common.cpp 134 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231
  1. #if defined(_MSC_VER)
  2. #define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
  3. #endif
  4. #include "common.h"
  5. // Change JSON_ASSERT from assert() to GGML_ASSERT:
  6. #define JSON_ASSERT GGML_ASSERT
  7. #include "json.hpp"
  8. #include "json-schema-to-grammar.h"
  9. #include "llama.h"
  10. #include <algorithm>
  11. #include <cinttypes>
  12. #include <cmath>
  13. #include <codecvt>
  14. #include <cstdarg>
  15. #include <cstring>
  16. #include <ctime>
  17. #include <fstream>
  18. #include <iostream>
  19. #include <iterator>
  20. #include <regex>
  21. #include <sstream>
  22. #include <string>
  23. #include <unordered_map>
  24. #include <unordered_set>
  25. #include <vector>
  26. #if defined(__APPLE__) && defined(__MACH__)
  27. #include <sys/types.h>
  28. #include <sys/sysctl.h>
  29. #endif
  30. #if defined(_WIN32)
  31. #define WIN32_LEAN_AND_MEAN
  32. #ifndef NOMINMAX
  33. # define NOMINMAX
  34. #endif
  35. #include <locale>
  36. #include <windows.h>
  37. #include <fcntl.h>
  38. #include <io.h>
  39. #else
  40. #include <sys/ioctl.h>
  41. #include <sys/stat.h>
  42. #include <unistd.h>
  43. #endif
  44. #if defined(LLAMA_USE_CURL)
  45. #include <curl/curl.h>
  46. #include <curl/easy.h>
  47. #include <thread>
  48. #include <future>
  49. #endif
  50. #if defined(_MSC_VER)
  51. #pragma warning(disable: 4244 4267) // possible loss of data
  52. #endif
  53. #if (defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL))
  54. #define GGML_USE_CUDA_SYCL
  55. #endif
  56. #if (defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)) || defined(GGML_USE_VULKAN)
  57. #define GGML_USE_CUDA_SYCL_VULKAN
  58. #endif
  59. #if defined(LLAMA_USE_CURL)
  60. #ifdef __linux__
  61. #include <linux/limits.h>
  62. #elif defined(_WIN32)
  63. #define PATH_MAX MAX_PATH
  64. #else
  65. #include <sys/syslimits.h>
  66. #endif
  67. #define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
  68. #endif // LLAMA_USE_CURL
  69. using json = nlohmann::ordered_json;
  70. //
  71. // CPU utils
  72. //
  73. int32_t cpu_get_num_physical_cores() {
  74. #ifdef __linux__
  75. // enumerate the set of thread siblings, num entries is num cores
  76. std::unordered_set<std::string> siblings;
  77. for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) {
  78. std::ifstream thread_siblings("/sys/devices/system/cpu/cpu"
  79. + std::to_string(cpu) + "/topology/thread_siblings");
  80. if (!thread_siblings.is_open()) {
  81. break; // no more cpus
  82. }
  83. std::string line;
  84. if (std::getline(thread_siblings, line)) {
  85. siblings.insert(line);
  86. }
  87. }
  88. if (!siblings.empty()) {
  89. return static_cast<int32_t>(siblings.size());
  90. }
  91. #elif defined(__APPLE__) && defined(__MACH__)
  92. int32_t num_physical_cores;
  93. size_t len = sizeof(num_physical_cores);
  94. int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0);
  95. if (result == 0) {
  96. return num_physical_cores;
  97. }
  98. result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0);
  99. if (result == 0) {
  100. return num_physical_cores;
  101. }
  102. #elif defined(_WIN32)
  103. //TODO: Implement
  104. #endif
  105. unsigned int n_threads = std::thread::hardware_concurrency();
  106. return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
  107. }
  108. #if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
  109. #include <pthread.h>
  110. static void cpuid(unsigned leaf, unsigned subleaf,
  111. unsigned *eax, unsigned *ebx, unsigned *ecx, unsigned *edx) {
  112. __asm__("movq\t%%rbx,%%rsi\n\t"
  113. "cpuid\n\t"
  114. "xchgq\t%%rbx,%%rsi"
  115. : "=a"(*eax), "=S"(*ebx), "=c"(*ecx), "=d"(*edx)
  116. : "0"(leaf), "2"(subleaf));
  117. }
  118. static int pin_cpu(int cpu) {
  119. cpu_set_t mask;
  120. CPU_ZERO(&mask);
  121. CPU_SET(cpu, &mask);
  122. return pthread_setaffinity_np(pthread_self(), sizeof(mask), &mask);
  123. }
  124. static bool is_hybrid_cpu(void) {
  125. unsigned eax, ebx, ecx, edx;
  126. cpuid(7, 0, &eax, &ebx, &ecx, &edx);
  127. return !!(edx & (1u << 15));
  128. }
  129. static bool is_running_on_efficiency_core(void) {
  130. unsigned eax, ebx, ecx, edx;
  131. cpuid(0x1a, 0, &eax, &ebx, &ecx, &edx);
  132. int intel_atom = 0x20;
  133. int core_type = (eax & 0xff000000u) >> 24;
  134. return core_type == intel_atom;
  135. }
  136. static int cpu_count_math_cpus(int n_cpu) {
  137. int result = 0;
  138. for (int cpu = 0; cpu < n_cpu; ++cpu) {
  139. if (pin_cpu(cpu)) {
  140. return -1;
  141. }
  142. if (is_running_on_efficiency_core()) {
  143. continue; // efficiency cores harm lockstep threading
  144. }
  145. ++cpu; // hyperthreading isn't useful for linear algebra
  146. ++result;
  147. }
  148. return result;
  149. }
  150. #endif // __x86_64__ && __linux__
  151. /**
  152. * Returns number of CPUs on system that are useful for math.
  153. */
  154. int32_t cpu_get_num_math() {
  155. #if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
  156. int n_cpu = sysconf(_SC_NPROCESSORS_ONLN);
  157. if (n_cpu < 1) {
  158. return cpu_get_num_physical_cores();
  159. }
  160. if (is_hybrid_cpu()) {
  161. cpu_set_t affinity;
  162. if (!pthread_getaffinity_np(pthread_self(), sizeof(affinity), &affinity)) {
  163. int result = cpu_count_math_cpus(n_cpu);
  164. pthread_setaffinity_np(pthread_self(), sizeof(affinity), &affinity);
  165. if (result > 0) {
  166. return result;
  167. }
  168. }
  169. }
  170. #endif
  171. return cpu_get_num_physical_cores();
  172. }
  173. //
  174. // CLI argument parsing
  175. //
  176. void gpt_params_handle_hf_token(gpt_params & params) {
  177. if (params.hf_token.empty() && std::getenv("HF_TOKEN")) {
  178. params.hf_token = std::getenv("HF_TOKEN");
  179. }
  180. }
  181. void gpt_params_handle_model_default(gpt_params & params) {
  182. if (!params.hf_repo.empty()) {
  183. // short-hand to avoid specifying --hf-file -> default it to --model
  184. if (params.hf_file.empty()) {
  185. if (params.model.empty()) {
  186. throw std::invalid_argument("error: --hf-repo requires either --hf-file or --model\n");
  187. }
  188. params.hf_file = params.model;
  189. } else if (params.model.empty()) {
  190. params.model = fs_get_cache_file(string_split(params.hf_file, '/').back());
  191. }
  192. } else if (!params.model_url.empty()) {
  193. if (params.model.empty()) {
  194. auto f = string_split(params.model_url, '#').front();
  195. f = string_split(f, '?').front();
  196. params.model = fs_get_cache_file(string_split(f, '/').back());
  197. }
  198. } else if (params.model.empty()) {
  199. params.model = DEFAULT_MODEL_PATH;
  200. }
  201. }
  202. bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
  203. bool invalid_param = false;
  204. std::string arg;
  205. const std::string arg_prefix = "--";
  206. llama_sampling_params & sparams = params.sparams;
  207. for (int i = 1; i < argc; i++) {
  208. arg = argv[i];
  209. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  210. std::replace(arg.begin(), arg.end(), '_', '-');
  211. }
  212. if (!gpt_params_find_arg(argc, argv, arg, params, i, invalid_param)) {
  213. throw std::invalid_argument("error: unknown argument: " + arg);
  214. }
  215. if (invalid_param) {
  216. throw std::invalid_argument("error: invalid parameter for argument: " + arg);
  217. }
  218. }
  219. if (params.prompt_cache_all && (params.interactive || params.interactive_first)) {
  220. throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
  221. }
  222. gpt_params_handle_model_default(params);
  223. gpt_params_handle_hf_token(params);
  224. if (params.escape) {
  225. string_process_escapes(params.prompt);
  226. string_process_escapes(params.input_prefix);
  227. string_process_escapes(params.input_suffix);
  228. string_process_escapes(sparams.cfg_negative_prompt);
  229. for (auto & antiprompt : params.antiprompt) {
  230. string_process_escapes(antiprompt);
  231. }
  232. }
  233. if (!params.kv_overrides.empty()) {
  234. params.kv_overrides.emplace_back();
  235. params.kv_overrides.back().key[0] = 0;
  236. }
  237. return true;
  238. }
  239. bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
  240. const auto params_org = params; // the example can modify the default params
  241. try {
  242. if (!gpt_params_parse_ex(argc, argv, params) || params.usage) {
  243. params = params_org;
  244. params.usage = true;
  245. return false;
  246. }
  247. } catch (const std::invalid_argument & ex) {
  248. fprintf(stderr, "%s\n", ex.what());
  249. params = params_org;
  250. return false;
  251. }
  252. return true;
  253. }
  254. #define CHECK_ARG if (++i >= argc) { invalid_param = true; return true; }
  255. bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param) {
  256. const char split_delim = ',';
  257. llama_sampling_params & sparams = params.sparams;
  258. if (arg == "-s" || arg == "--seed") {
  259. CHECK_ARG
  260. // TODO: this is temporary, in the future the sampling state will be moved fully to llama_sampling_context.
  261. params.seed = std::stoul(argv[i]);
  262. sparams.seed = std::stoul(argv[i]);
  263. return true;
  264. }
  265. if (arg == "-t" || arg == "--threads") {
  266. CHECK_ARG
  267. params.n_threads = std::stoi(argv[i]);
  268. if (params.n_threads <= 0) {
  269. params.n_threads = std::thread::hardware_concurrency();
  270. }
  271. return true;
  272. }
  273. if (arg == "-tb" || arg == "--threads-batch") {
  274. CHECK_ARG
  275. params.n_threads_batch = std::stoi(argv[i]);
  276. if (params.n_threads_batch <= 0) {
  277. params.n_threads_batch = std::thread::hardware_concurrency();
  278. }
  279. return true;
  280. }
  281. if (arg == "-td" || arg == "--threads-draft") {
  282. CHECK_ARG
  283. params.n_threads_draft = std::stoi(argv[i]);
  284. if (params.n_threads_draft <= 0) {
  285. params.n_threads_draft = std::thread::hardware_concurrency();
  286. }
  287. return true;
  288. }
  289. if (arg == "-tbd" || arg == "--threads-batch-draft") {
  290. CHECK_ARG
  291. params.n_threads_batch_draft = std::stoi(argv[i]);
  292. if (params.n_threads_batch_draft <= 0) {
  293. params.n_threads_batch_draft = std::thread::hardware_concurrency();
  294. }
  295. return true;
  296. }
  297. if (arg == "-p" || arg == "--prompt") {
  298. CHECK_ARG
  299. params.prompt = argv[i];
  300. return true;
  301. }
  302. if (arg == "-e" || arg == "--escape") {
  303. params.escape = true;
  304. return true;
  305. }
  306. if (arg == "--no-escape") {
  307. params.escape = false;
  308. return true;
  309. }
  310. if (arg == "--prompt-cache") {
  311. CHECK_ARG
  312. params.path_prompt_cache = argv[i];
  313. return true;
  314. }
  315. if (arg == "--prompt-cache-all") {
  316. params.prompt_cache_all = true;
  317. return true;
  318. }
  319. if (arg == "--prompt-cache-ro") {
  320. params.prompt_cache_ro = true;
  321. return true;
  322. }
  323. if (arg == "-bf" || arg == "--binary-file") {
  324. CHECK_ARG
  325. std::ifstream file(argv[i], std::ios::binary);
  326. if (!file) {
  327. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  328. invalid_param = true;
  329. return true;
  330. }
  331. // store the external file name in params
  332. params.prompt_file = argv[i];
  333. std::ostringstream ss;
  334. ss << file.rdbuf();
  335. params.prompt = ss.str();
  336. fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), argv[i]);
  337. return true;
  338. }
  339. if (arg == "-f" || arg == "--file") {
  340. CHECK_ARG
  341. std::ifstream file(argv[i]);
  342. if (!file) {
  343. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  344. invalid_param = true;
  345. return true;
  346. }
  347. // store the external file name in params
  348. params.prompt_file = argv[i];
  349. std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
  350. if (!params.prompt.empty() && params.prompt.back() == '\n') {
  351. params.prompt.pop_back();
  352. }
  353. return true;
  354. }
  355. if (arg == "--in-file") {
  356. CHECK_ARG
  357. std::ifstream file(argv[i]);
  358. if (!file) {
  359. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  360. invalid_param = true;
  361. return true;
  362. }
  363. params.in_files.push_back(argv[i]);
  364. return true;
  365. }
  366. if (arg == "-n" || arg == "--predict" || arg == "--n-predict") {
  367. CHECK_ARG
  368. params.n_predict = std::stoi(argv[i]);
  369. return true;
  370. }
  371. if (arg == "--top-k") {
  372. CHECK_ARG
  373. sparams.top_k = std::stoi(argv[i]);
  374. return true;
  375. }
  376. if (arg == "-c" || arg == "--ctx-size") {
  377. CHECK_ARG
  378. params.n_ctx = std::stoi(argv[i]);
  379. return true;
  380. }
  381. if (arg == "--grp-attn-n" || arg == "-gan") {
  382. CHECK_ARG
  383. params.grp_attn_n = std::stoi(argv[i]);
  384. return true;
  385. }
  386. if (arg == "--grp-attn-w" || arg == "-gaw") {
  387. CHECK_ARG
  388. params.grp_attn_w = std::stoi(argv[i]);
  389. return true;
  390. }
  391. if (arg == "--rope-freq-base") {
  392. CHECK_ARG
  393. params.rope_freq_base = std::stof(argv[i]);
  394. return true;
  395. }
  396. if (arg == "--rope-freq-scale") {
  397. CHECK_ARG
  398. params.rope_freq_scale = std::stof(argv[i]);
  399. return true;
  400. }
  401. if (arg == "--rope-scaling") {
  402. CHECK_ARG
  403. std::string value(argv[i]);
  404. /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
  405. else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
  406. else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
  407. else { invalid_param = true; }
  408. return true;
  409. }
  410. if (arg == "--rope-scale") {
  411. CHECK_ARG
  412. params.rope_freq_scale = 1.0f / std::stof(argv[i]);
  413. return true;
  414. }
  415. if (arg == "--yarn-orig-ctx") {
  416. CHECK_ARG
  417. params.yarn_orig_ctx = std::stoi(argv[i]);
  418. return true;
  419. }
  420. if (arg == "--yarn-ext-factor") {
  421. CHECK_ARG
  422. params.yarn_ext_factor = std::stof(argv[i]);
  423. return true;
  424. }
  425. if (arg == "--yarn-attn-factor") {
  426. CHECK_ARG
  427. params.yarn_attn_factor = std::stof(argv[i]);
  428. return true;
  429. }
  430. if (arg == "--yarn-beta-fast") {
  431. CHECK_ARG
  432. params.yarn_beta_fast = std::stof(argv[i]);
  433. return true;
  434. }
  435. if (arg == "--yarn-beta-slow") {
  436. CHECK_ARG
  437. params.yarn_beta_slow = std::stof(argv[i]);
  438. return true;
  439. }
  440. if (arg == "--pooling") {
  441. CHECK_ARG
  442. std::string value(argv[i]);
  443. /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
  444. else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
  445. else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
  446. else if (value == "last") { params.pooling_type = LLAMA_POOLING_TYPE_LAST; }
  447. else { invalid_param = true; }
  448. return true;
  449. }
  450. if (arg == "--attention") {
  451. CHECK_ARG
  452. std::string value(argv[i]);
  453. /**/ if (value == "causal") { params.attention_type = LLAMA_ATTENTION_TYPE_CAUSAL; }
  454. else if (value == "non-causal") { params.attention_type = LLAMA_ATTENTION_TYPE_NON_CAUSAL; }
  455. else { invalid_param = true; }
  456. return true;
  457. }
  458. if (arg == "--defrag-thold" || arg == "-dt") {
  459. CHECK_ARG
  460. params.defrag_thold = std::stof(argv[i]);
  461. return true;
  462. }
  463. if (arg == "--samplers") {
  464. CHECK_ARG
  465. const auto sampler_names = string_split(argv[i], ';');
  466. sparams.samplers_sequence = llama_sampling_types_from_names(sampler_names, true);
  467. return true;
  468. }
  469. if (arg == "--sampling-seq") {
  470. CHECK_ARG
  471. sparams.samplers_sequence = llama_sampling_types_from_chars(argv[i]);
  472. return true;
  473. }
  474. if (arg == "--top-p") {
  475. CHECK_ARG
  476. sparams.top_p = std::stof(argv[i]);
  477. return true;
  478. }
  479. if (arg == "--min-p") {
  480. CHECK_ARG
  481. sparams.min_p = std::stof(argv[i]);
  482. return true;
  483. }
  484. if (arg == "--temp") {
  485. CHECK_ARG
  486. sparams.temp = std::stof(argv[i]);
  487. sparams.temp = std::max(sparams.temp, 0.0f);
  488. return true;
  489. }
  490. if (arg == "--tfs") {
  491. CHECK_ARG
  492. sparams.tfs_z = std::stof(argv[i]);
  493. return true;
  494. }
  495. if (arg == "--typical") {
  496. CHECK_ARG
  497. sparams.typical_p = std::stof(argv[i]);
  498. return true;
  499. }
  500. if (arg == "--repeat-last-n") {
  501. CHECK_ARG
  502. sparams.penalty_last_n = std::stoi(argv[i]);
  503. sparams.n_prev = std::max(sparams.n_prev, sparams.penalty_last_n);
  504. return true;
  505. }
  506. if (arg == "--repeat-penalty") {
  507. CHECK_ARG
  508. sparams.penalty_repeat = std::stof(argv[i]);
  509. return true;
  510. }
  511. if (arg == "--frequency-penalty") {
  512. CHECK_ARG
  513. sparams.penalty_freq = std::stof(argv[i]);
  514. return true;
  515. }
  516. if (arg == "--presence-penalty") {
  517. CHECK_ARG
  518. sparams.penalty_present = std::stof(argv[i]);
  519. return true;
  520. }
  521. if (arg == "--dynatemp-range") {
  522. CHECK_ARG
  523. sparams.dynatemp_range = std::stof(argv[i]);
  524. return true;
  525. }
  526. if (arg == "--dynatemp-exp") {
  527. CHECK_ARG
  528. sparams.dynatemp_exponent = std::stof(argv[i]);
  529. return true;
  530. }
  531. if (arg == "--mirostat") {
  532. CHECK_ARG
  533. sparams.mirostat = std::stoi(argv[i]);
  534. return true;
  535. }
  536. if (arg == "--mirostat-lr") {
  537. CHECK_ARG
  538. sparams.mirostat_eta = std::stof(argv[i]);
  539. return true;
  540. }
  541. if (arg == "--mirostat-ent") {
  542. CHECK_ARG
  543. sparams.mirostat_tau = std::stof(argv[i]);
  544. return true;
  545. }
  546. if (arg == "--cfg-negative-prompt") {
  547. CHECK_ARG
  548. sparams.cfg_negative_prompt = argv[i];
  549. return true;
  550. }
  551. if (arg == "--cfg-negative-prompt-file") {
  552. CHECK_ARG
  553. std::ifstream file(argv[i]);
  554. if (!file) {
  555. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  556. invalid_param = true;
  557. return true;
  558. }
  559. std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(sparams.cfg_negative_prompt));
  560. if (!sparams.cfg_negative_prompt.empty() && sparams.cfg_negative_prompt.back() == '\n') {
  561. sparams.cfg_negative_prompt.pop_back();
  562. }
  563. return true;
  564. }
  565. if (arg == "--cfg-scale") {
  566. CHECK_ARG
  567. sparams.cfg_scale = std::stof(argv[i]);
  568. return true;
  569. }
  570. if (arg == "-b" || arg == "--batch-size") {
  571. CHECK_ARG
  572. params.n_batch = std::stoi(argv[i]);
  573. return true;
  574. }
  575. if (arg == "-ub" || arg == "--ubatch-size") {
  576. CHECK_ARG
  577. params.n_ubatch = std::stoi(argv[i]);
  578. return true;
  579. }
  580. if (arg == "--keep") {
  581. CHECK_ARG
  582. params.n_keep = std::stoi(argv[i]);
  583. return true;
  584. }
  585. if (arg == "--draft") {
  586. CHECK_ARG
  587. params.n_draft = std::stoi(argv[i]);
  588. return true;
  589. }
  590. if (arg == "--chunks") {
  591. CHECK_ARG
  592. params.n_chunks = std::stoi(argv[i]);
  593. return true;
  594. }
  595. if (arg == "-np" || arg == "--parallel") {
  596. CHECK_ARG
  597. params.n_parallel = std::stoi(argv[i]);
  598. return true;
  599. }
  600. if (arg == "-ns" || arg == "--sequences") {
  601. CHECK_ARG
  602. params.n_sequences = std::stoi(argv[i]);
  603. return true;
  604. }
  605. if (arg == "--p-split" || arg == "-ps") {
  606. CHECK_ARG
  607. params.p_split = std::stof(argv[i]);
  608. return true;
  609. }
  610. if (arg == "-m" || arg == "--model") {
  611. CHECK_ARG
  612. params.model = argv[i];
  613. return true;
  614. }
  615. if (arg == "-md" || arg == "--model-draft") {
  616. CHECK_ARG
  617. params.model_draft = argv[i];
  618. return true;
  619. }
  620. if (arg == "-a" || arg == "--alias") {
  621. CHECK_ARG
  622. params.model_alias = argv[i];
  623. return true;
  624. }
  625. if (arg == "-mu" || arg == "--model-url") {
  626. CHECK_ARG
  627. params.model_url = argv[i];
  628. return true;
  629. }
  630. if (arg == "-hft" || arg == "--hf-token") {
  631. if (++i >= argc) {
  632. invalid_param = true;
  633. return true;
  634. }
  635. params.hf_token = argv[i];
  636. return true;
  637. }
  638. if (arg == "-hfr" || arg == "--hf-repo") {
  639. CHECK_ARG
  640. params.hf_repo = argv[i];
  641. return true;
  642. }
  643. if (arg == "-hff" || arg == "--hf-file") {
  644. CHECK_ARG
  645. params.hf_file = argv[i];
  646. return true;
  647. }
  648. if (arg == "--lora") {
  649. CHECK_ARG
  650. params.lora_adapter.emplace_back(argv[i], 1.0f);
  651. params.use_mmap = false;
  652. return true;
  653. }
  654. if (arg == "--lora-scaled") {
  655. CHECK_ARG
  656. const char* lora_adapter = argv[i];
  657. CHECK_ARG
  658. params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i]));
  659. params.use_mmap = false;
  660. return true;
  661. }
  662. if (arg == "--lora-base") {
  663. CHECK_ARG
  664. params.lora_base = argv[i];
  665. return true;
  666. }
  667. if (arg == "--control-vector") {
  668. CHECK_ARG
  669. params.control_vectors.push_back({ 1.0f, argv[i], });
  670. return true;
  671. }
  672. if (arg == "--control-vector-scaled") {
  673. CHECK_ARG
  674. const char* fname = argv[i];
  675. CHECK_ARG
  676. params.control_vectors.push_back({ std::stof(argv[i]), fname, });
  677. return true;
  678. }
  679. if (arg == "--control-vector-layer-range") {
  680. CHECK_ARG
  681. params.control_vector_layer_start = std::stoi(argv[i]);
  682. CHECK_ARG
  683. params.control_vector_layer_end = std::stoi(argv[i]);
  684. return true;
  685. }
  686. if (arg == "--mmproj") {
  687. CHECK_ARG
  688. params.mmproj = argv[i];
  689. return true;
  690. }
  691. if (arg == "--image") {
  692. CHECK_ARG
  693. params.image.emplace_back(argv[i]);
  694. return true;
  695. }
  696. if (arg == "-i" || arg == "--interactive") {
  697. params.interactive = true;
  698. return true;
  699. }
  700. if (arg == "-sp" || arg == "--special") {
  701. params.special = true;
  702. return true;
  703. }
  704. if (arg == "--embedding" || arg == "--embeddings") {
  705. params.embedding = true;
  706. return true;
  707. }
  708. if (arg == "--embd-normalize") {
  709. CHECK_ARG
  710. params.embd_normalize = std::stoi(argv[i]);
  711. return true;
  712. }
  713. if (arg == "--embd-output-format") {
  714. CHECK_ARG
  715. params.embd_out = argv[i];
  716. return true;
  717. }
  718. if (arg == "--embd-separator") {
  719. CHECK_ARG
  720. params.embd_sep = argv[i];
  721. return true;
  722. }
  723. if (arg == "-if" || arg == "--interactive-first") {
  724. params.interactive_first = true;
  725. return true;
  726. }
  727. if (arg == "-cnv" || arg == "--conversation") {
  728. params.conversation = true;
  729. return true;
  730. }
  731. if (arg == "--infill") {
  732. params.infill = true;
  733. return true;
  734. }
  735. if (arg == "-dkvc" || arg == "--dump-kv-cache") {
  736. params.dump_kv_cache = true;
  737. return true;
  738. }
  739. if (arg == "-nkvo" || arg == "--no-kv-offload") {
  740. params.no_kv_offload = true;
  741. return true;
  742. }
  743. if (arg == "-ctk" || arg == "--cache-type-k") {
  744. params.cache_type_k = argv[++i];
  745. return true;
  746. }
  747. if (arg == "-ctv" || arg == "--cache-type-v") {
  748. params.cache_type_v = argv[++i];
  749. return true;
  750. }
  751. if (arg == "-mli" || arg == "--multiline-input") {
  752. params.multiline_input = true;
  753. return true;
  754. }
  755. if (arg == "--simple-io") {
  756. params.simple_io = true;
  757. return true;
  758. }
  759. if (arg == "-cb" || arg == "--cont-batching") {
  760. params.cont_batching = true;
  761. return true;
  762. }
  763. if (arg == "-nocb" || arg == "--no-cont-batching") {
  764. params.cont_batching = false;
  765. return true;
  766. }
  767. if (arg == "-fa" || arg == "--flash-attn") {
  768. params.flash_attn = true;
  769. return true;
  770. }
  771. if (arg == "-co" || arg == "--color") {
  772. params.use_color = true;
  773. return true;
  774. }
  775. if (arg == "--mlock") {
  776. params.use_mlock = true;
  777. return true;
  778. }
  779. if (arg == "-ngl" || arg == "--gpu-layers" || arg == "--n-gpu-layers") {
  780. CHECK_ARG
  781. params.n_gpu_layers = std::stoi(argv[i]);
  782. if (!llama_supports_gpu_offload()) {
  783. fprintf(stderr, "warning: not compiled with GPU offload support, --gpu-layers option will be ignored\n");
  784. fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
  785. }
  786. return true;
  787. }
  788. if (arg == "-ngld" || arg == "--gpu-layers-draft" || arg == "--gpu-layers-draft") {
  789. CHECK_ARG
  790. params.n_gpu_layers_draft = std::stoi(argv[i]);
  791. if (!llama_supports_gpu_offload()) {
  792. fprintf(stderr, "warning: not compiled with GPU offload support, --gpu-layers-draft option will be ignored\n");
  793. fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
  794. }
  795. return true;
  796. }
  797. if (arg == "--main-gpu" || arg == "-mg") {
  798. CHECK_ARG
  799. params.main_gpu = std::stoi(argv[i]);
  800. #ifndef GGML_USE_CUDA_SYCL_VULKAN
  801. fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting the main GPU has no effect.\n");
  802. #endif // GGML_USE_CUDA_SYCL_VULKAN
  803. return true;
  804. }
  805. if (arg == "--split-mode" || arg == "-sm") {
  806. CHECK_ARG
  807. std::string arg_next = argv[i];
  808. if (arg_next == "none") {
  809. params.split_mode = LLAMA_SPLIT_MODE_NONE;
  810. }
  811. else if (arg_next == "layer") {
  812. params.split_mode = LLAMA_SPLIT_MODE_LAYER;
  813. }
  814. else if (arg_next == "row") {
  815. #ifdef GGML_USE_SYCL
  816. fprintf(stderr, "warning: The split mode value:[row] is not supported by llama.cpp with SYCL. It's developing.\nExit!\n");
  817. exit(1);
  818. #endif // GGML_USE_SYCL
  819. params.split_mode = LLAMA_SPLIT_MODE_ROW;
  820. }
  821. else {
  822. invalid_param = true;
  823. return true;
  824. }
  825. #ifndef GGML_USE_CUDA_SYCL_VULKAN
  826. fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting the split mode has no effect.\n");
  827. #endif // GGML_USE_CUDA_SYCL_VULKAN
  828. return true;
  829. }
  830. if (arg == "--tensor-split" || arg == "-ts") {
  831. CHECK_ARG
  832. std::string arg_next = argv[i];
  833. // split string by , and /
  834. const std::regex regex{ R"([,/]+)" };
  835. std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
  836. std::vector<std::string> split_arg{ it, {} };
  837. if (split_arg.size() >= llama_max_devices()) {
  838. invalid_param = true;
  839. return true;
  840. }
  841. for (size_t i = 0; i < llama_max_devices(); ++i) {
  842. if (i < split_arg.size()) {
  843. params.tensor_split[i] = std::stof(split_arg[i]);
  844. }
  845. else {
  846. params.tensor_split[i] = 0.0f;
  847. }
  848. }
  849. #ifndef GGML_USE_CUDA_SYCL_VULKAN
  850. fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting a tensor split has no effect.\n");
  851. #endif // GGML_USE_CUDA_SYCL_VULKAN
  852. return true;
  853. }
  854. if (arg == "--rpc") {
  855. CHECK_ARG
  856. params.rpc_servers = argv[i];
  857. return true;
  858. }
  859. if (arg == "--no-mmap") {
  860. params.use_mmap = false;
  861. return true;
  862. }
  863. if (arg == "--numa") {
  864. CHECK_ARG
  865. std::string value(argv[i]);
  866. /**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
  867. else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
  868. else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
  869. else { invalid_param = true; }
  870. return true;
  871. }
  872. if (arg == "-v" || arg == "--verbose") {
  873. params.verbosity = 1;
  874. return true;
  875. }
  876. if (arg == "--verbosity") {
  877. CHECK_ARG
  878. params.verbosity = std::stoi(argv[i]);
  879. return true;
  880. }
  881. if (arg == "--verbose-prompt") {
  882. params.verbose_prompt = true;
  883. return true;
  884. }
  885. if (arg == "--no-display-prompt") {
  886. params.display_prompt = false;
  887. return true;
  888. }
  889. if (arg == "-r" || arg == "--reverse-prompt") {
  890. CHECK_ARG
  891. params.antiprompt.emplace_back(argv[i]);
  892. return true;
  893. }
  894. if (arg == "-ld" || arg == "--logdir") {
  895. CHECK_ARG
  896. params.logdir = argv[i];
  897. if (params.logdir.back() != DIRECTORY_SEPARATOR) {
  898. params.logdir += DIRECTORY_SEPARATOR;
  899. }
  900. return true;
  901. }
  902. if (arg == "-lcs" || arg == "--lookup-cache-static") {
  903. CHECK_ARG
  904. params.lookup_cache_static = argv[i];
  905. return true;
  906. }
  907. if (arg == "-lcd" || arg == "--lookup-cache-dynamic") {
  908. CHECK_ARG
  909. params.lookup_cache_dynamic = argv[i];
  910. return true;
  911. }
  912. if (arg == "--save-all-logits" || arg == "--kl-divergence-base") {
  913. CHECK_ARG
  914. params.logits_file = argv[i];
  915. return true;
  916. }
  917. if (arg == "--perplexity" || arg == "--all-logits") {
  918. params.logits_all = true;
  919. return true;
  920. }
  921. if (arg == "--ppl-stride") {
  922. CHECK_ARG
  923. params.ppl_stride = std::stoi(argv[i]);
  924. return true;
  925. }
  926. if (arg == "--ppl-output-type") {
  927. CHECK_ARG
  928. params.ppl_output_type = std::stoi(argv[i]);
  929. return true;
  930. }
  931. if (arg == "-ptc" || arg == "--print-token-count") {
  932. CHECK_ARG
  933. params.n_print = std::stoi(argv[i]);
  934. return true;
  935. }
  936. if (arg == "--check-tensors") {
  937. params.check_tensors = true;
  938. return true;
  939. }
  940. if (arg == "--hellaswag") {
  941. params.hellaswag = true;
  942. return true;
  943. }
  944. if (arg == "--hellaswag-tasks") {
  945. CHECK_ARG
  946. params.hellaswag_tasks = std::stoi(argv[i]);
  947. return true;
  948. }
  949. if (arg == "--winogrande") {
  950. params.winogrande = true;
  951. return true;
  952. }
  953. if (arg == "--winogrande-tasks") {
  954. CHECK_ARG
  955. params.winogrande_tasks = std::stoi(argv[i]);
  956. return true;
  957. }
  958. if (arg == "--multiple-choice") {
  959. params.multiple_choice = true;
  960. return true;
  961. }
  962. if (arg == "--multiple-choice-tasks") {
  963. CHECK_ARG
  964. params.multiple_choice_tasks = std::stoi(argv[i]);
  965. return true;
  966. }
  967. if (arg == "--kl-divergence") {
  968. params.kl_divergence = true;
  969. return true;
  970. }
  971. if (arg == "--ignore-eos") {
  972. params.ignore_eos = true;
  973. return true;
  974. }
  975. if (arg == "--penalize-nl") {
  976. sparams.penalize_nl = true;
  977. return true;
  978. }
  979. if (arg == "-l" || arg == "--logit-bias") {
  980. CHECK_ARG
  981. std::stringstream ss(argv[i]);
  982. llama_token key;
  983. char sign;
  984. std::string value_str;
  985. try {
  986. if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
  987. sparams.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
  988. }
  989. else {
  990. throw std::exception();
  991. }
  992. }
  993. catch (const std::exception&) {
  994. invalid_param = true;
  995. return true;
  996. }
  997. return true;
  998. }
  999. if (arg == "-h" || arg == "--help" || arg == "--usage" ) {
  1000. params.usage = true;
  1001. return true;
  1002. }
  1003. if (arg == "--version") {
  1004. fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
  1005. fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
  1006. exit(0);
  1007. }
  1008. if (arg == "--in-prefix-bos") {
  1009. params.input_prefix_bos = true;
  1010. params.enable_chat_template = false;
  1011. return true;
  1012. }
  1013. if (arg == "--in-prefix") {
  1014. CHECK_ARG
  1015. params.input_prefix = argv[i];
  1016. params.enable_chat_template = false;
  1017. return true;
  1018. }
  1019. if (arg == "--in-suffix") {
  1020. CHECK_ARG
  1021. params.input_suffix = argv[i];
  1022. params.enable_chat_template = false;
  1023. return true;
  1024. }
  1025. if (arg == "--spm-infill") {
  1026. params.spm_infill = true;
  1027. return true;
  1028. }
  1029. if (arg == "--grammar") {
  1030. CHECK_ARG
  1031. sparams.grammar = argv[i];
  1032. return true;
  1033. }
  1034. if (arg == "--grammar-file") {
  1035. CHECK_ARG
  1036. std::ifstream file(argv[i]);
  1037. if (!file) {
  1038. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  1039. invalid_param = true;
  1040. return true;
  1041. }
  1042. std::copy(
  1043. std::istreambuf_iterator<char>(file),
  1044. std::istreambuf_iterator<char>(),
  1045. std::back_inserter(sparams.grammar)
  1046. );
  1047. return true;
  1048. }
  1049. if (arg == "-j" || arg == "--json-schema") {
  1050. CHECK_ARG
  1051. sparams.grammar = json_schema_to_grammar(json::parse(argv[i]));
  1052. return true;
  1053. }
  1054. if (arg == "--override-kv") {
  1055. CHECK_ARG
  1056. if (!string_parse_kv_override(argv[i], params.kv_overrides)) {
  1057. fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
  1058. invalid_param = true;
  1059. return true;
  1060. }
  1061. return true;
  1062. }
  1063. if (arg == "--host") {
  1064. CHECK_ARG
  1065. params.hostname = argv[i];
  1066. return true;
  1067. }
  1068. if (arg == "--port") {
  1069. CHECK_ARG
  1070. params.port = std::stoi(argv[i]);
  1071. return true;
  1072. }
  1073. if (arg == "--path") {
  1074. CHECK_ARG
  1075. params.public_path = argv[i];
  1076. return true;
  1077. }
  1078. if (arg == "--api-key") {
  1079. CHECK_ARG
  1080. params.api_keys.push_back(argv[i]);
  1081. return true;
  1082. }
  1083. if (arg == "--api-key-file") {
  1084. CHECK_ARG
  1085. std::ifstream key_file(argv[i]);
  1086. if (!key_file) {
  1087. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  1088. invalid_param = true;
  1089. return true;
  1090. }
  1091. std::string key;
  1092. while (std::getline(key_file, key)) {
  1093. if (!key.empty()) {
  1094. params.api_keys.push_back(key);
  1095. }
  1096. }
  1097. key_file.close();
  1098. return true;
  1099. }
  1100. if (arg == "--ssl-key-file") {
  1101. CHECK_ARG
  1102. params.ssl_file_key = argv[i];
  1103. return true;
  1104. }
  1105. if (arg == "--ssl-cert-file") {
  1106. CHECK_ARG
  1107. params.ssl_file_cert = argv[i];
  1108. return true;
  1109. }
  1110. if (arg == "--timeout" || arg == "-to") {
  1111. CHECK_ARG
  1112. params.timeout_read = std::stoi(argv[i]);
  1113. params.timeout_write = std::stoi(argv[i]);
  1114. return true;
  1115. }
  1116. if (arg == "--threads-http") {
  1117. CHECK_ARG
  1118. params.n_threads_http = std::stoi(argv[i]);
  1119. return true;
  1120. }
  1121. if (arg == "-spf" || arg == "--system-prompt-file") {
  1122. CHECK_ARG
  1123. std::ifstream file(argv[i]);
  1124. if (!file) {
  1125. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  1126. invalid_param = true;
  1127. return true;
  1128. }
  1129. std::string system_prompt;
  1130. std::copy(
  1131. std::istreambuf_iterator<char>(file),
  1132. std::istreambuf_iterator<char>(),
  1133. std::back_inserter(system_prompt)
  1134. );
  1135. params.system_prompt = system_prompt;
  1136. return true;
  1137. }
  1138. if (arg == "--log-format") {
  1139. CHECK_ARG
  1140. if (std::strcmp(argv[i], "json") == 0) {
  1141. params.log_json = true;
  1142. } else if (std::strcmp(argv[i], "text") == 0) {
  1143. params.log_json = false;
  1144. } else {
  1145. invalid_param = true;
  1146. return true;
  1147. }
  1148. return true;
  1149. }
  1150. if (arg == "--no-slots") {
  1151. params.endpoint_slots = false;
  1152. return true;
  1153. }
  1154. if (arg == "--metrics") {
  1155. params.endpoint_metrics = true;
  1156. return true;
  1157. }
  1158. if (arg == "--slot-save-path") {
  1159. CHECK_ARG
  1160. params.slot_save_path = argv[i];
  1161. // if doesn't end with DIRECTORY_SEPARATOR, add it
  1162. if (!params.slot_save_path.empty() && params.slot_save_path[params.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) {
  1163. params.slot_save_path += DIRECTORY_SEPARATOR;
  1164. }
  1165. return true;
  1166. }
  1167. if (arg == "--chat-template") {
  1168. CHECK_ARG
  1169. if (!llama_chat_verify_template(argv[i])) {
  1170. fprintf(stderr, "error: the supplied chat template is not supported: %s\n", argv[i]);
  1171. fprintf(stderr, "note: llama.cpp does not use jinja parser, we only support commonly used templates\n");
  1172. invalid_param = true;
  1173. return true;
  1174. }
  1175. params.chat_template = argv[i];
  1176. return true;
  1177. }
  1178. if (arg == "--slot-prompt-similarity" || arg == "-sps") {
  1179. CHECK_ARG
  1180. params.slot_prompt_similarity = std::stof(argv[i]);
  1181. return true;
  1182. }
  1183. if (arg == "-pps") {
  1184. params.is_pp_shared = true;
  1185. return true;
  1186. }
  1187. if (arg == "-npp") {
  1188. CHECK_ARG
  1189. auto p = string_split<int>(argv[i], split_delim);
  1190. params.n_pp.insert(params.n_pp.end(), p.begin(), p.end());
  1191. return true;
  1192. }
  1193. if (arg == "-ntg") {
  1194. CHECK_ARG
  1195. auto p = string_split<int>(argv[i], split_delim);
  1196. params.n_tg.insert(params.n_tg.end(), p.begin(), p.end());
  1197. return true;
  1198. }
  1199. if (arg == "-npl") {
  1200. CHECK_ARG
  1201. auto p = string_split<int>(argv[i], split_delim);
  1202. params.n_pl.insert(params.n_pl.end(), p.begin(), p.end());
  1203. return true;
  1204. }
  1205. if (arg == "--context-file") {
  1206. CHECK_ARG
  1207. std::ifstream file(argv[i], std::ios::binary);
  1208. if (!file) {
  1209. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  1210. invalid_param = true;
  1211. return true;
  1212. }
  1213. params.context_files.push_back(argv[i]);
  1214. return true;
  1215. }
  1216. if (arg == "--chunk-size") {
  1217. CHECK_ARG
  1218. params.chunk_size = std::stoi(argv[i]);
  1219. return true;
  1220. }
  1221. if (arg == "--chunk-separator") {
  1222. CHECK_ARG
  1223. params.chunk_separator = argv[i];
  1224. return true;
  1225. }
  1226. if (arg == "--junk") {
  1227. CHECK_ARG
  1228. params.n_junk = std::stoi(argv[i]);
  1229. return true;
  1230. }
  1231. if (arg == "--pos") {
  1232. CHECK_ARG
  1233. params.i_pos = std::stoi(argv[i]);
  1234. return true;
  1235. }
  1236. if (arg == "-o" || arg == "--output" || arg == "--output-file") {
  1237. CHECK_ARG
  1238. params.out_file = argv[i];
  1239. params.cvector_outfile = argv[i];
  1240. return true;
  1241. }
  1242. if (arg == "-ofreq" || arg == "--output-frequency") {
  1243. CHECK_ARG
  1244. params.n_out_freq = std::stoi(argv[i]);
  1245. return true;
  1246. }
  1247. if (arg == "--save-frequency") {
  1248. CHECK_ARG
  1249. params.n_save_freq = std::stoi(argv[i]);
  1250. return true;
  1251. }
  1252. if (arg == "--process-output") {
  1253. params.process_output = true;
  1254. return true;
  1255. }
  1256. if (arg == "--no-ppl") {
  1257. params.compute_ppl = false;
  1258. return true;
  1259. }
  1260. if (arg == "--chunk" || arg == "--from-chunk") {
  1261. CHECK_ARG
  1262. params.i_chunk = std::stoi(argv[i]);
  1263. return true;
  1264. }
  1265. // cvector params
  1266. if (arg == "--positive-file") {
  1267. CHECK_ARG
  1268. params.cvector_positive_file = argv[i];
  1269. return true;
  1270. }
  1271. if (arg == "--negative-file") {
  1272. CHECK_ARG
  1273. params.cvector_negative_file = argv[i];
  1274. return true;
  1275. }
  1276. if (arg == "--pca-batch") {
  1277. CHECK_ARG
  1278. params.n_pca_batch = std::stoi(argv[i]);
  1279. return true;
  1280. }
  1281. if (arg == "--pca-iter") {
  1282. CHECK_ARG
  1283. params.n_pca_iterations = std::stoi(argv[i]);
  1284. return true;
  1285. }
  1286. if (arg == "--method") {
  1287. CHECK_ARG
  1288. std::string value(argv[i]);
  1289. /**/ if (value == "pca") { params.cvector_dimre_method = DIMRE_METHOD_PCA; }
  1290. else if (value == "mean") { params.cvector_dimre_method = DIMRE_METHOD_MEAN; }
  1291. else { invalid_param = true; }
  1292. return true;
  1293. }
  1294. #ifndef LOG_DISABLE_LOGS
  1295. // Parse args for logging parameters
  1296. if (log_param_single_parse(argv[i])) {
  1297. // Do nothing, log_param_single_parse automatically does it's thing
  1298. // and returns if a match was found and parsed.
  1299. return true;
  1300. }
  1301. if (log_param_pair_parse( /*check_but_dont_parse*/ true, argv[i])) {
  1302. // We have a matching known parameter requiring an argument,
  1303. // now we need to check if there is anything after this argv
  1304. // and flag invalid_param or parse it.
  1305. CHECK_ARG
  1306. if (!log_param_pair_parse( /*check_but_dont_parse*/ false, argv[i - 1], argv[i])) {
  1307. invalid_param = true;
  1308. return true;
  1309. }
  1310. return true;
  1311. }
  1312. // End of Parse args for logging parameters
  1313. #endif // LOG_DISABLE_LOGS
  1314. return false;
  1315. }
  1316. #ifdef __GNUC__
  1317. #ifdef __MINGW32__
  1318. #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  1319. #else
  1320. #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  1321. #endif
  1322. #else
  1323. #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
  1324. #endif
  1325. void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
  1326. const llama_sampling_params & sparams = params.sparams;
  1327. std::string sampler_type_chars;
  1328. std::string sampler_type_names;
  1329. for (const auto sampler_type : sparams.samplers_sequence) {
  1330. sampler_type_chars += static_cast<char>(sampler_type);
  1331. sampler_type_names += llama_sampling_type_to_str(sampler_type) + ";";
  1332. }
  1333. sampler_type_names.pop_back();
  1334. struct option_info {
  1335. LLAMA_COMMON_ATTRIBUTE_FORMAT(4, 5)
  1336. option_info(const std::string & tags, const char * args, const char * desc, ...) : tags(tags), args(args), desc(desc) {
  1337. va_list args_list;
  1338. va_start(args_list, desc);
  1339. char buffer[1024];
  1340. vsnprintf(buffer, sizeof(buffer), desc, args_list);
  1341. va_end(args_list);
  1342. this->desc = buffer;
  1343. }
  1344. option_info(const std::string & grp) : grp(grp) {}
  1345. std::string tags;
  1346. std::string args;
  1347. std::string desc;
  1348. std::string grp;
  1349. };
  1350. std::vector<option_info> options;
  1351. // TODO: filter by tags
  1352. options.push_back({ "general" });
  1353. options.push_back({ "*", "-h, --help, --usage", "print usage and exit" });
  1354. options.push_back({ "*", " --version", "show version and build info" });
  1355. options.push_back({ "*", "-v, --verbose", "print verbose information" });
  1356. options.push_back({ "*", " --verbosity N", "set specific verbosity level (default: %d)", params.verbosity });
  1357. options.push_back({ "*", " --verbose-prompt", "print a verbose prompt before generation (default: %s)", params.verbose_prompt ? "true" : "false" });
  1358. options.push_back({ "*", " --no-display-prompt", "don't print prompt at generation (default: %s)", !params.display_prompt ? "true" : "false" });
  1359. options.push_back({ "*", "-co, --color", "colorise output to distinguish prompt and user input from generations (default: %s)", params.use_color ? "true" : "false" });
  1360. options.push_back({ "*", "-s, --seed SEED", "RNG seed (default: %d, use random seed for < 0)", params.seed });
  1361. options.push_back({ "*", "-t, --threads N", "number of threads to use during generation (default: %d)", params.n_threads });
  1362. options.push_back({ "*", "-tb, --threads-batch N", "number of threads to use during batch and prompt processing (default: same as --threads)" });
  1363. options.push_back({ "speculative", "-td, --threads-draft N", "number of threads to use during generation (default: same as --threads)" });
  1364. options.push_back({ "speculative", "-tbd, --threads-batch-draft N",
  1365. "number of threads to use during batch and prompt processing (default: same as --threads-draft)" });
  1366. options.push_back({ "speculative", " --draft N", "number of tokens to draft for speculative decoding (default: %d)", params.n_draft });
  1367. options.push_back({ "speculative", "-ps, --p-split N", "speculative decoding split probability (default: %.1f)", (double)params.p_split });
  1368. options.push_back({ "*", "-lcs, --lookup-cache-static FNAME",
  1369. "path to static lookup cache to use for lookup decoding (not updated by generation)" });
  1370. options.push_back({ "*", "-lcd, --lookup-cache-dynamic FNAME",
  1371. "path to dynamic lookup cache to use for lookup decoding (updated by generation)" });
  1372. options.push_back({ "*", "-c, --ctx-size N", "size of the prompt context (default: %d, 0 = loaded from model)", params.n_ctx });
  1373. options.push_back({ "*", "-n, --predict N", "number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)", params.n_predict });
  1374. options.push_back({ "*", "-b, --batch-size N", "logical maximum batch size (default: %d)", params.n_batch });
  1375. options.push_back({ "*", "-ub, --ubatch-size N", "physical maximum batch size (default: %d)", params.n_ubatch });
  1376. options.push_back({ "*", " --keep N", "number of tokens to keep from the initial prompt (default: %d, -1 = all)", params.n_keep });
  1377. options.push_back({ "*", " --chunks N", "max number of chunks to process (default: %d, -1 = all)", params.n_chunks });
  1378. options.push_back({ "*", "-fa, --flash-attn", "enable Flash Attention (default: %s)", params.flash_attn ? "enabled" : "disabled" });
  1379. options.push_back({ "*", "-p, --prompt PROMPT", "prompt to start generation with\n"
  1380. "in conversation mode, this will be used as system prompt\n"
  1381. "(default: '%s')", params.prompt.c_str() });
  1382. options.push_back({ "*", "-f, --file FNAME", "a file containing the prompt (default: none)" });
  1383. options.push_back({ "*", " --in-file FNAME", "an input file (repeat to specify multiple files)" });
  1384. options.push_back({ "*", "-bf, --binary-file FNAME", "binary file containing the prompt (default: none)" });
  1385. options.push_back({ "*", "-e, --escape", "process escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\) (default: %s)", params.escape ? "true" : "false" });
  1386. options.push_back({ "*", " --no-escape", "do not process escape sequences" });
  1387. options.push_back({ "main", "-ptc, --print-token-count N", "print token count every N tokens (default: %d)", params.n_print });
  1388. options.push_back({ "main", " --prompt-cache FNAME", "file to cache prompt state for faster startup (default: none)" });
  1389. options.push_back({ "main", " --prompt-cache-all", "if specified, saves user input and generations to cache as well\n"
  1390. "not supported with --interactive or other interactive options" });
  1391. options.push_back({ "main", " --prompt-cache-ro", "if specified, uses the prompt cache but does not update it" });
  1392. options.push_back({ "main", "-r, --reverse-prompt PROMPT",
  1393. "halt generation at PROMPT, return control in interactive mode\n"
  1394. "can be specified more than once for multiple prompts" });
  1395. options.push_back({ "main", "-sp, --special", "special tokens output enabled (default: %s)", params.special ? "true" : "false" });
  1396. options.push_back({ "main", "-cnv, --conversation", "run in conversation mode, does not print special tokens and suffix/prefix\n"
  1397. "if suffix/prefix are not specified, default chat template will be used\n"
  1398. "(default: %s)", params.conversation ? "true" : "false" });
  1399. options.push_back({ "main infill", "-i, --interactive", "run in interactive mode (default: %s)", params.interactive ? "true" : "false" });
  1400. options.push_back({ "main infill", "-if, --interactive-first", "run in interactive mode and wait for input right away (default: %s)", params.interactive_first ? "true" : "false" });
  1401. options.push_back({ "main infill", "-mli, --multiline-input", "allows you to write or paste multiple lines without ending each in '\\'" });
  1402. options.push_back({ "main infill", " --in-prefix-bos", "prefix BOS to user inputs, preceding the `--in-prefix` string" });
  1403. options.push_back({ "main infill", " --in-prefix STRING", "string to prefix user inputs with (default: empty)" });
  1404. options.push_back({ "main infill", " --in-suffix STRING", "string to suffix after user inputs with (default: empty)" });
  1405. options.push_back({ "server infill",
  1406. " --spm-infill", "use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: %s)", params.spm_infill ? "enabled" : "disabled" });
  1407. options.push_back({ "sampling" });
  1408. options.push_back({ "*", " --samplers SAMPLERS", "samplers that will be used for generation in the order, separated by \';\'\n"
  1409. "(default: %s)", sampler_type_names.c_str() });
  1410. options.push_back({ "*", " --sampling-seq SEQUENCE",
  1411. "simplified sequence for samplers that will be used (default: %s)", sampler_type_chars.c_str() });
  1412. options.push_back({ "*", " --ignore-eos", "ignore end of stream token and continue generating (implies --logit-bias EOS-inf)" });
  1413. options.push_back({ "*", " --penalize-nl", "penalize newline tokens (default: %s)", sparams.penalize_nl ? "true" : "false" });
  1414. options.push_back({ "*", " --temp N", "temperature (default: %.1f)", (double)sparams.temp });
  1415. options.push_back({ "*", " --top-k N", "top-k sampling (default: %d, 0 = disabled)", sparams.top_k });
  1416. options.push_back({ "*", " --top-p N", "top-p sampling (default: %.1f, 1.0 = disabled)", (double)sparams.top_p });
  1417. options.push_back({ "*", " --min-p N", "min-p sampling (default: %.1f, 0.0 = disabled)", (double)sparams.min_p });
  1418. options.push_back({ "*", " --tfs N", "tail free sampling, parameter z (default: %.1f, 1.0 = disabled)", (double)sparams.tfs_z });
  1419. options.push_back({ "*", " --typical N", "locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)sparams.typical_p });
  1420. options.push_back({ "*", " --repeat-last-n N", "last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", sparams.penalty_last_n });
  1421. options.push_back({ "*", " --repeat-penalty N", "penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)sparams.penalty_repeat });
  1422. options.push_back({ "*", " --presence-penalty N", "repeat alpha presence penalty (default: %.1f, 0.0 = disabled)", (double)sparams.penalty_present });
  1423. options.push_back({ "*", " --frequency-penalty N", "repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)", (double)sparams.penalty_freq });
  1424. options.push_back({ "*", " --dynatemp-range N", "dynamic temperature range (default: %.1f, 0.0 = disabled)", (double)sparams.dynatemp_range });
  1425. options.push_back({ "*", " --dynatemp-exp N", "dynamic temperature exponent (default: %.1f)", (double)sparams.dynatemp_exponent });
  1426. options.push_back({ "*", " --mirostat N", "use Mirostat sampling.\n"
  1427. "Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n"
  1428. "(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", sparams.mirostat });
  1429. options.push_back({ "*", " --mirostat-lr N", "Mirostat learning rate, parameter eta (default: %.1f)", (double)sparams.mirostat_eta });
  1430. options.push_back({ "*", " --mirostat-ent N", "Mirostat target entropy, parameter tau (default: %.1f)", (double)sparams.mirostat_tau });
  1431. options.push_back({ "*", " -l TOKEN_ID(+/-)BIAS", "modifies the likelihood of token appearing in the completion,\n"
  1432. "i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n"
  1433. "or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'" });
  1434. options.push_back({ "main", " --cfg-negative-prompt PROMPT",
  1435. "negative prompt to use for guidance (default: '%s')", sparams.cfg_negative_prompt.c_str() });
  1436. options.push_back({ "main", " --cfg-negative-prompt-file FNAME",
  1437. "negative prompt file to use for guidance" });
  1438. options.push_back({ "main", " --cfg-scale N", "strength of guidance (default: %.1f, 1.0 = disable)", (double)sparams.cfg_scale });
  1439. options.push_back({ "main", " --chat-template JINJA_TEMPLATE",
  1440. "set custom jinja chat template (default: template taken from model's metadata)\n"
  1441. "if suffix/prefix are specified, template will be disabled\n"
  1442. "only commonly used templates are accepted:\n"
  1443. "https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template" });
  1444. options.push_back({ "grammar" });
  1445. options.push_back({ "*", " --grammar GRAMMAR", "BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", sparams.grammar.c_str() });
  1446. options.push_back({ "*", " --grammar-file FNAME", "file to read grammar from" });
  1447. options.push_back({ "*", "-j, --json-schema SCHEMA",
  1448. "JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\n"
  1449. "For schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead" });
  1450. options.push_back({ "embedding" });
  1451. options.push_back({ "embedding", " --pooling {none,mean,cls,last}",
  1452. "pooling type for embeddings, use model default if unspecified" });
  1453. options.push_back({ "embedding", " --attention {causal,non-causal}",
  1454. "attention type for embeddings, use model default if unspecified" });
  1455. options.push_back({ "context hacking" });
  1456. options.push_back({ "*", " --rope-scaling {none,linear,yarn}",
  1457. "RoPE frequency scaling method, defaults to linear unless specified by the model" });
  1458. options.push_back({ "*", " --rope-scale N", "RoPE context scaling factor, expands context by a factor of N" });
  1459. options.push_back({ "*", " --rope-freq-base N", "RoPE base frequency, used by NTK-aware scaling (default: loaded from model)" });
  1460. options.push_back({ "*", " --rope-freq-scale N", "RoPE frequency scaling factor, expands context by a factor of 1/N" });
  1461. options.push_back({ "*", " --yarn-orig-ctx N", "YaRN: original context size of model (default: %d = model training context size)", params.yarn_orig_ctx });
  1462. options.push_back({ "*", " --yarn-ext-factor N", "YaRN: extrapolation mix factor (default: %.1f, 0.0 = full interpolation)", (double)params.yarn_ext_factor });
  1463. options.push_back({ "*", " --yarn-attn-factor N", "YaRN: scale sqrt(t) or attention magnitude (default: %.1f)", (double)params.yarn_attn_factor });
  1464. options.push_back({ "*", " --yarn-beta-slow N", "YaRN: high correction dim or alpha (default: %.1f)", (double)params.yarn_beta_slow });
  1465. options.push_back({ "*", " --yarn-beta-fast N", "YaRN: low correction dim or beta (default: %.1f)", (double)params.yarn_beta_fast });
  1466. options.push_back({ "*", "-gan, --grp-attn-n N", "group-attention factor (default: %d)", params.grp_attn_n });
  1467. options.push_back({ "*", "-gaw, --grp-attn-w N", "group-attention width (default: %.1f)", (double)params.grp_attn_w });
  1468. options.push_back({ "*", "-dkvc, --dump-kv-cache", "verbose print of the KV cache" });
  1469. options.push_back({ "*", "-nkvo, --no-kv-offload", "disable KV offload" });
  1470. options.push_back({ "*", "-ctk, --cache-type-k TYPE", "KV cache data type for K (default: %s)", params.cache_type_k.c_str() });
  1471. options.push_back({ "*", "-ctv, --cache-type-v TYPE", "KV cache data type for V (default: %s)", params.cache_type_v.c_str() });
  1472. options.push_back({ "perplexity" });
  1473. options.push_back({ "perplexity", " --all-logits", "return logits for all tokens in the batch (default: %s)", params.logits_all ? "true" : "false" });
  1474. options.push_back({ "perplexity", " --hellaswag", "compute HellaSwag score over random tasks from datafile supplied with -f" });
  1475. options.push_back({ "perplexity", " --hellaswag-tasks N", "number of tasks to use when computing the HellaSwag score (default: %zu)", params.hellaswag_tasks });
  1476. options.push_back({ "perplexity", " --winogrande", "compute Winogrande score over random tasks from datafile supplied with -f" });
  1477. options.push_back({ "perplexity", " --winogrande-tasks N", "number of tasks to use when computing the Winogrande score (default: %zu)", params.winogrande_tasks });
  1478. options.push_back({ "perplexity", " --multiple-choice", "compute multiple choice score over random tasks from datafile supplied with -f" });
  1479. options.push_back({ "perplexity", " --multiple-choice-tasks N",
  1480. "number of tasks to use when computing the multiple choice score (default: %zu)", params.multiple_choice_tasks });
  1481. options.push_back({ "perplexity", " --kl-divergence", "computes KL-divergence to logits provided via --kl-divergence-base" });
  1482. options.push_back({ "perplexity", " --ppl-stride N", "stride for perplexity calculation (default: %d)", params.ppl_stride });
  1483. options.push_back({ "perplexity", " --ppl-output-type {0,1}",
  1484. "output type for perplexity calculation (default: %d)", params.ppl_output_type });
  1485. options.push_back({ "parallel" });
  1486. options.push_back({ "*", "-dt, --defrag-thold N", "KV cache defragmentation threshold (default: %.1f, < 0 - disabled)", (double)params.defrag_thold });
  1487. options.push_back({ "*", "-np, --parallel N", "number of parallel sequences to decode (default: %d)", params.n_parallel });
  1488. options.push_back({ "*", "-ns, --sequences N", "number of sequences to decode (default: %d)", params.n_sequences });
  1489. options.push_back({ "*", "-cb, --cont-batching", "enable continuous batching (a.k.a dynamic batching) (default: %s)", params.cont_batching ? "enabled" : "disabled" });
  1490. options.push_back({ "*", "-nocb, --no-cont-batching", "disable continuous batching" });
  1491. options.push_back({ "multi-modality" });
  1492. options.push_back({ "*", " --mmproj FILE", "path to a multimodal projector file for LLaVA. see examples/llava/README.md" });
  1493. options.push_back({ "*", " --image FILE", "path to an image file. use with multimodal models. Specify multiple times for batching" });
  1494. options.push_back({ "backend" });
  1495. options.push_back({ "*", " --rpc SERVERS", "comma separated list of RPC servers" });
  1496. if (llama_supports_mlock()) {
  1497. options.push_back({ "*", " --mlock", "force system to keep model in RAM rather than swapping or compressing" });
  1498. }
  1499. if (llama_supports_mmap()) {
  1500. options.push_back({ "*", " --no-mmap", "do not memory-map model (slower load but may reduce pageouts if not using mlock)" });
  1501. }
  1502. options.push_back({ "*", " --numa TYPE", "attempt optimizations that help on some NUMA systems\n"
  1503. " - distribute: spread execution evenly over all nodes\n"
  1504. " - isolate: only spawn threads on CPUs on the node that execution started on\n"
  1505. " - numactl: use the CPU map provided by numactl\n"
  1506. "if run without this previously, it is recommended to drop the system page cache before using this\n"
  1507. "see https://github.com/ggerganov/llama.cpp/issues/1437" });
  1508. if (llama_supports_gpu_offload()) {
  1509. options.push_back({ "*", "-ngl, --gpu-layers N",
  1510. "number of layers to store in VRAM" });
  1511. options.push_back({ "*", "-ngld, --gpu-layers-draft N",
  1512. "number of layers to store in VRAM for the draft model" });
  1513. options.push_back({ "*", "-sm, --split-mode SPLIT_MODE",
  1514. "how to split the model across multiple GPUs, one of:\n"
  1515. " - none: use one GPU only\n"
  1516. " - layer (default): split layers and KV across GPUs\n"
  1517. " - row: split rows across GPUs" });
  1518. options.push_back({ "*", "-ts, --tensor-split SPLIT",
  1519. "fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1" });
  1520. options.push_back({ "*", "-mg, --main-gpu i", "the GPU to use for the model (with split-mode = none),\n"
  1521. "or for intermediate results and KV (with split-mode = row) (default: %d)", params.main_gpu });
  1522. }
  1523. options.push_back({ "model" });
  1524. options.push_back({ "*", " --check-tensors", "check model tensor data for invalid values (default: %s)", params.check_tensors ? "true" : "false" });
  1525. options.push_back({ "*", " --override-kv KEY=TYPE:VALUE",
  1526. "advanced option to override model metadata by key. may be specified multiple times.\n"
  1527. "types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false" });
  1528. options.push_back({ "*", " --lora FNAME", "apply LoRA adapter (implies --no-mmap)" });
  1529. options.push_back({ "*", " --lora-scaled FNAME S", "apply LoRA adapter with user defined scaling S (implies --no-mmap)" });
  1530. options.push_back({ "*", " --lora-base FNAME", "optional model to use as a base for the layers modified by the LoRA adapter" });
  1531. options.push_back({ "*", " --control-vector FNAME", "add a control vector\n"
  1532. "note: this argument can be repeated to add multiple control vectors" });
  1533. options.push_back({ "*", " --control-vector-scaled FNAME SCALE",
  1534. "add a control vector with user defined scaling SCALE\n"
  1535. "note: this argument can be repeated to add multiple scaled control vectors" });
  1536. options.push_back({ "*", " --control-vector-layer-range START END",
  1537. "layer range to apply the control vector(s) to, start and end inclusive" });
  1538. options.push_back({ "*", "-m, --model FNAME", "model path (default: models/$filename with filename from --hf-file\n"
  1539. "or --model-url if set, otherwise %s)", DEFAULT_MODEL_PATH });
  1540. options.push_back({ "*", "-md, --model-draft FNAME", "draft model for speculative decoding (default: unused)" });
  1541. options.push_back({ "*", "-mu, --model-url MODEL_URL", "model download url (default: unused)" });
  1542. options.push_back({ "*", "-hfr, --hf-repo REPO", "Hugging Face model repository (default: unused)" });
  1543. options.push_back({ "*", "-hff, --hf-file FILE", "Hugging Face model file (default: unused)" });
  1544. options.push_back({ "*", "-hft, --hf-token TOKEN", "Hugging Face access token (default: value from HF_TOKEN environment variable)" });
  1545. options.push_back({ "retrieval" });
  1546. options.push_back({ "retrieval", " --context-file FNAME", "file to load context from (repeat to specify multiple files)" });
  1547. options.push_back({ "retrieval", " --chunk-size N", "minimum length of embedded text chunks (default: %d)", params.chunk_size });
  1548. options.push_back({ "retrieval", " --chunk-separator STRING",
  1549. "separator between chunks (default: '%s')", params.chunk_separator.c_str() });
  1550. options.push_back({ "passkey" });
  1551. options.push_back({ "passkey", " --junk N", "number of times to repeat the junk text (default: %d)", params.n_junk });
  1552. options.push_back({ "passkey", " --pos N", "position of the passkey in the junk text (default: %d)", params.i_pos });
  1553. options.push_back({ "imatrix" });
  1554. options.push_back({ "imatrix", "-o, --output FNAME", "output file (default: '%s')", params.out_file.c_str() });
  1555. options.push_back({ "imatrix", " --output-frequency N", "output the imatrix every N iterations (default: %d)", params.n_out_freq });
  1556. options.push_back({ "imatrix", " --save-frequency N", "save an imatrix copy every N iterations (default: %d)", params.n_save_freq });
  1557. options.push_back({ "imatrix", " --process-output", "collect data for the output tensor (default: %s)", params.process_output ? "true" : "false" });
  1558. options.push_back({ "imatrix", " --no-ppl", "do not compute perplexity (default: %s)", params.compute_ppl ? "true" : "false" });
  1559. options.push_back({ "imatrix", " --chunk N", "start processing the input from chunk N (default: %d)", params.i_chunk });
  1560. options.push_back({ "bench" });
  1561. options.push_back({ "bench", "-pps", "is the prompt shared across parallel sequences (default: %s)", params.is_pp_shared ? "true" : "false" });
  1562. options.push_back({ "bench", "-npp n0,n1,...", "number of prompt tokens" });
  1563. options.push_back({ "bench", "-ntg n0,n1,...", "number of text generation tokens" });
  1564. options.push_back({ "bench", "-npl n0,n1,...", "number of parallel prompts" });
  1565. options.push_back({ "embedding" });
  1566. options.push_back({ "embedding", " --embd-normalize", "normalisation for embendings (default: %d) (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)", params.embd_normalize });
  1567. options.push_back({ "embedding", " --embd-output-format", "empty = default, \"array\" = [[],[]...], \"json\" = openai style, \"json+\" = same \"json\" + cosine similarity matrix" });
  1568. options.push_back({ "embedding", " --embd-separator", "separator of embendings (default \\n) for example \"<#sep#>\"" });
  1569. options.push_back({ "server" });
  1570. options.push_back({ "server", " --host HOST", "ip address to listen (default: %s)", params.hostname.c_str() });
  1571. options.push_back({ "server", " --port PORT", "port to listen (default: %d)", params.port });
  1572. options.push_back({ "server", " --path PATH", "path to serve static files from (default: %s)", params.public_path.c_str() });
  1573. options.push_back({ "server", " --embedding(s)", "enable embedding endpoint (default: %s)", params.embedding ? "enabled" : "disabled" });
  1574. options.push_back({ "server", " --api-key KEY", "API key to use for authentication (default: none)" });
  1575. options.push_back({ "server", " --api-key-file FNAME", "path to file containing API keys (default: none)" });
  1576. options.push_back({ "server", " --ssl-key-file FNAME", "path to file a PEM-encoded SSL private key" });
  1577. options.push_back({ "server", " --ssl-cert-file FNAME", "path to file a PEM-encoded SSL certificate" });
  1578. options.push_back({ "server", " --timeout N", "server read/write timeout in seconds (default: %d)", params.timeout_read });
  1579. options.push_back({ "server", " --threads-http N", "number of threads used to process HTTP requests (default: %d)", params.n_threads_http });
  1580. options.push_back({ "server", " --system-prompt-file FNAME",
  1581. "set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications" });
  1582. options.push_back({ "server", " --log-format {text,json}",
  1583. "log output format: json or text (default: json)" });
  1584. options.push_back({ "server", " --metrics", "enable prometheus compatible metrics endpoint (default: %s)", params.endpoint_metrics ? "enabled" : "disabled" });
  1585. options.push_back({ "server", " --no-slots", "disables slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled" });
  1586. options.push_back({ "server", " --slot-save-path PATH", "path to save slot kv cache (default: disabled)" });
  1587. options.push_back({ "server", " --chat-template JINJA_TEMPLATE",
  1588. "set custom jinja chat template (default: template taken from model's metadata)\n"
  1589. "only commonly used templates are accepted:\n"
  1590. "https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template" });
  1591. options.push_back({ "server", "-sps, --slot-prompt-similarity SIMILARITY",
  1592. "how much the prompt of a request must match the prompt of a slot in order to use that slot (default: %.2f, 0.0 = disabled)\n", params.slot_prompt_similarity });
  1593. #ifndef LOG_DISABLE_LOGS
  1594. options.push_back({ "logging" });
  1595. options.push_back({ "*", " --simple-io", "use basic IO for better compatibility in subprocesses and limited consoles" });
  1596. options.push_back({ "*", "-ld, --logdir LOGDIR", "path under which to save YAML logs (no logging if unset)" });
  1597. options.push_back({ "logging", " --log-test", "Run simple logging test" });
  1598. options.push_back({ "logging", " --log-disable", "Disable trace logs" });
  1599. options.push_back({ "logging", " --log-enable", "Enable trace logs" });
  1600. options.push_back({ "logging", " --log-file FNAME", "Specify a log filename (without extension)" });
  1601. options.push_back({ "logging", " --log-new", "Create a separate new log file on start. "
  1602. "Each log file will have unique name: \"<name>.<ID>.log\"" });
  1603. options.push_back({ "logging", " --log-append", "Don't truncate the old log file." });
  1604. #endif // LOG_DISABLE_LOGS
  1605. options.push_back({ "cvector" });
  1606. options.push_back({ "cvector", "-o, --output FNAME", "output file (default: '%s')", params.cvector_outfile.c_str() });
  1607. options.push_back({ "cvector", " --positive-file FNAME", "positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str() });
  1608. options.push_back({ "cvector", " --negative-file FNAME", "negative prompts file, one prompt per line (default: '%s')", params.cvector_negative_file.c_str() });
  1609. options.push_back({ "cvector", " --pca-batch N", "batch size used for PCA. Larger batch runs faster, but uses more memory (default: %d)", params.n_pca_batch });
  1610. options.push_back({ "cvector", " --pca-iter N", "number of iterations used for PCA (default: %d)", params.n_pca_iterations });
  1611. options.push_back({ "cvector", " --method {pca,mean}", "dimensionality reduction method to be used (default: pca)" });
  1612. printf("usage: %s [options]\n", argv[0]);
  1613. for (const auto & o : options) {
  1614. if (!o.grp.empty()) {
  1615. printf("\n%s:\n\n", o.grp.c_str());
  1616. continue;
  1617. }
  1618. printf(" %-32s", o.args.c_str());
  1619. if (o.args.length() > 30) {
  1620. printf("\n%34s", "");
  1621. }
  1622. const auto desc = o.desc;
  1623. size_t start = 0;
  1624. size_t end = desc.find('\n');
  1625. while (end != std::string::npos) {
  1626. printf("%s\n%34s", desc.substr(start, end - start).c_str(), "");
  1627. start = end + 1;
  1628. end = desc.find('\n', start);
  1629. }
  1630. printf("%s\n", desc.substr(start).c_str());
  1631. }
  1632. printf("\n");
  1633. }
  1634. std::string gpt_params_get_system_info(const gpt_params & params) {
  1635. std::ostringstream os;
  1636. os << "system_info: n_threads = " << params.n_threads;
  1637. if (params.n_threads_batch != -1) {
  1638. os << " (n_threads_batch = " << params.n_threads_batch << ")";
  1639. }
  1640. os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info();
  1641. return os.str();
  1642. }
  1643. //
  1644. // String utils
  1645. //
  1646. std::vector<std::string> string_split(std::string input, char separator) {
  1647. std::vector<std::string> parts;
  1648. size_t separator_pos = input.find(separator);
  1649. while (separator_pos != std::string::npos) {
  1650. std::string part = input.substr(0, separator_pos);
  1651. parts.emplace_back(part);
  1652. input = input.substr(separator_pos + 1);
  1653. separator_pos = input.find(separator);
  1654. }
  1655. parts.emplace_back(input);
  1656. return parts;
  1657. }
  1658. std::string string_strip(const std::string & str) {
  1659. size_t start = 0;
  1660. size_t end = str.size();
  1661. while (start < end && std::isspace(str[start])) {
  1662. start++;
  1663. }
  1664. while (end > start && std::isspace(str[end - 1])) {
  1665. end--;
  1666. }
  1667. return str.substr(start, end - start);
  1668. }
  1669. std::string string_get_sortable_timestamp() {
  1670. using clock = std::chrono::system_clock;
  1671. const clock::time_point current_time = clock::now();
  1672. const time_t as_time_t = clock::to_time_t(current_time);
  1673. char timestamp_no_ns[100];
  1674. std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t));
  1675. const int64_t ns = std::chrono::duration_cast<std::chrono::nanoseconds>(
  1676. current_time.time_since_epoch() % 1000000000).count();
  1677. char timestamp_ns[11];
  1678. snprintf(timestamp_ns, 11, "%09" PRId64, ns);
  1679. return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns);
  1680. }
  1681. void string_process_escapes(std::string & input) {
  1682. std::size_t input_len = input.length();
  1683. std::size_t output_idx = 0;
  1684. for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) {
  1685. if (input[input_idx] == '\\' && input_idx + 1 < input_len) {
  1686. switch (input[++input_idx]) {
  1687. case 'n': input[output_idx++] = '\n'; break;
  1688. case 'r': input[output_idx++] = '\r'; break;
  1689. case 't': input[output_idx++] = '\t'; break;
  1690. case '\'': input[output_idx++] = '\''; break;
  1691. case '\"': input[output_idx++] = '\"'; break;
  1692. case '\\': input[output_idx++] = '\\'; break;
  1693. case 'x':
  1694. // Handle \x12, etc
  1695. if (input_idx + 2 < input_len) {
  1696. const char x[3] = { input[input_idx + 1], input[input_idx + 2], 0 };
  1697. char *err_p = nullptr;
  1698. const long val = std::strtol(x, &err_p, 16);
  1699. if (err_p == x + 2) {
  1700. input_idx += 2;
  1701. input[output_idx++] = char(val);
  1702. break;
  1703. }
  1704. }
  1705. // fall through
  1706. default: input[output_idx++] = '\\';
  1707. input[output_idx++] = input[input_idx]; break;
  1708. }
  1709. } else {
  1710. input[output_idx++] = input[input_idx];
  1711. }
  1712. }
  1713. input.resize(output_idx);
  1714. }
  1715. bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides) {
  1716. const char * sep = strchr(data, '=');
  1717. if (sep == nullptr || sep - data >= 128) {
  1718. fprintf(stderr, "%s: malformed KV override '%s'\n", __func__, data);
  1719. return false;
  1720. }
  1721. llama_model_kv_override kvo;
  1722. std::strncpy(kvo.key, data, sep - data);
  1723. kvo.key[sep - data] = 0;
  1724. sep++;
  1725. if (strncmp(sep, "int:", 4) == 0) {
  1726. sep += 4;
  1727. kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
  1728. kvo.val_i64 = std::atol(sep);
  1729. } else if (strncmp(sep, "float:", 6) == 0) {
  1730. sep += 6;
  1731. kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
  1732. kvo.val_f64 = std::atof(sep);
  1733. } else if (strncmp(sep, "bool:", 5) == 0) {
  1734. sep += 5;
  1735. kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
  1736. if (std::strcmp(sep, "true") == 0) {
  1737. kvo.val_bool = true;
  1738. } else if (std::strcmp(sep, "false") == 0) {
  1739. kvo.val_bool = false;
  1740. } else {
  1741. fprintf(stderr, "%s: invalid boolean value for KV override '%s'\n", __func__, data);
  1742. return false;
  1743. }
  1744. } else if (strncmp(sep, "str:", 4) == 0) {
  1745. sep += 4;
  1746. kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
  1747. if (strlen(sep) > 127) {
  1748. fprintf(stderr, "%s: malformed KV override '%s', value cannot exceed 127 chars\n", __func__, data);
  1749. return false;
  1750. }
  1751. strncpy(kvo.val_str, sep, 127);
  1752. kvo.val_str[127] = '\0';
  1753. } else {
  1754. fprintf(stderr, "%s: invalid type for KV override '%s'\n", __func__, data);
  1755. return false;
  1756. }
  1757. overrides.emplace_back(std::move(kvo));
  1758. return true;
  1759. }
  1760. //
  1761. // Filesystem utils
  1762. //
  1763. // Validate if a filename is safe to use
  1764. // To validate a full path, split the path by the OS-specific path separator, and validate each part with this function
  1765. bool fs_validate_filename(const std::string & filename) {
  1766. if (!filename.length()) {
  1767. // Empty filename invalid
  1768. return false;
  1769. }
  1770. if (filename.length() > 255) {
  1771. // Limit at common largest possible filename on Linux filesystems
  1772. // to avoid unnecessary further validation
  1773. // (On systems with smaller limits it will be caught by the OS)
  1774. return false;
  1775. }
  1776. std::u32string filename_utf32;
  1777. try {
  1778. std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> converter;
  1779. filename_utf32 = converter.from_bytes(filename);
  1780. // If the reverse conversion mismatches, it means overlong UTF-8 sequences were used,
  1781. // or invalid encodings were encountered. Reject such attempts
  1782. std::string filename_reencoded = converter.to_bytes(filename_utf32);
  1783. if (filename_reencoded != filename) {
  1784. return false;
  1785. }
  1786. } catch (const std::exception &) {
  1787. return false;
  1788. }
  1789. // Check for forbidden codepoints:
  1790. // - Control characters
  1791. // - Unicode equivalents of illegal characters
  1792. // - UTF-16 surrogate pairs
  1793. // - UTF-8 replacement character
  1794. // - Byte order mark (BOM)
  1795. // - Illegal characters: / \ : * ? " < > |
  1796. for (char32_t c : filename_utf32) {
  1797. if (c <= 0x1F // Control characters (C0)
  1798. || c == 0x7F // Control characters (DEL)
  1799. || (c >= 0x80 && c <= 0x9F) // Control characters (C1)
  1800. || c == 0xFF0E // Fullwidth Full Stop (period equivalent)
  1801. || c == 0x2215 // Division Slash (forward slash equivalent)
  1802. || c == 0x2216 // Set Minus (backslash equivalent)
  1803. || (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs
  1804. || c == 0xFFFD // Replacement Character (UTF-8)
  1805. || c == 0xFEFF // Byte Order Mark (BOM)
  1806. || c == '/' || c == '\\' || c == ':' || c == '*' // Illegal characters
  1807. || c == '?' || c == '"' || c == '<' || c == '>' || c == '|') {
  1808. return false;
  1809. }
  1810. }
  1811. // Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename
  1812. // Unicode and other whitespace is not affected, only 0x20 space
  1813. if (filename.front() == ' ' || filename.back() == ' ' || filename.back() == '.') {
  1814. return false;
  1815. }
  1816. // Reject any ".." (currently stricter than necessary, it should be fine to just check for == ".." instead)
  1817. if (filename.find("..") != std::string::npos) {
  1818. return false;
  1819. }
  1820. // Reject "."
  1821. if (filename == ".") {
  1822. return false;
  1823. }
  1824. return true;
  1825. }
  1826. // returns true if successful, false otherwise
  1827. bool fs_create_directory_with_parents(const std::string & path) {
  1828. #ifdef _WIN32
  1829. std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
  1830. std::wstring wpath = converter.from_bytes(path);
  1831. // if the path already exists, check whether it's a directory
  1832. const DWORD attributes = GetFileAttributesW(wpath.c_str());
  1833. if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) {
  1834. return true;
  1835. }
  1836. size_t pos_slash = 0;
  1837. // process path from front to back, procedurally creating directories
  1838. while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
  1839. const std::wstring subpath = wpath.substr(0, pos_slash);
  1840. const wchar_t * test = subpath.c_str();
  1841. const bool success = CreateDirectoryW(test, NULL);
  1842. if (!success) {
  1843. const DWORD error = GetLastError();
  1844. // if the path already exists, ensure that it's a directory
  1845. if (error == ERROR_ALREADY_EXISTS) {
  1846. const DWORD attributes = GetFileAttributesW(subpath.c_str());
  1847. if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) {
  1848. return false;
  1849. }
  1850. } else {
  1851. return false;
  1852. }
  1853. }
  1854. pos_slash += 1;
  1855. }
  1856. return true;
  1857. #else
  1858. // if the path already exists, check whether it's a directory
  1859. struct stat info;
  1860. if (stat(path.c_str(), &info) == 0) {
  1861. return S_ISDIR(info.st_mode);
  1862. }
  1863. size_t pos_slash = 1; // skip leading slashes for directory creation
  1864. // process path from front to back, procedurally creating directories
  1865. while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) {
  1866. const std::string subpath = path.substr(0, pos_slash);
  1867. struct stat info;
  1868. // if the path already exists, ensure that it's a directory
  1869. if (stat(subpath.c_str(), &info) == 0) {
  1870. if (!S_ISDIR(info.st_mode)) {
  1871. return false;
  1872. }
  1873. } else {
  1874. // create parent directories
  1875. const int ret = mkdir(subpath.c_str(), 0755);
  1876. if (ret != 0) {
  1877. return false;
  1878. }
  1879. }
  1880. pos_slash += 1;
  1881. }
  1882. return true;
  1883. #endif // _WIN32
  1884. }
  1885. std::string fs_get_cache_directory() {
  1886. std::string cache_directory = "";
  1887. auto ensure_trailing_slash = [](std::string p) {
  1888. // Make sure to add trailing slash
  1889. if (p.back() != DIRECTORY_SEPARATOR) {
  1890. p += DIRECTORY_SEPARATOR;
  1891. }
  1892. return p;
  1893. };
  1894. if (getenv("LLAMA_CACHE")) {
  1895. cache_directory = std::getenv("LLAMA_CACHE");
  1896. } else {
  1897. #ifdef __linux__
  1898. if (std::getenv("XDG_CACHE_HOME")) {
  1899. cache_directory = std::getenv("XDG_CACHE_HOME");
  1900. } else {
  1901. cache_directory = std::getenv("HOME") + std::string("/.cache/");
  1902. }
  1903. #elif defined(__APPLE__)
  1904. cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
  1905. #elif defined(_WIN32)
  1906. cache_directory = std::getenv("LOCALAPPDATA");
  1907. #endif // __linux__
  1908. cache_directory = ensure_trailing_slash(cache_directory);
  1909. cache_directory += "llama.cpp";
  1910. }
  1911. return ensure_trailing_slash(cache_directory);
  1912. }
  1913. std::string fs_get_cache_file(const std::string & filename) {
  1914. GGML_ASSERT(filename.find(DIRECTORY_SEPARATOR) == std::string::npos);
  1915. std::string cache_directory = fs_get_cache_directory();
  1916. const bool success = fs_create_directory_with_parents(cache_directory);
  1917. if (!success) {
  1918. throw std::runtime_error("failed to create cache directory: " + cache_directory);
  1919. }
  1920. return cache_directory + filename;
  1921. }
  1922. //
  1923. // Model utils
  1924. //
  1925. std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) {
  1926. auto mparams = llama_model_params_from_gpt_params(params);
  1927. llama_model * model = nullptr;
  1928. if (!params.hf_repo.empty() && !params.hf_file.empty()) {
  1929. model = llama_load_model_from_hf(params.hf_repo.c_str(), params.hf_file.c_str(), params.model.c_str(), params.hf_token.c_str(), mparams);
  1930. } else if (!params.model_url.empty()) {
  1931. model = llama_load_model_from_url(params.model_url.c_str(), params.model.c_str(), params.hf_token.c_str(), mparams);
  1932. } else {
  1933. model = llama_load_model_from_file(params.model.c_str(), mparams);
  1934. }
  1935. if (model == NULL) {
  1936. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
  1937. return std::make_tuple(nullptr, nullptr);
  1938. }
  1939. auto cparams = llama_context_params_from_gpt_params(params);
  1940. llama_context * lctx = llama_new_context_with_model(model, cparams);
  1941. if (lctx == NULL) {
  1942. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
  1943. llama_free_model(model);
  1944. return std::make_tuple(nullptr, nullptr);
  1945. }
  1946. if (!params.control_vectors.empty()) {
  1947. if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1;
  1948. if (params.control_vector_layer_end <= 0) params.control_vector_layer_end = llama_n_layer(model);
  1949. const auto cvec = llama_control_vector_load(params.control_vectors);
  1950. if (cvec.n_embd == -1) {
  1951. llama_free(lctx);
  1952. llama_free_model(model);
  1953. return std::make_tuple(nullptr, nullptr);
  1954. }
  1955. int err = llama_control_vector_apply(lctx,
  1956. cvec.data.data(),
  1957. cvec.data.size(),
  1958. cvec.n_embd,
  1959. params.control_vector_layer_start,
  1960. params.control_vector_layer_end);
  1961. if (err) {
  1962. llama_free(lctx);
  1963. llama_free_model(model);
  1964. return std::make_tuple(nullptr, nullptr);
  1965. }
  1966. }
  1967. for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) {
  1968. const std::string & lora_adapter = std::get<0>(params.lora_adapter[i]);
  1969. float lora_scale = std::get<1>(params.lora_adapter[i]);
  1970. int err = llama_model_apply_lora_from_file(model,
  1971. lora_adapter.c_str(),
  1972. lora_scale,
  1973. ((i > 0) || params.lora_base.empty())
  1974. ? NULL
  1975. : params.lora_base.c_str(),
  1976. params.n_threads);
  1977. if (err != 0) {
  1978. fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
  1979. llama_free(lctx);
  1980. llama_free_model(model);
  1981. return std::make_tuple(nullptr, nullptr);
  1982. }
  1983. }
  1984. if (params.ignore_eos) {
  1985. params.sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
  1986. }
  1987. if (params.warmup) {
  1988. LOG("warming up the model with an empty run\n");
  1989. std::vector<llama_token> tmp;
  1990. llama_token bos = llama_token_bos(model);
  1991. llama_token eos = llama_token_eos(model);
  1992. // some models (e.g. T5) don't have a BOS token
  1993. if (bos != -1) {
  1994. tmp.push_back(bos);
  1995. }
  1996. tmp.push_back(eos);
  1997. if (llama_model_has_encoder(model)) {
  1998. llama_encode(lctx, llama_batch_get_one(tmp.data(), tmp.size(), 0, 0));
  1999. llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
  2000. if (decoder_start_token_id == -1) {
  2001. decoder_start_token_id = bos;
  2002. }
  2003. tmp.clear();
  2004. tmp.push_back(decoder_start_token_id);
  2005. }
  2006. llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0));
  2007. llama_kv_cache_clear(lctx);
  2008. llama_synchronize(lctx);
  2009. llama_reset_timings(lctx);
  2010. }
  2011. return std::make_tuple(model, lctx);
  2012. }
  2013. struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params) {
  2014. auto mparams = llama_model_default_params();
  2015. if (params.n_gpu_layers != -1) {
  2016. mparams.n_gpu_layers = params.n_gpu_layers;
  2017. }
  2018. mparams.rpc_servers = params.rpc_servers.c_str();
  2019. mparams.main_gpu = params.main_gpu;
  2020. mparams.split_mode = params.split_mode;
  2021. mparams.tensor_split = params.tensor_split;
  2022. mparams.use_mmap = params.use_mmap;
  2023. mparams.use_mlock = params.use_mlock;
  2024. mparams.check_tensors = params.check_tensors;
  2025. if (params.kv_overrides.empty()) {
  2026. mparams.kv_overrides = NULL;
  2027. } else {
  2028. GGML_ASSERT(params.kv_overrides.back().key[0] == 0 && "KV overrides not terminated with empty key");
  2029. mparams.kv_overrides = params.kv_overrides.data();
  2030. }
  2031. return mparams;
  2032. }
  2033. static ggml_type kv_cache_type_from_str(const std::string & s) {
  2034. if (s == "f32") {
  2035. return GGML_TYPE_F32;
  2036. }
  2037. if (s == "f16") {
  2038. return GGML_TYPE_F16;
  2039. }
  2040. if (s == "q8_0") {
  2041. return GGML_TYPE_Q8_0;
  2042. }
  2043. if (s == "q4_0") {
  2044. return GGML_TYPE_Q4_0;
  2045. }
  2046. if (s == "q4_1") {
  2047. return GGML_TYPE_Q4_1;
  2048. }
  2049. if (s == "iq4_nl") {
  2050. return GGML_TYPE_IQ4_NL;
  2051. }
  2052. if (s == "q5_0") {
  2053. return GGML_TYPE_Q5_0;
  2054. }
  2055. if (s == "q5_1") {
  2056. return GGML_TYPE_Q5_1;
  2057. }
  2058. throw std::runtime_error("Invalid cache type: " + s);
  2059. }
  2060. struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
  2061. auto cparams = llama_context_default_params();
  2062. cparams.n_ctx = params.n_ctx;
  2063. cparams.n_seq_max = params.n_parallel;
  2064. cparams.n_batch = params.n_batch;
  2065. cparams.n_ubatch = params.n_ubatch;
  2066. cparams.n_threads = params.n_threads;
  2067. cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
  2068. cparams.seed = params.seed;
  2069. cparams.logits_all = params.logits_all;
  2070. cparams.embeddings = params.embedding;
  2071. cparams.rope_scaling_type = params.rope_scaling_type;
  2072. cparams.rope_freq_base = params.rope_freq_base;
  2073. cparams.rope_freq_scale = params.rope_freq_scale;
  2074. cparams.yarn_ext_factor = params.yarn_ext_factor;
  2075. cparams.yarn_attn_factor = params.yarn_attn_factor;
  2076. cparams.yarn_beta_fast = params.yarn_beta_fast;
  2077. cparams.yarn_beta_slow = params.yarn_beta_slow;
  2078. cparams.yarn_orig_ctx = params.yarn_orig_ctx;
  2079. cparams.pooling_type = params.pooling_type;
  2080. cparams.attention_type = params.attention_type;
  2081. cparams.defrag_thold = params.defrag_thold;
  2082. cparams.cb_eval = params.cb_eval;
  2083. cparams.cb_eval_user_data = params.cb_eval_user_data;
  2084. cparams.offload_kqv = !params.no_kv_offload;
  2085. cparams.flash_attn = params.flash_attn;
  2086. cparams.type_k = kv_cache_type_from_str(params.cache_type_k);
  2087. cparams.type_v = kv_cache_type_from_str(params.cache_type_v);
  2088. return cparams;
  2089. }
  2090. #ifdef LLAMA_USE_CURL
  2091. static bool starts_with(const std::string & str, const std::string & prefix) {
  2092. // While we wait for C++20's std::string::starts_with...
  2093. return str.rfind(prefix, 0) == 0;
  2094. }
  2095. static bool llama_download_file(const std::string & url, const std::string & path, const std::string & hf_token) {
  2096. // Initialize libcurl
  2097. std::unique_ptr<CURL, decltype(&curl_easy_cleanup)> curl(curl_easy_init(), &curl_easy_cleanup);
  2098. if (!curl) {
  2099. fprintf(stderr, "%s: error initializing libcurl\n", __func__);
  2100. return false;
  2101. }
  2102. bool force_download = false;
  2103. // Set the URL, allow to follow http redirection
  2104. curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
  2105. curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
  2106. // Check if hf-token or bearer-token was specified
  2107. if (!hf_token.empty()) {
  2108. std::string auth_header = "Authorization: Bearer ";
  2109. auth_header += hf_token.c_str();
  2110. struct curl_slist *http_headers = NULL;
  2111. http_headers = curl_slist_append(http_headers, auth_header.c_str());
  2112. curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers);
  2113. }
  2114. #if defined(_WIN32)
  2115. // CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
  2116. // operating system. Currently implemented under MS-Windows.
  2117. curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
  2118. #endif
  2119. // Check if the file already exists locally
  2120. struct stat model_file_info;
  2121. auto file_exists = (stat(path.c_str(), &model_file_info) == 0);
  2122. // If the file exists, check its JSON metadata companion file.
  2123. std::string metadata_path = path + ".json";
  2124. nlohmann::json metadata;
  2125. std::string etag;
  2126. std::string last_modified;
  2127. if (file_exists) {
  2128. // Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
  2129. std::ifstream metadata_in(metadata_path);
  2130. if (metadata_in.good()) {
  2131. try {
  2132. metadata_in >> metadata;
  2133. fprintf(stderr, "%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
  2134. if (metadata.contains("url") && metadata.at("url").is_string()) {
  2135. auto previous_url = metadata.at("url").get<std::string>();
  2136. if (previous_url != url) {
  2137. fprintf(stderr, "%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str());
  2138. return false;
  2139. }
  2140. }
  2141. if (metadata.contains("etag") && metadata.at("etag").is_string()) {
  2142. etag = metadata.at("etag");
  2143. }
  2144. if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
  2145. last_modified = metadata.at("lastModified");
  2146. }
  2147. } catch (const nlohmann::json::exception & e) {
  2148. fprintf(stderr, "%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
  2149. return false;
  2150. }
  2151. }
  2152. } else {
  2153. fprintf(stderr, "%s: no previous model file found %s\n", __func__, path.c_str());
  2154. }
  2155. // Send a HEAD request to retrieve the etag and last-modified headers
  2156. struct llama_load_model_from_url_headers {
  2157. std::string etag;
  2158. std::string last_modified;
  2159. };
  2160. llama_load_model_from_url_headers headers;
  2161. {
  2162. typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
  2163. auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
  2164. llama_load_model_from_url_headers *headers = (llama_load_model_from_url_headers *) userdata;
  2165. static std::regex header_regex("([^:]+): (.*)\r\n");
  2166. static std::regex etag_regex("ETag", std::regex_constants::icase);
  2167. static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);
  2168. std::string header(buffer, n_items);
  2169. std::smatch match;
  2170. if (std::regex_match(header, match, header_regex)) {
  2171. const std::string & key = match[1];
  2172. const std::string & value = match[2];
  2173. if (std::regex_match(key, match, etag_regex)) {
  2174. headers->etag = value;
  2175. } else if (std::regex_match(key, match, last_modified_regex)) {
  2176. headers->last_modified = value;
  2177. }
  2178. }
  2179. return n_items;
  2180. };
  2181. curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
  2182. curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
  2183. curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
  2184. curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
  2185. CURLcode res = curl_easy_perform(curl.get());
  2186. if (res != CURLE_OK) {
  2187. fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res));
  2188. return false;
  2189. }
  2190. long http_code = 0;
  2191. curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
  2192. if (http_code != 200) {
  2193. // HEAD not supported, we don't know if the file has changed
  2194. // force trigger downloading
  2195. force_download = true;
  2196. fprintf(stderr, "%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
  2197. }
  2198. }
  2199. bool should_download = !file_exists || force_download;
  2200. if (!should_download) {
  2201. if (!etag.empty() && etag != headers.etag) {
  2202. fprintf(stderr, "%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
  2203. should_download = true;
  2204. } else if (!last_modified.empty() && last_modified != headers.last_modified) {
  2205. fprintf(stderr, "%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str());
  2206. should_download = true;
  2207. }
  2208. }
  2209. if (should_download) {
  2210. std::string path_temporary = path + ".downloadInProgress";
  2211. if (file_exists) {
  2212. fprintf(stderr, "%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
  2213. if (remove(path.c_str()) != 0) {
  2214. fprintf(stderr, "%s: unable to delete file: %s\n", __func__, path.c_str());
  2215. return false;
  2216. }
  2217. }
  2218. // Set the output file
  2219. struct FILE_deleter {
  2220. void operator()(FILE * f) const {
  2221. fclose(f);
  2222. }
  2223. };
  2224. std::unique_ptr<FILE, FILE_deleter> outfile(fopen(path_temporary.c_str(), "wb"));
  2225. if (!outfile) {
  2226. fprintf(stderr, "%s: error opening local file for writing: %s\n", __func__, path.c_str());
  2227. return false;
  2228. }
  2229. typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
  2230. auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t {
  2231. return fwrite(data, size, nmemb, (FILE *)fd);
  2232. };
  2233. curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 0L);
  2234. curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
  2235. curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, outfile.get());
  2236. // display download progress
  2237. curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L);
  2238. // helper function to hide password in URL
  2239. auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
  2240. std::size_t protocol_pos = url.find("://");
  2241. if (protocol_pos == std::string::npos) {
  2242. return url; // Malformed URL
  2243. }
  2244. std::size_t at_pos = url.find('@', protocol_pos + 3);
  2245. if (at_pos == std::string::npos) {
  2246. return url; // No password in URL
  2247. }
  2248. return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
  2249. };
  2250. // start the download
  2251. fprintf(stderr, "%s: downloading from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
  2252. llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
  2253. auto res = curl_easy_perform(curl.get());
  2254. if (res != CURLE_OK) {
  2255. fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res));
  2256. return false;
  2257. }
  2258. long http_code = 0;
  2259. curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
  2260. if (http_code < 200 || http_code >= 400) {
  2261. fprintf(stderr, "%s: invalid http status code received: %ld\n", __func__, http_code);
  2262. return false;
  2263. }
  2264. // Causes file to be closed explicitly here before we rename it.
  2265. outfile.reset();
  2266. // Write the updated JSON metadata file.
  2267. metadata.update({
  2268. {"url", url},
  2269. {"etag", headers.etag},
  2270. {"lastModified", headers.last_modified}
  2271. });
  2272. std::ofstream(metadata_path) << metadata.dump(4);
  2273. fprintf(stderr, "%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
  2274. if (rename(path_temporary.c_str(), path.c_str()) != 0) {
  2275. fprintf(stderr, "%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
  2276. return false;
  2277. }
  2278. }
  2279. return true;
  2280. }
  2281. struct llama_model * llama_load_model_from_url(
  2282. const char * model_url,
  2283. const char * path_model,
  2284. const char * hf_token,
  2285. const struct llama_model_params & params) {
  2286. // Basic validation of the model_url
  2287. if (!model_url || strlen(model_url) == 0) {
  2288. fprintf(stderr, "%s: invalid model_url\n", __func__);
  2289. return NULL;
  2290. }
  2291. if (!llama_download_file(model_url, path_model, hf_token)) {
  2292. return NULL;
  2293. }
  2294. // check for additional GGUFs split to download
  2295. int n_split = 0;
  2296. {
  2297. struct gguf_init_params gguf_params = {
  2298. /*.no_alloc = */ true,
  2299. /*.ctx = */ NULL,
  2300. };
  2301. auto * ctx_gguf = gguf_init_from_file(path_model, gguf_params);
  2302. if (!ctx_gguf) {
  2303. fprintf(stderr, "\n%s: failed to load input GGUF from %s\n", __func__, path_model);
  2304. return NULL;
  2305. }
  2306. auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
  2307. if (key_n_split >= 0) {
  2308. n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
  2309. }
  2310. gguf_free(ctx_gguf);
  2311. }
  2312. if (n_split > 1) {
  2313. char split_prefix[PATH_MAX] = {0};
  2314. char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};
  2315. // Verify the first split file format
  2316. // and extract split URL and PATH prefixes
  2317. {
  2318. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), path_model, 0, n_split)) {
  2319. fprintf(stderr, "\n%s: unexpected model file name: %s"
  2320. " n_split=%d\n", __func__, path_model, n_split);
  2321. return NULL;
  2322. }
  2323. if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model_url, 0, n_split)) {
  2324. fprintf(stderr, "\n%s: unexpected model url: %s"
  2325. " n_split=%d\n", __func__, model_url, n_split);
  2326. return NULL;
  2327. }
  2328. }
  2329. // Prepare download in parallel
  2330. std::vector<std::future<bool>> futures_download;
  2331. for (int idx = 1; idx < n_split; idx++) {
  2332. futures_download.push_back(std::async(std::launch::async, [&split_prefix, &split_url_prefix, &n_split, hf_token](int download_idx) -> bool {
  2333. char split_path[PATH_MAX] = {0};
  2334. llama_split_path(split_path, sizeof(split_path), split_prefix, download_idx, n_split);
  2335. char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
  2336. llama_split_path(split_url, sizeof(split_url), split_url_prefix, download_idx, n_split);
  2337. return llama_download_file(split_url, split_path, hf_token);
  2338. }, idx));
  2339. }
  2340. // Wait for all downloads to complete
  2341. for (auto & f : futures_download) {
  2342. if (!f.get()) {
  2343. return NULL;
  2344. }
  2345. }
  2346. }
  2347. return llama_load_model_from_file(path_model, params);
  2348. }
  2349. struct llama_model * llama_load_model_from_hf(
  2350. const char * repo,
  2351. const char * model,
  2352. const char * path_model,
  2353. const char * hf_token,
  2354. const struct llama_model_params & params) {
  2355. // construct hugging face model url:
  2356. //
  2357. // --repo ggml-org/models --file tinyllama-1.1b/ggml-model-f16.gguf
  2358. // https://huggingface.co/ggml-org/models/resolve/main/tinyllama-1.1b/ggml-model-f16.gguf
  2359. //
  2360. // --repo TheBloke/Mixtral-8x7B-v0.1-GGUF --file mixtral-8x7b-v0.1.Q4_K_M.gguf
  2361. // https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF/resolve/main/mixtral-8x7b-v0.1.Q4_K_M.gguf
  2362. //
  2363. std::string model_url = "https://huggingface.co/";
  2364. model_url += repo;
  2365. model_url += "/resolve/main/";
  2366. model_url += model;
  2367. return llama_load_model_from_url(model_url.c_str(), path_model, hf_token, params);
  2368. }
  2369. #else
  2370. struct llama_model * llama_load_model_from_url(
  2371. const char * /*model_url*/,
  2372. const char * /*path_model*/,
  2373. const char * /*hf_token*/,
  2374. const struct llama_model_params & /*params*/) {
  2375. fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
  2376. return nullptr;
  2377. }
  2378. struct llama_model * llama_load_model_from_hf(
  2379. const char * /*repo*/,
  2380. const char * /*model*/,
  2381. const char * /*path_model*/,
  2382. const char * /*hf_token*/,
  2383. const struct llama_model_params & /*params*/) {
  2384. fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
  2385. return nullptr;
  2386. }
  2387. #endif // LLAMA_USE_CURL
  2388. //
  2389. // Batch utils
  2390. //
  2391. void llama_batch_clear(struct llama_batch & batch) {
  2392. batch.n_tokens = 0;
  2393. }
  2394. void llama_batch_add(
  2395. struct llama_batch & batch,
  2396. llama_token id,
  2397. llama_pos pos,
  2398. const std::vector<llama_seq_id> & seq_ids,
  2399. bool logits) {
  2400. batch.token [batch.n_tokens] = id;
  2401. batch.pos [batch.n_tokens] = pos;
  2402. batch.n_seq_id[batch.n_tokens] = seq_ids.size();
  2403. for (size_t i = 0; i < seq_ids.size(); ++i) {
  2404. batch.seq_id[batch.n_tokens][i] = seq_ids[i];
  2405. }
  2406. batch.logits [batch.n_tokens] = logits;
  2407. batch.n_tokens++;
  2408. }
  2409. //
  2410. // Vocab utils
  2411. //
  2412. std::vector<llama_token> llama_tokenize(
  2413. const struct llama_context * ctx,
  2414. const std::string & text,
  2415. bool add_special,
  2416. bool parse_special) {
  2417. return llama_tokenize(llama_get_model(ctx), text, add_special, parse_special);
  2418. }
  2419. std::vector<llama_token> llama_tokenize(
  2420. const struct llama_model * model,
  2421. const std::string & text,
  2422. bool add_special,
  2423. bool parse_special) {
  2424. // upper limit for the number of tokens
  2425. int n_tokens = text.length() + 2 * add_special;
  2426. std::vector<llama_token> result(n_tokens);
  2427. n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
  2428. if (n_tokens < 0) {
  2429. result.resize(-n_tokens);
  2430. int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
  2431. GGML_ASSERT(check == -n_tokens);
  2432. } else {
  2433. result.resize(n_tokens);
  2434. }
  2435. return result;
  2436. }
  2437. std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
  2438. std::string piece;
  2439. piece.resize(piece.capacity()); // using string internal cache, 15 bytes + '\n'
  2440. const int n_chars = llama_token_to_piece(llama_get_model(ctx), token, &piece[0], piece.size(), 0, special);
  2441. if (n_chars < 0) {
  2442. piece.resize(-n_chars);
  2443. int check = llama_token_to_piece(llama_get_model(ctx), token, &piece[0], piece.size(), 0, special);
  2444. GGML_ASSERT(check == -n_chars);
  2445. }
  2446. else {
  2447. piece.resize(n_chars);
  2448. }
  2449. return piece;
  2450. }
  2451. std::string llama_detokenize(llama_context * ctx, const std::vector<llama_token> & tokens, bool special) {
  2452. std::string text;
  2453. text.resize(std::max(text.capacity(), tokens.size()));
  2454. int32_t n_chars = llama_detokenize(llama_get_model(ctx), tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
  2455. if (n_chars < 0) {
  2456. text.resize(-n_chars);
  2457. n_chars = llama_detokenize(llama_get_model(ctx), tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
  2458. GGML_ASSERT(n_chars <= (int32_t)text.size()); // whitespace trimming is performed after per-token detokenization
  2459. }
  2460. text.resize(n_chars);
  2461. // NOTE: the original tokenizer decodes bytes after collecting the pieces.
  2462. return text;
  2463. }
  2464. bool llama_should_add_bos_token(const llama_model * model) {
  2465. const int add_bos = llama_add_bos_token(model);
  2466. return add_bos != -1 ? bool(add_bos) : (llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM);
  2467. }
  2468. //
  2469. // Chat template utils
  2470. //
  2471. bool llama_chat_verify_template(const std::string & tmpl) {
  2472. llama_chat_message chat[] = {{"user", "test"}};
  2473. int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, nullptr, 0);
  2474. return res >= 0;
  2475. }
  2476. std::string llama_chat_apply_template(const struct llama_model * model,
  2477. const std::string & tmpl,
  2478. const std::vector<llama_chat_msg> & msgs,
  2479. bool add_ass) {
  2480. int alloc_size = 0;
  2481. bool fallback = false; // indicate if we must fallback to default chatml
  2482. std::vector<llama_chat_message> chat;
  2483. for (auto & msg : msgs) {
  2484. chat.push_back({msg.role.c_str(), msg.content.c_str()});
  2485. alloc_size += (msg.role.size() + msg.content.size()) * 1.25;
  2486. }
  2487. const char * ptr_tmpl = tmpl.empty() ? nullptr : tmpl.c_str();
  2488. std::vector<char> buf(alloc_size);
  2489. // run the first time to get the total output length
  2490. int32_t res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), add_ass, buf.data(), buf.size());
  2491. // error: chat template is not supported
  2492. if (res < 0) {
  2493. if (ptr_tmpl != nullptr) {
  2494. // if the custom "tmpl" is not supported, we throw an error
  2495. // this is a bit redundant (for good), since we're not sure if user validated the custom template with llama_chat_verify_template()
  2496. throw std::runtime_error("this custom template is not supported");
  2497. } else {
  2498. // If the built-in template is not supported, we default to chatml
  2499. res = llama_chat_apply_template(nullptr, "chatml", chat.data(), chat.size(), add_ass, buf.data(), buf.size());
  2500. fallback = true;
  2501. }
  2502. }
  2503. // if it turns out that our buffer is too small, we resize it
  2504. if ((size_t) res > buf.size()) {
  2505. buf.resize(res);
  2506. res = llama_chat_apply_template(
  2507. fallback ? nullptr : model,
  2508. fallback ? "chatml" : ptr_tmpl,
  2509. chat.data(), chat.size(), add_ass, buf.data(), buf.size());
  2510. }
  2511. std::string formatted_chat(buf.data(), res);
  2512. return formatted_chat;
  2513. }
  2514. std::string llama_chat_format_single(const struct llama_model * model,
  2515. const std::string & tmpl,
  2516. const std::vector<llama_chat_msg> & past_msg,
  2517. const llama_chat_msg & new_msg,
  2518. bool add_ass) {
  2519. std::ostringstream ss;
  2520. auto fmt_past_msg = llama_chat_apply_template(model, tmpl, past_msg, false);
  2521. std::vector<llama_chat_msg> chat_new(past_msg);
  2522. // if the past_msg ends with a newline, we must preserve it in the formatted version
  2523. if (add_ass && !fmt_past_msg.empty() && fmt_past_msg.back() == '\n') {
  2524. ss << "\n";
  2525. };
  2526. // format chat with new_msg
  2527. chat_new.push_back(new_msg);
  2528. auto fmt_new_msg = llama_chat_apply_template(model, tmpl, chat_new, add_ass);
  2529. // get the diff part
  2530. ss << fmt_new_msg.substr(fmt_past_msg.size(), fmt_new_msg.size() - fmt_past_msg.size());
  2531. return ss.str();
  2532. }
  2533. std::string llama_chat_format_example(const struct llama_model * model,
  2534. const std::string & tmpl) {
  2535. std::vector<llama_chat_msg> msgs = {
  2536. {"system", "You are a helpful assistant"},
  2537. {"user", "Hello"},
  2538. {"assistant", "Hi there"},
  2539. {"user", "How are you?"},
  2540. };
  2541. return llama_chat_apply_template(model, tmpl, msgs, true);
  2542. }
  2543. //
  2544. // KV cache utils
  2545. //
  2546. void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size) {
  2547. static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+";
  2548. printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d",
  2549. view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
  2550. llama_kv_cache_view_cell * c_curr = view.cells;
  2551. llama_seq_id * cs_curr = view.cells_sequences;
  2552. for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
  2553. if (i % row_size == 0) {
  2554. printf("\n%5d: ", i);
  2555. }
  2556. int seq_count = 0;
  2557. for (int j = 0; j < view.n_seq_max; j++) {
  2558. if (cs_curr[j] >= 0) { seq_count++; }
  2559. }
  2560. putchar(slot_chars[std::min(sizeof(slot_chars) - 2, size_t(seq_count))]);
  2561. }
  2562. printf("\n=== Done dumping\n");
  2563. }
  2564. void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size) {
  2565. static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
  2566. printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n",
  2567. view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
  2568. std::unordered_map<llama_seq_id, size_t> seqs;
  2569. llama_kv_cache_view_cell * c_curr = view.cells;
  2570. llama_seq_id * cs_curr = view.cells_sequences;
  2571. for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
  2572. for (int j = 0; j < view.n_seq_max; j++) {
  2573. if (cs_curr[j] < 0) { continue; }
  2574. if (seqs.find(cs_curr[j]) == seqs.end()) {
  2575. if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
  2576. const size_t sz = seqs.size();
  2577. seqs[cs_curr[j]] = sz;
  2578. }
  2579. }
  2580. if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
  2581. }
  2582. printf("=== Sequence legend: ");
  2583. for (const auto & it : seqs) {
  2584. printf("%zu=%d, ", it.second, it.first);
  2585. }
  2586. printf("'+'=other sequence ids");
  2587. c_curr = view.cells;
  2588. cs_curr = view.cells_sequences;
  2589. for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
  2590. if (i % row_size == 0) {
  2591. printf("\n%5d: ", i);
  2592. }
  2593. for (int j = 0; j < view.n_seq_max; j++) {
  2594. if (cs_curr[j] >= 0) {
  2595. const auto & it = seqs.find(cs_curr[j]);
  2596. putchar(it != seqs.end() ? int(slot_chars[it->second]) : '+');
  2597. } else {
  2598. putchar('.');
  2599. }
  2600. }
  2601. putchar(' ');
  2602. }
  2603. printf("\n=== Done dumping\n");
  2604. }
  2605. //
  2606. // Embedding utils
  2607. //
  2608. void llama_embd_normalize(const float * inp, float * out, int n, int embd_norm) {
  2609. double sum = 0.0;
  2610. switch (embd_norm) {
  2611. case -1: // no normalisation
  2612. sum = 1.0;
  2613. break;
  2614. case 0: // max absolute
  2615. for (int i = 0; i < n; i++) {
  2616. if (sum < std::abs(inp[i])) sum = std::abs(inp[i]);
  2617. }
  2618. sum /= 32760.0; // make an int16 range
  2619. break;
  2620. case 2: // euclidean
  2621. for (int i = 0; i < n; i++) {
  2622. sum += inp[i] * inp[i];
  2623. }
  2624. sum = std::sqrt(sum);
  2625. break;
  2626. default: // p-norm (euclidean is p-norm p=2)
  2627. for (int i = 0; i < n; i++) {
  2628. sum += std::pow(std::abs(inp[i]), embd_norm);
  2629. }
  2630. sum = std::pow(sum, 1.0 / embd_norm);
  2631. break;
  2632. }
  2633. const float norm = sum > 0.0 ? 1.0 / sum : 0.0f;
  2634. for (int i = 0; i < n; i++) {
  2635. out[i] = inp[i] * norm;
  2636. }
  2637. }
  2638. float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n){
  2639. double sum = 0.0;
  2640. double sum1 = 0.0;
  2641. double sum2 = 0.0;
  2642. for (int i = 0; i < n; i++) {
  2643. sum += embd1[i] * embd2[i];
  2644. sum1 += embd1[i] * embd1[i];
  2645. sum2 += embd2[i] * embd2[i];
  2646. }
  2647. // Handle the case where one or both vectors are zero vectors
  2648. if (sum1 == 0.0 || sum2 == 0.0) {
  2649. if (sum1 == 0.0 && sum2 == 0.0) {
  2650. return 1.0f; // two zero vectors are similar
  2651. }
  2652. return 0.0f;
  2653. }
  2654. return sum / (sqrt(sum1) * sqrt(sum2));
  2655. }
  2656. //
  2657. // Control vector utils
  2658. //
  2659. static llama_control_vector_data llama_control_vector_load_one(const llama_control_vector_load_info & load_info) {
  2660. llama_control_vector_data result = { -1, {} };
  2661. ggml_context * ctx = nullptr;
  2662. struct gguf_init_params meta_gguf_params = {
  2663. /* .no_alloc = */ false,
  2664. /* .ctx = */ &ctx,
  2665. };
  2666. struct gguf_context * ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), meta_gguf_params);
  2667. if (!ctx_gguf) {
  2668. fprintf(stderr, "%s: failed to load control vector file from %s\n", __func__, load_info.fname.c_str());
  2669. return result;
  2670. }
  2671. int32_t n_tensors = gguf_get_n_tensors(ctx_gguf);
  2672. if (n_tensors == 0) {
  2673. fprintf(stderr, "%s: no direction tensors found in %s\n", __func__, load_info.fname.c_str());
  2674. }
  2675. for (int i = 0; i < n_tensors; i++) {
  2676. std::string name = gguf_get_tensor_name(ctx_gguf, i);
  2677. int layer_idx = -1;
  2678. // split on '.'
  2679. size_t dotpos = name.find('.');
  2680. if (dotpos != std::string::npos && name.substr(0, dotpos) == "direction") {
  2681. try {
  2682. layer_idx = std::stoi(name.substr(dotpos + 1));
  2683. } catch (...) {
  2684. layer_idx = -1;
  2685. }
  2686. }
  2687. if (layer_idx < 0) {
  2688. fprintf(stderr, "%s: invalid/unparsable direction tensor layer index in %s\n", __func__, load_info.fname.c_str());
  2689. result.n_embd = -1;
  2690. break;
  2691. } else if (layer_idx == 0) {
  2692. fprintf(stderr, "%s: invalid (zero) direction tensor layer index in %s\n", __func__, load_info.fname.c_str());
  2693. result.n_embd = -1;
  2694. break;
  2695. }
  2696. struct ggml_tensor * tensor = ggml_get_tensor(ctx, name.c_str());
  2697. if (tensor->type != GGML_TYPE_F32) {
  2698. fprintf(stderr, "%s: invalid (non-F32) direction tensor type in %s\n", __func__, load_info.fname.c_str());
  2699. result.n_embd = -1;
  2700. break;
  2701. }
  2702. if (ggml_n_dims(tensor) != 1) {
  2703. fprintf(stderr, "%s: invalid (non-1D) direction tensor shape in %s\n", __func__, load_info.fname.c_str());
  2704. result.n_embd = -1;
  2705. break;
  2706. }
  2707. if (result.n_embd == -1) {
  2708. result.n_embd = ggml_nelements(tensor);
  2709. } else if (ggml_nelements(tensor) != result.n_embd) {
  2710. fprintf(stderr, "%s: direction tensor in %s does not match previous dimensions\n", __func__, load_info.fname.c_str());
  2711. result.n_embd = -1;
  2712. break;
  2713. }
  2714. // extend if necessary - do not store data for layer 0 (it's not used)
  2715. result.data.resize(std::max(result.data.size(), static_cast<size_t>(result.n_embd * layer_idx)), 0.0f);
  2716. const float * src = (const float *) tensor->data;
  2717. float * dst = result.data.data() + result.n_embd * (layer_idx - 1); // layer 1 at [0]
  2718. for (int j = 0; j < result.n_embd; j++) {
  2719. dst[j] += src[j] * load_info.strength; // allows multiple directions for same layer in same file
  2720. }
  2721. }
  2722. if (result.n_embd == -1) {
  2723. fprintf(stderr, "%s: skipping %s due to invalid direction tensors\n", __func__, load_info.fname.c_str());
  2724. result.data.clear();
  2725. }
  2726. gguf_free(ctx_gguf);
  2727. ggml_free(ctx);
  2728. return result;
  2729. }
  2730. llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos) {
  2731. llama_control_vector_data result = { -1, {} };
  2732. for (const auto & info : load_infos) {
  2733. auto cur = llama_control_vector_load_one(info);
  2734. if (cur.n_embd == -1) {
  2735. result.n_embd = -1;
  2736. break;
  2737. }
  2738. if (result.n_embd != -1 && result.n_embd != cur.n_embd) {
  2739. fprintf(stderr, "%s: control vectors in %s does not match previous dimensions\n", __func__, info.fname.c_str());
  2740. result.n_embd = -1;
  2741. break;
  2742. }
  2743. if (result.n_embd == -1) {
  2744. result = std::move(cur);
  2745. } else {
  2746. result.data.resize(std::max(result.data.size(), cur.data.size()), 0.0f); // extend if necessary
  2747. for (size_t i = 0; i < cur.data.size(); i++) {
  2748. result.data[i] += cur.data[i];
  2749. }
  2750. }
  2751. }
  2752. if (result.n_embd == -1) {
  2753. fprintf(stderr, "%s: no valid control vector files passed\n", __func__);
  2754. result.data.clear();
  2755. }
  2756. return result;
  2757. }
  2758. //
  2759. // YAML utils
  2760. //
  2761. void yaml_dump_vector_float(FILE * stream, const char * prop_name, const std::vector<float> & data) {
  2762. if (data.empty()) {
  2763. fprintf(stream, "%s:\n", prop_name);
  2764. return;
  2765. }
  2766. fprintf(stream, "%s: [", prop_name);
  2767. for (size_t i = 0; i < data.size() - 1; ++i) {
  2768. fprintf(stream, "%e, ", data[i]);
  2769. }
  2770. fprintf(stream, "%e]\n", data.back());
  2771. }
  2772. void yaml_dump_vector_int(FILE * stream, const char * prop_name, const std::vector<int> & data) {
  2773. if (data.empty()) {
  2774. fprintf(stream, "%s:\n", prop_name);
  2775. return;
  2776. }
  2777. fprintf(stream, "%s: [", prop_name);
  2778. for (size_t i = 0; i < data.size() - 1; ++i) {
  2779. fprintf(stream, "%d, ", data[i]);
  2780. }
  2781. fprintf(stream, "%d]\n", data.back());
  2782. }
  2783. void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data) {
  2784. std::string data_str(data == NULL ? "" : data);
  2785. if (data_str.empty()) {
  2786. fprintf(stream, "%s:\n", prop_name);
  2787. return;
  2788. }
  2789. size_t pos_start = 0;
  2790. size_t pos_found = 0;
  2791. if (std::isspace(data_str[0]) || std::isspace(data_str.back())) {
  2792. data_str = std::regex_replace(data_str, std::regex("\n"), "\\n");
  2793. data_str = std::regex_replace(data_str, std::regex("\""), "\\\"");
  2794. data_str = std::regex_replace(data_str, std::regex(R"(\\[^n"])"), R"(\$&)");
  2795. data_str = "\"" + data_str + "\"";
  2796. fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
  2797. return;
  2798. }
  2799. if (data_str.find('\n') == std::string::npos) {
  2800. fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
  2801. return;
  2802. }
  2803. fprintf(stream, "%s: |\n", prop_name);
  2804. while ((pos_found = data_str.find('\n', pos_start)) != std::string::npos) {
  2805. fprintf(stream, " %s\n", data_str.substr(pos_start, pos_found-pos_start).c_str());
  2806. pos_start = pos_found + 1;
  2807. }
  2808. }
  2809. void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const llama_context * lctx,
  2810. const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
  2811. const llama_sampling_params & sparams = params.sparams;
  2812. fprintf(stream, "build_commit: %s\n", LLAMA_COMMIT);
  2813. fprintf(stream, "build_number: %d\n", LLAMA_BUILD_NUMBER);
  2814. fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false");
  2815. fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false");
  2816. fprintf(stream, "cpu_has_avx_vnni: %s\n", ggml_cpu_has_avx_vnni() ? "true" : "false");
  2817. fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false");
  2818. fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
  2819. fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
  2820. fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
  2821. fprintf(stream, "cpu_has_cuda: %s\n", ggml_cpu_has_cuda() ? "true" : "false");
  2822. fprintf(stream, "cpu_has_vulkan: %s\n", ggml_cpu_has_vulkan() ? "true" : "false");
  2823. fprintf(stream, "cpu_has_kompute: %s\n", ggml_cpu_has_kompute() ? "true" : "false");
  2824. fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");
  2825. fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false");
  2826. fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false");
  2827. fprintf(stream, "cpu_has_sve: %s\n", ggml_cpu_has_sve() ? "true" : "false");
  2828. fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false");
  2829. fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false");
  2830. fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false");
  2831. fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
  2832. fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false");
  2833. fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false");
  2834. fprintf(stream, "cpu_has_matmul_int8: %s\n", ggml_cpu_has_matmul_int8() ? "true" : "false");
  2835. #ifdef NDEBUG
  2836. fprintf(stream, "debug: false\n");
  2837. #else
  2838. fprintf(stream, "debug: true\n");
  2839. #endif // NDEBUG
  2840. fprintf(stream, "model_desc: %s\n", model_desc);
  2841. fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(llama_get_model(lctx)));
  2842. #ifdef __OPTIMIZE__
  2843. fprintf(stream, "optimize: true\n");
  2844. #else
  2845. fprintf(stream, "optimize: false\n");
  2846. #endif // __OPTIMIZE__
  2847. fprintf(stream, "time: %s\n", timestamp.c_str());
  2848. fprintf(stream, "\n");
  2849. fprintf(stream, "###############\n");
  2850. fprintf(stream, "# User Inputs #\n");
  2851. fprintf(stream, "###############\n");
  2852. fprintf(stream, "\n");
  2853. fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str());
  2854. fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch);
  2855. yaml_dump_string_multiline(stream, "cfg_negative_prompt", sparams.cfg_negative_prompt.c_str());
  2856. fprintf(stream, "cfg_scale: %f # default: 1.0\n", sparams.cfg_scale);
  2857. fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks);
  2858. fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false");
  2859. fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx);
  2860. fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false");
  2861. fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n");
  2862. fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.penalty_freq);
  2863. yaml_dump_string_multiline(stream, "grammar", sparams.grammar.c_str());
  2864. fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
  2865. fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
  2866. fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);
  2867. const auto logit_bias_eos = sparams.logit_bias.find(llama_token_eos(llama_get_model(lctx)));
  2868. const bool ignore_eos = logit_bias_eos != sparams.logit_bias.end() && logit_bias_eos->second == -INFINITY;
  2869. fprintf(stream, "ignore_eos: %s # default: false\n", ignore_eos ? "true" : "false");
  2870. yaml_dump_string_multiline(stream, "in_prefix", params.input_prefix.c_str());
  2871. fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false");
  2872. yaml_dump_string_multiline(stream, "in_suffix", params.input_prefix.c_str());
  2873. fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false");
  2874. fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false");
  2875. fprintf(stream, "keep: %d # default: 0\n", params.n_keep);
  2876. fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str());
  2877. fprintf(stream, "logit_bias:\n");
  2878. for (std::pair<llama_token, float> lb : sparams.logit_bias) {
  2879. if (ignore_eos && lb.first == logit_bias_eos->first) {
  2880. continue;
  2881. }
  2882. fprintf(stream, " %d: %f", lb.first, lb.second);
  2883. }
  2884. fprintf(stream, "lora:\n");
  2885. for (std::tuple<std::string, float> la : params.lora_adapter) {
  2886. if (std::get<1>(la) != 1.0f) {
  2887. continue;
  2888. }
  2889. fprintf(stream, " - %s\n", std::get<0>(la).c_str());
  2890. }
  2891. fprintf(stream, "lora_scaled:\n");
  2892. for (std::tuple<std::string, float> la : params.lora_adapter) {
  2893. if (std::get<1>(la) == 1.0f) {
  2894. continue;
  2895. }
  2896. fprintf(stream, " - %s: %f\n", std::get<0>(la).c_str(), std::get<1>(la));
  2897. }
  2898. fprintf(stream, "lora_base: %s\n", params.lora_base.c_str());
  2899. fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
  2900. fprintf(stream, "min_keep: %d # default: 0 (disabled)\n", sparams.min_keep);
  2901. fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat);
  2902. fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau);
  2903. fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta);
  2904. fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false");
  2905. fprintf(stream, "model: %s # default: %s\n", params.model.c_str(), DEFAULT_MODEL_PATH);
  2906. fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
  2907. fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
  2908. fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers);
  2909. fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
  2910. fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs);
  2911. fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
  2912. fprintf(stream, "penalize_nl: %s # default: false\n", sparams.penalize_nl ? "true" : "false");
  2913. fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
  2914. fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
  2915. fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present);
  2916. yaml_dump_string_multiline(stream, "prompt", params.prompt.c_str());
  2917. fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str());
  2918. fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false");
  2919. fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false");
  2920. yaml_dump_vector_int(stream, "prompt_tokens", prompt_tokens);
  2921. fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.penalty_repeat);
  2922. fprintf(stream, "reverse_prompt:\n");
  2923. for (std::string ap : params.antiprompt) {
  2924. size_t pos = 0;
  2925. while ((pos = ap.find('\n', pos)) != std::string::npos) {
  2926. ap.replace(pos, 1, "\\n");
  2927. pos += 1;
  2928. }
  2929. fprintf(stream, " - %s\n", ap.c_str());
  2930. }
  2931. fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base);
  2932. fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale);
  2933. fprintf(stream, "seed: %u # default: -1 (random seed)\n", params.seed);
  2934. fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false");
  2935. fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
  2936. fprintf(stream, "flash_attn: %s # default: false\n", params.flash_attn ? "true" : "false");
  2937. fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp);
  2938. const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices());
  2939. yaml_dump_vector_float(stream, "tensor_split", tensor_split_vector);
  2940. fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z);
  2941. fprintf(stream, "threads: %d # default: %u\n", params.n_threads, std::thread::hardware_concurrency());
  2942. fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k);
  2943. fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);
  2944. fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p);
  2945. fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p);
  2946. fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
  2947. fprintf(stream, "display_prompt: %s # default: true\n", params.display_prompt ? "true" : "false");
  2948. }