steps.py 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079
  1. import asyncio
  2. import collections
  3. import json
  4. import os
  5. import re
  6. import socket
  7. import subprocess
  8. import time
  9. from contextlib import closing
  10. from re import RegexFlag
  11. import aiohttp
  12. import numpy as np
  13. import openai
  14. from behave import step
  15. from behave.api.async_step import async_run_until_complete
  16. from huggingface_hub import hf_hub_download
  17. from prometheus_client import parser
  18. @step("a server listening on {server_fqdn}:{server_port}")
  19. def step_server_config(context, server_fqdn, server_port):
  20. context.server_fqdn = server_fqdn
  21. context.server_port = int(server_port)
  22. if 'PORT' in os.environ:
  23. context.server_port = int(os.environ['PORT'])
  24. print(f"$PORT set, overriding server port with to {context.server_port}")
  25. if 'FQDN' in os.environ:
  26. context.server_fqdn = os.environ['FQDN']
  27. print(f"$FQDN set, overriding server fqdn with to {context.server_fqdn}")
  28. context.base_url = f'http://{context.server_fqdn}:{context.server_port}'
  29. context.model_alias = None
  30. context.n_batch = None
  31. context.n_ubatch = None
  32. context.n_ctx = None
  33. context.n_ga = None
  34. context.n_ga_w = None
  35. context.n_gpu_layer = None
  36. context.n_predict = None
  37. context.n_prompts = 0
  38. context.n_server_predict = None
  39. context.n_slots = None
  40. context.prompt_prefix = None
  41. context.prompt_suffix = None
  42. context.server_api_key = None
  43. context.server_continuous_batching = False
  44. context.server_embeddings = False
  45. context.server_metrics = False
  46. context.server_process = None
  47. context.seed = None
  48. context.server_seed = None
  49. context.user_api_key = None
  50. context.tasks_result = []
  51. context.concurrent_tasks = []
  52. context.prompts = []
  53. @step('a model file {hf_file} from HF repo {hf_repo}')
  54. def step_download_hf_model(context, hf_file, hf_repo):
  55. context.model_file = hf_hub_download(repo_id=hf_repo, filename=hf_file)
  56. if context.debug:
  57. print(f"model file: {context.model_file}\n")
  58. @step('a model alias {model_alias}')
  59. def step_model_alias(context, model_alias):
  60. context.model_alias = model_alias
  61. @step('{seed:d} as server seed')
  62. def step_seed(context, seed):
  63. context.server_seed = seed
  64. @step('{ngl:d} GPU offloaded layers')
  65. def step_n_gpu_layer(context, ngl):
  66. if 'N_GPU_LAYERS' in os.environ:
  67. new_ngl = int(os.environ['N_GPU_LAYERS'])
  68. if context.debug:
  69. print(f"-ngl upgraded from {ngl} to {new_ngl}")
  70. ngl = new_ngl
  71. context.n_gpu_layer = ngl
  72. @step('{n_ctx:d} KV cache size')
  73. def step_n_ctx(context, n_ctx):
  74. context.n_ctx = n_ctx
  75. @step('{n_slots:d} slots')
  76. def step_n_slots(context, n_slots):
  77. context.n_slots = n_slots
  78. @step('{n_predict:d} server max tokens to predict')
  79. def step_server_n_predict(context, n_predict):
  80. context.n_server_predict = n_predict
  81. @step('continuous batching')
  82. def step_server_continuous_batching(context):
  83. context.server_continuous_batching = True
  84. @step('embeddings extraction')
  85. def step_server_embeddings(context):
  86. context.server_embeddings = True
  87. @step('prometheus compatible metrics exposed')
  88. def step_server_metrics(context):
  89. context.server_metrics = True
  90. @step("the server is starting")
  91. def step_start_server(context):
  92. start_server_background(context)
  93. attempts = 0
  94. while True:
  95. with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
  96. result = sock.connect_ex((context.server_fqdn, context.server_port))
  97. if result == 0:
  98. print("\x1b[33;46mserver started!\x1b[0m")
  99. return
  100. attempts += 1
  101. if attempts > 20:
  102. assert False, "server not started"
  103. print(f"waiting for server to start, connect error code = {result}...")
  104. time.sleep(0.1)
  105. @step("the server is {expecting_status}")
  106. @async_run_until_complete
  107. async def step_wait_for_the_server_to_be_started(context, expecting_status):
  108. match expecting_status:
  109. case 'healthy':
  110. await wait_for_health_status(context, context.base_url, 200, 'ok')
  111. case 'ready' | 'idle':
  112. await wait_for_health_status(context, context.base_url, 200, 'ok',
  113. timeout=10,
  114. params={'fail_on_no_slot': 0, 'include_slots': 0},
  115. slots_idle=context.n_slots,
  116. slots_processing=0,
  117. expected_slots=[{'id': slot_id, 'state': 0}
  118. for slot_id in
  119. range(context.n_slots if context.n_slots else 1)])
  120. case 'busy':
  121. await wait_for_health_status(context, context.base_url, 503,
  122. 'no slot available',
  123. params={'fail_on_no_slot': 0, 'include_slots': 0},
  124. slots_idle=0,
  125. slots_processing=context.n_slots,
  126. expected_slots=[{'id': slot_id, 'state': 1}
  127. for slot_id in
  128. range(context.n_slots if context.n_slots else 1)])
  129. case _:
  130. assert False, "unknown status"
  131. @step('all slots are {expected_slot_status_string}')
  132. @async_run_until_complete
  133. async def step_all_slots_status(context, expected_slot_status_string):
  134. match expected_slot_status_string:
  135. case 'idle':
  136. expected_slot_status = 0
  137. case 'busy':
  138. expected_slot_status = 1
  139. case _:
  140. assert False, "unknown status"
  141. expected_slots = [{'id': slot_id, 'state': expected_slot_status}
  142. for slot_id in range(context.n_slots)]
  143. await request_slots_status(context, expected_slots)
  144. @step('a completion request with {api_error} api error')
  145. @async_run_until_complete
  146. async def step_request_completion(context, api_error):
  147. expect_api_error = api_error == 'raised'
  148. completion = await request_completion(context.prompts.pop(),
  149. context.base_url,
  150. debug=context.debug,
  151. n_predict=context.n_predict,
  152. seed=await completions_seed(context),
  153. expect_api_error=expect_api_error,
  154. user_api_key=context.user_api_key)
  155. context.tasks_result.append(completion)
  156. if context.debug:
  157. print(f"Completion response: {completion}\n")
  158. if expect_api_error:
  159. assert completion == 401, f"completion must be an 401 status code: {completion}"
  160. @step('{predicted_n:d} tokens are predicted matching {re_content}')
  161. def step_n_tokens_predicted_with_content(context, predicted_n, re_content):
  162. context.completion = context.tasks_result.pop()
  163. assert_n_tokens_predicted(context.completion, predicted_n, re_content)
  164. @step('{predicted_n:d} tokens are predicted')
  165. def step_n_tokens_predicted(context, predicted_n):
  166. context.completion = context.tasks_result.pop()
  167. assert_n_tokens_predicted(context.completion, predicted_n)
  168. @step('the completion is truncated')
  169. def step_assert_completion_truncated(context):
  170. step_assert_completion_truncated(context, '')
  171. @step('the completion is {truncated} truncated')
  172. def step_assert_completion_truncated(context, truncated):
  173. truncated = truncated != "not"
  174. assert context.completion['truncated'] == truncated, f'{context.completion}'
  175. @step('{n_prompt:d} prompt tokens are processed')
  176. def step_impl(context, n_prompt):
  177. assert n_prompt < 0 or n_prompt == context.completion['timings']['prompt_n'], f"n_prompt={context.completion['timings']['prompt_n']}"
  178. @step('a user prompt {user_prompt}')
  179. def step_user_prompt(context, user_prompt):
  180. context.prompts.append(user_prompt)
  181. context.n_prompts = len(context.prompts)
  182. @step('a system prompt {system_prompt}')
  183. def step_system_prompt(context, system_prompt):
  184. context.system_prompt = system_prompt
  185. @step('a model {model}')
  186. def step_model(context, model):
  187. context.model = model
  188. @step('{max_tokens:d} max tokens to predict')
  189. def step_max_tokens(context, max_tokens):
  190. context.n_predict = max_tokens
  191. @step('streaming is {enable_streaming}')
  192. def step_streaming(context, enable_streaming):
  193. context.enable_streaming = enable_streaming == 'enabled'
  194. @step('a user api key {user_api_key}')
  195. def step_user_api_key(context, user_api_key):
  196. context.user_api_key = user_api_key
  197. @step('no user api key')
  198. def step_no_user_api_key(context):
  199. context.user_api_key = None
  200. @step('a user api key ')
  201. def step_no_user_api_key_space(context):
  202. context.user_api_key = None
  203. @step('a server api key {server_api_key}')
  204. def step_server_api_key(context, server_api_key):
  205. context.server_api_key = server_api_key
  206. @step('{n_junk:d} as number of junk')
  207. def step_n_junk(context, n_junk):
  208. context.n_junk = n_junk
  209. @step('{n_batch:d} as batch size')
  210. def step_n_batch(context, n_batch):
  211. context.n_batch = n_batch
  212. @step('{n_ubatch:d} as ubatch size')
  213. def step_n_ubatch(context, n_ubatch):
  214. context.n_ubatch = n_ubatch
  215. @step('{seed:d} as seed')
  216. def step_seed(context, seed):
  217. context.seed = seed
  218. @step('a prefix prompt')
  219. def step_prompt_prefix(context):
  220. context.prompt_prefix = context_text(context)
  221. @step('a junk suffix prompt')
  222. def step_prompt_junk_suffix(context):
  223. context.prompt_junk_suffix = context_text(context)
  224. @step('a suffix prompt')
  225. def step_prompt_suffix(context):
  226. context.prompt_suffix = context_text(context)
  227. @step('{n_ga:d} group attention factor'
  228. ' to extend context size through self-extend')
  229. def step_impl(context, n_ga):
  230. context.n_ga = n_ga
  231. @step('{n_ga_w:d} group attention width to extend context size through self-extend')
  232. def step_impl(context, n_ga_w):
  233. context.n_ga_w = n_ga_w
  234. @step('a passkey prompt template')
  235. def step_prompt_passkey(context):
  236. context.prompt_passkey = context_text(context)
  237. @step('{n_prompts:d} fixed prompts')
  238. def step_fixed_prompts(context, n_prompts):
  239. context.prompts.extend([str(0)*(context.n_batch if context.n_batch is not None else 512) for i in range(n_prompts)])
  240. context.n_prompts = n_prompts
  241. @step('a "{passkey}" passkey challenge prompt with the passkey inserted every {i_pos:d} junk')
  242. def step_prompt_passkey(context, passkey, i_pos):
  243. prompt = ""
  244. for i in range(context.n_junk):
  245. if i % context.n_junk == i_pos:
  246. prompt += context.prompt_passkey # the passkey is already substituted
  247. prompt += context.prompt_junk_suffix
  248. if context.debug:
  249. passkey_highlight = "\x1b[33m" + passkey + "\x1b[0m"
  250. print(f"Passkey challenge:\n```{prompt.replace(passkey, passkey_highlight)}```\n")
  251. context.prompts.append(context.prompt_prefix + prompt + context.prompt_suffix)
  252. context.n_prompts = len(context.prompts)
  253. @step('an OAI compatible chat completions request with {api_error} api error')
  254. @async_run_until_complete
  255. async def step_oai_chat_completions(context, api_error):
  256. if context.debug:
  257. print(f"Submitting OAI compatible completions request...\n")
  258. expect_api_error = api_error == 'raised'
  259. completion = await oai_chat_completions(context.prompts.pop(),
  260. context.system_prompt,
  261. context.base_url,
  262. '/v1/chat',
  263. False,
  264. model=context.model if hasattr(context, 'model') else None,
  265. n_predict=context.n_predict
  266. if hasattr(context, 'n_predict') else None,
  267. enable_streaming=context.enable_streaming
  268. if hasattr(context, 'enable_streaming') else None,
  269. seed=await completions_seed(context),
  270. user_api_key=context.user_api_key
  271. if hasattr(context, 'user_api_key') else None,
  272. expect_api_error=expect_api_error)
  273. context.tasks_result.append(completion)
  274. if context.debug:
  275. print(f"Completion response: {completion}")
  276. if expect_api_error:
  277. assert completion == 401, f"completion must be an 401 status code: {completion}"
  278. if context.debug:
  279. print(f"Completion response: {completion}")
  280. @step('a prompt')
  281. def step_a_prompt(context):
  282. context.prompts.append(context_text(context))
  283. context.n_prompts = len(context.prompts)
  284. @step('a prompt {prompt}')
  285. def step_a_prompt_prompt(context, prompt):
  286. context.prompts.append(prompt)
  287. context.n_prompts = len(context.prompts)
  288. @step('concurrent completion requests')
  289. @async_run_until_complete()
  290. async def step_concurrent_completion_requests(context):
  291. await concurrent_requests(context,
  292. request_completion,
  293. # prompt is inserted automatically
  294. context.base_url,
  295. debug=context.debug,
  296. prompt_prefix=context.prompt_prefix,
  297. prompt_suffix=context.prompt_suffix,
  298. n_predict=context.n_predict if hasattr(context, 'n_predict') else None,
  299. seed=await completions_seed(context),
  300. user_api_key=context.user_api_key if hasattr(context,
  301. 'user_api_key') else None)
  302. @step('concurrent OAI completions requests')
  303. @async_run_until_complete
  304. async def step_oai_chat_completions(context):
  305. await concurrent_requests(context, oai_chat_completions,
  306. # user_prompt is inserted automatically
  307. context.system_prompt,
  308. context.base_url,
  309. '/v1/chat/completions',
  310. True, # async_client
  311. model=context.model
  312. if hasattr(context, 'model') else None,
  313. n_predict=context.n_predict
  314. if hasattr(context, 'n_predict') else None,
  315. enable_streaming=context.enable_streaming
  316. if hasattr(context, 'enable_streaming') else None,
  317. seed=await completions_seed(context),
  318. user_api_key=context.user_api_key
  319. if hasattr(context, 'user_api_key') else None)
  320. @step('concurrent OAI completions requests no v1')
  321. @async_run_until_complete
  322. async def step_oai_chat_completions(context):
  323. await concurrent_requests(context, oai_chat_completions,
  324. # user_prompt is inserted automatically
  325. context.system_prompt,
  326. context.base_url,
  327. '/chat/completions',
  328. True, # async_client
  329. model=context.model
  330. if hasattr(context, 'model') else None,
  331. n_predict=context.n_predict
  332. if hasattr(context, 'n_predict') else None,
  333. enable_streaming=context.enable_streaming
  334. if hasattr(context, 'enable_streaming') else None,
  335. seed=context.seed
  336. if hasattr(context, 'seed') else
  337. context.server_seed
  338. if hasattr(context, 'server_seed') else None,
  339. user_api_key=context.user_api_key
  340. if hasattr(context, 'user_api_key') else None)
  341. @step('all prompts are predicted')
  342. @async_run_until_complete
  343. async def step_all_prompts_are_predicted(context):
  344. await all_prompts_are_predicted(context)
  345. @step('all prompts are predicted with {n_expected_predicted:d} tokens')
  346. @async_run_until_complete
  347. async def step_all_prompts_are_predicted_with_n_tokens(context, n_expected_predicted):
  348. await all_prompts_are_predicted(context, n_expected_predicted)
  349. async def all_prompts_are_predicted(context, expected_predicted_n=None):
  350. n_completions = await gather_tasks_results(context)
  351. assert n_completions > 0
  352. for i in range(n_completions):
  353. assert_n_tokens_predicted(context.tasks_result.pop(), expected_predicted_n=expected_predicted_n)
  354. assert len(context.concurrent_tasks) == 0, f"{len(context.concurrent_tasks)} pending requests"
  355. @step('embeddings are computed for')
  356. @async_run_until_complete
  357. async def step_compute_embedding(context):
  358. context.n_prompts = 1
  359. context.embeddings = await request_embedding(context_text(context), base_url=context.base_url)
  360. @step('all embeddings are the same')
  361. @async_run_until_complete
  362. async def step_all_embeddings_are_the_same(context):
  363. n_embedding_requests = await gather_tasks_results(context)
  364. assert n_embedding_requests > 0
  365. embeddings = []
  366. for i in range(n_embedding_requests):
  367. embedding = context.tasks_result.pop().pop()
  368. embeddings.append(embedding)
  369. assert_embeddings(embedding)
  370. n = len(embeddings)
  371. for i in range(n-1):
  372. for j in range(i+1, n):
  373. embedding1 = np.array(embeddings[i])
  374. embedding2 = np.array(embeddings[j])
  375. if context.debug:
  376. print(f"embedding1: {embedding1[-8:]}\n")
  377. print(f"embedding2: {embedding2[-8:]}\n")
  378. similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2))
  379. msg = f"Similarity between {i} and {j}: {similarity:.10f}"
  380. if context.debug:
  381. print(f"{msg}\n")
  382. assert np.isclose(similarity, 1.0, rtol=1e-05, atol=1e-08, equal_nan=False), msg
  383. @step('embeddings are generated')
  384. def step_assert_embeddings(context):
  385. assert context.n_prompts == len(context.embeddings), (f"unexpected response:\n"
  386. f"context.n_prompts={context.n_prompts}\n"
  387. f"context.embeddings={context.embeddings}")
  388. for embedding in context.embeddings:
  389. assert_embeddings(embedding)
  390. @step('an OAI compatible embeddings computation request for')
  391. @async_run_until_complete
  392. async def step_oai_compute_embeddings(context):
  393. context.n_prompts = 1
  394. context.embeddings = await request_oai_embeddings(context_text(context),
  395. base_url=context.base_url,
  396. user_api_key=context.user_api_key,
  397. model=context.model)
  398. @step('an OAI compatible embeddings computation request for multiple inputs')
  399. @async_run_until_complete
  400. async def step_oai_compute_embeddings_multiple_inputs(context):
  401. context.embeddings = await request_oai_embeddings(context.prompts,
  402. base_url=context.base_url,
  403. user_api_key=context.user_api_key,
  404. model=context.model)
  405. context.prompts.clear()
  406. @step('concurrent embedding requests')
  407. @async_run_until_complete()
  408. async def step_concurrent_embedding_requests(context):
  409. await concurrent_requests(context,
  410. request_embedding,
  411. # prompt is inserted automatically
  412. base_url=context.base_url)
  413. @step('concurrent OAI embedding requests')
  414. @async_run_until_complete()
  415. async def step_concurrent_oai_embedding_requests(context):
  416. await concurrent_requests(context,
  417. request_oai_embeddings,
  418. # prompt is inserted automatically
  419. base_url=context.base_url,
  420. async_client=True,
  421. model=context.model)
  422. @step('all embeddings are generated')
  423. @async_run_until_complete()
  424. async def all_embeddings_are_generated(context):
  425. n_embedding_requests = await gather_tasks_results(context)
  426. assert n_embedding_requests == context.n_prompts
  427. for i in range(n_embedding_requests):
  428. assert_embeddings(context.tasks_result.pop().pop())
  429. @step('tokenizing')
  430. @async_run_until_complete
  431. async def step_tokenize(context):
  432. context.tokenized_text = context_text(context)
  433. async with aiohttp.ClientSession() as session:
  434. async with session.post(f'{context.base_url}/tokenize',
  435. json={
  436. "content": context.tokenized_text,
  437. }) as response:
  438. assert response.status == 200
  439. tokenize_json = await response.json()
  440. context.tokens = tokenize_json['tokens']
  441. @step('tokens can be detokenize')
  442. @async_run_until_complete
  443. async def step_detokenize(context):
  444. assert len(context.tokens) > 0
  445. async with aiohttp.ClientSession() as session:
  446. async with session.post(f'{context.base_url}/detokenize',
  447. json={
  448. "tokens": context.tokens,
  449. }) as response:
  450. assert response.status == 200
  451. detokenize_json = await response.json()
  452. # SPM tokenizer adds a whitespace prefix: https://github.com/google/sentencepiece/issues/15
  453. assert context.tokenized_text == detokenize_json['content'].strip()
  454. @step('an OPTIONS request is sent from {origin}')
  455. @async_run_until_complete
  456. async def step_options_request(context, origin):
  457. async with aiohttp.ClientSession() as session:
  458. headers = {'Authorization': f'Bearer {context.user_api_key}', 'Origin': origin}
  459. async with session.options(f'{context.base_url}/v1/chat/completions',
  460. headers=headers) as response:
  461. assert response.status == 200
  462. context.options_response = response
  463. @step('CORS header {cors_header} is set to {cors_header_value}')
  464. def step_check_options_header_value(context, cors_header, cors_header_value):
  465. assert context.options_response.headers[cors_header] == cors_header_value
  466. @step('prometheus metrics are exposed')
  467. @async_run_until_complete
  468. async def step_prometheus_metrics_exported(context):
  469. async with aiohttp.ClientSession() as session:
  470. async with await session.get(f'{context.base_url}/metrics') as metrics_response:
  471. assert metrics_response.status == 200
  472. assert metrics_response.headers['Content-Type'] == "text/plain; version=0.0.4"
  473. metrics_raw = await metrics_response.text()
  474. metric_exported = False
  475. if context.debug:
  476. print(f"/metrics answer:\n{metrics_raw}\n")
  477. context.metrics = {}
  478. for metric in parser.text_string_to_metric_families(metrics_raw):
  479. match metric.name:
  480. case "llamacpp:kv_cache_usage_ratio":
  481. assert len(metric.samples) > 0
  482. metric_exported = True
  483. context.metrics[metric.name] = metric
  484. assert int(metrics_response.headers["Process-Start-Time-Unix"]) > 0, "no header process start time"
  485. assert metric_exported, "No metrics exported"
  486. @step('metric {metric_name} is {metric_value:d}')
  487. def step_assert_metric_value(context, metric_name, metric_value):
  488. if metric_name not in context.metrics:
  489. assert False, f"no metric {metric_name} in {context.metrics.keys()}"
  490. assert context.metrics[metric_name].samples[0].value == metric_value, f"metric: {context.metrics[metric_name]}"
  491. @step('available models')
  492. def step_available_models(context):
  493. # openai client always expects an api_key
  494. openai.api_key = context.user_api_key if context.user_api_key is not None else 'nope'
  495. openai.api_base = f'{context.base_url}/v1'
  496. context.models = openai.Model.list().data
  497. @step('{n_model:d} models are supported')
  498. def step_supported_models(context, n_model):
  499. if context.debug:
  500. print("server models available:", context.models)
  501. assert len(context.models) == n_model
  502. @step('model {i_model:d} is {param} {preposition} {param_value}')
  503. def step_supported_models(context, i_model, param, preposition, param_value):
  504. assert i_model < len(context.models)
  505. model = context.models[i_model]
  506. param_value = param_value.split(' ', 1)[0]
  507. match param:
  508. case 'identified':
  509. value = model.id
  510. case 'trained':
  511. value = str(model.meta.n_ctx_train)
  512. case _:
  513. assert False, "param {param} not supported"
  514. assert param_value == value, f"model param {param} {value} != {param_value}"
  515. async def concurrent_requests(context, f_completion, *args, **kwargs):
  516. context.n_prompts = len(context.prompts)
  517. if context.debug:
  518. print(f"starting {context.n_prompts} concurrent completion requests...")
  519. assert context.n_prompts > 0
  520. for prompt_no in range(context.n_prompts):
  521. shifted_args = [context.prompts.pop(), *args]
  522. context.concurrent_tasks.append(asyncio.create_task(f_completion(*shifted_args, **kwargs)))
  523. await asyncio.sleep(0.1)
  524. async def request_completion(prompt,
  525. base_url,
  526. debug=False,
  527. prompt_prefix=None,
  528. prompt_suffix=None,
  529. n_predict=None,
  530. seed=None,
  531. expect_api_error=None,
  532. user_api_key=None):
  533. if debug:
  534. print(f"Sending completion request: {prompt}")
  535. origin = "my.super.domain"
  536. headers = {
  537. 'Origin': origin
  538. }
  539. if user_api_key is not None:
  540. if debug:
  541. print(f"Set user_api_key: {user_api_key}")
  542. headers['Authorization'] = f'Bearer {user_api_key}'
  543. async with aiohttp.ClientSession() as session:
  544. async with session.post(f'{base_url}/completion',
  545. json={
  546. "input_prefix": prompt_prefix,
  547. "prompt": prompt,
  548. "input_suffix": prompt_suffix,
  549. "n_predict": n_predict if n_predict is not None else -1,
  550. "seed": seed if seed is not None else 42
  551. },
  552. headers=headers,
  553. timeout=3600) as response:
  554. if expect_api_error is None or not expect_api_error:
  555. assert response.status == 200
  556. assert response.headers['Access-Control-Allow-Origin'] == origin
  557. return await response.json()
  558. else:
  559. return response.status
  560. async def oai_chat_completions(user_prompt,
  561. system_prompt,
  562. base_url,
  563. base_path,
  564. async_client,
  565. debug=False,
  566. model=None,
  567. n_predict=None,
  568. enable_streaming=None,
  569. seed=None,
  570. user_api_key=None,
  571. expect_api_error=None):
  572. if debug:
  573. print(f"Sending OAI Chat completions request: {user_prompt}")
  574. # openai client always expects an api key
  575. user_api_key = user_api_key if user_api_key is not None else 'nope'
  576. seed = seed if seed is not None else 42
  577. enable_streaming = enable_streaming if enable_streaming is not None else False
  578. payload = {
  579. "messages": [
  580. {
  581. "role": "system",
  582. "content": system_prompt,
  583. },
  584. {
  585. "role": "user",
  586. "content": user_prompt,
  587. }
  588. ],
  589. "model": model,
  590. "max_tokens": n_predict,
  591. "stream": enable_streaming,
  592. "seed": seed
  593. }
  594. completion_response = {
  595. 'content': '',
  596. 'timings': {
  597. 'predicted_n': 0,
  598. 'prompt_n': 0
  599. }
  600. }
  601. if async_client:
  602. origin = 'llama.cpp'
  603. headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
  604. async with aiohttp.ClientSession() as session:
  605. async with session.post(f'{base_url}{base_path}',
  606. json=payload,
  607. headers=headers) as response:
  608. if enable_streaming:
  609. assert response.status == 200
  610. assert response.headers['Access-Control-Allow-Origin'] == origin
  611. assert response.headers['Content-Type'] == "text/event-stream"
  612. event_received = True
  613. while event_received:
  614. event_received = False
  615. async for line_in_bytes in response.content:
  616. line = line_in_bytes.decode('utf8')
  617. line = line.rstrip('\n').rstrip('\r')
  618. if line == '':
  619. continue
  620. event_data = line.split(': ', 1)
  621. assert event_data[0] == 'data', f'Bad event code received: ```{event_data}```'
  622. chunk_raw = event_data[1]
  623. chunk = json.loads(chunk_raw)
  624. assert len(chunk['choices']) == 1, f"no choices provided, line ```{line}```"
  625. delta = chunk['choices'][0]['delta']
  626. if 'content' in delta:
  627. completion_response['content'] += delta['content']
  628. completion_response['timings']['predicted_n'] += 1
  629. else:
  630. if expect_api_error is None or not expect_api_error:
  631. assert response.status == 200
  632. assert response.headers['Access-Control-Allow-Origin'] == origin
  633. assert response.headers['Content-Type'] == "application/json; charset=utf-8"
  634. chat_completion_raw = await response.json()
  635. completion_response = {
  636. 'content': chat_completion_raw['choices'][0]['message'],
  637. 'timings': {
  638. 'predicted_n': chat_completion_raw['usage']['completion_tokens'],
  639. 'prompt_n': chat_completion_raw['usage']['prompt_tokens']
  640. }
  641. }
  642. else:
  643. return response.status
  644. else:
  645. try:
  646. openai.api_key = user_api_key
  647. openai.api_base = f'{base_url}{base_path}'
  648. chat_completion = openai.Completion.create(
  649. messages=payload['messages'],
  650. model=model,
  651. max_tokens=n_predict,
  652. stream=enable_streaming,
  653. seed=seed
  654. )
  655. except openai.error.AuthenticationError as e:
  656. if expect_api_error is not None and expect_api_error:
  657. return 401
  658. else:
  659. assert False, f'error raised: {e}'
  660. if enable_streaming:
  661. for chunk in chat_completion:
  662. assert len(chunk.choices) == 1
  663. delta = chunk.choices[0].delta
  664. if 'content' in delta:
  665. completion_response['content'] += delta['content']
  666. completion_response['timings']['predicted_n'] += 1
  667. completion_response['truncated'] = chunk.choices[0].finish_reason != 'stop'
  668. else:
  669. assert len(chat_completion.choices) == 1
  670. completion_response = {
  671. 'content': chat_completion.choices[0].message.content,
  672. 'timings': {
  673. 'predicted_n': chat_completion.usage.completion_tokens,
  674. 'prompt_n': chat_completion.usage.prompt_tokens
  675. },
  676. 'truncated': chat_completion.choices[0].finish_reason != 'stop'
  677. }
  678. if debug:
  679. print("OAI response formatted to llama.cpp:", completion_response)
  680. return completion_response
  681. async def request_embedding(content, base_url=None):
  682. async with aiohttp.ClientSession() as session:
  683. async with session.post(f'{base_url}/embedding',
  684. json={
  685. "content": content,
  686. }) as response:
  687. assert response.status == 200
  688. response_json = await response.json()
  689. return [response_json['embedding']]
  690. async def request_oai_embeddings(input,
  691. base_url=None, user_api_key=None,
  692. model=None, async_client=False):
  693. # openai client always expects an api_key
  694. user_api_key = user_api_key if user_api_key is not None else 'nope'
  695. if async_client:
  696. origin = 'llama.cpp'
  697. headers=[]
  698. if user_api_key is not None:
  699. headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
  700. async with aiohttp.ClientSession() as session:
  701. async with session.post(f'{base_url}/v1/embeddings',
  702. json={
  703. "input": input,
  704. "model": model,
  705. },
  706. headers=headers,
  707. timeout=3600) as response:
  708. assert response.status == 200, f"received status code not expected: {response.status}"
  709. assert response.headers['Access-Control-Allow-Origin'] == origin
  710. assert response.headers['Content-Type'] == "application/json; charset=utf-8"
  711. response_json = await response.json()
  712. assert response_json['model'] == model, f"invalid model received: {response_json['model']}"
  713. assert response_json['object'] == 'list'
  714. if isinstance(input, collections.abc.Sequence):
  715. embeddings = []
  716. for an_oai_embeddings in response_json['data']:
  717. embeddings.append(an_oai_embeddings['embedding'])
  718. else:
  719. embeddings = [response_json['data']['embedding']]
  720. return embeddings
  721. else:
  722. openai.api_key = user_api_key
  723. openai.api_base = f'{base_url}/v1'
  724. oai_embeddings = openai.Embedding.create(
  725. model=model,
  726. input=input,
  727. )
  728. if isinstance(input, collections.abc.Sequence):
  729. embeddings = []
  730. for an_oai_embeddings in oai_embeddings.data:
  731. embeddings.append(an_oai_embeddings.embedding)
  732. else:
  733. embeddings = [oai_embeddings.data.embedding]
  734. return embeddings
  735. def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re_content=None):
  736. content = completion_response['content']
  737. n_predicted = completion_response['timings']['predicted_n']
  738. assert len(content) > 0, "no token predicted"
  739. if re_content is not None:
  740. p = re.compile(re_content, flags=RegexFlag.IGNORECASE | RegexFlag.MULTILINE | RegexFlag.DOTALL)
  741. matches = p.finditer(content)
  742. last_match = 0
  743. highlighted = ''
  744. for match in matches:
  745. start, end = match.span()
  746. highlighted += content[last_match: start]
  747. highlighted += '\x1b[33m'
  748. highlighted += content[start: end]
  749. highlighted += '\x1b[0m'
  750. last_match = end
  751. highlighted += content[last_match:]
  752. if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
  753. print(f"Checking completion response: {highlighted}\n")
  754. assert last_match > 0, f'/{re_content}/ must match ```{highlighted}```'
  755. if expected_predicted_n and expected_predicted_n > 0:
  756. assert n_predicted == expected_predicted_n, (f'invalid number of tokens predicted:'
  757. f' {n_predicted} <> {expected_predicted_n}')
  758. async def gather_tasks_results(context):
  759. n_tasks = len(context.concurrent_tasks)
  760. if context.debug:
  761. print(f"Waiting for all {n_tasks} tasks results...\n")
  762. for task_no in range(n_tasks):
  763. context.tasks_result.append(await context.concurrent_tasks.pop())
  764. n_completions = len(context.tasks_result)
  765. return n_completions
  766. async def wait_for_health_status(context,
  767. base_url,
  768. expected_http_status_code,
  769. expected_health_status,
  770. timeout=3,
  771. params=None,
  772. slots_idle=None,
  773. slots_processing=None,
  774. expected_slots=None):
  775. if context.debug:
  776. print(f"Starting checking for health for expected_health_status={expected_health_status}\n")
  777. interval = 0.5
  778. counter = 0
  779. async with aiohttp.ClientSession() as session:
  780. while True:
  781. async with await session.get(f'{base_url}/health', params=params) as health_response:
  782. status_code = health_response.status
  783. health = await health_response.json()
  784. if context.debug:
  785. print(f"HEALTH - response for expected health status='{expected_health_status}' on "
  786. f"'{base_url}/health'?{params} is {health}\n")
  787. if (status_code == expected_http_status_code
  788. and health['status'] == expected_health_status
  789. and (slots_idle is None or health['slots_idle'] == slots_idle)
  790. and (slots_processing is None or health['slots_processing'] == slots_processing)):
  791. if expected_slots is not None:
  792. assert_slots_status(health['slots'], expected_slots)
  793. return
  794. if (status_code == expected_http_status_code
  795. and health['status'] == expected_health_status
  796. and (slots_idle is None or health['slots_idle'] == slots_idle)
  797. and (slots_processing is None or health['slots_processing'] == slots_processing)):
  798. if expected_slots is not None:
  799. assert_slots_status(health['slots'], expected_slots)
  800. return
  801. await asyncio.sleep(interval)
  802. counter += interval
  803. if counter >= timeout:
  804. # Sometimes health requests are triggered after completions are predicted
  805. if expected_http_status_code == 503:
  806. if len(context.tasks_result) == 0:
  807. print("\x1b[5;37;43mWARNING: forcing concurrent tasks,"
  808. " busy health check missed, probably too fast inference\x1b[0m\n")
  809. n_completions = await gather_tasks_results(context)
  810. if n_completions > 0:
  811. return
  812. assert False, f'{expected_health_status} timeout exceeded {counter}s>={timeout}'
  813. def assert_embeddings(embeddings):
  814. assert len(embeddings) > 0
  815. embeddings_computed = False
  816. for emb in embeddings:
  817. if not isinstance(emb, float):
  818. assert False, f"Bad embeddings: {embeddings}"
  819. if emb != 0:
  820. embeddings_computed = True
  821. assert embeddings_computed, f"Embeddings: {embeddings}"
  822. async def request_slots_status(context, expected_slots):
  823. async with aiohttp.ClientSession() as session:
  824. async with await session.get(f'{context.base_url}/slots') as slots_response:
  825. assert slots_response.status == 200
  826. slots = await slots_response.json()
  827. assert_slots_status(slots, expected_slots)
  828. def assert_slots_status(slots, expected_slots):
  829. assert len(slots) == len(expected_slots)
  830. for slot_id, (expected, slot) in enumerate(zip(expected_slots, slots)):
  831. for key in expected:
  832. assert expected[key] == slot[key], (f"invalid slot {slot_id}"
  833. f" expected[{key}] != slot[{key}]"
  834. f" = {expected[key]} != {slot[key]}")
  835. async def completions_seed(context):
  836. return context.seed if hasattr(context, 'seed') and context.seed is not None \
  837. else context.server_seed if hasattr(context, 'server_seed') else None
  838. def context_text(context):
  839. return context.text.replace('\r', '')
  840. def start_server_background(context):
  841. if os.name == 'nt':
  842. context.server_path = '../../../build/bin/Release/server.exe'
  843. else:
  844. context.server_path = '../../../build/bin/server'
  845. if 'LLAMA_SERVER_BIN_PATH' in os.environ:
  846. context.server_path = os.environ['LLAMA_SERVER_BIN_PATH']
  847. server_listen_addr = context.server_fqdn
  848. if os.name == 'nt':
  849. server_listen_addr = '0.0.0.0'
  850. server_args = [
  851. '--host', server_listen_addr,
  852. '--port', context.server_port,
  853. '--model', context.model_file
  854. ]
  855. if context.n_batch:
  856. server_args.extend(['--batch-size', context.n_batch])
  857. if context.n_ubatch:
  858. server_args.extend(['--ubatch-size', context.n_ubatch])
  859. if context.n_gpu_layer:
  860. server_args.extend(['--n-gpu-layers', context.n_gpu_layer])
  861. if context.server_continuous_batching:
  862. server_args.append('--cont-batching')
  863. if context.server_embeddings:
  864. server_args.append('--embedding')
  865. if context.server_metrics:
  866. server_args.append('--metrics')
  867. if context.model_alias:
  868. server_args.extend(['--alias', context.model_alias])
  869. if context.n_ctx:
  870. server_args.extend(['--ctx-size', context.n_ctx])
  871. if context.n_slots:
  872. server_args.extend(['--parallel', context.n_slots])
  873. if context.n_server_predict:
  874. server_args.extend(['--n-predict', context.n_server_predict])
  875. if context.server_api_key:
  876. server_args.extend(['--api-key', context.server_api_key])
  877. if context.n_ga:
  878. server_args.extend(['--grp-attn-n', context.n_ga])
  879. if context.n_ga_w:
  880. server_args.extend(['--grp-attn-w', context.n_ga_w])
  881. if context.debug:
  882. server_args.append('--verbose')
  883. if 'SERVER_LOG_FORMAT_JSON' not in os.environ:
  884. server_args.extend(['--log-format', "text"])
  885. print(f"starting server with: {context.server_path} {server_args}\n")
  886. flags = 0
  887. if 'nt' == os.name:
  888. flags |= subprocess.DETACHED_PROCESS
  889. flags |= subprocess.CREATE_NEW_PROCESS_GROUP
  890. flags |= subprocess.CREATE_NO_WINDOW
  891. pkwargs = {
  892. 'creationflags': flags,
  893. }
  894. context.server_process = subprocess.Popen(
  895. [str(arg) for arg in [context.server_path, *server_args]],
  896. **pkwargs)
  897. print(f"server pid={context.server_process.pid}, behave pid={os.getpid()}")