llama-bench.cpp 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstring>
  10. #include <ctime>
  11. #include <iterator>
  12. #include <map>
  13. #include <numeric>
  14. #include <regex>
  15. #include <sstream>
  16. #include <string>
  17. #include <vector>
  18. #include "ggml.h"
  19. #include "llama.h"
  20. #include "common.h"
  21. #include "ggml-cuda.h"
  22. #include "ggml-sycl.h"
  23. // utils
  24. static uint64_t get_time_ns() {
  25. using clock = std::chrono::high_resolution_clock;
  26. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  27. }
  28. template<class T>
  29. static std::string join(const std::vector<T> & values, const std::string & delim) {
  30. std::ostringstream str;
  31. for (size_t i = 0; i < values.size(); i++) {
  32. str << values[i];
  33. if (i < values.size() - 1) {
  34. str << delim;
  35. }
  36. }
  37. return str.str();
  38. }
  39. template<class T>
  40. static std::vector<T> split(const std::string & str, char delim) {
  41. std::vector<T> values;
  42. std::istringstream str_stream(str);
  43. std::string token;
  44. while (std::getline(str_stream, token, delim)) {
  45. T value;
  46. std::istringstream token_stream(token);
  47. token_stream >> value;
  48. values.push_back(value);
  49. }
  50. return values;
  51. }
  52. template<typename T, typename F>
  53. static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  54. std::vector<std::string> str_values;
  55. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  56. return str_values;
  57. }
  58. template<typename T>
  59. static T avg(const std::vector<T> & v) {
  60. if (v.empty()) {
  61. return 0;
  62. }
  63. T sum = std::accumulate(v.begin(), v.end(), T(0));
  64. return sum / (T)v.size();
  65. }
  66. template<typename T>
  67. static T stdev(const std::vector<T> & v) {
  68. if (v.size() <= 1) {
  69. return 0;
  70. }
  71. T mean = avg(v);
  72. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  73. T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
  74. return stdev;
  75. }
  76. static std::string get_cpu_info() {
  77. std::string id;
  78. #ifdef __linux__
  79. FILE * f = fopen("/proc/cpuinfo", "r");
  80. if (f) {
  81. char buf[1024];
  82. while (fgets(buf, sizeof(buf), f)) {
  83. if (strncmp(buf, "model name", 10) == 0) {
  84. char * p = strchr(buf, ':');
  85. if (p) {
  86. p++;
  87. while (std::isspace(*p)) {
  88. p++;
  89. }
  90. while (std::isspace(p[strlen(p) - 1])) {
  91. p[strlen(p) - 1] = '\0';
  92. }
  93. id = p;
  94. break;
  95. }
  96. }
  97. }
  98. }
  99. #endif
  100. // TODO: other platforms
  101. return id;
  102. }
  103. static std::string get_gpu_info() {
  104. std::string id;
  105. #ifdef GGML_USE_CUBLAS
  106. int count = ggml_cuda_get_device_count();
  107. for (int i = 0; i < count; i++) {
  108. char buf[128];
  109. ggml_cuda_get_device_description(i, buf, sizeof(buf));
  110. id += buf;
  111. if (i < count - 1) {
  112. id += "/";
  113. }
  114. }
  115. #endif
  116. #ifdef GGML_USE_SYCL
  117. int count = ggml_backend_sycl_get_device_count();
  118. for (int i = 0; i < count; i++) {
  119. char buf[128];
  120. ggml_sycl_get_device_description(i, buf, sizeof(buf));
  121. id += buf;
  122. if (i < count - 1) {
  123. id += "/";
  124. }
  125. }
  126. #endif
  127. // TODO: other backends
  128. return id;
  129. }
  130. // command line params
  131. enum output_formats {CSV, JSON, MARKDOWN, SQL};
  132. static const char * output_format_str(output_formats format) {
  133. switch (format) {
  134. case CSV: return "csv";
  135. case JSON: return "json";
  136. case MARKDOWN: return "md";
  137. case SQL: return "sql";
  138. default: GGML_ASSERT(!"invalid output format");
  139. }
  140. }
  141. static const char * split_mode_str(llama_split_mode mode) {
  142. switch (mode) {
  143. case LLAMA_SPLIT_MODE_NONE: return "none";
  144. case LLAMA_SPLIT_MODE_LAYER: return "layer";
  145. case LLAMA_SPLIT_MODE_ROW: return "row";
  146. default: GGML_ASSERT(!"invalid split mode");
  147. }
  148. }
  149. struct cmd_params {
  150. std::vector<std::string> model;
  151. std::vector<int> n_prompt;
  152. std::vector<int> n_gen;
  153. std::vector<int> n_batch;
  154. std::vector<int> n_ubatch;
  155. std::vector<ggml_type> type_k;
  156. std::vector<ggml_type> type_v;
  157. std::vector<int> n_threads;
  158. std::vector<int> n_gpu_layers;
  159. std::vector<llama_split_mode> split_mode;
  160. std::vector<int> main_gpu;
  161. std::vector<bool> no_kv_offload;
  162. std::vector<std::vector<float>> tensor_split;
  163. std::vector<bool> use_mmap;
  164. std::vector<bool> embeddings;
  165. int reps;
  166. bool verbose;
  167. output_formats output_format;
  168. };
  169. static const cmd_params cmd_params_defaults = {
  170. /* model */ {"models/7B/ggml-model-q4_0.gguf"},
  171. /* n_prompt */ {512},
  172. /* n_gen */ {128},
  173. /* n_batch */ {2048},
  174. /* n_ubatch */ {512},
  175. /* type_k */ {GGML_TYPE_F16},
  176. /* type_v */ {GGML_TYPE_F16},
  177. /* n_threads */ {get_num_physical_cores()},
  178. /* n_gpu_layers */ {99},
  179. /* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
  180. /* main_gpu */ {0},
  181. /* no_kv_offload */ {false},
  182. /* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
  183. /* use_mmap */ {true},
  184. /* embeddings */ {false},
  185. /* reps */ 5,
  186. /* verbose */ false,
  187. /* output_format */ MARKDOWN
  188. };
  189. static void print_usage(int /* argc */, char ** argv) {
  190. printf("usage: %s [options]\n", argv[0]);
  191. printf("\n");
  192. printf("options:\n");
  193. printf(" -h, --help\n");
  194. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  195. printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
  196. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  197. printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
  198. printf(" -ub N, --ubatch-size <n> (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str());
  199. printf(" -ctk <t>, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  200. printf(" -ctv <t>, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  201. printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
  202. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  203. printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
  204. printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
  205. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
  206. printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
  207. printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
  208. printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
  209. printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
  210. printf(" -o, --output <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
  211. printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
  212. printf("\n");
  213. printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
  214. }
  215. static ggml_type ggml_type_from_name(const std::string & s) {
  216. if (s == "f16") {
  217. return GGML_TYPE_F16;
  218. }
  219. if (s == "q8_0") {
  220. return GGML_TYPE_Q8_0;
  221. }
  222. if (s == "q4_0") {
  223. return GGML_TYPE_Q4_0;
  224. }
  225. if (s == "q4_1") {
  226. return GGML_TYPE_Q4_1;
  227. }
  228. if (s == "q5_0") {
  229. return GGML_TYPE_Q5_0;
  230. }
  231. if (s == "q5_1") {
  232. return GGML_TYPE_Q5_1;
  233. }
  234. return GGML_TYPE_COUNT;
  235. }
  236. static cmd_params parse_cmd_params(int argc, char ** argv) {
  237. cmd_params params;
  238. std::string arg;
  239. bool invalid_param = false;
  240. const std::string arg_prefix = "--";
  241. const char split_delim = ',';
  242. params.verbose = cmd_params_defaults.verbose;
  243. params.output_format = cmd_params_defaults.output_format;
  244. params.reps = cmd_params_defaults.reps;
  245. for (int i = 1; i < argc; i++) {
  246. arg = argv[i];
  247. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  248. std::replace(arg.begin(), arg.end(), '_', '-');
  249. }
  250. if (arg == "-h" || arg == "--help") {
  251. print_usage(argc, argv);
  252. exit(0);
  253. } else if (arg == "-m" || arg == "--model") {
  254. if (++i >= argc) {
  255. invalid_param = true;
  256. break;
  257. }
  258. auto p = split<std::string>(argv[i], split_delim);
  259. params.model.insert(params.model.end(), p.begin(), p.end());
  260. } else if (arg == "-p" || arg == "--n-prompt") {
  261. if (++i >= argc) {
  262. invalid_param = true;
  263. break;
  264. }
  265. auto p = split<int>(argv[i], split_delim);
  266. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  267. } else if (arg == "-n" || arg == "--n-gen") {
  268. if (++i >= argc) {
  269. invalid_param = true;
  270. break;
  271. }
  272. auto p = split<int>(argv[i], split_delim);
  273. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  274. } else if (arg == "-b" || arg == "--batch-size") {
  275. if (++i >= argc) {
  276. invalid_param = true;
  277. break;
  278. }
  279. auto p = split<int>(argv[i], split_delim);
  280. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  281. } else if (arg == "-ub" || arg == "--ubatch-size") {
  282. if (++i >= argc) {
  283. invalid_param = true;
  284. break;
  285. }
  286. auto p = split<int>(argv[i], split_delim);
  287. params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
  288. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  289. if (++i >= argc) {
  290. invalid_param = true;
  291. break;
  292. }
  293. auto p = split<std::string>(argv[i], split_delim);
  294. std::vector<ggml_type> types;
  295. for (const auto & t : p) {
  296. ggml_type gt = ggml_type_from_name(t);
  297. if (gt == GGML_TYPE_COUNT) {
  298. invalid_param = true;
  299. break;
  300. }
  301. types.push_back(gt);
  302. }
  303. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  304. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  305. if (++i >= argc) {
  306. invalid_param = true;
  307. break;
  308. }
  309. auto p = split<std::string>(argv[i], split_delim);
  310. std::vector<ggml_type> types;
  311. for (const auto & t : p) {
  312. ggml_type gt = ggml_type_from_name(t);
  313. if (gt == GGML_TYPE_COUNT) {
  314. invalid_param = true;
  315. break;
  316. }
  317. types.push_back(gt);
  318. }
  319. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  320. } else if (arg == "-t" || arg == "--threads") {
  321. if (++i >= argc) {
  322. invalid_param = true;
  323. break;
  324. }
  325. auto p = split<int>(argv[i], split_delim);
  326. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  327. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  328. if (++i >= argc) {
  329. invalid_param = true;
  330. break;
  331. }
  332. auto p = split<int>(argv[i], split_delim);
  333. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  334. } else if (arg == "-sm" || arg == "--split-mode") {
  335. if (++i >= argc) {
  336. invalid_param = true;
  337. break;
  338. }
  339. auto p = split<std::string>(argv[i], split_delim);
  340. std::vector<llama_split_mode> modes;
  341. for (const auto & m : p) {
  342. llama_split_mode mode;
  343. if (m == "none") {
  344. mode = LLAMA_SPLIT_MODE_NONE;
  345. } else if (m == "layer") {
  346. mode = LLAMA_SPLIT_MODE_LAYER;
  347. } else if (m == "row") {
  348. mode = LLAMA_SPLIT_MODE_ROW;
  349. } else {
  350. invalid_param = true;
  351. break;
  352. }
  353. modes.push_back(mode);
  354. }
  355. params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
  356. } else if (arg == "-mg" || arg == "--main-gpu") {
  357. if (++i >= argc) {
  358. invalid_param = true;
  359. break;
  360. }
  361. params.main_gpu = split<int>(argv[i], split_delim);
  362. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  363. if (++i >= argc) {
  364. invalid_param = true;
  365. break;
  366. }
  367. auto p = split<bool>(argv[i], split_delim);
  368. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  369. } else if (arg == "-mmp" || arg == "--mmap") {
  370. if (++i >= argc) {
  371. invalid_param = true;
  372. break;
  373. }
  374. auto p = split<bool>(argv[i], split_delim);
  375. params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
  376. } else if (arg == "-embd" || arg == "--embeddings") {
  377. if (++i >= argc) {
  378. invalid_param = true;
  379. break;
  380. }
  381. auto p = split<bool>(argv[i], split_delim);
  382. params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
  383. } else if (arg == "-ts" || arg == "--tensor-split") {
  384. if (++i >= argc) {
  385. invalid_param = true;
  386. break;
  387. }
  388. for (auto ts : split<std::string>(argv[i], split_delim)) {
  389. // split string by ; and /
  390. const std::regex regex{R"([;/]+)"};
  391. std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
  392. std::vector<std::string> split_arg{it, {}};
  393. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  394. std::vector<float> tensor_split(llama_max_devices());
  395. for (size_t i = 0; i < llama_max_devices(); ++i) {
  396. if (i < split_arg.size()) {
  397. tensor_split[i] = std::stof(split_arg[i]);
  398. } else {
  399. tensor_split[i] = 0.0f;
  400. }
  401. }
  402. params.tensor_split.push_back(tensor_split);
  403. }
  404. } else if (arg == "-r" || arg == "--repetitions") {
  405. if (++i >= argc) {
  406. invalid_param = true;
  407. break;
  408. }
  409. params.reps = std::stoi(argv[i]);
  410. } else if (arg == "-o" || arg == "--output") {
  411. if (++i >= argc) {
  412. invalid_param = true;
  413. break;
  414. }
  415. if (argv[i] == std::string("csv")) {
  416. params.output_format = CSV;
  417. } else if (argv[i] == std::string("json")) {
  418. params.output_format = JSON;
  419. } else if (argv[i] == std::string("md")) {
  420. params.output_format = MARKDOWN;
  421. } else if (argv[i] == std::string("sql")) {
  422. params.output_format = SQL;
  423. } else {
  424. invalid_param = true;
  425. break;
  426. }
  427. } else if (arg == "-v" || arg == "--verbose") {
  428. params.verbose = true;
  429. } else {
  430. invalid_param = true;
  431. break;
  432. }
  433. }
  434. if (invalid_param) {
  435. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  436. print_usage(argc, argv);
  437. exit(1);
  438. }
  439. // set defaults
  440. if (params.model.empty()) { params.model = cmd_params_defaults.model; }
  441. if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
  442. if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
  443. if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
  444. if (params.n_ubatch.empty()) { params.n_ubatch = cmd_params_defaults.n_ubatch; }
  445. if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
  446. if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
  447. if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
  448. if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
  449. if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
  450. if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
  451. if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
  452. if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
  453. if (params.embeddings.empty()) { params.embeddings = cmd_params_defaults.embeddings; }
  454. if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
  455. return params;
  456. }
  457. struct cmd_params_instance {
  458. std::string model;
  459. int n_prompt;
  460. int n_gen;
  461. int n_batch;
  462. int n_ubatch;
  463. ggml_type type_k;
  464. ggml_type type_v;
  465. int n_threads;
  466. int n_gpu_layers;
  467. llama_split_mode split_mode;
  468. int main_gpu;
  469. bool no_kv_offload;
  470. std::vector<float> tensor_split;
  471. bool use_mmap;
  472. bool embeddings;
  473. llama_model_params to_llama_mparams() const {
  474. llama_model_params mparams = llama_model_default_params();
  475. mparams.n_gpu_layers = n_gpu_layers;
  476. mparams.split_mode = split_mode;
  477. mparams.main_gpu = main_gpu;
  478. mparams.tensor_split = tensor_split.data();
  479. mparams.use_mmap = use_mmap;
  480. return mparams;
  481. }
  482. bool equal_mparams(const cmd_params_instance & other) const {
  483. return model == other.model &&
  484. n_gpu_layers == other.n_gpu_layers &&
  485. split_mode == other.split_mode &&
  486. main_gpu == other.main_gpu &&
  487. use_mmap == other.use_mmap &&
  488. tensor_split == other.tensor_split;
  489. }
  490. llama_context_params to_llama_cparams() const {
  491. llama_context_params cparams = llama_context_default_params();
  492. cparams.n_ctx = n_prompt + n_gen;
  493. cparams.n_batch = n_batch;
  494. cparams.n_ubatch = n_ubatch;
  495. cparams.type_k = type_k;
  496. cparams.type_v = type_v;
  497. cparams.offload_kqv = !no_kv_offload;
  498. cparams.embeddings = embeddings;
  499. return cparams;
  500. }
  501. };
  502. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  503. std::vector<cmd_params_instance> instances;
  504. // this ordering minimizes the number of times that each model needs to be reloaded
  505. for (const auto & m : params.model)
  506. for (const auto & nl : params.n_gpu_layers)
  507. for (const auto & sm : params.split_mode)
  508. for (const auto & mg : params.main_gpu)
  509. for (const auto & ts : params.tensor_split)
  510. for (const auto & mmp : params.use_mmap)
  511. for (const auto & embd : params.embeddings)
  512. for (const auto & nb : params.n_batch)
  513. for (const auto & nub : params.n_ubatch)
  514. for (const auto & tk : params.type_k)
  515. for (const auto & tv : params.type_v)
  516. for (const auto & nkvo : params.no_kv_offload)
  517. for (const auto & nt : params.n_threads) {
  518. for (const auto & n_prompt : params.n_prompt) {
  519. if (n_prompt == 0) {
  520. continue;
  521. }
  522. cmd_params_instance instance = {
  523. /* .model = */ m,
  524. /* .n_prompt = */ n_prompt,
  525. /* .n_gen = */ 0,
  526. /* .n_batch = */ nb,
  527. /* .n_ubatch = */ nub,
  528. /* .type_k = */ tk,
  529. /* .type_v = */ tv,
  530. /* .n_threads = */ nt,
  531. /* .n_gpu_layers = */ nl,
  532. /* .split_mode = */ sm,
  533. /* .main_gpu = */ mg,
  534. /* .no_kv_offload= */ nkvo,
  535. /* .tensor_split = */ ts,
  536. /* .use_mmap = */ mmp,
  537. /* .embeddings = */ embd,
  538. };
  539. instances.push_back(instance);
  540. }
  541. for (const auto & n_gen : params.n_gen) {
  542. if (n_gen == 0) {
  543. continue;
  544. }
  545. cmd_params_instance instance = {
  546. /* .model = */ m,
  547. /* .n_prompt = */ 0,
  548. /* .n_gen = */ n_gen,
  549. /* .n_batch = */ nb,
  550. /* .n_ubatch = */ nub,
  551. /* .type_k = */ tk,
  552. /* .type_v = */ tv,
  553. /* .n_threads = */ nt,
  554. /* .n_gpu_layers = */ nl,
  555. /* .split_mode = */ sm,
  556. /* .main_gpu = */ mg,
  557. /* .no_kv_offload= */ nkvo,
  558. /* .tensor_split = */ ts,
  559. /* .use_mmap = */ mmp,
  560. /* .embeddings = */ embd,
  561. };
  562. instances.push_back(instance);
  563. }
  564. }
  565. return instances;
  566. }
  567. struct test {
  568. static const std::string build_commit;
  569. static const int build_number;
  570. static const bool cuda;
  571. static const bool opencl;
  572. static const bool vulkan;
  573. static const bool kompute;
  574. static const bool metal;
  575. static const bool sycl;
  576. static const bool gpu_blas;
  577. static const bool blas;
  578. static const std::string cpu_info;
  579. static const std::string gpu_info;
  580. std::string model_filename;
  581. std::string model_type;
  582. uint64_t model_size;
  583. uint64_t model_n_params;
  584. int n_batch;
  585. int n_ubatch;
  586. int n_threads;
  587. ggml_type type_k;
  588. ggml_type type_v;
  589. int n_gpu_layers;
  590. llama_split_mode split_mode;
  591. int main_gpu;
  592. bool no_kv_offload;
  593. std::vector<float> tensor_split;
  594. bool use_mmap;
  595. bool embeddings;
  596. int n_prompt;
  597. int n_gen;
  598. std::string test_time;
  599. std::vector<uint64_t> samples_ns;
  600. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
  601. model_filename = inst.model;
  602. char buf[128];
  603. llama_model_desc(lmodel, buf, sizeof(buf));
  604. model_type = buf;
  605. model_size = llama_model_size(lmodel);
  606. model_n_params = llama_model_n_params(lmodel);
  607. n_batch = inst.n_batch;
  608. n_ubatch = inst.n_ubatch;
  609. n_threads = inst.n_threads;
  610. type_k = inst.type_k;
  611. type_v = inst.type_v;
  612. n_gpu_layers = inst.n_gpu_layers;
  613. split_mode = inst.split_mode;
  614. main_gpu = inst.main_gpu;
  615. no_kv_offload = inst.no_kv_offload;
  616. tensor_split = inst.tensor_split;
  617. use_mmap = inst.use_mmap;
  618. embeddings = inst.embeddings;
  619. n_prompt = inst.n_prompt;
  620. n_gen = inst.n_gen;
  621. // RFC 3339 date-time format
  622. time_t t = time(NULL);
  623. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  624. test_time = buf;
  625. (void) ctx;
  626. }
  627. uint64_t avg_ns() const {
  628. return ::avg(samples_ns);
  629. }
  630. uint64_t stdev_ns() const {
  631. return ::stdev(samples_ns);
  632. }
  633. std::vector<double> get_ts() const {
  634. int n_tokens = n_prompt + n_gen;
  635. std::vector<double> ts;
  636. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  637. return ts;
  638. }
  639. double avg_ts() const {
  640. return ::avg(get_ts());
  641. }
  642. double stdev_ts() const {
  643. return ::stdev(get_ts());
  644. }
  645. static std::string get_backend() {
  646. if (cuda) {
  647. return GGML_CUDA_NAME;
  648. }
  649. if (opencl) {
  650. return "OpenCL";
  651. }
  652. if (vulkan) {
  653. return "Vulkan";
  654. }
  655. if (kompute) {
  656. return "Kompute";
  657. }
  658. if (metal) {
  659. return "Metal";
  660. }
  661. if (sycl) {
  662. return GGML_SYCL_NAME;
  663. }
  664. if (gpu_blas) {
  665. return "GPU BLAS";
  666. }
  667. if (blas) {
  668. return "BLAS";
  669. }
  670. return "CPU";
  671. }
  672. static const std::vector<std::string> & get_fields() {
  673. static const std::vector<std::string> fields = {
  674. "build_commit", "build_number",
  675. "cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "gpu_blas", "blas",
  676. "cpu_info", "gpu_info",
  677. "model_filename", "model_type", "model_size", "model_n_params",
  678. "n_batch", "n_ubatch",
  679. "n_threads", "type_k", "type_v",
  680. "n_gpu_layers", "split_mode",
  681. "main_gpu", "no_kv_offload",
  682. "tensor_split", "use_mmap", "embeddings",
  683. "n_prompt", "n_gen", "test_time",
  684. "avg_ns", "stddev_ns",
  685. "avg_ts", "stddev_ts"
  686. };
  687. return fields;
  688. }
  689. enum field_type {STRING, BOOL, INT, FLOAT};
  690. static field_type get_field_type(const std::string & field) {
  691. if (field == "build_number" || field == "n_batch" || field == "n_ubatch" ||
  692. field == "n_threads" ||
  693. field == "model_size" || field == "model_n_params" ||
  694. field == "n_gpu_layers" || field == "main_gpu" ||
  695. field == "n_prompt" || field == "n_gen" ||
  696. field == "avg_ns" || field == "stddev_ns") {
  697. return INT;
  698. }
  699. if (field == "cuda" || field == "opencl" || field == "vulkan" || field == "kompute" || field == "metal" ||
  700. field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
  701. field == "use_mmap" || field == "embeddings") {
  702. return BOOL;
  703. }
  704. if (field == "avg_ts" || field == "stddev_ts") {
  705. return FLOAT;
  706. }
  707. return STRING;
  708. }
  709. std::vector<std::string> get_values() const {
  710. std::string tensor_split_str;
  711. int max_nonzero = 0;
  712. for (size_t i = 0; i < llama_max_devices(); i++) {
  713. if (tensor_split[i] > 0) {
  714. max_nonzero = i;
  715. }
  716. }
  717. for (int i = 0; i <= max_nonzero; i++) {
  718. char buf[32];
  719. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  720. tensor_split_str += buf;
  721. if (i < max_nonzero) {
  722. tensor_split_str += "/";
  723. }
  724. }
  725. std::vector<std::string> values = {
  726. build_commit, std::to_string(build_number),
  727. std::to_string(cuda), std::to_string(opencl), std::to_string(vulkan), std::to_string(vulkan),
  728. std::to_string(metal), std::to_string(sycl), std::to_string(gpu_blas), std::to_string(blas),
  729. cpu_info, gpu_info,
  730. model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
  731. std::to_string(n_batch), std::to_string(n_ubatch),
  732. std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
  733. std::to_string(n_gpu_layers), split_mode_str(split_mode),
  734. std::to_string(main_gpu), std::to_string(no_kv_offload),
  735. tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings),
  736. std::to_string(n_prompt), std::to_string(n_gen), test_time,
  737. std::to_string(avg_ns()), std::to_string(stdev_ns()),
  738. std::to_string(avg_ts()), std::to_string(stdev_ts())
  739. };
  740. return values;
  741. }
  742. std::map<std::string, std::string> get_map() const {
  743. std::map<std::string, std::string> map;
  744. auto fields = get_fields();
  745. auto values = get_values();
  746. std::transform(fields.begin(), fields.end(), values.begin(),
  747. std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
  748. return map;
  749. }
  750. };
  751. const std::string test::build_commit = LLAMA_COMMIT;
  752. const int test::build_number = LLAMA_BUILD_NUMBER;
  753. const bool test::cuda = !!ggml_cpu_has_cublas();
  754. const bool test::opencl = !!ggml_cpu_has_clblast();
  755. const bool test::vulkan = !!ggml_cpu_has_vulkan();
  756. const bool test::kompute = !!ggml_cpu_has_kompute();
  757. const bool test::metal = !!ggml_cpu_has_metal();
  758. const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
  759. const bool test::blas = !!ggml_cpu_has_blas();
  760. const bool test::sycl = !!ggml_cpu_has_sycl();
  761. const std::string test::cpu_info = get_cpu_info();
  762. const std::string test::gpu_info = get_gpu_info();
  763. struct printer {
  764. virtual ~printer() {}
  765. FILE * fout;
  766. virtual void print_header(const cmd_params & params) { (void) params; }
  767. virtual void print_test(const test & t) = 0;
  768. virtual void print_footer() { }
  769. };
  770. struct csv_printer : public printer {
  771. static std::string escape_csv(const std::string & field) {
  772. std::string escaped = "\"";
  773. for (auto c : field) {
  774. if (c == '"') {
  775. escaped += "\"";
  776. }
  777. escaped += c;
  778. }
  779. escaped += "\"";
  780. return escaped;
  781. }
  782. void print_header(const cmd_params & params) override {
  783. std::vector<std::string> fields = test::get_fields();
  784. fprintf(fout, "%s\n", join(fields, ",").c_str());
  785. (void) params;
  786. }
  787. void print_test(const test & t) override {
  788. std::vector<std::string> values = t.get_values();
  789. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  790. fprintf(fout, "%s\n", join(values, ",").c_str());
  791. }
  792. };
  793. struct json_printer : public printer {
  794. bool first = true;
  795. static std::string escape_json(const std::string & value) {
  796. std::string escaped;
  797. for (auto c : value) {
  798. if (c == '"') {
  799. escaped += "\\\"";
  800. } else if (c == '\\') {
  801. escaped += "\\\\";
  802. } else if (c <= 0x1f) {
  803. char buf[8];
  804. snprintf(buf, sizeof(buf), "\\u%04x", c);
  805. escaped += buf;
  806. } else {
  807. escaped += c;
  808. }
  809. }
  810. return escaped;
  811. }
  812. static std::string format_value(const std::string & field, const std::string & value) {
  813. switch (test::get_field_type(field)) {
  814. case test::STRING:
  815. return "\"" + escape_json(value) + "\"";
  816. case test::BOOL:
  817. return value == "0" ? "false" : "true";
  818. default:
  819. return value;
  820. }
  821. }
  822. void print_header(const cmd_params & params) override {
  823. fprintf(fout, "[\n");
  824. (void) params;
  825. }
  826. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  827. assert(fields.size() == values.size());
  828. for (size_t i = 0; i < fields.size(); i++) {
  829. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
  830. }
  831. }
  832. void print_test(const test & t) override {
  833. if (first) {
  834. first = false;
  835. } else {
  836. fprintf(fout, ",\n");
  837. }
  838. fprintf(fout, " {\n");
  839. print_fields(test::get_fields(), t.get_values());
  840. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  841. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  842. fprintf(fout, " }");
  843. fflush(fout);
  844. }
  845. void print_footer() override {
  846. fprintf(fout, "\n]\n");
  847. }
  848. };
  849. struct markdown_printer : public printer {
  850. std::vector<std::string> fields;
  851. static int get_field_width(const std::string & field) {
  852. if (field == "model") {
  853. return -30;
  854. }
  855. if (field == "t/s") {
  856. return 16;
  857. }
  858. if (field == "size" || field == "params") {
  859. return 10;
  860. }
  861. if (field == "n_gpu_layers") {
  862. return 3;
  863. }
  864. int width = std::max((int)field.length(), 10);
  865. if (test::get_field_type(field) == test::STRING) {
  866. return -width;
  867. }
  868. return width;
  869. }
  870. static std::string get_field_display_name(const std::string & field) {
  871. if (field == "n_gpu_layers") {
  872. return "ngl";
  873. }
  874. if (field == "split_mode") {
  875. return "sm";
  876. }
  877. if (field == "n_threads") {
  878. return "threads";
  879. }
  880. if (field == "no_kv_offload") {
  881. return "nkvo";
  882. }
  883. if (field == "use_mmap") {
  884. return "mmap";
  885. }
  886. if (field == "embeddings") {
  887. return "embd";
  888. }
  889. if (field == "tensor_split") {
  890. return "ts";
  891. }
  892. return field;
  893. }
  894. void print_header(const cmd_params & params) override {
  895. // select fields to print
  896. fields.emplace_back("model");
  897. fields.emplace_back("size");
  898. fields.emplace_back("params");
  899. fields.emplace_back("backend");
  900. bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
  901. if (!is_cpu_backend) {
  902. fields.emplace_back("n_gpu_layers");
  903. }
  904. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  905. fields.emplace_back("n_threads");
  906. }
  907. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  908. fields.emplace_back("n_batch");
  909. }
  910. if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
  911. fields.emplace_back("n_ubatch");
  912. }
  913. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  914. fields.emplace_back("type_k");
  915. }
  916. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  917. fields.emplace_back("type_v");
  918. }
  919. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  920. fields.emplace_back("main_gpu");
  921. }
  922. if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
  923. fields.emplace_back("split_mode");
  924. }
  925. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  926. fields.emplace_back("no_kv_offload");
  927. }
  928. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  929. fields.emplace_back("tensor_split");
  930. }
  931. if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
  932. fields.emplace_back("use_mmap");
  933. }
  934. if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
  935. fields.emplace_back("embeddings");
  936. }
  937. fields.emplace_back("test");
  938. fields.emplace_back("t/s");
  939. fprintf(fout, "|");
  940. for (const auto & field : fields) {
  941. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  942. }
  943. fprintf(fout, "\n");
  944. fprintf(fout, "|");
  945. for (const auto & field : fields) {
  946. int width = get_field_width(field);
  947. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  948. }
  949. fprintf(fout, "\n");
  950. }
  951. void print_test(const test & t) override {
  952. std::map<std::string, std::string> vmap = t.get_map();
  953. fprintf(fout, "|");
  954. for (const auto & field : fields) {
  955. std::string value;
  956. char buf[128];
  957. if (field == "model") {
  958. value = t.model_type;
  959. } else if (field == "size") {
  960. if (t.model_size < 1024*1024*1024) {
  961. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  962. } else {
  963. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  964. }
  965. value = buf;
  966. } else if (field == "params") {
  967. if (t.model_n_params < 1000*1000*1000) {
  968. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  969. } else {
  970. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  971. }
  972. value = buf;
  973. } else if (field == "backend") {
  974. value = test::get_backend();
  975. } else if (field == "test") {
  976. if (t.n_prompt > 0 && t.n_gen == 0) {
  977. snprintf(buf, sizeof(buf), "pp %d", t.n_prompt);
  978. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  979. snprintf(buf, sizeof(buf), "tg %d", t.n_gen);
  980. } else {
  981. assert(false);
  982. exit(1);
  983. }
  984. value = buf;
  985. } else if (field == "t/s") {
  986. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  987. value = buf;
  988. } else if (vmap.find(field) != vmap.end()) {
  989. value = vmap.at(field);
  990. } else {
  991. assert(false);
  992. exit(1);
  993. }
  994. int width = get_field_width(field);
  995. if (field == "t/s") {
  996. // HACK: the utf-8 character is 2 bytes
  997. width += 1;
  998. }
  999. fprintf(fout, " %*s |", width, value.c_str());
  1000. }
  1001. fprintf(fout, "\n");
  1002. }
  1003. void print_footer() override {
  1004. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  1005. }
  1006. };
  1007. struct sql_printer : public printer {
  1008. static std::string get_sql_field_type(const std::string & field) {
  1009. switch (test::get_field_type(field)) {
  1010. case test::STRING:
  1011. return "TEXT";
  1012. case test::BOOL:
  1013. case test::INT:
  1014. return "INTEGER";
  1015. case test::FLOAT:
  1016. return "REAL";
  1017. default:
  1018. assert(false);
  1019. exit(1);
  1020. }
  1021. }
  1022. void print_header(const cmd_params & params) override {
  1023. std::vector<std::string> fields = test::get_fields();
  1024. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  1025. for (size_t i = 0; i < fields.size(); i++) {
  1026. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
  1027. }
  1028. fprintf(fout, ");\n");
  1029. fprintf(fout, "\n");
  1030. (void) params;
  1031. }
  1032. void print_test(const test & t) override {
  1033. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  1034. fprintf(fout, "VALUES (");
  1035. std::vector<std::string> values = t.get_values();
  1036. for (size_t i = 0; i < values.size(); i++) {
  1037. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  1038. }
  1039. fprintf(fout, ");\n");
  1040. }
  1041. };
  1042. static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
  1043. llama_set_n_threads(ctx, n_threads, n_threads);
  1044. //std::vector<llama_token> tokens(n_prompt, llama_token_bos(llama_get_model(ctx)));
  1045. //llama_decode(ctx, llama_batch_get_one(tokens.data(), n_prompt, n_past, 0));
  1046. //GGML_UNUSED(n_batch);
  1047. std::vector<llama_token> tokens(n_batch, llama_token_bos(llama_get_model(ctx)));
  1048. int n_processed = 0;
  1049. while (n_processed < n_prompt) {
  1050. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  1051. llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
  1052. n_processed += n_tokens;
  1053. }
  1054. llama_synchronize(ctx);
  1055. }
  1056. static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
  1057. llama_set_n_threads(ctx, n_threads, n_threads);
  1058. llama_token token = llama_token_bos(llama_get_model(ctx));
  1059. for (int i = 0; i < n_gen; i++) {
  1060. llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
  1061. llama_synchronize(ctx);
  1062. }
  1063. }
  1064. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  1065. (void) level;
  1066. (void) text;
  1067. (void) user_data;
  1068. }
  1069. int main(int argc, char ** argv) {
  1070. // try to set locale for unicode characters in markdown
  1071. setlocale(LC_CTYPE, ".UTF-8");
  1072. #if !defined(NDEBUG)
  1073. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  1074. #endif
  1075. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  1076. fprintf(stderr, "warning: debug build, performance may be affected\n");
  1077. #endif
  1078. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  1079. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  1080. #endif
  1081. cmd_params params = parse_cmd_params(argc, argv);
  1082. // initialize llama.cpp
  1083. if (!params.verbose) {
  1084. llama_log_set(llama_null_log_callback, NULL);
  1085. }
  1086. llama_backend_init();
  1087. // initialize printer
  1088. std::unique_ptr<printer> p;
  1089. switch (params.output_format) {
  1090. case CSV:
  1091. p.reset(new csv_printer());
  1092. break;
  1093. case JSON:
  1094. p.reset(new json_printer());
  1095. break;
  1096. case MARKDOWN:
  1097. p.reset(new markdown_printer());
  1098. break;
  1099. case SQL:
  1100. p.reset(new sql_printer());
  1101. break;
  1102. default:
  1103. assert(false);
  1104. exit(1);
  1105. }
  1106. p->fout = stdout;
  1107. p->print_header(params);
  1108. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1109. llama_model * lmodel = nullptr;
  1110. const cmd_params_instance * prev_inst = nullptr;
  1111. for (const auto & inst : params_instances) {
  1112. // keep the same model between tests when possible
  1113. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1114. if (lmodel) {
  1115. llama_free_model(lmodel);
  1116. }
  1117. lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1118. if (lmodel == NULL) {
  1119. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1120. return 1;
  1121. }
  1122. prev_inst = &inst;
  1123. }
  1124. llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
  1125. if (ctx == NULL) {
  1126. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1127. llama_free_model(lmodel);
  1128. return 1;
  1129. }
  1130. test t(inst, lmodel, ctx);
  1131. llama_kv_cache_clear(ctx);
  1132. // warmup run
  1133. if (t.n_prompt > 0) {
  1134. //test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
  1135. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1136. }
  1137. if (t.n_gen > 0) {
  1138. test_gen(ctx, 1, 0, t.n_threads);
  1139. }
  1140. for (int i = 0; i < params.reps; i++) {
  1141. llama_kv_cache_clear(ctx);
  1142. uint64_t t_start = get_time_ns();
  1143. if (t.n_prompt > 0) {
  1144. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1145. }
  1146. if (t.n_gen > 0) {
  1147. test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
  1148. }
  1149. uint64_t t_ns = get_time_ns() - t_start;
  1150. t.samples_ns.push_back(t_ns);
  1151. }
  1152. p->print_test(t);
  1153. llama_print_timings(ctx);
  1154. llama_free(ctx);
  1155. }
  1156. llama_free_model(lmodel);
  1157. p->print_footer();
  1158. llama_backend_free();
  1159. return 0;
  1160. }