| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301 |
- #include "ggml.h"
- #include "llama.h"
- #ifdef NDEBUG
- #undef NDEBUG
- #endif
- #include <algorithm>
- #include <cmath>
- #include <string>
- #include <vector>
- static void dump(const llama_token_data_array * candidates) {
- for (size_t i = 0; i < candidates->size; i++) {
- printf("%d: %f (%f)\n", candidates->data[i].id, candidates->data[i].p, candidates->data[i].logit);
- }
- }
- #define DUMP(__candidates) do { printf("%s:%d (%s)\n", __FILE__, __LINE__, __func__); dump((__candidates)); printf("-\n"); } while(0)
- static void test_top_k(const std::vector<float> & probs, const std::vector<float> & expected_probs, int k) {
- const size_t n_vocab = probs.size();
- std::vector<llama_token_data> candidates;
- candidates.reserve(n_vocab);
- for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
- const float logit = logf(probs[token_id]);
- candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
- }
- llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
- llama_sample_softmax(nullptr, &candidates_p);
- DUMP(&candidates_p);
- llama_sample_top_k(nullptr, &candidates_p, k, 1);
- DUMP(&candidates_p);
- GGML_ASSERT(candidates_p.size == expected_probs.size());
- for (size_t i = 0; i < candidates_p.size; i++) {
- GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-5);
- }
- }
- static void test_top_p(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
- const size_t n_vocab = probs.size();
- std::vector<llama_token_data> candidates;
- candidates.reserve(n_vocab);
- for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
- const float logit = logf(probs[token_id]);
- candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
- }
- llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
- llama_sample_softmax(nullptr, &candidates_p);
- DUMP(&candidates_p);
- llama_sample_top_p(nullptr, &candidates_p, p, 1);
- DUMP(&candidates_p);
- GGML_ASSERT(candidates_p.size == expected_probs.size());
- for (size_t i = 0; i < candidates_p.size; i++) {
- GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
- }
- }
- static void test_tfs(const std::vector<float> & probs, const std::vector<float> & expected_probs, float z) {
- const size_t n_vocab = probs.size();
- std::vector<llama_token_data> candidates;
- candidates.reserve(n_vocab);
- for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
- const float logit = logf(probs[token_id]);
- candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
- }
- llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
- DUMP(&candidates_p);
- llama_sample_tail_free(nullptr, &candidates_p, z, 1);
- DUMP(&candidates_p);
- GGML_ASSERT(candidates_p.size == expected_probs.size());
- for (size_t i = 0; i < candidates_p.size; i++) {
- GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
- }
- }
- static void test_min_p(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
- const size_t n_vocab = probs.size();
- std::vector<llama_token_data> candidates;
- candidates.reserve(n_vocab);
- for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
- const float logit = logf(probs[token_id]);
- candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
- }
- llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
- DUMP(&candidates_p);
- llama_sample_min_p(nullptr, &candidates_p, p, 1);
- DUMP(&candidates_p);
- llama_sample_softmax(nullptr, &candidates_p);
- GGML_ASSERT(candidates_p.size == expected_probs.size());
- for (size_t i = 0; i < candidates_p.size; i++) {
- GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
- }
- }
- static void test_typical(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
- const size_t n_vocab = probs.size();
- std::vector<llama_token_data> candidates;
- candidates.reserve(n_vocab);
- for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
- const float logit = logf(probs[token_id]);
- candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
- }
- llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
- DUMP(&candidates_p);
- llama_sample_typical(nullptr, &candidates_p, p, 1);
- DUMP(&candidates_p);
- GGML_ASSERT(candidates_p.size == expected_probs.size());
- for (size_t i = 0; i < candidates_p.size; i++) {
- GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
- }
- }
- static void test_repetition_penalties(
- const std::vector<float> & probs, const std::vector<llama_token> & last_tokens,
- const std::vector<float> & expected_probs, float repeat_penalty, float alpha_frequency, float alpha_presence
- ) {
- GGML_ASSERT(probs.size() == expected_probs.size());
- const size_t n_vocab = probs.size();
- std::vector<llama_token_data> candidates;
- candidates.reserve(n_vocab);
- for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
- const float logit = logf(probs[token_id]);
- candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
- }
- llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
- llama_sample_softmax(nullptr, &candidates_p);
- DUMP(&candidates_p);
- llama_sample_repetition_penalties(nullptr, &candidates_p, (const llama_token *) last_tokens.data(), last_tokens.size(), repeat_penalty, alpha_frequency, alpha_presence);
- llama_sample_softmax(nullptr, &candidates_p);
- DUMP(&candidates_p);
- GGML_ASSERT(candidates_p.size == expected_probs.size());
- for (size_t i = 0; i < candidates_p.size; i++) {
- GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
- }
- }
- static void test_sampler_queue(
- const size_t n_vocab, const std::string samplers_sequence, const int top_k, const float top_p, const float min_p
- ) {
- std::vector<llama_token_data> candidates;
- candidates.reserve(n_vocab);
- for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
- const float logit = logf(token_id);
- candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
- }
- llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
- llama_token min_token_id = 0;
- const llama_token max_token_id = n_vocab-1;
- for (auto s : samplers_sequence) {
- switch (s){
- case 'k': llama_sample_top_k (nullptr, &candidates_p, top_k, 1); break;
- case 'f': GGML_ABORT("tail_free test not implemented"); break;
- case 'y': GGML_ABORT("typical test not implemented"); break;
- case 'p': llama_sample_top_p (nullptr, &candidates_p, top_p, 1); break;
- case 'm': llama_sample_min_p (nullptr, &candidates_p, min_p, 1); break;
- case 't': GGML_ABORT("temperature test not implemented"); break;
- default : GGML_ABORT("Unknown sampler"); break;
- }
- llama_sample_softmax(nullptr, &candidates_p); // make sure tokens are sorted for tests
- const int size = candidates_p.size;
- if (s == 'k') {
- const int expected_size = std::min(size, top_k);
- min_token_id = std::max(min_token_id, (llama_token)(n_vocab - top_k));
- GGML_ASSERT(size == expected_size);
- GGML_ASSERT(candidates_p.data[0].id == max_token_id);
- GGML_ASSERT(candidates_p.data[expected_size-1].id == min_token_id);
- } else if (s == 'p') {
- const int softmax_divisor = n_vocab * (n_vocab-1) / 2 - min_token_id * (min_token_id-1) / 2;
- const int softmax_numerator_target = ceilf(top_p * softmax_divisor);
- min_token_id = n_vocab;
- int expected_size = 0;
- int cumsum = 0;
- do { // do-while because always at least one token is sampled
- min_token_id--;
- expected_size++;
- cumsum += min_token_id;
- } while (cumsum < softmax_numerator_target);
- // token 0 has p == 0, need special consideration for cumsum because top_p immediately returns
- if (min_token_id == 1) {
- min_token_id--;
- expected_size += 1;
- }
- GGML_ASSERT(size == expected_size);
- GGML_ASSERT(candidates_p.data[0].id == max_token_id);
- GGML_ASSERT(candidates_p.data[expected_size-1].id == min_token_id);
- } else if (s == 'm') {
- int expected_size = ceilf((1.0f-min_p) * n_vocab);
- expected_size = std::max(expected_size, 1);
- expected_size = std::min(expected_size, size);
- min_token_id = floorf(min_p * n_vocab);
- min_token_id = std::max(min_token_id, 1);
- min_token_id = std::max(min_token_id, (llama_token)(n_vocab - size));
- min_token_id = std::min(min_token_id, (llama_token)(n_vocab - 1));
- GGML_ASSERT(size == expected_size);
- GGML_ASSERT(candidates_p.data[0].id == max_token_id);
- GGML_ASSERT(candidates_p.data[expected_size-1].id == min_token_id);
- } else {
- GGML_ABORT("fatal error");
- }
- }
- printf("Sampler queue %3s OK with n_vocab=%05ld top_k=%05d top_p=%f min_p=%f\n",
- samplers_sequence.c_str(), n_vocab, top_k, top_p, min_p);
- }
- int main(void) {
- ggml_time_init();
- test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 1);
- test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 3);
- test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 4);
- test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 0);
- test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 0);
- test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f}, 0.7f);
- test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 0.8f);
- test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1);
- test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/1.0f, 0.3f/1.0f, 0.2f/1.0f, 0.1f/1.0f}, 0.00f);
- test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/1.0f, 0.3f/1.0f, 0.2f/1.0f, 0.1f/1.0f}, 0.24f);
- test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.9f, 0.3f/0.9f, 0.2f/0.9f}, 0.26f);
- test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.9f, 0.3f/0.9f, 0.2f/0.9f}, 0.49f);
- test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.7f, 0.3f/0.7f}, 0.51f);
- test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.7f, 0.3f/0.7f}, 0.74f);
- test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.4f}, 0.76f);
- test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.4f}, 1.00f);
- test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f}, 0.25f);
- test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.75f);
- test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.99f);
- test_typical({0.97f, 0.01f, 0.01f, 0.01f}, {0.97f}, 0.5f);
- test_typical({0.4f, 0.2f, 0.2f, 0.2f}, {0.2f, 0.2f, 0.2f}, 0.5f);
- test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.25f, 0.25f, 0.25f, 0.25f, 0}, 50.0f, 0.0f, 0.0f);
- test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.5f, 0.5f, 0, 0, 0}, 50.0f, 0.0f, 0.0f);
- test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.5f, 0.5f, 0, 0, 0}, 50.0f, 0.0f, 0.0f);
- test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.249997f, 0.249997f, 0.249997f, 0.249997f, 0.000011f}, 1.0f, 5.0f, 5.0f);
- test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.499966f, 0.499966f, 0.000023f, 0.000023f, 0.000023f}, 1.0f, 5.0f, 5.0f);
- test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.499977f, 0.499977f, 0.000023f, 0.000023f, 0.000000f}, 1.0f, 5.0f, 5.0f);
- test_sampler_queue(10000, "k", 10000, 1.0f, 1.0f);
- test_sampler_queue(10000, "k", 1, 1.0f, 1.0f);
- test_sampler_queue(10000, "p", 10000, 1.0f, 1.0f);
- test_sampler_queue(10000, "p", 10000, 0.0f, 1.0f);
- test_sampler_queue(10000, "m", 10000, 1.0f, 1.0f);
- test_sampler_queue(10000, "m", 10000, 1.0f, 1e-12);
- test_sampler_queue(10000, "k", 100, 1.0000f, 1.0f);
- test_sampler_queue(10000, "p", 10000, 0.0002f, 1.0f);
- test_sampler_queue(10000, "p", 10000, 0.8000f, 1.0f);
- test_sampler_queue(10000, "m", 10000, 1.0000f, 9997.9f/9999.0f);
- test_sampler_queue(10000, "m", 10000, 1.0000f, 0.1f);
- test_sampler_queue(10000, "kp", 100, 0.8f, 0.1f);
- test_sampler_queue(10000, "km", 100, 0.8f, 0.1f);
- test_sampler_queue(10000, "pk", 100, 0.8f, 0.1f);
- test_sampler_queue(10000, "pm", 100, 0.8f, 0.1f);
- test_sampler_queue(10000, "mk", 100, 0.8f, 0.1f);
- test_sampler_queue(10000, "mp", 100, 0.8f, 9997.9f/9999.0f);
- test_sampler_queue(10000, "mp", 100, 0.8f, 0.1f);
- test_sampler_queue(10000, "kpm", 100, 0.8f, 0.1f);
- test_sampler_queue(10000, "kmp", 100, 0.8f, 0.1f);
- test_sampler_queue(10000, "pkm", 100, 0.8f, 0.1f);
- test_sampler_queue(10000, "pmk", 100, 0.8f, 0.1f);
- test_sampler_queue(10000, "mkp", 100, 0.8f, 0.1f);
- test_sampler_queue(10000, "mpk", 100, 0.8f, 0.1f);
- printf("OK\n");
- return 0;
- }
|