ggml-metal.m 72 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415
  1. #import "ggml-metal.h"
  2. #import "ggml.h"
  3. #import <Foundation/Foundation.h>
  4. #import <Metal/Metal.h>
  5. #undef MIN
  6. #undef MAX
  7. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  8. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  9. #ifdef GGML_METAL_NDEBUG
  10. #define GGML_METAL_LOG_INFO(...)
  11. #define GGML_METAL_LOG_WARN(...)
  12. #define GGML_METAL_LOG_ERROR(...)
  13. #else
  14. #define GGML_METAL_LOG_INFO(...) ggml_metal_log(GGML_LOG_LEVEL_INFO, __VA_ARGS__)
  15. #define GGML_METAL_LOG_WARN(...) ggml_metal_log(GGML_LOG_LEVEL_WARN, __VA_ARGS__)
  16. #define GGML_METAL_LOG_ERROR(...) ggml_metal_log(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  17. #endif
  18. #define UNUSED(x) (void)(x)
  19. #define GGML_MAX_CONCUR (2*GGML_MAX_NODES)
  20. struct ggml_metal_buffer {
  21. const char * name;
  22. void * data;
  23. size_t size;
  24. id<MTLBuffer> metal;
  25. };
  26. struct ggml_metal_context {
  27. int n_cb;
  28. id<MTLDevice> device;
  29. id<MTLCommandQueue> queue;
  30. id<MTLLibrary> library;
  31. id<MTLCommandBuffer> command_buffers [GGML_METAL_MAX_COMMAND_BUFFERS];
  32. id<MTLComputeCommandEncoder> command_encoders[GGML_METAL_MAX_COMMAND_BUFFERS];
  33. dispatch_queue_t d_queue;
  34. int n_buffers;
  35. struct ggml_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];
  36. int concur_list[GGML_MAX_CONCUR];
  37. int concur_list_len;
  38. // custom kernels
  39. #define GGML_METAL_DECL_KERNEL(name) \
  40. id<MTLFunction> function_##name; \
  41. id<MTLComputePipelineState> pipeline_##name
  42. GGML_METAL_DECL_KERNEL(add);
  43. GGML_METAL_DECL_KERNEL(add_row); // TODO: avoid this extra kernel, instead extend the "add" kernel to support broadcast
  44. GGML_METAL_DECL_KERNEL(mul);
  45. GGML_METAL_DECL_KERNEL(mul_row); // TODO: avoid this extra kernel, instead extend the "mul" kernel to support broadcast
  46. GGML_METAL_DECL_KERNEL(scale);
  47. GGML_METAL_DECL_KERNEL(silu);
  48. GGML_METAL_DECL_KERNEL(relu);
  49. GGML_METAL_DECL_KERNEL(gelu);
  50. GGML_METAL_DECL_KERNEL(soft_max);
  51. GGML_METAL_DECL_KERNEL(soft_max_4);
  52. GGML_METAL_DECL_KERNEL(diag_mask_inf);
  53. GGML_METAL_DECL_KERNEL(diag_mask_inf_8);
  54. GGML_METAL_DECL_KERNEL(get_rows_f32);
  55. GGML_METAL_DECL_KERNEL(get_rows_f16);
  56. GGML_METAL_DECL_KERNEL(get_rows_q4_0);
  57. GGML_METAL_DECL_KERNEL(get_rows_q4_1);
  58. GGML_METAL_DECL_KERNEL(get_rows_q8_0);
  59. GGML_METAL_DECL_KERNEL(get_rows_q2_K);
  60. GGML_METAL_DECL_KERNEL(get_rows_q3_K);
  61. GGML_METAL_DECL_KERNEL(get_rows_q4_K);
  62. GGML_METAL_DECL_KERNEL(get_rows_q5_K);
  63. GGML_METAL_DECL_KERNEL(get_rows_q6_K);
  64. GGML_METAL_DECL_KERNEL(rms_norm);
  65. GGML_METAL_DECL_KERNEL(norm);
  66. GGML_METAL_DECL_KERNEL(mul_mat_f32_f32);
  67. GGML_METAL_DECL_KERNEL(mul_mat_f16_f32);
  68. GGML_METAL_DECL_KERNEL(mul_mat_f16_f32_1row);
  69. GGML_METAL_DECL_KERNEL(mul_mat_f16_f32_l4);
  70. GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32);
  71. GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32);
  72. GGML_METAL_DECL_KERNEL(mul_mat_q8_0_f32);
  73. GGML_METAL_DECL_KERNEL(mul_mat_q2_K_f32);
  74. GGML_METAL_DECL_KERNEL(mul_mat_q3_K_f32);
  75. GGML_METAL_DECL_KERNEL(mul_mat_q4_K_f32);
  76. GGML_METAL_DECL_KERNEL(mul_mat_q5_K_f32);
  77. GGML_METAL_DECL_KERNEL(mul_mat_q6_K_f32);
  78. GGML_METAL_DECL_KERNEL(mul_mm_f32_f32);
  79. GGML_METAL_DECL_KERNEL(mul_mm_f16_f32);
  80. GGML_METAL_DECL_KERNEL(mul_mm_q4_0_f32);
  81. GGML_METAL_DECL_KERNEL(mul_mm_q4_1_f32);
  82. GGML_METAL_DECL_KERNEL(mul_mm_q8_0_f32);
  83. GGML_METAL_DECL_KERNEL(mul_mm_q2_K_f32);
  84. GGML_METAL_DECL_KERNEL(mul_mm_q3_K_f32);
  85. GGML_METAL_DECL_KERNEL(mul_mm_q4_K_f32);
  86. GGML_METAL_DECL_KERNEL(mul_mm_q5_K_f32);
  87. GGML_METAL_DECL_KERNEL(mul_mm_q6_K_f32);
  88. GGML_METAL_DECL_KERNEL(rope_f32);
  89. GGML_METAL_DECL_KERNEL(rope_f16);
  90. GGML_METAL_DECL_KERNEL(alibi_f32);
  91. GGML_METAL_DECL_KERNEL(cpy_f32_f16);
  92. GGML_METAL_DECL_KERNEL(cpy_f32_f32);
  93. GGML_METAL_DECL_KERNEL(cpy_f16_f16);
  94. GGML_METAL_DECL_KERNEL(concat);
  95. GGML_METAL_DECL_KERNEL(sqr);
  96. #undef GGML_METAL_DECL_KERNEL
  97. };
  98. // MSL code
  99. // TODO: move the contents here when ready
  100. // for now it is easier to work in a separate file
  101. static NSString * const msl_library_source = @"see metal.metal";
  102. // Here to assist with NSBundle Path Hack
  103. @interface GGMLMetalClass : NSObject
  104. @end
  105. @implementation GGMLMetalClass
  106. @end
  107. ggml_log_callback ggml_metal_log_callback = NULL;
  108. void * ggml_metal_log_user_data = NULL;
  109. void ggml_metal_log_set_callback(ggml_log_callback log_callback, void * user_data) {
  110. ggml_metal_log_callback = log_callback;
  111. ggml_metal_log_user_data = user_data;
  112. }
  113. static void ggml_metal_log(enum ggml_log_level level, const char* format, ...){
  114. if (ggml_metal_log_callback != NULL) {
  115. va_list args;
  116. va_start(args, format);
  117. char buffer[128];
  118. int len = vsnprintf(buffer, 128, format, args);
  119. if (len < 128) {
  120. ggml_metal_log_callback(level, buffer, ggml_metal_log_user_data);
  121. } else {
  122. char* buffer2 = malloc(len+1);
  123. vsnprintf(buffer2, len+1, format, args);
  124. buffer2[len] = 0;
  125. ggml_metal_log_callback(level, buffer2, ggml_metal_log_user_data);
  126. free(buffer2);
  127. }
  128. va_end(args);
  129. }
  130. }
  131. struct ggml_metal_context * ggml_metal_init(int n_cb) {
  132. GGML_METAL_LOG_INFO("%s: allocating\n", __func__);
  133. id <MTLDevice> device;
  134. NSString * s;
  135. #if TARGET_OS_OSX
  136. // Show all the Metal device instances in the system
  137. NSArray * devices = MTLCopyAllDevices();
  138. for (device in devices) {
  139. s = [device name];
  140. GGML_METAL_LOG_INFO("%s: found device: %s\n", __func__, [s UTF8String]);
  141. }
  142. #endif
  143. // Pick and show default Metal device
  144. device = MTLCreateSystemDefaultDevice();
  145. s = [device name];
  146. GGML_METAL_LOG_INFO("%s: picking default device: %s\n", __func__, [s UTF8String]);
  147. // Configure context
  148. struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context));
  149. ctx->device = device;
  150. ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_BUFFERS);
  151. ctx->queue = [ctx->device newCommandQueue];
  152. ctx->n_buffers = 0;
  153. ctx->concur_list_len = 0;
  154. ctx->d_queue = dispatch_queue_create("ggml-metal", DISPATCH_QUEUE_CONCURRENT);
  155. // load library
  156. {
  157. NSBundle * bundle = nil;
  158. #ifdef SWIFT_PACKAGE
  159. bundle = SWIFTPM_MODULE_BUNDLE;
  160. #else
  161. bundle = [NSBundle bundleForClass:[GGMLMetalClass class]];
  162. #endif
  163. NSError * error = nil;
  164. NSString * libPath = [bundle pathForResource:@"default" ofType:@"metallib"];
  165. if (libPath != nil) {
  166. NSURL * libURL = [NSURL fileURLWithPath:libPath];
  167. GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [libPath UTF8String]);
  168. ctx->library = [ctx->device newLibraryWithURL:libURL error:&error];
  169. } else {
  170. GGML_METAL_LOG_INFO("%s: default.metallib not found, loading from source\n", __func__);
  171. NSString * sourcePath = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
  172. GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [sourcePath UTF8String]);
  173. NSString * src = [NSString stringWithContentsOfFile:sourcePath encoding:NSUTF8StringEncoding error:&error];
  174. if (error) {
  175. GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
  176. return NULL;
  177. }
  178. MTLCompileOptions* options = nil;
  179. #ifdef GGML_QKK_64
  180. options = [MTLCompileOptions new];
  181. options.preprocessorMacros = @{ @"QK_K" : @(64) };
  182. #endif
  183. ctx->library = [ctx->device newLibraryWithSource:src options:options error:&error];
  184. }
  185. if (error) {
  186. GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
  187. return NULL;
  188. }
  189. }
  190. // load kernels
  191. {
  192. NSError * error = nil;
  193. #define GGML_METAL_ADD_KERNEL(name) \
  194. ctx->function_##name = [ctx->library newFunctionWithName:@"kernel_"#name]; \
  195. ctx->pipeline_##name = [ctx->device newComputePipelineStateWithFunction:ctx->function_##name error:&error]; \
  196. GGML_METAL_LOG_INFO("%s: loaded %-32s %16p | th_max = %4d | th_width = %4d\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name, \
  197. (int) ctx->pipeline_##name.maxTotalThreadsPerThreadgroup, \
  198. (int) ctx->pipeline_##name.threadExecutionWidth); \
  199. if (error) { \
  200. GGML_METAL_LOG_ERROR("%s: error: load pipeline error: %s\n", __func__, [[error description] UTF8String]); \
  201. return NULL; \
  202. }
  203. GGML_METAL_ADD_KERNEL(add);
  204. GGML_METAL_ADD_KERNEL(add_row);
  205. GGML_METAL_ADD_KERNEL(mul);
  206. GGML_METAL_ADD_KERNEL(mul_row);
  207. GGML_METAL_ADD_KERNEL(scale);
  208. GGML_METAL_ADD_KERNEL(silu);
  209. GGML_METAL_ADD_KERNEL(relu);
  210. GGML_METAL_ADD_KERNEL(gelu);
  211. GGML_METAL_ADD_KERNEL(soft_max);
  212. GGML_METAL_ADD_KERNEL(soft_max_4);
  213. GGML_METAL_ADD_KERNEL(diag_mask_inf);
  214. GGML_METAL_ADD_KERNEL(diag_mask_inf_8);
  215. GGML_METAL_ADD_KERNEL(get_rows_f32);
  216. GGML_METAL_ADD_KERNEL(get_rows_f16);
  217. GGML_METAL_ADD_KERNEL(get_rows_q4_0);
  218. GGML_METAL_ADD_KERNEL(get_rows_q4_1);
  219. GGML_METAL_ADD_KERNEL(get_rows_q8_0);
  220. GGML_METAL_ADD_KERNEL(get_rows_q2_K);
  221. GGML_METAL_ADD_KERNEL(get_rows_q3_K);
  222. GGML_METAL_ADD_KERNEL(get_rows_q4_K);
  223. GGML_METAL_ADD_KERNEL(get_rows_q5_K);
  224. GGML_METAL_ADD_KERNEL(get_rows_q6_K);
  225. GGML_METAL_ADD_KERNEL(rms_norm);
  226. GGML_METAL_ADD_KERNEL(norm);
  227. GGML_METAL_ADD_KERNEL(mul_mat_f32_f32);
  228. GGML_METAL_ADD_KERNEL(mul_mat_f16_f32);
  229. GGML_METAL_ADD_KERNEL(mul_mat_f16_f32_1row);
  230. GGML_METAL_ADD_KERNEL(mul_mat_f16_f32_l4);
  231. GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32);
  232. GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32);
  233. GGML_METAL_ADD_KERNEL(mul_mat_q8_0_f32);
  234. GGML_METAL_ADD_KERNEL(mul_mat_q2_K_f32);
  235. GGML_METAL_ADD_KERNEL(mul_mat_q3_K_f32);
  236. GGML_METAL_ADD_KERNEL(mul_mat_q4_K_f32);
  237. GGML_METAL_ADD_KERNEL(mul_mat_q5_K_f32);
  238. GGML_METAL_ADD_KERNEL(mul_mat_q6_K_f32);
  239. GGML_METAL_ADD_KERNEL(mul_mm_f32_f32);
  240. GGML_METAL_ADD_KERNEL(mul_mm_f16_f32);
  241. GGML_METAL_ADD_KERNEL(mul_mm_q4_0_f32);
  242. GGML_METAL_ADD_KERNEL(mul_mm_q8_0_f32);
  243. GGML_METAL_ADD_KERNEL(mul_mm_q4_1_f32);
  244. GGML_METAL_ADD_KERNEL(mul_mm_q2_K_f32);
  245. GGML_METAL_ADD_KERNEL(mul_mm_q3_K_f32);
  246. GGML_METAL_ADD_KERNEL(mul_mm_q4_K_f32);
  247. GGML_METAL_ADD_KERNEL(mul_mm_q5_K_f32);
  248. GGML_METAL_ADD_KERNEL(mul_mm_q6_K_f32);
  249. GGML_METAL_ADD_KERNEL(rope_f32);
  250. GGML_METAL_ADD_KERNEL(rope_f16);
  251. GGML_METAL_ADD_KERNEL(alibi_f32);
  252. GGML_METAL_ADD_KERNEL(cpy_f32_f16);
  253. GGML_METAL_ADD_KERNEL(cpy_f32_f32);
  254. GGML_METAL_ADD_KERNEL(cpy_f16_f16);
  255. GGML_METAL_ADD_KERNEL(concat);
  256. GGML_METAL_ADD_KERNEL(sqr);
  257. #undef GGML_METAL_ADD_KERNEL
  258. }
  259. GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
  260. #if TARGET_OS_OSX
  261. GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
  262. if (ctx->device.maxTransferRate != 0) {
  263. GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
  264. } else {
  265. GGML_METAL_LOG_INFO("%s: maxTransferRate = built-in GPU\n", __func__);
  266. }
  267. #endif
  268. return ctx;
  269. }
  270. void ggml_metal_free(struct ggml_metal_context * ctx) {
  271. GGML_METAL_LOG_INFO("%s: deallocating\n", __func__);
  272. #define GGML_METAL_DEL_KERNEL(name) \
  273. [ctx->function_##name release]; \
  274. [ctx->pipeline_##name release];
  275. GGML_METAL_DEL_KERNEL(add);
  276. GGML_METAL_DEL_KERNEL(add_row);
  277. GGML_METAL_DEL_KERNEL(mul);
  278. GGML_METAL_DEL_KERNEL(mul_row);
  279. GGML_METAL_DEL_KERNEL(scale);
  280. GGML_METAL_DEL_KERNEL(silu);
  281. GGML_METAL_DEL_KERNEL(relu);
  282. GGML_METAL_DEL_KERNEL(gelu);
  283. GGML_METAL_DEL_KERNEL(soft_max);
  284. GGML_METAL_DEL_KERNEL(soft_max_4);
  285. GGML_METAL_DEL_KERNEL(diag_mask_inf);
  286. GGML_METAL_DEL_KERNEL(diag_mask_inf_8);
  287. GGML_METAL_DEL_KERNEL(get_rows_f32);
  288. GGML_METAL_DEL_KERNEL(get_rows_f16);
  289. GGML_METAL_DEL_KERNEL(get_rows_q4_0);
  290. GGML_METAL_DEL_KERNEL(get_rows_q4_1);
  291. GGML_METAL_DEL_KERNEL(get_rows_q8_0);
  292. GGML_METAL_DEL_KERNEL(get_rows_q2_K);
  293. GGML_METAL_DEL_KERNEL(get_rows_q3_K);
  294. GGML_METAL_DEL_KERNEL(get_rows_q4_K);
  295. GGML_METAL_DEL_KERNEL(get_rows_q5_K);
  296. GGML_METAL_DEL_KERNEL(get_rows_q6_K);
  297. GGML_METAL_DEL_KERNEL(rms_norm);
  298. GGML_METAL_DEL_KERNEL(norm);
  299. GGML_METAL_DEL_KERNEL(mul_mat_f32_f32);
  300. GGML_METAL_DEL_KERNEL(mul_mat_f16_f32);
  301. GGML_METAL_DEL_KERNEL(mul_mat_f16_f32_1row);
  302. GGML_METAL_DEL_KERNEL(mul_mat_f16_f32_l4);
  303. GGML_METAL_DEL_KERNEL(mul_mat_q4_0_f32);
  304. GGML_METAL_DEL_KERNEL(mul_mat_q4_1_f32);
  305. GGML_METAL_DEL_KERNEL(mul_mat_q8_0_f32);
  306. GGML_METAL_DEL_KERNEL(mul_mat_q2_K_f32);
  307. GGML_METAL_DEL_KERNEL(mul_mat_q3_K_f32);
  308. GGML_METAL_DEL_KERNEL(mul_mat_q4_K_f32);
  309. GGML_METAL_DEL_KERNEL(mul_mat_q5_K_f32);
  310. GGML_METAL_DEL_KERNEL(mul_mat_q6_K_f32);
  311. GGML_METAL_DEL_KERNEL(mul_mm_f32_f32);
  312. GGML_METAL_DEL_KERNEL(mul_mm_f16_f32);
  313. GGML_METAL_DEL_KERNEL(mul_mm_q4_0_f32);
  314. GGML_METAL_DEL_KERNEL(mul_mm_q8_0_f32);
  315. GGML_METAL_DEL_KERNEL(mul_mm_q4_1_f32);
  316. GGML_METAL_DEL_KERNEL(mul_mm_q2_K_f32);
  317. GGML_METAL_DEL_KERNEL(mul_mm_q3_K_f32);
  318. GGML_METAL_DEL_KERNEL(mul_mm_q4_K_f32);
  319. GGML_METAL_DEL_KERNEL(mul_mm_q5_K_f32);
  320. GGML_METAL_DEL_KERNEL(mul_mm_q6_K_f32);
  321. GGML_METAL_DEL_KERNEL(rope_f32);
  322. GGML_METAL_DEL_KERNEL(rope_f16);
  323. GGML_METAL_DEL_KERNEL(alibi_f32);
  324. GGML_METAL_DEL_KERNEL(cpy_f32_f16);
  325. GGML_METAL_DEL_KERNEL(cpy_f32_f32);
  326. GGML_METAL_DEL_KERNEL(cpy_f16_f16);
  327. GGML_METAL_DEL_KERNEL(concat);
  328. GGML_METAL_DEL_KERNEL(sqr);
  329. #undef GGML_METAL_DEL_KERNEL
  330. for (int i = 0; i < ctx->n_buffers; ++i) {
  331. [ctx->buffers[i].metal release];
  332. }
  333. [ctx->library release];
  334. [ctx->queue release];
  335. [ctx->device release];
  336. dispatch_release(ctx->d_queue);
  337. free(ctx);
  338. }
  339. void * ggml_metal_host_malloc(size_t n) {
  340. void * data = NULL;
  341. const int result = posix_memalign((void **) &data, sysconf(_SC_PAGESIZE), n);
  342. if (result != 0) {
  343. GGML_METAL_LOG_ERROR("%s: error: posix_memalign failed\n", __func__);
  344. return NULL;
  345. }
  346. return data;
  347. }
  348. void ggml_metal_host_free(void * data) {
  349. free(data);
  350. }
  351. void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb) {
  352. ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_BUFFERS);
  353. }
  354. int ggml_metal_if_optimized(struct ggml_metal_context * ctx) {
  355. return ctx->concur_list_len;
  356. }
  357. int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx) {
  358. return ctx->concur_list;
  359. }
  360. // finds the Metal buffer that contains the tensor data on the GPU device
  361. // the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the
  362. // Metal buffer based on the host memory pointer
  363. //
  364. static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_metal_context * ctx, struct ggml_tensor * t, size_t * offs) {
  365. //GGML_METAL_LOG_INFO("%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach);
  366. const int64_t tsize = ggml_nbytes(t);
  367. // find the view that contains the tensor fully
  368. for (int i = 0; i < ctx->n_buffers; ++i) {
  369. const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data;
  370. //GGML_METAL_LOG_INFO("ioffs = %10ld, tsize = %10ld, sum = %10ld, ctx->buffers[%d].size = %10ld, name = %s\n", ioffs, tsize, ioffs + tsize, i, ctx->buffers[i].size, ctx->buffers[i].name);
  371. if (ioffs >= 0 && ioffs + tsize <= (int64_t) ctx->buffers[i].size) {
  372. *offs = (size_t) ioffs;
  373. //GGML_METAL_LOG_INFO("%s: '%s' tensor '%16s', offs = %8ld\n", __func__, ctx->buffers[i].name, t->name, *offs);
  374. return ctx->buffers[i].metal;
  375. }
  376. }
  377. GGML_METAL_LOG_ERROR("%s: error: buffer is nil\n", __func__);
  378. return nil;
  379. }
  380. bool ggml_metal_add_buffer(
  381. struct ggml_metal_context * ctx,
  382. const char * name,
  383. void * data,
  384. size_t size,
  385. size_t max_size) {
  386. if (ctx->n_buffers >= GGML_METAL_MAX_BUFFERS) {
  387. GGML_METAL_LOG_ERROR("%s: error: too many buffers\n", __func__);
  388. return false;
  389. }
  390. if (data) {
  391. // verify that the buffer does not overlap with any of the existing buffers
  392. for (int i = 0; i < ctx->n_buffers; ++i) {
  393. const int64_t ioffs = (int64_t) data - (int64_t) ctx->buffers[i].data;
  394. if (ioffs >= 0 && ioffs < (int64_t) ctx->buffers[i].size) {
  395. GGML_METAL_LOG_ERROR("%s: error: buffer '%s' overlaps with '%s'\n", __func__, name, ctx->buffers[i].name);
  396. return false;
  397. }
  398. }
  399. const size_t size_page = sysconf(_SC_PAGESIZE);
  400. size_t size_aligned = size;
  401. if ((size_aligned % size_page) != 0) {
  402. size_aligned += (size_page - (size_aligned % size_page));
  403. }
  404. // the buffer fits into the max buffer size allowed by the device
  405. if (size_aligned <= ctx->device.maxBufferLength) {
  406. ctx->buffers[ctx->n_buffers].name = name;
  407. ctx->buffers[ctx->n_buffers].data = data;
  408. ctx->buffers[ctx->n_buffers].size = size;
  409. ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
  410. if (ctx->buffers[ctx->n_buffers].metal == nil) {
  411. GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_aligned / 1024.0 / 1024.0);
  412. return false;
  413. }
  414. GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MB", __func__, name, size_aligned / 1024.0 / 1024.0);
  415. ++ctx->n_buffers;
  416. } else {
  417. // this overlap between the views will guarantee that the tensor with the maximum size will fully fit into
  418. // one of the views
  419. const size_t size_ovlp = ((max_size + size_page - 1) / size_page + 1) * size_page; // round-up 2 pages just in case
  420. const size_t size_step = ctx->device.maxBufferLength - size_ovlp;
  421. const size_t size_view = ctx->device.maxBufferLength;
  422. for (size_t i = 0; i < size; i += size_step) {
  423. const size_t size_step_aligned = (i + size_view <= size) ? size_view : (size_aligned - i);
  424. ctx->buffers[ctx->n_buffers].name = name;
  425. ctx->buffers[ctx->n_buffers].data = (void *) ((uint8_t *) data + i);
  426. ctx->buffers[ctx->n_buffers].size = size_step_aligned;
  427. ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
  428. if (ctx->buffers[ctx->n_buffers].metal == nil) {
  429. GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0);
  430. return false;
  431. }
  432. GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i);
  433. if (i + size_step < size) {
  434. GGML_METAL_LOG_INFO("\n");
  435. }
  436. ++ctx->n_buffers;
  437. }
  438. }
  439. #if TARGET_OS_OSX
  440. GGML_METAL_LOG_INFO(", (%8.2f / %8.2f)",
  441. ctx->device.currentAllocatedSize / 1024.0 / 1024.0,
  442. ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
  443. if (ctx->device.currentAllocatedSize > ctx->device.recommendedMaxWorkingSetSize) {
  444. GGML_METAL_LOG_WARN(", warning: current allocated size is greater than the recommended max working set size\n", __func__);
  445. } else {
  446. GGML_METAL_LOG_INFO("\n");
  447. }
  448. #else
  449. GGML_METAL_LOG_INFO(", (%8.2f)\n", ctx->device.currentAllocatedSize / 1024.0 / 1024.0);
  450. #endif
  451. }
  452. return true;
  453. }
  454. void ggml_metal_set_tensor(
  455. struct ggml_metal_context * ctx,
  456. struct ggml_tensor * t) {
  457. size_t offs;
  458. id<MTLBuffer> id_dst = ggml_metal_get_buffer(ctx, t, &offs);
  459. memcpy((void *) ((uint8_t *) id_dst.contents + offs), t->data, ggml_nbytes(t));
  460. }
  461. void ggml_metal_get_tensor(
  462. struct ggml_metal_context * ctx,
  463. struct ggml_tensor * t) {
  464. size_t offs;
  465. id<MTLBuffer> id_src = ggml_metal_get_buffer(ctx, t, &offs);
  466. memcpy(t->data, (void *) ((uint8_t *) id_src.contents + offs), ggml_nbytes(t));
  467. }
  468. void ggml_metal_graph_find_concurrency(
  469. struct ggml_metal_context * ctx,
  470. struct ggml_cgraph * gf, bool check_mem) {
  471. int search_depth = gf->n_nodes; //we only find concurrency in this range to avoid wasting too much time
  472. int nodes_unused[GGML_MAX_CONCUR];
  473. for (int i = 0; i < GGML_MAX_CONCUR; i++) { ctx->concur_list[i] = 0; }
  474. for (int i = 0; i < gf->n_nodes; i++) { nodes_unused[i] = 1; }
  475. ctx->concur_list_len = 0;
  476. int n_left = gf->n_nodes;
  477. int n_start = 0; // all nodes before n_start at nodes_unused array have been sorted and store back to ctx->concur_list
  478. int level_pos = 0; // at ctx->concur_list, the last layer (level) ends at level_pos
  479. while (n_left > 0) {
  480. // number of nodes at a layer (that can be issued concurrently)
  481. int concurrency = 0;
  482. for (int i = n_start; i < ((n_start + search_depth > gf->n_nodes) ? gf->n_nodes : n_start + search_depth); i++) {
  483. if (nodes_unused[i]) {
  484. // if the requirements for gf->nodes[i] are satisfied
  485. int exe_flag = 1;
  486. // scan all srcs
  487. for (int src_ind = 0; src_ind < GGML_MAX_SRC; src_ind++) {
  488. struct ggml_tensor * src_cur = gf->nodes[i]->src[src_ind];
  489. if (src_cur) {
  490. // if is leaf nodes it's satisfied.
  491. // TODO: ggml_is_leaf()
  492. if (src_cur->op == GGML_OP_NONE && src_cur->grad == NULL) {
  493. continue;
  494. }
  495. // otherwise this src should be the output from previous nodes.
  496. int is_found = 0;
  497. // scan 2*search_depth back because we inserted barrier.
  498. //for (int j = ((level_pos - 2*search_depth) < 0 ? 0 : (level_pos - 2*search_depth)); j < level_pos; j++) {
  499. for (int j = MAX(0, level_pos - 2*search_depth); j < level_pos; j++) {
  500. if (ctx->concur_list[j] >= 0 && gf->nodes[ctx->concur_list[j]] == src_cur) {
  501. is_found = 1;
  502. break;
  503. }
  504. }
  505. if (is_found == 0) {
  506. exe_flag = 0;
  507. break;
  508. }
  509. }
  510. }
  511. if (exe_flag && check_mem) {
  512. // check if nodes[i]'s data will be overwritten by a node before nodes[i].
  513. // if node[5] and node[3] write to the same memory region, then we can't issue node[5] before node[3]
  514. int64_t data_start = (int64_t) gf->nodes[i]->data;
  515. int64_t length = (int64_t) ggml_nbytes(gf->nodes[i]);
  516. for (int j = n_start; j < i; j++) {
  517. if (nodes_unused[j] && gf->nodes[j]->op != GGML_OP_RESHAPE \
  518. && gf->nodes[j]->op != GGML_OP_VIEW \
  519. && gf->nodes[j]->op != GGML_OP_TRANSPOSE \
  520. && gf->nodes[j]->op != GGML_OP_PERMUTE) {
  521. if (((int64_t)gf->nodes[j]->data) >= data_start + length || \
  522. ((int64_t)gf->nodes[j]->data) + (int64_t) ggml_nbytes(gf->nodes[j]) <= data_start) {
  523. continue;
  524. }
  525. exe_flag = 0;
  526. }
  527. }
  528. }
  529. if (exe_flag) {
  530. ctx->concur_list[level_pos + concurrency] = i;
  531. nodes_unused[i] = 0;
  532. concurrency++;
  533. ctx->concur_list_len++;
  534. }
  535. }
  536. }
  537. n_left -= concurrency;
  538. // adding a barrier different layer
  539. ctx->concur_list[level_pos + concurrency] = -1;
  540. ctx->concur_list_len++;
  541. // jump all sorted nodes at nodes_bak
  542. while (!nodes_unused[n_start]) {
  543. n_start++;
  544. }
  545. level_pos += concurrency + 1;
  546. }
  547. if (ctx->concur_list_len > GGML_MAX_CONCUR) {
  548. GGML_METAL_LOG_WARN("%s: too many elements for metal ctx->concur_list!\n", __func__);
  549. }
  550. }
  551. void ggml_metal_graph_compute(
  552. struct ggml_metal_context * ctx,
  553. struct ggml_cgraph * gf) {
  554. @autoreleasepool {
  555. // if there is ctx->concur_list, dispatch concurrently
  556. // else fallback to serial dispatch
  557. MTLComputePassDescriptor * edesc = MTLComputePassDescriptor.computePassDescriptor;
  558. const bool has_concur = ctx->concur_list_len && ctx->concur_list_len <= GGML_MAX_CONCUR;
  559. const int n_nodes = has_concur ? ctx->concur_list_len : gf->n_nodes;
  560. edesc.dispatchType = has_concur ? MTLDispatchTypeConcurrent : MTLDispatchTypeSerial;
  561. // create multiple command buffers and enqueue them
  562. // then, we encode the graph into the command buffers in parallel
  563. const int n_cb = ctx->n_cb;
  564. for (int i = 0; i < n_cb; ++i) {
  565. ctx->command_buffers[i] = [ctx->queue commandBuffer];
  566. // enqueue the command buffers in order to specify their execution order
  567. [ctx->command_buffers[i] enqueue];
  568. ctx->command_encoders[i] = [ctx->command_buffers[i] computeCommandEncoderWithDescriptor: edesc];
  569. }
  570. for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) {
  571. const int n_nodes_per_cb = (n_nodes + n_cb - 1) / n_cb;
  572. dispatch_async(ctx->d_queue, ^{
  573. size_t offs_src0 = 0;
  574. size_t offs_src1 = 0;
  575. size_t offs_dst = 0;
  576. id<MTLCommandBuffer> command_buffer = ctx->command_buffers[cb_idx];
  577. id<MTLComputeCommandEncoder> encoder = ctx->command_encoders[cb_idx];
  578. const int node_start = (cb_idx + 0) * n_nodes_per_cb;
  579. const int node_end = MIN((cb_idx == n_cb - 1) ? n_nodes : (cb_idx + 1) * n_nodes_per_cb, n_nodes);
  580. for (int ind = node_start; ind < node_end; ++ind) {
  581. const int i = has_concur ? ctx->concur_list[ind] : ind;
  582. if (i == -1) {
  583. [encoder memoryBarrierWithScope:MTLBarrierScopeBuffers];
  584. continue;
  585. }
  586. //GGML_METAL_LOG_INFO("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op));
  587. struct ggml_tensor * src0 = gf->nodes[i]->src[0];
  588. struct ggml_tensor * src1 = gf->nodes[i]->src[1];
  589. struct ggml_tensor * dst = gf->nodes[i];
  590. const int64_t ne00 = src0 ? src0->ne[0] : 0;
  591. const int64_t ne01 = src0 ? src0->ne[1] : 0;
  592. const int64_t ne02 = src0 ? src0->ne[2] : 0;
  593. const int64_t ne03 = src0 ? src0->ne[3] : 0;
  594. const uint64_t nb00 = src0 ? src0->nb[0] : 0;
  595. const uint64_t nb01 = src0 ? src0->nb[1] : 0;
  596. const uint64_t nb02 = src0 ? src0->nb[2] : 0;
  597. const uint64_t nb03 = src0 ? src0->nb[3] : 0;
  598. const int64_t ne10 = src1 ? src1->ne[0] : 0;
  599. const int64_t ne11 = src1 ? src1->ne[1] : 0;
  600. const int64_t ne12 = src1 ? src1->ne[2] : 0;
  601. const int64_t ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
  602. const uint64_t nb10 = src1 ? src1->nb[0] : 0;
  603. const uint64_t nb11 = src1 ? src1->nb[1] : 0;
  604. const uint64_t nb12 = src1 ? src1->nb[2] : 0;
  605. const uint64_t nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
  606. const int64_t ne0 = dst ? dst->ne[0] : 0;
  607. const int64_t ne1 = dst ? dst->ne[1] : 0;
  608. const int64_t ne2 = dst ? dst->ne[2] : 0;
  609. const int64_t ne3 = dst ? dst->ne[3] : 0;
  610. const uint64_t nb0 = dst ? dst->nb[0] : 0;
  611. const uint64_t nb1 = dst ? dst->nb[1] : 0;
  612. const uint64_t nb2 = dst ? dst->nb[2] : 0;
  613. const uint64_t nb3 = dst ? dst->nb[3] : 0;
  614. const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
  615. const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
  616. const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT;
  617. id<MTLBuffer> id_src0 = src0 ? ggml_metal_get_buffer(ctx, src0, &offs_src0) : nil;
  618. id<MTLBuffer> id_src1 = src1 ? ggml_metal_get_buffer(ctx, src1, &offs_src1) : nil;
  619. id<MTLBuffer> id_dst = dst ? ggml_metal_get_buffer(ctx, dst, &offs_dst) : nil;
  620. //GGML_METAL_LOG_INFO("%s: op - %s\n", __func__, ggml_op_name(dst->op));
  621. //if (src0) {
  622. // GGML_METAL_LOG_INFO("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02,
  623. // ggml_is_contiguous(src0), src0->name);
  624. //}
  625. //if (src1) {
  626. // GGML_METAL_LOG_INFO("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12,
  627. // ggml_is_contiguous(src1), src1->name);
  628. //}
  629. //if (dst) {
  630. // GGML_METAL_LOG_INFO("%s: dst - %4s [%5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2,
  631. // dst->name);
  632. //}
  633. switch (dst->op) {
  634. case GGML_OP_NONE:
  635. case GGML_OP_RESHAPE:
  636. case GGML_OP_VIEW:
  637. case GGML_OP_TRANSPOSE:
  638. case GGML_OP_PERMUTE:
  639. {
  640. // noop
  641. } break;
  642. case GGML_OP_CONCAT:
  643. {
  644. int64_t nb = ne00;
  645. [encoder setComputePipelineState:ctx->pipeline_concat];
  646. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  647. [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
  648. [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
  649. [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
  650. [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
  651. [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
  652. [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6];
  653. [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7];
  654. [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:8];
  655. [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:9];
  656. [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:10];
  657. [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11];
  658. [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12];
  659. [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13];
  660. [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14];
  661. [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15];
  662. [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16];
  663. [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17];
  664. [encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18];
  665. [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:19];
  666. [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:20];
  667. [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:21];
  668. [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:22];
  669. [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:23];
  670. [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:24];
  671. [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:25];
  672. [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:26];
  673. [encoder setBytes:&nb length:sizeof(nb) atIndex:27];
  674. const int nth = MIN(1024, ne0);
  675. [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
  676. } break;
  677. case GGML_OP_ADD:
  678. {
  679. GGML_ASSERT(ggml_is_contiguous(src0));
  680. GGML_ASSERT(ggml_is_contiguous(src1));
  681. bool bcast_row = false;
  682. int64_t nb = ne00;
  683. if (ggml_nelements(src1) == ne10 && ne00 % 4 == 0) {
  684. // src1 is a row
  685. GGML_ASSERT(ne11 == 1);
  686. nb = ne00 / 4;
  687. [encoder setComputePipelineState:ctx->pipeline_add_row];
  688. bcast_row = true;
  689. } else {
  690. [encoder setComputePipelineState:ctx->pipeline_add];
  691. }
  692. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  693. [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
  694. [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
  695. [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
  696. [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
  697. [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
  698. [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6];
  699. [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7];
  700. [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:8];
  701. [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:9];
  702. [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:10];
  703. [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11];
  704. [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12];
  705. [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13];
  706. [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14];
  707. [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15];
  708. [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16];
  709. [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17];
  710. [encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18];
  711. [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:19];
  712. [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:20];
  713. [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:21];
  714. [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:22];
  715. [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:23];
  716. [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:24];
  717. [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:25];
  718. [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:26];
  719. [encoder setBytes:&nb length:sizeof(nb) atIndex:27];
  720. if (bcast_row) {
  721. const int64_t n = ggml_nelements(dst)/4;
  722. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  723. } else {
  724. const int nth = MIN(1024, ne0);
  725. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
  726. }
  727. } break;
  728. case GGML_OP_MUL:
  729. {
  730. GGML_ASSERT(ggml_is_contiguous(src0));
  731. GGML_ASSERT(ggml_is_contiguous(src1));
  732. // utilize float4
  733. GGML_ASSERT(ne00 % 4 == 0);
  734. const int64_t nb = ne00/4;
  735. if (ggml_nelements(src1) == ne10) {
  736. // src1 is a row
  737. GGML_ASSERT(ne11 == 1);
  738. [encoder setComputePipelineState:ctx->pipeline_mul_row];
  739. } else {
  740. [encoder setComputePipelineState:ctx->pipeline_mul];
  741. }
  742. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  743. [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
  744. [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
  745. [encoder setBytes:&nb length:sizeof(nb) atIndex:3];
  746. const int64_t n = ggml_nelements(dst)/4;
  747. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  748. } break;
  749. case GGML_OP_SCALE:
  750. {
  751. GGML_ASSERT(ggml_is_contiguous(src0));
  752. const float scale = *(const float *) src1->data;
  753. [encoder setComputePipelineState:ctx->pipeline_scale];
  754. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  755. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  756. [encoder setBytes:&scale length:sizeof(scale) atIndex:2];
  757. const int64_t n = ggml_nelements(dst)/4;
  758. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  759. } break;
  760. case GGML_OP_UNARY:
  761. switch (ggml_get_unary_op(gf->nodes[i])) {
  762. case GGML_UNARY_OP_SILU:
  763. {
  764. [encoder setComputePipelineState:ctx->pipeline_silu];
  765. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  766. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  767. const int64_t n = ggml_nelements(dst)/4;
  768. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  769. } break;
  770. case GGML_UNARY_OP_RELU:
  771. {
  772. [encoder setComputePipelineState:ctx->pipeline_relu];
  773. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  774. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  775. const int64_t n = ggml_nelements(dst);
  776. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  777. } break;
  778. case GGML_UNARY_OP_GELU:
  779. {
  780. [encoder setComputePipelineState:ctx->pipeline_gelu];
  781. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  782. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  783. const int64_t n = ggml_nelements(dst)/4;
  784. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  785. } break;
  786. default:
  787. {
  788. GGML_METAL_LOG_WARN("%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
  789. GGML_ASSERT(false);
  790. }
  791. } break;
  792. case GGML_OP_SQR:
  793. {
  794. GGML_ASSERT(ggml_is_contiguous(src0));
  795. [encoder setComputePipelineState:ctx->pipeline_sqr];
  796. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  797. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  798. const int64_t n = ggml_nelements(dst);
  799. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  800. } break;
  801. case GGML_OP_SOFT_MAX:
  802. {
  803. const int nth = MIN(32, ne00);
  804. if (ne00%4 == 0) {
  805. [encoder setComputePipelineState:ctx->pipeline_soft_max_4];
  806. } else {
  807. [encoder setComputePipelineState:ctx->pipeline_soft_max];
  808. }
  809. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  810. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  811. [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
  812. [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
  813. [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
  814. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
  815. } break;
  816. case GGML_OP_DIAG_MASK_INF:
  817. {
  818. const int n_past = ((int32_t *)(dst->op_params))[0];
  819. if (ne00%8 == 0) {
  820. [encoder setComputePipelineState:ctx->pipeline_diag_mask_inf_8];
  821. } else {
  822. [encoder setComputePipelineState:ctx->pipeline_diag_mask_inf];
  823. }
  824. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  825. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  826. [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
  827. [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
  828. [encoder setBytes:&n_past length:sizeof(int) atIndex:4];
  829. if (ne00%8 == 0) {
  830. [encoder dispatchThreadgroups:MTLSizeMake(ne00*ne01*ne02/8, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  831. }
  832. else {
  833. [encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  834. }
  835. } break;
  836. case GGML_OP_MUL_MAT:
  837. {
  838. // TODO: needs to be updated after PR: https://github.com/ggerganov/ggml/pull/224
  839. GGML_ASSERT(ne00 == ne10);
  840. // GGML_ASSERT(ne02 == ne12); // Should be checked on individual data types until broadcast is implemented everywhere
  841. uint gqa = ne12/ne02;
  842. GGML_ASSERT(ne03 == ne13);
  843. // for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
  844. // AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
  845. if (!ggml_is_transposed(src0) &&
  846. !ggml_is_transposed(src1) &&
  847. src1t == GGML_TYPE_F32 &&
  848. [ctx->device supportsFamily:MTLGPUFamilyApple7] &&
  849. ne00%32 == 0 &&
  850. ne11 > 2) {
  851. switch (src0->type) {
  852. case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f32_f32]; break;
  853. case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f16_f32]; break;
  854. case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_0_f32]; break;
  855. case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_1_f32]; break;
  856. case GGML_TYPE_Q8_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q8_0_f32]; break;
  857. case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q2_K_f32]; break;
  858. case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q3_K_f32]; break;
  859. case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_K_f32]; break;
  860. case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q5_K_f32]; break;
  861. case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q6_K_f32]; break;
  862. default: GGML_ASSERT(false && "MUL MAT-MAT not implemented");
  863. }
  864. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  865. [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
  866. [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
  867. [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
  868. [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
  869. [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:5];
  870. [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:6];
  871. [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:7];
  872. [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:8];
  873. [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:9];
  874. [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:10];
  875. [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:11];
  876. [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:12];
  877. [encoder setBytes:&gqa length:sizeof(gqa) atIndex:13];
  878. [encoder setThreadgroupMemoryLength:8192 atIndex:0];
  879. [encoder dispatchThreadgroups:MTLSizeMake( (ne11+31)/32, (ne01+63) / 64, ne12) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
  880. } else {
  881. int nth0 = 32;
  882. int nth1 = 1;
  883. int nrows = 1;
  884. // use custom matrix x vector kernel
  885. switch (src0t) {
  886. case GGML_TYPE_F32:
  887. {
  888. [encoder setComputePipelineState:ctx->pipeline_mul_mat_f32_f32];
  889. nrows = 4;
  890. } break;
  891. case GGML_TYPE_F16:
  892. {
  893. nth0 = 32;
  894. nth1 = 1;
  895. if (ne11 * ne12 < 4) {
  896. [encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32_1row];
  897. } else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
  898. [encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32_l4];
  899. nrows = ne11;
  900. } else {
  901. [encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32];
  902. nrows = 4;
  903. }
  904. } break;
  905. case GGML_TYPE_Q4_0:
  906. {
  907. GGML_ASSERT(ne02 == 1);
  908. GGML_ASSERT(ne12 == 1);
  909. nth0 = 8;
  910. nth1 = 8;
  911. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_0_f32];
  912. } break;
  913. case GGML_TYPE_Q4_1:
  914. {
  915. GGML_ASSERT(ne02 == 1);
  916. GGML_ASSERT(ne12 == 1);
  917. nth0 = 8;
  918. nth1 = 8;
  919. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_1_f32];
  920. } break;
  921. case GGML_TYPE_Q8_0:
  922. {
  923. GGML_ASSERT(ne02 == 1);
  924. GGML_ASSERT(ne12 == 1);
  925. nth0 = 8;
  926. nth1 = 8;
  927. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q8_0_f32];
  928. } break;
  929. case GGML_TYPE_Q2_K:
  930. {
  931. GGML_ASSERT(ne02 == 1);
  932. GGML_ASSERT(ne12 == 1);
  933. nth0 = 2;
  934. nth1 = 32;
  935. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q2_K_f32];
  936. } break;
  937. case GGML_TYPE_Q3_K:
  938. {
  939. GGML_ASSERT(ne02 == 1);
  940. GGML_ASSERT(ne12 == 1);
  941. nth0 = 2;
  942. nth1 = 32;
  943. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q3_K_f32];
  944. } break;
  945. case GGML_TYPE_Q4_K:
  946. {
  947. GGML_ASSERT(ne02 == 1);
  948. GGML_ASSERT(ne12 == 1);
  949. nth0 = 4; //1;
  950. nth1 = 8; //32;
  951. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_K_f32];
  952. } break;
  953. case GGML_TYPE_Q5_K:
  954. {
  955. GGML_ASSERT(ne02 == 1);
  956. GGML_ASSERT(ne12 == 1);
  957. nth0 = 2;
  958. nth1 = 32;
  959. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q5_K_f32];
  960. } break;
  961. case GGML_TYPE_Q6_K:
  962. {
  963. GGML_ASSERT(ne02 == 1);
  964. GGML_ASSERT(ne12 == 1);
  965. nth0 = 2;
  966. nth1 = 32;
  967. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q6_K_f32];
  968. } break;
  969. default:
  970. {
  971. GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src0t);
  972. GGML_ASSERT(false && "not implemented");
  973. }
  974. };
  975. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  976. [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
  977. [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
  978. [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
  979. [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
  980. [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
  981. [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
  982. [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
  983. [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
  984. [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:9];
  985. [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:10];
  986. [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:11];
  987. [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:12];
  988. [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:13];
  989. [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:14];
  990. [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:15];
  991. [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:16];
  992. [encoder setBytes:&gqa length:sizeof(gqa) atIndex:17];
  993. if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q8_0 ||
  994. src0t == GGML_TYPE_Q2_K) {// || src0t == GGML_TYPE_Q4_K) {
  995. [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
  996. }
  997. else if (src0t == GGML_TYPE_Q4_K) {
  998. [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
  999. }
  1000. else if (src0t == GGML_TYPE_Q3_K) {
  1001. #ifdef GGML_QKK_64
  1002. [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
  1003. #else
  1004. [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
  1005. #endif
  1006. }
  1007. else if (src0t == GGML_TYPE_Q5_K) {
  1008. [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
  1009. }
  1010. else if (src0t == GGML_TYPE_Q6_K) {
  1011. [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
  1012. } else {
  1013. int64_t ny = (ne11 + nrows - 1)/nrows;
  1014. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
  1015. }
  1016. }
  1017. } break;
  1018. case GGML_OP_GET_ROWS:
  1019. {
  1020. switch (src0->type) {
  1021. case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_get_rows_f32]; break;
  1022. case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break;
  1023. case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break;
  1024. case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break;
  1025. case GGML_TYPE_Q8_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q8_0]; break;
  1026. case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_K]; break;
  1027. case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q3_K]; break;
  1028. case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_K]; break;
  1029. case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q5_K]; break;
  1030. case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q6_K]; break;
  1031. default: GGML_ASSERT(false && "not implemented");
  1032. }
  1033. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  1034. [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
  1035. [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
  1036. [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3];
  1037. [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:4];
  1038. [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:5];
  1039. const int64_t n = ggml_nelements(src1);
  1040. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  1041. } break;
  1042. case GGML_OP_RMS_NORM:
  1043. {
  1044. float eps;
  1045. memcpy(&eps, dst->op_params, sizeof(float));
  1046. const int nth = MIN(512, ne00);
  1047. [encoder setComputePipelineState:ctx->pipeline_rms_norm];
  1048. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  1049. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  1050. [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
  1051. [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
  1052. [encoder setBytes:&eps length:sizeof( float) atIndex:4];
  1053. [encoder setThreadgroupMemoryLength:nth/32*sizeof(float) atIndex:0];
  1054. const int64_t nrows = ggml_nrows(src0);
  1055. [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
  1056. } break;
  1057. case GGML_OP_NORM:
  1058. {
  1059. float eps;
  1060. memcpy(&eps, dst->op_params, sizeof(float));
  1061. const int nth = MIN(256, ne00);
  1062. [encoder setComputePipelineState:ctx->pipeline_norm];
  1063. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  1064. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  1065. [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
  1066. [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
  1067. [encoder setBytes:&eps length:sizeof( float) atIndex:4];
  1068. [encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
  1069. const int64_t nrows = ggml_nrows(src0);
  1070. [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
  1071. } break;
  1072. case GGML_OP_ALIBI:
  1073. {
  1074. GGML_ASSERT((src0t == GGML_TYPE_F32));
  1075. const int nth = MIN(1024, ne00);
  1076. const int n_past = ((int32_t *) dst->op_params)[0]; UNUSED(n_past);
  1077. const int n_head = ((int32_t *) dst->op_params)[1];
  1078. float max_bias;
  1079. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  1080. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  1081. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  1082. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  1083. [encoder setComputePipelineState:ctx->pipeline_alibi_f32];
  1084. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  1085. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  1086. [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
  1087. [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
  1088. [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
  1089. [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
  1090. [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
  1091. [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
  1092. [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
  1093. [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
  1094. [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
  1095. [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
  1096. [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
  1097. [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
  1098. [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
  1099. [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
  1100. [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
  1101. [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
  1102. [encoder setBytes:&m0 length:sizeof( float) atIndex:18];
  1103. [encoder setBytes:&m1 length:sizeof( float) atIndex:19];
  1104. [encoder setBytes:&n_heads_log2_floor length:sizeof(int) atIndex:20];
  1105. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
  1106. } break;
  1107. case GGML_OP_ROPE:
  1108. {
  1109. GGML_ASSERT(ne10 == ne02);
  1110. const int nth = MIN(1024, ne00);
  1111. const int n_past = ((int32_t *) dst->op_params)[0];
  1112. const int n_dims = ((int32_t *) dst->op_params)[1];
  1113. const int mode = ((int32_t *) dst->op_params)[2];
  1114. float freq_base;
  1115. float freq_scale;
  1116. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  1117. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  1118. switch (src0->type) {
  1119. case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_rope_f32]; break;
  1120. case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_rope_f16]; break;
  1121. default: GGML_ASSERT(false);
  1122. };
  1123. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  1124. [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
  1125. [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
  1126. [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3];
  1127. [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:4];
  1128. [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:5];
  1129. [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:6];
  1130. [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:7];
  1131. [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:8];
  1132. [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:9];
  1133. [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:10];
  1134. [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:11];
  1135. [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:12];
  1136. [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:13];
  1137. [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:14];
  1138. [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:15];
  1139. [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:16];
  1140. [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:17];
  1141. [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:18];
  1142. [encoder setBytes:&n_past length:sizeof( int) atIndex:19];
  1143. [encoder setBytes:&n_dims length:sizeof( int) atIndex:20];
  1144. [encoder setBytes:&mode length:sizeof( int) atIndex:21];
  1145. [encoder setBytes:&freq_base length:sizeof(float) atIndex:22];
  1146. [encoder setBytes:&freq_scale length:sizeof(float) atIndex:23];
  1147. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
  1148. } break;
  1149. case GGML_OP_DUP:
  1150. case GGML_OP_CPY:
  1151. case GGML_OP_CONT:
  1152. {
  1153. const int nth = MIN(1024, ne00);
  1154. switch (src0t) {
  1155. case GGML_TYPE_F32:
  1156. {
  1157. switch (dstt) {
  1158. case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f16]; break;
  1159. case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f32]; break;
  1160. default: GGML_ASSERT(false && "not implemented");
  1161. };
  1162. } break;
  1163. case GGML_TYPE_F16:
  1164. {
  1165. switch (dstt) {
  1166. case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f16_f16]; break;
  1167. case GGML_TYPE_F32: GGML_ASSERT(false && "cpy_f16_f32 not implemented"); break;
  1168. default: GGML_ASSERT(false && "not implemented");
  1169. };
  1170. } break;
  1171. default: GGML_ASSERT(false && "not implemented");
  1172. }
  1173. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  1174. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  1175. [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
  1176. [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
  1177. [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
  1178. [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
  1179. [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
  1180. [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
  1181. [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
  1182. [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
  1183. [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
  1184. [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
  1185. [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
  1186. [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
  1187. [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
  1188. [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
  1189. [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
  1190. [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
  1191. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
  1192. } break;
  1193. default:
  1194. {
  1195. GGML_METAL_LOG_ERROR("%s: error: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
  1196. GGML_ASSERT(false);
  1197. }
  1198. }
  1199. }
  1200. if (encoder != nil) {
  1201. [encoder endEncoding];
  1202. encoder = nil;
  1203. }
  1204. [command_buffer commit];
  1205. });
  1206. }
  1207. // wait for all threads to finish
  1208. dispatch_barrier_sync(ctx->d_queue, ^{});
  1209. // check status of command buffers
  1210. // needed to detect if the device ran out-of-memory for example (#1881)
  1211. for (int i = 0; i < n_cb; i++) {
  1212. [ctx->command_buffers[i] waitUntilCompleted];
  1213. MTLCommandBufferStatus status = (MTLCommandBufferStatus) [ctx->command_buffers[i] status];
  1214. if (status != MTLCommandBufferStatusCompleted) {
  1215. GGML_METAL_LOG_INFO("%s: command buffer %d failed with status %lu\n", __func__, i, status);
  1216. GGML_ASSERT(false);
  1217. }
  1218. }
  1219. }
  1220. }