test-backend-ops.cpp 339 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791
  1. // This file defines tests for various GGML ops and backends.
  2. // For the forward pass it asserts that the results of multiple backends computing the same GGML ops are consistent.
  3. // For the backward pass it asserts that the gradients from backpropagation are consistent
  4. // with the gradients obtained via the method of finite differences ("grad" mode, this is optional).
  5. // It is also possible to check the performance ("perf" mode).
  6. //
  7. // this file has three sections: Section 1 does general setup, section 2 defines the GGML ops to be tested,
  8. // and section 3 defines which tests to run.
  9. // Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case,
  10. // then go to section 3 and add an instantiation of your struct.
  11. // ##############################
  12. // ## Section 1: General Setup ##
  13. // ##############################
  14. #include <ggml.h>
  15. #include <ggml-alloc.h>
  16. #include <ggml-backend.h>
  17. #include <ggml-cpp.h>
  18. #include <algorithm>
  19. #include <array>
  20. #include <cfloat>
  21. #include <cinttypes>
  22. #include <cstdarg>
  23. #include <cstdint>
  24. #include <cstdio>
  25. #include <cstdlib>
  26. #include <cstring>
  27. #include <ctime>
  28. #include <future>
  29. #include <memory>
  30. #include <random>
  31. #include <regex>
  32. #include <set>
  33. #include <string>
  34. #include <string_view>
  35. #include <thread>
  36. #include <vector>
  37. #include <unordered_map>
  38. #ifdef __EMSCRIPTEN__
  39. # define N_THREADS 1
  40. #else
  41. # define N_THREADS std::thread::hardware_concurrency()
  42. #endif
  43. static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  44. size_t nels = ggml_nelements(tensor);
  45. std::vector<float> data(nels);
  46. {
  47. // parallel initialization
  48. static const size_t n_threads = N_THREADS;
  49. // static RNG initialization (revisit if n_threads stops being constant)
  50. static std::vector<std::default_random_engine> generators = []() {
  51. std::random_device rd;
  52. std::vector<std::default_random_engine> vec;
  53. vec.reserve(n_threads);
  54. //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
  55. for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
  56. return vec;
  57. }();
  58. auto init_thread = [&](size_t ith, size_t start, size_t end) {
  59. std::uniform_real_distribution<float> distribution(min, max);
  60. auto & gen = generators[ith];
  61. for (size_t i = start; i < end; i++) {
  62. data[i] = distribution(gen);
  63. }
  64. };
  65. if (n_threads == 1) {
  66. init_thread(0, 0, nels);
  67. } else {
  68. std::vector<std::future<void>> tasks;
  69. tasks.reserve(n_threads);
  70. for (size_t i = 0; i < n_threads; i++) {
  71. size_t start = i*nels/n_threads;
  72. size_t end = (i+1)*nels/n_threads;
  73. tasks.push_back(std::async(std::launch::async, init_thread, i, start, end));
  74. }
  75. for (auto & t : tasks) {
  76. t.get();
  77. }
  78. }
  79. }
  80. if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
  81. ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float));
  82. } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
  83. GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0);
  84. // dummy importance matrix
  85. std::vector<float> imatrix(tensor->ne[0], 1.0f);
  86. const float * im = imatrix.data();
  87. if (!ggml_quantize_requires_imatrix(tensor->type)) {
  88. // when the imatrix is optional, we want to test both quantization with and without imatrix
  89. // use one of the random numbers to decide
  90. if (data[0] > 0.5f*(min + max)) {
  91. im = nullptr;
  92. }
  93. }
  94. std::vector<uint8_t> dataq(ggml_row_size(tensor->type, nels));
  95. {
  96. // parallel quantization by block
  97. size_t blck_size = ggml_blck_size(tensor->type);
  98. size_t n_blocks = nels / blck_size;
  99. auto quantize_thread = [&](size_t start, size_t end) {
  100. ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
  101. start * blck_size, end - start, blck_size, im);
  102. };
  103. const size_t min_blocks_per_thread = 1;
  104. const size_t n_quant_threads = std::min<size_t>(std::max<size_t>(N_THREADS/2, 1),
  105. std::max<size_t>(1, n_blocks / min_blocks_per_thread));
  106. if (n_quant_threads == 1) {
  107. // single-threaded quantization: do all blocks in the current thread
  108. quantize_thread(0, n_blocks);
  109. } else {
  110. std::vector<std::future<void>> tasks;
  111. tasks.reserve(n_quant_threads);
  112. for (size_t i = 0; i < n_quant_threads; i++) {
  113. size_t start = i*n_blocks/n_quant_threads;
  114. size_t end = (i+1)*n_blocks/n_quant_threads;
  115. tasks.push_back(std::async(std::launch::async, quantize_thread, start, end));
  116. }
  117. for (auto & t : tasks) {
  118. t.get();
  119. }
  120. }
  121. }
  122. ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
  123. } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
  124. // This is going to create some weird integers though.
  125. ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
  126. } else if (tensor->type == GGML_TYPE_I64) {
  127. // Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful.
  128. const size_t nbytes_half = ggml_nbytes(tensor)/2;
  129. ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half);
  130. ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half);
  131. } else {
  132. GGML_ABORT("fatal error");
  133. }
  134. }
  135. // generate an F16 mask where certain blocks are randomly masked with -INF value
  136. static void init_tensor_kq_mask(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  137. GGML_ASSERT(tensor->type == GGML_TYPE_F16);
  138. GGML_TENSOR_LOCALS( int32_t, ne, tensor, ne);
  139. std::vector<float> data_f32(ne0*ne1*ne2*ne3);
  140. std::vector<ggml_fp16_t> data_f16(ne0*ne1*ne2*ne3);
  141. std::random_device rd;
  142. std::mt19937 gen(rd());
  143. std::uniform_real_distribution<float> dis(min, max);
  144. for (size_t i = 0; i < data_f32.size(); i++) {
  145. data_f32[i] = dis(gen);
  146. }
  147. // block size
  148. const int blck0 = 128;
  149. const int blck1 = 64;
  150. // number of INF blocks
  151. const int n_inf_blocks = 0.1*(ne0*ne1*ne2*ne3)/(blck0*blck1);
  152. for (int b = 0; b < n_inf_blocks; b++) {
  153. const int p3 = (rd() % ne3);
  154. const int p2 = (rd() % ne2);
  155. const int p1 = (rd() % ne1);
  156. const int p0 = (rd() % ne0);
  157. for (int i1 = 0; i1 < blck1 && p1 + i1 < ne1; i1++) {
  158. const int idx = p3*ne2*ne1*ne0 + p2*ne1*ne0 + (p1 + i1)*ne0 + p0;
  159. for (int i0 = 0; i0 < blck0 && p0 + i0 < ne0; i0++) {
  160. data_f32[idx + i0] = -INFINITY;
  161. }
  162. }
  163. }
  164. ggml_fp32_to_fp16_row(data_f32.data(), data_f16.data(), ne0*ne1*ne2*ne3);
  165. ggml_backend_tensor_set(tensor, data_f16.data(), 0, data_f16.size()*sizeof(ggml_fp16_t));
  166. }
  167. // generate a lower triangular matrix
  168. static void init_tensor_tril(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  169. GGML_ASSERT(tensor->type == GGML_TYPE_F32);
  170. GGML_ASSERT(tensor->ne[0] == tensor->ne[1]);
  171. GGML_TENSOR_LOCALS(int32_t, ne, tensor, ne);
  172. GGML_TENSOR_LOCALS(size_t, nb, tensor, nb);
  173. std::vector<float> data_f32(ne0*ne1*ne2*ne3);
  174. std::random_device rd;
  175. std::mt19937 gen(rd());
  176. std::uniform_real_distribution<float> dis(min, max);
  177. for (int64_t i3 = 0; i3 < ne3; i3++) {
  178. for (int64_t i2 = 0; i2 < ne2; i2++) {
  179. for (int64_t i1 = 0; i1 < ne1; i1++) {
  180. for (int64_t i0 = 0; i0 < ne0; i0++) {
  181. int64_t idx = (i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3) / sizeof(float);
  182. if (i0 <= i1) {
  183. data_f32[idx] = dis(gen);
  184. } else {
  185. data_f32[idx] = 0.0f;
  186. }
  187. }
  188. }
  189. }
  190. }
  191. ggml_backend_tensor_set(tensor, data_f32.data(), 0, ggml_nbytes(tensor));
  192. }
  193. static std::vector<float> tensor_to_float(const ggml_tensor * t) {
  194. std::vector<float> tv;
  195. tv.reserve(ggml_nelements(t));
  196. std::vector<uint8_t> buf(ggml_nbytes(t));
  197. ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
  198. const auto * tt = ggml_get_type_traits(t->type);
  199. size_t bs = ggml_blck_size(t->type);
  200. std::vector<float> vq(ggml_blck_size(t->type));
  201. bool quantized = ggml_is_quantized(t->type);
  202. // access elements by index to avoid gaps in views
  203. for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
  204. for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
  205. for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
  206. for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
  207. size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
  208. if (t->type == GGML_TYPE_F16) {
  209. tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
  210. } else if (t->type == GGML_TYPE_BF16) {
  211. tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
  212. } else if (t->type == GGML_TYPE_F32) {
  213. tv.push_back(*(float *) &buf[i]);
  214. } else if (t->type == GGML_TYPE_I64) {
  215. tv.push_back((float)*(int64_t *) &buf[i]);
  216. } else if (t->type == GGML_TYPE_I32) {
  217. tv.push_back((float)*(int32_t *) &buf[i]);
  218. } else if (t->type == GGML_TYPE_I16) {
  219. tv.push_back((float)*(int16_t *) &buf[i]);
  220. } else if (t->type == GGML_TYPE_I8) {
  221. tv.push_back((float)*(int8_t *) &buf[i]);
  222. } else if (quantized) {
  223. tt->to_float(&buf[i], vq.data(), bs);
  224. tv.insert(tv.end(), vq.begin(), vq.end());
  225. } else {
  226. GGML_ABORT("fatal error");
  227. }
  228. }
  229. }
  230. }
  231. }
  232. return tv;
  233. }
  234. // normalized mean squared error = mse(a, b) / mse(a, 0)
  235. static double nmse(const float * a, const float * b, size_t n) {
  236. double mse_a_b = 0.0;
  237. double mse_a_0 = 0.0;
  238. for (size_t i = 0; i < n; i++) {
  239. float a_i = a[i];
  240. float b_i = b[i];
  241. mse_a_b += (a_i - b_i) * (a_i - b_i);
  242. mse_a_0 += a_i * a_i;
  243. }
  244. return mse_a_b / mse_a_0;
  245. }
  246. // difference between 2 sets (Jaccard distance, 0 - no difference, 1 - no overlap)
  247. template <typename T>
  248. static double jdst(const T * a, const T * b, size_t n) {
  249. std::unordered_map<T, size_t> set_a;
  250. std::unordered_map<T, size_t> set_b;
  251. for (size_t i = 0; i < n; ++i) {
  252. set_a[a[i]]++;
  253. set_b[b[i]]++;
  254. }
  255. size_t diff = 0;
  256. for (const auto & p : set_a) {
  257. const int64_t na = p.second;
  258. const int64_t nb = set_b.find(p.first) != set_b.end() ? set_b.at(p.first) : 0;
  259. diff += std::abs(na - nb);
  260. }
  261. for (const auto & p : set_b) {
  262. if (set_a.find(p.first) == set_a.end()) {
  263. diff += p.second;
  264. }
  265. }
  266. return (double) diff / (2*n);
  267. }
  268. // maximum absolute asymmetry between a and b
  269. // asymmetry: (a - b) / (a + b)
  270. // This is more stable than relative error if one of the values fluctuates towards zero.
  271. // n: number of values to compare.
  272. // expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where
  273. // a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail.
  274. static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) {
  275. double sum = 0.0f;
  276. size_t nvalid = 0;
  277. for (size_t i = 0; i < n; i++) {
  278. if (!expected_vals.empty()) {
  279. bool matches_any = false;
  280. for (const float & ev : expected_vals) {
  281. if (fabsf(a[i] - ev) < 1e-3f) {
  282. matches_any = true;
  283. break;
  284. }
  285. }
  286. if (!matches_any) {
  287. continue;
  288. }
  289. }
  290. const float asymm = (a[i] - b[i]) / (a[i] + b[i]);
  291. sum += fabsf(asymm);
  292. nvalid++;
  293. }
  294. return sum/nvalid;
  295. }
  296. // utils for printing the variables of the test cases
  297. static std::string var_to_str(const std::string & x) {
  298. return x;
  299. }
  300. template<typename T>
  301. static std::string var_to_str(const T & x) {
  302. return std::to_string(x);
  303. }
  304. template<typename T, size_t N>
  305. static std::string var_to_str(const T (&x)[N]) {
  306. std::string s = "[";
  307. for (size_t i = 0; i < N; i++) {
  308. if (i > 0) {
  309. s += ",";
  310. }
  311. s += var_to_str(x[i]);
  312. }
  313. s += "]";
  314. return s;
  315. }
  316. template<typename T, size_t N>
  317. static std::string var_to_str(const std::array<T, N> & x) {
  318. std::string s = "[";
  319. for (size_t i = 0; i < N; i++) {
  320. if (i > 0) {
  321. s += ",";
  322. }
  323. s += var_to_str(x[i]);
  324. }
  325. s += "]";
  326. return s;
  327. }
  328. static std::string var_to_str(ggml_type type) {
  329. return ggml_type_name(type);
  330. }
  331. static std::string var_to_str(ggml_prec prec) {
  332. return prec == GGML_PREC_F32 ? "f32" : "def";
  333. }
  334. static std::string var_to_str(ggml_op_pool pool) {
  335. switch (pool) {
  336. case GGML_OP_POOL_AVG: return "avg";
  337. case GGML_OP_POOL_MAX: return "max";
  338. default: return std::to_string(pool);
  339. }
  340. }
  341. static std::string var_to_str(ggml_scale_mode mode) {
  342. std::string str;
  343. switch (mode & 0xFF) {
  344. case GGML_SCALE_MODE_NEAREST: str = "nearest"; break;
  345. case GGML_SCALE_MODE_BILINEAR: str = "bilinear"; break;
  346. case GGML_SCALE_MODE_BICUBIC: str = "bicubic"; break;
  347. default: str = std::to_string(mode); break;
  348. }
  349. if (mode & GGML_SCALE_FLAG_ALIGN_CORNERS) {
  350. str += "|align_corners";
  351. }
  352. if (mode & GGML_SCALE_FLAG_ANTIALIAS) {
  353. str += "|antialias";
  354. }
  355. return str;
  356. }
  357. #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
  358. #define VARS_TO_STR1(a) VAR_TO_STR(a)
  359. #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
  360. #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
  361. #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
  362. #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
  363. #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
  364. #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
  365. #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
  366. #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
  367. #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
  368. #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
  369. #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
  370. #define VARS_TO_STR13(a, b, c, d, e, f, g, h, i, j, k, l, m) VAR_TO_STR(a) + "," + VARS_TO_STR12(b, c, d, e, f, g, h, i, j, k, l, m)
  371. #define VARS_TO_STR14(a, b, c, d, e, f, g, h, i, j, k, l, m, n) VAR_TO_STR(a) + "," + VARS_TO_STR13(b, c, d, e, f, g, h, i, j, k, l, m, n)
  372. #define VARS_TO_STR15(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) VAR_TO_STR(a) + "," + VARS_TO_STR14(b, c, d, e, f, g, h, i, j, k, l, m, n, o)
  373. #define VARS_TO_STR16(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) VAR_TO_STR(a) + "," + VARS_TO_STR15(b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)
  374. #ifdef GGML_USE_SYCL
  375. static bool inline _isinf(float f) {
  376. return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
  377. }
  378. #else
  379. static bool inline _isinf(float f) { return std::isinf(f); }
  380. #endif
  381. // accept FLT_MAX as infinity
  382. static bool isinf_or_max(float f) {
  383. return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
  384. }
  385. static bool ggml_is_view_op(enum ggml_op op) {
  386. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  387. }
  388. enum test_mode {
  389. MODE_TEST,
  390. MODE_PERF,
  391. MODE_GRAD,
  392. MODE_SUPPORT,
  393. };
  394. // Output format support similar to llama-bench
  395. enum output_formats { CONSOLE, SQL, CSV };
  396. static const char * output_format_str(output_formats format) {
  397. switch (format) {
  398. case CONSOLE:
  399. return "console";
  400. case SQL:
  401. return "sql";
  402. case CSV:
  403. return "csv";
  404. default:
  405. GGML_ABORT("invalid output format");
  406. }
  407. }
  408. static bool output_format_from_str(const std::string & s, output_formats & format) {
  409. if (s == "console") {
  410. format = CONSOLE;
  411. } else if (s == "sql") {
  412. format = SQL;
  413. } else if (s == "csv") {
  414. format = CSV;
  415. } else {
  416. return false;
  417. }
  418. return true;
  419. }
  420. // Test result structure for SQL output
  421. struct test_result {
  422. std::string test_time;
  423. std::string build_commit;
  424. std::string backend_name;
  425. std::string op_name;
  426. std::string op_params;
  427. std::string test_mode;
  428. bool supported;
  429. bool passed;
  430. std::string error_message;
  431. double time_us;
  432. double flops;
  433. double bandwidth_gb_s;
  434. size_t memory_kb;
  435. int n_runs;
  436. std::string device_description;
  437. std::string backend_reg_name;
  438. test_result() {
  439. // Initialize with default values
  440. time_us = 0.0;
  441. flops = 0.0;
  442. bandwidth_gb_s = 0.0;
  443. memory_kb = 0;
  444. n_runs = 0;
  445. supported = false;
  446. passed = false;
  447. // Set test time
  448. time_t t = time(NULL);
  449. char buf[32];
  450. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  451. test_time = buf;
  452. // Set build info
  453. build_commit = ggml_commit();
  454. }
  455. test_result(const std::string & backend_name, const std::string & op_name, const std::string & op_params,
  456. const std::string & test_mode, bool supported, bool passed, const std::string & error_message = "",
  457. double time_us = 0.0, double flops = 0.0, double bandwidth_gb_s = 0.0, size_t memory_kb = 0,
  458. int n_runs = 0, const std::string & device_description = "", const std::string & backend_reg_name = "") :
  459. backend_name(backend_name),
  460. op_name(op_name),
  461. op_params(op_params),
  462. test_mode(test_mode),
  463. supported(supported),
  464. passed(passed),
  465. error_message(error_message),
  466. time_us(time_us),
  467. flops(flops),
  468. bandwidth_gb_s(bandwidth_gb_s),
  469. memory_kb(memory_kb),
  470. n_runs(n_runs),
  471. device_description(device_description),
  472. backend_reg_name(backend_reg_name) {
  473. // Set test time
  474. time_t t = time(NULL);
  475. char buf[32];
  476. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  477. test_time = buf;
  478. // Set build info
  479. build_commit = ggml_commit();
  480. }
  481. static const std::vector<std::string> & get_fields() {
  482. static const std::vector<std::string> fields = {
  483. "test_time", "build_commit", "backend_name", "op_name", "op_params", "test_mode", "supported",
  484. "passed", "error_message", "time_us", "flops", "bandwidth_gb_s", "memory_kb", "n_runs",
  485. "device_description", "backend_reg_name"
  486. };
  487. return fields;
  488. }
  489. enum field_type { STRING, BOOL, INT, FLOAT };
  490. static field_type get_field_type(const std::string & field) {
  491. if (field == "supported" || field == "passed") {
  492. return BOOL;
  493. }
  494. if (field == "memory_kb" || field == "n_runs") {
  495. return INT;
  496. }
  497. if (field == "time_us" || field == "flops" || field == "bandwidth_gb_s") {
  498. return FLOAT;
  499. }
  500. return STRING;
  501. }
  502. std::vector<std::string> get_values() const {
  503. return { test_time,
  504. build_commit,
  505. backend_name,
  506. op_name,
  507. op_params,
  508. test_mode,
  509. std::to_string(supported),
  510. std::to_string(passed),
  511. error_message,
  512. std::to_string(time_us),
  513. std::to_string(flops),
  514. std::to_string(bandwidth_gb_s),
  515. std::to_string(memory_kb),
  516. std::to_string(n_runs),
  517. device_description,
  518. backend_reg_name };
  519. }
  520. };
  521. // Printer classes for different output formats
  522. enum class test_status_t { NOT_SUPPORTED, OK, FAIL, SKIPPED };
  523. struct test_operation_info {
  524. std::string op_name;
  525. std::string op_params;
  526. std::string backend_name;
  527. test_status_t status = test_status_t::OK;
  528. std::string failure_reason;
  529. // Additional information fields that were previously in separate structs
  530. std::string error_component;
  531. std::string error_details;
  532. // Gradient info
  533. int64_t gradient_index = -1;
  534. std::string gradient_param_name;
  535. float gradient_value = 0.0f;
  536. // MAA error info
  537. double maa_error = 0.0;
  538. double maa_threshold = 0.0;
  539. // Flags for different types of information
  540. bool has_error = false;
  541. bool has_gradient_info = false;
  542. bool has_maa_error = false;
  543. bool is_compare_failure = false;
  544. bool is_large_tensor_skip = false;
  545. test_operation_info() = default;
  546. test_operation_info(const std::string & op_name, const std::string & op_params, const std::string & backend_name,
  547. test_status_t status = test_status_t::OK, const std::string & failure_reason = "") :
  548. op_name(op_name),
  549. op_params(op_params),
  550. backend_name(backend_name),
  551. status(status),
  552. failure_reason(failure_reason) {}
  553. // Set error information
  554. void set_error(const std::string & component, const std::string & details) {
  555. has_error = true;
  556. error_component = component;
  557. error_details = details;
  558. if (status == test_status_t::OK) {
  559. status = test_status_t::FAIL;
  560. }
  561. }
  562. // Set gradient information
  563. void set_gradient_info(int64_t index, const std::string & param_name, float value) {
  564. has_gradient_info = true;
  565. gradient_index = index;
  566. gradient_param_name = param_name;
  567. gradient_value = value;
  568. if (status == test_status_t::OK) {
  569. status = test_status_t::FAIL;
  570. }
  571. }
  572. // Set MAA error information
  573. void set_maa_error(double error, double threshold) {
  574. has_maa_error = true;
  575. maa_error = error;
  576. maa_threshold = threshold;
  577. if (status == test_status_t::OK) {
  578. status = test_status_t::FAIL;
  579. }
  580. }
  581. // Set compare failure
  582. void set_compare_failure() {
  583. is_compare_failure = true;
  584. if (status == test_status_t::OK) {
  585. status = test_status_t::FAIL;
  586. }
  587. }
  588. // Set large tensor skip
  589. void set_large_tensor_skip() { is_large_tensor_skip = true; }
  590. };
  591. struct test_summary_info {
  592. size_t tests_passed;
  593. size_t tests_total;
  594. bool is_backend_summary = false; // true for backend summary, false for test summary
  595. test_summary_info() = default;
  596. test_summary_info(size_t tests_passed, size_t tests_total, bool is_backend_summary = false) :
  597. tests_passed(tests_passed),
  598. tests_total(tests_total),
  599. is_backend_summary(is_backend_summary) {}
  600. };
  601. struct testing_start_info {
  602. size_t device_count;
  603. testing_start_info() = default;
  604. testing_start_info(size_t device_count) : device_count(device_count) {}
  605. };
  606. struct backend_init_info {
  607. size_t device_index;
  608. size_t total_devices;
  609. std::string device_name;
  610. bool skipped = false;
  611. std::string skip_reason;
  612. std::string description;
  613. size_t memory_total_mb = 0;
  614. size_t memory_free_mb = 0;
  615. bool has_memory_info = false;
  616. backend_init_info() = default;
  617. backend_init_info(size_t device_index, size_t total_devices, const std::string & device_name, bool skipped = false,
  618. const std::string & skip_reason = "", const std::string & description = "",
  619. size_t memory_total_mb = 0, size_t memory_free_mb = 0, bool has_memory_info = false) :
  620. device_index(device_index),
  621. total_devices(total_devices),
  622. device_name(device_name),
  623. skipped(skipped),
  624. skip_reason(skip_reason),
  625. description(description),
  626. memory_total_mb(memory_total_mb),
  627. memory_free_mb(memory_free_mb),
  628. has_memory_info(has_memory_info) {}
  629. };
  630. struct backend_status_info {
  631. std::string backend_name;
  632. test_status_t status;
  633. backend_status_info() = default;
  634. backend_status_info(const std::string & backend_name, test_status_t status) :
  635. backend_name(backend_name),
  636. status(status) {}
  637. };
  638. struct overall_summary_info {
  639. size_t backends_passed;
  640. size_t backends_total;
  641. bool all_passed;
  642. overall_summary_info() = default;
  643. overall_summary_info(size_t backends_passed, size_t backends_total, bool all_passed) :
  644. backends_passed(backends_passed),
  645. backends_total(backends_total),
  646. all_passed(all_passed) {}
  647. };
  648. struct printer {
  649. virtual ~printer() {}
  650. FILE * fout = stdout;
  651. virtual void print_header() {}
  652. virtual void print_test_result(const test_result & result) = 0;
  653. virtual void print_footer() {}
  654. virtual void print_operation(const test_operation_info & info) { (void) info; }
  655. virtual void print_summary(const test_summary_info & info) { (void) info; }
  656. virtual void print_testing_start(const testing_start_info & info) { (void) info; }
  657. virtual void print_backend_init(const backend_init_info & info) { (void) info; }
  658. virtual void print_backend_status(const backend_status_info & info) { (void) info; }
  659. virtual void print_overall_summary(const overall_summary_info & info) { (void) info; }
  660. virtual void print_failed_tests(const std::vector<std::string> & failed_tests) { (void) failed_tests; }
  661. };
  662. struct console_printer : public printer {
  663. void print_test_result(const test_result & result) override {
  664. if (result.test_mode == "test") {
  665. print_test_console(result);
  666. } else if (result.test_mode == "perf") {
  667. print_perf_console(result);
  668. } else if (result.test_mode == "support") {
  669. print_support_console(result);
  670. }
  671. }
  672. void print_operation(const test_operation_info & info) override {
  673. printf(" %s(%s): ", info.op_name.c_str(), info.op_params.c_str());
  674. fflush(stdout);
  675. // Handle large tensor skip first
  676. if (info.is_large_tensor_skip) {
  677. printf("skipping large tensors for speed \n");
  678. return;
  679. }
  680. // Handle not supported status
  681. if (info.status == test_status_t::NOT_SUPPORTED) {
  682. if (!info.failure_reason.empty()) {
  683. printf("not supported [%s]\n", info.failure_reason.c_str());
  684. } else {
  685. printf("not supported [%s]\n", info.backend_name.c_str());
  686. }
  687. return;
  688. }
  689. // Handle errors and additional information
  690. if (info.has_error) {
  691. if (info.error_component == "allocation") {
  692. fprintf(stderr, "failed to allocate tensors [%s] ", info.backend_name.c_str());
  693. } else if (info.error_component == "backend") {
  694. fprintf(stderr, " Failed to initialize %s backend\n", info.backend_name.c_str());
  695. } else {
  696. fprintf(stderr, "Error in %s: %s\n", info.error_component.c_str(), info.error_details.c_str());
  697. }
  698. }
  699. // Handle gradient info
  700. if (info.has_gradient_info) {
  701. printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", info.op_name.c_str(), info.gradient_index,
  702. info.gradient_param_name.c_str(), info.gradient_value);
  703. }
  704. // Handle MAA error
  705. if (info.has_maa_error) {
  706. printf("[%s] MAA = %.9f > %.9f ", info.op_name.c_str(), info.maa_error, info.maa_threshold);
  707. }
  708. // Handle compare failure
  709. if (info.is_compare_failure) {
  710. printf("compare failed ");
  711. }
  712. // Print final status
  713. if (info.status == test_status_t::OK) {
  714. printf("\033[1;32mOK\033[0m\n");
  715. } else {
  716. printf("\033[1;31mFAIL\033[0m\n");
  717. }
  718. }
  719. void print_summary(const test_summary_info & info) override {
  720. if (info.is_backend_summary) {
  721. printf("%zu/%zu backends passed\n", info.tests_passed, info.tests_total);
  722. } else {
  723. printf(" %zu/%zu tests passed\n", info.tests_passed, info.tests_total);
  724. }
  725. }
  726. void print_backend_status(const backend_status_info & info) override {
  727. printf(" Backend %s: ", info.backend_name.c_str());
  728. if (info.status == test_status_t::OK) {
  729. printf("\033[1;32mOK\033[0m\n");
  730. } else {
  731. printf("\033[1;31mFAIL\033[0m\n");
  732. }
  733. }
  734. void print_testing_start(const testing_start_info & info) override {
  735. printf("Testing %zu devices\n\n", info.device_count);
  736. }
  737. void print_backend_init(const backend_init_info & info) override {
  738. printf("Backend %zu/%zu: %s\n", info.device_index + 1, info.total_devices, info.device_name.c_str());
  739. if (info.skipped) {
  740. printf(" %s\n", info.skip_reason.c_str());
  741. return;
  742. }
  743. if (!info.description.empty()) {
  744. printf(" Device description: %s\n", info.description.c_str());
  745. }
  746. if (info.has_memory_info) {
  747. printf(" Device memory: %zu MB (%zu MB free)\n", info.memory_total_mb, info.memory_free_mb);
  748. }
  749. printf("\n");
  750. }
  751. void print_overall_summary(const overall_summary_info & info) override {
  752. printf("%zu/%zu backends passed\n", info.backends_passed, info.backends_total);
  753. if (info.all_passed) {
  754. printf("\033[1;32mOK\033[0m\n");
  755. } else {
  756. printf("\033[1;31mFAIL\033[0m\n");
  757. }
  758. }
  759. void print_failed_tests(const std::vector<std::string> & failed_tests) override {
  760. if (failed_tests.empty()) {
  761. return;
  762. }
  763. printf("\nFailing tests:\n");
  764. for (const auto & test_name : failed_tests) {
  765. printf(" %s\n", test_name.c_str());
  766. }
  767. }
  768. private:
  769. void print_test_console(const test_result & result) {
  770. printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  771. fflush(stdout);
  772. if (!result.supported) {
  773. printf("not supported [%s] ", result.backend_name.c_str());
  774. printf("\n");
  775. return;
  776. }
  777. if (result.passed) {
  778. printf("\033[1;32mOK\033[0m\n");
  779. } else {
  780. printf("\033[1;31mFAIL\033[0m\n");
  781. }
  782. }
  783. void print_perf_console(const test_result & result) {
  784. int len = printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  785. fflush(stdout);
  786. if (!result.supported) {
  787. printf("not supported\n");
  788. return;
  789. }
  790. // align while also leaving some margin for variations in parameters
  791. int align = 8;
  792. int last = (len + align - 1) / align * align;
  793. if (last - len < 5) {
  794. last += align;
  795. }
  796. printf("%*s", last - len, "");
  797. printf(" %8d runs - %8.2f us/run - ", result.n_runs, result.time_us);
  798. if (result.flops > 0) {
  799. auto format_flops = [](double flops) -> std::string {
  800. char buf[256];
  801. if (flops >= 1e12) {
  802. snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12);
  803. } else if (flops >= 1e9) {
  804. snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9);
  805. } else if (flops >= 1e6) {
  806. snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6);
  807. } else {
  808. snprintf(buf, sizeof(buf), "%6.2f kFLOP", flops / 1e3);
  809. }
  810. return buf;
  811. };
  812. uint64_t op_flops_per_run = result.flops * result.time_us / 1e6;
  813. printf("%s/run - \033[1;34m%sS\033[0m", format_flops(op_flops_per_run).c_str(),
  814. format_flops(result.flops).c_str());
  815. } else {
  816. printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m", result.memory_kb, result.bandwidth_gb_s);
  817. }
  818. printf("\n");
  819. }
  820. void print_support_console(const test_result & result) {
  821. printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  822. fflush(stdout);
  823. if (result.supported) {
  824. printf("\033[1;32mSUPPORTED\033[0m\n");
  825. } else {
  826. printf("\033[1;31mNOT SUPPORTED\033[0m\n");
  827. }
  828. }
  829. };
  830. struct sql_printer : public printer {
  831. static std::string get_sql_field_type(const std::string & field) {
  832. switch (test_result::get_field_type(field)) {
  833. case test_result::STRING:
  834. return "TEXT";
  835. case test_result::BOOL:
  836. case test_result::INT:
  837. return "INTEGER";
  838. case test_result::FLOAT:
  839. return "REAL";
  840. default:
  841. GGML_ABORT("invalid field type");
  842. }
  843. }
  844. void print_header() override {
  845. std::vector<std::string> fields = test_result::get_fields();
  846. fprintf(fout, "CREATE TABLE IF NOT EXISTS test_backend_ops (\n");
  847. for (size_t i = 0; i < fields.size(); i++) {
  848. fprintf(fout, " %s %s%s\n", fields[i].c_str(), get_sql_field_type(fields[i]).c_str(),
  849. i < fields.size() - 1 ? "," : "");
  850. }
  851. fprintf(fout, ");\n\n");
  852. }
  853. void print_test_result(const test_result & result) override {
  854. fprintf(fout, "INSERT INTO test_backend_ops (");
  855. std::vector<std::string> fields = test_result::get_fields();
  856. for (size_t i = 0; i < fields.size(); i++) {
  857. fprintf(fout, "%s%s", fields[i].c_str(), i < fields.size() - 1 ? ", " : "");
  858. }
  859. fprintf(fout, ") VALUES (");
  860. std::vector<std::string> values = result.get_values();
  861. for (size_t i = 0; i < values.size(); i++) {
  862. fprintf(fout, "'%s'%s", values[i].c_str(), i < values.size() - 1 ? ", " : "");
  863. }
  864. fprintf(fout, ");\n");
  865. }
  866. };
  867. struct csv_printer : public printer {
  868. void print_header() override {
  869. std::vector<std::string> fields = test_result::get_fields();
  870. std::vector<std::string> fields_csv = get_fields_csv();
  871. for (size_t i = 0; i < fields.size(); i++) {
  872. if (std::find(std::begin(fields_csv), std::end(fields_csv), fields[i]) == std::end(fields_csv)) {
  873. continue;
  874. }
  875. printf("\"%s\"%s", fields[i].c_str(), i < fields.size() - 1 ? "," : "");
  876. }
  877. printf("\n");
  878. }
  879. void print_test_result(const test_result & result) override {
  880. std::vector<std::string> values = result.get_values();
  881. std::vector<std::string> fields = test_result::get_fields();
  882. std::vector<std::string> fields_csv = get_fields_csv();
  883. for (size_t i = 0; i < values.size(); i++) {
  884. if (std::find(std::begin(fields_csv), std::end(fields_csv), fields[i]) == std::end(fields_csv)) {
  885. continue;
  886. }
  887. // Escape quotes and wrap in quotes for CSV
  888. std::string escaped_value = values[i];
  889. size_t pos = 0;
  890. while ((pos = escaped_value.find("\"", pos)) != std::string::npos) {
  891. escaped_value.replace(pos, 1, "\"\"");
  892. pos += 2;
  893. }
  894. printf("\"%s\"%s", escaped_value.c_str(), i < values.size() - 1 ? "," : "");
  895. }
  896. printf("\n");
  897. }
  898. static std::vector<std::string> get_fields_csv() {
  899. return {
  900. "op_name",
  901. "op_params",
  902. "supported",
  903. "error_message",
  904. "test_mode",
  905. "backend_reg_name",
  906. "backend_name",
  907. };
  908. }
  909. };
  910. static std::unique_ptr<printer> create_printer(output_formats format) {
  911. switch (format) {
  912. case CONSOLE:
  913. return std::make_unique<console_printer>();
  914. case SQL:
  915. return std::make_unique<sql_printer>();
  916. case CSV:
  917. return std::make_unique<csv_printer>();
  918. }
  919. GGML_ABORT("invalid output format");
  920. }
  921. struct test_case {
  922. virtual ~test_case() {}
  923. virtual std::string op_desc(ggml_tensor * t) {
  924. return ggml_op_desc(t);
  925. }
  926. virtual std::string vars() {
  927. return "";
  928. }
  929. virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
  930. virtual double max_nmse_err() {
  931. return 1e-7;
  932. }
  933. virtual double max_maa_err() {
  934. return 1e-4;
  935. }
  936. virtual double max_err() {
  937. return max_nmse_err();
  938. }
  939. virtual double err(const float * a, const float * b, size_t n) {
  940. return nmse(a, b, n);
  941. }
  942. virtual float grad_eps() {
  943. return 1e-1f;
  944. }
  945. // If false, estimate gradient with 2 points, neglects 3rd order derivative and higher.
  946. // If true, estimate gradient with 4 points, neglects 5th order derivative and higher.
  947. virtual bool grad_precise() {
  948. return false;
  949. }
  950. // Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests).
  951. virtual int64_t grad_nmax() {
  952. return 10000;
  953. }
  954. // No effect if empty.
  955. // If not empty, skip all gradient checks where the numerical result does not match any of the values.
  956. // Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable.
  957. virtual std::vector<float> grad_expect() {
  958. return {};
  959. }
  960. virtual void initialize_tensors(ggml_context * ctx) {
  961. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  962. init_tensor_uniform(t);
  963. }
  964. }
  965. virtual size_t op_size(ggml_tensor * t) {
  966. size_t size = ggml_nbytes(t);
  967. // add source tensors
  968. for (int i = 0; i < GGML_MAX_SRC; i++) {
  969. if (t->src[i] != NULL) {
  970. size += ggml_nbytes(t->src[i]);
  971. }
  972. }
  973. return size;
  974. }
  975. virtual uint64_t op_flops(ggml_tensor * t) {
  976. GGML_UNUSED(t);
  977. return 0;
  978. }
  979. virtual bool run_whole_graph() { return false; }
  980. virtual std::vector<ggml_tensor *> fusion_test_nodes() { return {}; }
  981. ggml_cgraph * gf = nullptr;
  982. ggml_cgraph * gb = nullptr;
  983. static const int sentinel_size = 1024;
  984. test_mode mode;
  985. std::vector<ggml_tensor *> sentinels;
  986. std::string current_op_name;
  987. void add_sentinel(ggml_context * ctx) {
  988. if (mode == MODE_PERF || mode == MODE_GRAD || mode == MODE_SUPPORT) {
  989. return;
  990. }
  991. ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
  992. ggml_format_name(sentinel, "sent_%zu", sentinels.size());
  993. sentinels.push_back(sentinel);
  994. }
  995. // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
  996. ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
  997. ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
  998. add_sentinel(ctx);
  999. return t;
  1000. }
  1001. ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
  1002. ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
  1003. add_sentinel(ctx);
  1004. return t;
  1005. }
  1006. ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
  1007. ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
  1008. add_sentinel(ctx);
  1009. return t;
  1010. }
  1011. ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
  1012. ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
  1013. add_sentinel(ctx);
  1014. return t;
  1015. }
  1016. ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
  1017. ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
  1018. add_sentinel(ctx);
  1019. return t;
  1020. }
  1021. // Checks an op against the test filter, which is a comma separated list of OP names or specific variations
  1022. bool matches_filter(ggml_tensor * op, const char * op_names_filter) {
  1023. if (op_names_filter) {
  1024. const auto op_name = op_desc(op);
  1025. const auto op_full_name = op_name + "(" + vars() + ")";
  1026. std::string_view filter(op_names_filter);
  1027. while (!filter.empty()) {
  1028. auto comma_pos = filter.find_first_of(',');
  1029. const auto lparen_pos = filter.find_first_of('(');
  1030. if (lparen_pos < comma_pos) {
  1031. auto rparen_pos = filter.find_first_of(')');
  1032. comma_pos = filter.find_first_of(',', rparen_pos);
  1033. const auto op_filter = filter.substr(0, comma_pos);
  1034. if (op_filter == op_full_name) {
  1035. return true;
  1036. }
  1037. } else {
  1038. const auto op_filter = filter.substr(0, comma_pos);
  1039. if (op_filter == op_name) {
  1040. return true;
  1041. }
  1042. }
  1043. filter = comma_pos != std::string_view::npos ? filter.substr(comma_pos + 1) : "";
  1044. }
  1045. return false;
  1046. } else {
  1047. return true;
  1048. }
  1049. }
  1050. test_status_t eval(ggml_backend_t backend1,
  1051. ggml_backend_t backend2,
  1052. const char * op_names_filter,
  1053. printer * output_printer) {
  1054. mode = MODE_TEST;
  1055. ggml_init_params params = {
  1056. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  1057. /* .mem_base = */ NULL,
  1058. /* .no_alloc = */ true,
  1059. };
  1060. ggml_context * ctx = ggml_init(params);
  1061. GGML_ASSERT(ctx);
  1062. gf = ggml_new_graph(ctx);
  1063. // pre-graph sentinel
  1064. add_sentinel(ctx);
  1065. ggml_tensor * out = build_graph(ctx);
  1066. current_op_name = op_desc(out);
  1067. if (!matches_filter(out, op_names_filter)) {
  1068. //printf(" %s: skipping\n", op_desc(out).c_str());
  1069. ggml_free(ctx);
  1070. return test_status_t::SKIPPED;
  1071. }
  1072. // check if the backends support the ops
  1073. bool supported = true;
  1074. for (ggml_backend_t backend : {backend1, backend2}) {
  1075. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1076. if (!ggml_backend_supports_op(backend, t)) {
  1077. supported = false;
  1078. break;
  1079. }
  1080. }
  1081. }
  1082. if (!supported) {
  1083. // Create test result for unsupported operation
  1084. test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test",
  1085. false, false, "not supported");
  1086. if (output_printer) {
  1087. output_printer->print_test_result(result);
  1088. }
  1089. ggml_free(ctx);
  1090. return test_status_t::NOT_SUPPORTED;
  1091. }
  1092. // post-graph sentinel
  1093. add_sentinel(ctx);
  1094. // allocate
  1095. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
  1096. if (buf == NULL) {
  1097. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
  1098. ggml_free(ctx);
  1099. return test_status_t::FAIL;
  1100. }
  1101. // build graph
  1102. ggml_build_forward_expand(gf, out);
  1103. // add sentinels as graph nodes so that they are checked in the callback
  1104. for (ggml_tensor * sentinel : sentinels) {
  1105. ggml_graph_add_node(gf, sentinel);
  1106. }
  1107. // randomize tensors
  1108. initialize_tensors(ctx);
  1109. // compare
  1110. struct callback_userdata {
  1111. bool ok;
  1112. test_case * tc;
  1113. ggml_backend_t backend1;
  1114. ggml_backend_t backend2;
  1115. };
  1116. callback_userdata ud {
  1117. true,
  1118. this,
  1119. backend1,
  1120. backend2,
  1121. };
  1122. auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
  1123. callback_userdata * ud = (callback_userdata *) user_data;
  1124. const char * bn1 = ggml_backend_name(ud->backend1);
  1125. const char * bn2 = ggml_backend_name(ud->backend2);
  1126. if (t1->op == GGML_OP_NONE) {
  1127. // sentinels must be unchanged
  1128. std::vector<uint8_t> t1_data(ggml_nbytes(t1));
  1129. std::vector<uint8_t> t2_data(ggml_nbytes(t2));
  1130. ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
  1131. ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
  1132. if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
  1133. printf("sentinel mismatch: %s ", t1->name);
  1134. ud->ok = false;
  1135. return true;
  1136. }
  1137. }
  1138. std::vector<float> f1 = tensor_to_float(t1);
  1139. std::vector<float> f2 = tensor_to_float(t2);
  1140. for (size_t i = 0; i < f1.size(); i++) {
  1141. // check for nans
  1142. if (std::isnan(f1[i]) || std::isnan(f2[i])) {
  1143. printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
  1144. ud->ok = false;
  1145. return true;
  1146. }
  1147. // check for infs: both must be inf of the same sign, or both must be finite
  1148. if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
  1149. if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
  1150. if (std::signbit(f1[i]) != std::signbit(f2[i])) {
  1151. printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  1152. ud->ok = false;
  1153. return true;
  1154. }
  1155. } else {
  1156. printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  1157. ud->ok = false;
  1158. return true;
  1159. }
  1160. }
  1161. }
  1162. double err = ud->tc->err(f1.data(), f2.data(), f1.size());
  1163. if (err > ud->tc->max_err()) {
  1164. printf("[%s] ERR = %.9f > %.9f ", ggml_op_desc(t1), err, ud->tc->max_err());
  1165. //for (int i = 0; i < (int) f1.size(); i++) {
  1166. // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
  1167. //}
  1168. //printf("\n");
  1169. //exit(1);
  1170. ud->ok = false;
  1171. }
  1172. return true;
  1173. GGML_UNUSED(index);
  1174. };
  1175. std::vector<ggml_tensor *> fused_nodes_to_verify = fusion_test_nodes();
  1176. if (fused_nodes_to_verify.size() == 0 && run_whole_graph()) {
  1177. fused_nodes_to_verify.push_back(out);
  1178. }
  1179. const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud,
  1180. run_whole_graph() ? fused_nodes_to_verify.data() : nullptr,
  1181. fused_nodes_to_verify.size());
  1182. ggml_backend_buffer_free(buf);
  1183. ggml_free(ctx);
  1184. // Create test result
  1185. bool test_passed = ud.ok && cmp_ok;
  1186. std::string error_msg = test_passed ? "" : (!cmp_ok ? "compare failed" : "test failed");
  1187. test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test", supported, test_passed,
  1188. error_msg);
  1189. if (output_printer) {
  1190. output_printer->print_test_result(result);
  1191. }
  1192. return test_passed ? test_status_t::OK : test_status_t::FAIL;
  1193. }
  1194. bool eval_perf(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1195. mode = MODE_PERF;
  1196. static const size_t graph_nodes = 8192;
  1197. ggml_init_params params = {
  1198. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  1199. /* .mem_base = */ NULL,
  1200. /* .no_alloc = */ true,
  1201. };
  1202. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1203. GGML_ASSERT(ctx);
  1204. ggml_tensor * out = build_graph(ctx.get());
  1205. current_op_name = op_desc(out);
  1206. if (!matches_filter(out, op_names_filter)) {
  1207. //printf(" %s: skipping\n", op_desc(out).c_str());
  1208. return true;
  1209. }
  1210. if (!ggml_backend_supports_op(backend, out)) {
  1211. // Create test result for unsupported performance test
  1212. test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", false, false,
  1213. "not supported");
  1214. output_printer->print_test_result(result);
  1215. return true;
  1216. }
  1217. // allocate
  1218. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  1219. if (buf == NULL) {
  1220. printf("failed to allocate tensors\n");
  1221. return false;
  1222. }
  1223. // randomize tensors
  1224. initialize_tensors(ctx.get());
  1225. // build graph
  1226. ggml_cgraph * gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
  1227. ggml_build_forward_expand(gf, out);
  1228. // warmup run
  1229. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1230. if (status != GGML_STATUS_SUCCESS) {
  1231. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1232. return false;
  1233. }
  1234. // determine number of runs
  1235. int n_runs;
  1236. bool is_cpu = ggml_backend_dev_type(ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU;
  1237. if (op_flops(out) > 0) {
  1238. // based on flops
  1239. const uint64_t GFLOP = 1000 * 1000 * 1000;
  1240. const uint64_t target_flops_cpu = 8ULL * GFLOP;
  1241. const uint64_t target_flops_gpu = 100ULL * GFLOP;
  1242. uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu;
  1243. n_runs = (int)std::min<int64_t>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1;
  1244. } else {
  1245. // based on memory size
  1246. const size_t GB = 1ULL << 30;
  1247. const size_t target_size_cpu = 8 * GB;
  1248. const size_t target_size_gpu = 32 * GB;
  1249. size_t target_size = is_cpu ? target_size_cpu : target_size_gpu;
  1250. n_runs = (int)std::min<int64_t>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
  1251. }
  1252. // duplicate the op
  1253. for (int i = 1; i < n_runs; i++) {
  1254. ggml_graph_add_node(gf, out);
  1255. }
  1256. // calculate memory
  1257. size_t mem = n_runs * op_size(out);
  1258. auto tensor_op_size = [](ggml_tensor * t) {
  1259. size_t size = ggml_nbytes(t);
  1260. // add source tensors
  1261. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1262. if (t->src[i] != NULL) {
  1263. size += ggml_nbytes(t->src[i]);
  1264. }
  1265. }
  1266. return size;
  1267. };
  1268. for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
  1269. if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) {
  1270. continue;
  1271. }
  1272. mem += tensor_op_size(ggml_graph_node(gf, i));
  1273. }
  1274. // run
  1275. int64_t total_time_us = 0;
  1276. int64_t total_mem = 0;
  1277. int total_runs = 0;
  1278. do {
  1279. int64_t start_time = ggml_time_us();
  1280. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1281. if (status != GGML_STATUS_SUCCESS) {
  1282. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1283. return false;
  1284. }
  1285. int64_t end_time = ggml_time_us();
  1286. total_time_us += end_time - start_time;
  1287. total_mem += mem;
  1288. total_runs += n_runs;
  1289. } while (total_time_us < 1000*1000); // run for at least 1 second
  1290. // Create test result
  1291. double avg_time_us = (double) total_time_us / total_runs;
  1292. double calculated_flops = (op_flops(out) > 0) ? (op_flops(out) * total_runs) / (total_time_us / 1e6) : 0.0;
  1293. double calculated_bandwidth =
  1294. (op_flops(out) == 0) ? total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0 : 0.0;
  1295. size_t calculated_memory_kb = op_size(out) / 1024;
  1296. test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", true, true, "", avg_time_us,
  1297. calculated_flops, calculated_bandwidth, calculated_memory_kb, total_runs);
  1298. if (output_printer) {
  1299. output_printer->print_test_result(result);
  1300. }
  1301. return true;
  1302. }
  1303. bool eval_support(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1304. mode = MODE_SUPPORT;
  1305. static const size_t graph_nodes = 8192;
  1306. ggml_init_params params = {
  1307. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  1308. /* .mem_base = */ NULL,
  1309. /* .no_alloc = */ true,
  1310. };
  1311. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1312. GGML_ASSERT(ctx);
  1313. gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
  1314. ggml_tensor * out = build_graph(ctx.get());
  1315. current_op_name = op_desc(out);
  1316. if (!matches_filter(out, op_names_filter)) {
  1317. return true;
  1318. }
  1319. bool supported = ggml_backend_supports_op(backend, out);
  1320. std::string device_desc = ggml_backend_dev_description(ggml_backend_get_device(backend));
  1321. std::string backend_reg_name = ggml_backend_reg_name(ggml_backend_dev_backend_reg(ggml_backend_get_device(backend)));
  1322. test_result result(ggml_backend_name(backend), current_op_name, vars(), "support", supported, supported,
  1323. supported ? "yes" : "no", 0.0, 0.0, 0.0, 0, 0, device_desc, backend_reg_name);
  1324. output_printer->print_test_result(result);
  1325. return true;
  1326. }
  1327. bool eval_grad(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1328. mode = MODE_GRAD;
  1329. const std::vector<float> expect = grad_expect();
  1330. ggml_init_params params = {
  1331. /* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true),
  1332. /* .mem_base = */ NULL,
  1333. /* .no_alloc = */ true,
  1334. };
  1335. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1336. GGML_ASSERT(ctx);
  1337. gf = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  1338. gb = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  1339. ggml_tensor * out = build_graph(ctx.get());
  1340. if (!matches_filter(out, op_names_filter) || out->op == GGML_OP_OPT_STEP_ADAMW) {
  1341. return true;
  1342. }
  1343. if (out->type != GGML_TYPE_F32) {
  1344. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1345. test_status_t::NOT_SUPPORTED,
  1346. out->name + std::string("->type != FP32")));
  1347. return true;
  1348. }
  1349. // Print operation info first
  1350. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend)));
  1351. // check if the backend supports the ops
  1352. bool supported = true;
  1353. bool any_params = false;
  1354. std::string failure_reason;
  1355. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1356. if (!ggml_backend_supports_op(backend, t)) {
  1357. supported = false;
  1358. failure_reason = ggml_backend_name(backend);
  1359. break;
  1360. }
  1361. if ((t->flags & GGML_TENSOR_FLAG_PARAM)) {
  1362. any_params = true;
  1363. if (t->type != GGML_TYPE_F32) {
  1364. supported = false;
  1365. failure_reason = std::string(t->name) + "->type != FP32";
  1366. break;
  1367. }
  1368. }
  1369. }
  1370. if (!any_params) {
  1371. supported = false;
  1372. failure_reason = op_desc(out);
  1373. }
  1374. if (!supported) {
  1375. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1376. test_status_t::NOT_SUPPORTED, failure_reason));
  1377. return true;
  1378. }
  1379. int64_t ngrads = 0;
  1380. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1381. if (t->flags & GGML_TENSOR_FLAG_PARAM) {
  1382. ngrads += ggml_nelements(t);
  1383. }
  1384. }
  1385. if (ngrads > grad_nmax()) {
  1386. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1387. info.set_large_tensor_skip();
  1388. output_printer->print_operation(info);
  1389. return true;
  1390. }
  1391. if (!ggml_is_scalar(out)) {
  1392. out = ggml_sum(ctx.get(), out);
  1393. ggml_set_name(out, "sum_of_out");
  1394. }
  1395. ggml_set_loss(out);
  1396. ggml_build_forward_expand(gf, out);
  1397. ggml_graph_cpy(gf, gb);
  1398. ggml_build_backward_expand(ctx.get(), gb, nullptr);
  1399. if (expect.size() != 1 || expect[0] != 0.0f) {
  1400. GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
  1401. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1402. GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE);
  1403. }
  1404. }
  1405. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1406. if (!ggml_backend_supports_op(backend, t)) {
  1407. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1408. test_status_t::NOT_SUPPORTED,
  1409. ggml_backend_name(backend)));
  1410. supported = false;
  1411. break;
  1412. }
  1413. if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) {
  1414. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1415. test_status_t::NOT_SUPPORTED,
  1416. std::string(t->name) + "->type != FP32"));
  1417. supported = false;
  1418. break;
  1419. }
  1420. }
  1421. if (!supported) {
  1422. return true;
  1423. }
  1424. // allocate
  1425. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  1426. if (buf == NULL) {
  1427. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1428. info.set_error("allocation", "");
  1429. output_printer->print_operation(info);
  1430. return false;
  1431. }
  1432. initialize_tensors(ctx.get()); // Randomizes all tensors (including gradients).
  1433. ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise.
  1434. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1435. if (status != GGML_STATUS_SUCCESS) {
  1436. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1437. return false;
  1438. }
  1439. status = ggml_backend_graph_compute(backend, gb);
  1440. if (status != GGML_STATUS_SUCCESS) {
  1441. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1442. return false;
  1443. }
  1444. bool ok = true;
  1445. for (struct ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != nullptr; t = ggml_get_next_tensor(ctx.get(), t)) {
  1446. if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) {
  1447. continue;
  1448. }
  1449. const char * bn = ggml_backend_name(backend);
  1450. const int64_t ne = ggml_nelements(t);
  1451. std::vector<float> ga;
  1452. struct ggml_tensor * grad = ggml_graph_get_grad(gb, t);
  1453. if (grad) {
  1454. ga = tensor_to_float(grad);
  1455. } else {
  1456. ga.resize(ne); // default value is 0.0f
  1457. }
  1458. for (int64_t i = 0; i < ne; ++i) { // gradient algebraic
  1459. // check for nans
  1460. if (!std::isfinite(ga[i])) {
  1461. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1462. info.set_gradient_info(i, bn, ga[i]);
  1463. output_printer->print_operation(info);
  1464. ok = false;
  1465. break;
  1466. }
  1467. }
  1468. if (!ok) {
  1469. break;
  1470. }
  1471. std::vector<float> gn(ne); // gradient numeric
  1472. GGML_ASSERT(ga.size() == gn.size());
  1473. std::vector<float> x0 = tensor_to_float(t); // original t data
  1474. GGML_ASSERT(ggml_is_scalar(out));
  1475. GGML_ASSERT(out->type == GGML_TYPE_F32);
  1476. const float eps = grad_eps();
  1477. for (int64_t i = 0; i < ne; ++i) {
  1478. const float xiu = x0[i] + 1.0f*eps; // x, index i, up
  1479. const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half
  1480. const float xidh = x0[i] - 0.5f*eps; // x, index i, down half
  1481. const float xid = x0[i] - 1.0f*eps; // x, index i, down
  1482. float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
  1483. ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float));
  1484. status = ggml_backend_graph_compute(backend, gf);
  1485. if (status != GGML_STATUS_SUCCESS) {
  1486. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1487. return false;
  1488. }
  1489. ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out));
  1490. ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float));
  1491. status = ggml_backend_graph_compute(backend, gf);
  1492. if (status != GGML_STATUS_SUCCESS) {
  1493. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1494. return false;
  1495. }
  1496. ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out));
  1497. if (grad_precise()) {
  1498. ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float));
  1499. status = ggml_backend_graph_compute(backend, gf);
  1500. if (status != GGML_STATUS_SUCCESS) {
  1501. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1502. return false;
  1503. }
  1504. ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out));
  1505. ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float));
  1506. status = ggml_backend_graph_compute(backend, gf);
  1507. if (status != GGML_STATUS_SUCCESS) {
  1508. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1509. return false;
  1510. }
  1511. ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out));
  1512. gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps);
  1513. } else {
  1514. gn[i] = (fu - fd) / (2.0f*eps);
  1515. }
  1516. ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t));
  1517. }
  1518. const double err = mean_abs_asymm(gn.data(), ga.data(), gn.size(), expect);
  1519. if (err > max_maa_err()) {
  1520. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1521. info.set_maa_error(err, max_maa_err());
  1522. output_printer->print_operation(info);
  1523. ok = false;
  1524. break;
  1525. }
  1526. if (!ok) {
  1527. break;
  1528. }
  1529. }
  1530. // Create final test result
  1531. test_operation_info final_info(op_desc(out), vars(), ggml_backend_name(backend));
  1532. if (!ok) {
  1533. final_info.set_compare_failure();
  1534. }
  1535. final_info.status = ok ? test_status_t::OK : test_status_t::FAIL;
  1536. output_printer->print_operation(final_info);
  1537. if (ok) {
  1538. return true;
  1539. }
  1540. return false;
  1541. }
  1542. };
  1543. // ###################################
  1544. // ## Section 2: GGML Op Defintions ##
  1545. // ###################################
  1546. // The following is an example showing the bare minimum for creating a test for a GGML op.
  1547. // GGML_OP_EXAMPLE
  1548. struct test_example : public test_case {
  1549. // Always define these 2 or variants thereof:
  1550. const ggml_type type; // The type of the input tensors.
  1551. const std::array<int64_t, 4> ne; // The shape of the input tensors.
  1552. // For some ops it's necessary to define multiple types or shapes for the inputs.
  1553. // Or they may need additional parameters.
  1554. // Put all parameters needed to fully define the test into one of the VARS_TO_STR macros.
  1555. // In most cases these are just the properties of the struct that you defined above.
  1556. // This is needed for info prints.
  1557. std::string vars() override {
  1558. return VARS_TO_STR2(type, ne);
  1559. }
  1560. // Define a constructor for the struct.
  1561. // In most cases it will be sufficient to have the same arguments as the struct has properties
  1562. // and just use initializer lists.
  1563. test_example(ggml_type type = GGML_TYPE_F32,
  1564. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1565. : type(type), ne(ne) {}
  1566. // Define how a simple GGML compute graph can be constructed for the new GGML op.
  1567. ggml_tensor * build_graph(ggml_context * ctx) override {
  1568. // Step 1: create input tensors that don't depend on any other tensors:
  1569. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1570. ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging.
  1571. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1572. ggml_set_name(b, "b");
  1573. // Step 2: use the op that you want to test in the GGML compute graph.
  1574. ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition.
  1575. ggml_set_name(out, "out");
  1576. // Step 3: return the output tensor.
  1577. return out;
  1578. }
  1579. // In order to also check the gradients for your op, add calls like ggml_set_param(a)
  1580. // immediately after you create the tensors.
  1581. // This is optional and only makes sense if a backward pass has actually been implemented for the new op.
  1582. };
  1583. // GGML_OP_UNARY
  1584. struct test_unary : public test_case {
  1585. const ggml_unary_op op;
  1586. const ggml_type type;
  1587. const std::array<int64_t, 4> ne_a;
  1588. int v; // view (1 : non-contiguous a)
  1589. std::string vars() override {
  1590. return VARS_TO_STR3(type, ne_a, v);
  1591. }
  1592. test_unary(ggml_unary_op op,
  1593. ggml_type type = GGML_TYPE_F32,
  1594. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1595. int v = 0)
  1596. : op(op), type(type), ne_a(ne_a), v(v) {}
  1597. ggml_tensor * build_graph(ggml_context * ctx) override {
  1598. const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG ||
  1599. op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU ||
  1600. op == GGML_UNARY_OP_EXPM1 || op == GGML_UNARY_OP_SOFTPLUS;
  1601. ggml_tensor * a;
  1602. if (v & 1) {
  1603. auto ne = ne_a; ne[0] *= 3;
  1604. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1605. if (grad_supported) {
  1606. ggml_set_param(a);
  1607. }
  1608. ggml_set_name(a, "a");
  1609. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1610. ggml_set_name(a, "view_of_a");
  1611. } else {
  1612. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1613. if (grad_supported) {
  1614. ggml_set_param(a);
  1615. }
  1616. ggml_set_name(a, "a");
  1617. }
  1618. ggml_tensor * out = ggml_unary(ctx, a, op);
  1619. ggml_set_name(out, "out");
  1620. return out;
  1621. }
  1622. void initialize_tensors(ggml_context * ctx) override {
  1623. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1624. // test extended range of values to check for NaNs in GELU
  1625. init_tensor_uniform(t, -150.f, 150.f);
  1626. }
  1627. }
  1628. float grad_eps() override {
  1629. return 15.0f;
  1630. }
  1631. std::vector<float> grad_expect() override {
  1632. if (op == GGML_UNARY_OP_ABS) {
  1633. return {-1.0f, 1.0f};
  1634. }
  1635. if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) {
  1636. return {0.0f};
  1637. }
  1638. if (op == GGML_UNARY_OP_RELU) {
  1639. return {0.0f, 1.0f};
  1640. }
  1641. return {};
  1642. }
  1643. };
  1644. // GGML_OP_GLU
  1645. struct test_glu : public test_case {
  1646. const ggml_glu_op op;
  1647. const ggml_type type;
  1648. const std::array<int64_t, 4> ne_a;
  1649. int v; // view (1 : non-contiguous a)
  1650. bool swapped;
  1651. std::string vars() override {
  1652. return VARS_TO_STR4(type, ne_a, v, swapped);
  1653. }
  1654. test_glu(ggml_glu_op op,
  1655. ggml_type type = GGML_TYPE_F32,
  1656. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1657. int v = 0,
  1658. bool swapped = false)
  1659. : op(op), type(type), ne_a(ne_a), v(v), swapped(swapped) {}
  1660. ggml_tensor * build_graph(ggml_context * ctx) override {
  1661. ggml_tensor * a;
  1662. if (v & 1) {
  1663. auto ne = ne_a; ne[0] *= 3;
  1664. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1665. ggml_set_name(a, "a");
  1666. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1667. ggml_set_name(a, "view_of_a");
  1668. } else {
  1669. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1670. ggml_set_name(a, "a");
  1671. }
  1672. ggml_tensor * out = ggml_glu(ctx, a, op, swapped);
  1673. ggml_set_name(out, "out");
  1674. return out;
  1675. }
  1676. void initialize_tensors(ggml_context * ctx) override {
  1677. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1678. // test extended range of values to check for NaNs in GELU
  1679. init_tensor_uniform(t, -150.f, 150.f);
  1680. }
  1681. }
  1682. };
  1683. struct test_glu_split : public test_case {
  1684. const ggml_glu_op op;
  1685. const ggml_type type;
  1686. const std::array<int64_t, 4> ne_a;
  1687. int v; // view (1 : non-contiguous a)
  1688. std::string vars() override {
  1689. return VARS_TO_STR3(type, ne_a, v) + ",split";
  1690. }
  1691. test_glu_split(ggml_glu_op op,
  1692. ggml_type type = GGML_TYPE_F32,
  1693. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1694. int v = 0)
  1695. : op(op), type(type), ne_a(ne_a), v(v) {}
  1696. ggml_tensor * build_graph(ggml_context * ctx) override {
  1697. ggml_tensor * a;
  1698. ggml_tensor * b;
  1699. if (v & 1) {
  1700. auto ne = ne_a; ne[0] *= 3;
  1701. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1702. ggml_set_param(a);
  1703. ggml_set_name(a, "a");
  1704. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1705. ggml_set_name(a, "view_of_a");
  1706. b = ggml_new_tensor(ctx, type, 4, ne.data());
  1707. ggml_set_param(b);
  1708. ggml_set_name(b, "b");
  1709. b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
  1710. ggml_set_name(a, "view_of_b");
  1711. } else {
  1712. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1713. ggml_set_param(a);
  1714. ggml_set_name(a, "a");
  1715. b = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1716. ggml_set_param(b);
  1717. ggml_set_name(b, "b");
  1718. }
  1719. ggml_tensor * out = ggml_glu_split(ctx, a, b, op);
  1720. ggml_set_name(out, "out");
  1721. return out;
  1722. }
  1723. void initialize_tensors(ggml_context * ctx) override {
  1724. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1725. // test extended range of values to check for NaNs in GELU
  1726. init_tensor_uniform(t, -150.f, 150.f);
  1727. }
  1728. }
  1729. };
  1730. struct test_swiglu_oai : public test_case {
  1731. const ggml_type type;
  1732. const std::array<int64_t, 4> ne_a;
  1733. int v; // view (1 : non-contiguous a)
  1734. float alpha;
  1735. float limit;
  1736. std::string vars() override {
  1737. return VARS_TO_STR5(type, ne_a, v, alpha, limit);
  1738. }
  1739. test_swiglu_oai(ggml_type type = GGML_TYPE_F32,
  1740. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1741. int v = 0,
  1742. float alpha = 1.702f,
  1743. float limit = 7.0f)
  1744. : type(type), ne_a(ne_a), v(v), alpha(alpha), limit(limit) {}
  1745. ggml_tensor * build_graph(ggml_context * ctx) override {
  1746. ggml_tensor * a;
  1747. ggml_tensor * b;
  1748. if (v & 1) {
  1749. auto ne = ne_a; ne[0] *= 3;
  1750. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1751. ggml_set_param(a);
  1752. ggml_set_name(a, "a");
  1753. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1754. ggml_set_name(a, "view_of_a");
  1755. b = ggml_new_tensor(ctx, type, 4, ne.data());
  1756. ggml_set_param(b);
  1757. ggml_set_name(b, "b");
  1758. b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
  1759. ggml_set_name(a, "view_of_b");
  1760. } else {
  1761. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1762. ggml_set_param(a);
  1763. ggml_set_name(a, "a");
  1764. b = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1765. ggml_set_param(b);
  1766. ggml_set_name(b, "b");
  1767. }
  1768. ggml_tensor * out = ggml_swiglu_oai(ctx, a, b, alpha, limit);
  1769. ggml_set_name(out, "out");
  1770. return out;
  1771. }
  1772. void initialize_tensors(ggml_context * ctx) override {
  1773. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1774. // test extended range of values to check for NaNs in GELU
  1775. init_tensor_uniform(t, -150.f, 150.f);
  1776. }
  1777. }
  1778. };
  1779. // GGML_OP_GET_ROWS
  1780. struct test_get_rows : public test_case {
  1781. const ggml_type type;
  1782. const int n; // cols
  1783. const int m; // rows
  1784. const int r; // rows to get
  1785. const int be1; // batch size
  1786. const int be2; // batch size
  1787. const bool v; // view (non-contiguous src1)
  1788. std::string vars() override {
  1789. return VARS_TO_STR7(type, n, m, r, be1, be2, v);
  1790. }
  1791. test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int be1 = 1, int be2 = 1, bool v = false)
  1792. : type(type), n(n), m(m), r(r), be1(be1), be2(be2), v(v) {}
  1793. ggml_tensor * build_graph(ggml_context * ctx) override {
  1794. ggml_tensor * in = ggml_new_tensor_4d(ctx, type, n, m, be1, be2);
  1795. ggml_set_name(in, "in");
  1796. ggml_tensor * rows = ggml_new_tensor_3d(ctx, GGML_TYPE_I32, r, be1, be2);
  1797. ggml_set_name(rows, "rows");
  1798. if (v) {
  1799. rows = ggml_view_3d(ctx, rows, r/2, be1, be2, rows->nb[1], rows->nb[2], 0);
  1800. ggml_set_name(rows, "view_of_rows");
  1801. }
  1802. const bool grad_supported = ggml_is_matrix(in) && ggml_is_vector(rows);
  1803. if (grad_supported) {
  1804. ggml_set_param(in);
  1805. // rows is a constant input -> no gradients
  1806. }
  1807. ggml_tensor * out = ggml_get_rows(ctx, in, rows);
  1808. ggml_set_name(out, "out");
  1809. return out;
  1810. }
  1811. void initialize_tensors(ggml_context * ctx) override {
  1812. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1813. if (t->type == GGML_TYPE_I32) {
  1814. if (ggml_is_view_op(t->op)) { continue; }
  1815. // rows
  1816. std::vector<int> data(r*be1*be2);
  1817. for (int i = 0; i < r*be1*be2; i++) {
  1818. data[i] = rand() % m;
  1819. }
  1820. ggml_backend_tensor_set(t, data.data(), 0, r * be1 * be2 * sizeof(int));
  1821. } else {
  1822. init_tensor_uniform(t);
  1823. }
  1824. }
  1825. }
  1826. };
  1827. // GGML_OP_GET_ROWS_BACK
  1828. struct test_get_rows_back : public test_case {
  1829. const ggml_type type;
  1830. const int n; // cols
  1831. const int m; // rows
  1832. const int r; // rows to get
  1833. const int b; // batch size
  1834. const bool v; // view (non-contiguous src1)
  1835. std::string vars() override {
  1836. return VARS_TO_STR6(type, n, m, r, b, v);
  1837. }
  1838. test_get_rows_back(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  1839. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  1840. ggml_tensor * build_graph(ggml_context * ctx) override {
  1841. ggml_tensor * in_forward = ggml_new_tensor_3d(ctx, type, n, m, b);
  1842. ggml_set_name(in_forward, "in_forward");
  1843. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  1844. ggml_set_name(rows, "rows");
  1845. if (v) {
  1846. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  1847. ggml_set_name(rows, "view_of_rows");
  1848. }
  1849. ggml_tensor * grad = ggml_new_tensor_3d(ctx, type, n, r, b);
  1850. ggml_set_name(grad, "grad");
  1851. ggml_tensor * out = ggml_get_rows_back(ctx, grad, rows, in_forward);
  1852. ggml_set_name(out, "out");
  1853. return out;
  1854. }
  1855. void initialize_tensors(ggml_context * ctx) override {
  1856. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1857. if (t->type == GGML_TYPE_I32) {
  1858. if (ggml_is_view_op(t->op)) { continue; }
  1859. // rows
  1860. std::vector<int> data(r*b);
  1861. for (int i = 0; i < r*b; i++) {
  1862. data[i] = rand() % m;
  1863. }
  1864. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  1865. } else {
  1866. init_tensor_uniform(t);
  1867. }
  1868. }
  1869. }
  1870. };
  1871. static void init_set_rows_row_ids(ggml_tensor * t, int num_rows) {
  1872. std::random_device rd;
  1873. std::default_random_engine rng(rd());
  1874. for (int i2 = 0; i2 < t->ne[2]; i2++) {
  1875. for (int i1 = 0; i1 < t->ne[1]; i1++) {
  1876. // generate a shuffled subset of row indices
  1877. std::vector<int64_t> data(num_rows);
  1878. for (int i = 0; i < num_rows; i++) {
  1879. data[i] = i;
  1880. }
  1881. std::shuffle(data.begin(), data.end(), rng);
  1882. data.resize(t->ne[0]);
  1883. const size_t offs = i1*t->nb[1] + i2*t->nb[2];
  1884. if (t->type == GGML_TYPE_I32) {
  1885. // TODO: Make a template or something
  1886. std::vector<int32_t> data_i32(t->ne[0]);
  1887. for (int i = 0; i < t->ne[0]; i++) {
  1888. data_i32[i] = static_cast<int32_t>(data[i]);
  1889. }
  1890. ggml_backend_tensor_set(t, data_i32.data(), offs, t->ne[0]*sizeof(int32_t));
  1891. } else {
  1892. ggml_backend_tensor_set(t, data.data(), offs, t->ne[0]*sizeof(int64_t));
  1893. }
  1894. }
  1895. }
  1896. }
  1897. // GGML_OP_SET_ROWS
  1898. struct test_set_rows : public test_case {
  1899. const ggml_type type;
  1900. const ggml_type type_idx;
  1901. const std::array<int64_t, 4> ne;
  1902. const std::array<int, 2> nr23; // broadcast only dims 2 and 3
  1903. const int r; // rows to set
  1904. const bool v; // view (non-contiguous src1)
  1905. std::string vars() override {
  1906. return VARS_TO_STR6(type, type_idx, ne, nr23, r, v);
  1907. }
  1908. test_set_rows(ggml_type type,
  1909. ggml_type type_idx,
  1910. std::array<int64_t, 4> ne,
  1911. std::array<int, 2> nr23,
  1912. int r, bool v = false)
  1913. : type(type), type_idx(type_idx), ne(ne), nr23(nr23), r(r), v(v) {}
  1914. ggml_tensor * build_graph(ggml_context * ctx) override {
  1915. ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  1916. ggml_set_name(dst, "dst");
  1917. ggml_tensor * src = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], r, ne[2]*nr23[0], ne[3]*nr23[1]);
  1918. ggml_set_name(src, "src");
  1919. ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, type_idx, r, ne[2], ne[3]);
  1920. ggml_set_name(row_idxs, "row_idxs");
  1921. if (v) {
  1922. src = ggml_view_4d(ctx, src, ne[0], r/2, ne[2]*nr23[0], ne[3]*nr23[1], src->nb[1], src->nb[2], src->nb[3], 0);
  1923. row_idxs = ggml_view_3d(ctx, row_idxs, r/2, ne[2], ne[3], row_idxs->nb[1], row_idxs->nb[2], 0);
  1924. ggml_set_name(row_idxs, "view_of_rows");
  1925. }
  1926. ggml_tensor * out = ggml_set_rows(ctx, dst, src, row_idxs);
  1927. ggml_set_name(out, "out");
  1928. return out;
  1929. }
  1930. void initialize_tensors(ggml_context * ctx) override {
  1931. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1932. if (t->type == GGML_TYPE_I64 || t->type == GGML_TYPE_I32) {
  1933. if (ggml_is_view_op(t->op)) {
  1934. continue;
  1935. }
  1936. init_set_rows_row_ids(t, ne[1]);
  1937. } else {
  1938. init_tensor_uniform(t);
  1939. }
  1940. }
  1941. }
  1942. double max_nmse_err() override {
  1943. if (type == GGML_TYPE_Q4_0 || type == GGML_TYPE_Q4_1 || type == GGML_TYPE_IQ4_NL ||
  1944. type == GGML_TYPE_Q5_0 || type == GGML_TYPE_Q5_1 || type == GGML_TYPE_Q8_0) {
  1945. // estimate what the max nmse error would be if one quantized value is
  1946. // off by one. The test values are distributed in [-1,1], so it'll be
  1947. // roughly (2.0 / 2^bits)^2, divided by the mean square value of the reference,
  1948. // which is roughly 0.25 times the number of elements.
  1949. double err_estimate = 1.0f/8.0f;
  1950. if (type == GGML_TYPE_Q5_0 || type == GGML_TYPE_Q5_1) {
  1951. err_estimate /= 2.0f;
  1952. }
  1953. if (type == GGML_TYPE_Q8_0) {
  1954. err_estimate /= 8.0f;
  1955. }
  1956. err_estimate *= err_estimate;
  1957. err_estimate /= 0.25f*float(ne[0] * r * ne[2]*nr23[0] * ne[3]*nr23[1]);
  1958. return err_estimate;
  1959. }
  1960. return 1e-7;
  1961. }
  1962. };
  1963. // GGML_OP_ROPE + GGML_OP_VIEW + GGML_OP_SET_ROWS
  1964. struct test_rope_set_rows : public test_case {
  1965. const ggml_type type;
  1966. const ggml_type type_idx;
  1967. const std::array<int64_t, 4> ne_a;
  1968. int mode;
  1969. const int n_ctx{512};
  1970. const int n_dims{128};
  1971. std::string vars() override {
  1972. return VARS_TO_STR4(type, type_idx, ne_a, mode);
  1973. }
  1974. std::string op_desc(ggml_tensor * t) override {
  1975. GGML_UNUSED(t);
  1976. return "ROPE_SET_ROWS";
  1977. }
  1978. bool run_whole_graph() override { return true; }
  1979. test_rope_set_rows(ggml_type type,
  1980. ggml_type type_idx,
  1981. std::array<int64_t, 4> ne_a,
  1982. int mode)
  1983. : type(type), type_idx(type_idx), ne_a(ne_a), mode(mode) {}
  1984. ggml_tensor * build_graph(ggml_context * ctx) override {
  1985. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne_a[0], ne_a[1], ne_a[2], 1);
  1986. ggml_set_name(a, "a");
  1987. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  1988. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  1989. ggml_tensor * pos;
  1990. if (is_mrope || is_vision) {
  1991. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2] * 4);
  1992. } else {
  1993. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
  1994. }
  1995. ggml_set_name(pos, "pos");
  1996. float fs = 1.4245f;
  1997. float ef = 0.7465f;
  1998. float af = 1.4245f;
  1999. ggml_tensor * freq = nullptr;
  2000. ggml_tensor * rope = nullptr;
  2001. if (is_mrope) {
  2002. if (is_vision) {
  2003. GGML_ASSERT(n_dims/4 > 0);
  2004. int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate
  2005. rope = ggml_rope_multi(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2006. } else {
  2007. GGML_ASSERT(n_dims/3 > 0);
  2008. int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0};
  2009. rope = ggml_rope_multi(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2010. }
  2011. } else {
  2012. rope = ggml_rope(ctx, a, pos, ne_a[0], mode);
  2013. }
  2014. ggml_tensor * view = ggml_view_2d(ctx, rope, ne_a[0] * ne_a[1], ne_a[2], rope->nb[2], 0);
  2015. ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, ne_a[0] * ne_a[1], ne_a[2] * ne_a[3], 1, 1);
  2016. ggml_set_name(dst, "dst");
  2017. ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, type_idx, ne_a[2], 1, 1);
  2018. ggml_set_name(row_idxs, "row_idxs");
  2019. ggml_tensor * out = ggml_set_rows(ctx, dst, view, row_idxs);
  2020. ggml_set_name(out, "out");
  2021. return out;
  2022. }
  2023. void initialize_tensors(ggml_context * ctx) override {
  2024. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2025. if (strcmp(t->name, "row_idxs") == 0) {
  2026. if (ggml_is_view_op(t->op)) {
  2027. continue;
  2028. }
  2029. init_set_rows_row_ids(t, ne_a[2]);
  2030. } else if (t->type == GGML_TYPE_I32) {
  2031. // pos
  2032. const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
  2033. std::vector<int> data(num_pos_ids);
  2034. for (int i = 0; i < num_pos_ids; i++) {
  2035. data[i] = rand() % n_ctx;
  2036. }
  2037. ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int));
  2038. } else {
  2039. if (t->ne[0] == n_dims/2) {
  2040. // frequency factors in the range [0.9f, 1.1f]
  2041. init_tensor_uniform(t, 0.9f, 1.1f);
  2042. } else {
  2043. init_tensor_uniform(t);
  2044. }
  2045. }
  2046. }
  2047. }
  2048. };
  2049. // GGML_OP_RMS_NORM + GGML_OP_MUL + GGML_OP_ROPE (+ GGML_OP_VIEW + GGML_OP_SET_ROWS)
  2050. struct test_rms_norm_mul_rope : public test_case {
  2051. const std::array<int64_t, 4> ne;
  2052. const float eps;
  2053. const bool multi_add; // test a sequence of adds feeding into rms_norm
  2054. const bool set_rows;
  2055. int mode;
  2056. std::string op_desc(ggml_tensor * t) override {
  2057. GGML_UNUSED(t);
  2058. return "RMS_NORM_MUL_ROPE";
  2059. }
  2060. bool run_whole_graph() override { return true; }
  2061. std::string vars() override {
  2062. return VARS_TO_STR5(ne, eps, multi_add, set_rows, mode);
  2063. }
  2064. test_rms_norm_mul_rope(std::array<int64_t, 4> ne, float eps = 1e-6f, bool multi_add = false,
  2065. bool set_rows = false, int mode = GGML_ROPE_TYPE_NORMAL)
  2066. : ne(ne), eps(eps), multi_add(multi_add), set_rows(set_rows), mode(mode) {}
  2067. ggml_tensor * build_graph(ggml_context * ctx) override {
  2068. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], ne[1], ne[2], 1);
  2069. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], ne[1], ne[2], 1);
  2070. ggml_tensor * c = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], ne[1], ne[2], 1);
  2071. if (multi_add) {
  2072. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  2073. }
  2074. a = ggml_mul(ctx, ggml_rms_norm(ctx, a, eps), b);
  2075. ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne[2]);
  2076. ggml_tensor * rope = ggml_rope(ctx, a, pos, ne[0], mode);
  2077. ggml_tensor * out;
  2078. if (set_rows) {
  2079. ggml_tensor * view = ggml_view_2d(ctx, rope, ne[0] * ne[1], ne[2], rope->nb[2], 0);
  2080. ggml_tensor * dst = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, ne[0] * ne[1], ne[2] * ne[3], 1, 1);
  2081. ggml_set_name(dst, "dst");
  2082. ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, GGML_TYPE_I64, ne[2], 1, 1);
  2083. ggml_set_name(row_idxs, "row_idxs");
  2084. out = ggml_set_rows(ctx, dst, view, row_idxs);
  2085. ggml_set_name(out, "out");
  2086. } else {
  2087. out = rope;
  2088. }
  2089. return out;
  2090. }
  2091. void initialize_tensors(ggml_context * ctx) override {
  2092. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2093. if (t->type == GGML_TYPE_I64 || t->type == GGML_TYPE_I32) {
  2094. if (ggml_is_view_op(t->op)) {
  2095. continue;
  2096. }
  2097. init_set_rows_row_ids(t, ne[2]);
  2098. } else {
  2099. init_tensor_uniform(t);
  2100. }
  2101. }
  2102. }
  2103. };
  2104. // GGML_OP_ARGMAX
  2105. struct test_argmax : public test_case {
  2106. const ggml_type type;
  2107. const std::array<int64_t, 4> ne;
  2108. std::string vars() override {
  2109. return VARS_TO_STR2(type, ne);
  2110. }
  2111. test_argmax(ggml_type type = GGML_TYPE_F32,
  2112. std::array<int64_t, 4> ne = {10, 100, 1, 1})
  2113. : type(type), ne(ne) {}
  2114. ggml_tensor * build_graph(ggml_context * ctx) override {
  2115. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2116. ggml_set_name(a, "a");
  2117. ggml_tensor * out = ggml_argmax(ctx, a);
  2118. ggml_set_name(out, "out");
  2119. return out;
  2120. }
  2121. void initialize_tensors(ggml_context * ctx) override {
  2122. std::random_device rd;
  2123. std::default_random_engine rng(rd());
  2124. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2125. if (t->type == GGML_TYPE_F32) {
  2126. // initialize with unique values to avoid ties
  2127. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2128. std::vector<float> data(t->ne[0]);
  2129. for (int i = 0; i < t->ne[0]; i++) {
  2130. data[i] = i;
  2131. }
  2132. std::shuffle(data.begin(), data.end(), rng);
  2133. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  2134. }
  2135. } else {
  2136. init_tensor_uniform(t);
  2137. }
  2138. }
  2139. }
  2140. double max_nmse_err() override {
  2141. return 0.0;
  2142. }
  2143. };
  2144. // GGML_OP_COUNT_EQUAL
  2145. struct test_count_equal : public test_case {
  2146. const ggml_type type;
  2147. const std::array<int64_t, 4> ne;
  2148. std::string vars() override {
  2149. return VARS_TO_STR2(type, ne);
  2150. }
  2151. test_count_equal(ggml_type type = GGML_TYPE_F32,
  2152. std::array<int64_t, 4> ne = {4, 500, 1, 1})
  2153. : type(type), ne(ne) {}
  2154. ggml_tensor * build_graph(ggml_context * ctx) override {
  2155. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2156. ggml_set_name(a, "a");
  2157. ggml_tensor * a_argmax = ggml_argmax(ctx, a);
  2158. ggml_set_name(a_argmax, "a_argmax");
  2159. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2160. ggml_set_name(b, "b");
  2161. ggml_tensor * b_argmax = ggml_argmax(ctx, b);
  2162. ggml_set_name(b_argmax, "b_argmax");
  2163. ggml_tensor * out = ggml_count_equal(ctx, a_argmax, b_argmax);
  2164. ggml_set_name(out, "out");
  2165. return out;
  2166. }
  2167. double max_nmse_err() override {
  2168. return 0.0;
  2169. }
  2170. void initialize_tensors(ggml_context * ctx) override {
  2171. std::random_device rd;
  2172. std::default_random_engine rng(rd());
  2173. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2174. if (t->type == GGML_TYPE_F32) {
  2175. // initialize with unique values to avoid ties
  2176. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2177. std::vector<float> data(t->ne[0]);
  2178. for (int i = 0; i < t->ne[0]; i++) {
  2179. data[i] = i;
  2180. }
  2181. std::shuffle(data.begin(), data.end(), rng);
  2182. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  2183. }
  2184. } else {
  2185. init_tensor_uniform(t);
  2186. }
  2187. }
  2188. }
  2189. };
  2190. // GGML_OP_REPEAT
  2191. struct test_repeat : public test_case {
  2192. const ggml_type type;
  2193. const std::array<int64_t, 4> ne;
  2194. const std::array<int, 4> nr;
  2195. std::string vars() override {
  2196. return VARS_TO_STR3(type, ne, nr);
  2197. }
  2198. size_t op_size(ggml_tensor * t) override {
  2199. return ggml_nbytes(t) * 2;
  2200. }
  2201. test_repeat(ggml_type type = GGML_TYPE_F32,
  2202. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  2203. std::array<int, 4> nr = {2, 2, 2, 2})
  2204. : type(type), ne(ne), nr(nr) {}
  2205. ggml_tensor * build_graph(ggml_context * ctx) override {
  2206. ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  2207. ggml_set_name(target, "target");
  2208. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  2209. ggml_set_param(src);
  2210. ggml_set_name(src, "src");
  2211. ggml_tensor * out = ggml_repeat(ctx, src, target);
  2212. ggml_set_name(out, "out");
  2213. return out;
  2214. }
  2215. };
  2216. // GGML_OP_REPEAT_BACK
  2217. struct test_repeat_back : public test_case {
  2218. const ggml_type type;
  2219. const std::array<int64_t, 4> ne;
  2220. const std::array<int, 4> nr;
  2221. const bool v; // whether src is a noncontiguous view
  2222. std::string vars() override {
  2223. return VARS_TO_STR4(type, ne, nr, v);
  2224. }
  2225. size_t op_size(ggml_tensor * t) override {
  2226. return ggml_nbytes(t) * 2;
  2227. }
  2228. test_repeat_back(ggml_type type = GGML_TYPE_F32,
  2229. std::array<int64_t, 4> ne = {8, 6, 4, 2},
  2230. std::array<int, 4> nr = {2, 2, 2, 2},
  2231. bool v = false)
  2232. : type(type), ne(ne), nr(nr), v(v) {}
  2233. ggml_tensor * build_graph(ggml_context * ctx) override {
  2234. ggml_tensor * src = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  2235. ggml_set_name(src, "src");
  2236. if (v) {
  2237. GGML_ASSERT(ne[0] % 2 == 0);
  2238. GGML_ASSERT(ne[1] % 2 == 0);
  2239. GGML_ASSERT(ne[2] % 2 == 0);
  2240. GGML_ASSERT(ne[3] % 2 == 0);
  2241. GGML_ASSERT(nr[0] % 2 == 0 || nr[0] == 1);
  2242. GGML_ASSERT(nr[1] % 2 == 0 || nr[1] == 1);
  2243. GGML_ASSERT(nr[2] % 2 == 0 || nr[2] == 1);
  2244. GGML_ASSERT(nr[3] % 2 == 0 || nr[3] == 1);
  2245. const int64_t ne00 = nr[0] == 1 ? src->ne[0] : src->ne[0] / 2;
  2246. const int64_t ne01 = nr[1] == 1 ? src->ne[1] : src->ne[1] / 2;
  2247. const int64_t ne02 = nr[2] == 1 ? src->ne[2] : src->ne[2] / 2;
  2248. const int64_t ne03 = nr[3] == 1 ? src->ne[3] : src->ne[3] / 2;
  2249. src = ggml_view_4d(ctx, src, ne00, ne01, ne02, ne03, src->nb[1], src->nb[2], src->nb[3], 0);
  2250. }
  2251. ggml_tensor * target = ggml_new_tensor(ctx, type, 4, ne.data());
  2252. ggml_set_name(target, "target");
  2253. ggml_tensor * out = ggml_repeat_back(ctx, src, target);
  2254. ggml_set_name(out, "out");
  2255. return out;
  2256. }
  2257. };
  2258. // GGML_OP_DUP
  2259. struct test_dup : public test_case {
  2260. const ggml_type type;
  2261. const std::array<int64_t, 4> ne;
  2262. const std::array<int64_t, 4> permute;
  2263. bool _use_permute;
  2264. std::string vars() override {
  2265. std::string v = VARS_TO_STR2(type, ne);
  2266. if (_use_permute) v += "," + VAR_TO_STR(permute);
  2267. return v;
  2268. }
  2269. test_dup(ggml_type type = GGML_TYPE_F32,
  2270. std::array<int64_t, 4> ne = {10, 10, 20, 1},
  2271. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  2272. : type(type), ne(ne), permute(permute),
  2273. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  2274. ggml_tensor * build_graph(ggml_context * ctx) override {
  2275. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  2276. ggml_set_param(src);
  2277. ggml_set_name(src, "src");
  2278. if (_use_permute) {
  2279. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  2280. ggml_set_name(src, "src_permuted");
  2281. }
  2282. ggml_tensor * out = ggml_dup(ctx, src);
  2283. ggml_set_name(out, "out");
  2284. return out;
  2285. }
  2286. };
  2287. // GGML_OP_SET
  2288. struct test_set : public test_case {
  2289. const ggml_type type_src;
  2290. const ggml_type type_dst;
  2291. const std::array<int64_t, 4> ne;
  2292. const int dim;
  2293. std::string vars() override {
  2294. return VARS_TO_STR4(type_src, type_dst, ne, dim);
  2295. }
  2296. size_t op_size(ggml_tensor * t) override {
  2297. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  2298. }
  2299. test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  2300. std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
  2301. : type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
  2302. ggml_tensor * build_graph(ggml_context * ctx) override {
  2303. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  2304. ggml_set_param(src);
  2305. ggml_set_name(src, "src");
  2306. auto ne_dst = ne;
  2307. for (int i = 0; i < dim; ++i) {
  2308. ne_dst[i] *= 2;
  2309. }
  2310. ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
  2311. ggml_set_param(dst);
  2312. ggml_set_name(dst, "dst");
  2313. size_t offset = 0;
  2314. for (int i = 0; i < dim; ++i) {
  2315. offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
  2316. }
  2317. ggml_tensor * out = ggml_set(ctx, dst, src,
  2318. // The backward pass requires setting a contiguous region:
  2319. src->nb[1], src->nb[2], src->nb[3], offset);
  2320. ggml_set_name(out, "out");
  2321. return out;
  2322. }
  2323. };
  2324. // GGML_OP_CPY
  2325. struct test_cpy : public test_case {
  2326. const ggml_type type_src;
  2327. const ggml_type type_dst;
  2328. const std::array<int64_t, 4> ne;
  2329. const std::array<int64_t, 4> permute_src;
  2330. const std::array<int64_t, 4> permute_dst;
  2331. bool _src_use_permute;
  2332. bool _dst_use_permute;
  2333. bool _src_transpose;
  2334. std::string vars() override {
  2335. return VARS_TO_STR6(type_src, type_dst, ne, permute_src, permute_dst, _src_transpose);
  2336. }
  2337. double max_nmse_err() override {
  2338. if (type_src == type_dst) {
  2339. return 0.0;
  2340. }
  2341. if (type_dst == GGML_TYPE_Q4_0 || type_dst == GGML_TYPE_Q4_1 || type_dst == GGML_TYPE_IQ4_NL ||
  2342. type_dst == GGML_TYPE_Q5_0 || type_dst == GGML_TYPE_Q5_1 || type_dst == GGML_TYPE_Q8_0) {
  2343. // estimate what the max nmse error would be if one quantized value is
  2344. // off by one. The test values are distributed in [-150,150], so it'll be
  2345. // roughly (150*2.0 / 2^bits)^2, divided by the mean square value of the reference,
  2346. // which is roughly 0.25*150^2 times the number of elements.
  2347. double err_estimate = 1.0f/8.0f * 150.0f;
  2348. if (type_dst == GGML_TYPE_IQ4_NL) {
  2349. // iq4_nl values are a bit more spread out
  2350. err_estimate *= 2.0f;
  2351. }
  2352. if (type_dst == GGML_TYPE_Q5_0 || type_dst == GGML_TYPE_Q5_1) {
  2353. err_estimate /= 2.0f;
  2354. }
  2355. if (type_dst == GGML_TYPE_Q8_0) {
  2356. err_estimate /= 8.0f;
  2357. }
  2358. err_estimate *= err_estimate;
  2359. err_estimate /= (150.0f*150.0f*0.25f)*float(ne[0] * ne[1] * ne[2] * ne[3]);
  2360. return err_estimate;
  2361. }
  2362. return 1e-6;
  2363. }
  2364. size_t op_size(ggml_tensor * t) override {
  2365. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  2366. }
  2367. test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  2368. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  2369. std::array<int64_t, 4> permute_src = {0, 0, 0, 0},
  2370. std::array<int64_t, 4> permute_dst = {0, 0, 0, 0},
  2371. bool transpose_src = false)
  2372. : type_src(type_src), type_dst(type_dst), ne(ne), permute_src(permute_src), permute_dst(permute_dst),
  2373. _src_use_permute(permute_src[0] + permute_src[1] + permute_src[2] + permute_src[3] > 0),
  2374. _dst_use_permute(permute_dst[0] + permute_dst[1] + permute_dst[2] + permute_dst[3] > 0),
  2375. _src_transpose(transpose_src){}
  2376. ggml_tensor * build_graph(ggml_context * ctx) override {
  2377. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  2378. ggml_set_param(src);
  2379. ggml_set_name(src, "src");
  2380. if (_src_use_permute) {
  2381. src = ggml_permute(ctx, src, permute_src[0], permute_src[1], permute_src[2], permute_src[3]);
  2382. ggml_set_name(src, "src_permuted");
  2383. }
  2384. if (_src_transpose) {
  2385. src = ggml_transpose(ctx, src);
  2386. ggml_set_name(src, "src_transposed");
  2387. }
  2388. ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
  2389. ggml_set_name(dst, "dst");
  2390. if (_dst_use_permute) {
  2391. dst = ggml_permute(ctx, dst, permute_dst[0], permute_dst[1], permute_dst[2], permute_dst[3]);
  2392. ggml_set_name(dst, "dst_permuted");
  2393. }
  2394. ggml_tensor * out = ggml_cpy(ctx, src, dst);
  2395. ggml_set_name(out, "out");
  2396. return out;
  2397. }
  2398. void initialize_tensors(ggml_context * ctx) override {
  2399. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2400. // test extended range of values to check if casting between f32 and i32 is consistent
  2401. init_tensor_uniform(t, -150.f, 150.f);
  2402. }
  2403. }
  2404. };
  2405. // GGML_OP_CONT
  2406. struct test_cont : public test_case {
  2407. const ggml_type type;
  2408. const std::array<int64_t, 4> ne;
  2409. bool use_view_slice;
  2410. std::string vars() override {
  2411. return VARS_TO_STR3(type, ne, use_view_slice);
  2412. }
  2413. test_cont(ggml_type type = GGML_TYPE_F32,
  2414. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  2415. bool use_view_slice = false)
  2416. : type(type), ne(ne), use_view_slice(use_view_slice) {}
  2417. ggml_tensor * build_graph(ggml_context * ctx) override {
  2418. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  2419. ggml_set_param(src);
  2420. ggml_set_name(src, "src");
  2421. ggml_tensor * dst;
  2422. if (use_view_slice) {
  2423. dst = ggml_view_4d(ctx, src, src->ne[0], 1, src->ne[2], src->ne[3],
  2424. src->nb[1], src->nb[2], src->nb[3], src->nb[0] * (src->ne[1] - 1));
  2425. ggml_set_name(dst, "src_view_slice");
  2426. } else {
  2427. dst = ggml_transpose(ctx, src);
  2428. ggml_set_name(dst, "src_transposed");
  2429. }
  2430. ggml_tensor * out = ggml_cont(ctx, dst);
  2431. ggml_set_name(out, "out");
  2432. return out;
  2433. }
  2434. };
  2435. // GGML_OP_ADD
  2436. // GGML_OP_SUB
  2437. // GGML_OP_MUL
  2438. // GGML_OP_DIV
  2439. struct test_bin_bcast : public test_case {
  2440. using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
  2441. op_t op;
  2442. const ggml_type type;
  2443. const std::array<int64_t, 4> ne;
  2444. const std::array<int, 4> nr;
  2445. int nf; // number of fused ops, nf == 1 -> single op (no fusion)
  2446. bool run_whole_graph() override { return nf > 1; }
  2447. std::string vars() override {
  2448. return VARS_TO_STR4(type, ne, nr, nf);
  2449. }
  2450. size_t op_size(ggml_tensor * t) override {
  2451. return ggml_nbytes(t) * 3;
  2452. }
  2453. test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
  2454. std::array<int64_t, 4> ne = {10, 10, 1, 1},
  2455. std::array<int, 4> nr = {1, 2, 1, 1},
  2456. int nf = 1)
  2457. : op(op), type(type), ne(ne), nr(nr), nf(nf) {}
  2458. ggml_tensor * build_graph(ggml_context * ctx) override {
  2459. GGML_ASSERT(nf <= 16);
  2460. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  2461. ggml_set_name(a, "a");
  2462. ggml_tensor * b[16];
  2463. for (int i = 0; i < nf; ++i) {
  2464. b[i] = ggml_new_tensor(ctx, type, 4, ne.data());
  2465. ggml_set_name(b[i], (std::string("b") + std::to_string(i)).c_str());
  2466. }
  2467. // The backward pass supports broadcasting only for GGML_ADD:
  2468. const bool grad_supported = op == ggml_add && ggml_are_same_shape(a, b[0]) && nf == 1;
  2469. if (grad_supported) {
  2470. ggml_set_param(a);
  2471. ggml_set_param(b[0]);
  2472. }
  2473. ggml_tensor * out = a;
  2474. for (int i = 0; i < nf; ++i) {
  2475. out = op(ctx, out, b[i]);
  2476. }
  2477. ggml_set_name(out, "out");
  2478. return out;
  2479. }
  2480. void initialize_tensors(ggml_context * ctx) override {
  2481. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2482. if (op == ggml_mul || op == ggml_div) {
  2483. // MUL and DIV have numerical issues around zero:
  2484. init_tensor_uniform(t, 0.9f, 1.1f);
  2485. } else {
  2486. init_tensor_uniform(t);
  2487. }
  2488. }
  2489. }
  2490. float grad_eps() override {
  2491. return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1);
  2492. }
  2493. bool grad_precise() override {
  2494. return op == ggml_div;
  2495. }
  2496. double max_maa_err() override {
  2497. return op == ggml_add ? 1e-4 : 1e-3;
  2498. }
  2499. };
  2500. // GGML_OP_ADD_ID
  2501. struct test_add_id : public test_case {
  2502. const ggml_type type_a;
  2503. const ggml_type type_b;
  2504. const int64_t n_embd;
  2505. const int64_t n_experts;
  2506. const int64_t n_experts_used;
  2507. const int64_t n_token;
  2508. std::string vars() override {
  2509. return VARS_TO_STR6(type_a, type_b, n_embd, n_experts, n_experts_used, n_token);
  2510. }
  2511. size_t op_size(ggml_tensor * t) override {
  2512. return ggml_nbytes(t) + ggml_nbytes(t->src[0]) + ggml_nbytes(t->src[2]);
  2513. }
  2514. test_add_id(ggml_type type_a = GGML_TYPE_F32,
  2515. ggml_type type_b = GGML_TYPE_F32,
  2516. int64_t n_embd = 128,
  2517. int64_t n_experts = 16,
  2518. int64_t n_experts_used = 8,
  2519. int64_t n_token = 10)
  2520. : type_a(type_a), type_b(type_b), n_embd(n_embd),
  2521. n_experts(n_experts), n_experts_used(n_experts_used), n_token(n_token) {}
  2522. ggml_tensor * build_graph(ggml_context * ctx) override {
  2523. ggml_tensor * a = ggml_new_tensor_3d(ctx, type_a, n_embd, n_experts_used, n_token);
  2524. ggml_tensor * b = ggml_new_tensor_2d(ctx, type_b, n_embd, n_experts);
  2525. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_experts, n_token);
  2526. if (n_experts_used != n_experts) {
  2527. ids = ggml_view_2d(ctx, ids, n_experts_used, n_token, ids->nb[1], 0);
  2528. ggml_set_name(ids, "view_of_ids");
  2529. }
  2530. ggml_tensor * out = ggml_add_id(ctx, a, b, ids);
  2531. ggml_set_name(out, "out");
  2532. return out;
  2533. }
  2534. void initialize_tensors(ggml_context * ctx) override {
  2535. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2536. if (t->type == GGML_TYPE_I32) {
  2537. if (ggml_is_view_op(t->op)) { continue; }
  2538. std::random_device rd;
  2539. std::default_random_engine rng(rd());
  2540. // ids
  2541. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2542. std::vector<int32_t> data(t->ne[0]);
  2543. for (int i = 0; i < t->ne[0]; i++) {
  2544. data[i] = i % n_experts;
  2545. }
  2546. std::shuffle(data.begin(), data.end(), rng);
  2547. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2548. }
  2549. } else {
  2550. init_tensor_uniform(t);
  2551. }
  2552. }
  2553. }
  2554. };
  2555. // GGML_OP_ADD1
  2556. struct test_add1 : public test_case {
  2557. const ggml_type type;
  2558. const std::array<int64_t, 4> ne;
  2559. std::string vars() override {
  2560. return VARS_TO_STR2(type, ne);
  2561. }
  2562. test_add1(ggml_type type = GGML_TYPE_F32,
  2563. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2564. : type(type), ne(ne) {}
  2565. ggml_tensor * build_graph(ggml_context * ctx) override {
  2566. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2567. ggml_set_param(a);
  2568. ggml_set_name(a, "a");
  2569. ggml_tensor * b = ggml_new_tensor_1d(ctx, type, 1);
  2570. // ggml_set_param(b); // TODO: implement
  2571. ggml_set_name(b, "b");
  2572. ggml_tensor * out = ggml_add1(ctx, a, b);
  2573. ggml_set_name(out, "out");
  2574. return out;
  2575. }
  2576. float grad_eps() override {
  2577. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  2578. }
  2579. };
  2580. // GGML_OP_SCALE
  2581. struct test_scale : public test_case {
  2582. const ggml_type type;
  2583. const std::array<int64_t, 4> ne;
  2584. float scale;
  2585. float bias;
  2586. bool inplace;
  2587. std::string vars() override {
  2588. return VARS_TO_STR5(type, ne, scale, bias, inplace);
  2589. }
  2590. test_scale(ggml_type type = GGML_TYPE_F32,
  2591. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  2592. float scale = 2.0f,
  2593. float bias = 0.0f,
  2594. bool inplace = false)
  2595. : type(type), ne(ne), scale(scale), bias(bias), inplace(inplace) {}
  2596. ggml_tensor * build_graph(ggml_context * ctx) override {
  2597. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2598. ggml_set_param(a);
  2599. ggml_set_name(a, "a");
  2600. ggml_tensor * out;
  2601. if (inplace) {
  2602. out = ggml_scale_bias_inplace(ctx, a, scale, bias);
  2603. } else {
  2604. out = ggml_scale_bias(ctx, a, scale, bias);
  2605. }
  2606. ggml_set_name(out, "out");
  2607. return out;
  2608. }
  2609. };
  2610. // GGML_OP_SCALE + GGML_UNARY_OP_TANH + GGML_OP_SCALE
  2611. struct test_softcap : public test_case {
  2612. const ggml_type type;
  2613. const std::array<int64_t, 4> ne;
  2614. float softcap;
  2615. std::string op_desc(ggml_tensor * t) override {
  2616. GGML_UNUSED(t);
  2617. return "SOFTCAP";
  2618. }
  2619. bool run_whole_graph() override { return true; }
  2620. std::string vars() override {
  2621. return VARS_TO_STR3(type, ne, softcap);
  2622. }
  2623. test_softcap(ggml_type type = GGML_TYPE_F32,
  2624. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  2625. float softcap = 30.0f)
  2626. : type(type), ne(ne), softcap(softcap) {}
  2627. ggml_tensor * build_graph(ggml_context * ctx) override {
  2628. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2629. ggml_set_param(a);
  2630. ggml_set_name(a, "a");
  2631. ggml_tensor * out = ggml_scale(ctx, ggml_tanh(ctx, ggml_scale(ctx, a, 1.0f / softcap)), softcap);
  2632. ggml_set_name(out, "out");
  2633. return out;
  2634. }
  2635. };
  2636. // GGML_OP_SILU_BACK
  2637. struct test_silu_back : public test_case {
  2638. const ggml_type type;
  2639. const std::array<int64_t, 4> ne;
  2640. float eps;
  2641. std::string vars() override {
  2642. return VARS_TO_STR3(type, ne, eps);
  2643. }
  2644. test_silu_back(ggml_type type = GGML_TYPE_F32,
  2645. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2646. float eps = 1e-6f)
  2647. : type(type), ne(ne), eps(eps) {}
  2648. ggml_tensor * build_graph(ggml_context * ctx) override {
  2649. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2650. ggml_set_name(a, "a");
  2651. ggml_tensor * grad = ggml_new_tensor(ctx, type, 4, ne.data());
  2652. ggml_set_name(grad, "grad");
  2653. ggml_tensor * out = ggml_silu_back(ctx, a, grad);
  2654. ggml_set_name(out, "out");
  2655. return out;
  2656. }
  2657. bool grad_precise() override {
  2658. return true;
  2659. }
  2660. };
  2661. // GGML_OP_NORM
  2662. struct test_norm : public test_case {
  2663. const ggml_type type;
  2664. const std::array<int64_t, 4> ne;
  2665. const bool v; // whether a is a non-contiguous view
  2666. const float eps;
  2667. std::string vars() override {
  2668. return VARS_TO_STR4(type, ne, v, eps);
  2669. }
  2670. test_norm(ggml_type type = GGML_TYPE_F32,
  2671. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2672. bool v = false,
  2673. float eps = 1e-6f)
  2674. : type(type), ne(ne), v(v), eps(eps) {}
  2675. ggml_tensor * build_graph(ggml_context * ctx) override {
  2676. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2677. ggml_set_name(a, "a");
  2678. if (v) {
  2679. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  2680. ggml_set_name(a, "view of a");
  2681. }
  2682. ggml_tensor * out = ggml_norm(ctx, a, eps);
  2683. ggml_set_name(out, "out");
  2684. return out;
  2685. }
  2686. };
  2687. // GGML_OP_NORM + GGML_OP_MUL + GGML_OP_ADD
  2688. struct test_norm_mul_add : public test_case {
  2689. const ggml_type type;
  2690. const std::array<int64_t, 4> ne;
  2691. float eps;
  2692. const bool broadcast;
  2693. std::string op_desc(ggml_tensor * t) override {
  2694. GGML_UNUSED(t);
  2695. return "NORM_MUL_ADD";
  2696. }
  2697. bool run_whole_graph() override { return true; }
  2698. std::string vars() override {
  2699. return VARS_TO_STR4(type, ne, eps, broadcast);
  2700. }
  2701. test_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  2702. std::array<int64_t, 4> ne = {128, 2, 1, 1},
  2703. float eps = 1e-5f,
  2704. bool broadcast = false)
  2705. : type(type), ne(ne), eps(eps), broadcast(broadcast) {}
  2706. ggml_tensor * build_graph(ggml_context * ctx) override {
  2707. std::array<int64_t, 4> broadcast_dims = {ne[0], ne[1] * 2, ne[2] * 2, ne[3] * 2};
  2708. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data());
  2709. ggml_tensor * w = ggml_new_tensor(ctx, type, 4, ne.data());
  2710. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2711. ggml_set_param(a); ggml_set_param(w); ggml_set_param(b);
  2712. ggml_set_name(a, "a"); ggml_set_name(w, "w"); ggml_set_name(b, "b");
  2713. // Use a, w and b early to avoid OP_NONE in graph
  2714. a = ggml_add(ctx, ggml_add(ctx, a, w), b);
  2715. ggml_tensor * n = ggml_norm(ctx, a, eps);
  2716. ggml_tensor * m = ggml_mul(ctx, n, w);
  2717. ggml_tensor * out = ggml_add(ctx, m, b);
  2718. ggml_set_name(out, "out");
  2719. return out;
  2720. }
  2721. };
  2722. // GGML_OP_RMS_NORM
  2723. struct test_rms_norm : public test_case {
  2724. const ggml_type type;
  2725. const std::array<int64_t, 4> ne;
  2726. const bool v; // whether a is a non-contiguous view
  2727. const float eps;
  2728. const bool inplace; // whether to do the operation inplace
  2729. std::string vars() override {
  2730. return VARS_TO_STR5(type, ne, v, eps, inplace);
  2731. }
  2732. test_rms_norm(ggml_type type = GGML_TYPE_F32,
  2733. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2734. bool v = false,
  2735. float eps = 1e-6f,
  2736. bool inplace = false)
  2737. : type(type), ne(ne), v(v), eps(eps), inplace(inplace) {}
  2738. ggml_tensor * build_graph(ggml_context * ctx) override {
  2739. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2740. ggml_set_param(a);
  2741. ggml_set_name(a, "a");
  2742. if (v) {
  2743. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  2744. ggml_set_name(a, "view of a");
  2745. }
  2746. ggml_tensor * out;
  2747. if (inplace) {
  2748. out = ggml_rms_norm_inplace(ctx, a, eps);
  2749. } else {
  2750. out = ggml_rms_norm(ctx, a, eps);
  2751. }
  2752. ggml_set_name(out, "out");
  2753. return out;
  2754. }
  2755. void initialize_tensors(ggml_context * ctx) override {
  2756. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2757. init_tensor_uniform(t, -10.f, 10.f);
  2758. }
  2759. }
  2760. float grad_eps() override {
  2761. return 1.0f;
  2762. }
  2763. bool grad_precise() override {
  2764. return true;
  2765. }
  2766. };
  2767. // GGML_OP_RMS_NORM_BACK
  2768. struct test_rms_norm_back : public test_case {
  2769. const ggml_type type;
  2770. const std::array<int64_t, 4> ne;
  2771. const float eps;
  2772. std::string vars() override {
  2773. return VARS_TO_STR3(type, ne, eps);
  2774. }
  2775. test_rms_norm_back(ggml_type type = GGML_TYPE_F32,
  2776. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2777. float eps = 1e-6f)
  2778. : type(type), ne(ne), eps(eps) {}
  2779. ggml_tensor * build_graph(ggml_context * ctx) override {
  2780. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2781. ggml_set_name(a, "a");
  2782. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2783. ggml_set_name(b, "b");
  2784. ggml_tensor * out = ggml_rms_norm_back(ctx, a, b, eps);
  2785. ggml_set_name(out, "out");
  2786. return out;
  2787. }
  2788. void initialize_tensors(ggml_context * ctx) override {
  2789. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2790. init_tensor_uniform(t, -10.f, 10.f);
  2791. }
  2792. }
  2793. };
  2794. // GGML_OP_RMS_NORM + GGML_OP_MUL + GGML_OP_ADD
  2795. struct test_rms_norm_mul_add : public test_case {
  2796. const ggml_type type;
  2797. const std::array<int64_t, 4> ne;
  2798. const float eps;
  2799. const bool broadcast;
  2800. const bool multi_add; // test a sequence of adds feeding into rms_norm
  2801. std::string op_desc(ggml_tensor * t) override {
  2802. GGML_UNUSED(t);
  2803. return "RMS_NORM_MUL_ADD";
  2804. }
  2805. bool run_whole_graph() override { return true; }
  2806. std::string vars() override {
  2807. return VARS_TO_STR5(type, ne, eps, broadcast, multi_add);
  2808. }
  2809. test_rms_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  2810. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2811. float eps = 1e-6f, bool broadcast = false, bool multi_add = false)
  2812. : type(type), ne(ne), eps(eps), broadcast(broadcast), multi_add(multi_add) {}
  2813. ggml_tensor * build_graph(ggml_context * ctx) override {
  2814. std::array<int64_t, 4> broadcast_dims = {ne[0]*2, ne[1]*3, ne[2]*3, ne[3]*4};
  2815. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data());
  2816. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2817. ggml_tensor * c = ggml_new_tensor(ctx, type, 4, ne.data());
  2818. ggml_set_param(a);
  2819. ggml_set_name(a, "a");
  2820. ggml_set_param(b);
  2821. ggml_set_name(b, "b");
  2822. ggml_set_param(c);
  2823. ggml_set_name(c, "c");
  2824. // Use a, b and c early, so we don't end up with an OP_NONE between rms_norm and mul
  2825. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  2826. if (multi_add) {
  2827. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  2828. }
  2829. ggml_tensor * out = ggml_add(ctx, ggml_mul(ctx, ggml_rms_norm(ctx, a, eps), b), c);
  2830. ggml_set_name(out, "out");
  2831. return out;
  2832. }
  2833. void initialize_tensors(ggml_context * ctx) override {
  2834. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2835. init_tensor_uniform(t, -10.f, 10.f);
  2836. }
  2837. }
  2838. float grad_eps() override {
  2839. return 1.0f;
  2840. }
  2841. bool grad_precise() override {
  2842. return true;
  2843. }
  2844. };
  2845. // GGML_OP_ADD + GGML_OP_RMS_NORM (fused operation)
  2846. struct test_add_rms_norm : public test_case {
  2847. const ggml_type type;
  2848. const std::array<int64_t, 4> ne;
  2849. const float eps;
  2850. const bool broadcast;
  2851. std::string op_desc(ggml_tensor * t) override {
  2852. GGML_UNUSED(t);
  2853. return "ADD_RMS_NORM";
  2854. }
  2855. bool run_whole_graph() override { return true; }
  2856. std::string vars() override {
  2857. return VARS_TO_STR4(type, ne, eps, broadcast);
  2858. }
  2859. test_add_rms_norm(ggml_type type = GGML_TYPE_F32,
  2860. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2861. float eps = 1e-6f, bool broadcast = false)
  2862. : type(type), ne(ne), eps(eps), broadcast(broadcast) {}
  2863. ggml_tensor * build_graph(ggml_context * ctx) override {
  2864. std::array<int64_t, 4> broadcast_dims = {ne[0]*2, ne[1]*3, ne[2]*3, ne[3]*4};
  2865. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data());
  2866. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2867. ggml_set_param(a);
  2868. ggml_set_name(a, "a");
  2869. ggml_set_param(b);
  2870. ggml_set_name(b, "b");
  2871. // ADD operation followed by RMS_NORM
  2872. ggml_tensor * add_result = ggml_add(ctx, a, b);
  2873. ggml_set_name(add_result, "add_result");
  2874. ggml_tensor * out = ggml_rms_norm(ctx, add_result, eps);
  2875. ggml_set_name(out, "out");
  2876. return out;
  2877. }
  2878. void initialize_tensors(ggml_context * ctx) override {
  2879. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2880. init_tensor_uniform(t, -10.f, 10.f);
  2881. }
  2882. }
  2883. float grad_eps() override {
  2884. return 1.0f;
  2885. }
  2886. bool grad_precise() override {
  2887. return true;
  2888. }
  2889. };
  2890. // GGML_OP_SSM_CONV
  2891. struct test_ssm_conv : public test_case {
  2892. const ggml_type type;
  2893. const std::array<int64_t, 4> ne_a;
  2894. const std::array<int64_t, 4> ne_b;
  2895. std::string vars() override {
  2896. return VARS_TO_STR3(type, ne_a, ne_b);
  2897. }
  2898. test_ssm_conv(ggml_type type = GGML_TYPE_F32,
  2899. std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
  2900. std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
  2901. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  2902. ggml_tensor * build_graph(ggml_context * ctx) override {
  2903. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2904. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2905. ggml_tensor * out = ggml_ssm_conv(ctx, a, b);
  2906. return out;
  2907. }
  2908. };
  2909. // GGML_OP_SSM_SCAN
  2910. struct test_ssm_scan : public test_case {
  2911. const ggml_type type;
  2912. const int64_t d_state;
  2913. const int64_t head_dim;
  2914. const int64_t n_head;
  2915. const int64_t n_group;
  2916. const int64_t n_seq_tokens;
  2917. const int64_t n_seqs;
  2918. std::string vars() override {
  2919. return VARS_TO_STR7(type, d_state, head_dim, n_head, n_group, n_seq_tokens, n_seqs);
  2920. }
  2921. test_ssm_scan(ggml_type type = GGML_TYPE_F32,
  2922. int64_t d_state = 32,
  2923. int64_t head_dim = 1, // non-zero for Mamba-2
  2924. int64_t n_head = 32,
  2925. int64_t n_group = 1,
  2926. int64_t n_seq_tokens = 32,
  2927. int64_t n_seqs = 32)
  2928. : type(type), d_state(d_state), head_dim(head_dim), n_head(n_head), n_group(n_group), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2929. ggml_tensor * build_graph(ggml_context * ctx) override {
  2930. ggml_tensor * s = ggml_new_tensor_4d(ctx, type, d_state, head_dim, n_head, n_seqs);
  2931. ggml_tensor * x = ggml_new_tensor_4d(ctx, type, head_dim, n_head, n_seq_tokens, n_seqs);
  2932. ggml_tensor * dt = ggml_new_tensor_3d(ctx, type, n_head, n_seq_tokens, n_seqs);
  2933. ggml_tensor * A = ggml_new_tensor_2d(ctx, type, (head_dim > 1) ? 1 : d_state, n_head);
  2934. ggml_tensor * B = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  2935. ggml_tensor * C = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  2936. ggml_tensor * ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_seqs);
  2937. ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C, ids);
  2938. return out;
  2939. }
  2940. // similar to test_mul_mat_id
  2941. void initialize_tensors(ggml_context * ctx) override {
  2942. std::random_device rd;
  2943. std::default_random_engine rng(rd());
  2944. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2945. if (t->type == GGML_TYPE_I32) {
  2946. if (ggml_is_view_op(t->op)) { continue; }
  2947. // ids
  2948. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2949. std::vector<int32_t> data(t->ne[0]);
  2950. for (int i = 0; i < t->ne[0]; i++) {
  2951. data[i] = i;
  2952. }
  2953. std::shuffle(data.begin(), data.end(), rng);
  2954. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2955. }
  2956. } else {
  2957. init_tensor_uniform(t);
  2958. }
  2959. }
  2960. }
  2961. };
  2962. // GGML_OP_RWKV_WKV6
  2963. struct test_rwkv_wkv6 : public test_case {
  2964. const ggml_type type;
  2965. const int64_t head_count;
  2966. const int64_t head_size;
  2967. const int64_t n_seq_tokens;
  2968. const int64_t n_seqs;
  2969. std::string vars() override {
  2970. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2971. }
  2972. test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32,
  2973. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2974. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2975. ggml_tensor * build_graph(ggml_context * ctx) override {
  2976. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2977. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2978. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2979. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2980. ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
  2981. ggml_tensor * td = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2982. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2983. ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s);
  2984. return out;
  2985. }
  2986. };
  2987. // GGML_OP_GATED_LINEAR_ATTN
  2988. struct test_gla : public test_case {
  2989. const ggml_type type;
  2990. const int64_t head_count;
  2991. const int64_t head_size;
  2992. const int64_t n_seq_tokens;
  2993. const int64_t n_seqs;
  2994. std::string vars() override {
  2995. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2996. }
  2997. test_gla(ggml_type type = GGML_TYPE_F32,
  2998. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2999. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  3000. ggml_tensor * build_graph(ggml_context * ctx) override {
  3001. const int64_t n_tokens = n_seq_tokens * n_seqs;
  3002. ggml_tensor * q = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  3003. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  3004. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  3005. ggml_tensor * g = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  3006. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  3007. ggml_tensor * out = ggml_gated_linear_attn(ctx, k, v, q, g, s, pow(head_size, -0.5));
  3008. return out;
  3009. }
  3010. };
  3011. // GGML_OP_RWKV_WKV7
  3012. struct test_rwkv_wkv7 : public test_case {
  3013. const ggml_type type;
  3014. const int64_t head_count;
  3015. const int64_t head_size;
  3016. const int64_t n_seq_tokens;
  3017. const int64_t n_seqs;
  3018. std::string vars() override {
  3019. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  3020. }
  3021. test_rwkv_wkv7(ggml_type type = GGML_TYPE_F32,
  3022. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  3023. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  3024. ggml_tensor * build_graph(ggml_context * ctx) override {
  3025. const int64_t n_tokens = n_seq_tokens * n_seqs;
  3026. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  3027. ggml_tensor * w = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  3028. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  3029. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  3030. ggml_tensor * a = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  3031. ggml_tensor * b = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  3032. // Outputs may become NaN with long seqlen without these normalization
  3033. a = ggml_l2_norm(ctx, a, 1e-7F);
  3034. b = ggml_l2_norm(ctx, b, 1e-7F);
  3035. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  3036. ggml_tensor * out = ggml_rwkv_wkv7(ctx, r, w, k, v, a, b, s);
  3037. return out;
  3038. }
  3039. };
  3040. // GGML_OP_MUL_MAT
  3041. struct test_mul_mat : public test_case {
  3042. const ggml_type type_a;
  3043. const ggml_type type_b;
  3044. const int64_t m;
  3045. const int64_t n;
  3046. const int64_t k;
  3047. const std::array<int64_t, 2> bs; // dims 3 and 4
  3048. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  3049. const std::array<int64_t, 4> per; // permutation of dimensions
  3050. const int64_t k_v; // size of k in memory, resulting in a non-contiguous view for k_v > k, no view for k_v == 0
  3051. const uint32_t o; // number of outputs
  3052. std::string vars() override {
  3053. return VARS_TO_STR10(type_a, type_b, m, n, k, bs, nr, per, k_v, o);
  3054. }
  3055. double max_nmse_err() override {
  3056. return 5e-4;
  3057. }
  3058. int64_t grad_nmax() override {
  3059. return 20000;
  3060. }
  3061. uint64_t op_flops(ggml_tensor * t) override {
  3062. GGML_UNUSED(t);
  3063. return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
  3064. }
  3065. test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  3066. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  3067. std::array<int64_t, 2> bs = {10, 10},
  3068. std::array<int64_t, 2> nr = {2, 2},
  3069. std::array<int64_t, 4> per = {0, 1, 2, 3},
  3070. int64_t k_v = 0, uint32_t o = 1)
  3071. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per), k_v(k_v), o(o) {}
  3072. ggml_tensor * build_graph(ggml_context * ctx) override {
  3073. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  3074. ggml_tensor * a;
  3075. ggml_tensor * b;
  3076. const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
  3077. if (npermuted > 0) {
  3078. GGML_ASSERT(npermuted == 2);
  3079. GGML_ASSERT(k_v == 0); // not handled
  3080. GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
  3081. GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
  3082. // Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k.
  3083. const int64_t ne_a[4] = {k, m, bs[0], bs[1]};
  3084. const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]};
  3085. a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
  3086. b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
  3087. if (!ggml_is_quantized(type_a)) {
  3088. if (bs[1] == 1 && nr[1] == 1) {
  3089. ggml_set_param(a);
  3090. }
  3091. ggml_set_param(b);
  3092. }
  3093. ggml_set_name(a, "a");
  3094. ggml_set_name(b, "b");
  3095. a = ggml_permute(ctx, a, per[0], per[1], per[2], per[3]);
  3096. b = ggml_permute(ctx, b, per[0], per[1], per[2], per[3]);
  3097. ggml_set_name(a, "a_permuted");
  3098. ggml_set_name(b, "b_permuted");
  3099. } else {
  3100. const int64_t k_physical = k_v == 0 ? k : k_v;
  3101. a = ggml_new_tensor_4d(ctx, type_a, k_physical, m, bs[0], bs[1]);
  3102. b = ggml_new_tensor_4d(ctx, type_b, k_physical, n, bs[0]*nr[0], bs[1]*nr[1]);
  3103. if (!ggml_is_quantized(type_a)) {
  3104. if (bs[1] == 1 && nr[1] == 1) {
  3105. ggml_set_param(a);
  3106. }
  3107. ggml_set_param(b);
  3108. }
  3109. if (k_v != 0) {
  3110. GGML_ASSERT(k_v > k);
  3111. a = ggml_view_4d(ctx, a, k, m, bs[0], bs[1], a->nb[1], a->nb[2], a->nb[3], 0);
  3112. b = ggml_view_4d(ctx, b, k, n, bs[0]*nr[0], bs[1]*nr[1], b->nb[1], b->nb[2], b->nb[3], 0);
  3113. }
  3114. ggml_set_name(a, "a");
  3115. ggml_set_name(b, "b");
  3116. }
  3117. ggml_tensor * out = ggml_mul_mat(ctx, a, b);
  3118. ggml_set_name(out, "out");
  3119. for (uint32_t i = 1; i < o; ++i) {
  3120. ggml_tensor * out2 = ggml_mul_mat(ctx, a, b);
  3121. ggml_set_name(out2, "out2");
  3122. out = ggml_add(ctx, out, out2);
  3123. }
  3124. return out;
  3125. }
  3126. bool run_whole_graph() override { return o > 1; }
  3127. std::string op_desc(ggml_tensor * t) override {
  3128. GGML_UNUSED(t);
  3129. return ggml_op_name(GGML_OP_MUL_MAT);
  3130. }
  3131. };
  3132. static void init_mul_mat_id_tensors(ggml_context * ctx, int n_mats) {
  3133. std::random_device rd;
  3134. std::default_random_engine rng(rd());
  3135. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3136. if (t->type == GGML_TYPE_I32) {
  3137. if (ggml_is_view_op(t->op)) { continue; }
  3138. // ids
  3139. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  3140. std::vector<int32_t> data(t->ne[0]);
  3141. for (int i = 0; i < t->ne[0]; i++) {
  3142. data[i] = i % n_mats;
  3143. }
  3144. std::shuffle(data.begin(), data.end(), rng);
  3145. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  3146. }
  3147. } else {
  3148. init_tensor_uniform(t);
  3149. }
  3150. }
  3151. }
  3152. // GGML_OP_MUL_MAT_ID
  3153. struct test_mul_mat_id : public test_case {
  3154. const ggml_type type_a;
  3155. const ggml_type type_b;
  3156. const int n_mats;
  3157. const int n_used;
  3158. const bool b; // broadcast b matrix
  3159. const int64_t m;
  3160. const int64_t n;
  3161. const int64_t k;
  3162. std::string vars() override {
  3163. return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k);
  3164. }
  3165. double max_nmse_err() override {
  3166. return 5e-4;
  3167. }
  3168. uint64_t op_flops(ggml_tensor * t) override {
  3169. GGML_UNUSED(t);
  3170. return 2 * m * k * n * n_used;
  3171. }
  3172. test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  3173. int n_mats = 8, int n_used = 2, bool b = false,
  3174. int64_t m = 32, int64_t n = 32, int64_t k = 32)
  3175. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  3176. m(m), n(n), k(k) {
  3177. GGML_ASSERT(n_used <= n_mats);
  3178. }
  3179. ggml_tensor * build_graph(ggml_context * ctx) override {
  3180. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  3181. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  3182. ggml_set_name(as, "as");
  3183. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  3184. ggml_set_name(ids, "ids");
  3185. if (n_used != n_mats) {
  3186. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  3187. ggml_set_name(ids, "view_of_ids");
  3188. }
  3189. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  3190. ggml_set_name(b, "b");
  3191. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  3192. ggml_set_name(out, "out");
  3193. return out;
  3194. }
  3195. void initialize_tensors(ggml_context * ctx) override {
  3196. init_mul_mat_id_tensors(ctx, n_mats);
  3197. }
  3198. };
  3199. // GGML_OP_MUL_MAT_ID + GGML_OP_ADD or GGML_OP_MUL
  3200. struct test_mul_mat_id_fusion : public test_case {
  3201. const ggml_type type_a;
  3202. const ggml_type type_b;
  3203. const int n_mats;
  3204. const int n_used;
  3205. const bool b; // broadcast b matrix
  3206. const int64_t m;
  3207. const int64_t n;
  3208. const int64_t k;
  3209. const uint32_t o; // number of outputs
  3210. const bool mul;
  3211. std::string vars() override {
  3212. return VARS_TO_STR10(type_a, type_b, n_mats, n_used, b, m, n, k, o, mul);
  3213. }
  3214. double max_nmse_err() override {
  3215. return 5e-4;
  3216. }
  3217. uint64_t op_flops(ggml_tensor * t) override {
  3218. GGML_UNUSED(t);
  3219. return 2 * m * k * n * n_used;
  3220. }
  3221. test_mul_mat_id_fusion(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  3222. int n_mats = 8, int n_used = 2, bool b = false,
  3223. int64_t m = 32, int64_t n = 32, int64_t k = 32, uint32_t o = 1, bool mul = false)
  3224. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  3225. m(m), n(n), k(k), o(o), mul(mul) {
  3226. GGML_ASSERT(n_used <= n_mats);
  3227. }
  3228. ggml_tensor * build_graph(ggml_context * ctx) override {
  3229. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  3230. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  3231. ggml_set_name(as, "as");
  3232. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  3233. ggml_set_name(ids, "ids");
  3234. if (n_used != n_mats) {
  3235. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  3236. ggml_set_name(ids, "view_of_ids");
  3237. }
  3238. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  3239. ggml_set_name(b, "b");
  3240. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  3241. ggml_set_name(out, "out");
  3242. for (uint32_t i = 1; i < o; ++i) {
  3243. ggml_tensor * a2 = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  3244. ggml_tensor * out2 = ggml_mul_mat_id(ctx, a2, b, ids);
  3245. ggml_set_name(out2, "out2");
  3246. out = ggml_add(ctx, out, out2);
  3247. }
  3248. if (mul) {
  3249. std::array<int64_t, 4> ne { 1, out->ne[1], out->ne[2], out->ne[3] };
  3250. ne[0] = 1;
  3251. ggml_tensor * m = ggml_new_tensor(ctx, out->type, 4, ne.data());
  3252. out = ggml_mul(ctx, out, m);
  3253. }
  3254. return out;
  3255. }
  3256. void initialize_tensors(ggml_context * ctx) override {
  3257. init_mul_mat_id_tensors(ctx, n_mats);
  3258. }
  3259. bool run_whole_graph() override { return true; }
  3260. std::string op_desc(ggml_tensor * t) override {
  3261. GGML_UNUSED(t);
  3262. return "MUL_MAT_ID_FUSION";
  3263. }
  3264. };
  3265. // GGML_OP_OUT_PROD
  3266. struct test_out_prod : public test_case {
  3267. const ggml_type type_a;
  3268. const ggml_type type_b;
  3269. const int64_t m;
  3270. const int64_t n;
  3271. const int64_t k;
  3272. const std::array<int64_t, 2> bs; // dims 3 and 4
  3273. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  3274. const bool trans_b;
  3275. std::string vars() override {
  3276. return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, trans_b);
  3277. }
  3278. double max_nmse_err() override {
  3279. return 5e-4;
  3280. }
  3281. test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  3282. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  3283. std::array<int64_t, 2> bs = {10, 10},
  3284. std::array<int64_t, 2> nr = {2, 2},
  3285. bool trans_b = false)
  3286. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), trans_b(trans_b) {}
  3287. ggml_tensor * build_graph(ggml_context * ctx) override {
  3288. ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]);
  3289. ggml_set_name(a, "a");
  3290. ggml_tensor * b;
  3291. if (trans_b) {
  3292. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  3293. b = ggml_transpose(ctx, b);
  3294. } else {
  3295. b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0]*nr[0], bs[1]*nr[1]);
  3296. }
  3297. ggml_set_name(b, "b");
  3298. ggml_tensor * out = ggml_out_prod(ctx, a, b);
  3299. ggml_set_name(out, "out");
  3300. return out;
  3301. }
  3302. };
  3303. // GGML_OP_SQR
  3304. struct test_sqr : public test_case {
  3305. const ggml_type type;
  3306. const std::array<int64_t, 4> ne;
  3307. std::string vars() override {
  3308. return VARS_TO_STR2(type, ne);
  3309. }
  3310. test_sqr(ggml_type type = GGML_TYPE_F32,
  3311. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3312. : type(type), ne(ne) {}
  3313. ggml_tensor * build_graph(ggml_context * ctx) override {
  3314. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3315. ggml_set_param(a);
  3316. ggml_set_name(a, "a");
  3317. ggml_tensor * out = ggml_sqr(ctx, a);
  3318. ggml_set_name(out, "out");
  3319. return out;
  3320. }
  3321. float grad_eps() override {
  3322. return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum.
  3323. }
  3324. };
  3325. // GGML_OP_SQRT
  3326. struct test_sqrt : public test_case {
  3327. const ggml_type type;
  3328. const std::array<int64_t, 4> ne;
  3329. std::string vars() override {
  3330. return VARS_TO_STR2(type, ne);
  3331. }
  3332. test_sqrt(ggml_type type = GGML_TYPE_F32,
  3333. std::array<int64_t, 4> ne = {10, 3, 3, 2})
  3334. : type(type), ne(ne) {}
  3335. ggml_tensor * build_graph(ggml_context * ctx) override {
  3336. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3337. ggml_set_param(a);
  3338. ggml_set_name(a, "a");
  3339. ggml_tensor * out = ggml_sqrt(ctx, a);
  3340. ggml_set_name(out, "out");
  3341. return out;
  3342. }
  3343. void initialize_tensors(ggml_context * ctx) override {
  3344. // fill with positive values
  3345. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3346. init_tensor_uniform(t, 50.0f, 100.0f);
  3347. }
  3348. }
  3349. float grad_eps() override {
  3350. return 20.0f;
  3351. }
  3352. bool grad_precise() override {
  3353. return true;
  3354. }
  3355. };
  3356. // GGML_OP_LOG
  3357. struct test_log : public test_case {
  3358. const ggml_type type;
  3359. const std::array<int64_t, 4> ne;
  3360. std::string vars() override {
  3361. return VARS_TO_STR2(type, ne);
  3362. }
  3363. test_log(ggml_type type = GGML_TYPE_F32,
  3364. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3365. : type(type), ne(ne) {}
  3366. ggml_tensor * build_graph(ggml_context * ctx) override {
  3367. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3368. ggml_set_param(a);
  3369. ggml_set_name(a, "a");
  3370. ggml_tensor * out = ggml_log(ctx, a);
  3371. ggml_set_name(out, "out");
  3372. return out;
  3373. }
  3374. void initialize_tensors(ggml_context * ctx) override {
  3375. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3376. // log(1) == 0, cluster values there to keep the sum low for better precision in the backward pass:
  3377. init_tensor_uniform(t, 0.9f, 1.1f);
  3378. }
  3379. }
  3380. bool grad_precise() override {
  3381. return true;
  3382. }
  3383. };
  3384. // GGML_OP_SIN
  3385. struct test_sin : public test_case {
  3386. const ggml_type type;
  3387. const std::array<int64_t, 4> ne;
  3388. std::string vars() override {
  3389. return VARS_TO_STR2(type, ne);
  3390. }
  3391. test_sin(ggml_type type = GGML_TYPE_F32,
  3392. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3393. : type(type), ne(ne) {}
  3394. ggml_tensor * build_graph(ggml_context * ctx) override {
  3395. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3396. ggml_set_param(a);
  3397. ggml_set_name(a, "a");
  3398. ggml_tensor * out = ggml_sin(ctx, a);
  3399. ggml_set_name(out, "out");
  3400. return out;
  3401. }
  3402. void initialize_tensors(ggml_context * ctx) override {
  3403. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3404. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  3405. }
  3406. }
  3407. double max_maa_err() override {
  3408. return 1e-3;
  3409. }
  3410. float grad_eps() override {
  3411. return 0.2f;
  3412. }
  3413. bool grad_precise() override {
  3414. return true;
  3415. }
  3416. };
  3417. // GGML_OP_COS
  3418. struct test_cos : public test_case {
  3419. const ggml_type type;
  3420. const std::array<int64_t, 4> ne;
  3421. std::string vars() override {
  3422. return VARS_TO_STR2(type, ne);
  3423. }
  3424. test_cos(ggml_type type = GGML_TYPE_F32,
  3425. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3426. : type(type), ne(ne) {}
  3427. ggml_tensor * build_graph(ggml_context * ctx) override {
  3428. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3429. ggml_set_param(a);
  3430. ggml_set_name(a, "a");
  3431. ggml_tensor * out = ggml_cos(ctx, a);
  3432. ggml_set_name(out, "out");
  3433. return out;
  3434. }
  3435. void initialize_tensors(ggml_context * ctx) override {
  3436. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3437. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  3438. }
  3439. }
  3440. double max_maa_err() override {
  3441. return 1e-3;
  3442. }
  3443. float grad_eps() override {
  3444. return 0.2f;
  3445. }
  3446. bool grad_precise() override {
  3447. return true;
  3448. }
  3449. };
  3450. // GGML_OP_CLAMP
  3451. struct test_clamp : public test_case {
  3452. const ggml_type type;
  3453. const std::array<int64_t, 4> ne;
  3454. float min;
  3455. float max;
  3456. std::string vars() override {
  3457. return VARS_TO_STR4(type, ne, min, max);
  3458. }
  3459. test_clamp(ggml_type type = GGML_TYPE_F32,
  3460. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3461. float min = -0.5f, float max = 0.5f)
  3462. : type(type), ne(ne), min(min), max(max) {}
  3463. ggml_tensor * build_graph(ggml_context * ctx) override {
  3464. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3465. ggml_set_name(a, "a");
  3466. ggml_tensor * out = ggml_clamp(ctx, a, min, max);
  3467. ggml_set_name(out, "out");
  3468. return out;
  3469. }
  3470. float grad_eps() override {
  3471. return 1e-2f;
  3472. }
  3473. std::vector<float> grad_expect() override {
  3474. return {0.0f, 1.0f};
  3475. }
  3476. };
  3477. // GGML_OP_FLOOR
  3478. struct test_floor : public test_case {
  3479. const ggml_type type;
  3480. const std::array<int64_t, 4> ne;
  3481. std::string vars() override {
  3482. return VARS_TO_STR2(type, ne);
  3483. }
  3484. test_floor(ggml_type type = GGML_TYPE_F32,
  3485. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3486. : type(type), ne(ne) {}
  3487. ggml_tensor * build_graph(ggml_context * ctx) override {
  3488. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3489. ggml_set_param(a);
  3490. ggml_set_name(a, "a");
  3491. ggml_tensor * out = ggml_floor(ctx, a);
  3492. ggml_set_name(out, "out");
  3493. return out;
  3494. }
  3495. void initialize_tensors(ggml_context * ctx) override {
  3496. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3497. init_tensor_uniform(t, -10.0f, 10.0f);
  3498. }
  3499. }
  3500. };
  3501. // GGML_OP_CEIL
  3502. struct test_ceil : public test_case {
  3503. const ggml_type type;
  3504. const std::array<int64_t, 4> ne;
  3505. std::string vars() override {
  3506. return VARS_TO_STR2(type, ne);
  3507. }
  3508. test_ceil(ggml_type type = GGML_TYPE_F32,
  3509. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3510. : type(type), ne(ne) {}
  3511. ggml_tensor * build_graph(ggml_context * ctx) override {
  3512. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3513. ggml_set_param(a);
  3514. ggml_set_name(a, "a");
  3515. ggml_tensor * out = ggml_ceil(ctx, a);
  3516. ggml_set_name(out, "out");
  3517. return out;
  3518. }
  3519. void initialize_tensors(ggml_context * ctx) override {
  3520. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3521. init_tensor_uniform(t, -10.0f, 10.0f);
  3522. }
  3523. }
  3524. };
  3525. // GGML_OP_ROUND
  3526. struct test_round : public test_case {
  3527. const ggml_type type;
  3528. const std::array<int64_t, 4> ne;
  3529. std::string vars() override {
  3530. return VARS_TO_STR2(type, ne);
  3531. }
  3532. test_round(ggml_type type = GGML_TYPE_F32,
  3533. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3534. : type(type), ne(ne) {}
  3535. ggml_tensor * build_graph(ggml_context * ctx) override {
  3536. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3537. ggml_set_param(a);
  3538. ggml_set_name(a, "a");
  3539. ggml_tensor * out = ggml_round(ctx, a);
  3540. ggml_set_name(out, "out");
  3541. return out;
  3542. }
  3543. void initialize_tensors(ggml_context * ctx) override {
  3544. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3545. init_tensor_uniform(t, -10.0f, 10.0f);
  3546. }
  3547. }
  3548. };
  3549. // GGML_OP_TRUNC
  3550. struct test_trunc : public test_case {
  3551. const ggml_type type;
  3552. const std::array<int64_t, 4> ne;
  3553. std::string vars() override {
  3554. return VARS_TO_STR2(type, ne);
  3555. }
  3556. test_trunc(ggml_type type = GGML_TYPE_F32,
  3557. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3558. : type(type), ne(ne) {}
  3559. ggml_tensor * build_graph(ggml_context * ctx) override {
  3560. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3561. ggml_set_param(a);
  3562. ggml_set_name(a, "a");
  3563. ggml_tensor * out = ggml_trunc(ctx, a);
  3564. ggml_set_name(out, "out");
  3565. return out;
  3566. }
  3567. void initialize_tensors(ggml_context * ctx) override {
  3568. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3569. init_tensor_uniform(t, -10.0f, 10.0f);
  3570. }
  3571. }
  3572. };
  3573. // GGML_OP_DIAG_MASK_INF
  3574. struct test_diag_mask_inf : public test_case {
  3575. const ggml_type type;
  3576. const std::array<int64_t, 4> ne;
  3577. const int n_past;
  3578. std::string vars() override {
  3579. return VARS_TO_STR3(type, ne, n_past);
  3580. }
  3581. test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
  3582. std::array<int64_t, 4> ne = {10, 10, 3, 2},
  3583. int n_past = 5)
  3584. : type(type), ne(ne), n_past(n_past) {}
  3585. ggml_tensor * build_graph(ggml_context * ctx) override {
  3586. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3587. ggml_set_param(a);
  3588. ggml_set_name(a, "a");
  3589. ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
  3590. ggml_set_name(out, "out");
  3591. return out;
  3592. }
  3593. };
  3594. // GGML_OP_SOFT_MAX
  3595. struct test_soft_max : public test_case {
  3596. const ggml_type type;
  3597. const std::array<int64_t, 4> ne;
  3598. const bool mask;
  3599. const bool sinks;
  3600. const ggml_type m_prec;
  3601. const std::array<int64_t, 2> nr23; // broadcast only dims 2 and 3
  3602. const float scale;
  3603. const float max_bias;
  3604. const bool inplace;
  3605. std::string vars() override {
  3606. return VARS_TO_STR9(type, ne, mask, sinks, m_prec, nr23, scale, max_bias, inplace);
  3607. }
  3608. // the 1024 test with bias occasionally fails:
  3609. // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
  3610. virtual double max_nmse_err() override {
  3611. return 1e-6;
  3612. }
  3613. test_soft_max(ggml_type type = GGML_TYPE_F32,
  3614. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3615. bool mask = false,
  3616. bool sinks = false,
  3617. ggml_type m_prec = GGML_TYPE_F32,
  3618. std::array<int64_t, 2> nr23 = {1, 1},
  3619. float scale = 1.0f,
  3620. float max_bias = 0.0f,
  3621. bool inplace = false)
  3622. : type(type), ne(ne), mask(mask), sinks(sinks), m_prec(m_prec), nr23(nr23), scale(scale), max_bias(max_bias), inplace(inplace) {}
  3623. ggml_tensor * build_graph(ggml_context * ctx) override {
  3624. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  3625. ggml_set_param(a);
  3626. ggml_set_name(a, "a");
  3627. ggml_tensor * mask = nullptr;
  3628. if (this->mask) {
  3629. mask = ggml_new_tensor_4d(ctx, m_prec, ne[0], ne[1], ne[2], ne[3]);
  3630. ggml_set_name(mask, "mask");
  3631. }
  3632. ggml_tensor * sinks = nullptr;
  3633. if (this->sinks) {
  3634. sinks = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ne[2]*nr23[0]);
  3635. ggml_set_name(sinks, "sinks");
  3636. }
  3637. ggml_tensor * out;
  3638. if (inplace) {
  3639. out = ggml_soft_max_ext_inplace(ctx, a, mask, scale, max_bias);
  3640. } else {
  3641. out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
  3642. }
  3643. ggml_soft_max_add_sinks(out, sinks);
  3644. ggml_set_name(out, "out");
  3645. return out;
  3646. }
  3647. bool grad_precise() override {
  3648. return true;
  3649. }
  3650. };
  3651. // GGML_OP_SOFT_MAX_BACK
  3652. struct test_soft_max_back : public test_case {
  3653. const ggml_type type;
  3654. const std::array<int64_t, 4> ne;
  3655. const float scale;
  3656. const float max_bias;
  3657. std::string vars() override {
  3658. return VARS_TO_STR4(type, ne, scale, max_bias);
  3659. }
  3660. test_soft_max_back(ggml_type type = GGML_TYPE_F32,
  3661. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3662. float scale = 1.0f,
  3663. float max_bias = 0.0f)
  3664. : type(type), ne(ne), scale(scale), max_bias(max_bias) {}
  3665. ggml_tensor * build_graph(ggml_context * ctx) override {
  3666. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3667. ggml_set_name(a, "a");
  3668. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  3669. ggml_set_name(a, "a");
  3670. ggml_tensor * out = ggml_soft_max_ext_back(ctx, a, b, scale, max_bias);
  3671. ggml_set_name(out, "out");
  3672. return out;
  3673. }
  3674. };
  3675. // GGML_OP_ROPE + GGML_OP_ROPE_BACK
  3676. struct test_rope : public test_case {
  3677. const ggml_type type;
  3678. const std::array<int64_t, 4> ne_a;
  3679. int n_dims;
  3680. int mode;
  3681. int n_ctx; // used to generate positions
  3682. float fs; // freq_scale
  3683. float ef; // ext_factor
  3684. float af; // attn_factor
  3685. bool ff;
  3686. int v; // view (1 : non-contiguous a)
  3687. bool forward;
  3688. bool inplace;
  3689. std::string vars() override {
  3690. // forward can be inferred from the op, does not need to be printed
  3691. return VARS_TO_STR11(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v, inplace);
  3692. }
  3693. test_rope(ggml_type type = GGML_TYPE_F32,
  3694. std::array<int64_t, 4> ne_a = {10, 5, 3, 1},
  3695. int n_dims = 10, int mode = GGML_ROPE_TYPE_NORMAL, int n_ctx = 512, float fs = 1.0f,
  3696. float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0, bool forward = true, bool inplace = false)
  3697. : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v), forward(forward), inplace(inplace) {}
  3698. ggml_tensor * build_graph(ggml_context * ctx) override {
  3699. ggml_tensor * a;
  3700. if (v & 1) {
  3701. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  3702. a = ggml_new_tensor(ctx, type, 4, ne.data());
  3703. if (forward) {
  3704. ggml_set_param(a);
  3705. }
  3706. ggml_set_name(a, "a");
  3707. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  3708. ggml_set_name(a, "view_of_a");
  3709. } else {
  3710. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3711. if (forward) {
  3712. ggml_set_param(a);
  3713. }
  3714. ggml_set_name(a, "a");
  3715. }
  3716. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  3717. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  3718. ggml_tensor * pos;
  3719. if (is_mrope || is_vision) {
  3720. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2] * 4);
  3721. } else {
  3722. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
  3723. }
  3724. ggml_set_name(pos, "pos");
  3725. ggml_tensor * freq = nullptr;
  3726. if (ff) {
  3727. freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2);
  3728. ggml_set_name(freq, "freq");
  3729. }
  3730. ggml_tensor * out;
  3731. if (is_mrope) {
  3732. if (is_vision) {
  3733. GGML_ASSERT(n_dims/4 > 0);
  3734. int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate
  3735. if (forward) {
  3736. if (inplace) {
  3737. out = ggml_rope_multi_inplace(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3738. } else {
  3739. out = ggml_rope_multi(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3740. }
  3741. } else {
  3742. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3743. }
  3744. } else {
  3745. GGML_ASSERT(n_dims/3 > 0);
  3746. int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0};
  3747. if (forward) {
  3748. if (inplace) {
  3749. out = ggml_rope_multi_inplace(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3750. } else {
  3751. out = ggml_rope_multi(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3752. }
  3753. } else {
  3754. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3755. }
  3756. }
  3757. } else {
  3758. if (forward) {
  3759. if (inplace) {
  3760. out = ggml_rope_ext_inplace(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3761. } else {
  3762. out = ggml_rope_ext(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3763. }
  3764. } else {
  3765. out = ggml_rope_ext_back(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3766. }
  3767. // TODO: add test with a non-contiguous view as input ; this case is needed for build_rope_2d in clip.cpp
  3768. }
  3769. ggml_set_name(out, "out");
  3770. return out;
  3771. }
  3772. void initialize_tensors(ggml_context * ctx) override {
  3773. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3774. if (t->type == GGML_TYPE_I32) {
  3775. // pos
  3776. const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
  3777. std::vector<int> data(num_pos_ids);
  3778. for (int i = 0; i < num_pos_ids; i++) {
  3779. data[i] = rand() % n_ctx;
  3780. }
  3781. ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int));
  3782. } else {
  3783. if (t->ne[0] == n_dims/2) {
  3784. // frequency factors in the range [0.9f, 1.1f]
  3785. init_tensor_uniform(t, 0.9f, 1.1f);
  3786. } else {
  3787. init_tensor_uniform(t);
  3788. }
  3789. }
  3790. }
  3791. }
  3792. double max_maa_err() override {
  3793. return 1e-3;
  3794. }
  3795. bool grad_precise() override {
  3796. return true;
  3797. }
  3798. };
  3799. // GGML_OP_POOL2D
  3800. struct test_pool2d : public test_case {
  3801. enum ggml_op_pool pool_type;
  3802. const ggml_type type_input;
  3803. const std::array<int64_t, 4> ne_input;
  3804. // kernel size
  3805. const int k0;
  3806. const int k1;
  3807. // stride
  3808. const int s0;
  3809. const int s1;
  3810. // padding
  3811. const int p0;
  3812. const int p1;
  3813. std::string vars() override {
  3814. return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
  3815. }
  3816. test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
  3817. ggml_type type_input = GGML_TYPE_F32,
  3818. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3819. int k0 = 3, int k1 = 3,
  3820. int s0 = 1, int s1 = 1,
  3821. int p0 = 1, int p1 = 1)
  3822. : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
  3823. ggml_tensor * build_graph(ggml_context * ctx) override {
  3824. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3825. ggml_set_param(input);
  3826. ggml_set_name(input, "input");
  3827. ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
  3828. ggml_set_name(out, "out");
  3829. return out;
  3830. }
  3831. };
  3832. // GGML_OP_CONV_TRANSPOSE_1D
  3833. struct test_conv_transpose_1d : public test_case {
  3834. const std::array<int64_t, 4> ne_input;
  3835. const std::array<int64_t, 4> ne_kernel;
  3836. const int s0; // stride
  3837. const int p0; // padding
  3838. const int d0; // dilation
  3839. std::string vars() override {
  3840. return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
  3841. }
  3842. test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_channels, 1 /* assert in cpu kernel*/, 1 (should be batch)]
  3843. std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, output_channels, input_channels, 1 (should be batch)]
  3844. int s0 = 1, int p0 = 0, int d0 = 1)
  3845. : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
  3846. ggml_tensor * build_graph(ggml_context * ctx) override {
  3847. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3848. ggml_set_name(input, "input");
  3849. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  3850. ggml_set_name(kernel, "kernel");
  3851. ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
  3852. ggml_set_name(out, "out");
  3853. return out;
  3854. }
  3855. };
  3856. // GGML_OP_CONV_TRANSPOSE_2D
  3857. struct test_conv_transpose_2d : public test_case {
  3858. const std::array<int64_t, 4> ne_input;
  3859. const std::array<int64_t, 4> ne_kernel;
  3860. const int stride;
  3861. std::string vars() override {
  3862. return VARS_TO_STR3(ne_input, ne_kernel, stride);
  3863. }
  3864. double max_nmse_err() override {
  3865. return 5e-4; // The default 1e-7 is too small for Vulkan.
  3866. }
  3867. test_conv_transpose_2d(std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3868. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  3869. int stride = 1)
  3870. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride){}
  3871. ggml_tensor * build_graph(ggml_context * ctx) override {
  3872. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3873. ggml_set_name(input, "input");
  3874. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne_kernel.data());
  3875. ggml_set_name(kernel, "kernel");
  3876. ggml_tensor * out = ggml_conv_transpose_2d_p0(ctx, kernel, input, stride);
  3877. ggml_set_name(out, "out");
  3878. return out;
  3879. }
  3880. };
  3881. // GGML_OP_IM2COL
  3882. struct test_im2col : public test_case {
  3883. const ggml_type type_input;
  3884. const ggml_type type_kernel;
  3885. const ggml_type dst_type;
  3886. const std::array<int64_t, 4> ne_input;
  3887. const std::array<int64_t, 4> ne_kernel;
  3888. // stride
  3889. const int s0;
  3890. const int s1;
  3891. // padding
  3892. const int p0;
  3893. const int p1;
  3894. // dilation
  3895. const int d0;
  3896. const int d1;
  3897. // mode
  3898. const bool is_2D;
  3899. std::string vars() override {
  3900. return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
  3901. }
  3902. test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  3903. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3904. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  3905. int s0 = 1, int s1 = 1,
  3906. int p0 = 1, int p1 = 1,
  3907. int d0 = 1, int d1 = 1,
  3908. bool is_2D = true)
  3909. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
  3910. ggml_tensor * build_graph(ggml_context * ctx) override {
  3911. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3912. ggml_set_param(input);
  3913. ggml_set_name(input, "input");
  3914. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3915. ggml_set_name(kernel, "kernel");
  3916. ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
  3917. ggml_set_name(out, "out");
  3918. return out;
  3919. }
  3920. };
  3921. // GGML_OP_IM2COL_3D
  3922. struct test_im2col_3d : public test_case {
  3923. const ggml_type type_input;
  3924. const ggml_type type_kernel;
  3925. const ggml_type dst_type;
  3926. const std::array<int64_t, 4> ne_input;
  3927. const std::array<int64_t, 4> ne_kernel;
  3928. // stride
  3929. const int s0;
  3930. const int s1;
  3931. const int s2;
  3932. // padding
  3933. const int p0;
  3934. const int p1;
  3935. const int p2;
  3936. // dilation
  3937. const int d0;
  3938. const int d1;
  3939. const int d2;
  3940. const int64_t IC;
  3941. const bool v;
  3942. std::string vars() override {
  3943. return VARS_TO_STR16(type_input, type_kernel, dst_type, ne_input, ne_kernel, IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, v);
  3944. }
  3945. test_im2col_3d(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  3946. std::array<int64_t, 4> ne_input = {10, 10, 10, 9}, // [OC*IC, KD, KH, KW]
  3947. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [N*IC, ID, IH, IW]
  3948. int64_t IC = 3,
  3949. int s0 = 1, int s1 = 1, int s2 = 1,
  3950. int p0 = 1, int p1 = 1, int p2 = 1,
  3951. int d0 = 1, int d1 = 1, int d2 = 1,
  3952. bool v = false)
  3953. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), s2(s2), p0(p0), p1(p1), p2(p2), d0(d0), d1(d1), d2(d2), IC(IC), v(v) {}
  3954. ggml_tensor * build_graph(ggml_context * ctx) override {
  3955. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3956. ggml_set_param(input);
  3957. ggml_set_name(input, "input");
  3958. if (v) {
  3959. input = ggml_view_4d(ctx, input, ne_input[0] - 2, ne_input[1] - 2, ne_input[2] - 2, ne_input[3] - 2, input->nb[1], input->nb[2], input->nb[3], 0);
  3960. ggml_set_name(input, "view_of_input");
  3961. }
  3962. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3963. ggml_set_name(kernel, "kernel");
  3964. ggml_tensor * out = ggml_im2col_3d(ctx, kernel, input, IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, dst_type);
  3965. ggml_set_name(out, "out");
  3966. return out;
  3967. }
  3968. };
  3969. // CONV_2D
  3970. struct test_conv_2d : public test_case {
  3971. const std::array<int64_t, 4> ne_input;
  3972. const std::array<int64_t, 4> ne_kernel;
  3973. const ggml_type type_kernel;
  3974. const int stride0;
  3975. const int stride1;
  3976. const int padding0;
  3977. const int padding1;
  3978. const int dilation0;
  3979. const int dilation1;
  3980. // Whether the inputs are contiguous in the channel dim or the width dim
  3981. const bool cwhn;
  3982. // If true, the direct CONV_2D will be used in the graph, otherwise it
  3983. // uses ggml_conv_2d:
  3984. // * if the program is called with -o CONV_2D_DIRECT_IMPL, the
  3985. // CONV_2D graph will be built, while
  3986. // * if the program is called with -o CONV_2D_INDIRECT_IMPL, the
  3987. // IM2COL -> MUL_MM graph will be built.
  3988. std::string vars() override {
  3989. return VARS_TO_STR10(ne_input, ne_kernel, type_kernel, stride0, stride1, padding0, padding1, dilation0, dilation1, cwhn);
  3990. }
  3991. double max_nmse_err() override {
  3992. return 5e-4;
  3993. }
  3994. uint64_t op_flops(ggml_tensor * t) override {
  3995. GGML_UNUSED(t);
  3996. // Just counting matmul costs:
  3997. // KxCRS @ CRSxNPQ = KxNPQ --> KxNPQx(CRS+CRS-1) flops
  3998. // Copied from ggml.c: int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d)
  3999. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  4000. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4001. };
  4002. int64_t W = ne_input[0];
  4003. int64_t H = ne_input[1];
  4004. int64_t KW = ne_kernel[0];
  4005. int64_t KH = ne_kernel[1];
  4006. int64_t Cin = ne_kernel[2];
  4007. int64_t Cout = ne_kernel[3];
  4008. int64_t N = ne_input[3];
  4009. int64_t OH = calc_conv_output_size(H, KH, stride0, padding0, dilation0);
  4010. int64_t OW = calc_conv_output_size(W, KW, stride0, padding0, dilation0);
  4011. int64_t K = Cout;
  4012. int64_t CRS = Cin * KH * KW;
  4013. int64_t NPQ = N * OH * OW;
  4014. return K * NPQ * (2 * CRS - 1);
  4015. }
  4016. test_conv_2d(std::array<int64_t, 4> ne_input = { 64, 64, 16, 1 },
  4017. std::array<int64_t, 4> ne_kernel = { 3, 3, 1, 16 }, ggml_type type_kernel = GGML_TYPE_F32, int stride0 = 1,
  4018. int stride1 = 1, int padding0 = 0, int padding1 = 0, int dilation0 = 1, int dilation1 = 1, bool cwhn = false) :
  4019. ne_input(ne_input),
  4020. ne_kernel(ne_kernel),
  4021. type_kernel(type_kernel),
  4022. stride0(stride0),
  4023. stride1(stride1),
  4024. padding0(padding0),
  4025. padding1(padding1),
  4026. dilation0(dilation0),
  4027. dilation1(dilation1),
  4028. cwhn(cwhn) {}
  4029. ggml_tensor * build_graph(ggml_context * ctx) override {
  4030. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  4031. ggml_set_name(input, "input");
  4032. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  4033. ggml_set_name(kernel, "kernel");
  4034. if (cwhn) {
  4035. // change memory layout to channel-most-contiguous (CWHN),
  4036. // then permute it back so NE matches the original input
  4037. input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
  4038. input = ggml_permute(ctx, input, 2, 0, 1, 3);
  4039. kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
  4040. kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
  4041. }
  4042. ggml_tensor * out =
  4043. ggml_conv_2d_direct(ctx, kernel, input, stride0, stride1, padding0, padding1, dilation0, dilation1);
  4044. ggml_set_name(out, "out");
  4045. return out;
  4046. }
  4047. };
  4048. // GGML_OP_CONV_2D_DW
  4049. struct test_conv_2d_dw : public test_case {
  4050. const std::array<int64_t, 4> ne_input;
  4051. const std::array<int64_t, 4> ne_kernel;
  4052. const int stride;
  4053. const int padding;
  4054. const int dilation;
  4055. const bool cwhn;
  4056. std::string vars() override {
  4057. return VARS_TO_STR6(ne_input, ne_kernel, stride, padding, dilation, cwhn);
  4058. }
  4059. test_conv_2d_dw(std::array<int64_t, 4> ne_input = {64, 64, 16, 1},
  4060. std::array<int64_t, 4> ne_kernel = {3, 3, 1, 16},
  4061. int stride = 1, int padding = 0, int dilation = 1, bool cwhn = false)
  4062. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride), padding(padding), dilation(dilation), cwhn(cwhn) {}
  4063. ggml_tensor * build_graph(ggml_context * ctx) override {
  4064. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  4065. ggml_set_name(input, "input");
  4066. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  4067. ggml_set_name(kernel, "kernel");
  4068. if (cwhn) {
  4069. // change memory layout to channel-most-contiguous (CWHN),
  4070. // then permute it back so NE matches the original input
  4071. input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
  4072. input = ggml_permute(ctx, input, 2, 0, 1, 3);
  4073. kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
  4074. kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
  4075. }
  4076. ggml_tensor * out = ggml_conv_2d_dw_direct(
  4077. ctx, kernel, input,
  4078. stride, stride, padding, padding, dilation, dilation);
  4079. ggml_set_name(out, "out");
  4080. return out;
  4081. }
  4082. };
  4083. // GGML_OP_CONV_3D
  4084. struct test_conv_3d : public test_case {
  4085. // Logical 5D dimensions
  4086. const int64_t N, IC, ID, IH, IW;
  4087. const int64_t OC, KD, KH, KW;
  4088. // Conv params
  4089. const int s0, s1, s2;
  4090. const int p0, p1, p2;
  4091. const int d0, d1, d2;
  4092. // Types
  4093. const ggml_type type_kernel;
  4094. std::string op_desc(ggml_tensor * t) override {
  4095. GGML_UNUSED(t);
  4096. return "CONV_3D";
  4097. }
  4098. std::string vars() override {
  4099. return VARS_TO_STR11(N, IC, ID, IH, IW, OC, KD, KH, KW, s0, s1) + "," +
  4100. VARS_TO_STR8(s2, p0, p1, p2, d0, d1, d2, type_kernel);
  4101. }
  4102. double max_nmse_err() override {
  4103. return 5e-4;
  4104. }
  4105. uint64_t op_flops(ggml_tensor * t) override {
  4106. GGML_UNUSED(t);
  4107. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  4108. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4109. };
  4110. const int64_t OD = calc_conv_output_size(ID, KD, s2, p2, d2);
  4111. const int64_t OH = calc_conv_output_size(IH, KH, s1, p1, d1);
  4112. const int64_t OW = calc_conv_output_size(IW, KW, s0, p0, d0);
  4113. return (uint64_t)N * OC * OD * OH * OW * (2 * IC * KD * KH * KW - 1);
  4114. }
  4115. test_conv_3d(
  4116. int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW,
  4117. int64_t OC, int64_t KD, int64_t KH, int64_t KW,
  4118. int s0, int s1, int s2,
  4119. int p0, int p1, int p2,
  4120. int d0, int d1, int d2,
  4121. ggml_type type_kernel
  4122. ) : N(N), IC(IC), ID(ID), IH(IH), IW(IW),
  4123. OC(OC), KD(KD), KH(KH), KW(KW),
  4124. s0(s0), s1(s1), s2(s2),
  4125. p0(p0), p1(p1), p2(p2),
  4126. d0(d0), d1(d1), d2(d2),
  4127. type_kernel(type_kernel) {}
  4128. ggml_tensor * build_graph(ggml_context * ctx) override {
  4129. // GGML input tensor is packed as [W, H, D, C*N]
  4130. const int64_t ne_input[] = {IW, IH, ID, IC * N};
  4131. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input);
  4132. ggml_set_name(input, "input");
  4133. // GGML kernel tensor is packed as [KW, KH, KD, IC*OC]
  4134. const int64_t ne_kernel[] = {KW, KH, KD, IC * OC};
  4135. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel);
  4136. ggml_set_name(kernel, "kernel");
  4137. ggml_tensor * out = ggml_conv_3d_direct(ctx, kernel, input, s0, s1, s2, p0, p1, p2, d0, d1, d2, (int)IC, (int)N, (int)OC);
  4138. ggml_set_name(out, "out");
  4139. return out;
  4140. }
  4141. };
  4142. // GGML_OP_CONCAT
  4143. struct test_concat : public test_case {
  4144. const ggml_type type;
  4145. const std::array<int64_t, 4> ne_a;
  4146. const int64_t ne_b_d;
  4147. const int dim;
  4148. const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
  4149. std::string vars() override {
  4150. return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
  4151. }
  4152. test_concat(ggml_type type = GGML_TYPE_F32,
  4153. std::array<int64_t, 4> ne_a = {10, 5, 5, 5},
  4154. int64_t ne_b_d = 5,
  4155. int dim = 2, int v = 0)
  4156. : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
  4157. ggml_tensor * build_graph(ggml_context * ctx) override {
  4158. auto ne_b = ne_a;
  4159. ne_b[dim] = ne_b_d;
  4160. ggml_tensor * a;
  4161. if (v & 1) {
  4162. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  4163. a = ggml_new_tensor(ctx, type, 4, ne.data());
  4164. ggml_set_name(a, "a");
  4165. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  4166. ggml_set_name(a, "view_of_a");
  4167. } else {
  4168. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4169. ggml_set_name(a, "a");
  4170. }
  4171. ggml_tensor * b;
  4172. if (v & 2) {
  4173. auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
  4174. b = ggml_new_tensor(ctx, type, 4, ne.data());
  4175. ggml_set_name(b, "b");
  4176. b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
  4177. ggml_set_name(b, "view_of_b");
  4178. } else {
  4179. b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  4180. ggml_set_name(b, "b");
  4181. }
  4182. ggml_tensor * out = ggml_concat(ctx, a, b, dim);
  4183. ggml_set_name(out, "out");
  4184. return out;
  4185. }
  4186. };
  4187. // GGML_OP_ARGSORT
  4188. struct test_argsort : public test_case {
  4189. const ggml_type type;
  4190. const std::array<int64_t, 4> ne;
  4191. ggml_sort_order order;
  4192. std::string vars() override {
  4193. return VARS_TO_STR3(type, ne, order);
  4194. }
  4195. test_argsort(ggml_type type = GGML_TYPE_F32,
  4196. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  4197. ggml_sort_order order = GGML_SORT_ORDER_ASC)
  4198. : type(type), ne(ne), order(order) {}
  4199. ggml_tensor * build_graph(ggml_context * ctx) override {
  4200. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4201. ggml_set_name(a, "a");
  4202. ggml_tensor * out = ggml_argsort(ctx, a, order);
  4203. ggml_set_name(out, "out");
  4204. return out;
  4205. }
  4206. void initialize_tensors(ggml_context * ctx) override {
  4207. std::random_device rd;
  4208. std::default_random_engine rng(rd());
  4209. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4210. if (t->type == GGML_TYPE_I32) {
  4211. // indices
  4212. std::vector<int> data(ggml_nelements(t));
  4213. for (int i = 0; i < ggml_nelements(t); i++) {
  4214. data[i] = rand();
  4215. }
  4216. std::shuffle(data.begin(), data.end(), rng);
  4217. ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
  4218. } else if (t->type == GGML_TYPE_F32) {
  4219. // initialize with unique values to avoid ties
  4220. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  4221. std::vector<float> data(t->ne[0]);
  4222. for (int i = 0; i < t->ne[0]; i++) {
  4223. data[i] = i;
  4224. }
  4225. std::shuffle(data.begin(), data.end(), rng);
  4226. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  4227. }
  4228. } else {
  4229. GGML_ABORT("fatal error");
  4230. }
  4231. }
  4232. }
  4233. };
  4234. // GGML_OP_TOP_K
  4235. struct test_top_k : public test_case {
  4236. const ggml_type type;
  4237. const std::array<int64_t, 4> ne;
  4238. const int k;
  4239. const bool ties;
  4240. ggml_tensor * input {};
  4241. std::string vars() override {
  4242. return VARS_TO_STR4(type, ne, k, ties);
  4243. }
  4244. test_top_k(ggml_type type = GGML_TYPE_F32,
  4245. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  4246. int k = 4, bool ties = false)
  4247. : type(type), ne(ne), k(k), ties(ties) {}
  4248. double max_err() override {
  4249. return 0.0;
  4250. }
  4251. // When there are ties, only validate the final result.
  4252. // The logic in err can't handle the sentinel tensors.
  4253. bool run_whole_graph() override { return ties; }
  4254. double err(const float * a, const float * b, size_t n) override {
  4255. // When there are no ties, we expect the exact same set of indices,
  4256. // but possibly in a different order. When there are ties, the indices
  4257. // can be different but the input values they correspond to should be
  4258. // the same. The logic for ties could work for non-ties, but only for
  4259. // the output tensor, not for the sentinel tensors.
  4260. if (ties) {
  4261. std::vector<float> src(ggml_nelements(input));
  4262. ggml_backend_tensor_get(input, src.data(), 0, ggml_nelements(input) * ggml_type_size(type));
  4263. double diff = 0.0f;
  4264. GGML_ASSERT(n == (size_t)(ggml_nrows(input) * k));
  4265. int64_t cols = input->ne[0];
  4266. std::vector<int32_t> ia(k);
  4267. std::vector<int32_t> ib(k);
  4268. std::vector<float> asrc(k);
  4269. std::vector<float> bsrc(k);
  4270. for (int64_t r = 0; r < ggml_nrows(input); r++) {
  4271. // Convert indices for the row back to integer
  4272. for (int64_t c = 0; c < k; c++) {
  4273. ia[c] = (int32_t)a[r * k + c];
  4274. ib[c] = (int32_t)b[r * k + c];
  4275. }
  4276. // The src values for each row should match.
  4277. for (int64_t c = 0; c < k; c++) {
  4278. asrc[c] = src[r * cols + ia[c]];
  4279. bsrc[c] = src[r * cols + ib[c]];
  4280. }
  4281. diff += jdst(asrc.data(), bsrc.data(), k);
  4282. // There should be no duplicate indices
  4283. std::sort(ia.begin(), ia.end());
  4284. std::sort(ib.begin(), ib.end());
  4285. if (std::adjacent_find(ia.begin(), ia.end()) != ia.end()) {
  4286. diff += 1;
  4287. }
  4288. if (std::adjacent_find(ib.begin(), ib.end()) != ib.end()) {
  4289. diff += 1;
  4290. }
  4291. }
  4292. return diff;
  4293. } else {
  4294. std::vector<int32_t> ia(n);
  4295. std::vector<int32_t> ib(n);
  4296. double diff = 0.0f;
  4297. for (size_t i = 0; i < n; i++) {
  4298. ia[i] = (int32_t) a[i];
  4299. ib[i] = (int32_t) b[i];
  4300. // penalize the result if the data is not integer valued
  4301. diff += std::fabs(a[i] - ia[i]);
  4302. diff += std::fabs(b[i] - ib[i]);
  4303. }
  4304. return diff + jdst(ia.data(), ib.data(), n);
  4305. }
  4306. }
  4307. ggml_tensor * build_graph(ggml_context * ctx) override {
  4308. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4309. ggml_set_name(a, "a");
  4310. // Save 'a' for err()
  4311. input = a;
  4312. ggml_tensor * out = ggml_top_k(ctx, a, k);
  4313. ggml_set_name(out, "out");
  4314. return out;
  4315. }
  4316. void initialize_tensors(ggml_context * ctx) override {
  4317. std::random_device rd;
  4318. std::default_random_engine rng(rd());
  4319. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4320. int tie_denom = std::max(1, std::min(10, k / 2));
  4321. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  4322. std::vector<float> data(t->ne[0]);
  4323. for (int i = 0; i < t->ne[0]; i++) {
  4324. if (ties) {
  4325. // integer division to introduce duplicates
  4326. data[i] = i / tie_denom;
  4327. } else {
  4328. data[i] = i;
  4329. }
  4330. }
  4331. std::shuffle(data.begin(), data.end(), rng);
  4332. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  4333. }
  4334. }
  4335. }
  4336. };
  4337. enum MoeGatingFunc {
  4338. GATING_FUNC_SOFTMAX,
  4339. GATING_FUNC_SIGMOID,
  4340. GATING_FUNC_SOFTMAX_WEIGHT,
  4341. };
  4342. struct test_topk_moe : public test_case {
  4343. const std::array<int64_t, 4> ne;
  4344. const int n_expert_used;
  4345. const bool with_norm;
  4346. const bool bias_probs;
  4347. const MoeGatingFunc gating_func;
  4348. const float scale_w;
  4349. ggml_tensor * weights {};
  4350. ggml_tensor * selected_experts {};
  4351. test_topk_moe(std::array<int64_t, 4> ne = { 10, 5, 1, 1 },
  4352. int n_expert_used = 1,
  4353. bool with_norm = false,
  4354. bool bias_probs = false,
  4355. MoeGatingFunc gating_func = GATING_FUNC_SOFTMAX,
  4356. float scale_w = 0.0f) :
  4357. ne(ne),
  4358. n_expert_used(n_expert_used),
  4359. with_norm(with_norm),
  4360. bias_probs(bias_probs),
  4361. gating_func(gating_func),
  4362. scale_w(scale_w) {
  4363. GGML_ASSERT(n_expert_used <= ne[0]);
  4364. }
  4365. std::string vars() override { return VARS_TO_STR6(ne, n_expert_used, with_norm, bias_probs, gating_func, scale_w); }
  4366. std::string op_desc(ggml_tensor * t) override {
  4367. GGML_UNUSED(t);
  4368. return "TOPK_MOE";
  4369. }
  4370. bool run_whole_graph() override { return true; }
  4371. ggml_tensor * build_graph(ggml_context * ctx) override {
  4372. const int n_expert = ne[0];
  4373. const int n_tokens = ne[1];
  4374. ggml_tensor * logits = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne.data());
  4375. ggml_tensor * probs =
  4376. (gating_func == GATING_FUNC_SOFTMAX) ? ggml_soft_max(ctx, logits) :
  4377. (gating_func == GATING_FUNC_SIGMOID) ? ggml_sigmoid(ctx, logits) : logits;
  4378. ggml_set_name(probs, "probs");
  4379. ggml_tensor * selection_probs = probs;
  4380. if (bias_probs) {
  4381. ggml_tensor * exp_probs_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ne[0]);
  4382. ggml_set_name(exp_probs_b, "exp_probs_b");
  4383. selection_probs = ggml_add(ctx, probs, exp_probs_b);
  4384. ggml_set_name(selection_probs, "selection_probs");
  4385. }
  4386. selected_experts = ggml_argsort_top_k(ctx, selection_probs, n_expert_used); // [n_expert_used, n_tokens]
  4387. ggml_set_name(selected_experts, "selected_experts");
  4388. weights = ggml_get_rows(ctx, ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  4389. ggml_set_name(weights, "weights");
  4390. if (gating_func == GATING_FUNC_SOFTMAX_WEIGHT) {
  4391. weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
  4392. weights = ggml_soft_max(ctx, weights); // [n_expert_used, n_tokens]
  4393. weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
  4394. }
  4395. if (with_norm) {
  4396. weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
  4397. ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens]
  4398. ggml_set_name(weights_sum, "weights_sum");
  4399. weights_sum = ggml_clamp(ctx, weights_sum, 6.103515625e-5, INFINITY);
  4400. weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens]
  4401. weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
  4402. }
  4403. if (scale_w) {
  4404. weights = ggml_scale(ctx, weights, scale_w);
  4405. }
  4406. ggml_set_name(weights, "weights");
  4407. return weights;
  4408. }
  4409. // Verify two outputs
  4410. std::vector<ggml_tensor *> fusion_test_nodes() override { return { selected_experts, weights }; }
  4411. // allow output in arbitrary order
  4412. double err(const float * a, const float * b, size_t n) override {
  4413. std::vector<float> a2(n);
  4414. std::vector<float> b2(n);
  4415. for (size_t i = 0; i < n; ++i) {
  4416. a2[i] = a[i];
  4417. b2[i] = b[i];
  4418. }
  4419. std::sort(a2.begin(), a2.end());
  4420. std::sort(b2.begin(), b2.end());
  4421. return nmse(a2.data(), b2.data(), n);
  4422. }
  4423. };
  4424. struct test_mul_mat_vec_fusion : public test_case {
  4425. const ggml_type type;
  4426. const ggml_glu_op glu_op;
  4427. const int64_t m;
  4428. const int64_t n;
  4429. const int64_t k;
  4430. const bool use_id;
  4431. const int n_mats;
  4432. const int n_used;
  4433. const bool b; // broadcast b matrix (only for use_id)
  4434. const bool with_bias;
  4435. const bool with_gate;
  4436. std::array<int64_t, 2> batch_dims;
  4437. test_mul_mat_vec_fusion(ggml_type type, ggml_glu_op op, int64_t m, int64_t n, int64_t k,
  4438. bool use_id = false, int n_mats = 1, int n_used = 1, bool b = false, bool with_bias = false, bool with_gate = true,
  4439. std::array<int64_t, 2> batch_dims = {4, 2})
  4440. : type(type), glu_op(op), m(m), n(n), k(k), use_id(use_id), n_mats(n_mats), n_used(n_used), b(b), with_bias(with_bias), with_gate(with_gate), batch_dims(batch_dims) {
  4441. if (use_id) {
  4442. GGML_ASSERT(n_used <= n_mats);
  4443. }
  4444. }
  4445. std::string vars() override {
  4446. return VARS_TO_STR12(type, glu_op, m, n, k, use_id, n_mats, n_used, b, with_bias, with_gate, batch_dims);
  4447. }
  4448. std::string op_desc(ggml_tensor * t) override {
  4449. GGML_UNUSED(t);
  4450. return "MUL_MAT_VEC_FUSION";
  4451. }
  4452. bool run_whole_graph() override { return true; }
  4453. ggml_tensor * build_gate(ggml_context * ctx, ggml_tensor * ffn_gate, ggml_tensor * ffn_up) {
  4454. ggml_tensor * out = nullptr;
  4455. if (with_gate) {
  4456. if (glu_op == GGML_GLU_OP_SWIGLU_OAI) {
  4457. constexpr float alpha = 1.702f;
  4458. constexpr float limit = 7.0f;
  4459. out = ggml_swiglu_oai(ctx, ffn_gate, ffn_up, alpha, limit);
  4460. } else {
  4461. out = ggml_glu_split(ctx, ffn_gate, ffn_up, glu_op);
  4462. }
  4463. }
  4464. return out;
  4465. }
  4466. ggml_tensor * build_graph(ggml_context * ctx) override {
  4467. if (!use_id) {
  4468. const int channels = batch_dims[0];
  4469. const int samples = batch_dims[1];
  4470. std::array<int64_t, 4> ne = { k, m, channels, samples };
  4471. std::array<int64_t, 4> ne0 = { k, n, channels, samples };
  4472. ggml_tensor * cur = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne.data());
  4473. ggml_tensor * gate = with_gate ? ggml_new_tensor(ctx, type, 4, ne0.data()) : nullptr;
  4474. ggml_tensor * up = ggml_new_tensor(ctx, type, 4, ne0.data());
  4475. ggml_tensor * ffn_up = ggml_mul_mat(ctx, up, cur);
  4476. if (with_bias) {
  4477. std::array<int64_t, 4> bias_ne = { ffn_up->ne[0], 1, channels, samples };
  4478. ggml_tensor * up_bias = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, bias_ne.data());
  4479. ffn_up = ggml_add(ctx, ffn_up, up_bias);
  4480. }
  4481. ggml_tensor * ffn_gate = with_gate ? ggml_mul_mat(ctx, gate, cur) : nullptr;
  4482. if (with_bias && with_gate) {
  4483. std::array<int64_t, 4> bias_ne = { ffn_gate->ne[0], 1, channels, samples };
  4484. ggml_tensor * gate_bias = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, bias_ne.data());
  4485. ffn_gate = ggml_add(ctx, ffn_gate, gate_bias);
  4486. }
  4487. ggml_tensor * out = with_gate ? build_gate(ctx, ffn_gate, ffn_up) : ffn_up;
  4488. std::array<int64_t, 4> bias2_ne = { out->ne[0], 1, channels, samples };
  4489. ggml_tensor * bias2 = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, bias2_ne.data());
  4490. out = ggml_add(ctx, out, bias2);
  4491. ggml_set_name(out, "out");
  4492. return out;
  4493. } else {
  4494. ggml_tensor * gates = ggml_new_tensor_3d(ctx, type, k, n, n_mats);
  4495. ggml_tensor * ups = ggml_new_tensor_3d(ctx, type, k, n, n_mats);
  4496. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, m);
  4497. if (n_used != n_mats) {
  4498. ids = ggml_view_2d(ctx, ids, n_used, m, ids->nb[1], 0);
  4499. }
  4500. ggml_tensor * cur = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, k, this->b ? 1 : n_used, m);
  4501. ggml_set_name(cur, "cur");
  4502. ggml_tensor * ffn_up = ggml_mul_mat_id(ctx, ups, cur, ids);
  4503. if (with_bias) {
  4504. ggml_tensor * up_bias_param = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ffn_up->ne[0], n_mats);
  4505. ffn_up = ggml_add_id(ctx, ffn_up, up_bias_param, ids);
  4506. }
  4507. ggml_tensor * ffn_gate = with_gate? ggml_mul_mat_id(ctx, gates, cur, ids) : nullptr;
  4508. if (with_bias && with_gate) {
  4509. ggml_tensor * gate_bias_param = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ffn_gate->ne[0], n_mats);
  4510. ffn_gate = ggml_add_id(ctx, ffn_gate, gate_bias_param, ids);
  4511. }
  4512. ggml_tensor * out = with_gate ? build_gate(ctx, ffn_gate, ffn_up) : ffn_up;
  4513. std::array<int64_t, 4> scale_ne { 1, out->ne[1], out->ne[2], out->ne[3] };
  4514. ggml_tensor * scale = ggml_new_tensor(ctx, out->type, 4, scale_ne.data());
  4515. out = ggml_mul(ctx, out, scale);
  4516. ggml_set_name(out, "out");
  4517. return out;
  4518. }
  4519. }
  4520. void initialize_tensors(ggml_context * ctx) override {
  4521. if (!use_id) {
  4522. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4523. init_tensor_uniform(t);
  4524. }
  4525. } else {
  4526. init_mul_mat_id_tensors(ctx, n_mats);
  4527. }
  4528. }
  4529. double max_nmse_err() override {
  4530. return 5e-3;
  4531. }
  4532. };
  4533. // GGML_OP_SUM
  4534. struct test_sum : public test_case {
  4535. const ggml_type type;
  4536. const std::array<int64_t, 4> ne;
  4537. const std::array<int64_t, 4> permute;
  4538. bool _use_permute;
  4539. std::string vars() override {
  4540. std::string v = VARS_TO_STR2(type, ne);
  4541. if (_use_permute) v += "," + VAR_TO_STR(permute);
  4542. return v;
  4543. }
  4544. test_sum(ggml_type type = GGML_TYPE_F32,
  4545. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  4546. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  4547. : type(type), ne(ne), permute(permute),
  4548. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  4549. ggml_tensor * build_graph(ggml_context * ctx) override {
  4550. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4551. ggml_set_param(a);
  4552. ggml_set_name(a, "a");
  4553. if (_use_permute) {
  4554. a = ggml_permute(ctx, a, permute[0], permute[1], permute[2], permute[3]);
  4555. ggml_set_name(a, "a_permuted");
  4556. }
  4557. ggml_tensor * out = ggml_sum(ctx, a);
  4558. ggml_set_name(out, "out");
  4559. return out;
  4560. }
  4561. float grad_eps() override {
  4562. return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]);
  4563. }
  4564. // Don't center the distribution around zero. Helps to avoid catastrophic cancellation.
  4565. void initialize_tensors(ggml_context * ctx) override {
  4566. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  4567. init_tensor_uniform(t, -0.9f, 1.1f);
  4568. }
  4569. }
  4570. };
  4571. // GGML_OP_SUM_ROWS
  4572. struct test_sum_rows : public test_case {
  4573. const ggml_type type;
  4574. const std::array<int64_t, 4> ne;
  4575. const bool permute;
  4576. const bool slice;
  4577. std::string vars() override {
  4578. return VARS_TO_STR4(type, ne, permute, slice);
  4579. }
  4580. test_sum_rows(ggml_type type = GGML_TYPE_F32,
  4581. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  4582. bool permute = false, bool slice = false)
  4583. : type(type), ne(ne), permute(permute), slice(slice) {}
  4584. ggml_tensor * build_graph(ggml_context * ctx) override {
  4585. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4586. ggml_set_param(a);
  4587. ggml_set_name(a, "a");
  4588. if (slice) {
  4589. a = ggml_view_4d(ctx, a,
  4590. ne[0], ne[1], ne[2] / 2, ne[3] - 1,
  4591. a->nb[1], a->nb[2] * 2, a->nb[3], /*offset=*/a->nb[3]);
  4592. }
  4593. if (permute) {
  4594. a = ggml_permute(ctx, a, 0, 2, 3, 1);
  4595. }
  4596. ggml_tensor * out = ggml_sum_rows(ctx, a);
  4597. ggml_set_name(out, "out");
  4598. return out;
  4599. }
  4600. };
  4601. // GGML_OP_MEAN
  4602. struct test_mean : public test_case {
  4603. const ggml_type type;
  4604. const std::array<int64_t, 4> ne;
  4605. std::string vars() override {
  4606. return VARS_TO_STR2(type, ne);
  4607. }
  4608. test_mean(ggml_type type = GGML_TYPE_F32,
  4609. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4610. : type(type), ne(ne) {}
  4611. ggml_tensor * build_graph(ggml_context * ctx) override {
  4612. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4613. ggml_set_param(a);
  4614. ggml_set_name(a, "a");
  4615. ggml_tensor * out = ggml_mean(ctx, a);
  4616. ggml_set_name(out, "out");
  4617. return out;
  4618. }
  4619. float grad_eps() override {
  4620. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  4621. }
  4622. // Don't center the distribution around zero. Helps to avoid catastrophic cancellation.
  4623. void initialize_tensors(ggml_context * ctx) override {
  4624. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  4625. init_tensor_uniform(t, -0.9f, 1.1f);
  4626. }
  4627. }
  4628. };
  4629. // GGML_OP_UPSCALE
  4630. struct test_upscale : public test_case {
  4631. const ggml_type type;
  4632. const std::array<int64_t, 4> ne;
  4633. const int32_t scale_factor;
  4634. const bool transpose;
  4635. const ggml_scale_mode mode;
  4636. std::string vars() override {
  4637. return VARS_TO_STR5(type, ne, scale_factor, mode, transpose);
  4638. }
  4639. test_upscale(ggml_type type = GGML_TYPE_F32,
  4640. std::array<int64_t, 4> ne = {512, 512, 3, 1},
  4641. int32_t scale_factor = 2, ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST, bool transpose = false)
  4642. : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose), mode(mode) {}
  4643. ggml_tensor * build_graph(ggml_context * ctx) override {
  4644. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4645. ggml_set_name(a, "a");
  4646. if (transpose) {
  4647. a = ggml_transpose(ctx, a);
  4648. ggml_set_name(a, "a_transposed");
  4649. }
  4650. ggml_tensor * out = ggml_upscale(ctx, a, scale_factor, mode);
  4651. ggml_set_name(out, "out");
  4652. return out;
  4653. }
  4654. };
  4655. // GGML_OP_UPSCALE (via ggml_interpolate)
  4656. struct test_interpolate : public test_case {
  4657. const ggml_type type;
  4658. const std::array<int64_t, 4> ne;
  4659. const std::array<int64_t, 4> ne_tgt;
  4660. const ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST;
  4661. std::string vars() override {
  4662. return VARS_TO_STR4(type, ne, ne_tgt, mode);
  4663. }
  4664. test_interpolate(ggml_type type = GGML_TYPE_F32,
  4665. std::array<int64_t, 4> ne = {2, 5, 7, 11},
  4666. std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13},
  4667. ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST)
  4668. : type(type), ne(ne), ne_tgt(ne_tgt), mode(mode) {}
  4669. ggml_tensor * build_graph(ggml_context * ctx) override {
  4670. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4671. ggml_set_name(a, "a");
  4672. ggml_tensor * out = ggml_interpolate(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3], mode);
  4673. ggml_set_name(out, "out");
  4674. return out;
  4675. }
  4676. };
  4677. // GGML_OP_GROUP_NORM
  4678. struct test_group_norm : public test_case {
  4679. const ggml_type type;
  4680. const std::array<int64_t, 4> ne;
  4681. const int32_t num_groups;
  4682. const float eps;
  4683. std::string vars() override {
  4684. return VARS_TO_STR4(type, ne, num_groups, eps);
  4685. }
  4686. test_group_norm(ggml_type type = GGML_TYPE_F32,
  4687. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  4688. int32_t num_groups = 32,
  4689. float eps = 1e-6f)
  4690. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  4691. ggml_tensor * build_graph(ggml_context * ctx) override {
  4692. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4693. ggml_set_name(a, "a");
  4694. ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
  4695. ggml_set_name(out, "out");
  4696. return out;
  4697. }
  4698. };
  4699. // GGML_OP_GROUP_NORM + GGML_OP_MUL + GGML_OP_ADD
  4700. struct test_group_norm_mul_add : public test_case {
  4701. const ggml_type type;
  4702. const std::array<int64_t, 4> ne;
  4703. int num_groups;
  4704. float eps;
  4705. std::string op_desc(ggml_tensor * t) override {
  4706. GGML_UNUSED(t);
  4707. return "GROUP_NORM_MUL_ADD";
  4708. }
  4709. bool run_whole_graph() override { return true; }
  4710. std::string vars() override {
  4711. return VARS_TO_STR4(type, ne, num_groups, eps);
  4712. }
  4713. test_group_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  4714. std::array<int64_t, 4> ne = {128, 1, 1, 1},
  4715. int num_groups = 4,
  4716. float eps = 1e-5f)
  4717. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  4718. ggml_tensor * build_graph(ggml_context * ctx) override {
  4719. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4720. ggml_tensor * w = ggml_new_tensor(ctx, type, 4, ne.data());
  4721. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  4722. ggml_set_param(a); ggml_set_param(w); ggml_set_param(b);
  4723. ggml_set_name(a, "a"); ggml_set_name(w, "w"); ggml_set_name(b, "b");
  4724. ggml_tensor * n = ggml_group_norm(ctx, a, num_groups, eps);
  4725. ggml_tensor * m = ggml_mul(ctx, n, w);
  4726. ggml_tensor * out = ggml_add(ctx, m, b);
  4727. ggml_set_name(out, "out");
  4728. return out;
  4729. }
  4730. };
  4731. // GGML_OP_L2_NORM
  4732. struct test_l2_norm : public test_case {
  4733. const ggml_type type;
  4734. const std::array<int64_t, 4> ne;
  4735. const float eps;
  4736. std::string vars() override {
  4737. return VARS_TO_STR2(type, ne);
  4738. }
  4739. test_l2_norm(ggml_type type = GGML_TYPE_F32,
  4740. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  4741. float eps = 1e-12f)
  4742. : type(type), ne(ne), eps(eps) {}
  4743. ggml_tensor * build_graph(ggml_context * ctx) override {
  4744. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4745. ggml_set_name(a, "a");
  4746. ggml_tensor * out = ggml_l2_norm(ctx, a, eps);
  4747. ggml_set_name(out, "out");
  4748. return out;
  4749. }
  4750. };
  4751. // GGML_OP_ACC
  4752. struct test_acc : public test_case {
  4753. const ggml_type type;
  4754. const std::array<int64_t, 4> ne_a;
  4755. const std::array<int64_t, 4> ne_b;
  4756. std::string vars() override {
  4757. return VARS_TO_STR3(type, ne_a, ne_b);
  4758. }
  4759. test_acc(ggml_type type = GGML_TYPE_F32,
  4760. std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
  4761. std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
  4762. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  4763. ggml_tensor * build_graph(ggml_context * ctx) override {
  4764. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4765. ggml_set_param(a);
  4766. ggml_set_name(a, "a");
  4767. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  4768. ggml_set_param(b);
  4769. ggml_set_name(b, "b");
  4770. ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
  4771. ggml_set_name(out, "out");
  4772. return out;
  4773. }
  4774. };
  4775. // GGML_OP_PAD
  4776. struct test_pad : public test_case {
  4777. const ggml_type type;
  4778. const std::array<int64_t, 4> ne_a;
  4779. const int pad_0;
  4780. const int pad_1;
  4781. const bool circular;
  4782. std::string vars() override {
  4783. return VARS_TO_STR5(type, ne_a, pad_0, pad_1, circular);
  4784. }
  4785. test_pad(ggml_type type = GGML_TYPE_F32,
  4786. std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
  4787. int pad_0 = 1, int pad_1 = 1, bool circular = false)
  4788. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1), circular(circular) {}
  4789. ggml_tensor * build_graph(ggml_context * ctx) override {
  4790. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4791. ggml_set_name(a, "a");
  4792. ggml_tensor * out = circular
  4793. ? ggml_pad_circular(ctx, a, pad_0, pad_1, 0, 0)
  4794. : ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
  4795. ggml_set_name(out, "out");
  4796. return out;
  4797. }
  4798. };
  4799. // GGML_OP_PAD (with extension)
  4800. struct test_pad_ext : public test_case {
  4801. const ggml_type type;
  4802. const std::array<int64_t, 4> ne_a;
  4803. const int lp0;
  4804. const int rp0;
  4805. const int lp1;
  4806. const int rp1;
  4807. const int lp2;
  4808. const int rp2;
  4809. const int lp3;
  4810. const int rp3;
  4811. const bool v;
  4812. const bool circular;
  4813. std::string vars() override {
  4814. return VARS_TO_STR12(type, ne_a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3, v, circular);
  4815. }
  4816. test_pad_ext(ggml_type type = GGML_TYPE_F32,
  4817. std::array<int64_t, 4> ne_a = {512, 512, 3, 1},
  4818. int lp0 = 1, int rp0 = 1, int lp1 = 1, int rp1 = 1,
  4819. int lp2 = 1, int rp2 = 1, int lp3 = 1, int rp3 = 1,
  4820. bool v = false, bool circular = false)
  4821. : type(type), ne_a(ne_a), lp0(lp0), rp0(rp0), lp1(lp1), rp1(rp1), lp2(lp2), rp2(rp2), lp3(lp3), rp3(rp3),
  4822. v(v), circular(circular) {}
  4823. ggml_tensor * build_graph(ggml_context * ctx) override {
  4824. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4825. ggml_set_name(a, "a");
  4826. if (v) {
  4827. a = ggml_view_4d(ctx, a, (a->ne[0] + 1) / 2, (a->ne[1] + 1) / 2, (a->ne[2] + 1) / 2, (a->ne[3] + 1) / 2, a->nb[1], a->nb[2], a->nb[3], 0);
  4828. ggml_set_name(a, "view of a");
  4829. }
  4830. ggml_tensor * out = circular
  4831. ? ggml_pad_ext_circular(ctx, a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3)
  4832. : ggml_pad_ext(ctx, a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3);
  4833. ggml_set_name(out, "out");
  4834. return out;
  4835. }
  4836. };
  4837. // GGML_OP_PAD_REFLECT_1D
  4838. struct test_pad_reflect_1d : public test_case {
  4839. const ggml_type type;
  4840. const std::array<int64_t, 4> ne_a;
  4841. const int pad_0;
  4842. const int pad_1;
  4843. std::string vars() override {
  4844. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  4845. }
  4846. test_pad_reflect_1d(ggml_type type = GGML_TYPE_F32,
  4847. std::array<int64_t, 4> ne_a = {512, 34, 2, 1},
  4848. int pad_0 = 10, int pad_1 = 9)
  4849. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  4850. ggml_tensor * build_graph(ggml_context * ctx) override {
  4851. ggml_tensor * a = ggml_new_tensor(ctx, type, 2, ne_a.data());
  4852. ggml_set_name(a, "a");
  4853. ggml_tensor * out = ggml_pad_reflect_1d(ctx, a, pad_0, pad_1);
  4854. ggml_set_name(out, "out");
  4855. return out;
  4856. }
  4857. };
  4858. // GGML_OP_ROLL
  4859. struct test_roll : public test_case {
  4860. const int shift0;
  4861. const int shift1;
  4862. const int shift3;
  4863. const int shift4;
  4864. std::string vars() override {
  4865. return VARS_TO_STR4(shift0, shift1, shift3, shift4);
  4866. }
  4867. test_roll(int shift0 = 3, int shift1 = -2, int shift3 = 1, int shift4 = -1)
  4868. : shift0(shift0), shift1(shift1), shift3(shift3), shift4(shift4) {}
  4869. ggml_tensor * build_graph(ggml_context * ctx) override {
  4870. int64_t ne[4] = {10, 5, 4, 3};
  4871. ggml_tensor * a = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4872. ggml_set_name(a, "a");
  4873. ggml_tensor * out = ggml_roll(ctx, a, shift0, shift1, shift3, shift4);
  4874. ggml_set_name(out, "out");
  4875. return out;
  4876. }
  4877. };
  4878. // GGML_OP_ARANGE
  4879. struct test_arange : public test_case {
  4880. const ggml_type type;
  4881. const float start;
  4882. const float stop;
  4883. const float step;
  4884. std::string vars() override {
  4885. return VARS_TO_STR4(type, start, stop, step);
  4886. }
  4887. test_arange(ggml_type type = GGML_TYPE_F32,
  4888. float start = 0.f, float stop = 10.f, float step = 1.f)
  4889. : type(type), start(start), stop(stop), step(step) {}
  4890. ggml_tensor * build_graph(ggml_context * ctx) override {
  4891. ggml_tensor * out = ggml_arange(ctx, start, stop, step);
  4892. ggml_set_name(out, "out");
  4893. return out;
  4894. }
  4895. };
  4896. // GGML_OP_TIMESTEP_EMBEDDING
  4897. struct test_timestep_embedding : public test_case {
  4898. const ggml_type type;
  4899. const std::array<int64_t, 4> ne_a;
  4900. const int dim;
  4901. const int max_period;
  4902. std::string vars() override {
  4903. return VARS_TO_STR4(type, ne_a, dim, max_period);
  4904. }
  4905. test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
  4906. std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
  4907. int dim = 320, int max_period=10000)
  4908. : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
  4909. ggml_tensor * build_graph(ggml_context * ctx) override {
  4910. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4911. ggml_set_name(a, "a");
  4912. ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
  4913. ggml_set_name(out, "out");
  4914. return out;
  4915. }
  4916. };
  4917. // GGML_OP_LEAKY_RELU
  4918. struct test_leaky_relu : public test_case {
  4919. const ggml_type type;
  4920. const std::array<int64_t, 4> ne_a;
  4921. const float negative_slope;
  4922. std::string vars() override {
  4923. return VARS_TO_STR3(type, ne_a, negative_slope);
  4924. }
  4925. test_leaky_relu(ggml_type type = GGML_TYPE_F32,
  4926. std::array<int64_t, 4> ne_a = {10, 5, 4, 3},
  4927. float negative_slope = 0.1f)
  4928. : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
  4929. ggml_tensor * build_graph(ggml_context * ctx) override {
  4930. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4931. ggml_set_name(a, "a");
  4932. ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
  4933. ggml_set_name(out, "out");
  4934. return out;
  4935. }
  4936. };
  4937. // GGML_OP_FLASH_ATTN_EXT
  4938. struct test_flash_attn_ext : public test_case {
  4939. const int64_t hsk; // K head size
  4940. const int64_t hsv; // V head size
  4941. const int64_t nh; // num heads
  4942. const std::array<int64_t, 2> nr23; // repeat in dim 2 and 3, tests for grouped-query attention
  4943. const int64_t kv; // kv size
  4944. const int64_t nb; // batch size
  4945. const bool mask; // use mask
  4946. const bool sinks; // use sinks
  4947. const float max_bias; // ALiBi
  4948. const float logit_softcap; // Gemma 2
  4949. const ggml_prec prec;
  4950. const ggml_type type_KV;
  4951. std::array<int32_t, 4> permute;
  4952. std::string vars() override {
  4953. return VARS_TO_STR13(hsk, hsv, nh, nr23, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV, permute);
  4954. }
  4955. double max_nmse_err() override {
  4956. return 5e-4;
  4957. }
  4958. uint64_t op_flops(ggml_tensor * t) override {
  4959. GGML_UNUSED(t);
  4960. // Just counting matmul costs:
  4961. // Q*K^T is nb x hsk x kv, P*V is nb x kv x hsv, per head
  4962. return (2 * nh*nr23[0] * nb * (hsk + hsv) * kv)*nr23[1];
  4963. }
  4964. test_flash_attn_ext(int64_t hsk = 128, int64_t hsv = 128, int64_t nh = 32, std::array<int64_t, 2> nr23 = {1, 1}, int64_t kv = 96, int64_t nb = 8,
  4965. bool mask = true, bool sinks = false, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_prec prec = GGML_PREC_F32,
  4966. ggml_type type_KV = GGML_TYPE_F16, std::array<int32_t, 4> permute = {0, 1, 2, 3})
  4967. : hsk(hsk), hsv(hsv), nh(nh), nr23(nr23), kv(kv), nb(nb), mask(mask), sinks(sinks), max_bias(max_bias), logit_softcap(logit_softcap), prec(prec), type_KV(type_KV), permute(permute) {}
  4968. ggml_tensor * build_graph(ggml_context * ctx) override {
  4969. const int64_t hsk_padded = GGML_PAD(hsk, ggml_blck_size(type_KV));
  4970. const int64_t hsv_padded = GGML_PAD(hsv, ggml_blck_size(type_KV));
  4971. auto const &create_permuted = [&](ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3, bool is_view) -> ggml_tensor * {
  4972. int64_t ne[4] = {ne0, ne1, ne2, ne3};
  4973. int64_t ne_perm[4];
  4974. for (int i = 0; i < 4; ++i) {
  4975. ne_perm[permute[i]] = ne[i];
  4976. }
  4977. ggml_tensor * t;
  4978. if (is_view) {
  4979. ggml_tensor * t0 = ggml_new_tensor_4d(ctx, type, ne_perm[0], 2*ne_perm[1], ne_perm[2], ne_perm[3]);
  4980. t = ggml_view_4d(ctx, t0, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3], t0->nb[1], t0->nb[2], t0->nb[3], 0);
  4981. } else {
  4982. t = ggml_new_tensor_4d(ctx, type, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3]);
  4983. }
  4984. if (permute != std::array<int32_t, 4>{0, 1, 2, 3}) {
  4985. t = ggml_permute(ctx, t, permute[0], permute[1], permute[2], permute[3]);
  4986. }
  4987. return t;
  4988. };
  4989. ggml_tensor * q = create_permuted(GGML_TYPE_F32, hsk_padded, nb, nh*nr23[0], nr23[1], false);
  4990. ggml_set_name(q, "q");
  4991. ggml_tensor * k = create_permuted(type_KV, hsk_padded, kv, nh, nr23[1], true); // the K tensor is usually a view of the K cache
  4992. ggml_set_name(k, "k");
  4993. ggml_tensor * v = create_permuted(type_KV, hsv_padded, kv, nh, nr23[1], true); // the V tensor is usually a view of the V cache
  4994. ggml_set_name(v, "v");
  4995. ggml_tensor * m = nullptr;
  4996. if (mask) {
  4997. m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, nb, 1, nr23[1]);
  4998. ggml_set_name(m, "m");
  4999. }
  5000. ggml_tensor * s = nullptr;
  5001. if (sinks) {
  5002. s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, q->ne[2]);
  5003. ggml_set_name(s, "s");
  5004. }
  5005. ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hsk), max_bias, logit_softcap);
  5006. ggml_flash_attn_ext_add_sinks(out, s);
  5007. ggml_flash_attn_ext_set_prec (out, prec);
  5008. ggml_set_name(out, "out");
  5009. return out;
  5010. }
  5011. void initialize_tensors(ggml_context * ctx) override {
  5012. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  5013. if (strcmp(t->name, "s") == 0) {
  5014. // make the sink values more noticable in order to trigger a test failure when the implementation is wrong
  5015. init_tensor_uniform(t, -10.0f, 10.0f);
  5016. } else if (strcmp(t->name, "m") == 0) {
  5017. init_tensor_kq_mask(t);
  5018. } else {
  5019. init_tensor_uniform(t);
  5020. }
  5021. }
  5022. }
  5023. bool grad_precise() override {
  5024. return true;
  5025. }
  5026. };
  5027. // GGML_OP_CROSS_ENTROPY_LOSS
  5028. struct test_cross_entropy_loss : public test_case {
  5029. const ggml_type type;
  5030. const std::array<int64_t, 4> ne;
  5031. std::string vars() override {
  5032. return VARS_TO_STR2(type, ne);
  5033. }
  5034. test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32,
  5035. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  5036. : type(type), ne(ne) {}
  5037. ggml_tensor * build_graph(ggml_context * ctx) override {
  5038. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  5039. ggml_set_param(logits);
  5040. ggml_set_name(logits, "logits");
  5041. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  5042. // The labels are assumed to be constant -> no gradients.
  5043. ggml_set_name(labels, "labels");
  5044. // Ensure labels add up to 1:
  5045. labels = ggml_soft_max(ctx, labels);
  5046. ggml_set_name(labels, "labels_normalized");
  5047. ggml_tensor * out = ggml_cross_entropy_loss(ctx, logits, labels);
  5048. ggml_set_name(out, "out");
  5049. return out;
  5050. }
  5051. void initialize_tensors(ggml_context * ctx) override {
  5052. // For larger abs. diffs between logits softmax is more linear, therefore more precise num. gradients.
  5053. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  5054. init_tensor_uniform(t, -100.0f, 100.0f);
  5055. }
  5056. }
  5057. float grad_eps() override {
  5058. return 1.0f;
  5059. }
  5060. bool grad_precise() override {
  5061. return true;
  5062. }
  5063. };
  5064. // GGML_OP_CROSS_ENTROPY_LOSS_BACK
  5065. struct test_cross_entropy_loss_back : public test_case {
  5066. const ggml_type type;
  5067. const std::array<int64_t, 4> ne;
  5068. std::string vars() override {
  5069. return VARS_TO_STR2(type, ne);
  5070. }
  5071. test_cross_entropy_loss_back(ggml_type type = GGML_TYPE_F32,
  5072. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  5073. : type(type), ne(ne) {}
  5074. ggml_tensor * build_graph(ggml_context * ctx) override {
  5075. ggml_tensor * grad = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  5076. ggml_set_name(grad, "grad");
  5077. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  5078. ggml_set_name(logits, "logits");
  5079. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  5080. ggml_set_name(labels, "labels");
  5081. // Ensure labels add up to 1:
  5082. labels = ggml_soft_max(ctx, labels);
  5083. ggml_set_name(labels, "labels_normalized");
  5084. ggml_tensor * out = ggml_cross_entropy_loss_back(ctx, grad, logits, labels);
  5085. ggml_set_name(out, "out");
  5086. return out;
  5087. }
  5088. };
  5089. // GGML_OP_OPT_STEP_ADAMW
  5090. struct test_opt_step_adamw : public test_case {
  5091. const ggml_type type;
  5092. const std::array<int64_t, 4> ne;
  5093. std::string vars() override {
  5094. return VARS_TO_STR2(type, ne);
  5095. }
  5096. test_opt_step_adamw(ggml_type type = GGML_TYPE_F32,
  5097. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  5098. : type(type), ne(ne) {}
  5099. ggml_tensor * build_graph(ggml_context * ctx) override {
  5100. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  5101. ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
  5102. ggml_set_name(a, "a");
  5103. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  5104. ggml_set_name(grad, "grad");
  5105. ggml_tensor * grad_m = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  5106. ggml_set_name(grad_m, "grad_m");
  5107. ggml_tensor * grad_v = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  5108. ggml_set_name(grad_v, "grad_v");
  5109. ggml_tensor * adamw_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7);
  5110. ggml_set_name(adamw_params, "adamw_params");
  5111. ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, grad_m, grad_v, adamw_params);
  5112. ggml_set_name(out, "out");
  5113. return out;
  5114. }
  5115. void initialize_tensors(ggml_context * ctx) override {
  5116. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  5117. init_tensor_uniform(t, 0.0f, 1.0f); // grad_v and adamw_params need non-negative values.
  5118. }
  5119. }
  5120. bool grad_precise() override {
  5121. return true;
  5122. }
  5123. };
  5124. // GGML_OP_OPT_STEP_SGD
  5125. struct test_opt_step_sgd : public test_case {
  5126. const ggml_type type;
  5127. const std::array<int64_t, 4> ne;
  5128. std::string vars() override { return VARS_TO_STR2(type, ne); }
  5129. test_opt_step_sgd(ggml_type type = GGML_TYPE_F32,
  5130. std::array<int64_t, 4> ne = { 10, 5, 4, 3 })
  5131. : type(type), ne(ne) {}
  5132. ggml_tensor * build_graph(ggml_context * ctx) override {
  5133. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  5134. ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
  5135. ggml_set_name(a, "a");
  5136. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  5137. ggml_set_name(grad, "grad");
  5138. ggml_tensor * sgd_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2);
  5139. ggml_set_name(sgd_params, "sgd_params");
  5140. ggml_tensor * out = ggml_opt_step_sgd(ctx, a, grad, sgd_params);
  5141. ggml_set_name(out, "out");
  5142. return out;
  5143. }
  5144. void initialize_tensors(ggml_context * ctx) override {
  5145. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  5146. init_tensor_uniform(t, 0.0f, 1.0f); // sgd_params need non-negative values.
  5147. }
  5148. }
  5149. bool grad_precise() override {
  5150. return true;
  5151. }
  5152. };
  5153. // GGML_OP_CUMSUM
  5154. struct test_cumsum : public test_case {
  5155. const ggml_type type;
  5156. const std::array<int64_t, 4> ne;
  5157. std::string vars() override { return VARS_TO_STR2(type, ne); }
  5158. test_cumsum(ggml_type type = GGML_TYPE_F32,
  5159. std::array<int64_t, 4> ne = { 10, 5, 4, 3 })
  5160. : type(type), ne(ne) {}
  5161. ggml_tensor * build_graph(ggml_context * ctx) override {
  5162. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  5163. ggml_set_param(a);
  5164. ggml_set_name(a, "a");
  5165. ggml_tensor * out = ggml_cumsum(ctx, a);
  5166. ggml_set_name(out, "out");
  5167. return out;
  5168. }
  5169. void initialize_tensors(ggml_context * ctx) override {
  5170. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  5171. init_tensor_uniform(t, -1.0f, 1.0f);
  5172. }
  5173. }
  5174. };
  5175. // GGML_OP_XIELU
  5176. struct test_xielu : public test_case {
  5177. const ggml_type type;
  5178. const std::array<int64_t, 4> ne;
  5179. std::string vars() override { return VARS_TO_STR2(type, ne); }
  5180. test_xielu(ggml_type type = GGML_TYPE_F32,
  5181. std::array<int64_t, 4> ne = { 10, 5, 4, 3 })
  5182. : type(type), ne(ne) {}
  5183. ggml_tensor * build_graph(ggml_context * ctx) override {
  5184. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  5185. ggml_set_param(a);
  5186. ggml_set_name(a, "a");
  5187. float alpha_n = 4.0f;
  5188. float alpha_p = 20.0f;
  5189. float beta = 0.5f;
  5190. float eps = 0.0000001f;
  5191. ggml_tensor * out = ggml_xielu(ctx, a, alpha_n, alpha_p, beta, eps);
  5192. ggml_set_name(out, "out");
  5193. return out;
  5194. }
  5195. void initialize_tensors(ggml_context * ctx) override {
  5196. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  5197. init_tensor_uniform(t, -1.0f, 1.0f);
  5198. }
  5199. }
  5200. };
  5201. // GGML_OP_TRI
  5202. struct test_tri : public test_case {
  5203. const ggml_type type;
  5204. const std::array<int64_t, 4> ne;
  5205. const ggml_tri_type tri_type;
  5206. std::string vars() override { return VARS_TO_STR3(type, ne, tri_type); }
  5207. test_tri(ggml_tri_type tri_type, ggml_type type = GGML_TYPE_F32,
  5208. std::array<int64_t, 4> ne = { 10, 10, 4, 3 })
  5209. : type(type), ne(ne), tri_type(tri_type) {
  5210. GGML_ASSERT(ne[0] == ne[1]);
  5211. }
  5212. ggml_tensor * build_graph(ggml_context * ctx) override {
  5213. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  5214. ggml_set_param(a);
  5215. ggml_set_name(a, "a");
  5216. ggml_tensor * out = ggml_tri(ctx, a, tri_type);
  5217. ggml_set_name(out, "out");
  5218. return out;
  5219. }
  5220. void initialize_tensors(ggml_context * ctx) override {
  5221. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  5222. init_tensor_uniform(t, -1.0f, 1.0f);
  5223. }
  5224. }
  5225. };
  5226. // GGML_OP_FILL
  5227. struct test_fill : public test_case {
  5228. const ggml_type type;
  5229. const std::array<int64_t, 4> ne;
  5230. float c;
  5231. std::string vars() override { return VARS_TO_STR3(type, ne, c); }
  5232. test_fill(float c, ggml_type type = GGML_TYPE_F32,
  5233. std::array<int64_t, 4> ne = { 10, 10, 4, 3 })
  5234. : type(type), ne(ne), c(c) {}
  5235. ggml_tensor * build_graph(ggml_context * ctx) override {
  5236. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  5237. ggml_set_param(a);
  5238. ggml_set_name(a, "a");
  5239. ggml_tensor * out = ggml_fill(ctx, a, c);
  5240. ggml_set_name(out, "out");
  5241. return out;
  5242. }
  5243. };
  5244. // GGML_OP_SOLVE_TRI
  5245. struct test_solve_tri : public test_case {
  5246. const ggml_type type;
  5247. const std::array<int64_t, 4> ne_lhs;
  5248. const std::array<int64_t, 4> ne_rhs;
  5249. std::string vars() override { return VARS_TO_STR3(type, ne_lhs, ne_rhs); }
  5250. uint64_t op_flops(ggml_tensor * t) override {
  5251. GGML_UNUSED(t);
  5252. int64_t n = ne_lhs[0];
  5253. int64_t k = ne_rhs[0];
  5254. int64_t batch = ne_lhs[2] * ne_lhs[3];
  5255. // n * (n + 1) / 2 non-zero elements of lhs, 2 flops each, for each col of rhs
  5256. return n * (n + 1) * k * batch;
  5257. }
  5258. test_solve_tri(ggml_type type = GGML_TYPE_F32,
  5259. std::array<int64_t, 4> ne_lhs = { 10, 10, 4, 3 },
  5260. std::array<int64_t, 4> ne_rhs = { 3, 10, 4, 3 }
  5261. )
  5262. : type(type), ne_lhs(ne_lhs), ne_rhs(ne_rhs) {}
  5263. ggml_tensor * build_graph(ggml_context * ctx) override {
  5264. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne_lhs[0], ne_lhs[1], ne_lhs[2], ne_lhs[3]);
  5265. ggml_set_param(a);
  5266. ggml_set_name(a, "a");
  5267. ggml_tensor * b = ggml_new_tensor_4d(ctx, type, ne_rhs[0], ne_rhs[1], ne_rhs[2], ne_rhs[3]);
  5268. ggml_set_param(b);
  5269. ggml_set_name(b, "b");
  5270. ggml_tensor * out = ggml_solve_tri(ctx, a, b, true, true, false);
  5271. ggml_set_name(out, "out");
  5272. return out;
  5273. }
  5274. void initialize_tensors(ggml_context * ctx) override {
  5275. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  5276. if (strcmp(t->name, "a") == 0) {
  5277. // note: avoid zeros in the diagonal
  5278. init_tensor_tril(t, 0.1, 1.0f);
  5279. } else {
  5280. init_tensor_uniform(t, -1.0f, 1.0f);
  5281. }
  5282. }
  5283. }
  5284. };
  5285. // GGML_OP_DIAG
  5286. struct test_diag : public test_case {
  5287. const ggml_type type;
  5288. const std::array<int64_t, 4> ne;
  5289. std::string vars() override { return VARS_TO_STR2(type, ne); }
  5290. test_diag(ggml_type type = GGML_TYPE_F32,
  5291. std::array<int64_t, 4> ne = { 10, 1, 4, 3 })
  5292. : type(type), ne(ne) {}
  5293. ggml_tensor * build_graph(ggml_context * ctx) override {
  5294. GGML_ASSERT(ne[1] == 1);
  5295. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  5296. ggml_set_param(a);
  5297. ggml_set_name(a, "a");
  5298. ggml_tensor * out = ggml_diag(ctx, a);
  5299. ggml_set_name(out, "out");
  5300. return out;
  5301. }
  5302. };
  5303. enum llm_norm_type {
  5304. LLM_NORM,
  5305. LLM_NORM_RMS,
  5306. };
  5307. struct llama_hparams {
  5308. uint32_t n_vocab;
  5309. uint32_t n_embd;
  5310. uint32_t n_head;
  5311. uint32_t n_head_kv;
  5312. static constexpr uint32_t n_layer = 1;
  5313. uint32_t n_rot;
  5314. uint32_t n_embd_head; // dimension of values (d_v)
  5315. uint32_t n_ff;
  5316. float f_norm_eps;
  5317. float f_norm_rms_eps;
  5318. // cparams
  5319. static constexpr uint32_t n_ctx = 512; // user-specified context size
  5320. static constexpr uint32_t n_ctx_orig = n_ctx;
  5321. // batch
  5322. int32_t n_tokens;
  5323. // llm_build_context
  5324. static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
  5325. static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
  5326. uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
  5327. return n_embd_head * n_head_kv;
  5328. }
  5329. };
  5330. // LLM base class
  5331. struct test_llm : public test_case {
  5332. llama_hparams hp;
  5333. protected:
  5334. test_llm(llama_hparams hp)
  5335. : hp(std::move(hp)) {
  5336. }
  5337. public:
  5338. struct ggml_tensor * llm_build_norm(
  5339. struct ggml_context * ctx,
  5340. struct ggml_tensor * cur,
  5341. struct ggml_tensor * mw,
  5342. struct ggml_tensor * mb,
  5343. llm_norm_type type) {
  5344. switch (type) {
  5345. case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
  5346. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
  5347. }
  5348. cur = ggml_mul(ctx, cur, mw);
  5349. if (mb) {
  5350. cur = ggml_add(ctx, cur, mb);
  5351. }
  5352. return cur;
  5353. }
  5354. void llm_build_kv_store(
  5355. struct ggml_context * ctx,
  5356. struct ggml_tensor * k_l,
  5357. struct ggml_tensor * v_l,
  5358. struct ggml_tensor * k_cur,
  5359. struct ggml_tensor * v_cur) {
  5360. // compute the transposed [n_tokens, n_embd] V matrix
  5361. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
  5362. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
  5363. (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
  5364. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
  5365. ( hp.n_ctx)*ggml_element_size(v_l),
  5366. (hp.kv_head)*ggml_element_size(v_l));
  5367. // important: storing RoPE-ed version of K in the KV cache!
  5368. ggml_cpy(ctx, k_cur, k_cache_view);
  5369. ggml_cpy(ctx, v_cur_t, v_cache_view);
  5370. }
  5371. struct ggml_tensor * llm_build_kqv(
  5372. struct ggml_context * ctx,
  5373. struct ggml_tensor * k_l,
  5374. struct ggml_tensor * v_l,
  5375. struct ggml_tensor * q_cur,
  5376. struct ggml_tensor * kq_mask,
  5377. float kq_scale) {
  5378. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  5379. struct ggml_tensor * k =
  5380. ggml_view_3d(ctx, k_l,
  5381. hp.n_embd_head, hp.n_kv, hp.n_head_kv,
  5382. ggml_row_size(k_l->type, hp.n_embd_gqa()),
  5383. ggml_row_size(k_l->type, hp.n_embd_head),
  5384. 0);
  5385. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  5386. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
  5387. // split cached v into n_head heads
  5388. struct ggml_tensor * v =
  5389. ggml_view_3d(ctx, v_l,
  5390. hp.n_kv, hp.n_embd_head, hp.n_head_kv,
  5391. ggml_element_size(v_l)*hp.n_ctx,
  5392. ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
  5393. 0);
  5394. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  5395. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  5396. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
  5397. struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  5398. cur = ggml_mul_mat(ctx, wo, cur);
  5399. return cur;
  5400. }
  5401. void initialize_tensors(ggml_context * ctx) override {
  5402. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  5403. if (t->type == GGML_TYPE_I32) {
  5404. // pos
  5405. std::vector<int> data(hp.n_tokens);
  5406. for (int i = 0; i < hp.n_tokens; i++) {
  5407. data[i] = rand() % hp.n_ctx;
  5408. }
  5409. ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
  5410. } else {
  5411. init_tensor_uniform(t);
  5412. }
  5413. }
  5414. }
  5415. };
  5416. // Llama
  5417. struct test_llama : public test_llm {
  5418. static constexpr float freq_base = 10000.0f;
  5419. static constexpr float freq_scale = 1.0f;
  5420. static constexpr float ext_factor = 0.0f;
  5421. static constexpr float attn_factor = 1.0f;
  5422. static constexpr float beta_fast = 32.0f;
  5423. static constexpr float beta_slow = 1.0f;
  5424. bool fused;
  5425. std::string op_desc(ggml_tensor * t) override {
  5426. GGML_UNUSED(t);
  5427. return "LLAMA";
  5428. }
  5429. std::string vars() override {
  5430. auto n_tokens = hp.n_tokens;
  5431. return VARS_TO_STR1(n_tokens);
  5432. }
  5433. double max_nmse_err() override {
  5434. return 2e-3;
  5435. }
  5436. bool run_whole_graph() override { return fused; }
  5437. test_llama(int n_tokens = 1, bool fused = false)
  5438. : test_llm({
  5439. /*n_vocab =*/ 32000,
  5440. /*n_embd =*/ 3200,
  5441. /*n_head =*/ 32,
  5442. /*n_head_kv =*/ 32,
  5443. /*n_rot =*/ 100,
  5444. /*n_embd_head =*/ 100,
  5445. /*n_ff =*/ 8640,
  5446. /*f_norm_eps =*/ 0.f,
  5447. /*f_norm_rms_eps =*/ 1e-5f,
  5448. /*n_tokens =*/ n_tokens,
  5449. })
  5450. , fused(fused)
  5451. {
  5452. }
  5453. ggml_tensor * build_graph(ggml_context * ctx) override {
  5454. struct ggml_tensor * cur;
  5455. struct ggml_tensor * inpL;
  5456. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  5457. // inp_pos - contains the positions
  5458. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  5459. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5460. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  5461. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  5462. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  5463. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  5464. struct ggml_tensor * inpSA = inpL;
  5465. // norm
  5466. ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5467. cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
  5468. // self-attention
  5469. {
  5470. ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  5471. ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  5472. ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  5473. // compute Q and K and RoPE them
  5474. struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
  5475. struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
  5476. struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
  5477. Qcur = ggml_rope_ext(
  5478. ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr,
  5479. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  5480. ext_factor, attn_factor, beta_fast, beta_slow
  5481. );
  5482. Kcur = ggml_rope_ext(
  5483. ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
  5484. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  5485. ext_factor, attn_factor, beta_fast, beta_slow
  5486. );
  5487. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  5488. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  5489. }
  5490. struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
  5491. // feed-forward network
  5492. ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5493. cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
  5494. ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  5495. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  5496. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  5497. struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
  5498. cur = ggml_mul_mat(ctx, ffn_gate, cur);
  5499. cur = ggml_silu(ctx, cur);
  5500. cur = ggml_mul(ctx, cur, tmp);
  5501. cur = ggml_mul_mat(ctx, ffn_down, cur);
  5502. cur = ggml_add(ctx, cur, ffn_inp);
  5503. // input for next layer
  5504. inpL = cur;
  5505. }
  5506. cur = inpL;
  5507. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5508. cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
  5509. // lm_head
  5510. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
  5511. cur = ggml_mul_mat(ctx, output, cur);
  5512. return cur;
  5513. }
  5514. };
  5515. // Falcon
  5516. struct test_falcon : public test_llm {
  5517. static constexpr float freq_base = 10000.0f;
  5518. static constexpr float freq_scale = 1.0f;
  5519. static constexpr float ext_factor = 0.0f;
  5520. static constexpr float attn_factor = 1.0f;
  5521. static constexpr float beta_fast = 32.0f;
  5522. static constexpr float beta_slow = 1.0f;
  5523. std::string op_desc(ggml_tensor * t) override {
  5524. GGML_UNUSED(t);
  5525. return "FALCON";
  5526. }
  5527. std::string vars() override {
  5528. auto n_tokens = hp.n_tokens;
  5529. return VARS_TO_STR1(n_tokens);
  5530. }
  5531. double max_nmse_err() override {
  5532. return 2e-3;
  5533. }
  5534. test_falcon(int n_tokens = 1)
  5535. : test_llm({
  5536. /*n_vocab =*/ 32000,
  5537. /*n_embd =*/ 3200,
  5538. /*n_head =*/ 50,
  5539. /*n_head_kv =*/ 1,
  5540. /*n_rot =*/ 64,
  5541. /*n_embd_head =*/ 64,
  5542. /*n_ff =*/ 8640,
  5543. /*f_norm_eps =*/ 1e-5f,
  5544. /*f_norm_rms_eps =*/ 0.f,
  5545. /*n_tokens =*/ n_tokens,
  5546. }) {
  5547. }
  5548. ggml_tensor * build_graph(ggml_context * ctx) override {
  5549. struct ggml_tensor * cur;
  5550. struct ggml_tensor * inpL;
  5551. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  5552. // inp_pos - contains the positions
  5553. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  5554. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5555. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  5556. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  5557. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  5558. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  5559. // norm
  5560. ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5561. ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5562. ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
  5563. // self-attention
  5564. {
  5565. cur = attn_norm;
  5566. ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
  5567. cur = ggml_mul_mat(ctx, wqkv, cur);
  5568. struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
  5569. struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
  5570. struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
  5571. Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
  5572. Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
  5573. // using mode = 2 for neox mode
  5574. Qcur = ggml_rope_ext(
  5575. ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  5576. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  5577. );
  5578. Kcur = ggml_rope_ext(
  5579. ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  5580. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  5581. );
  5582. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  5583. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  5584. }
  5585. struct ggml_tensor * ffn_inp = cur;
  5586. // feed forward
  5587. {
  5588. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  5589. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  5590. cur = attn_norm;
  5591. cur = ggml_mul_mat(ctx, ffn_up, cur);
  5592. cur = ggml_gelu(ctx, cur);
  5593. cur = ggml_mul_mat(ctx, ffn_down, cur);
  5594. }
  5595. cur = ggml_add(ctx, cur, ffn_inp);
  5596. cur = ggml_add(ctx, cur, inpL);
  5597. // input for next layer
  5598. inpL = cur;
  5599. }
  5600. cur = inpL;
  5601. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5602. ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5603. cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
  5604. // lm_head
  5605. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
  5606. cur = ggml_mul_mat(ctx, output, cur);
  5607. return cur;
  5608. }
  5609. };
  5610. // ###########################################
  5611. // ## Section 3: GGML Op Test Instantiation ##
  5612. // ###########################################
  5613. static const ggml_type all_types[] = {
  5614. GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
  5615. GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
  5616. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  5617. GGML_TYPE_Q8_0,
  5618. GGML_TYPE_MXFP4,
  5619. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  5620. GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
  5621. GGML_TYPE_Q6_K,
  5622. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  5623. GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  5624. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  5625. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  5626. };
  5627. static const ggml_type base_types[] = {
  5628. GGML_TYPE_F32, GGML_TYPE_F16,
  5629. GGML_TYPE_Q8_0, // for I8MM tests
  5630. GGML_TYPE_Q4_0,
  5631. GGML_TYPE_Q4_1, // for I8MM tests
  5632. GGML_TYPE_Q4_K,
  5633. GGML_TYPE_MXFP4, // TODO: or "other"
  5634. GGML_TYPE_IQ2_XXS
  5635. };
  5636. static const ggml_type other_types[] = {
  5637. GGML_TYPE_Q4_1,
  5638. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  5639. GGML_TYPE_Q8_0,
  5640. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  5641. GGML_TYPE_Q5_K,
  5642. GGML_TYPE_Q6_K,
  5643. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  5644. GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  5645. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  5646. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  5647. GGML_TYPE_BF16,
  5648. };
  5649. #ifdef _MSC_VER
  5650. // Workaround long compile time with msvc
  5651. #pragma optimize("", off)
  5652. #endif
  5653. // Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low
  5654. static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
  5655. std::vector<std::unique_ptr<test_case>> test_cases;
  5656. std::default_random_engine rng(0);
  5657. // unary ops
  5658. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5659. for (int v : {0, 1}) {
  5660. for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
  5661. if (op == GGML_UNARY_OP_XIELU) {
  5662. continue; // need extra params, separate test
  5663. }
  5664. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 128, 2, 2, 2 }, v));
  5665. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 5, 7, 11, 13 }, v));
  5666. }
  5667. }
  5668. }
  5669. // glu ops
  5670. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5671. for (int v : {0, 1}) {
  5672. for (int op = 0; op < GGML_GLU_OP_COUNT; op++) {
  5673. if (op == GGML_GLU_OP_SWIGLU_OAI) {
  5674. // SWIGLU_OAI is handled separately
  5675. continue;
  5676. }
  5677. for (bool swapped : {false, true}) {
  5678. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v, swapped));
  5679. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v, swapped));
  5680. }
  5681. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v));
  5682. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v));
  5683. }
  5684. }
  5685. }
  5686. for (int v : {0, 1}) {
  5687. for (float alpha : {.5f, 1.702f}) {
  5688. for (float limit : {2.0f, 7.0f}) {
  5689. test_cases.emplace_back(new test_swiglu_oai(GGML_TYPE_F32, { 128, 2, 2, 2 }, v, alpha, limit));
  5690. }
  5691. }
  5692. }
  5693. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_Q4_0}) {
  5694. test_cases.emplace_back(new test_get_rows(type, 300*256, 5, 4, 1, 2, false));
  5695. test_cases.emplace_back(new test_get_rows(type, 256, 80000, 70000, 2, 1, false));
  5696. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, 700, 100, false));
  5697. }
  5698. test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, 1, false));
  5699. for (ggml_type type : all_types) {
  5700. for (int b : {1, 7}) {
  5701. for (bool v : {false, true}) {
  5702. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, 1, v));
  5703. }
  5704. }
  5705. }
  5706. for (int b : {1, 7}) {
  5707. for (bool v : {false, true}) {
  5708. test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, 1, v));
  5709. }
  5710. }
  5711. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_F32, 1, 8, 2, 1, false));
  5712. for (ggml_type type : all_types) {
  5713. for (bool v : {false, true}) {
  5714. test_cases.emplace_back(new test_get_rows_back(type, 256, 5, 4, 1, v));
  5715. }
  5716. }
  5717. for (bool v : {false, true}) {
  5718. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_I32, 256, 5, 4, 1, v));
  5719. }
  5720. test_cases.emplace_back(new test_set_rows(GGML_TYPE_F32, GGML_TYPE_I64, { 1, 8, 1, 3 }, { 1, 1 }, 2, false));
  5721. test_cases.emplace_back(new test_set_rows(GGML_TYPE_F32, GGML_TYPE_I32, { 1, 8, 1, 3 }, { 1, 1 }, 2, false));
  5722. test_cases.emplace_back(new test_set_rows(GGML_TYPE_Q8_0, GGML_TYPE_I32, { 256, 5, 1, 3 }, { 1, 1, }, 1, false));
  5723. for (ggml_type type : all_types) {
  5724. for (int b : {1, 7}) {
  5725. for (bool v : {false, true}) {
  5726. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 256, 5, b, 3 }, { 1, 1, }, 1, v));
  5727. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 256, 11, 1, b }, { 2, 3, }, 7, v));
  5728. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 3*ggml_blck_size(type), 3, b, 1 }, { 2, 3, }, 2, v));
  5729. if (ggml_blck_size(type) == 1) {
  5730. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 31, 3, b, 1 }, { 2, 3, }, 2, v));
  5731. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 33, 5, 1, b }, { 2, 3, }, 1, v));
  5732. }
  5733. }
  5734. }
  5735. }
  5736. for (int mode : { GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX, GGML_ROPE_TYPE_MROPE, GGML_ROPE_TYPE_VISION }) {
  5737. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5738. for (int ne2 : {1, 8, 512}) {
  5739. test_cases.emplace_back(new test_rope_set_rows(type, GGML_TYPE_I64, { 128, 32, ne2, 1 }, mode));
  5740. test_cases.emplace_back(new test_rope_set_rows(type, GGML_TYPE_I64, { 128, 32, ne2, 3 }, mode));
  5741. }
  5742. }
  5743. }
  5744. for (ggml_type type_input : {GGML_TYPE_F32}) {
  5745. for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
  5746. for (int k0 : {1, 3}) {
  5747. for (int k1 : {1, 3}) {
  5748. for (int s0 : {1, 2}) {
  5749. for (int s1 : {1, 2}) {
  5750. for (int p0 : {0, 1}) {
  5751. for (int p1 : {0, 1}) {
  5752. test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
  5753. }
  5754. }
  5755. }
  5756. }
  5757. }
  5758. }
  5759. }
  5760. }
  5761. #if 0
  5762. // >4GB im2col destination. Too slow to run by default.
  5763. // Test cases taken from Wan2.1 T2V 1.3B.
  5764. test_cases.emplace_back(new test_im2col (GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {832, 480, 192, 4}, {3, 3, 192, 96}, 1, 1, 1, 1, 1, 1, true));
  5765. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {834, 482, 6, 96}, {3, 3,3, 9216}, 96, 1, 1, 1, 0, 0, 0, 1, 1, 1, false));
  5766. #endif
  5767. // im2col 1D
  5768. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  5769. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  5770. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  5771. for (int s0 : {1, 3}) {
  5772. for (int p0 : {0, 3}) {
  5773. for (int d0 : {1, 3}) {
  5774. test_cases.emplace_back(new test_im2col(
  5775. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1},
  5776. s0, 0, p0, 0, d0, 0, false));
  5777. }
  5778. }
  5779. }
  5780. // im2col 2D
  5781. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  5782. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  5783. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  5784. for (int s0 : {1, 3}) {
  5785. for (int s1 : {1, 3}) {
  5786. for (int p0 : {0, 3}) {
  5787. for (int p1 : {0, 3}) {
  5788. for (int d0 : {1, 3}) {
  5789. for (int d1 : {1, 3}) {
  5790. test_cases.emplace_back(new test_im2col(
  5791. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2},
  5792. s0, s1, p0, p1, d0, d1, true));
  5793. }
  5794. }
  5795. }
  5796. }
  5797. }
  5798. }
  5799. // extra tests for im2col 2D
  5800. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true));
  5801. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true));
  5802. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true));
  5803. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true));
  5804. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true));
  5805. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true));
  5806. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true));
  5807. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true));
  5808. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {5, 5, 1, 32}, {3, 4, 1, 32}, 1, 1, 0, 0, 1, 1, true));
  5809. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {2, 2, 1536, 729}, {2, 2, 1536, 4096}, 1, 1, 0, 0, 1, 1, true));
  5810. // im2col 3D
  5811. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  5812. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  5813. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  5814. for (int s0 : {1, 3}) {
  5815. for (int s1 : {1, 3}) {
  5816. for (int s2 : {1, 3}) {
  5817. for (int p0 : {0, 3}) {
  5818. for (int p1 : {0, 3}) {
  5819. for (int p2 : {0, 3}) {
  5820. for (int d0 : {1, 3}) {
  5821. for (int d1 : {1, 3}) {
  5822. for (int d2 : {1, 3}) {
  5823. for (int IC : {1, 3}) {
  5824. for (bool v : {false, true}) {
  5825. test_cases.emplace_back(new test_im2col_3d(
  5826. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 10, 3}, {3, 3, 3, 3},
  5827. IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, v));
  5828. }
  5829. }
  5830. }
  5831. }
  5832. }
  5833. }
  5834. }
  5835. }
  5836. }
  5837. }
  5838. }
  5839. // Conv_2D test cases
  5840. #ifdef DETAILED_TESTS
  5841. // Probably we do not have enough time to execute these in the pipeline.
  5842. uint32_t iwh_idx = 0;
  5843. uint32_t kwh_idx = 1;
  5844. uint32_t Cout_idx = 2;
  5845. uint32_t Cin_idx = 3;
  5846. uint32_t B_idx = 4;
  5847. std::vector<std::array<int, 5>> cases = {
  5848. //{IWH, KWH, Cout, Cin, B}
  5849. // K=CRS=NPQ=4096 conv_2d matmul performance
  5850. {19, 4, 4096, 256, 16},
  5851. // K=128, CRS=128, NPQ=4096
  5852. { 19, 4, 128, 8, 16},
  5853. // K=130, CRS=128, NPQ=4096
  5854. { 19, 4, 130, 8, 16},
  5855. // Edge case: K x CRS is small
  5856. { 19, 2, 4, 4, 16},
  5857. // A ConvNet's first layer
  5858. { 224, 3, 8, 3, 1 },
  5859. // A ConvNet's first layer with 2x2 convolution, and 1 channel
  5860. { 224, 2, 8, 1, 1 },
  5861. // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch
  5862. { 224, 2, 8, 1, 8 },
  5863. // A middle layer of a ConvNet
  5864. { 58, 3, 64, 32, 1 },
  5865. // A middle layer of a ConvNet, several images in the batch
  5866. { 58, 3, 64, 32, 8 },
  5867. // A deep layer of a ConvNet, several images in the batch
  5868. { 16, 3, 256, 128, 8 }
  5869. };
  5870. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5871. for (auto act_case : cases) {
  5872. test_cases.emplace_back(new test_conv_2d(
  5873. { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] },
  5874. { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] },
  5875. kernel_type, 1, 1, 0, 0, 1, 1, false));
  5876. }
  5877. }
  5878. #endif
  5879. // CONV_2D:
  5880. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  5881. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5882. };
  5883. //uint32_t s0 = 3;
  5884. uint32_t s1 = 5;
  5885. uint32_t p0 = 5;
  5886. //uint32_t p1 = 2;
  5887. uint32_t d0 = 2;
  5888. uint32_t d1 = 4;
  5889. for (uint32_t s0 : { 1, 3 }) {
  5890. for (uint32_t p1 : { 2, 5 }) {
  5891. for (uint32_t Cin : { 1, 25 }) {
  5892. for (uint32_t Cout : { 1, 12 }) {
  5893. for (uint32_t KH : { 1, 2, 3, 11 }) {
  5894. for (uint32_t KW : { 1, 2, 3, 11 }) {
  5895. for (uint32_t H : { 1, 133 }) {
  5896. for (uint32_t W : { 1, 141 }) {
  5897. if (calc_conv_output_size(W, KW, s0, p0, d0) > 0 &&
  5898. calc_conv_output_size(H, KH, s1, p1, d1) > 0) {
  5899. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5900. test_cases.emplace_back(new test_conv_2d(
  5901. { W, H, Cin, 2 }, { KW, KH, Cin, Cout }, kernel_type, s0, s1, p0, p1, d0, d1, false));
  5902. }
  5903. }
  5904. }
  5905. }
  5906. }
  5907. }
  5908. }
  5909. }
  5910. }
  5911. }
  5912. // sycl backend will limit task global_range < MAX_INT
  5913. // test cases for 2D im2col with large input W and H (occurs in stable-diffusion)
  5914. // however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  5915. // these cases are verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  5916. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  5917. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  5918. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, false));
  5919. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, true));
  5920. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, false));
  5921. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, true));
  5922. // CONV_3D
  5923. auto calc_conv_output_size_3d = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  5924. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5925. };
  5926. for (ggml_type kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5927. for (int N : {1, 2}) {
  5928. for (int IC : {1, 3}) {
  5929. for (int OC : {1, 4}) {
  5930. for (int s0 : {1, 2}) {
  5931. for (int p1 : {0, 1}) {
  5932. for (int d2 : {1, 2}) {
  5933. int64_t IW = 20, IH = 22, ID = 18;
  5934. int64_t KW = 3, KH = 3, KD = 3;
  5935. int s1 = s0, s2 = s0;
  5936. int p0 = p1, p2 = p1;
  5937. int d0 = d2, d1 = d2;
  5938. if (calc_conv_output_size_3d(IW, KW, s0, p0, d0) <= 0 ||
  5939. calc_conv_output_size_3d(IH, KH, s1, p1, d1) <= 0 ||
  5940. calc_conv_output_size_3d(ID, KD, s2, p2, d2) <= 0) {
  5941. continue;
  5942. }
  5943. test_cases.emplace_back(new test_conv_3d(
  5944. N, IC, ID, IH, IW,
  5945. OC, KD, KH, KW,
  5946. s0, s1, s2, p0, p1, p2, d0, d1, d2,
  5947. kernel_type));
  5948. // Asymmetric kernel and params
  5949. int64_t asym_KW = 5, asym_KH = 1, asym_KD = 3;
  5950. int asym_s0 = 2, asym_s1 = 1, asym_s2 = 1;
  5951. int asym_p0 = 2, asym_p1 = 0, asym_p2 = 1;
  5952. int asym_d0 = 1, asym_d1 = 1, asym_d2 = 2;
  5953. if (calc_conv_output_size_3d(IW, asym_KW, asym_s0, asym_p0, asym_d0) <= 0 ||
  5954. calc_conv_output_size_3d(IH, asym_KH, asym_s1, asym_p1, asym_d1) <= 0 ||
  5955. calc_conv_output_size_3d(ID, asym_KD, asym_s2, asym_p2, asym_d2) <= 0) {
  5956. continue;
  5957. }
  5958. test_cases.emplace_back(new test_conv_3d(
  5959. N, IC, ID, IH, IW,
  5960. OC, asym_KD, asym_KH, asym_KW,
  5961. asym_s0, asym_s1, asym_s2, asym_p0, asym_p1, asym_p2, asym_d0, asym_d1, asym_d2,
  5962. kernel_type));
  5963. }
  5964. }
  5965. }
  5966. }
  5967. }
  5968. }
  5969. // Case with kernel size 1
  5970. test_cases.emplace_back(new test_conv_3d(1, 4, 8, 8, 8, 8, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, kernel_type));
  5971. }
  5972. for(uint32_t Cout : {1, 9}){
  5973. for(uint32_t Cin : {1, 7}){
  5974. for(uint32_t K : {1, 3, 1337}){
  5975. for(uint32_t L : {1, 2, 13}){
  5976. for(uint32_t s0: {1, 2, 3}){
  5977. test_cases.emplace_back(new test_conv_transpose_1d({L,Cin,1,1}, {K,Cout,Cin,1}, s0, 0, 1));
  5978. }
  5979. }
  5980. }
  5981. }
  5982. }
  5983. test_cases.emplace_back(new test_conv_transpose_1d());
  5984. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
  5985. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
  5986. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
  5987. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
  5988. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
  5989. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
  5990. test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
  5991. test_cases.emplace_back(new test_conv_transpose_2d({3, 2, 3, 1}, {2, 2, 1, 3}, 1));
  5992. test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
  5993. test_cases.emplace_back(new test_conv_transpose_2d({129, 63, 35, 1}, {3, 3, 48, 35}, 1));
  5994. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 500, 1, 1}));
  5995. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 5000, 1, 1}));
  5996. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1}));
  5997. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 513, 1, 1}));
  5998. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1}));
  5999. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  6000. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 12, 1, 1}));
  6001. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));
  6002. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {5438, 3, 1, 1}));
  6003. for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
  6004. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1}));
  6005. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  6006. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1}));
  6007. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1}));
  6008. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  6009. test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  6010. test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  6011. }
  6012. for (bool view : {false, true}) {
  6013. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 1}, view));
  6014. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {2, 1, 1, 1}, view));
  6015. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 2, 1, 1}, view));
  6016. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 2, 1}, view));
  6017. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 2}, view));
  6018. }
  6019. test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
  6020. test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
  6021. test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
  6022. test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
  6023. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
  6024. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
  6025. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
  6026. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
  6027. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
  6028. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
  6029. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  6030. test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
  6031. }
  6032. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  6033. test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
  6034. }
  6035. // same-type copy
  6036. for (ggml_type type : all_types) {
  6037. const auto nk = ggml_blck_size(type);
  6038. for (int k = 1; k < 4; ++k) {
  6039. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}));
  6040. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 2, 1, 3}));
  6041. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 3, 1, 2}, {0, 2, 1, 3}));
  6042. }
  6043. }
  6044. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  6045. for (ggml_type type_dst : all_types) {
  6046. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  6047. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  6048. }
  6049. }
  6050. for (ggml_type type_src : all_types) {
  6051. for (ggml_type type_dst : {GGML_TYPE_F32}) {
  6052. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  6053. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  6054. }
  6055. }
  6056. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  6057. for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  6058. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
  6059. }
  6060. }
  6061. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_I32, {256, 2, 3, 4}));
  6062. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_I32, {256, 2, 3, 4}, {1, 0, 2, 3}));
  6063. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_F32, {256, 2, 3, 4}));
  6064. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_F32, {256, 2, 3, 4}, {1, 0, 2, 3}));
  6065. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {256, 4, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6066. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 4, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6067. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 4, 3, 3}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6068. test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {256, 4, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6069. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6070. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6071. test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6072. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_I32, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6073. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_I32, {256, 1, 4, 1}, {1, 2, 0, 3}, {0, 0, 0, 0}));
  6074. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 1, 4, 1}, {1, 2, 0, 3}, {0, 0, 0, 0}));
  6075. for (ggml_type type_dst : { GGML_TYPE_F32, GGML_TYPE_I32, GGML_TYPE_F16, GGML_TYPE_BF16 }) {
  6076. for (bool use_view_slice : { true, false }) {
  6077. for (std::array<int64_t, 4> ne : std::initializer_list<std::array<int64_t, 4>>{ {2, 1, 1, 1}, {2, 1, 3, 5},
  6078. {2, 3, 5, 7}, {1, 4, 4, 1}, {1, 8, 17, 1}, {10, 10, 10, 1} }) {
  6079. if (use_view_slice && (type_dst == GGML_TYPE_F16 || type_dst == GGML_TYPE_BF16)) {
  6080. continue; // TODO: add after WebGPU is fixed
  6081. }
  6082. test_cases.emplace_back(new test_cont(type_dst, ne, use_view_slice));
  6083. }
  6084. }
  6085. }
  6086. auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
  6087. for (auto op : {ggml_add, ggml_sub, ggml_mul, ggml_div}) {
  6088. test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
  6089. }
  6090. };
  6091. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  6092. add_test_bin_bcast(type, {1, 1, 8, 1}, {1, 1, 1, 1});
  6093. add_test_bin_bcast(type, {1, 1, 1, 1}, {32, 1, 1, 1});
  6094. add_test_bin_bcast(type, {1, 1, 320, 320}, {1, 1, 1, 1});
  6095. add_test_bin_bcast(type, {10, 5, 1, 1}, {1, 1, 1, 1});
  6096. add_test_bin_bcast(type, {10, 5, 4, 1}, {1, 1, 1, 1});
  6097. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 1});
  6098. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 1, 1, 1});
  6099. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 1, 1});
  6100. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 1});
  6101. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 2});
  6102. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 2});
  6103. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 2, 2});
  6104. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 2, 2, 2});
  6105. // test case for k_bin_bcast_unravel in CUDA backend
  6106. add_test_bin_bcast(type, {1, 1, 65536, 1}, {256, 1, 1, 1});
  6107. // stable diffusion
  6108. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 1, 1, 1});
  6109. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 16, 16, 1});
  6110. add_test_bin_bcast(type, {1280, 16, 16, 1}, {1, 1, 1, 1});
  6111. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 256, 1, 1});
  6112. add_test_bin_bcast(type, {1, 1, 1280, 1}, {16, 16, 1, 1});
  6113. add_test_bin_bcast(type, {16, 16, 1280, 1}, {1, 1, 1, 1});
  6114. add_test_bin_bcast(type, {1, 1, 1920, 1}, {16, 16, 1, 1});
  6115. add_test_bin_bcast(type, {1, 1, 2560, 1}, {16, 16, 1, 1});
  6116. add_test_bin_bcast(type, {1, 1, 1280, 1}, {32, 32, 1, 1});
  6117. add_test_bin_bcast(type, {1, 1, 1920, 1}, {32, 32, 1, 1});
  6118. add_test_bin_bcast(type, {1, 1, 640, 1}, {32, 32, 1, 1});
  6119. add_test_bin_bcast(type, {5120, 1, 1, 1}, {1, 256, 1, 1});
  6120. add_test_bin_bcast(type, {640, 1, 1, 1}, {1, 1, 1, 1});
  6121. add_test_bin_bcast(type, {64, 262144, 1, 1}, {1, 1, 1, 1});
  6122. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {1, 1, 1, 1});
  6123. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {2, 1, 1, 1});
  6124. }
  6125. // single inplace tests, especially important for WebGPU backend since kernels for inplace vs. not are different
  6126. test_cases.emplace_back(new test_bin_bcast(ggml_add_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  6127. test_cases.emplace_back(new test_bin_bcast(ggml_mul_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  6128. test_cases.emplace_back(new test_bin_bcast(ggml_sub_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  6129. test_cases.emplace_back(new test_bin_bcast(ggml_div_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  6130. // fusion
  6131. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {2, 1, 1, 1}, 2));
  6132. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 2, 1, 1}, 3));
  6133. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 1}, 4));
  6134. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 2}, 5));
  6135. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 2}, 6));
  6136. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 2, 2}, 7));
  6137. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {2, 2, 2, 2}, 8));
  6138. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  6139. test_cases.emplace_back(new test_add1());
  6140. test_cases.emplace_back(new test_add1(GGML_TYPE_F32, {1024, 1024, 1, 1}));
  6141. test_cases.emplace_back(new test_scale());
  6142. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f));
  6143. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f, true)); // inplace test
  6144. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {100, 10, 10, 10}, 2.0f, 1.0f));
  6145. test_cases.emplace_back(new test_softcap(GGML_TYPE_F32, {10, 10, 10, 10}, 50.0f));
  6146. test_cases.emplace_back(new test_silu_back());
  6147. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {
  6148. for (bool v : {false, true}) {
  6149. test_cases.emplace_back(new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  6150. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  6151. }
  6152. test_cases.emplace_back(new test_rms_norm_back(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  6153. test_cases.emplace_back(new test_l2_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  6154. }
  6155. // in-place tests
  6156. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, false, 1e-6f, true));
  6157. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f, 1.0f}) {
  6158. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, false));
  6159. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true));
  6160. test_cases.emplace_back(new test_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, false));
  6161. test_cases.emplace_back(new test_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true));
  6162. test_cases.emplace_back(new test_add_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, eps, false));
  6163. test_cases.emplace_back(new test_add_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true));
  6164. }
  6165. for (uint32_t n : {1, 511, 1025, 8192, 33*512}) {
  6166. for (bool multi_add : {false, true}) {
  6167. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {n, 1, 1, 1}, 1e-6f, false, multi_add));
  6168. }
  6169. test_cases.emplace_back(new test_add_rms_norm(GGML_TYPE_F32, {n, 1, 1, 1}, 1e-6f, false));
  6170. }
  6171. for (auto multi_add : {false, true}) {
  6172. for (auto set_rows : {false, true}) {
  6173. for (auto rope : {GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX}) {
  6174. test_cases.emplace_back(new test_rms_norm_mul_rope({768, 1, 1, 1}, 1e-6f, multi_add, set_rows, rope));
  6175. test_cases.emplace_back(new test_rms_norm_mul_rope({768, 3, 1, 1}, 1e-6f, multi_add, set_rows, rope));
  6176. test_cases.emplace_back(new test_rms_norm_mul_rope({768, 3, 5, 1}, 1e-6f, multi_add, set_rows, rope));
  6177. test_cases.emplace_back(new test_rms_norm_mul_rope({128, 32, 2, 1}, 1e-6f, multi_add, set_rows, rope));
  6178. test_cases.emplace_back(new test_rms_norm_mul_rope({128, 4, 2, 1}, 1e-6f, multi_add, set_rows, rope));
  6179. test_cases.emplace_back(new test_rms_norm_mul_rope({128, 32, 50, 1}, 1e-6f, multi_add, set_rows, rope));
  6180. test_cases.emplace_back(new test_rms_norm_mul_rope({128, 4, 50, 1}, 1e-6f, multi_add, set_rows, rope));
  6181. test_cases.emplace_back(new test_rms_norm_mul_rope({8192, 2, 2, 1}, 1e-6f, multi_add, set_rows, rope));
  6182. test_cases.emplace_back(new test_rms_norm_mul_rope({8192, 2, 2, 1}, 1e-6f, multi_add, set_rows, rope));
  6183. }
  6184. }
  6185. }
  6186. test_cases.emplace_back(new test_l2_norm(GGML_TYPE_F32, {64, 5, 4, 3}, 1e-12f));
  6187. for (int64_t d_conv : {3, 4, 9}) {
  6188. for (int64_t d_inner: {1024, 1536, 2048}) {
  6189. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {d_conv, d_inner, 1, 1}, {d_conv, d_inner, 1, 1}));
  6190. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {2 * d_conv, d_inner, 1, 1}, {d_conv, d_inner, 1, 1}));
  6191. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {d_conv, d_inner, 4, 1}, {d_conv, d_inner, 1, 1}));
  6192. }
  6193. }
  6194. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1, 1024, 1, 32, 4)); // Mamba-1
  6195. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 128, 64, 16, 2, 32, 4)); // Mamba-2
  6196. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 256, 64, 8, 2, 32, 4)); // Falcon-H1
  6197. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1));
  6198. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1));
  6199. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4));
  6200. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4));
  6201. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 1, 1));
  6202. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 1));
  6203. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 4));
  6204. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 128, 4));
  6205. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 1, 1));
  6206. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 1));
  6207. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 4));
  6208. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 128, 4));
  6209. #if 0
  6210. // > 4GB A matrix. Too slow to be enabled by default.
  6211. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 900000, 3, 2592, {1, 1}, {1, 1}));
  6212. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 96, 2592, {1, 1}, {1, 1}));
  6213. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 3, 2592, {1, 1}, {1, 1}));
  6214. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 1, 2592, {1, 1}, {1, 1}));
  6215. #endif
  6216. for (ggml_type type_a : all_types) {
  6217. for (int i = 1; i < 10; ++i) {
  6218. test_cases.emplace_back(new test_mul_mat(type_a, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  6219. }
  6220. }
  6221. #if 0
  6222. {
  6223. // Test paths in OpenCL
  6224. std::vector<int> ns = {32, 64, 128, 256, 512, 1024, 4096};
  6225. std::vector<int> ks = {896, 1536, 4096};
  6226. for (auto n : ns) {
  6227. for (auto k : ks) {
  6228. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q8_0, GGML_TYPE_F32, 1024, n, k, {1, 1}, {1, 1}));
  6229. }
  6230. }
  6231. }
  6232. #endif
  6233. #if 1
  6234. for (ggml_type type_a : base_types) {
  6235. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6236. std::vector<int> ks = { 256 };
  6237. if (ggml_blck_size(type_a) == 1) {
  6238. ks.push_back(4);
  6239. }
  6240. for (auto k : ks) {
  6241. // test cases without permutation
  6242. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 1}));
  6243. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {2, 1}));
  6244. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 2}));
  6245. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {1, 1}));
  6246. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {2, 1}));
  6247. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 1}));
  6248. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 1}));
  6249. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 2}));
  6250. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 2}));
  6251. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 1}));
  6252. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {2, 1}));
  6253. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 2}));
  6254. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {1, 1}));
  6255. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {2, 1}));
  6256. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 1}));
  6257. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 1}));
  6258. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 2}));
  6259. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 2}));
  6260. // test cases with permutation
  6261. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  6262. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  6263. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  6264. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  6265. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  6266. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  6267. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  6268. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  6269. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  6270. }
  6271. // test cases with large ne00/ne10 to cover stream-k fixup
  6272. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 1024, {3, 2}, {1, 1}));
  6273. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 1024, {3, 2}, {1, 1}));
  6274. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 1024, {3, 2}, {1, 1}));
  6275. // test cases with large batch size
  6276. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {1536, 1}, {1, 1}));
  6277. }
  6278. }
  6279. for (ggml_type type_a : other_types) {
  6280. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6281. if (ggml_blck_size(type_a) != 256) {
  6282. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
  6283. }
  6284. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
  6285. }
  6286. }
  6287. #else
  6288. // m = a rows
  6289. // n = b rows
  6290. // k = cols
  6291. std::uniform_int_distribution<> dist_m(1, 128);
  6292. std::uniform_int_distribution<> dist_n(16, 128);
  6293. std::uniform_int_distribution<> dist_k(1, 16);
  6294. for (int i = 0; i < 1000; i++) {
  6295. for (ggml_type type_a : all_types) {
  6296. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6297. int m = dist_m(rng);
  6298. int n = dist_n(rng);
  6299. int k = dist_k(rng) * ggml_blck_size(type_a);
  6300. test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1}));
  6301. }
  6302. }
  6303. }
  6304. #endif
  6305. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
  6306. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
  6307. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
  6308. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
  6309. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
  6310. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
  6311. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 193, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  6312. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 67, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  6313. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 16, 32, 32, { 1, 1}, {1, 1}, {0, 1, 2, 3}, 64, 3));
  6314. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 77, 77, {12,1}, {1,1}));
  6315. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q4_0, GGML_TYPE_F32, 576, 512, 576, {1,1}, {1,1}));
  6316. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q4_0, GGML_TYPE_F32, 1, 2048, 8192, {1, 1}, {1, 1}));
  6317. for (ggml_type type_a : all_types) {
  6318. test_cases.emplace_back(new test_mul_mat(type_a, GGML_TYPE_F32, 1, 64, 256, {1, 1}, {1, 1}));
  6319. }
  6320. #if 0
  6321. // test the mat-mat path for Metal
  6322. for (int k = 1; k < 512; ++k) {
  6323. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 127, k, {12,1}, {1,1}));
  6324. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 127, k, {12,1}, {1,1}));
  6325. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 77, k, {12,1}, {1,1}));
  6326. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 77, k, {12,1}, {1,1}));
  6327. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 128, k, {12,1}, {1,1}));
  6328. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 128, k, {12,1}, {1,1}));
  6329. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, false, 50, 200, k));
  6330. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, true, 50, 200, k));
  6331. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F32, GGML_TYPE_F32, 16, 16, false, 50, 200, k));
  6332. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F32, GGML_TYPE_F32, 16, 16, true, 50, 200, k));
  6333. }
  6334. #endif
  6335. for (auto bs2 : {1,3}) {
  6336. for (auto bs : {1,2,4,8}) {
  6337. for (auto nr : {1,4}) {
  6338. for (uint32_t m = 0; m < 2; ++m) {
  6339. for (uint32_t k = 0; k < 2; ++k) {
  6340. for (ggml_type type: {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  6341. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 1056 + m, 1, 128 + k, {bs, bs2}, {nr, 1}, {0, 2, 1, 3}));
  6342. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 128 + m, 1, 1056 + k, {bs, bs2}, {nr, 1}, {0, 1, 2, 3}, 2*1056 + k));
  6343. }
  6344. }
  6345. }
  6346. }
  6347. }
  6348. }
  6349. // sycl backend will limit task global_range < MAX_INT
  6350. // test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion)
  6351. // however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  6352. // this case is verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  6353. // test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1}));
  6354. // test large experts*tokens
  6355. for (bool b : {false, true}) {
  6356. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 32, 1024, 16));
  6357. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 2, 2, b, 32, 8192, 64));
  6358. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 50, 200, 64));
  6359. }
  6360. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 1, 1, false, 8, 16, 1));
  6361. test_cases.emplace_back(new test_mul_mat_id_fusion(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, false, 32, 32, 32, 3));
  6362. // gpt-oss issue with Vulkan mmq_id
  6363. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_MXFP4, GGML_TYPE_F32, 32, 2, false, 2880, 32, 2880));
  6364. for (ggml_type type_a : base_types) {
  6365. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  6366. for (int n_mats : {4, 8}) {
  6367. for (int n_used : {1, 2, 4}) {
  6368. for (bool b : {false, true}) {
  6369. for (int n : {1, 4, 5, 17, 32, 129}) {
  6370. int m = 512;
  6371. int k = 256;
  6372. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  6373. }
  6374. }
  6375. }
  6376. }
  6377. }
  6378. }
  6379. for (ggml_type type_a : other_types) {
  6380. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  6381. for (int n_mats : {4}) {
  6382. for (int n_used : {2}) {
  6383. for (bool b : {false}) {
  6384. for (int n : {1, 32}) {
  6385. int m = 512;
  6386. int k = 256;
  6387. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  6388. }
  6389. }
  6390. }
  6391. }
  6392. }
  6393. }
  6394. for (int bs : {1, 4, 512}) {
  6395. for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q4_K}) {
  6396. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6397. // test with mul after (ffn_moe_weighted)
  6398. test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 128, 8, false, 768, bs, 2048, 1, true));
  6399. }
  6400. }
  6401. }
  6402. for (ggml_type type_a : base_types) {
  6403. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6404. for (int n : {1, 16}) {
  6405. for (int k : {1, 16}) {
  6406. for (int bs2 : {1, 3}) {
  6407. for (int bs3 : {1, 3}) {
  6408. for (int nr2 : {1, 2}) {
  6409. for (int nr3 : {1, 2}) {
  6410. test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, n, k, {bs2, bs3}, {nr2, nr3}));
  6411. }
  6412. }
  6413. }
  6414. }
  6415. }
  6416. }
  6417. }
  6418. }
  6419. // add_id
  6420. for (ggml_type type_a : {GGML_TYPE_F32}) {
  6421. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6422. for (int n_mats : {4, 8}) {
  6423. for (int n_used : {1, 2, 4}) {
  6424. for (int n_embd : {32, 129}) {
  6425. for (int n_token : {1, 32, 129}) {
  6426. test_cases.emplace_back(new test_add_id(type_a, type_b, n_embd, n_mats, n_used, n_token));
  6427. }
  6428. }
  6429. }
  6430. }
  6431. }
  6432. }
  6433. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  6434. test_cases.emplace_back(new test_sqr (type));
  6435. test_cases.emplace_back(new test_sqrt (type));
  6436. test_cases.emplace_back(new test_log (type));
  6437. test_cases.emplace_back(new test_sin (type));
  6438. test_cases.emplace_back(new test_cos (type));
  6439. test_cases.emplace_back(new test_clamp (type));
  6440. test_cases.emplace_back(new test_leaky_relu(type));
  6441. test_cases.emplace_back(new test_floor (type));
  6442. test_cases.emplace_back(new test_ceil (type));
  6443. test_cases.emplace_back(new test_round (type));
  6444. test_cases.emplace_back(new test_trunc (type));
  6445. test_cases.emplace_back(new test_sqr (type, {7, 1, 5, 3}));
  6446. test_cases.emplace_back(new test_sqrt (type, {7, 1, 5, 3}));
  6447. test_cases.emplace_back(new test_log (type, {7, 1, 5, 3}));
  6448. test_cases.emplace_back(new test_sin (type, {7, 1, 5, 3}));
  6449. test_cases.emplace_back(new test_cos (type, {7, 1, 5, 3}));
  6450. test_cases.emplace_back(new test_clamp (type, {7, 1, 5, 3}));
  6451. test_cases.emplace_back(new test_leaky_relu(type, {7, 1, 5, 3}));
  6452. test_cases.emplace_back(new test_floor (type, {7, 1, 5, 3}));
  6453. test_cases.emplace_back(new test_floor (type, { 1024, 1024, 1, 1 }));
  6454. test_cases.emplace_back(new test_ceil (type, {7, 1, 5, 3}));
  6455. test_cases.emplace_back(new test_ceil (type, { 1024, 1024, 1, 1 }));
  6456. test_cases.emplace_back(new test_round (type, {7, 1, 5, 3}));
  6457. test_cases.emplace_back(new test_round (type, { 1024, 1024, 1, 1 }));
  6458. test_cases.emplace_back(new test_trunc (type, {7, 1, 5, 3}));
  6459. test_cases.emplace_back(new test_trunc (type, { 1024, 1024, 1, 1 }));
  6460. }
  6461. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
  6462. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5));
  6463. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5));
  6464. #if 0
  6465. std::uniform_int_distribution<> dist_ne1(1, 50);
  6466. int exponent = 1;
  6467. while (exponent < (1 << 17)) {
  6468. std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
  6469. for (int n = 0; n < 10; ++n) {
  6470. int64_t ne0 = dist_ne0(rng);
  6471. int64_t ne1 = dist_ne1(rng);
  6472. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
  6473. }
  6474. exponent <<= 1;
  6475. }
  6476. #endif
  6477. for (bool mask : {false, true}) {
  6478. for (bool sinks : {false, true}) {
  6479. for (float max_bias : {0.0f, 8.0f}) {
  6480. if (!mask && max_bias > 0.0f) continue;
  6481. for (float scale : {1.0f, 0.1f}) {
  6482. for (int64_t ne0 : {16, 1024}) {
  6483. for (int64_t ne1 : {16, 1024}) {
  6484. if (mask) {
  6485. for (ggml_type m_prec : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6486. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, sinks, m_prec, {1, 1}, scale, max_bias));
  6487. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, m_prec, {1, 1}, scale, max_bias));
  6488. if (ne0 <= 32 && ne1 <= 32) {
  6489. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 3}, mask, sinks, m_prec, {3, 1}, scale, max_bias));
  6490. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, m_prec, {2, 3}, scale, max_bias));
  6491. }
  6492. }
  6493. } else {
  6494. /* The precision of mask here doesn't matter as boolean mask is false */
  6495. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  6496. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  6497. }
  6498. }
  6499. }
  6500. }
  6501. }
  6502. // inplace tests
  6503. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f, true));
  6504. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, mask, sinks, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f, true));
  6505. }
  6506. }
  6507. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  6508. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, false, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  6509. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  6510. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  6511. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, false, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  6512. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 8.0f));
  6513. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F16, {1, 1}, 0.1f, 8.0f));
  6514. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {200001, 2, 3, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 8.0f));
  6515. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {200001, 2, 3, 1}, true, true, GGML_TYPE_F16, {1, 1}, 0.1f, 8.0f));
  6516. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {200000, 1, 1, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6517. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {200000, 4, 1, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6518. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {643251, 3, 1, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6519. for (float max_bias : {0.0f, 8.0f}) {
  6520. for (float scale : {1.0f, 0.1f}) {
  6521. for (int64_t ne0 : {16, 1024}) {
  6522. for (int64_t ne1 : {16, 1024}) {
  6523. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 1, 1}, scale, max_bias));
  6524. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, scale, max_bias));
  6525. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 2, 3}, scale, max_bias));
  6526. }
  6527. }
  6528. }
  6529. }
  6530. for (bool fw : {true, false}) { // fw == forward
  6531. bool all = true;
  6532. for (float fs : { 1.0f, 1.4245f }) {
  6533. for (float ef : { 0.0f, 0.7465f }) {
  6534. for (float af : { 1.0f, 1.4245f }) {
  6535. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6536. for (bool ff : {false, true}) { // freq_factors
  6537. for (float v : { 0, 1 }) {
  6538. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 7B
  6539. if (all) {
  6540. test_cases.emplace_back(new test_rope(type, {128, 40, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 13B
  6541. test_cases.emplace_back(new test_rope(type, {128, 52, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 30B
  6542. test_cases.emplace_back(new test_rope(type, {128, 64, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 65B
  6543. test_cases.emplace_back(new test_rope(type, {16, 16, 8192, 1}, 16, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  6544. }
  6545. if (all) {
  6546. test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  6547. test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  6548. test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  6549. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  6550. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  6551. test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  6552. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (stablelm)
  6553. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  6554. test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  6555. test_cases.emplace_back(new test_rope(type, { 16, 16, 8192, 1}, 16, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw));
  6556. }
  6557. if (all) {
  6558. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
  6559. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 7B)
  6560. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 20, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
  6561. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 32, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
  6562. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,imrope (qwen3vl 2B)
  6563. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,imrope (qwen3vl 7B)
  6564. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 20, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw));
  6565. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 32, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw));
  6566. test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
  6567. test_cases.emplace_back(new test_rope(type, {128, 16, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen3vl)
  6568. test_cases.emplace_back(new test_rope(type, {16, 16, 8192, 1}, 16, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw));
  6569. }
  6570. test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  6571. }
  6572. }
  6573. all = false;
  6574. }
  6575. }
  6576. }
  6577. }
  6578. }
  6579. // single inplace test per type/mode/ff
  6580. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6581. for (int mode : {GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX, GGML_ROPE_TYPE_MROPE, GGML_ROPE_TYPE_IMROPE, GGML_ROPE_TYPE_VISION}) {
  6582. for (bool ff : {false, true}) {
  6583. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, mode, 512, 1.4245f, 0.7465f, 1.4245f, ff, 0, true, true));
  6584. }
  6585. }
  6586. }
  6587. for (int v : { 0, 1, 2, 3 }) {
  6588. for (int dim : { 0, 1, 2, 3, }) {
  6589. test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
  6590. test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
  6591. }
  6592. }
  6593. for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
  6594. for (uint32_t i = 4; i <= 1024*1024; i *= 2) {
  6595. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {i-1, 1, 1, 1}));
  6596. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {i, 1, 1, 1}));
  6597. }
  6598. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
  6599. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
  6600. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {1023, 2, 1, 3}, order));
  6601. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {1024, 2, 1, 3}, order));
  6602. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {1025, 2, 1, 3}, order));
  6603. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {2047, 2, 1, 3}, order));
  6604. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {2048, 2, 1, 3}, order));
  6605. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {2049, 2, 1, 3}, order));
  6606. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {2, 8, 8192, 1}, order)); // bailingmoe2 (group selection)
  6607. }
  6608. for (int n = 1; n < 5; ++n) {
  6609. for (int k = 1; k <= n; ++k) {
  6610. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {n, 2, 1, 3}, k, true));
  6611. }
  6612. }
  6613. for (int i = 0; i < 20; ++i) {
  6614. for (int k : {1, 2, 3, 7, 15, 100, 500, 1023, 9999}) {
  6615. if (k <= 1<<i) {
  6616. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {(1<<i), 1, 1, 1}, k));
  6617. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {(1<<i) + 11, 1, 2, 1}, k));
  6618. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {(1<<i) + 11, 1, 2, 1}, k, true));
  6619. }
  6620. }
  6621. }
  6622. for (int k : {1, 2, 3, 7, 15}) {
  6623. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {16, 10, 10, 10}, k));
  6624. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {60, 10, 10, 10}, k));
  6625. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {1023, 2, 1, 3}, k));
  6626. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {1024, 2, 1, 3}, k));
  6627. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {1025, 2, 1, 3}, k));
  6628. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {16384, 1, 1, 1}, k));
  6629. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {2047, 2, 1, 3}, k));
  6630. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {2048, 2, 1, 3}, k));
  6631. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {2049, 2, 1, 3}, k));
  6632. }
  6633. // exhaustive top_k tests
  6634. //for (int i = 1; i < 9999; ++i) {
  6635. // test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {i, 2, 1, 3}, rand() % i + 1));
  6636. //}
  6637. for (ggml_scale_mode mode : {GGML_SCALE_MODE_NEAREST, GGML_SCALE_MODE_BILINEAR, GGML_SCALE_MODE_BICUBIC, ggml_scale_mode(GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ANTIALIAS)}) {
  6638. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode));
  6639. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode, true));
  6640. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, mode));
  6641. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {5, 7, 11, 13}, {2, 5, 7, 11}, mode));
  6642. }
  6643. for (ggml_scale_mode mode : {GGML_SCALE_MODE_BILINEAR, GGML_SCALE_MODE_BICUBIC}) {
  6644. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, (ggml_scale_mode)(mode | GGML_SCALE_FLAG_ALIGN_CORNERS)));
  6645. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {1, 4, 3, 2}, {2, 8, 3, 2}, (ggml_scale_mode)(mode | GGML_SCALE_FLAG_ALIGN_CORNERS)));
  6646. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {4, 1, 3, 2}, {1, 1, 3, 2}, (ggml_scale_mode)(mode | GGML_SCALE_FLAG_ALIGN_CORNERS)));
  6647. }
  6648. test_cases.emplace_back(new test_sum());
  6649. test_cases.emplace_back(new test_sum_rows());
  6650. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 2, 1, 3})); // row-contiguous but non-contiguous
  6651. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 3, 2, 1}));
  6652. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 1, 3, 2}));
  6653. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, false));
  6654. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, false, true));
  6655. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, true));
  6656. test_cases.emplace_back(new test_mean());
  6657. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  6658. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  6659. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  6660. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
  6661. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
  6662. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  6663. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 }, { 1, 0, 2, 3 })); // sum dst not-contiguous
  6664. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  6665. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  6666. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 32769, 1, 1, 1 }));
  6667. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1}));
  6668. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
  6669. test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {64, 64, 320, 1}));
  6670. test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {9, 9, 1280, 1}));
  6671. test_cases.emplace_back(new test_acc());
  6672. test_cases.emplace_back(new test_pad());
  6673. test_cases.emplace_back(new test_pad(GGML_TYPE_F32, {33, 17, 2, 1}, 4, 3, true)); // circular
  6674. test_cases.emplace_back(new test_pad_ext());
  6675. test_cases.emplace_back(new test_pad_reflect_1d());
  6676. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 4, 1}));
  6677. test_cases.emplace_back(new test_roll());
  6678. test_cases.emplace_back(new test_arange());
  6679. test_cases.emplace_back(new test_arange(GGML_TYPE_F32, 0.0f, 1048576.0f, 1.0f));
  6680. test_cases.emplace_back(new test_timestep_embedding());
  6681. test_cases.emplace_back(new test_leaky_relu());
  6682. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 10, 5, 4, 3 }));
  6683. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 127, 5, 4, 3 }));
  6684. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 128, 5, 4, 3 }));
  6685. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 128, 128, 4, 4 }));
  6686. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 255, 5, 4, 3 }));
  6687. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 256, 5, 4, 3 }));
  6688. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 511, 5, 4, 3 }));
  6689. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 512, 5, 4, 3 }));
  6690. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 1023, 5, 4, 3 }));
  6691. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 1024, 5, 4, 3 }));
  6692. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 2047, 5, 4, 3 }));
  6693. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 2048, 5, 4, 3 }));
  6694. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 201*1204, 1, 1, 1 }));
  6695. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 312*1205, 1, 1, 1 }));
  6696. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 20481, 4, 1, 1 }));
  6697. test_cases.emplace_back(new test_xielu());
  6698. test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_LOWER));
  6699. test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_LOWER_DIAG));
  6700. test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_UPPER));
  6701. test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_UPPER_DIAG));
  6702. test_cases.emplace_back(new test_fill(0.0f));
  6703. test_cases.emplace_back(new test_fill(2.0f, GGML_TYPE_F32, { 303, 207, 11, 3 }));
  6704. test_cases.emplace_back(new test_fill(-152.0f, GGML_TYPE_F32, { 800, 600, 4, 4 }));
  6705. test_cases.emplace_back(new test_fill(3.5f, GGML_TYPE_F32, { 2048, 512, 2, 2 }));
  6706. test_cases.emplace_back(new test_diag());
  6707. test_cases.emplace_back(new test_diag(GGML_TYPE_F32, { 79, 1, 19, 13 }));
  6708. test_cases.emplace_back(new test_diag(GGML_TYPE_F32, { 256, 1, 8, 16 }));
  6709. test_cases.emplace_back(new test_solve_tri());
  6710. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 11, 11, 1, 1 }, { 5, 11, 1, 1 }));
  6711. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 17, 17, 2, 4 }, { 9, 17, 2, 4 }));
  6712. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 30, 30, 7, 1 }, { 8, 30, 7, 1 }));
  6713. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 42, 42, 5, 2 }, { 10, 42, 5, 2 }));
  6714. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 64, 64, 2, 2 }, { 10, 64, 2, 2 }));
  6715. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 64, 64, 2, 2 }, { 64, 64, 2, 2 }));
  6716. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 79, 79, 5, 3 }, { 417, 79, 5, 3 }));
  6717. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 128, 128, 4, 2 }, { 32, 128, 4, 2 }));
  6718. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 80, 80, 2, 8 }, { 80, 80, 2, 8 }));
  6719. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 80, 80, 2, 8 }, { 79, 80, 2, 8 }));
  6720. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 80, 80, 2, 8 }, { 81, 80, 2, 8 }));
  6721. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 80, 80, 8, 8 }, { 80, 80, 8, 8 }));
  6722. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 80, 80, 8, 8 }, { 79, 80, 8, 8 }));
  6723. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 80, 80, 8, 8 }, { 81, 80, 8, 8 }));
  6724. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 84, 84, 4, 4 }, { 32, 84, 4, 4 }));
  6725. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 95, 95, 8, 8 }, { 40, 95, 8, 8 }));
  6726. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 100, 100, 4, 4 }, { 41, 100, 4, 4 }));
  6727. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 128, 128, 4, 4 }, { 31, 128, 4, 4 }));
  6728. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 128, 128, 4, 4 }, { 32, 128, 4, 4 }));
  6729. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 128, 128, 3, 4 }, { 32, 128, 3, 4 }));
  6730. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 128, 128, 4, 1 }, { 32, 128, 4, 1 }));
  6731. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 64, 64, 4, 4 }, { 200, 64, 4, 4 }));
  6732. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 64, 64, 4, 4 }, { 384, 64, 4, 4 }));
  6733. for (bool v : {false, true}) {
  6734. for (bool circular : {false, true}) {
  6735. test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {512, 512, 1, 1}, 0, 1, 0, 1, 0, 0, 0, 0, v, circular));
  6736. test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {11, 22, 33, 44}, 1, 2, 3, 4, 5, 6, 7, 8, v, circular));
  6737. }
  6738. }
  6739. for (int hsk : { 40, 64, 72, 80, 96, 128, 192, 256, 576 }) {
  6740. for (int hsv : { 40, 64, 72, 80, 96, 128, 192, 256, 512 }) {
  6741. if (hsk != 192 && hsk != 576 && hsk != hsv) continue;
  6742. if (hsk == 192 && (hsv != 128 && hsv != 192)) continue;
  6743. if (hsk == 576 && hsv != 512) continue; // DeepSeek MLA
  6744. for (bool mask : { true, false } ) {
  6745. for (bool sinks : { true, false } ) {
  6746. for (float max_bias : { 0.0f, 8.0f }) {
  6747. if (!mask && max_bias > 0.0f) continue;
  6748. for (float logit_softcap : {0.0f, 10.0f}) {
  6749. if (hsk != 128 && logit_softcap != 0.0f) continue;
  6750. for (int nh : { 4, }) {
  6751. for (int nr3 : { 1, 3, }) {
  6752. if (hsk > 64 && nr3 > 1) continue; // skip broadcast for large head sizes
  6753. for (int nr2 : { 1, 4, 16 }) {
  6754. if (nr2 == 16 && hsk != 128) continue;
  6755. //for (int kv : { 1, 17, 31, 33, 61, 113, 65, 127, 129, 130, 255, 260, 371, 380, 407, 512, 1024, }) {
  6756. for (int kv : { 113, 512, 1024, }) {
  6757. if (nr2 != 1 && kv != 512) continue;
  6758. for (int nb : { 1, 3, 32, 35, }) {
  6759. for (ggml_prec prec : {GGML_PREC_F32, GGML_PREC_DEFAULT}) {
  6760. if (hsk != 128 && prec == GGML_PREC_DEFAULT) continue;
  6761. for (ggml_type type_KV : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
  6762. test_cases.emplace_back(new test_flash_attn_ext(
  6763. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV));
  6764. // run fewer test cases permuted
  6765. if (mask == true && max_bias == 0.0f && logit_softcap == 0 && kv == 512) {
  6766. test_cases.emplace_back(new test_flash_attn_ext(
  6767. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV, {0, 2, 1, 3}));
  6768. }
  6769. }
  6770. }
  6771. }
  6772. }
  6773. }
  6774. }
  6775. }
  6776. }
  6777. }
  6778. }
  6779. }
  6780. }
  6781. }
  6782. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, { 10, 5, 4, 3}));
  6783. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, {30000, 1, 1, 1}));
  6784. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, { 10, 5, 4, 3}));
  6785. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, {30000, 1, 1, 1}));
  6786. test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
  6787. test_cases.emplace_back(new test_opt_step_sgd(GGML_TYPE_F32, {10, 5, 4, 3}));
  6788. for (ggml_type type : base_types) {
  6789. for (bool with_gate : {false, true}) {
  6790. for (bool use_id : {false, true}) {
  6791. for (bool b : {false, true}) {
  6792. if (!use_id && b) {
  6793. continue;
  6794. }
  6795. for (bool with_bias : {false, true}) {
  6796. if (!with_gate && !with_bias) {
  6797. continue;
  6798. }
  6799. for (ggml_glu_op glu_op : {GGML_GLU_OP_SWIGLU, GGML_GLU_OP_GEGLU}) {
  6800. if (!with_bias && glu_op == GGML_GLU_OP_SWIGLU_OAI) {
  6801. continue;
  6802. }
  6803. if (!with_gate && glu_op != GGML_GLU_OP_SWIGLU) {
  6804. continue;
  6805. }
  6806. test_cases.emplace_back(new test_mul_mat_vec_fusion(type, glu_op, 1, 32, 256,
  6807. use_id, 16, 8, b, with_bias, with_gate));
  6808. test_cases.emplace_back(new test_mul_mat_vec_fusion(type, glu_op, 1, 32, 256,
  6809. use_id, 16, 8, b, with_bias, with_gate, {1, 1}));
  6810. }
  6811. }
  6812. }
  6813. }
  6814. }
  6815. }
  6816. for (auto gate : {GATING_FUNC_SOFTMAX, GATING_FUNC_SIGMOID, GATING_FUNC_SOFTMAX_WEIGHT}) {
  6817. for (bool with_norm : {false, true}) {
  6818. for (bool bias_probs : {false, true}) {
  6819. for (float scale_w : {0.0f, 2.0f}) {
  6820. test_cases.emplace_back(new test_topk_moe({8, 22, 1, 1}, 4, with_norm, bias_probs, gate, scale_w));
  6821. test_cases.emplace_back(new test_topk_moe({31, 22, 1, 1}, 8, with_norm, bias_probs, gate, scale_w));
  6822. test_cases.emplace_back(new test_topk_moe({32, 22, 1, 1}, 8, with_norm, bias_probs, gate, scale_w));
  6823. test_cases.emplace_back(new test_topk_moe({40, 22, 1, 1}, 8, with_norm, bias_probs, gate, scale_w));
  6824. test_cases.emplace_back(new test_topk_moe({71, 22, 1, 1}, 8, with_norm, bias_probs, gate, scale_w));
  6825. test_cases.emplace_back(new test_topk_moe({128, 1, 1, 1}, 128, with_norm, bias_probs, gate, scale_w));
  6826. test_cases.emplace_back(new test_topk_moe({129, 1, 1, 1}, 128, with_norm, bias_probs, gate, scale_w));
  6827. test_cases.emplace_back(new test_topk_moe({160, 4, 1, 1}, 160, with_norm, bias_probs, gate, scale_w));
  6828. }
  6829. }
  6830. }
  6831. }
  6832. #if 0
  6833. // these tests are disabled to save execution time, sbut they can be handy for debugging
  6834. test_cases.emplace_back(new test_llama(2, true));
  6835. test_cases.emplace_back(new test_llama(1));
  6836. test_cases.emplace_back(new test_llama(2));
  6837. test_cases.emplace_back(new test_falcon(1));
  6838. test_cases.emplace_back(new test_falcon(2));
  6839. #endif
  6840. return test_cases;
  6841. }
  6842. #ifdef _MSC_VER
  6843. #pragma optimize("", on)
  6844. #endif
  6845. // Test cases for performance evaluation: should be representative of real-world use cases
  6846. static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
  6847. std::vector<std::unique_ptr<test_case>> test_cases;
  6848. // Conv2d: K=CRS=NPQ=4096 matmul performance
  6849. uint32_t iwh_idx = 0;
  6850. uint32_t kwh_idx = 1;
  6851. uint32_t Cout_idx = 2;
  6852. uint32_t Cin_idx = 3;
  6853. uint32_t B_idx = 4;
  6854. std::vector<std::array<int, 5>> cases = {
  6855. //{IWH, KWH, Cout, Cin, B}
  6856. // K=CRS=NPQ=4096 conv2d matmul performance
  6857. {19, 4, 4096, 256, 16},
  6858. // K=128, CRS=128, NPQ=4096
  6859. { 19, 4, 128, 8, 16},
  6860. // K=130, CRS=128, NPQ=4096
  6861. { 19, 4, 130, 8, 16},
  6862. // Edge case: K x CRS is small
  6863. { 19, 2, 4, 4, 16},
  6864. // A ConvNet's first layer
  6865. { 224, 3, 8, 3, 1 },
  6866. // A ConvNet's first layer with 2x2 convolution, and 1 channel
  6867. { 224, 2, 8, 1, 1 },
  6868. // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch
  6869. { 224, 2, 8, 1, 8 },
  6870. // A middle layer of a ConvNet
  6871. { 58, 3, 64, 32, 1 },
  6872. // A middle layer of a ConvNet, several images in the batch
  6873. { 58, 3, 64, 32, 8 },
  6874. // A deep layer of a ConvNet, several images in the batch
  6875. { 16, 3, 512, 128, 8 },
  6876. // High resolution output (large NPQ)
  6877. {1536, 3, 64, 32, 1 },
  6878. };
  6879. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6880. for (auto act_case : cases) {
  6881. // Direct CONV_2D
  6882. test_cases.emplace_back(new test_conv_2d(
  6883. { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] },
  6884. { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] },
  6885. kernel_type, 1, 1, 0, 0, 1, 1, false));
  6886. }
  6887. }
  6888. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1}));
  6889. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));
  6890. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
  6891. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
  6892. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
  6893. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_Q4_0, {8192, 512, 2, 1}));
  6894. test_cases.emplace_back(new test_cpy(GGML_TYPE_Q4_0, GGML_TYPE_F32, {8192, 512, 2, 1}));
  6895. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {768*1024, 256, 1, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
  6896. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768*1024, 256, 1, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
  6897. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768, 1024, 256, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
  6898. test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {768, 1024, 256, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
  6899. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {768*1024, 256, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6900. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {768, 1024, 256, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6901. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768*1024, 256, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6902. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768, 1024, 256, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6903. test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {768, 1024, 256, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6904. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6905. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {12888, 256, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6906. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6907. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6908. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6909. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6910. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6911. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6912. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
  6913. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  6914. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
  6915. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {512, 34, 2, 1}));
  6916. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 80, 1, 1}));
  6917. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 80, 4, 1}));
  6918. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 1, 1}));
  6919. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 4, 1}));
  6920. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 16416, 1, 128, {8, 1}, {4, 1}, {0, 2, 1, 3}));
  6921. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 1, 16416, {8, 1}, {4, 1}, {0, 1, 2, 3}, 2*16416));
  6922. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 64, 64, 4, 4 }, { 32, 64, 4, 4 }));
  6923. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 128, 128, 4, 2 }, { 32, 128, 4, 2 }));
  6924. // qwen3next with CHUNK_SIZE 64
  6925. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 64, 64, 8, 32 }, { 64, 64, 8, 32 }));
  6926. // qwen3next with CHUNK_SIZE 128
  6927. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 128, 128, 4, 32 }, { 128, 128, 4, 32 }));
  6928. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 256, 256, 4, 2 }, { 128, 256, 4, 2 }));
  6929. test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_LOWER, GGML_TYPE_F32, { 256, 256, 4, 4 }));
  6930. test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_UPPER_DIAG, GGML_TYPE_F32, { 1024, 1024, 8, 4 }));
  6931. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 128, 128, 4, 4 }));
  6932. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 2048, 16, 5, 4 }));
  6933. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 20000, 10, 4, 1 }));
  6934. for (int bs : {1, 2, 3, 4, 5, 8, 512}) {
  6935. for (ggml_type type_a : all_types) {
  6936. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6937. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1}));
  6938. }
  6939. }
  6940. }
  6941. // qwen3-30b-a3b
  6942. for (int bs : {1, 4, 8, 32, 64, 128, 256, 512}) {
  6943. for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) {
  6944. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6945. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 128, 8, false, 768, bs, 2048));
  6946. test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 128, 8, false, 768, bs, 2048, 1));
  6947. }
  6948. }
  6949. }
  6950. for (int bs : {1, 4, 8, 32, 64, 128, 256, 512}) {
  6951. for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) {
  6952. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6953. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 32, 4, false, 1792, bs, 2048));
  6954. test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 32, 4, false, 1792, bs, 2048, 1));
  6955. }
  6956. }
  6957. }
  6958. // gpt-oss-20b
  6959. for (int bs : {1, 4, 8, 512}) {
  6960. for (ggml_type type_a : {GGML_TYPE_MXFP4}) {
  6961. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6962. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 32, 4, false, 2880, bs, 2880));
  6963. test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 32, 4, false, 2880, bs, 2880, 1));
  6964. }
  6965. }
  6966. }
  6967. for (int K : {3, 5}) {
  6968. for (int IC : {256, 2560}) {
  6969. for (int IW_IH : {32, 64, 256}) {
  6970. if (IC == 2560 && IW_IH == 256) {
  6971. // too big
  6972. continue;
  6973. }
  6974. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {IW_IH, IW_IH, IC, 1}, {K, K, IC, 1}, 1, 1, 1, 1, 1, 1, true));
  6975. }
  6976. }
  6977. }
  6978. // Qwen3-VL-8B https://github.com/ggml-org/llama.cpp/issues/17012
  6979. test_cases.emplace_back(new test_flash_attn_ext(72, 72, 16, {1, 1}, 5776, 5776, false, false, 0, 0, GGML_PREC_F32, GGML_TYPE_F16));
  6980. for (int kv : { 4096, 8192, 16384, }) {
  6981. for (int hs : { 64, 128, }) {
  6982. for (int nr : { 1, 4, }) {
  6983. test_cases.emplace_back(new test_flash_attn_ext(hs, hs, 8, {nr, 1}, kv, 1, true, false, 0, 0, GGML_PREC_F32, GGML_TYPE_F16));
  6984. }
  6985. }
  6986. }
  6987. for (int col : {8192, 16384, 32768, 65536, 131072, 262144, 524288}) {
  6988. for (int rows : {1, 4, 16}){
  6989. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {col, rows, 1, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6990. }
  6991. }
  6992. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, false));
  6993. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, true));
  6994. test_cases.emplace_back(new test_conv_transpose_2d({256, 256, 256, 1}, {3, 3, 16, 256}, 1));
  6995. test_cases.emplace_back(new test_conv_transpose_2d({16, 16, 16, 1}, {3, 3, 8, 16}, 1));
  6996. test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
  6997. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, {256, 256, 3, 1}));
  6998. for (int n_token : {1, 512}) {
  6999. test_cases.emplace_back(new test_add_id(GGML_TYPE_F32, GGML_TYPE_F32, 2880, 128, 4, n_token));
  7000. test_cases.emplace_back(new test_add_id(GGML_TYPE_F32, GGML_TYPE_F32, 2880, 32, 4, n_token));
  7001. }
  7002. for (bool fw : {true, false}) { // fw == forward
  7003. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  7004. for (bool ff : {false, true}) { // freq_factors
  7005. for (float v : { 0, 1 }) {
  7006. test_cases.emplace_back(new test_rope(type, {128, 32, 512, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // llama 7B
  7007. test_cases.emplace_back(new test_rope(type, {128, 64, 512, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // llama 65B
  7008. test_cases.emplace_back(new test_rope(type, { 80, 32, 512, 1}, 20, GGML_ROPE_TYPE_NEOX, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // neox (stablelm)
  7009. test_cases.emplace_back(new test_rope(type, { 64, 8, 512, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // neox (falcon 40B)
  7010. test_cases.emplace_back(new test_rope(type, {128, 12, 512, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
  7011. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // rope_multi,imrope (qwen3vl 2B)
  7012. test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
  7013. }
  7014. }
  7015. }
  7016. }
  7017. std::vector<std::array<int64_t, 4>> reduce_rows_cases = {
  7018. { 8192, 1, 1, 1 },
  7019. { 8192, 8192, 1, 1 },
  7020. { 128, 8192, 1, 1 },
  7021. };
  7022. for (auto it: reduce_rows_cases){
  7023. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, it));
  7024. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, it));
  7025. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, it));
  7026. }
  7027. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {65000, 16, 1, 1}));
  7028. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {200000, 1, 1, 1}));
  7029. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {200000, 16, 1, 1}));
  7030. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {2, 1, 1, 1}, 1));
  7031. for (auto k : {1, 10, 40, 400}) {
  7032. for (auto nrows : {1, 16}) {
  7033. for (auto cols : {k, 1000, 65000, 200000}) {
  7034. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {cols, nrows, 1, 1}, k));
  7035. }
  7036. }
  7037. }
  7038. for (auto nrows : {1, 4, 8, 16}) {
  7039. for (auto cols : {128, 1024, 4096, 8192, 16384, 32768, 65536, 131072, 200000, 2000000}) {
  7040. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, {cols, nrows, 1, 1}));
  7041. }
  7042. }
  7043. // Examples from granite-4.0-h-1b/ggml-model-Q8_0.gguf
  7044. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {515, 3328, 1, 1}, {4, 3328, 1, 1})); // prefill
  7045. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 3328, 1, 1}, {4, 3328, 1, 1})); // generate
  7046. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 128, 64, 48, 1, 512, 1)); // prefill
  7047. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 128, 64, 48, 1, 1, 1)); // generate
  7048. return test_cases;
  7049. }
  7050. static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_names_filter, const char * params_filter,
  7051. printer * output_printer) {
  7052. auto filter_test_cases = [](std::vector<std::unique_ptr<test_case>> & test_cases, const char * params_filter) {
  7053. if (params_filter == nullptr) {
  7054. return;
  7055. }
  7056. std::regex params_filter_regex(params_filter);
  7057. for (auto it = test_cases.begin(); it != test_cases.end();) {
  7058. if (!std::regex_search((*it)->vars(), params_filter_regex)) {
  7059. it = test_cases.erase(it);
  7060. continue;
  7061. }
  7062. it++;
  7063. }
  7064. };
  7065. if (mode == MODE_TEST) {
  7066. auto test_cases = make_test_cases_eval();
  7067. filter_test_cases(test_cases, params_filter);
  7068. ggml_backend_t backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, NULL);
  7069. if (backend_cpu == NULL) {
  7070. test_operation_info info("", "", "CPU");
  7071. info.set_error("backend", "Failed to initialize CPU backend");
  7072. output_printer->print_operation(info);
  7073. return false;
  7074. }
  7075. size_t n_ok = 0;
  7076. size_t tests_run = 0;
  7077. std::vector<std::string> failed_tests;
  7078. for (auto & test : test_cases) {
  7079. test_status_t status = test->eval(backend, backend_cpu, op_names_filter, output_printer);
  7080. if (status == test_status_t::SKIPPED || status == test_status_t::NOT_SUPPORTED) {
  7081. continue;
  7082. }
  7083. tests_run++;
  7084. if (status == test_status_t::OK) {
  7085. n_ok++;
  7086. } else if (status == test_status_t::FAIL) {
  7087. failed_tests.push_back(test->current_op_name + "(" + test->vars() + ")");
  7088. }
  7089. }
  7090. output_printer->print_summary(test_summary_info(n_ok, tests_run, false));
  7091. output_printer->print_failed_tests(failed_tests);
  7092. ggml_backend_free(backend_cpu);
  7093. return n_ok == tests_run;
  7094. }
  7095. if (mode == MODE_GRAD) {
  7096. auto test_cases = make_test_cases_eval();
  7097. filter_test_cases(test_cases, params_filter);
  7098. size_t n_ok = 0;
  7099. for (auto & test : test_cases) {
  7100. if (test->eval_grad(backend, op_names_filter, output_printer)) {
  7101. n_ok++;
  7102. }
  7103. }
  7104. output_printer->print_summary(test_summary_info(n_ok, test_cases.size(), false));
  7105. return n_ok == test_cases.size();
  7106. }
  7107. if (mode == MODE_PERF) {
  7108. auto test_cases = make_test_cases_perf();
  7109. filter_test_cases(test_cases, params_filter);
  7110. for (auto & test : test_cases) {
  7111. test->eval_perf(backend, op_names_filter, output_printer);
  7112. }
  7113. return true;
  7114. }
  7115. if (mode == MODE_SUPPORT) {
  7116. auto test_cases = make_test_cases_eval();
  7117. filter_test_cases(test_cases, params_filter);
  7118. // Filter out fusion cases
  7119. test_cases.erase(
  7120. std::remove_if(test_cases.begin(), test_cases.end(), [](const std::unique_ptr<test_case> & tc) {
  7121. return tc->run_whole_graph();
  7122. }),
  7123. test_cases.end()
  7124. );
  7125. for (auto & test : test_cases) {
  7126. test->eval_support(backend, op_names_filter, output_printer);
  7127. }
  7128. return true;
  7129. }
  7130. GGML_ABORT("fatal error");
  7131. }
  7132. static void list_all_ops() {
  7133. printf("GGML operations:\n");
  7134. std::set<std::string> all_ops;
  7135. for (int i = 1; i < GGML_OP_COUNT; i++) {
  7136. all_ops.insert(ggml_op_name((enum ggml_op)i));
  7137. }
  7138. for (int i = 0; i < GGML_UNARY_OP_COUNT; i++) {
  7139. all_ops.insert(ggml_unary_op_name((enum ggml_unary_op)i));
  7140. }
  7141. for (int i = 0; i < GGML_GLU_OP_COUNT; i++) {
  7142. all_ops.insert(ggml_glu_op_name((enum ggml_glu_op)i));
  7143. }
  7144. for (const auto & op : all_ops) {
  7145. printf(" %s\n", op.c_str());
  7146. }
  7147. printf("\nTotal: %zu operations\n", all_ops.size());
  7148. }
  7149. static void show_test_coverage() {
  7150. std::set<std::string> all_ops;
  7151. for (int i = 1; i < GGML_OP_COUNT; i++) {
  7152. auto op = (enum ggml_op)i;
  7153. if (op == GGML_OP_VIEW ||
  7154. op == GGML_OP_RESHAPE ||
  7155. op == GGML_OP_PERMUTE ||
  7156. op == GGML_OP_TRANSPOSE ||
  7157. op == GGML_OP_CONT ||
  7158. op == GGML_OP_GLU ||
  7159. op == GGML_OP_UNARY) {
  7160. continue;
  7161. }
  7162. all_ops.insert(ggml_op_name(op));
  7163. }
  7164. for (int i = 0; i < GGML_UNARY_OP_COUNT; i++) {
  7165. all_ops.insert(ggml_unary_op_name((enum ggml_unary_op)i));
  7166. }
  7167. for (int i = 0; i < GGML_GLU_OP_COUNT; i++) {
  7168. all_ops.insert(ggml_glu_op_name((enum ggml_glu_op)i));
  7169. }
  7170. auto test_cases = make_test_cases_eval();
  7171. // Filter out fusion cases
  7172. test_cases.erase(
  7173. std::remove_if(test_cases.begin(), test_cases.end(), [](const std::unique_ptr<test_case> & tc) {
  7174. return tc->run_whole_graph();
  7175. }),
  7176. test_cases.end()
  7177. );
  7178. std::set<std::string> tested_ops;
  7179. ggml_init_params params = {
  7180. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  7181. /* .mem_base = */ NULL,
  7182. /* .no_alloc = */ true,
  7183. };
  7184. for (auto & test_case : test_cases) {
  7185. ggml_context * ctx = ggml_init(params);
  7186. if (ctx) {
  7187. test_case->mode = MODE_TEST;
  7188. ggml_tensor * out = test_case->build_graph(ctx);
  7189. if (out && out->op != GGML_OP_NONE) {
  7190. if (out->op == GGML_OP_UNARY) {
  7191. tested_ops.insert(ggml_unary_op_name(ggml_get_unary_op(out)));
  7192. } else if (out->op == GGML_OP_GLU) {
  7193. tested_ops.insert(ggml_glu_op_name(ggml_get_glu_op(out)));
  7194. } else {
  7195. tested_ops.insert(ggml_op_name(out->op));
  7196. }
  7197. }
  7198. ggml_free(ctx);
  7199. }
  7200. }
  7201. std::set<std::string> covered_ops;
  7202. std::set<std::string> uncovered_ops;
  7203. for (const auto & op : all_ops) {
  7204. if (tested_ops.count(op) > 0) {
  7205. covered_ops.insert(op);
  7206. } else {
  7207. uncovered_ops.insert(op);
  7208. }
  7209. }
  7210. printf("Operations covered by tests (%zu):\n", covered_ops.size());
  7211. for (const auto & op : covered_ops) {
  7212. printf(" ✓ %s\n", op.c_str());
  7213. }
  7214. printf("\nOperations without tests (%zu):\n", uncovered_ops.size());
  7215. for (const auto & op : uncovered_ops) {
  7216. printf(" ✗ %s\n", op.c_str());
  7217. }
  7218. printf("\nCoverage Summary:\n");
  7219. printf(" Total operations: %zu\n", all_ops.size());
  7220. printf(" Tested operations: %zu\n", covered_ops.size());
  7221. printf(" Untested operations: %zu\n", uncovered_ops.size());
  7222. printf(" Coverage: %.1f%%\n", (double)covered_ops.size() / all_ops.size() * 100.0);
  7223. }
  7224. static void usage(char ** argv) {
  7225. printf("Usage: %s [mode] [-o <op,..>] [-b <backend>] [-p <params regex>] [--output <console|sql|csv>] [--list-ops] [--show-coverage]\n", argv[0]);
  7226. printf(" valid modes:\n");
  7227. printf(" - test (default, compare with CPU backend for correctness)\n");
  7228. printf(" - grad (compare gradients from backpropagation with method of finite differences)\n");
  7229. printf(" - perf (performance evaluation)\n");
  7230. printf(" - support (probe backend operation support)\n");
  7231. printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc),\n");
  7232. printf(" optionally including the full test case string (e.g. \"ADD(type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1)\")\n");
  7233. printf(" --output specifies output format (default: console, options: console, sql, csv)\n");
  7234. printf(" --list-ops lists all available GGML operations\n");
  7235. printf(" --show-coverage shows test coverage\n");
  7236. }
  7237. int main(int argc, char ** argv) {
  7238. test_mode mode = MODE_TEST;
  7239. output_formats output_format = CONSOLE;
  7240. const char * op_names_filter = nullptr;
  7241. const char * backend_filter = nullptr;
  7242. const char * params_filter = nullptr;
  7243. for (int i = 1; i < argc; i++) {
  7244. if (strcmp(argv[i], "test") == 0) {
  7245. mode = MODE_TEST;
  7246. } else if (strcmp(argv[i], "perf") == 0) {
  7247. mode = MODE_PERF;
  7248. } else if (strcmp(argv[i], "grad") == 0) {
  7249. mode = MODE_GRAD;
  7250. } else if (strcmp(argv[i], "support") == 0) {
  7251. mode = MODE_SUPPORT;
  7252. } else if (strcmp(argv[i], "-o") == 0) {
  7253. if (i + 1 < argc) {
  7254. op_names_filter = argv[++i];
  7255. } else {
  7256. usage(argv);
  7257. return 1;
  7258. }
  7259. } else if (strcmp(argv[i], "-b") == 0) {
  7260. if (i + 1 < argc) {
  7261. backend_filter = argv[++i];
  7262. } else {
  7263. usage(argv);
  7264. return 1;
  7265. }
  7266. } else if (strcmp(argv[i], "-p") == 0) {
  7267. if (i + 1 < argc) {
  7268. params_filter = argv[++i];
  7269. } else {
  7270. usage(argv);
  7271. return 1;
  7272. }
  7273. } else if (strcmp(argv[i], "--output") == 0) {
  7274. if (i + 1 < argc) {
  7275. if (!output_format_from_str(argv[++i], output_format)) {
  7276. usage(argv);
  7277. return 1;
  7278. }
  7279. } else {
  7280. usage(argv);
  7281. return 1;
  7282. }
  7283. } else if (strcmp(argv[i], "--list-ops") == 0) {
  7284. list_all_ops();
  7285. return 0;
  7286. } else if (strcmp(argv[i], "--show-coverage") == 0) {
  7287. show_test_coverage();
  7288. return 0;
  7289. } else {
  7290. usage(argv);
  7291. return 1;
  7292. }
  7293. }
  7294. // load and enumerate backends
  7295. ggml_backend_load_all();
  7296. // Create printer for output format
  7297. std::unique_ptr<printer> output_printer = create_printer(output_format);
  7298. if (output_printer) {
  7299. output_printer->print_header();
  7300. }
  7301. output_printer->print_testing_start(testing_start_info(ggml_backend_dev_count()));
  7302. size_t n_ok = 0;
  7303. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  7304. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  7305. if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
  7306. output_printer->print_backend_init(
  7307. backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping"));
  7308. n_ok++;
  7309. continue;
  7310. }
  7311. if (backend_filter == NULL && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU && mode != MODE_GRAD) {
  7312. output_printer->print_backend_init(backend_init_info(
  7313. i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping CPU backend"));
  7314. n_ok++;
  7315. continue;
  7316. }
  7317. ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
  7318. GGML_ASSERT(backend != NULL);
  7319. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  7320. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  7321. if (ggml_backend_set_n_threads_fn) {
  7322. // TODO: better value for n_threads
  7323. ggml_backend_set_n_threads_fn(backend, N_THREADS);
  7324. }
  7325. size_t free, total; // NOLINT
  7326. ggml_backend_dev_memory(dev, &free, &total);
  7327. output_printer->print_backend_init(backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev),
  7328. false, "", ggml_backend_dev_description(dev),
  7329. total / 1024 / 1024, free / 1024 / 1024, true));
  7330. bool ok = test_backend(backend, mode, op_names_filter, params_filter, output_printer.get());
  7331. if (ok) {
  7332. n_ok++;
  7333. }
  7334. output_printer->print_backend_status(
  7335. backend_status_info(ggml_backend_name(backend), ok ? test_status_t::OK : test_status_t::FAIL));
  7336. ggml_backend_free(backend);
  7337. }
  7338. ggml_quantize_free();
  7339. if (output_printer) {
  7340. output_printer->print_footer();
  7341. }
  7342. output_printer->print_overall_summary(
  7343. overall_summary_info(n_ok, ggml_backend_dev_count(), n_ok == ggml_backend_dev_count()));
  7344. if (n_ok != ggml_backend_dev_count()) {
  7345. return 1;
  7346. }
  7347. return 0;
  7348. }