. struct ggml_threadpool * threadpool = ggml_threadpool_new_fn(&tpp);
  155. if (!threadpool) {
  156. LOG_ERR("%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
  157. return 1;
  158. }
  159. llama_attach_threadpool(ctx, threadpool, threadpool_batch);
  160. const int n_ctx_train = llama_model_n_ctx_train(model);
  161. const int n_ctx = llama_n_ctx(ctx);
  162. if (n_ctx > n_ctx_train) {
  163. LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, n_ctx);
  164. }
  165. // auto enable conversation mode if chat template is available
  166. const bool has_chat_template = !common_get_builtin_chat_template(model).empty() || !params.chat_template.empty();
  167. if (params.conversation_mode == COMMON_CONVERSATION_MODE_AUTO) {
  168. if (has_chat_template) {
  169. LOG_INF("%s: chat template is available, enabling conversation mode (disable it with -no-cnv)\n", __func__);
  170. params.conversation_mode = COMMON_CONVERSATION_MODE_ENABLED;
  171. } else {
  172. params.conversation_mode = COMMON_CONVERSATION_MODE_DISABLED;
  173. }
  174. }
  175. // in case user force-activate conversation mode (via -cnv) without proper chat template, we show a warning
  176. if (params.conversation_mode && !has_chat_template) {
  177. LOG_WRN("%s: chat template is not available or is not supported. This may cause the model to output suboptimal responses\n", __func__);
  178. }
  179. // print chat template example in conversation mode
  180. if (params.conversation_mode) {
  181. if (params.enable_chat_template) {
  182. LOG_INF("%s: chat template example:\n%s\n", __func__, common_chat_format_example(model, params.chat_template).c_str());
  183. } else {
  184. LOG_INF("%s: in-suffix/prefix is specified, chat template will be disabled\n", __func__);
  185. }
  186. }
  187. // print system information
  188. {
  189. LOG_INF("\n");
  190. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  191. LOG_INF("\n");
  192. }
  193. std::string path_session = params.path_prompt_cache;
  194. std::vector<llama_token> session_tokens;
  195. if (!path_session.empty()) {
  196. LOG_INF("%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str());
  197. if (!file_exists(path_session)) {
  198. LOG_INF("%s: session file does not exist, will create.\n", __func__);
  199. } else if (file_is_empty(path_session)) {
  200. LOG_INF("%s: The session file is empty. A new session will be initialized.\n", __func__);
  201. } else {
  202. // The file exists and is not empty
  203. session_tokens.resize(n_ctx);
  204. size_t n_token_count_out = 0;
  205. if (!llama_state_load_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
  206. LOG_ERR("%s: failed to load session file '%s'\n", __func__, path_session.c_str());
  207. return 1;
  208. }
  209. session_tokens.resize(n_token_count_out);
  210. LOG_INF("%s: loaded a session with prompt size of %d tokens\n", __func__, (int)session_tokens.size());
  211. }
  212. }
  213. const bool add_bos = llama_vocab_get_add_bos(vocab);
  214. if (!llama_model_has_encoder(model)) {
  215. GGML_ASSERT(!llama_vocab_get_add_eos(vocab));
  216. }
  217. LOG_DBG("n_ctx: %d, add_bos: %d\n", n_ctx, add_bos);
  218. std::vector<llama_token> embd_inp;
  219. {
  220. auto prompt = (params.conversation_mode && params.enable_chat_template)
  221. // format the system prompt in conversation mode (fallback to default if empty)
  222. ? chat_add_and_format(model, chat_msgs, "system", params.prompt.empty() ? DEFAULT_SYSTEM_MESSAGE : params.prompt)
  223. // otherwise use the prompt as is
  224. : params.prompt;
  225. if (params.interactive_first || !params.prompt.empty() || session_tokens.empty()) {
  226. LOG_DBG("tokenize the prompt\n");
  227. embd_inp = common_tokenize(ctx, prompt, true, true);
  228. } else {
  229. LOG_DBG("use session tokens\n");
  230. embd_inp = session_tokens;
  231. }
  232. LOG_DBG("prompt: \"%s\"\n", prompt.c_str());
  233. LOG_DBG("tokens: %s\n", string_from(ctx, embd_inp).c_str());
  234. }
  235. // Should not run without any tokens
  236. if (embd_inp.empty()) {
  237. if (add_bos) {
  238. embd_inp.push_back(llama_vocab_bos(vocab));
  239. LOG_WRN("embd_inp was considered empty and bos was added: %s\n", string_from(ctx, embd_inp).c_str());
  240. } else {
  241. LOG_ERR("input is empty\n");
  242. return -1;
  243. }
  244. }
  245. // Tokenize negative prompt
  246. if ((int) embd_inp.size() > n_ctx - 4) {
  247. LOG_ERR("%s: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
  248. return 1;
  249. }
  250. // debug message about similarity of saved session, if applicable
  251. size_t n_matching_session_tokens = 0;
  252. if (!session_tokens.empty()) {
  253. for (llama_token id : session_tokens) {
  254. if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) {
  255. break;
  256. }
  257. n_matching_session_tokens++;
  258. }
  259. if (params.prompt.empty() && n_matching_session_tokens == embd_inp.size()) {
  260. LOG_INF("%s: using full prompt from session file\n", __func__);
  261. } else if (n_matching_session_tokens >= embd_inp.size()) {
  262. LOG_INF("%s: session file has exact match for prompt!\n", __func__);
  263. } else if (n_matching_session_tokens < (embd_inp.size() / 2)) {
  264. LOG_WRN("%s: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n",
  265. __func__, n_matching_session_tokens, embd_inp.size());
  266. } else {
  267. LOG_INF("%s: session file matches %zu / %zu tokens of prompt\n",
  268. __func__, n_matching_session_tokens, embd_inp.size());
  269. }
  270. // remove any "future" tokens that we might have inherited from the previous session
  271. llama_kv_cache_seq_rm(ctx, -1, n_matching_session_tokens, -1);
  272. }
  273. LOG_DBG("recalculate the cached logits (check): embd_inp.size() %zu, n_matching_session_tokens %zu, embd_inp.size() %zu, session_tokens.size() %zu\n",
  274. embd_inp.size(), n_matching_session_tokens, embd_inp.size(), session_tokens.size());
  275. // if we will use the cache for the full prompt without reaching the end of the cache, force
  276. // reevaluation of the last token to recalculate the cached logits
  277. if (!embd_inp.empty() && n_matching_session_tokens == embd_inp.size() && session_tokens.size() > embd_inp.size()) {
  278. LOG_DBG("recalculate the cached logits (do): session_tokens.resize( %zu )\n", embd_inp.size() - 1);
  279. session_tokens.resize(embd_inp.size() - 1);
  280. }
  281. // number of tokens to keep when resetting context
  282. if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size()) {
  283. params.n_keep = (int)embd_inp.size();
  284. } else {
  285. params.n_keep += add_bos; // always keep the BOS token
  286. }
  287. if (params.conversation_mode) {
  288. params.interactive_first = true;
  289. }
  290. // enable interactive mode if interactive start is specified
  291. if (params.interactive_first) {
  292. params.interactive = true;
  293. }
  294. if (params.verbose_prompt) {
  295. LOG_INF("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
  296. LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
  297. for (int i = 0; i < (int) embd_inp.size(); i++) {
  298. LOG_INF("%6d -> '%s'\n", embd_inp[i], common_token_to_piece(ctx, embd_inp[i]).c_str());
  299. }
  300. if (params.n_keep > add_bos) {
  301. LOG_INF("%s: static prompt based on n_keep: '", __func__);
  302. for (int i = 0; i < params.n_keep; i++) {
  303. LOG_CNT("%s", common_token_to_piece(ctx, embd_inp[i]).c_str());
  304. }
  305. LOG_CNT("'\n");
  306. }
  307. LOG_INF("\n");
  308. }
  309. // ctrl+C handling
  310. {
  311. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  312. struct sigaction sigint_action;
  313. sigint_action.sa_handler = sigint_handler;
  314. sigemptyset (&sigint_action.sa_mask);
  315. sigint_action.sa_flags = 0;
  316. sigaction(SIGINT, &sigint_action, NULL);
  317. #elif defined (_WIN32)
  318. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  319. return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
  320. };
  321. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  322. #endif
  323. }
  324. if (params.interactive) {
  325. LOG_INF("%s: interactive mode on.\n", __func__);
  326. if (!params.antiprompt.empty()) {
  327. for (const auto & antiprompt : params.antiprompt) {
  328. LOG_INF("Reverse prompt: '%s'\n", antiprompt.c_str());
  329. if (params.verbose_prompt) {
  330. auto tmp = common_tokenize(ctx, antiprompt, false, true);
  331. for (int i = 0; i < (int) tmp.size(); i++) {
  332. LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx, tmp[i]).c_str());
  333. }
  334. }
  335. }
  336. }
  337. if (params.input_prefix_bos) {
  338. LOG_INF("Input prefix with BOS\n");
  339. }
  340. if (!params.input_prefix.empty()) {
  341. LOG_INF("Input prefix: '%s'\n", params.input_prefix.c_str());
  342. if (params.verbose_prompt) {
  343. auto tmp = common_tokenize(ctx, params.input_prefix, true, true);
  344. for (int i = 0; i < (int) tmp.size(); i++) {
  345. LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx, tmp[i]).c_str());
  346. }
  347. }
  348. }
  349. if (!params.input_suffix.empty()) {
  350. LOG_INF("Input suffix: '%s'\n", params.input_suffix.c_str());
  351. if (params.verbose_prompt) {
  352. auto tmp = common_tokenize(ctx, params.input_suffix, false, true);
  353. for (int i = 0; i < (int) tmp.size(); i++) {
  354. LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx, tmp[i]).c_str());
  355. }
  356. }
  357. }
  358. }
  359. smpl = common_sampler_init(model, sparams);
  360. if (!smpl) {
  361. LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__);
  362. return 1;
  363. }
  364. LOG_INF("sampler seed: %u\n", common_sampler_get_seed(smpl));
  365. LOG_INF("sampler params: \n%s\n", sparams.print().c_str());
  366. LOG_INF("sampler chain: %s\n", common_sampler_print(smpl).c_str());
  367. LOG_INF("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
  368. // group-attention state
  369. // number of grouped KV tokens so far (used only if params.grp_attn_n > 1)
  370. int ga_i = 0;
  371. const int ga_n = params.grp_attn_n;
  372. const int ga_w = params.grp_attn_w;
  373. if (ga_n != 1) {
  374. GGML_ASSERT(ga_n > 0 && "grp_attn_n must be positive"); // NOLINT
  375. GGML_ASSERT(ga_w % ga_n == 0 && "grp_attn_w must be a multiple of grp_attn_n"); // NOLINT
  376. //GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of grp_attn_w"); // NOLINT
  377. //GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * grp_attn_n"); // NOLINT
  378. LOG_INF("self-extend: n_ctx_train = %d, grp_attn_n = %d, grp_attn_w = %d\n", n_ctx_train, ga_n, ga_w);
  379. }
  380. LOG_INF("\n");
  381. if (params.interactive) {
  382. const char * control_message;
  383. if (params.multiline_input) {
  384. control_message = " - To return control to the AI, end your input with '\\'.\n"
  385. " - To return control without starting a new line, end your input with '/'.\n";
  386. } else {
  387. control_message = " - Press Return to return control to the AI.\n"
  388. " - To return control without starting a new line, end your input with '/'.\n"
  389. " - If you want to submit another line, end your input with '\\'.\n";
  390. }
  391. LOG_INF("== Running in interactive mode. ==\n");
  392. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
  393. LOG_INF( " - Press Ctrl+C to interject at any time.\n");
  394. #endif
  395. LOG_INF( "%s", control_message);
  396. if (params.conversation_mode && params.enable_chat_template && params.prompt.empty()) {
  397. LOG_INF( " - Using default system message. To change it, set a different value via -p PROMPT or -f FILE argument.\n");
  398. }
  399. LOG_INF("\n");
  400. is_interacting = params.interactive_first;
  401. }
  402. bool is_antiprompt = false;
  403. bool input_echo = true;
  404. bool display = true;
  405. bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < embd_inp.size();
  406. int n_past = 0;
  407. int n_remain = params.n_predict;
  408. int n_consumed = 0;
  409. int n_session_consumed = 0;
  410. std::vector<int> input_tokens; g_input_tokens = &input_tokens;
  411. std::vector<int> output_tokens; g_output_tokens = &output_tokens;
  412. std::ostringstream output_ss; g_output_ss = &output_ss;
  413. std::ostringstream assistant_ss; // for storing current assistant message, used in conversation mode
  414. // the first thing we will do is to output the prompt, so set color accordingly
  415. console::set_display(console::prompt);
  416. display = params.display_prompt;
  417. std::vector<llama_token> embd;
  418. // tokenized antiprompts
  419. std::vector<std::vector<llama_token>> antiprompt_ids;
  420. antiprompt_ids.reserve(params.antiprompt.size());
  421. for (const std::string & antiprompt : params.antiprompt) {
  422. antiprompt_ids.emplace_back(::common_tokenize(ctx, antiprompt, false, true));
  423. }
  424. if (llama_model_has_encoder(model)) {
  425. int enc_input_size = embd_inp.size();
  426. llama_token * enc_input_buf = embd_inp.data();
  427. if (llama_encode(ctx, llama_batch_get_one(enc_input_buf, enc_input_size))) {
  428. LOG_ERR("%s : failed to eval\n", __func__);
  429. return 1;
  430. }
  431. llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
  432. if (decoder_start_token_id == LLAMA_TOKEN_NULL) {
  433. decoder_start_token_id = llama_vocab_bos(vocab);
  434. }
  435. embd_inp.clear();
  436. embd_inp.push_back(decoder_start_token_id);
  437. }
  438. while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
  439. // predict
  440. if (!embd.empty()) {
  441. // Note: (n_ctx - 4) here is to match the logic for commandline prompt handling via
  442. // --prompt or --file which uses the same value.
  443. int max_embd_size = n_ctx - 4;
  444. // Ensure the input doesn't exceed the context size by truncating embd if necessary.
  445. if ((int) embd.size() > max_embd_size) {
  446. const int skipped_tokens = (int) embd.size() - max_embd_size;
  447. embd.resize(max_embd_size);
  448. console::set_display(console::error);
  449. LOG_WRN("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
  450. console::set_display(console::reset);
  451. }
  452. if (ga_n == 1) {
  453. // infinite text generation via context shifting
  454. // if we run out of context:
  455. // - take the n_keep first tokens from the original prompt (via n_past)
  456. // - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
  457. if (n_past + (int) embd.size() >= n_ctx) {
  458. if (!params.ctx_shift){
  459. LOG_DBG("\n\n%s: context full and context shift is disabled => stopping\n", __func__);
  460. break;
  461. }
  462. if (params.n_predict == -2) {
  463. LOG_DBG("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
  464. break;
  465. }
  466. const int n_left = n_past - params.n_keep;
  467. const int n_discard = n_left/2;
  468. LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
  469. n_past, n_left, n_ctx, params.n_keep, n_discard);
  470. llama_kv_cache_seq_rm (ctx, 0, params.n_keep , params.n_keep + n_discard);
  471. llama_kv_cache_seq_add(ctx, 0, params.n_keep + n_discard, n_past, -n_discard);
  472. n_past -= n_discard;
  473. LOG_DBG("after swap: n_past = %d\n", n_past);
  474. LOG_DBG("embd: %s\n", string_from(ctx, embd).c_str());
  475. LOG_DBG("clear session path\n");
  476. path_session.clear();
  477. }
  478. } else {
  479. // context extension via Self-Extend
  480. while (n_past >= ga_i + ga_w) {
  481. const int ib = (ga_n*ga_i)/ga_w;
  482. const int bd = (ga_w/ga_n)*(ga_n - 1);
  483. const int dd = (ga_w/ga_n) - ib*bd - ga_w;
  484. LOG_DBG("\n");
  485. LOG_DBG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i, n_past, ib*bd, ga_i + ib*bd, n_past + ib*bd);
  486. LOG_DBG("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n, (ga_i + ib*bd)/ga_n, (ga_i + ib*bd + ga_w)/ga_n);
  487. LOG_DBG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i + ib*bd + ga_w, n_past + ib*bd, dd, ga_i + ib*bd + ga_w + dd, n_past + ib*bd + dd);
  488. llama_kv_cache_seq_add(ctx, 0, ga_i, n_past, ib*bd);
  489. llama_kv_cache_seq_div(ctx, 0, ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n);
  490. llama_kv_cache_seq_add(ctx, 0, ga_i + ib*bd + ga_w, n_past + ib*bd, dd);
  491. n_past -= bd;
  492. ga_i += ga_w/ga_n;
  493. LOG_DBG("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", n_past + bd, n_past, ga_i);
  494. }
  495. }
  496. // try to reuse a matching prefix from the loaded session instead of re-eval (via n_past)
  497. if (n_session_consumed < (int) session_tokens.size()) {
  498. size_t i = 0;
  499. for ( ; i < embd.size(); i++) {
  500. if (embd[i] != session_tokens[n_session_consumed]) {
  501. session_tokens.resize(n_session_consumed);
  502. break;
  503. }
  504. n_past++;
  505. n_session_consumed++;
  506. if (n_session_consumed >= (int) session_tokens.size()) {
  507. ++i;
  508. break;
  509. }
  510. }
  511. if (i > 0) {
  512. embd.erase(embd.begin(), embd.begin() + i);
  513. }
  514. }
  515. for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
  516. int n_eval = (int) embd.size() - i;
  517. if (n_eval > params.n_batch) {
  518. n_eval = params.n_batch;
  519. }
  520. LOG_DBG("eval: %s\n", string_from(ctx, embd).c_str());
  521. if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval))) {
  522. LOG_ERR("%s : failed to eval\n", __func__);
  523. return 1;
  524. }
  525. n_past += n_eval;
  526. LOG_DBG("n_past = %d\n", n_past);
  527. // Display total tokens alongside total time
  528. if (params.n_print > 0 && n_past % params.n_print == 0) {
  529. LOG_DBG("\n\033[31mTokens consumed so far = %d / %d \033[0m\n", n_past, n_ctx);
  530. }
  531. }
  532. if (!embd.empty() && !path_session.empty()) {
  533. session_tokens.insert(session_tokens.end(), embd.begin(), embd.end());
  534. n_session_consumed = session_tokens.size();
  535. }
  536. }
  537. embd.clear();
  538. if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
  539. // optionally save the session on first sample (for faster prompt loading next time)
  540. if (!path_session.empty() && need_to_save_session && !params.prompt_cache_ro) {
  541. need_to_save_session = false;
  542. llama_state_save_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
  543. LOG_DBG("saved session to %s\n", path_session.c_str());
  544. }
  545. const llama_token id = common_sampler_sample(smpl, ctx, -1);
  546. common_sampler_accept(smpl, id, /* accept_grammar= */ true);
  547. // LOG_DBG("last: %s\n", string_from(ctx, smpl->prev.to_vector()).c_str());
  548. embd.push_back(id);
  549. // echo this to console
  550. input_echo = true;
  551. // decrement remaining sampling budget
  552. --n_remain;
  553. LOG_DBG("n_remain: %d\n", n_remain);
  554. } else {
  555. // some user input remains from prompt or interaction, forward it to processing
  556. LOG_DBG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
  557. while ((int) embd_inp.size() > n_consumed) {
  558. embd.push_back(embd_inp[n_consumed]);
  559. // push the prompt in the sampling context in order to apply repetition penalties later
  560. // for the prompt, we don't apply grammar rules
  561. common_sampler_accept(smpl, embd_inp[n_consumed], /* accept_grammar= */ false);
  562. ++n_consumed;
  563. if ((int) embd.size() >= params.n_batch) {
  564. break;
  565. }
  566. }
  567. }
  568. // display text
  569. if (input_echo && display) {
  570. for (auto id : embd) {
  571. const std::string token_str = common_token_to_piece(ctx, id, params.special);
  572. // Console/Stream Output
  573. LOG("%s", token_str.c_str());
  574. // Record Displayed Tokens To Log
  575. // Note: Generated tokens are created one by one hence this check
  576. if (embd.size() > 1) {
  577. // Incoming Requested Tokens
  578. input_tokens.push_back(id);
  579. } else {
  580. // Outgoing Generated Tokens
  581. output_tokens.push_back(id);
  582. output_ss << token_str;
  583. }
  584. }
  585. }
  586. // reset color to default if there is no pending user input
  587. if (input_echo && (int) embd_inp.size() == n_consumed) {
  588. console::set_display(console::reset);
  589. display = true;
  590. }
  591. // if not currently processing queued inputs;
  592. if ((int) embd_inp.size() <= n_consumed) {
  593. // check for reverse prompt in the last n_prev tokens
  594. if (!params.antiprompt.empty()) {
  595. const int n_prev = 32;
  596. const std::string last_output = common_sampler_prev_str(smpl, ctx, n_prev);
  597. is_antiprompt = false;
  598. // Check if each of the reverse prompts appears at the end of the output.
  599. // If we're not running interactively, the reverse prompt might be tokenized with some following characters
  600. // so we'll compensate for that by widening the search window a bit.
  601. for (std::string & antiprompt : params.antiprompt) {
  602. size_t extra_padding = params.interactive ? 0 : 2;
  603. size_t search_start_pos = last_output.length() > static_cast<size_t>(antiprompt.length() + extra_padding)
  604. ? last_output.length() - static_cast<size_t>(antiprompt.length() + extra_padding)
  605. : 0;
  606. if (last_output.find(antiprompt, search_start_pos) != std::string::npos) {
  607. if (params.interactive) {
  608. is_interacting = true;
  609. }
  610. is_antiprompt = true;
  611. break;
  612. }
  613. }
  614. // check for reverse prompt using special tokens
  615. llama_token last_token = common_sampler_last(smpl);
  616. for (std::vector<llama_token> ids : antiprompt_ids) {
  617. if (ids.size() == 1 && last_token == ids[0]) {
  618. if (params.interactive) {
  619. is_interacting = true;
  620. }
  621. is_antiprompt = true;
  622. break;
  623. }
  624. }
  625. if (is_antiprompt) {
  626. LOG_DBG("found antiprompt: %s\n", last_output.c_str());
  627. }
  628. }
  629. // deal with end of generation tokens in interactive mode
  630. if (llama_vocab_is_eog(vocab, common_sampler_last(smpl))) {
  631. LOG_DBG("found an EOG token\n");
  632. if (params.interactive) {
  633. if (!params.antiprompt.empty()) {
  634. // tokenize and inject first reverse prompt
  635. const auto first_antiprompt = common_tokenize(ctx, params.antiprompt.front(), false, true);
  636. embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
  637. is_antiprompt = true;
  638. }
  639. if (params.enable_chat_template) {
  640. chat_add_and_format(model, chat_msgs, "assistant", assistant_ss.str());
  641. }
  642. is_interacting = true;
  643. LOG("\n");
  644. }
  645. }
  646. // if current token is not EOG, we add it to current assistant message
  647. if (params.conversation_mode) {
  648. const auto id = common_sampler_last(smpl);
  649. assistant_ss << common_token_to_piece(ctx, id, false);
  650. }
  651. if (n_past > 0 && is_interacting) {
  652. LOG_DBG("waiting for user input\n");
  653. if (params.conversation_mode) {
  654. LOG("\n> ");
  655. }
  656. if (params.input_prefix_bos) {
  657. LOG_DBG("adding input prefix BOS token\n");
  658. embd_inp.push_back(llama_vocab_bos(vocab));
  659. }
  660. std::string buffer;
  661. if (!params.input_prefix.empty() && !params.conversation_mode) {
  662. LOG_DBG("appending input prefix: '%s'\n", params.input_prefix.c_str());
  663. LOG("%s", params.input_prefix.c_str());
  664. }
  665. // color user input only
  666. console::set_display(console::user_input);
  667. display = params.display_prompt;
  668. std::string line;
  669. bool another_line = true;
  670. do {
  671. another_line = console::readline(line, params.multiline_input);
  672. buffer += line;
  673. } while (another_line);
  674. // done taking input, reset color
  675. console::set_display(console::reset);
  676. display = true;
  677. // Add tokens to embd only if the input buffer is non-empty
  678. // Entering a empty line lets the user pass control back
  679. if (buffer.length() > 1) {
  680. // append input suffix if any
  681. if (!params.input_suffix.empty() && !params.conversation_mode) {
  682. LOG_DBG("appending input suffix: '%s'\n", params.input_suffix.c_str());
  683. LOG("%s", params.input_suffix.c_str());
  684. }
  685. LOG_DBG("buffer: '%s'\n", buffer.c_str());
  686. const size_t original_size = embd_inp.size();
  687. if (params.escape) {
  688. string_process_escapes(buffer);
  689. }
  690. bool format_chat = params.conversation_mode && params.enable_chat_template;
  691. std::string user_inp = format_chat
  692. ? chat_add_and_format(model, chat_msgs, "user", std::move(buffer))
  693. : std::move(buffer);
  694. // TODO: one inconvenient of current chat template implementation is that we can't distinguish between user input and special tokens (prefix/postfix)
  695. const auto line_pfx = common_tokenize(ctx, params.input_prefix, false, true);
  696. const auto line_inp = common_tokenize(ctx, user_inp, false, format_chat);
  697. const auto line_sfx = common_tokenize(ctx, params.input_suffix, false, true);
  698. LOG_DBG("input tokens: %s\n", string_from(ctx, line_inp).c_str());
  699. // if user stop generation mid-way, we must add EOT to finish model's last response
  700. if (need_insert_eot && format_chat) {
  701. llama_token eot = llama_vocab_eot(vocab);
  702. embd_inp.push_back(eot == LLAMA_TOKEN_NULL ? llama_vocab_eos(vocab) : eot);
  703. need_insert_eot = false;
  704. }
  705. embd_inp.insert(embd_inp.end(), line_pfx.begin(), line_pfx.end());
  706. embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
  707. embd_inp.insert(embd_inp.end(), line_sfx.begin(), line_sfx.end());
  708. for (size_t i = original_size; i < embd_inp.size(); ++i) {
  709. const llama_token token = embd_inp[i];
  710. output_tokens.push_back(token);
  711. output_ss << common_token_to_piece(ctx, token);
  712. }
  713. // reset assistant message
  714. assistant_ss.str("");
  715. n_remain -= line_inp.size();
  716. LOG_DBG("n_remain: %d\n", n_remain);
  717. } else {
  718. LOG_DBG("empty line, passing control back\n");
  719. }
  720. input_echo = false; // do not echo this again
  721. }
  722. if (n_past > 0) {
  723. if (is_interacting) {
  724. common_sampler_reset(smpl);
  725. }
  726. is_interacting = false;
  727. }
  728. }
  729. // end of generation
  730. if (!embd.empty() && llama_vocab_is_eog(vocab, embd.back()) && !(params.interactive)) {
  731. LOG(" [end of text]\n");
  732. break;
  733. }
  734. // In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
  735. // We skip this logic when n_predict == -1 (infinite) or -2 (stop at context size).
  736. if (params.interactive && n_remain <= 0 && params.n_predict >= 0) {
  737. n_remain = params.n_predict;
  738. is_interacting = true;
  739. }
  740. }
  741. if (!path_session.empty() && params.prompt_cache_all && !params.prompt_cache_ro) {
  742. LOG("\n%s: saving final output to session file '%s'\n", __func__, path_session.c_str());
  743. llama_state_save_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
  744. }
  745. LOG("\n\n");
  746. common_perf_print(ctx, smpl);
  747. common_sampler_free(smpl);
  748. llama_backend_free();
  749. ggml_threadpool_free_fn(threadpool);
  750. ggml_threadpool_free_fn(threadpool_batch);
  751. return 0;
  752. }