ggml.c 369 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. // if C99 - static_assert is noop
  20. // ref: https://stackoverflow.com/a/53923785/4039976
  21. #ifndef static_assert
  22. #define static_assert(cond, msg) struct global_scope_noop_trick
  23. #endif
  24. #if defined(_WIN32)
  25. #include <windows.h>
  26. typedef volatile LONG atomic_int;
  27. typedef atomic_int atomic_bool;
  28. static void atomic_store(atomic_int* ptr, LONG val) {
  29. InterlockedExchange(ptr, val);
  30. }
  31. static LONG atomic_load(atomic_int* ptr) {
  32. return InterlockedCompareExchange(ptr, 0, 0);
  33. }
  34. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  35. return InterlockedExchangeAdd(ptr, inc);
  36. }
  37. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  38. return atomic_fetch_add(ptr, -(dec));
  39. }
  40. typedef HANDLE pthread_t;
  41. typedef DWORD thread_ret_t;
  42. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  43. (void) unused;
  44. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  45. if (handle == NULL)
  46. {
  47. return EAGAIN;
  48. }
  49. *out = handle;
  50. return 0;
  51. }
  52. static int pthread_join(pthread_t thread, void* unused) {
  53. (void) unused;
  54. return (int) WaitForSingleObject(thread, INFINITE);
  55. }
  56. static int sched_yield (void) {
  57. Sleep (0);
  58. return 0;
  59. }
  60. #else
  61. #include <pthread.h>
  62. #include <stdatomic.h>
  63. typedef void* thread_ret_t;
  64. #endif
  65. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  66. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  67. #ifndef __FMA__
  68. #define __FMA__
  69. #endif
  70. #ifndef __F16C__
  71. #define __F16C__
  72. #endif
  73. #ifndef __SSE3__
  74. #define __SSE3__
  75. #endif
  76. #endif
  77. #ifdef __HAIKU__
  78. #define static_assert(cond, msg) _Static_assert(cond, msg)
  79. #endif
  80. /*#define GGML_PERF*/
  81. #define GGML_DEBUG 0
  82. #define GGML_GELU_FP16
  83. #define GGML_SILU_FP16
  84. #define GGML_SOFT_MAX_UNROLL 4
  85. #define GGML_VEC_DOT_UNROLL 2
  86. #ifdef GGML_USE_ACCELERATE
  87. // uncomment to use vDSP for soft max computation
  88. // note: not sure if it is actually faster
  89. //#define GGML_SOFT_MAX_ACCELERATE
  90. #endif
  91. #if UINTPTR_MAX == 0xFFFFFFFF
  92. #define GGML_MEM_ALIGN 4
  93. #else
  94. #define GGML_MEM_ALIGN 16
  95. #endif
  96. #if defined(_MSC_VER) || defined(__MINGW32__)
  97. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  98. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  99. #else
  100. inline static void* ggml_aligned_malloc(size_t size) {
  101. void* aligned_memory = NULL;
  102. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  103. if (result != 0) {
  104. // Handle allocation failure
  105. return NULL;
  106. }
  107. return aligned_memory;
  108. }
  109. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  110. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  111. #endif
  112. #define UNUSED(x) (void)(x)
  113. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  114. #define GGML_ASSERT(x) \
  115. do { \
  116. if (!(x)) { \
  117. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  118. abort(); \
  119. } \
  120. } while (0)
  121. #if defined(GGML_USE_ACCELERATE)
  122. #include <Accelerate/Accelerate.h>
  123. #elif defined(GGML_USE_OPENBLAS)
  124. #include <cblas.h>
  125. #elif defined(GGML_USE_CUBLAS)
  126. #include <cublas_v2.h>
  127. #include <cuda_runtime.h>
  128. #define CUDA_CHECK(err) \
  129. do { \
  130. cudaError_t err_ = (err); \
  131. if (err_ != cudaSuccess) { \
  132. printf("CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
  133. cudaGetErrorString(err_)); \
  134. exit(1); \
  135. } \
  136. } while (0)
  137. #define CUBLAS_CHECK(err) \
  138. do { \
  139. cublasStatus_t err_ = (err); \
  140. if (err_ != CUBLAS_STATUS_SUCCESS) { \
  141. printf("cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
  142. exit(1); \
  143. } \
  144. } while (0)
  145. static cublasHandle_t cublasH = NULL;
  146. static cudaStream_t cudaStream = NULL;
  147. static void init_cublas(void) {
  148. if (cublasH == NULL) {
  149. // create cublas handle, bind a stream
  150. CUBLAS_CHECK(cublasCreate(&cublasH));
  151. CUDA_CHECK(cudaStreamCreateWithFlags(&cudaStream, cudaStreamNonBlocking));
  152. CUBLAS_CHECK(cublasSetStream(cublasH, cudaStream));
  153. // configure logging to stdout
  154. // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, NULL));
  155. }
  156. }
  157. #endif
  158. #undef MIN
  159. #undef MAX
  160. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  161. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  162. // floating point type used to accumulate sums
  163. typedef double ggml_float;
  164. // 16-bit float
  165. // on Arm, we use __fp16
  166. // on x86, we use uint16_t
  167. #ifdef __ARM_NEON
  168. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  169. //
  170. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  171. //
  172. #include <arm_neon.h>
  173. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  174. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  175. #define GGML_FP16_TO_FP32(x) ((float) (x))
  176. #define GGML_FP32_TO_FP16(x) (x)
  177. #else
  178. #ifdef __wasm_simd128__
  179. #include <wasm_simd128.h>
  180. #else
  181. #ifdef __POWER9_VECTOR__
  182. #include <altivec.h>
  183. #undef bool
  184. #define bool _Bool
  185. #else
  186. #include <immintrin.h>
  187. #endif
  188. #endif
  189. #ifdef __F16C__
  190. #ifdef _MSC_VER
  191. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  192. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  193. #else
  194. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  195. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  196. #endif
  197. #elif defined(__POWER9_VECTOR__)
  198. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  199. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  200. /* the inline asm below is about 12% faster than the lookup method */
  201. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  202. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  203. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  204. register float f;
  205. register double d;
  206. __asm__(
  207. "mtfprd %0,%2\n"
  208. "xscvhpdp %0,%0\n"
  209. "frsp %1,%0\n" :
  210. /* temp */ "=d"(d),
  211. /* out */ "=f"(f):
  212. /* in */ "r"(h));
  213. return f;
  214. }
  215. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  216. register double d;
  217. register ggml_fp16_t r;
  218. __asm__( /* xscvdphp can work on double or single precision */
  219. "xscvdphp %0,%2\n"
  220. "mffprd %1,%0\n" :
  221. /* temp */ "=d"(d),
  222. /* out */ "=r"(r):
  223. /* in */ "f"(f));
  224. return r;
  225. }
  226. #else
  227. // FP16 <-> FP32
  228. // ref: https://github.com/Maratyszcza/FP16
  229. static inline float fp32_from_bits(uint32_t w) {
  230. union {
  231. uint32_t as_bits;
  232. float as_value;
  233. } fp32;
  234. fp32.as_bits = w;
  235. return fp32.as_value;
  236. }
  237. static inline uint32_t fp32_to_bits(float f) {
  238. union {
  239. float as_value;
  240. uint32_t as_bits;
  241. } fp32;
  242. fp32.as_value = f;
  243. return fp32.as_bits;
  244. }
  245. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  246. const uint32_t w = (uint32_t) h << 16;
  247. const uint32_t sign = w & UINT32_C(0x80000000);
  248. const uint32_t two_w = w + w;
  249. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  250. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  251. const float exp_scale = 0x1.0p-112f;
  252. #else
  253. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  254. #endif
  255. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  256. const uint32_t magic_mask = UINT32_C(126) << 23;
  257. const float magic_bias = 0.5f;
  258. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  259. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  260. const uint32_t result = sign |
  261. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  262. return fp32_from_bits(result);
  263. }
  264. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  265. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  266. const float scale_to_inf = 0x1.0p+112f;
  267. const float scale_to_zero = 0x1.0p-110f;
  268. #else
  269. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  270. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  271. #endif
  272. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  273. const uint32_t w = fp32_to_bits(f);
  274. const uint32_t shl1_w = w + w;
  275. const uint32_t sign = w & UINT32_C(0x80000000);
  276. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  277. if (bias < UINT32_C(0x71000000)) {
  278. bias = UINT32_C(0x71000000);
  279. }
  280. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  281. const uint32_t bits = fp32_to_bits(base);
  282. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  283. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  284. const uint32_t nonsign = exp_bits + mantissa_bits;
  285. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  286. }
  287. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  288. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  289. #endif // __F16C__
  290. #endif // __ARM_NEON
  291. //
  292. // global data
  293. //
  294. // precomputed gelu table for f16 (128 KB)
  295. static ggml_fp16_t table_gelu_f16[1 << 16];
  296. // precomputed silu table for f16 (128 KB)
  297. static ggml_fp16_t table_silu_f16[1 << 16];
  298. // precomputed exp table for f16 (128 KB)
  299. static ggml_fp16_t table_exp_f16[1 << 16];
  300. // precomputed f32 table for f16 (256 KB)
  301. static float table_f32_f16[1 << 16];
  302. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  303. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  304. // This is also true for POWER9.
  305. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  306. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  307. uint16_t s;
  308. memcpy(&s, &f, sizeof(uint16_t));
  309. return table_f32_f16[s];
  310. }
  311. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  312. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  313. #endif
  314. // note: do not use these inside ggml.c
  315. // these are meant to be used via the ggml.h API
  316. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  317. return (float) GGML_FP16_TO_FP32(x);
  318. }
  319. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  320. return GGML_FP32_TO_FP16(x);
  321. }
  322. //
  323. // timing
  324. //
  325. #if defined(_MSC_VER) || defined(__MINGW32__)
  326. static int64_t timer_freq;
  327. void ggml_time_init(void) {
  328. LARGE_INTEGER frequency;
  329. QueryPerformanceFrequency(&frequency);
  330. timer_freq = frequency.QuadPart;
  331. }
  332. int64_t ggml_time_ms(void) {
  333. LARGE_INTEGER t;
  334. QueryPerformanceCounter(&t);
  335. return (t.QuadPart * 1000) / timer_freq;
  336. }
  337. int64_t ggml_time_us(void) {
  338. LARGE_INTEGER t;
  339. QueryPerformanceCounter(&t);
  340. return (t.QuadPart * 1000000) / timer_freq;
  341. }
  342. #else
  343. void ggml_time_init(void) {}
  344. int64_t ggml_time_ms(void) {
  345. struct timespec ts;
  346. clock_gettime(CLOCK_MONOTONIC, &ts);
  347. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  348. }
  349. int64_t ggml_time_us(void) {
  350. struct timespec ts;
  351. clock_gettime(CLOCK_MONOTONIC, &ts);
  352. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  353. }
  354. #endif
  355. int64_t ggml_cycles(void) {
  356. return clock();
  357. }
  358. int64_t ggml_cycles_per_ms(void) {
  359. return CLOCKS_PER_SEC/1000;
  360. }
  361. #ifdef GGML_PERF
  362. #define ggml_perf_time_ms() ggml_time_ms()
  363. #define ggml_perf_time_us() ggml_time_us()
  364. #define ggml_perf_cycles() ggml_cycles()
  365. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  366. #else
  367. #define ggml_perf_time_ms() 0
  368. #define ggml_perf_time_us() 0
  369. #define ggml_perf_cycles() 0
  370. #define ggml_perf_cycles_per_ms() 0
  371. #endif
  372. //
  373. // cache line
  374. //
  375. #if defined(__cpp_lib_hardware_interference_size)
  376. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  377. #else
  378. #if defined(__POWER9_VECTOR__)
  379. #define CACHE_LINE_SIZE 128
  380. #else
  381. #define CACHE_LINE_SIZE 64
  382. #endif
  383. #endif
  384. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  385. //
  386. // quantization
  387. //
  388. // AVX routines provided by GH user Const-me
  389. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  390. #if __AVX2__ || __AVX512F__
  391. // Unpack 32 4-bit fields into 32 bytes
  392. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  393. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  394. {
  395. // Load 16 bytes from memory
  396. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  397. // Expand bytes into uint16_t values
  398. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  399. // Unpack values into individual bytes
  400. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  401. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  402. __m256i low = _mm256_and_si256( lowMask, bytes );
  403. high = _mm256_slli_epi16( high, 4 );
  404. bytes = _mm256_or_si256( low, high );
  405. return bytes;
  406. }
  407. static inline __m128i packNibbles( __m256i bytes )
  408. {
  409. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  410. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  411. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  412. __m256i low = _mm256_and_si256( lowByte, bytes );
  413. high = _mm256_srli_epi16( high, 4 );
  414. bytes = _mm256_or_si256( low, high );
  415. // Compress uint16_t lanes into bytes
  416. __m128i r0 = _mm256_castsi256_si128( bytes );
  417. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  418. return _mm_packus_epi16( r0, r1 );
  419. }
  420. #elif __AVX__
  421. static inline __m128i bytesFromNibbles( const uint8_t* rsi )
  422. {
  423. // Load 8 bytes from memory
  424. __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
  425. // Expand bytes into uint16_t values
  426. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  427. // Unpack values into individual bytes
  428. const __m128i lowMask = _mm_set1_epi8( 0xF );
  429. __m128i high = _mm_andnot_si128( lowMask, bytes );
  430. __m128i low = _mm_and_si128( lowMask, bytes );
  431. high = _mm_slli_epi16( high, 4 );
  432. bytes = _mm_or_si128( low, high );
  433. return bytes;
  434. }
  435. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  436. {
  437. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  438. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  439. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  440. __m128i low = _mm_and_si128( lowByte, bytes1 );
  441. high = _mm_srli_epi16( high, 4 );
  442. bytes1 = _mm_or_si128( low, high );
  443. high = _mm_andnot_si128( lowByte, bytes2 );
  444. low = _mm_and_si128( lowByte, bytes2 );
  445. high = _mm_srli_epi16( high, 4 );
  446. bytes2 = _mm_or_si128( low, high );
  447. return _mm_packus_epi16( bytes1, bytes2);
  448. }
  449. #endif
  450. #if __ARM_NEON
  451. #if !defined(__aarch64__)
  452. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  453. return
  454. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  455. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  456. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  457. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  458. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  459. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  460. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  461. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  462. }
  463. inline static int32_t vaddvq_s16(int16x8_t v) {
  464. return
  465. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  466. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  467. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  468. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  469. }
  470. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  471. return
  472. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  473. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  474. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  475. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  476. }
  477. inline static int32_t vaddvq_s32(int32x4_t v) {
  478. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  479. }
  480. inline static float vaddvq_f32(float32x4_t v) {
  481. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  482. }
  483. float vminvq_f32(float32x4_t v) {
  484. return
  485. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  486. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  487. }
  488. float vmaxvq_f32(float32x4_t v) {
  489. return
  490. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  491. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  492. }
  493. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  494. return vget_low_s8(vcombine_s8(a, b));
  495. }
  496. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  497. return vget_high_s8(vcombine_s8(a, b));
  498. }
  499. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  500. return vget_low_u8(vcombine_u8(a, b));
  501. }
  502. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  503. return vget_high_u8(vcombine_u8(a, b));
  504. }
  505. #endif
  506. #endif
  507. #define QK4_0 32
  508. typedef struct {
  509. float d; // delta
  510. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  511. } block_q4_0;
  512. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  513. #define QK4_1 32
  514. typedef struct {
  515. float d; // delta
  516. float m; // min
  517. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  518. } block_q4_1;
  519. static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
  520. #define QK4_2 16
  521. typedef struct {
  522. ggml_fp16_t d; // delta
  523. uint8_t qs[QK4_2 / 2]; // nibbles / quants
  524. } block_q4_2;
  525. static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
  526. #define QK8_0 32
  527. typedef struct {
  528. float d; // delta
  529. int8_t qs[QK8_0]; // quants
  530. } block_q8_0;
  531. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  532. // reference implementation for deterministic creation of model files
  533. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  534. assert(k % QK4_0 == 0);
  535. const int nb = k / QK4_0;
  536. uint8_t pp[QK4_0/2];
  537. for (int i = 0; i < nb; i++) {
  538. float amax = 0.0f; // absolute max
  539. for (int l = 0; l < QK4_0; l++) {
  540. const float v = x[i*QK4_0 + l];
  541. amax = MAX(amax, fabsf(v));
  542. }
  543. const float d = amax / ((1 << 3) - 1);
  544. const float id = d ? 1.0f/d : 0.0f;
  545. y[i].d = d;
  546. for (int l = 0; l < QK4_0; l += 2) {
  547. const float v0 = x[i*QK4_0 + l + 0]*id;
  548. const float v1 = x[i*QK4_0 + l + 1]*id;
  549. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  550. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  551. assert(vi0 < 16);
  552. assert(vi1 < 16);
  553. pp[l/2] = vi0 | (vi1 << 4);
  554. }
  555. memcpy(y[i].qs, pp, sizeof(pp));
  556. }
  557. }
  558. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  559. assert(k % QK4_0 == 0);
  560. const int nb = k / QK4_0;
  561. block_q4_0 * restrict y = vy;
  562. #if defined(__POWER9_VECTOR__)
  563. const vector float v85 = vec_splats(8.5f);
  564. for (int i = 0; i < nb; i++) {
  565. float amax = 0.0f; // absolute max
  566. vector float srcv [8];
  567. vector float asrcv[8];
  568. vector float amaxv[8];
  569. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  570. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  571. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  572. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  573. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  574. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  575. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  576. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  577. amax = MAX(
  578. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  579. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  580. const float d = amax / ((1 << 3) - 1);
  581. const float id = d ? 1.0/d : 0.0;
  582. y[i].d = d;
  583. const vector float vid = vec_splats(id);
  584. uint8_t * restrict pb = y[i].qs;
  585. for (int l = 0; l < 8; l++) {
  586. const vector float vf = vec_madd(srcv[l], vid, v85);
  587. const vector signed int vi = vec_signed(vf);
  588. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  589. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  590. }
  591. }
  592. #elif __ARM_NEON
  593. for (int i = 0; i < nb; i++) {
  594. float32x4_t srcv [8];
  595. float32x4_t asrcv[8];
  596. float32x4_t amaxv[8];
  597. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  598. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  599. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  600. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  601. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  602. const float amax = vmaxvq_f32(amaxv[0]);
  603. const float d = amax / ((1 << 3) - 1);
  604. const float id = d ? 1.0f/d : 0.0f;
  605. y[i].d = d;
  606. for (int l = 0; l < 8; l++) {
  607. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  608. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  609. const int32x4_t vi = vcvtq_s32_f32(vf);
  610. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  611. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  612. }
  613. }
  614. #elif defined(__AVX2__)
  615. for (int i = 0; i < nb; i++) {
  616. // Load elements into 4 AVX vectors
  617. __m256 v0 = _mm256_loadu_ps( x );
  618. __m256 v1 = _mm256_loadu_ps( x + 8 );
  619. __m256 v2 = _mm256_loadu_ps( x + 16 );
  620. __m256 v3 = _mm256_loadu_ps( x + 24 );
  621. x += 32;
  622. // Compute max(abs(e)) for the block
  623. const __m256 signBit = _mm256_set1_ps( -0.0f );
  624. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  625. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  626. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  627. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  628. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  629. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  630. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  631. const float maxScalar = _mm_cvtss_f32( max4 );
  632. // Quantize these floats
  633. const float d = maxScalar / 7.0f;
  634. y[i].d = d;
  635. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  636. const __m256 mul = _mm256_set1_ps( id );
  637. // Apply the multiplier
  638. v0 = _mm256_mul_ps( v0, mul );
  639. v1 = _mm256_mul_ps( v1, mul );
  640. v2 = _mm256_mul_ps( v2, mul );
  641. v3 = _mm256_mul_ps( v3, mul );
  642. // Round to nearest integer
  643. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  644. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  645. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  646. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  647. // Convert floats to integers
  648. __m256i i0 = _mm256_cvtps_epi32( v0 );
  649. __m256i i1 = _mm256_cvtps_epi32( v1 );
  650. __m256i i2 = _mm256_cvtps_epi32( v2 );
  651. __m256i i3 = _mm256_cvtps_epi32( v3 );
  652. // Convert int32 to int16
  653. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  654. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  655. // Convert int16 to int8
  656. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  657. // We got our precious signed bytes, but the order is now wrong
  658. // These AVX2 pack instructions process 16-byte pieces independently
  659. // The following instruction is fixing the order
  660. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  661. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  662. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  663. const __m256i off = _mm256_set1_epi8( 8 );
  664. i0 = _mm256_add_epi8( i0, off );
  665. // Compress the vector into 4 bit/value, and store
  666. __m128i res = packNibbles( i0 );
  667. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  668. }
  669. #elif defined(__AVX__)
  670. for (int i = 0; i < nb; i++) {
  671. // Load elements into 4 AVX vectors
  672. __m256 v0 = _mm256_loadu_ps( x );
  673. __m256 v1 = _mm256_loadu_ps( x + 8 );
  674. __m256 v2 = _mm256_loadu_ps( x + 16 );
  675. __m256 v3 = _mm256_loadu_ps( x + 24 );
  676. x += 32;
  677. // Compute max(abs(e)) for the block
  678. const __m256 signBit = _mm256_set1_ps( -0.0f );
  679. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  680. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  681. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  682. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  683. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  684. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  685. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  686. const float maxScalar = _mm_cvtss_f32( max4 );
  687. // Quantize these floats
  688. const float d = maxScalar / 7.0f;
  689. y[i].d = d;
  690. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  691. const __m256 mul = _mm256_set1_ps( id );
  692. // Apply the multiplier
  693. v0 = _mm256_mul_ps( v0, mul );
  694. v1 = _mm256_mul_ps( v1, mul );
  695. v2 = _mm256_mul_ps( v2, mul );
  696. v3 = _mm256_mul_ps( v3, mul );
  697. // Round to nearest integer
  698. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  699. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  700. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  701. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  702. // Convert floats to integers
  703. __m256i i0 = _mm256_cvtps_epi32( v0 );
  704. __m256i i1 = _mm256_cvtps_epi32( v1 );
  705. __m256i i2 = _mm256_cvtps_epi32( v2 );
  706. __m256i i3 = _mm256_cvtps_epi32( v3 );
  707. // Since we don't have in AVX some necessary functions,
  708. // we split the registers in half and call AVX2 analogs from SSE
  709. __m128i ni0 = _mm256_castsi256_si128( i0 );
  710. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  711. __m128i ni2 = _mm256_castsi256_si128( i1 );
  712. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  713. __m128i ni4 = _mm256_castsi256_si128( i2 );
  714. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  715. __m128i ni6 = _mm256_castsi256_si128( i3 );
  716. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  717. // Convert int32 to int16
  718. ni0 = _mm_packs_epi32( ni0, ni1 );
  719. ni2 = _mm_packs_epi32( ni2, ni3 );
  720. ni4 = _mm_packs_epi32( ni4, ni5 );
  721. ni6 = _mm_packs_epi32( ni6, ni7 );
  722. // Convert int16 to int8
  723. ni0 = _mm_packs_epi16( ni0, ni2 );
  724. ni4 = _mm_packs_epi16( ni4, ni6 );
  725. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  726. const __m128i off = _mm_set1_epi8( 8);
  727. ni0 = _mm_add_epi8( ni0, off );
  728. ni4 = _mm_add_epi8( ni4, off );
  729. // Compress the vector into 4 bit/value, and store
  730. __m128i res = packNibbles( ni0, ni4 );
  731. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  732. }
  733. #elif defined(__wasm_simd128__)
  734. for (int i = 0; i < nb; i++) {
  735. float amax = 0.0f; // absolute max
  736. v128_t srcv [8];
  737. v128_t asrcv[8];
  738. v128_t amaxv[8];
  739. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  740. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  741. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  742. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  743. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  744. amax = MAX(
  745. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  746. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  747. const float d = amax / ((1 << 3) - 1);
  748. const float id = d ? 1.0/d : 0.0;
  749. y[i].d = d;
  750. for (int l = 0; l < 8; l++) {
  751. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  752. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  753. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  754. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  755. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  756. }
  757. }
  758. #else
  759. // scalar
  760. quantize_row_q4_0_reference(x, y, k);
  761. #endif
  762. }
  763. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  764. assert(k % QK4_1 == 0);
  765. const int nb = k / QK4_1;
  766. block_q4_1 * restrict y = vy;
  767. uint8_t pp[QK4_1/2];
  768. for (int i = 0; i < nb; i++) {
  769. float min = FLT_MAX;
  770. float max = -FLT_MAX;
  771. for (int l = 0; l < QK4_1; l++) {
  772. const float v = x[i*QK4_1 + l];
  773. if (v < min) min = v;
  774. if (v > max) max = v;
  775. }
  776. const float d = (max - min) / ((1 << 4) - 1);
  777. const float id = d ? 1.0f/d : 0.0f;
  778. y[i].d = d;
  779. y[i].m = min;
  780. for (int l = 0; l < QK4_1; l += 2) {
  781. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  782. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  783. const uint8_t vi0 = roundf(v0);
  784. const uint8_t vi1 = roundf(v1);
  785. assert(vi0 < 16);
  786. assert(vi1 < 16);
  787. pp[l/2] = vi0 | (vi1 << 4);
  788. }
  789. memcpy(y[i].qs, pp, sizeof(pp));
  790. }
  791. }
  792. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  793. assert(k % QK4_1 == 0);
  794. const int nb = k / QK4_1;
  795. block_q4_1 * restrict y = vy;
  796. #if defined(__AVX2__)
  797. for (int i = 0; i < nb; i++) {
  798. // Load elements into 4 AVX vectors
  799. __m256 v0 = _mm256_loadu_ps( x );
  800. __m256 v1 = _mm256_loadu_ps( x + 8 );
  801. __m256 v2 = _mm256_loadu_ps( x + 16 );
  802. __m256 v3 = _mm256_loadu_ps( x + 24 );
  803. x += 32;
  804. // Compute max for the block
  805. __m256 vmax;
  806. vmax = _mm256_max_ps( v0, v1 );
  807. vmax = _mm256_max_ps( vmax, v2 );
  808. vmax = _mm256_max_ps( vmax, v3 );
  809. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  810. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  811. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  812. const float maxScalar = _mm_cvtss_f32( max4 );
  813. // Compute min for the block
  814. __m256 vmin;
  815. vmin = _mm256_min_ps( v0, v1 );
  816. vmin = _mm256_min_ps( vmin, v2 );
  817. vmin = _mm256_min_ps( vmin, v3 );
  818. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  819. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  820. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  821. const float minScalar = _mm_cvtss_f32( min4 );
  822. // Quantize these floats
  823. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  824. const float id = d ? 1.0f/d : 0.0f;
  825. y[i].m = minScalar;
  826. y[i].d = d;
  827. // x = (x-min)*id
  828. const __m256 mul = _mm256_set1_ps( id );
  829. const __m256 off = _mm256_set1_ps( minScalar );
  830. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  831. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  832. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  833. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  834. // Round to nearest integer
  835. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  836. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  837. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  838. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  839. // Convert floats to integers
  840. __m256i i0 = _mm256_cvtps_epi32( v0 );
  841. __m256i i1 = _mm256_cvtps_epi32( v1 );
  842. __m256i i2 = _mm256_cvtps_epi32( v2 );
  843. __m256i i3 = _mm256_cvtps_epi32( v3 );
  844. // Convert int32 to int16
  845. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  846. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  847. // Convert int16 to int8
  848. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  849. // We got our precious signed bytes, but the order is now wrong
  850. // These AVX2 pack instructions process 16-byte pieces independently
  851. // The following instruction is fixing the order
  852. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  853. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  854. // Compress the vector into 4 bit/value, and store
  855. __m128i res = packNibbles( i0 );
  856. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  857. }
  858. #elif __ARM_NEON
  859. for (int i = 0; i < nb; i++) {
  860. float32x4_t srcv[8];
  861. float32x4_t minv[8];
  862. float32x4_t maxv[8];
  863. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  864. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  865. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  866. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  867. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  868. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  869. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  870. const float min = vminvq_f32(minv[0]);
  871. const float max = vmaxvq_f32(maxv[0]);
  872. const float d = (max - min) / ((1 << 4) - 1);
  873. const float id = d ? 1.0f/d : 0.0f;
  874. y[i].d = d;
  875. y[i].m = min;
  876. const float32x4_t minv0 = vdupq_n_f32(min);
  877. for (int l = 0; l < 8; l++) {
  878. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  879. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  880. const int32x4_t vi = vcvtq_s32_f32(vf);
  881. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  882. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  883. }
  884. }
  885. #else
  886. // scalar
  887. quantize_row_q4_1_reference(x, vy, k);
  888. #endif
  889. }
  890. // reference implementation for deterministic creation of model files
  891. static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * restrict y, int k) {
  892. assert(k % QK4_2 == 0);
  893. const int nb = k / QK4_2;
  894. for (int i = 0; i < nb; i++) {
  895. float amax = 0.0f; // absolute max
  896. for (int l = 0; l < QK4_2; l++) {
  897. const float v = x[i*QK4_2 + l];
  898. amax = MAX(amax, fabsf(v));
  899. }
  900. const float d = amax / ((1 << 3) - 1);
  901. const float id = d ? 1.0f/d : 0.0f;
  902. y[i].d = GGML_FP32_TO_FP16(d);
  903. for (int l = 0; l < QK4_2; l += 2) {
  904. const float v0 = x[i*QK4_2 + l + 0]*id;
  905. const float v1 = x[i*QK4_2 + l + 1]*id;
  906. const uint8_t vi0 = (uint8_t)(v0 + 8.5f);
  907. const uint8_t vi1 = (uint8_t)(v1 + 8.5f);
  908. assert(vi0 < 16);
  909. assert(vi1 < 16);
  910. y[i].qs[l/2] = vi0 | (vi1 << 4);
  911. }
  912. }
  913. }
  914. static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int k) {
  915. assert(k % QK4_2 == 0);
  916. block_q4_2 * restrict y = vy;
  917. quantize_row_q4_2_reference(x, y, k);
  918. }
  919. // reference implementation for deterministic creation of model files
  920. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  921. assert(k % QK8_0 == 0);
  922. const int nb = k / QK8_0;
  923. for (int i = 0; i < nb; i++) {
  924. float amax = 0.0f; // absolute max
  925. for (int l = 0; l < QK8_0; l++) {
  926. const float v = x[i*QK8_0 + l];
  927. amax = MAX(amax, fabsf(v));
  928. }
  929. const float d = amax / ((1 << 7) - 1);
  930. const float id = d ? 1.0f/d : 0.0f;
  931. y[i].d = d;
  932. for (int l = 0; l < QK8_0; ++l) {
  933. const float v = x[i*QK8_0 + l]*id;
  934. y[i].qs[l] = roundf(v);
  935. }
  936. }
  937. }
  938. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  939. assert(k % QK8_0 == 0);
  940. const int nb = k / QK8_0;
  941. block_q8_0 * restrict y = vy;
  942. #if defined(__ARM_NEON)
  943. for (int i = 0; i < nb; i++) {
  944. float32x4_t srcv [8];
  945. float32x4_t asrcv[8];
  946. float32x4_t amaxv[8];
  947. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  948. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  949. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  950. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  951. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  952. const float amax = vmaxvq_f32(amaxv[0]);
  953. const float d = amax / ((1 << 7) - 1);
  954. const float id = d ? 1.0f/d : 0.0f;
  955. y[i].d = d;
  956. for (int l = 0; l < 8; l++) {
  957. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  958. const int32x4_t vi = vcvtnq_s32_f32(v);
  959. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  960. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  961. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  962. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  963. }
  964. }
  965. #elif defined(__AVX2__) || defined(__AVX__)
  966. for (int i = 0; i < nb; i++) {
  967. // Load elements into 4 AVX vectors
  968. __m256 v0 = _mm256_loadu_ps( x );
  969. __m256 v1 = _mm256_loadu_ps( x + 8 );
  970. __m256 v2 = _mm256_loadu_ps( x + 16 );
  971. __m256 v3 = _mm256_loadu_ps( x + 24 );
  972. x += 32;
  973. // Compute max(abs(e)) for the block
  974. const __m256 signBit = _mm256_set1_ps( -0.0f );
  975. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  976. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  977. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  978. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  979. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  980. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  981. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  982. const float maxScalar = _mm_cvtss_f32( max4 );
  983. // Quantize these floats
  984. const float d = maxScalar / 127.f;
  985. y[i].d = d;
  986. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  987. const __m256 mul = _mm256_set1_ps( id );
  988. // Apply the multiplier
  989. v0 = _mm256_mul_ps( v0, mul );
  990. v1 = _mm256_mul_ps( v1, mul );
  991. v2 = _mm256_mul_ps( v2, mul );
  992. v3 = _mm256_mul_ps( v3, mul );
  993. // Round to nearest integer
  994. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  995. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  996. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  997. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  998. // Convert floats to integers
  999. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1000. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1001. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1002. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1003. #if defined(__AVX2__)
  1004. // Convert int32 to int16
  1005. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1006. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1007. // Convert int16 to int8
  1008. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1009. // We got our precious signed bytes, but the order is now wrong
  1010. // These AVX2 pack instructions process 16-byte pieces independently
  1011. // The following instruction is fixing the order
  1012. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1013. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1014. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1015. #else
  1016. // Since we don't have in AVX some necessary functions,
  1017. // we split the registers in half and call AVX2 analogs from SSE
  1018. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1019. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1020. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1021. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1022. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1023. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1024. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1025. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1026. // Convert int32 to int16
  1027. ni0 = _mm_packs_epi32( ni0, ni1 );
  1028. ni2 = _mm_packs_epi32( ni2, ni3 );
  1029. ni4 = _mm_packs_epi32( ni4, ni5 );
  1030. ni6 = _mm_packs_epi32( ni6, ni7 );
  1031. // Convert int16 to int8
  1032. ni0 = _mm_packs_epi16( ni0, ni2 );
  1033. ni4 = _mm_packs_epi16( ni4, ni6 );
  1034. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1035. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1036. #endif
  1037. }
  1038. #else
  1039. // scalar
  1040. quantize_row_q8_0_reference(x, y, k);
  1041. #endif
  1042. }
  1043. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  1044. assert(k % QK4_0 == 0);
  1045. const int nb = k / QK4_0;
  1046. const block_q4_0 * restrict x = vx;
  1047. #if defined(__AVX2__)
  1048. for (int i = 0; i < nb; i++) {
  1049. // scale factor
  1050. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1051. const uint8_t * restrict pp = x[i].qs;
  1052. for (int l = 0; l < QK4_0; l += 32) {
  1053. // Load 32x4-bit integers into 32x8-bit integers
  1054. __m256i vx8 = bytesFromNibbles(pp+l/2);
  1055. // Subtract 8 from the integers
  1056. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  1057. // Convert to 16-bit int
  1058. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1059. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1060. // Convert to 32-bit int -> float 32
  1061. const __m256 vf[4] = {
  1062. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1063. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1064. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1065. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1066. };
  1067. // Scale and store
  1068. for (int j = 0; j < 4; j++) {
  1069. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1070. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1071. }
  1072. }
  1073. }
  1074. #elif defined(__ARM_NEON)
  1075. for (int i = 0; i < nb; i++) {
  1076. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1077. const uint8_t * restrict pp = x[i].qs;
  1078. for (int l = 0; l < QK4_0; l += 16) {
  1079. // Load 16x4-bit integers into 8x8-bit integers
  1080. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1081. // Expand 4-bit qs to 8-bit bytes
  1082. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1083. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1084. // Convert to signed 8-bit integers
  1085. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1086. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1087. // Subtract 8 from each byte
  1088. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1089. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1090. // Interleave and combine
  1091. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1092. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1093. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1094. // convert to 2x int16x8_t
  1095. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1096. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1097. // convert to 4x float32x4_t
  1098. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1099. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1100. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1101. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1102. // Multiply by d
  1103. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1104. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1105. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1106. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1107. // Store
  1108. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1109. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1110. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1111. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1112. }
  1113. }
  1114. #else
  1115. // scalar
  1116. for (int i = 0; i < nb; i++) {
  1117. const float d = x[i].d;
  1118. const uint8_t * restrict pp = x[i].qs;
  1119. for (int l = 0; l < QK4_0; l += 2) {
  1120. const uint8_t vi = pp[l/2];
  1121. const int8_t vi0 = vi & 0xf;
  1122. const int8_t vi1 = vi >> 4;
  1123. const float v0 = (vi0 - 8)*d;
  1124. const float v1 = (vi1 - 8)*d;
  1125. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1126. y[i*QK4_0 + l + 0] = v0;
  1127. y[i*QK4_0 + l + 1] = v1;
  1128. assert(!isnan(y[i*QK4_0 + l + 0]));
  1129. assert(!isnan(y[i*QK4_0 + l + 1]));
  1130. }
  1131. }
  1132. #endif
  1133. }
  1134. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1135. assert(k % QK4_1 == 0);
  1136. const int nb = k / QK4_1;
  1137. const block_q4_1 * restrict x = vx;
  1138. #if defined(__AVX2__)
  1139. for (int i = 0; i < nb; i++) {
  1140. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1141. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1142. const uint8_t * restrict pp = x[i].qs;
  1143. for (int l = 0; l < QK4_1; l += 32) {
  1144. // Load 32x4-bit integers into 32x8-bit integers
  1145. __m256i vx8 = bytesFromNibbles(pp+l/2);
  1146. // Convert to 16-bit int
  1147. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1148. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1149. // Convert to 32-bit int -> float 32
  1150. const __m256 vf[4] = {
  1151. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1152. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1153. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1154. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1155. };
  1156. // Scale, add m and store
  1157. for (int j = 0; j < 4; j++) {
  1158. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1159. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1160. }
  1161. }
  1162. }
  1163. #elif defined(__ARM_NEON)
  1164. for (int i = 0; i < nb; i++) {
  1165. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1166. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1167. const uint8_t * restrict pp = x[i].qs;
  1168. for (int l = 0; l < QK4_1; l += 16) {
  1169. // Load 16x4-bit integers into 8x8-bit integers
  1170. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1171. // Expand 4-bit qs to 8-bit bytes
  1172. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1173. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1174. // Interleave and combine
  1175. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1176. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1177. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1178. // convert to 2x uint16x8_t
  1179. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1180. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1181. // convert to 4x float32x4_t
  1182. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1183. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1184. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1185. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1186. // multiply by d and add m
  1187. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1188. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1189. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1190. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1191. // Store
  1192. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1193. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1194. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1195. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1196. }
  1197. }
  1198. #else
  1199. for (int i = 0; i < nb; i++) {
  1200. const float d = x[i].d;
  1201. const float m = x[i].m;
  1202. const uint8_t * restrict pp = x[i].qs;
  1203. for (int l = 0; l < QK4_1; l += 2) {
  1204. const uint8_t vi = pp[l/2];
  1205. const int8_t vi0 = vi & 0xf;
  1206. const int8_t vi1 = vi >> 4;
  1207. const float v0 = vi0*d + m;
  1208. const float v1 = vi1*d + m;
  1209. y[i*QK4_1 + l + 0] = v0;
  1210. y[i*QK4_1 + l + 1] = v1;
  1211. assert(!isnan(y[i*QK4_1 + l + 0]));
  1212. assert(!isnan(y[i*QK4_1 + l + 1]));
  1213. }
  1214. }
  1215. #endif
  1216. }
  1217. static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, int k) {
  1218. assert(k % QK4_2 == 0);
  1219. const int nb = k / QK4_2;
  1220. const block_q4_2 * restrict x = vx;
  1221. for (int i = 0; i < nb; i++) {
  1222. const float d = GGML_FP16_TO_FP32(x[i].d);
  1223. const uint8_t * restrict pp = x[i].qs;
  1224. for (int l = 0; l < QK4_2; l += 2) {
  1225. const uint8_t vi = pp[l/2];
  1226. const int8_t vi0 = vi & 0xf;
  1227. const int8_t vi1 = vi >> 4;
  1228. const float v0 = (vi0 - 8)*d;
  1229. const float v1 = (vi1 - 8)*d;
  1230. y[i*QK4_2 + l + 0] = v0;
  1231. y[i*QK4_2 + l + 1] = v1;
  1232. assert(!isnan(y[i*QK4_2 + l + 0]));
  1233. assert(!isnan(y[i*QK4_2 + l + 1]));
  1234. }
  1235. }
  1236. }
  1237. static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1238. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1239. //static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1240. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1241. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1242. [GGML_TYPE_Q4_0] = {
  1243. .dequantize_row_q = dequantize_row_q4_0,
  1244. .quantize_row_q = quantize_row_q4_0,
  1245. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1246. .quantize_row_q_dot = quantize_row_q8_0,
  1247. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1248. },
  1249. [GGML_TYPE_Q4_1] = {
  1250. .dequantize_row_q = dequantize_row_q4_1,
  1251. .quantize_row_q = quantize_row_q4_1,
  1252. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1253. .quantize_row_q_dot = quantize_row_q4_1,
  1254. .vec_dot_q = ggml_vec_dot_q4_1,
  1255. },
  1256. [GGML_TYPE_Q4_2] = {
  1257. .dequantize_row_q = dequantize_row_q4_2,
  1258. .quantize_row_q = quantize_row_q4_2,
  1259. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_reference,
  1260. .quantize_row_q_dot = quantize_row_q8_0,
  1261. .vec_dot_q = ggml_vec_dot_q4_2_q8_0,
  1262. },
  1263. [GGML_TYPE_Q8_0] = {
  1264. .dequantize_row_q = NULL, // TODO
  1265. .quantize_row_q = quantize_row_q8_0,
  1266. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1267. .quantize_row_q_dot = quantize_row_q8_0,
  1268. .vec_dot_q = NULL, // TODO
  1269. },
  1270. };
  1271. // For internal test use
  1272. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1273. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1274. return quantize_fns[i];
  1275. }
  1276. //
  1277. // simd mappings
  1278. //
  1279. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1280. // we then implement the fundamental computation operations below using only these macros
  1281. // adding support for new architectures requires to define the corresponding SIMD macros
  1282. //
  1283. // GGML_F32_STEP / GGML_F16_STEP
  1284. // number of elements to process in a single step
  1285. //
  1286. // GGML_F32_EPR / GGML_F16_EPR
  1287. // number of elements to fit in a single register
  1288. //
  1289. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1290. #define GGML_SIMD
  1291. // F32 NEON
  1292. #define GGML_F32_STEP 16
  1293. #define GGML_F32_EPR 4
  1294. #define GGML_F32x4 float32x4_t
  1295. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1296. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1297. #define GGML_F32x4_LOAD vld1q_f32
  1298. #define GGML_F32x4_STORE vst1q_f32
  1299. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1300. #define GGML_F32x4_ADD vaddq_f32
  1301. #define GGML_F32x4_MUL vmulq_f32
  1302. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1303. #define GGML_F32x4_REDUCE(res, x) \
  1304. { \
  1305. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1306. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1307. } \
  1308. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1309. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1310. } \
  1311. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1312. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1313. } \
  1314. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1315. }
  1316. #define GGML_F32_VEC GGML_F32x4
  1317. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1318. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1319. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1320. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1321. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1322. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1323. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1324. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1325. // F16 NEON
  1326. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1327. #define GGML_F16_STEP 32
  1328. #define GGML_F16_EPR 8
  1329. #define GGML_F16x8 float16x8_t
  1330. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1331. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1332. #define GGML_F16x8_LOAD vld1q_f16
  1333. #define GGML_F16x8_STORE vst1q_f16
  1334. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1335. #define GGML_F16x8_ADD vaddq_f16
  1336. #define GGML_F16x8_MUL vmulq_f16
  1337. #define GGML_F16x8_REDUCE(res, x) \
  1338. { \
  1339. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1340. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1341. } \
  1342. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1343. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1344. } \
  1345. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1346. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1347. } \
  1348. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1349. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1350. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1351. }
  1352. #define GGML_F16_VEC GGML_F16x8
  1353. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1354. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1355. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1356. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1357. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1358. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1359. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1360. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1361. #else
  1362. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1363. // and take advantage of the vcvt_ functions to convert to/from FP16
  1364. #define GGML_F16_STEP 16
  1365. #define GGML_F16_EPR 4
  1366. #define GGML_F32Cx4 float32x4_t
  1367. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1368. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1369. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1370. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1371. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1372. #define GGML_F32Cx4_ADD vaddq_f32
  1373. #define GGML_F32Cx4_MUL vmulq_f32
  1374. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1375. #define GGML_F16_VEC GGML_F32Cx4
  1376. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1377. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1378. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1379. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1380. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1381. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1382. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1383. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1384. #endif
  1385. #elif defined(__AVX__)
  1386. #define GGML_SIMD
  1387. // F32 AVX
  1388. #define GGML_F32_STEP 32
  1389. #define GGML_F32_EPR 8
  1390. #define GGML_F32x8 __m256
  1391. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1392. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1393. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1394. #define GGML_F32x8_STORE _mm256_storeu_ps
  1395. #if defined(__FMA__)
  1396. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1397. #else
  1398. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1399. #endif
  1400. #define GGML_F32x8_ADD _mm256_add_ps
  1401. #define GGML_F32x8_MUL _mm256_mul_ps
  1402. #define GGML_F32x8_REDUCE(res, x) \
  1403. { \
  1404. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1405. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1406. } \
  1407. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1408. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1409. } \
  1410. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1411. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1412. } \
  1413. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1414. _mm256_extractf128_ps(x[0], 1)); \
  1415. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1416. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1417. }
  1418. // TODO: is this optimal ?
  1419. #define GGML_F32_VEC GGML_F32x8
  1420. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1421. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1422. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1423. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1424. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1425. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1426. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1427. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1428. // F16 AVX
  1429. #define GGML_F16_STEP 32
  1430. #define GGML_F16_EPR 8
  1431. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1432. #define GGML_F32Cx8 __m256
  1433. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1434. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1435. #if defined(__F16C__)
  1436. // the _mm256_cvt intrinsics require F16C
  1437. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1438. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1439. #else
  1440. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1441. float tmp[8];
  1442. for (int i = 0; i < 8; i++)
  1443. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1444. return _mm256_loadu_ps(tmp);
  1445. }
  1446. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1447. float arr[8];
  1448. _mm256_storeu_ps(arr, y);
  1449. for (int i = 0; i < 8; i++)
  1450. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1451. }
  1452. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1453. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1454. #endif
  1455. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1456. #define GGML_F32Cx8_ADD _mm256_add_ps
  1457. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1458. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1459. #define GGML_F16_VEC GGML_F32Cx8
  1460. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1461. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1462. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1463. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1464. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1465. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1466. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1467. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1468. #elif defined(__POWER9_VECTOR__)
  1469. #define GGML_SIMD
  1470. // F32 POWER9
  1471. #define GGML_F32_STEP 32
  1472. #define GGML_F32_EPR 4
  1473. #define GGML_F32x4 vector float
  1474. #define GGML_F32x4_ZERO 0.0f
  1475. #define GGML_F32x4_SET1 vec_splats
  1476. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1477. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1478. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1479. #define GGML_F32x4_ADD vec_add
  1480. #define GGML_F32x4_MUL vec_mul
  1481. #define GGML_F32x4_REDUCE(res, x) \
  1482. { \
  1483. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1484. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1485. } \
  1486. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1487. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1488. } \
  1489. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1490. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1491. } \
  1492. res = vec_extract(x[0], 0) + \
  1493. vec_extract(x[0], 1) + \
  1494. vec_extract(x[0], 2) + \
  1495. vec_extract(x[0], 3); \
  1496. }
  1497. #define GGML_F32_VEC GGML_F32x4
  1498. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1499. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1500. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1501. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1502. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1503. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1504. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1505. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1506. // F16 POWER9
  1507. #define GGML_F16_STEP GGML_F32_STEP
  1508. #define GGML_F16_EPR GGML_F32_EPR
  1509. #define GGML_F16_VEC GGML_F32x4
  1510. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1511. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1512. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1513. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1514. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1515. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1516. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1517. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1518. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1519. #define GGML_F16_VEC_STORE(p, r, i) \
  1520. if (i & 0x1) \
  1521. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1522. r[i - GGML_ENDIAN_BYTE(0)]), \
  1523. 0, p - GGML_F16_EPR)
  1524. #elif defined(__wasm_simd128__)
  1525. #define GGML_SIMD
  1526. // F32 WASM
  1527. #define GGML_F32_STEP 16
  1528. #define GGML_F32_EPR 4
  1529. #define GGML_F32x4 v128_t
  1530. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1531. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1532. #define GGML_F32x4_LOAD wasm_v128_load
  1533. #define GGML_F32x4_STORE wasm_v128_store
  1534. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1535. #define GGML_F32x4_ADD wasm_f32x4_add
  1536. #define GGML_F32x4_MUL wasm_f32x4_mul
  1537. #define GGML_F32x4_REDUCE(res, x) \
  1538. { \
  1539. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1540. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1541. } \
  1542. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1543. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1544. } \
  1545. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1546. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1547. } \
  1548. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1549. wasm_f32x4_extract_lane(x[0], 1) + \
  1550. wasm_f32x4_extract_lane(x[0], 2) + \
  1551. wasm_f32x4_extract_lane(x[0], 3); \
  1552. }
  1553. #define GGML_F32_VEC GGML_F32x4
  1554. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1555. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1556. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1557. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1558. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1559. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1560. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1561. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1562. // F16 WASM
  1563. #define GGML_F16_STEP 16
  1564. #define GGML_F16_EPR 4
  1565. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1566. float tmp[4];
  1567. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1568. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1569. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1570. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1571. return wasm_v128_load(tmp);
  1572. }
  1573. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1574. float tmp[4];
  1575. wasm_v128_store(tmp, x);
  1576. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1577. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1578. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1579. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1580. }
  1581. #define GGML_F16x4 v128_t
  1582. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1583. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1584. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1585. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1586. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1587. #define GGML_F16x4_ADD wasm_f32x4_add
  1588. #define GGML_F16x4_MUL wasm_f32x4_mul
  1589. #define GGML_F16x4_REDUCE(res, x) \
  1590. { \
  1591. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1592. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1593. } \
  1594. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1595. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1596. } \
  1597. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1598. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1599. } \
  1600. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1601. wasm_f32x4_extract_lane(x[0], 1) + \
  1602. wasm_f32x4_extract_lane(x[0], 2) + \
  1603. wasm_f32x4_extract_lane(x[0], 3); \
  1604. }
  1605. #define GGML_F16_VEC GGML_F16x4
  1606. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1607. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1608. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1609. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1610. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1611. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1612. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1613. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1614. #elif defined(__SSE3__)
  1615. #define GGML_SIMD
  1616. // F32 SSE
  1617. #define GGML_F32_STEP 32
  1618. #define GGML_F32_EPR 4
  1619. #define GGML_F32x4 __m128
  1620. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1621. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1622. #define GGML_F32x4_LOAD _mm_loadu_ps
  1623. #define GGML_F32x4_STORE _mm_storeu_ps
  1624. #if defined(__FMA__)
  1625. // TODO: Does this work?
  1626. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1627. #else
  1628. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1629. #endif
  1630. #define GGML_F32x4_ADD _mm_add_ps
  1631. #define GGML_F32x4_MUL _mm_mul_ps
  1632. #define GGML_F32x4_REDUCE(res, x) \
  1633. { \
  1634. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1635. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1636. } \
  1637. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1638. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1639. } \
  1640. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1641. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1642. } \
  1643. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1644. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1645. }
  1646. // TODO: is this optimal ?
  1647. #define GGML_F32_VEC GGML_F32x4
  1648. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1649. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1650. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1651. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1652. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1653. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1654. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1655. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1656. // F16 SSE
  1657. #define GGML_F16_STEP 32
  1658. #define GGML_F16_EPR 4
  1659. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1660. float tmp[4];
  1661. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1662. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1663. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1664. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1665. return _mm_loadu_ps(tmp);
  1666. }
  1667. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1668. float arr[4];
  1669. _mm_storeu_ps(arr, y);
  1670. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1671. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1672. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1673. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1674. }
  1675. #define GGML_F32Cx4 __m128
  1676. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1677. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1678. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1679. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1680. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1681. #define GGML_F32Cx4_ADD _mm_add_ps
  1682. #define GGML_F32Cx4_MUL _mm_mul_ps
  1683. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1684. #define GGML_F16_VEC GGML_F32Cx4
  1685. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1686. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1687. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1688. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1689. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1690. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1691. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1692. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1693. #endif
  1694. // GGML_F32_ARR / GGML_F16_ARR
  1695. // number of registers to use per step
  1696. #ifdef GGML_SIMD
  1697. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1698. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1699. #endif
  1700. //
  1701. // fundamental operations
  1702. //
  1703. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1704. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1705. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1706. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1707. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1708. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1709. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1710. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1711. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1712. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1713. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1714. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1715. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1716. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1717. #ifdef GGML_SIMD
  1718. float sumf = 0.0f;
  1719. const int np = (n & ~(GGML_F32_STEP - 1));
  1720. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1721. GGML_F32_VEC ax[GGML_F32_ARR];
  1722. GGML_F32_VEC ay[GGML_F32_ARR];
  1723. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1724. for (int j = 0; j < GGML_F32_ARR; j++) {
  1725. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1726. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1727. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1728. }
  1729. }
  1730. // reduce sum0..sum3 to sum0
  1731. GGML_F32_VEC_REDUCE(sumf, sum);
  1732. // leftovers
  1733. for (int i = np; i < n; ++i) {
  1734. sumf += x[i]*y[i];
  1735. }
  1736. #else
  1737. // scalar
  1738. ggml_float sumf = 0.0;
  1739. for (int i = 0; i < n; ++i) {
  1740. sumf += (ggml_float)(x[i]*y[i]);
  1741. }
  1742. #endif
  1743. *s = sumf;
  1744. }
  1745. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1746. ggml_float sumf = 0.0;
  1747. #if defined(GGML_SIMD)
  1748. const int np = (n & ~(GGML_F16_STEP - 1));
  1749. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1750. GGML_F16_VEC ax[GGML_F16_ARR];
  1751. GGML_F16_VEC ay[GGML_F16_ARR];
  1752. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1753. for (int j = 0; j < GGML_F16_ARR; j++) {
  1754. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1755. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1756. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1757. }
  1758. }
  1759. // reduce sum0..sum3 to sum0
  1760. GGML_F16_VEC_REDUCE(sumf, sum);
  1761. // leftovers
  1762. for (int i = np; i < n; ++i) {
  1763. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1764. }
  1765. #else
  1766. for (int i = 0; i < n; ++i) {
  1767. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1768. }
  1769. #endif
  1770. *s = sumf;
  1771. }
  1772. static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1773. const int nb = n / QK4_1;
  1774. const block_q4_1 * restrict x = vx;
  1775. const block_q4_1 * restrict y = vy;
  1776. float sumf = 0.0;
  1777. #if defined(__AVX2__)
  1778. // Initialize accumulator with zeros
  1779. __m256 acc = _mm256_setzero_ps();
  1780. // Accumulator for constant offsets
  1781. float acc_offset = 0.0f;
  1782. // Main loop
  1783. for (int i = 0; i < nb; ++i) {
  1784. const float * d0 = &x[i].d;
  1785. const float * d1 = &y[i].d;
  1786. const float * m0 = &x[i].m;
  1787. const float * m1 = &y[i].m;
  1788. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1789. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1790. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1791. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1792. // Compute combined scale for the block
  1793. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1794. // Compute cross scales for the block
  1795. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1796. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1797. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0xAA /* 0b10101010 */ );
  1798. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1799. __m256i bx = bytesFromNibbles( x[i].qs );
  1800. __m256i by = bytesFromNibbles( y[i].qs );
  1801. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1802. // Sign-extend first 16 signed bytes into int16_t
  1803. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1804. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1805. // Compute products of int16_t integers, add pairwise
  1806. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1807. // Sign-extend last 16 signed bytes into int16_t vectors
  1808. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1809. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1810. // Accumulate products of int16_t integers
  1811. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1812. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1813. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1814. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1815. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1816. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1817. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1818. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1819. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1820. // Convert int32_t to float
  1821. __m256 p = _mm256_cvtepi32_ps( i32 );
  1822. // Apply the scale, and accumulate
  1823. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1824. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1825. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1826. // acc_offset += m0*m1 (for each entry in the block)
  1827. acc_offset += (*m0)*(*m1);
  1828. }
  1829. // Return horizontal sum of the acc vector
  1830. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1831. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1832. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1833. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1834. sumf = _mm_cvtss_f32( res ) + acc_offset * QK4_1;
  1835. #elif defined(__ARM_NEON)
  1836. float sum00 = 0.0f;
  1837. float sum01 = 0.0f;
  1838. float sum10 = 0.0f;
  1839. float sum11 = 0.0f;
  1840. for (int i = 0; i < nb; i += 2) {
  1841. const block_q4_1 * restrict x0 = &x[i + 0];
  1842. const block_q4_1 * restrict y0 = &y[i + 0];
  1843. const block_q4_1 * restrict x1 = &x[i + 1];
  1844. const block_q4_1 * restrict y1 = &y[i + 1];
  1845. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1846. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1847. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1848. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1849. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  1850. // 4-bit -> 8-bit
  1851. const uint8x16_t v0_0l = vandq_u8(v0_0, m4b);
  1852. const uint8x16_t v1_0l = vandq_u8(v1_0, m4b);
  1853. const uint8x16_t v0_0h = vshrq_n_u8(v0_0, 4);
  1854. const uint8x16_t v1_0h = vshrq_n_u8(v1_0, 4);
  1855. const uint8x16_t v0_1l = vandq_u8(v0_1, m4b);
  1856. const uint8x16_t v1_1l = vandq_u8(v1_1, m4b);
  1857. const uint8x16_t v0_1h = vshrq_n_u8(v0_1, 4);
  1858. const uint8x16_t v1_1h = vshrq_n_u8(v1_1, 4);
  1859. sum00 += x0->m*y0->m;
  1860. sum01 += y0->m*x0->d*((uint16_t)vaddvq_u8(v0_0l) + (uint16_t)vaddvq_u8(v0_0h));
  1861. sum10 += x0->m*y0->d*((uint16_t)vaddvq_u8(v1_0l) + (uint16_t)vaddvq_u8(v1_0h));
  1862. sum00 += x1->m*y1->m;
  1863. sum01 += y1->m*x1->d*((uint16_t)vaddvq_u8(v0_1l) + (uint16_t)vaddvq_u8(v0_1h));
  1864. sum10 += x1->m*y1->d*((uint16_t)vaddvq_u8(v1_1l) + (uint16_t)vaddvq_u8(v1_1h));
  1865. #if defined(__ARM_FEATURE_DOTPROD)
  1866. // dot product into int32x4_t
  1867. uint32x4_t p_0 = vdotq_u32(vdupq_n_u32(0), v0_0l, v1_0l);
  1868. uint32x4_t p_1 = vdotq_u32(vdupq_n_u32(0), v0_1l, v1_1l);
  1869. p_0 = vdotq_u32(p_0, v0_0h, v1_0h);
  1870. p_1 = vdotq_u32(p_1, v0_1h, v1_1h);
  1871. sum11 += x0->d*y0->d*vaddvq_u32(p_0);
  1872. sum11 += x1->d*y1->d*vaddvq_u32(p_1);
  1873. #else
  1874. const uint16x8_t pl0l = vmull_u8(vget_low_u8 (v0_0l), vget_low_u8 (v1_0l));
  1875. const uint16x8_t pl0h = vmull_u8(vget_high_u8(v0_0l), vget_high_u8(v1_0l));
  1876. const uint16x8_t ph0l = vmull_u8(vget_low_u8 (v0_0h), vget_low_u8 (v1_0h));
  1877. const uint16x8_t ph0h = vmull_u8(vget_high_u8(v0_0h), vget_high_u8(v1_0h));
  1878. const uint16x8_t pl1l = vmull_u8(vget_low_u8 (v0_1l), vget_low_u8 (v1_1l));
  1879. const uint16x8_t pl1h = vmull_u8(vget_high_u8(v0_1l), vget_high_u8(v1_1l));
  1880. const uint16x8_t ph1l = vmull_u8(vget_low_u8 (v0_1h), vget_low_u8 (v1_1h));
  1881. const uint16x8_t ph1h = vmull_u8(vget_high_u8(v0_1h), vget_high_u8(v1_1h));
  1882. const uint16x8_t pl_0 = vaddq_u16(pl0l, pl0h);
  1883. const uint16x8_t ph_0 = vaddq_u16(ph0l, ph0h);
  1884. const uint16x8_t pl_1 = vaddq_u16(pl1l, pl1h);
  1885. const uint16x8_t ph_1 = vaddq_u16(ph1l, ph1h);
  1886. const uint16x8_t p_0 = vaddq_u16(pl_0, ph_0);
  1887. const uint16x8_t p_1 = vaddq_u16(pl_1, ph_1);
  1888. sum11 += x0->d*y0->d*vaddvq_u16(p_0);
  1889. sum11 += x1->d*y1->d*vaddvq_u16(p_1);
  1890. #endif
  1891. }
  1892. sumf = QK4_1*sum00 + sum01 + sum10 + sum11;
  1893. #else
  1894. // scalar
  1895. for (int i = 0; i < nb; i++) {
  1896. const float d0 = x[i].d;
  1897. const float d1 = y[i].d;
  1898. const float m0 = x[i].m;
  1899. const float m1 = y[i].m;
  1900. const uint8_t * restrict p0 = x[i].qs;
  1901. const uint8_t * restrict p1 = y[i].qs;
  1902. for (int j = 0; j < QK4_1/2; j++) {
  1903. const uint8_t v0 = p0[j];
  1904. const uint8_t v1 = p1[j];
  1905. const float f0 = d0*(v0 & 0xf) + m0;
  1906. const float f1 = d0*(v0 >> 4) + m0;
  1907. const float f2 = d1*(v1 & 0xf) + m1;
  1908. const float f3 = d1*(v1 >> 4) + m1;
  1909. sumf += f0*f2 + f1*f3;
  1910. }
  1911. }
  1912. #endif
  1913. *s = sumf;
  1914. }
  1915. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1916. const int nb = n / QK8_0;
  1917. assert(n % QK8_0 == 0);
  1918. assert(nb % 2 == 0);
  1919. const block_q4_0 * restrict x = vx;
  1920. const block_q8_0 * restrict y = vy;
  1921. float sumf = 0.0;
  1922. #if defined(__ARM_NEON)
  1923. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1924. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1925. for (int i = 0; i < nb; i += 2) {
  1926. const block_q4_0 * restrict x0 = &x[i + 0];
  1927. const block_q4_0 * restrict x1 = &x[i + 1];
  1928. const block_q8_0 * restrict y0 = &y[i + 0];
  1929. const block_q8_0 * restrict y1 = &y[i + 1];
  1930. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1931. const int8x16_t s8b = vdupq_n_s8(0x8);
  1932. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1933. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1934. // 4-bit -> 8-bit
  1935. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1936. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1937. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1938. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1939. // sub 8
  1940. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1941. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1942. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1943. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1944. // load y
  1945. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1946. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1947. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1948. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1949. // interleave
  1950. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  1951. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  1952. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  1953. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  1954. #if defined(__ARM_FEATURE_DOTPROD)
  1955. // dot product into int32x4_t
  1956. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls), v0_0hs, v1_0hs);
  1957. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls), v0_1hs, v1_1hs);
  1958. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  1959. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  1960. #else
  1961. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1962. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1963. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1964. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1965. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1966. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1967. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1968. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1969. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1970. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1971. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1972. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1973. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  1974. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  1975. #endif
  1976. }
  1977. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1978. #elif defined(__AVX2__)
  1979. // Initialize accumulator with zeros
  1980. __m256 acc = _mm256_setzero_ps();
  1981. // Main loop
  1982. for (int i = 0; i < nb; ++i) {
  1983. /* Compute combined scale for the block */
  1984. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1985. __m256i bx = bytesFromNibbles(x[i].qs);
  1986. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1987. const __m256i off = _mm256_set1_epi8( 8 );
  1988. bx = _mm256_sub_epi8( bx, off );
  1989. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1990. // Get absolute values of x vectors
  1991. const __m256i ax = _mm256_sign_epi8(bx, bx);
  1992. // Sign the values of the y vectors
  1993. const __m256i sy = _mm256_sign_epi8(by, bx);
  1994. // Perform multiplication and create 16-bit values
  1995. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  1996. const __m256i ones = _mm256_set1_epi16(1);
  1997. __m256i xy_q = _mm256_madd_epi16(ones, dot);
  1998. /* Convert to vectore of 8 int32_t to 8 floats */
  1999. __m256 q = _mm256_cvtepi32_ps( xy_q );
  2000. /* Multiply q with scale and accumulate */
  2001. acc = _mm256_fmadd_ps( d, q, acc );
  2002. }
  2003. // Return horizontal sum of the acc vector
  2004. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2005. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2006. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2007. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2008. sumf = _mm_cvtss_f32( res );
  2009. #elif defined(__AVX__)
  2010. // Initialize accumulator with zeros
  2011. __m256 acc = _mm256_setzero_ps();
  2012. // Main loop
  2013. for (int i = 0; i < nb; ++i) {
  2014. // Compute combined scale for the block
  2015. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2016. __m128i i32[2];
  2017. for (int j = 0; j < 2; ++j) {
  2018. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2019. __m128i bx = bytesFromNibbles( x[i].qs + 8*j );
  2020. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  2021. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2022. const __m128i off = _mm_set1_epi8( 8 );
  2023. bx = _mm_sub_epi8( bx, off );
  2024. // Get absolute values of x vectors
  2025. const __m128i ax = _mm_sign_epi8(bx, bx);
  2026. // Sign the values of the y vectors
  2027. const __m128i sy = _mm_sign_epi8(by, bx);
  2028. // Perform multiplication and create 16-bit values
  2029. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2030. const __m128i ones = _mm_set1_epi16(1);
  2031. i32[j] = _mm_madd_epi16(ones, dot);
  2032. }
  2033. // Convert int32_t to float
  2034. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2035. // Apply the scale, and accumulate
  2036. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2037. }
  2038. // Return horizontal sum of the acc vector
  2039. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2040. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2041. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2042. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2043. sumf = _mm_cvtss_f32( res );
  2044. #else
  2045. // scalar
  2046. for (int i = 0; i < nb; i++) {
  2047. const float d0 = x[i].d;
  2048. const float d1 = y[i].d;
  2049. const uint8_t * restrict p0 = x[i].qs;
  2050. const int8_t * restrict p1 = y[i].qs;
  2051. int sumi = 0;
  2052. for (int j = 0; j < QK8_0/2; j++) {
  2053. const uint8_t v0 = p0[j];
  2054. const int i0 = (int8_t) (v0 & 0xf) - 8;
  2055. const int i1 = (int8_t) (v0 >> 4) - 8;
  2056. const int i2 = p1[2*j + 0];
  2057. const int i3 = p1[2*j + 1];
  2058. sumi += i0*i2 + i1*i3;
  2059. }
  2060. sumf += d0*d1*sumi;
  2061. }
  2062. #endif
  2063. *s = sumf;
  2064. }
  2065. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2066. const int nb = n / QK8_0;
  2067. assert(n % QK8_0 == 0);
  2068. assert(nb % 2 == 0);
  2069. assert(QK8_0 == 2*QK4_2);
  2070. const block_q4_2 * restrict x = vx;
  2071. const block_q8_0 * restrict y = vy;
  2072. float sumf = 0.0;
  2073. #if defined(__ARM_NEON)
  2074. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2075. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2076. for (int i = 0; i < nb; i += 2) {
  2077. const block_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0];
  2078. const block_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1];
  2079. const block_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0];
  2080. const block_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1];
  2081. const block_q8_0 * restrict y0 = &y[i + 0];
  2082. const block_q8_0 * restrict y1 = &y[i + 1];
  2083. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2084. const int8x16_t s8b = vdupq_n_s8(0x8);
  2085. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2086. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2087. // 4-bit -> 8-bit
  2088. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2089. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2090. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2091. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2092. // sub 8
  2093. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2094. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2095. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2096. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2097. // interleave
  2098. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2099. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2100. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2101. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2102. // load y
  2103. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2104. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2105. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2106. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2107. #if defined(__ARM_FEATURE_DOTPROD)
  2108. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2109. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)),
  2110. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2111. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2112. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)),
  2113. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2114. #else
  2115. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2116. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2117. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2118. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2119. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2120. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2121. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2122. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2123. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2124. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2125. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2126. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2127. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2128. vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)),
  2129. vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2130. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2131. vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)),
  2132. vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2133. #endif
  2134. }
  2135. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2136. #else
  2137. // scalar
  2138. for (int i = 0; i < nb; i++) {
  2139. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2140. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2141. const int8_t * restrict y0 = y[i].qs;
  2142. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2143. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2144. int sumi_0 = 0;
  2145. int sumi_1 = 0;
  2146. for (int j = 0; j < QK8_0/4; j++) {
  2147. const uint8_t v0 = x0[j];
  2148. const uint8_t v1 = x1[j];
  2149. const int i0_0 = (int8_t) (v0 & 0xf) - 8;
  2150. const int i1_0 = (int8_t) (v0 >> 4) - 8;
  2151. const int i0_1 = (int8_t) (v1 & 0xf) - 8;
  2152. const int i1_1 = (int8_t) (v1 >> 4) - 8;
  2153. const int i2_0 = y0[2*j + 0];
  2154. const int i3_0 = y0[2*j + 1];
  2155. const int i2_1 = y0[2*(j + QK8_0/4) + 0];
  2156. const int i3_1 = y0[2*(j + QK8_0/4) + 1];
  2157. sumi_0 += i0_0*i2_0 + i1_0*i3_0;
  2158. sumi_1 += i0_1*i2_1 + i1_1*i3_1;
  2159. }
  2160. sumf += (d0 * y[i].d) * sumi_0;
  2161. sumf += (d1 * y[i].d) * sumi_1;
  2162. }
  2163. #endif
  2164. *s = sumf;
  2165. }
  2166. // compute GGML_VEC_DOT_UNROLL dot products at once
  2167. // xs - x row stride in bytes
  2168. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2169. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2170. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2171. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2172. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2173. }
  2174. #if defined(GGML_SIMD)
  2175. const int np = (n & ~(GGML_F16_STEP - 1));
  2176. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2177. GGML_F16_VEC ax[GGML_F16_ARR];
  2178. GGML_F16_VEC ay[GGML_F16_ARR];
  2179. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2180. for (int j = 0; j < GGML_F16_ARR; j++) {
  2181. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2182. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2183. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2184. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2185. }
  2186. }
  2187. }
  2188. // reduce sum0..sum3 to sum0
  2189. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2190. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2191. }
  2192. // leftovers
  2193. for (int i = np; i < n; ++i) {
  2194. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2195. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2196. }
  2197. }
  2198. #else
  2199. for (int i = 0; i < n; ++i) {
  2200. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2201. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2202. }
  2203. }
  2204. #endif
  2205. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2206. s[i] = sumf[i];
  2207. }
  2208. }
  2209. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2210. #if defined(GGML_SIMD)
  2211. const int np = (n & ~(GGML_F32_STEP - 1));
  2212. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2213. GGML_F32_VEC ax[GGML_F32_ARR];
  2214. GGML_F32_VEC ay[GGML_F32_ARR];
  2215. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2216. for (int j = 0; j < GGML_F32_ARR; j++) {
  2217. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2218. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2219. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2220. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2221. }
  2222. }
  2223. // leftovers
  2224. for (int i = np; i < n; ++i) {
  2225. y[i] += x[i]*v;
  2226. }
  2227. #else
  2228. // scalar
  2229. for (int i = 0; i < n; ++i) {
  2230. y[i] += x[i]*v;
  2231. }
  2232. #endif
  2233. }
  2234. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2235. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2236. #if defined(GGML_SIMD)
  2237. const int np = (n & ~(GGML_F32_STEP - 1));
  2238. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2239. GGML_F32_VEC ay[GGML_F32_ARR];
  2240. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2241. for (int j = 0; j < GGML_F32_ARR; j++) {
  2242. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2243. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2244. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2245. }
  2246. }
  2247. // leftovers
  2248. for (int i = np; i < n; ++i) {
  2249. y[i] *= v;
  2250. }
  2251. #else
  2252. // scalar
  2253. for (int i = 0; i < n; ++i) {
  2254. y[i] *= v;
  2255. }
  2256. #endif
  2257. }
  2258. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2259. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2260. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2261. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2262. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2263. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2264. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2265. static const float GELU_COEF_A = 0.044715f;
  2266. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2267. inline static float ggml_gelu_f32(float x) {
  2268. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2269. }
  2270. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2271. const uint16_t * i16 = (const uint16_t *) x;
  2272. for (int i = 0; i < n; ++i) {
  2273. y[i] = table_gelu_f16[i16[i]];
  2274. }
  2275. }
  2276. #ifdef GGML_GELU_FP16
  2277. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2278. uint16_t t;
  2279. for (int i = 0; i < n; ++i) {
  2280. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2281. memcpy(&t, &fp16, sizeof(uint16_t));
  2282. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2283. }
  2284. }
  2285. #else
  2286. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2287. for (int i = 0; i < n; ++i) {
  2288. y[i] = ggml_gelu_f32(x[i]);
  2289. }
  2290. }
  2291. #endif
  2292. // Sigmoid Linear Unit (SiLU) function
  2293. inline static float ggml_silu_f32(float x) {
  2294. return x/(1.0f + expf(-x));
  2295. }
  2296. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2297. const uint16_t * i16 = (const uint16_t *) x;
  2298. for (int i = 0; i < n; ++i) {
  2299. y[i] = table_silu_f16[i16[i]];
  2300. }
  2301. }
  2302. #ifdef GGML_SILU_FP16
  2303. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2304. uint16_t t;
  2305. for (int i = 0; i < n; ++i) {
  2306. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2307. memcpy(&t, &fp16, sizeof(uint16_t));
  2308. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2309. }
  2310. }
  2311. #else
  2312. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2313. for (int i = 0; i < n; ++i) {
  2314. y[i] = ggml_silu_f32(x[i]);
  2315. }
  2316. }
  2317. #endif
  2318. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2319. #ifndef GGML_USE_ACCELERATE
  2320. ggml_float sum = 0.0;
  2321. for (int i = 0; i < n; ++i) {
  2322. sum += (ggml_float)x[i];
  2323. }
  2324. *s = sum;
  2325. #else
  2326. vDSP_sve(x, 1, s, n);
  2327. #endif
  2328. }
  2329. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2330. #ifndef GGML_USE_ACCELERATE
  2331. float max = -INFINITY;
  2332. for (int i = 0; i < n; ++i) {
  2333. max = MAX(max, x[i]);
  2334. }
  2335. *s = max;
  2336. #else
  2337. vDSP_maxv(x, 1, s, n);
  2338. #endif
  2339. }
  2340. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2341. ggml_vec_norm_f32(n, s, x);
  2342. *s = 1.f/(*s);
  2343. }
  2344. //
  2345. // logging
  2346. //
  2347. #if (GGML_DEBUG >= 1)
  2348. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2349. #else
  2350. #define GGML_PRINT_DEBUG(...)
  2351. #endif
  2352. #if (GGML_DEBUG >= 5)
  2353. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2354. #else
  2355. #define GGML_PRINT_DEBUG_5(...)
  2356. #endif
  2357. #if (GGML_DEBUG >= 10)
  2358. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2359. #else
  2360. #define GGML_PRINT_DEBUG_10(...)
  2361. #endif
  2362. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2363. //
  2364. // data types
  2365. //
  2366. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2367. [GGML_TYPE_F32] = 1,
  2368. [GGML_TYPE_F16] = 1,
  2369. [GGML_TYPE_Q4_0] = QK4_0,
  2370. [GGML_TYPE_Q4_1] = QK4_1,
  2371. [GGML_TYPE_Q4_2] = QK4_2,
  2372. [GGML_TYPE_Q8_0] = QK8_0,
  2373. [GGML_TYPE_I8] = 1,
  2374. [GGML_TYPE_I16] = 1,
  2375. [GGML_TYPE_I32] = 1,
  2376. };
  2377. static_assert(GGML_TYPE_COUNT == 9, "GGML_BLCK_SIZE is outdated");
  2378. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2379. [GGML_TYPE_F32] = sizeof(float),
  2380. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2381. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2382. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2383. [GGML_TYPE_Q4_2] = sizeof(block_q4_2),
  2384. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2385. [GGML_TYPE_I8] = sizeof(int8_t),
  2386. [GGML_TYPE_I16] = sizeof(int16_t),
  2387. [GGML_TYPE_I32] = sizeof(int32_t),
  2388. };
  2389. static_assert(GGML_TYPE_COUNT == 9, "GGML_TYPE_SIZE is outdated");
  2390. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2391. [GGML_TYPE_F32] = "f32",
  2392. [GGML_TYPE_F16] = "f16",
  2393. [GGML_TYPE_Q4_0] = "q4_0",
  2394. [GGML_TYPE_Q4_1] = "q4_1",
  2395. [GGML_TYPE_Q4_2] = "q4_2",
  2396. [GGML_TYPE_Q8_0] = "q8_0",
  2397. [GGML_TYPE_I8] = "i8",
  2398. [GGML_TYPE_I16] = "i16",
  2399. [GGML_TYPE_I32] = "i32",
  2400. };
  2401. static_assert(GGML_TYPE_COUNT == 9, "GGML_TYPE_NAME is outdated");
  2402. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2403. [GGML_TYPE_F32] = false,
  2404. [GGML_TYPE_F16] = false,
  2405. [GGML_TYPE_Q4_0] = true,
  2406. [GGML_TYPE_Q4_1] = true,
  2407. [GGML_TYPE_Q4_2] = true,
  2408. [GGML_TYPE_Q8_0] = true,
  2409. [GGML_TYPE_I8] = false,
  2410. [GGML_TYPE_I16] = false,
  2411. [GGML_TYPE_I32] = false,
  2412. };
  2413. static_assert(GGML_TYPE_COUNT == 9, "GGML_IS_QUANTIZED is outdated");
  2414. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2415. "NONE",
  2416. "DUP",
  2417. "ADD",
  2418. "SUB",
  2419. "MUL",
  2420. "DIV",
  2421. "SQR",
  2422. "SQRT",
  2423. "SUM",
  2424. "MEAN",
  2425. "REPEAT",
  2426. "ABS",
  2427. "SGN",
  2428. "NEG",
  2429. "STEP",
  2430. "RELU",
  2431. "GELU",
  2432. "SILU",
  2433. "NORM",
  2434. "RMS_NORM",
  2435. "MUL_MAT",
  2436. "SCALE",
  2437. "CPY",
  2438. "CONT",
  2439. "RESHAPE",
  2440. "VIEW",
  2441. "PERMUTE",
  2442. "TRANSPOSE",
  2443. "GET_ROWS",
  2444. "DIAG_MASK_INF",
  2445. "SOFT_MAX",
  2446. "ROPE",
  2447. "CONV_1D_1S",
  2448. "CONV_1D_2S",
  2449. "FLASH_ATTN",
  2450. "FLASH_FF",
  2451. "MAP_UNARY",
  2452. "MAP_BINARY",
  2453. };
  2454. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2455. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2456. "none",
  2457. "x",
  2458. "x+y",
  2459. "x-y",
  2460. "x*y",
  2461. "x/y",
  2462. "x^2",
  2463. "√x",
  2464. "Σx",
  2465. "Σx/n",
  2466. "repeat(x)",
  2467. "abs(x)",
  2468. "sgn(x)",
  2469. "-x",
  2470. "step(x)",
  2471. "relu(x)",
  2472. "gelu(x)",
  2473. "silu(x)",
  2474. "norm(x)",
  2475. "rms_norm(x)",
  2476. "X*Y",
  2477. "x*v",
  2478. "x-\\>y",
  2479. "cont(x)",
  2480. "reshape(x)",
  2481. "view(x)",
  2482. "permute(x)",
  2483. "transpose(x)",
  2484. "get_rows(x)",
  2485. "diag_mask_inf(x)",
  2486. "soft_max(x)",
  2487. "rope(x)",
  2488. "conv_1d_1s(x)",
  2489. "conv_1d_2s(x)",
  2490. "flash_attn(x)",
  2491. "flash_ff(x)",
  2492. "f(x)",
  2493. "f(x,y)",
  2494. };
  2495. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2496. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2497. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2498. //
  2499. // ggml context
  2500. //
  2501. struct ggml_context {
  2502. size_t mem_size;
  2503. void * mem_buffer;
  2504. bool mem_buffer_owned;
  2505. bool no_alloc;
  2506. int n_objects;
  2507. struct ggml_object * objects_begin;
  2508. struct ggml_object * objects_end;
  2509. struct ggml_scratch scratch;
  2510. struct ggml_scratch scratch_save;
  2511. };
  2512. struct ggml_context_container {
  2513. bool used;
  2514. struct ggml_context context;
  2515. };
  2516. //
  2517. // compute types
  2518. //
  2519. enum ggml_task_type {
  2520. GGML_TASK_INIT = 0,
  2521. GGML_TASK_COMPUTE,
  2522. GGML_TASK_FINALIZE,
  2523. };
  2524. struct ggml_compute_params {
  2525. enum ggml_task_type type;
  2526. int ith, nth;
  2527. // work buffer for all threads
  2528. size_t wsize;
  2529. void * wdata;
  2530. };
  2531. //
  2532. // ggml state
  2533. //
  2534. struct ggml_state {
  2535. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2536. };
  2537. // global state
  2538. static struct ggml_state g_state;
  2539. static atomic_int g_state_barrier = 0;
  2540. // barrier via spin lock
  2541. inline static void ggml_critical_section_start(void) {
  2542. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2543. while (processing > 0) {
  2544. // wait for other threads to finish
  2545. atomic_fetch_sub(&g_state_barrier, 1);
  2546. sched_yield(); // TODO: reconsider this
  2547. processing = atomic_fetch_add(&g_state_barrier, 1);
  2548. }
  2549. }
  2550. // TODO: make this somehow automatically executed
  2551. // some sort of "sentry" mechanism
  2552. inline static void ggml_critical_section_end(void) {
  2553. atomic_fetch_sub(&g_state_barrier, 1);
  2554. }
  2555. ////////////////////////////////////////////////////////////////////////////////
  2556. void ggml_print_object(const struct ggml_object * obj) {
  2557. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2558. obj->offs, obj->size, (const void *) obj->next);
  2559. }
  2560. void ggml_print_objects(const struct ggml_context * ctx) {
  2561. struct ggml_object * obj = ctx->objects_begin;
  2562. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2563. while (obj != NULL) {
  2564. ggml_print_object(obj);
  2565. obj = obj->next;
  2566. }
  2567. GGML_PRINT("%s: --- end ---\n", __func__);
  2568. }
  2569. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2570. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2571. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2572. }
  2573. int ggml_nrows(const struct ggml_tensor * tensor) {
  2574. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2575. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2576. }
  2577. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2578. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2579. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2580. }
  2581. int ggml_blck_size(enum ggml_type type) {
  2582. return GGML_BLCK_SIZE[type];
  2583. }
  2584. size_t ggml_type_size(enum ggml_type type) {
  2585. return GGML_TYPE_SIZE[type];
  2586. }
  2587. float ggml_type_sizef(enum ggml_type type) {
  2588. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2589. }
  2590. const char * ggml_type_name(enum ggml_type type) {
  2591. return GGML_TYPE_NAME[type];
  2592. }
  2593. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2594. return GGML_TYPE_SIZE[tensor->type];
  2595. }
  2596. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2597. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2598. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2599. }
  2600. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2601. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2602. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2603. }
  2604. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2605. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2606. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2607. }
  2608. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2609. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2610. return
  2611. (t0->ne[0] == t1->ne[0]) &&
  2612. (t0->ne[2] == t1->ne[2]) &&
  2613. (t0->ne[3] == t1->ne[3]);
  2614. }
  2615. static inline bool ggml_is_quantized(enum ggml_type type) {
  2616. return GGML_IS_QUANTIZED[type];
  2617. }
  2618. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2619. return tensor->nb[0] > tensor->nb[1];
  2620. }
  2621. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2622. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2623. return
  2624. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2625. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2626. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2627. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2628. }
  2629. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2630. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2631. return
  2632. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2633. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2634. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2635. }
  2636. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2637. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2638. return
  2639. (t0->ne[0] == t1->ne[0] ) &&
  2640. (t0->ne[1] == t1->ne[1] ) &&
  2641. (t0->ne[2] == t1->ne[2] ) &&
  2642. (t0->ne[3] == t1->ne[3] );
  2643. }
  2644. // check if t1 can be represented as a repeatition of t0
  2645. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2646. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2647. return
  2648. (t1->ne[0]%t0->ne[0] == 0) &&
  2649. (t1->ne[1]%t0->ne[1] == 0) &&
  2650. (t1->ne[2]%t0->ne[2] == 0) &&
  2651. (t1->ne[3]%t0->ne[3] == 0);
  2652. }
  2653. static inline int ggml_up32(int n) {
  2654. return (n + 31) & ~31;
  2655. }
  2656. static inline int ggml_up64(int n) {
  2657. return (n + 63) & ~63;
  2658. }
  2659. static inline int ggml_up(int n, int m) {
  2660. // assert m is a power of 2
  2661. GGML_ASSERT((m & (m - 1)) == 0);
  2662. return (n + m - 1) & ~(m - 1);
  2663. }
  2664. // assert that pointer is aligned to GGML_MEM_ALIGN
  2665. #define ggml_assert_aligned(ptr) \
  2666. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2667. ////////////////////////////////////////////////////////////////////////////////
  2668. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2669. // make this function thread safe
  2670. ggml_critical_section_start();
  2671. static bool is_first_call = true;
  2672. if (is_first_call) {
  2673. // initialize time system (required on Windows)
  2674. ggml_time_init();
  2675. // initialize GELU, SILU and EXP F32 tables
  2676. {
  2677. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2678. ggml_fp16_t ii;
  2679. for (int i = 0; i < (1 << 16); ++i) {
  2680. uint16_t ui = i;
  2681. memcpy(&ii, &ui, sizeof(ii));
  2682. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2683. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2684. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2685. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2686. }
  2687. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2688. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2689. }
  2690. // initialize g_state
  2691. {
  2692. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2693. g_state = (struct ggml_state) {
  2694. /*.contexts =*/ { { 0 } },
  2695. };
  2696. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2697. g_state.contexts[i].used = false;
  2698. }
  2699. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2700. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2701. }
  2702. // initialize cuBLAS
  2703. #if defined(GGML_USE_CUBLAS)
  2704. init_cublas();
  2705. #endif
  2706. is_first_call = false;
  2707. }
  2708. // find non-used context in g_state
  2709. struct ggml_context * ctx = NULL;
  2710. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2711. if (!g_state.contexts[i].used) {
  2712. g_state.contexts[i].used = true;
  2713. ctx = &g_state.contexts[i].context;
  2714. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2715. break;
  2716. }
  2717. }
  2718. if (ctx == NULL) {
  2719. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2720. ggml_critical_section_end();
  2721. return NULL;
  2722. }
  2723. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  2724. *ctx = (struct ggml_context) {
  2725. /*.mem_size =*/ mem_size,
  2726. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2727. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2728. /*.no_alloc =*/ params.no_alloc,
  2729. /*.n_objects =*/ 0,
  2730. /*.objects_begin =*/ NULL,
  2731. /*.objects_end =*/ NULL,
  2732. /*.scratch =*/ { 0, 0, NULL, },
  2733. /*.scratch_save =*/ { 0, 0, NULL, },
  2734. };
  2735. GGML_ASSERT(ctx->mem_buffer != NULL);
  2736. ggml_assert_aligned(ctx->mem_buffer);
  2737. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2738. ggml_critical_section_end();
  2739. return ctx;
  2740. }
  2741. void ggml_free(struct ggml_context * ctx) {
  2742. // make this function thread safe
  2743. ggml_critical_section_start();
  2744. bool found = false;
  2745. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2746. if (&g_state.contexts[i].context == ctx) {
  2747. g_state.contexts[i].used = false;
  2748. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2749. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2750. if (ctx->mem_buffer_owned) {
  2751. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2752. }
  2753. found = true;
  2754. break;
  2755. }
  2756. }
  2757. if (!found) {
  2758. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2759. }
  2760. ggml_critical_section_end();
  2761. }
  2762. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2763. return ctx->objects_end->offs + ctx->objects_end->size;
  2764. }
  2765. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2766. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2767. ctx->scratch = scratch;
  2768. return result;
  2769. }
  2770. ////////////////////////////////////////////////////////////////////////////////
  2771. struct ggml_tensor * ggml_new_tensor_impl(
  2772. struct ggml_context * ctx,
  2773. enum ggml_type type,
  2774. int n_dims,
  2775. const int64_t* ne,
  2776. void* data) {
  2777. // always insert objects at the end of the context's memory pool
  2778. struct ggml_object * obj_cur = ctx->objects_end;
  2779. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2780. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2781. const size_t cur_end = cur_offs + cur_size;
  2782. size_t size_needed = 0;
  2783. if (data == NULL && !ctx->no_alloc) {
  2784. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2785. for (int i = 1; i < n_dims; i++) {
  2786. size_needed *= ne[i];
  2787. }
  2788. // align to GGML_MEM_ALIGN
  2789. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2790. }
  2791. char * const mem_buffer = ctx->mem_buffer;
  2792. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2793. if (ctx->scratch.data == NULL || data != NULL) {
  2794. size_needed += sizeof(struct ggml_tensor);
  2795. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2796. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2797. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2798. assert(false);
  2799. return NULL;
  2800. }
  2801. *obj_new = (struct ggml_object) {
  2802. .offs = cur_end + GGML_OBJECT_SIZE,
  2803. .size = size_needed,
  2804. .next = NULL,
  2805. };
  2806. } else {
  2807. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2808. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2809. assert(false);
  2810. return NULL;
  2811. }
  2812. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2813. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2814. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2815. assert(false);
  2816. return NULL;
  2817. }
  2818. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2819. *obj_new = (struct ggml_object) {
  2820. .offs = cur_end + GGML_OBJECT_SIZE,
  2821. .size = sizeof(struct ggml_tensor),
  2822. .next = NULL,
  2823. };
  2824. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2825. ctx->scratch.offs += size_needed;
  2826. }
  2827. if (obj_cur != NULL) {
  2828. obj_cur->next = obj_new;
  2829. } else {
  2830. // this is the first object in this context
  2831. ctx->objects_begin = obj_new;
  2832. }
  2833. ctx->objects_end = obj_new;
  2834. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2835. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2836. ggml_assert_aligned(result);
  2837. *result = (struct ggml_tensor) {
  2838. /*.type =*/ type,
  2839. /*.n_dims =*/ n_dims,
  2840. /*.ne =*/ { 1, 1, 1, 1 },
  2841. /*.nb =*/ { 0, 0, 0, 0 },
  2842. /*.op =*/ GGML_OP_NONE,
  2843. /*.is_param =*/ false,
  2844. /*.grad =*/ NULL,
  2845. /*.src0 =*/ NULL,
  2846. /*.src1 =*/ NULL,
  2847. /*.opt =*/ { NULL },
  2848. /*.n_tasks =*/ 0,
  2849. /*.perf_runs =*/ 0,
  2850. /*.perf_cycles =*/ 0,
  2851. /*.perf_time_us =*/ 0,
  2852. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  2853. /*.pad =*/ { 0 },
  2854. };
  2855. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2856. //ggml_assert_aligned(result->data);
  2857. for (int i = 0; i < n_dims; i++) {
  2858. result->ne[i] = ne[i];
  2859. }
  2860. result->nb[0] = GGML_TYPE_SIZE[type];
  2861. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2862. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2863. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2864. }
  2865. ctx->n_objects++;
  2866. return result;
  2867. }
  2868. struct ggml_tensor * ggml_new_tensor(
  2869. struct ggml_context * ctx,
  2870. enum ggml_type type,
  2871. int n_dims,
  2872. const int64_t * ne) {
  2873. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2874. }
  2875. struct ggml_tensor * ggml_new_tensor_1d(
  2876. struct ggml_context * ctx,
  2877. enum ggml_type type,
  2878. int64_t ne0) {
  2879. return ggml_new_tensor(ctx, type, 1, &ne0);
  2880. }
  2881. struct ggml_tensor * ggml_new_tensor_2d(
  2882. struct ggml_context * ctx,
  2883. enum ggml_type type,
  2884. int64_t ne0,
  2885. int64_t ne1) {
  2886. const int64_t ne[2] = { ne0, ne1 };
  2887. return ggml_new_tensor(ctx, type, 2, ne);
  2888. }
  2889. struct ggml_tensor * ggml_new_tensor_3d(
  2890. struct ggml_context * ctx,
  2891. enum ggml_type type,
  2892. int64_t ne0,
  2893. int64_t ne1,
  2894. int64_t ne2) {
  2895. const int64_t ne[3] = { ne0, ne1, ne2 };
  2896. return ggml_new_tensor(ctx, type, 3, ne);
  2897. }
  2898. struct ggml_tensor * ggml_new_tensor_4d(
  2899. struct ggml_context * ctx,
  2900. enum ggml_type type,
  2901. int64_t ne0,
  2902. int64_t ne1,
  2903. int64_t ne2,
  2904. int64_t ne3) {
  2905. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2906. return ggml_new_tensor(ctx, type, 4, ne);
  2907. }
  2908. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2909. ctx->scratch_save = ctx->scratch;
  2910. ctx->scratch.data = NULL;
  2911. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2912. ctx->scratch = ctx->scratch_save;
  2913. ggml_set_i32(result, value);
  2914. return result;
  2915. }
  2916. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2917. ctx->scratch_save = ctx->scratch;
  2918. ctx->scratch.data = NULL;
  2919. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2920. ctx->scratch = ctx->scratch_save;
  2921. ggml_set_f32(result, value);
  2922. return result;
  2923. }
  2924. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2925. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2926. }
  2927. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2928. memset(tensor->data, 0, ggml_nbytes(tensor));
  2929. return tensor;
  2930. }
  2931. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2932. const int n = ggml_nrows(tensor);
  2933. const int nc = tensor->ne[0];
  2934. const size_t n1 = tensor->nb[1];
  2935. char * const data = tensor->data;
  2936. switch (tensor->type) {
  2937. case GGML_TYPE_I8:
  2938. {
  2939. assert(tensor->nb[0] == sizeof(int8_t));
  2940. for (int i = 0; i < n; i++) {
  2941. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2942. }
  2943. } break;
  2944. case GGML_TYPE_I16:
  2945. {
  2946. assert(tensor->nb[0] == sizeof(int16_t));
  2947. for (int i = 0; i < n; i++) {
  2948. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2949. }
  2950. } break;
  2951. case GGML_TYPE_I32:
  2952. {
  2953. assert(tensor->nb[0] == sizeof(int32_t));
  2954. for (int i = 0; i < n; i++) {
  2955. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2956. }
  2957. } break;
  2958. case GGML_TYPE_F16:
  2959. {
  2960. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2961. for (int i = 0; i < n; i++) {
  2962. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2963. }
  2964. } break;
  2965. case GGML_TYPE_F32:
  2966. {
  2967. assert(tensor->nb[0] == sizeof(float));
  2968. for (int i = 0; i < n; i++) {
  2969. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2970. }
  2971. } break;
  2972. default:
  2973. {
  2974. GGML_ASSERT(false);
  2975. } break;
  2976. }
  2977. return tensor;
  2978. }
  2979. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2980. const int n = ggml_nrows(tensor);
  2981. const int nc = tensor->ne[0];
  2982. const size_t n1 = tensor->nb[1];
  2983. char * const data = tensor->data;
  2984. switch (tensor->type) {
  2985. case GGML_TYPE_I8:
  2986. {
  2987. assert(tensor->nb[0] == sizeof(int8_t));
  2988. for (int i = 0; i < n; i++) {
  2989. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2990. }
  2991. } break;
  2992. case GGML_TYPE_I16:
  2993. {
  2994. assert(tensor->nb[0] == sizeof(int16_t));
  2995. for (int i = 0; i < n; i++) {
  2996. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2997. }
  2998. } break;
  2999. case GGML_TYPE_I32:
  3000. {
  3001. assert(tensor->nb[0] == sizeof(int32_t));
  3002. for (int i = 0; i < n; i++) {
  3003. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3004. }
  3005. } break;
  3006. case GGML_TYPE_F16:
  3007. {
  3008. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3009. for (int i = 0; i < n; i++) {
  3010. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3011. }
  3012. } break;
  3013. case GGML_TYPE_F32:
  3014. {
  3015. assert(tensor->nb[0] == sizeof(float));
  3016. for (int i = 0; i < n; i++) {
  3017. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3018. }
  3019. } break;
  3020. default:
  3021. {
  3022. GGML_ASSERT(false);
  3023. } break;
  3024. }
  3025. return tensor;
  3026. }
  3027. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3028. switch (tensor->type) {
  3029. case GGML_TYPE_I8:
  3030. {
  3031. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3032. return ((int8_t *)(tensor->data))[i];
  3033. } break;
  3034. case GGML_TYPE_I16:
  3035. {
  3036. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3037. return ((int16_t *)(tensor->data))[i];
  3038. } break;
  3039. case GGML_TYPE_I32:
  3040. {
  3041. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3042. return ((int32_t *)(tensor->data))[i];
  3043. } break;
  3044. case GGML_TYPE_F16:
  3045. {
  3046. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3047. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3048. } break;
  3049. case GGML_TYPE_F32:
  3050. {
  3051. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3052. return ((float *)(tensor->data))[i];
  3053. } break;
  3054. default:
  3055. {
  3056. GGML_ASSERT(false);
  3057. } break;
  3058. }
  3059. return 0.0f;
  3060. }
  3061. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3062. switch (tensor->type) {
  3063. case GGML_TYPE_I8:
  3064. {
  3065. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3066. ((int8_t *)(tensor->data))[i] = value;
  3067. } break;
  3068. case GGML_TYPE_I16:
  3069. {
  3070. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3071. ((int16_t *)(tensor->data))[i] = value;
  3072. } break;
  3073. case GGML_TYPE_I32:
  3074. {
  3075. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3076. ((int32_t *)(tensor->data))[i] = value;
  3077. } break;
  3078. case GGML_TYPE_F16:
  3079. {
  3080. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3081. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3082. } break;
  3083. case GGML_TYPE_F32:
  3084. {
  3085. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3086. ((float *)(tensor->data))[i] = value;
  3087. } break;
  3088. default:
  3089. {
  3090. GGML_ASSERT(false);
  3091. } break;
  3092. }
  3093. }
  3094. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3095. switch (tensor->type) {
  3096. case GGML_TYPE_I8:
  3097. {
  3098. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3099. return ((int8_t *)(tensor->data))[i];
  3100. } break;
  3101. case GGML_TYPE_I16:
  3102. {
  3103. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3104. return ((int16_t *)(tensor->data))[i];
  3105. } break;
  3106. case GGML_TYPE_I32:
  3107. {
  3108. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3109. return ((int32_t *)(tensor->data))[i];
  3110. } break;
  3111. case GGML_TYPE_F16:
  3112. {
  3113. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3114. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3115. } break;
  3116. case GGML_TYPE_F32:
  3117. {
  3118. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3119. return ((float *)(tensor->data))[i];
  3120. } break;
  3121. default:
  3122. {
  3123. GGML_ASSERT(false);
  3124. } break;
  3125. }
  3126. return 0.0f;
  3127. }
  3128. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3129. switch (tensor->type) {
  3130. case GGML_TYPE_I8:
  3131. {
  3132. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3133. ((int8_t *)(tensor->data))[i] = value;
  3134. } break;
  3135. case GGML_TYPE_I16:
  3136. {
  3137. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3138. ((int16_t *)(tensor->data))[i] = value;
  3139. } break;
  3140. case GGML_TYPE_I32:
  3141. {
  3142. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3143. ((int32_t *)(tensor->data))[i] = value;
  3144. } break;
  3145. case GGML_TYPE_F16:
  3146. {
  3147. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3148. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3149. } break;
  3150. case GGML_TYPE_F32:
  3151. {
  3152. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3153. ((float *)(tensor->data))[i] = value;
  3154. } break;
  3155. default:
  3156. {
  3157. GGML_ASSERT(false);
  3158. } break;
  3159. }
  3160. }
  3161. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3162. return tensor->data;
  3163. }
  3164. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3165. assert(tensor->type == GGML_TYPE_F32);
  3166. return (float *)(tensor->data);
  3167. }
  3168. struct ggml_tensor * ggml_view_tensor(
  3169. struct ggml_context * ctx,
  3170. const struct ggml_tensor * src) {
  3171. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3172. result->nb[0] = src->nb[0];
  3173. result->nb[1] = src->nb[1];
  3174. result->nb[2] = src->nb[2];
  3175. result->nb[3] = src->nb[3];
  3176. return result;
  3177. }
  3178. ////////////////////////////////////////////////////////////////////////////////
  3179. // ggml_dup
  3180. struct ggml_tensor * ggml_dup_impl(
  3181. struct ggml_context * ctx,
  3182. struct ggml_tensor * a,
  3183. bool inplace) {
  3184. bool is_node = false;
  3185. if (!inplace && (a->grad)) {
  3186. is_node = true;
  3187. }
  3188. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3189. result->op = GGML_OP_DUP;
  3190. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3191. result->src0 = a;
  3192. result->src1 = NULL;
  3193. return result;
  3194. }
  3195. struct ggml_tensor * ggml_dup(
  3196. struct ggml_context * ctx,
  3197. struct ggml_tensor * a) {
  3198. return ggml_dup_impl(ctx, a, false);
  3199. }
  3200. struct ggml_tensor * ggml_dup_inplace(
  3201. struct ggml_context * ctx,
  3202. struct ggml_tensor * a) {
  3203. return ggml_dup_impl(ctx, a, true);
  3204. }
  3205. // ggml_add
  3206. struct ggml_tensor * ggml_add_impl(
  3207. struct ggml_context * ctx,
  3208. struct ggml_tensor * a,
  3209. struct ggml_tensor * b,
  3210. bool inplace) {
  3211. GGML_ASSERT(ggml_are_same_shape(a, b));
  3212. bool is_node = false;
  3213. if (!inplace && (a->grad || b->grad)) {
  3214. is_node = true;
  3215. }
  3216. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3217. result->op = GGML_OP_ADD;
  3218. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3219. result->src0 = a;
  3220. result->src1 = b;
  3221. return result;
  3222. }
  3223. struct ggml_tensor * ggml_add(
  3224. struct ggml_context * ctx,
  3225. struct ggml_tensor * a,
  3226. struct ggml_tensor * b) {
  3227. return ggml_add_impl(ctx, a, b, false);
  3228. }
  3229. struct ggml_tensor * ggml_add_inplace(
  3230. struct ggml_context * ctx,
  3231. struct ggml_tensor * a,
  3232. struct ggml_tensor * b) {
  3233. return ggml_add_impl(ctx, a, b, true);
  3234. }
  3235. // ggml_sub
  3236. struct ggml_tensor * ggml_sub_impl(
  3237. struct ggml_context * ctx,
  3238. struct ggml_tensor * a,
  3239. struct ggml_tensor * b,
  3240. bool inplace) {
  3241. GGML_ASSERT(ggml_are_same_shape(a, b));
  3242. bool is_node = false;
  3243. if (!inplace && (a->grad || b->grad)) {
  3244. is_node = true;
  3245. }
  3246. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3247. result->op = GGML_OP_SUB;
  3248. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3249. result->src0 = a;
  3250. result->src1 = b;
  3251. return result;
  3252. }
  3253. struct ggml_tensor * ggml_sub(
  3254. struct ggml_context * ctx,
  3255. struct ggml_tensor * a,
  3256. struct ggml_tensor * b) {
  3257. return ggml_sub_impl(ctx, a, b, false);
  3258. }
  3259. struct ggml_tensor * ggml_sub_inplace(
  3260. struct ggml_context * ctx,
  3261. struct ggml_tensor * a,
  3262. struct ggml_tensor * b) {
  3263. return ggml_sub_impl(ctx, a, b, true);
  3264. }
  3265. // ggml_mul
  3266. struct ggml_tensor * ggml_mul_impl(
  3267. struct ggml_context * ctx,
  3268. struct ggml_tensor * a,
  3269. struct ggml_tensor * b,
  3270. bool inplace) {
  3271. GGML_ASSERT(ggml_are_same_shape(a, b));
  3272. bool is_node = false;
  3273. if (!inplace && (a->grad || b->grad)) {
  3274. is_node = true;
  3275. }
  3276. if (inplace) {
  3277. GGML_ASSERT(is_node == false);
  3278. }
  3279. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3280. result->op = GGML_OP_MUL;
  3281. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3282. result->src0 = a;
  3283. result->src1 = b;
  3284. return result;
  3285. }
  3286. struct ggml_tensor * ggml_mul(
  3287. struct ggml_context * ctx,
  3288. struct ggml_tensor * a,
  3289. struct ggml_tensor * b) {
  3290. return ggml_mul_impl(ctx, a, b, false);
  3291. }
  3292. struct ggml_tensor * ggml_mul_inplace(
  3293. struct ggml_context * ctx,
  3294. struct ggml_tensor * a,
  3295. struct ggml_tensor * b) {
  3296. return ggml_mul_impl(ctx, a, b, true);
  3297. }
  3298. // ggml_div
  3299. struct ggml_tensor * ggml_div_impl(
  3300. struct ggml_context * ctx,
  3301. struct ggml_tensor * a,
  3302. struct ggml_tensor * b,
  3303. bool inplace) {
  3304. GGML_ASSERT(ggml_are_same_shape(a, b));
  3305. bool is_node = false;
  3306. if (!inplace && (a->grad || b->grad)) {
  3307. is_node = true;
  3308. }
  3309. if (inplace) {
  3310. GGML_ASSERT(is_node == false);
  3311. }
  3312. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3313. result->op = GGML_OP_DIV;
  3314. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3315. result->src0 = a;
  3316. result->src1 = b;
  3317. return result;
  3318. }
  3319. struct ggml_tensor * ggml_div(
  3320. struct ggml_context * ctx,
  3321. struct ggml_tensor * a,
  3322. struct ggml_tensor * b) {
  3323. return ggml_div_impl(ctx, a, b, false);
  3324. }
  3325. struct ggml_tensor * ggml_div_inplace(
  3326. struct ggml_context * ctx,
  3327. struct ggml_tensor * a,
  3328. struct ggml_tensor * b) {
  3329. return ggml_div_impl(ctx, a, b, true);
  3330. }
  3331. // ggml_sqr
  3332. struct ggml_tensor * ggml_sqr_impl(
  3333. struct ggml_context * ctx,
  3334. struct ggml_tensor * a,
  3335. bool inplace) {
  3336. bool is_node = false;
  3337. if (!inplace && (a->grad)) {
  3338. is_node = true;
  3339. }
  3340. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3341. result->op = GGML_OP_SQR;
  3342. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3343. result->src0 = a;
  3344. result->src1 = NULL;
  3345. return result;
  3346. }
  3347. struct ggml_tensor * ggml_sqr(
  3348. struct ggml_context * ctx,
  3349. struct ggml_tensor * a) {
  3350. return ggml_sqr_impl(ctx, a, false);
  3351. }
  3352. struct ggml_tensor * ggml_sqr_inplace(
  3353. struct ggml_context * ctx,
  3354. struct ggml_tensor * a) {
  3355. return ggml_sqr_impl(ctx, a, true);
  3356. }
  3357. // ggml_sqrt
  3358. struct ggml_tensor * ggml_sqrt_impl(
  3359. struct ggml_context * ctx,
  3360. struct ggml_tensor * a,
  3361. bool inplace) {
  3362. bool is_node = false;
  3363. if (!inplace && (a->grad)) {
  3364. is_node = true;
  3365. }
  3366. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3367. result->op = GGML_OP_SQRT;
  3368. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3369. result->src0 = a;
  3370. result->src1 = NULL;
  3371. return result;
  3372. }
  3373. struct ggml_tensor * ggml_sqrt(
  3374. struct ggml_context * ctx,
  3375. struct ggml_tensor * a) {
  3376. return ggml_sqrt_impl(ctx, a, false);
  3377. }
  3378. struct ggml_tensor * ggml_sqrt_inplace(
  3379. struct ggml_context * ctx,
  3380. struct ggml_tensor * a) {
  3381. return ggml_sqrt_impl(ctx, a, true);
  3382. }
  3383. // ggml_sum
  3384. struct ggml_tensor * ggml_sum(
  3385. struct ggml_context * ctx,
  3386. struct ggml_tensor * a) {
  3387. bool is_node = false;
  3388. if (a->grad) {
  3389. is_node = true;
  3390. }
  3391. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3392. result->op = GGML_OP_SUM;
  3393. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3394. result->src0 = a;
  3395. result->src1 = NULL;
  3396. return result;
  3397. }
  3398. // ggml_mean
  3399. struct ggml_tensor * ggml_mean(
  3400. struct ggml_context * ctx,
  3401. struct ggml_tensor * a) {
  3402. bool is_node = false;
  3403. if (a->grad) {
  3404. GGML_ASSERT(false); // TODO: implement
  3405. is_node = true;
  3406. }
  3407. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3408. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3409. result->op = GGML_OP_MEAN;
  3410. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3411. result->src0 = a;
  3412. result->src1 = NULL;
  3413. return result;
  3414. }
  3415. // ggml_repeat
  3416. struct ggml_tensor * ggml_repeat(
  3417. struct ggml_context * ctx,
  3418. struct ggml_tensor * a,
  3419. struct ggml_tensor * b) {
  3420. GGML_ASSERT(ggml_can_repeat(a, b));
  3421. bool is_node = false;
  3422. if (a->grad) {
  3423. is_node = true;
  3424. }
  3425. if (ggml_are_same_shape(a, b) && !is_node) {
  3426. return a;
  3427. }
  3428. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3429. result->op = GGML_OP_REPEAT;
  3430. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3431. result->src0 = a;
  3432. result->src1 = b;
  3433. return result;
  3434. }
  3435. // ggml_abs
  3436. struct ggml_tensor * ggml_abs_impl(
  3437. struct ggml_context * ctx,
  3438. struct ggml_tensor * a,
  3439. bool inplace) {
  3440. bool is_node = false;
  3441. if (!inplace && (a->grad)) {
  3442. is_node = true;
  3443. }
  3444. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3445. result->op = GGML_OP_ABS;
  3446. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3447. result->src0 = a;
  3448. result->src1 = NULL;
  3449. return result;
  3450. }
  3451. struct ggml_tensor * ggml_abs(
  3452. struct ggml_context * ctx,
  3453. struct ggml_tensor * a) {
  3454. return ggml_abs_impl(ctx, a, false);
  3455. }
  3456. struct ggml_tensor * ggml_abs_inplace(
  3457. struct ggml_context * ctx,
  3458. struct ggml_tensor * a) {
  3459. return ggml_abs_impl(ctx, a, true);
  3460. }
  3461. // ggml_sgn
  3462. struct ggml_tensor * ggml_sgn_impl(
  3463. struct ggml_context * ctx,
  3464. struct ggml_tensor * a,
  3465. bool inplace) {
  3466. bool is_node = false;
  3467. if (!inplace && (a->grad)) {
  3468. is_node = true;
  3469. }
  3470. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3471. result->op = GGML_OP_SGN;
  3472. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3473. result->src0 = a;
  3474. result->src1 = NULL;
  3475. return result;
  3476. }
  3477. struct ggml_tensor * ggml_sgn(
  3478. struct ggml_context * ctx,
  3479. struct ggml_tensor * a) {
  3480. return ggml_sgn_impl(ctx, a, false);
  3481. }
  3482. struct ggml_tensor * ggml_sgn_inplace(
  3483. struct ggml_context * ctx,
  3484. struct ggml_tensor * a) {
  3485. return ggml_sgn_impl(ctx, a, true);
  3486. }
  3487. // ggml_neg
  3488. struct ggml_tensor * ggml_neg_impl(
  3489. struct ggml_context * ctx,
  3490. struct ggml_tensor * a,
  3491. bool inplace) {
  3492. bool is_node = false;
  3493. if (!inplace && (a->grad)) {
  3494. is_node = true;
  3495. }
  3496. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3497. result->op = GGML_OP_NEG;
  3498. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3499. result->src0 = a;
  3500. result->src1 = NULL;
  3501. return result;
  3502. }
  3503. struct ggml_tensor * ggml_neg(
  3504. struct ggml_context * ctx,
  3505. struct ggml_tensor * a) {
  3506. return ggml_neg_impl(ctx, a, false);
  3507. }
  3508. struct ggml_tensor * ggml_neg_inplace(
  3509. struct ggml_context * ctx,
  3510. struct ggml_tensor * a) {
  3511. return ggml_neg_impl(ctx, a, true);
  3512. }
  3513. // ggml_step
  3514. struct ggml_tensor * ggml_step_impl(
  3515. struct ggml_context * ctx,
  3516. struct ggml_tensor * a,
  3517. bool inplace) {
  3518. bool is_node = false;
  3519. if (!inplace && (a->grad)) {
  3520. is_node = true;
  3521. }
  3522. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3523. result->op = GGML_OP_STEP;
  3524. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3525. result->src0 = a;
  3526. result->src1 = NULL;
  3527. return result;
  3528. }
  3529. struct ggml_tensor * ggml_step(
  3530. struct ggml_context * ctx,
  3531. struct ggml_tensor * a) {
  3532. return ggml_step_impl(ctx, a, false);
  3533. }
  3534. struct ggml_tensor * ggml_step_inplace(
  3535. struct ggml_context * ctx,
  3536. struct ggml_tensor * a) {
  3537. return ggml_step_impl(ctx, a, true);
  3538. }
  3539. // ggml_relu
  3540. struct ggml_tensor * ggml_relu_impl(
  3541. struct ggml_context * ctx,
  3542. struct ggml_tensor * a,
  3543. bool inplace) {
  3544. bool is_node = false;
  3545. if (!inplace && (a->grad)) {
  3546. is_node = true;
  3547. }
  3548. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3549. result->op = GGML_OP_RELU;
  3550. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3551. result->src0 = a;
  3552. result->src1 = NULL;
  3553. return result;
  3554. }
  3555. struct ggml_tensor * ggml_relu(
  3556. struct ggml_context * ctx,
  3557. struct ggml_tensor * a) {
  3558. return ggml_relu_impl(ctx, a, false);
  3559. }
  3560. struct ggml_tensor * ggml_relu_inplace(
  3561. struct ggml_context * ctx,
  3562. struct ggml_tensor * a) {
  3563. return ggml_relu_impl(ctx, a, true);
  3564. }
  3565. // ggml_gelu
  3566. struct ggml_tensor * ggml_gelu_impl(
  3567. struct ggml_context * ctx,
  3568. struct ggml_tensor * a,
  3569. bool inplace) {
  3570. bool is_node = false;
  3571. if (!inplace && (a->grad)) {
  3572. is_node = true;
  3573. }
  3574. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3575. result->op = GGML_OP_GELU;
  3576. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3577. result->src0 = a;
  3578. result->src1 = NULL;
  3579. return result;
  3580. }
  3581. struct ggml_tensor * ggml_gelu(
  3582. struct ggml_context * ctx,
  3583. struct ggml_tensor * a) {
  3584. return ggml_gelu_impl(ctx, a, false);
  3585. }
  3586. struct ggml_tensor * ggml_gelu_inplace(
  3587. struct ggml_context * ctx,
  3588. struct ggml_tensor * a) {
  3589. return ggml_gelu_impl(ctx, a, true);
  3590. }
  3591. // ggml_silu
  3592. struct ggml_tensor * ggml_silu_impl(
  3593. struct ggml_context * ctx,
  3594. struct ggml_tensor * a,
  3595. bool inplace) {
  3596. bool is_node = false;
  3597. if (!inplace && (a->grad)) {
  3598. is_node = true;
  3599. }
  3600. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3601. result->op = GGML_OP_SILU;
  3602. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3603. result->src0 = a;
  3604. result->src1 = NULL;
  3605. return result;
  3606. }
  3607. struct ggml_tensor * ggml_silu(
  3608. struct ggml_context * ctx,
  3609. struct ggml_tensor * a) {
  3610. return ggml_silu_impl(ctx, a, false);
  3611. }
  3612. struct ggml_tensor * ggml_silu_inplace(
  3613. struct ggml_context * ctx,
  3614. struct ggml_tensor * a) {
  3615. return ggml_silu_impl(ctx, a, true);
  3616. }
  3617. // ggml_norm
  3618. struct ggml_tensor * ggml_norm_impl(
  3619. struct ggml_context * ctx,
  3620. struct ggml_tensor * a,
  3621. bool inplace) {
  3622. bool is_node = false;
  3623. if (!inplace && (a->grad)) {
  3624. GGML_ASSERT(false); // TODO: implement backward
  3625. is_node = true;
  3626. }
  3627. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3628. result->op = GGML_OP_NORM;
  3629. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3630. result->src0 = a;
  3631. result->src1 = NULL; // TODO: maybe store epsilon here?
  3632. return result;
  3633. }
  3634. struct ggml_tensor * ggml_norm(
  3635. struct ggml_context * ctx,
  3636. struct ggml_tensor * a) {
  3637. return ggml_norm_impl(ctx, a, false);
  3638. }
  3639. struct ggml_tensor * ggml_norm_inplace(
  3640. struct ggml_context * ctx,
  3641. struct ggml_tensor * a) {
  3642. return ggml_norm_impl(ctx, a, true);
  3643. }
  3644. struct ggml_tensor * ggml_rms_norm_impl(
  3645. struct ggml_context * ctx,
  3646. struct ggml_tensor * a,
  3647. bool inplace) {
  3648. bool is_node = false;
  3649. if (!inplace && (a->grad)) {
  3650. GGML_ASSERT(false); // TODO: implement backward
  3651. is_node = true;
  3652. }
  3653. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3654. result->op = GGML_OP_RMS_NORM;
  3655. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3656. result->src0 = a;
  3657. result->src1 = NULL; // TODO: maybe store epsilon here?
  3658. return result;
  3659. }
  3660. struct ggml_tensor * ggml_rms_norm(
  3661. struct ggml_context * ctx,
  3662. struct ggml_tensor * a) {
  3663. return ggml_rms_norm_impl(ctx, a, false);
  3664. }
  3665. struct ggml_tensor * ggml_rms_norm_inplace(
  3666. struct ggml_context * ctx,
  3667. struct ggml_tensor * a) {
  3668. return ggml_rms_norm_impl(ctx, a, true);
  3669. }
  3670. // ggml_mul_mat
  3671. struct ggml_tensor * ggml_mul_mat(
  3672. struct ggml_context * ctx,
  3673. struct ggml_tensor * a,
  3674. struct ggml_tensor * b) {
  3675. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3676. GGML_ASSERT(!ggml_is_transposed(a));
  3677. bool is_node = false;
  3678. if (a->grad || b->grad) {
  3679. is_node = true;
  3680. }
  3681. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3682. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3683. result->op = GGML_OP_MUL_MAT;
  3684. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3685. result->src0 = a;
  3686. result->src1 = b;
  3687. return result;
  3688. }
  3689. // ggml_scale
  3690. struct ggml_tensor * ggml_scale_impl(
  3691. struct ggml_context * ctx,
  3692. struct ggml_tensor * a,
  3693. struct ggml_tensor * b,
  3694. bool inplace) {
  3695. GGML_ASSERT(ggml_is_scalar(b));
  3696. GGML_ASSERT(ggml_is_padded_1d(a));
  3697. bool is_node = false;
  3698. if (!inplace && (a->grad || b->grad)) {
  3699. GGML_ASSERT(false); // TODO: implement backward
  3700. is_node = true;
  3701. }
  3702. // TODO: when implement backward, fix this:
  3703. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3704. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3705. result->op = GGML_OP_SCALE;
  3706. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3707. result->src0 = a;
  3708. result->src1 = b;
  3709. return result;
  3710. }
  3711. struct ggml_tensor * ggml_scale(
  3712. struct ggml_context * ctx,
  3713. struct ggml_tensor * a,
  3714. struct ggml_tensor * b) {
  3715. return ggml_scale_impl(ctx, a, b, false);
  3716. }
  3717. struct ggml_tensor * ggml_scale_inplace(
  3718. struct ggml_context * ctx,
  3719. struct ggml_tensor * a,
  3720. struct ggml_tensor * b) {
  3721. return ggml_scale_impl(ctx, a, b, true);
  3722. }
  3723. // ggml_cpy
  3724. struct ggml_tensor * ggml_cpy_impl(
  3725. struct ggml_context * ctx,
  3726. struct ggml_tensor * a,
  3727. struct ggml_tensor * b,
  3728. bool inplace) {
  3729. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3730. bool is_node = false;
  3731. if (!inplace && (a->grad || b->grad)) {
  3732. GGML_ASSERT(false); // TODO: implement backward
  3733. is_node = true;
  3734. }
  3735. // make a view of the destination
  3736. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3737. result->op = GGML_OP_CPY;
  3738. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3739. result->src0 = a;
  3740. result->src1 = b;
  3741. return result;
  3742. }
  3743. struct ggml_tensor * ggml_cpy(
  3744. struct ggml_context * ctx,
  3745. struct ggml_tensor * a,
  3746. struct ggml_tensor * b) {
  3747. return ggml_cpy_impl(ctx, a, b, false);
  3748. }
  3749. struct ggml_tensor * ggml_cpy_inplace(
  3750. struct ggml_context * ctx,
  3751. struct ggml_tensor * a,
  3752. struct ggml_tensor * b) {
  3753. return ggml_cpy_impl(ctx, a, b, true);
  3754. }
  3755. // ggml_cont
  3756. struct ggml_tensor * ggml_cont_impl(
  3757. struct ggml_context * ctx,
  3758. struct ggml_tensor * a,
  3759. bool inplace) {
  3760. bool is_node = false;
  3761. if (!inplace && a->grad) {
  3762. GGML_ASSERT(false); // TODO: implement backward
  3763. is_node = true;
  3764. }
  3765. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3766. result->op = GGML_OP_CONT;
  3767. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3768. result->src0 = a;
  3769. result->src1 = NULL;
  3770. return result;
  3771. }
  3772. struct ggml_tensor * ggml_cont(
  3773. struct ggml_context * ctx,
  3774. struct ggml_tensor * a) {
  3775. return ggml_cont_impl(ctx, a, false);
  3776. }
  3777. struct ggml_tensor * ggml_cont_inplace(
  3778. struct ggml_context * ctx,
  3779. struct ggml_tensor * a) {
  3780. return ggml_cont_impl(ctx, a, true);
  3781. }
  3782. // ggml_reshape
  3783. struct ggml_tensor * ggml_reshape(
  3784. struct ggml_context * ctx,
  3785. struct ggml_tensor * a,
  3786. struct ggml_tensor * b) {
  3787. GGML_ASSERT(ggml_is_contiguous(a));
  3788. GGML_ASSERT(ggml_is_contiguous(b));
  3789. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3790. bool is_node = false;
  3791. if (a->grad || b->grad) {
  3792. GGML_ASSERT(false); // TODO: implement backward
  3793. is_node = true;
  3794. }
  3795. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3796. result->op = GGML_OP_RESHAPE;
  3797. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3798. result->src0 = a;
  3799. result->src1 = NULL;
  3800. return result;
  3801. }
  3802. struct ggml_tensor * ggml_reshape_2d(
  3803. struct ggml_context * ctx,
  3804. struct ggml_tensor * a,
  3805. int64_t ne0,
  3806. int64_t ne1) {
  3807. GGML_ASSERT(ggml_is_contiguous(a));
  3808. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3809. bool is_node = false;
  3810. if (a->grad) {
  3811. GGML_ASSERT(false); // TODO: implement backward
  3812. is_node = true;
  3813. }
  3814. const int64_t ne[2] = { ne0, ne1 };
  3815. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3816. result->op = GGML_OP_RESHAPE;
  3817. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3818. result->src0 = a;
  3819. result->src1 = NULL;
  3820. return result;
  3821. }
  3822. struct ggml_tensor * ggml_reshape_3d(
  3823. struct ggml_context * ctx,
  3824. struct ggml_tensor * a,
  3825. int64_t ne0,
  3826. int64_t ne1,
  3827. int64_t ne2) {
  3828. GGML_ASSERT(ggml_is_contiguous(a));
  3829. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3830. bool is_node = false;
  3831. if (a->grad) {
  3832. GGML_ASSERT(false); // TODO: implement backward
  3833. is_node = true;
  3834. }
  3835. const int64_t ne[3] = { ne0, ne1, ne2 };
  3836. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3837. result->op = GGML_OP_RESHAPE;
  3838. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3839. result->src0 = a;
  3840. result->src1 = NULL;
  3841. return result;
  3842. }
  3843. // ggml_view_1d
  3844. struct ggml_tensor * ggml_view_1d(
  3845. struct ggml_context * ctx,
  3846. struct ggml_tensor * a,
  3847. int64_t ne0,
  3848. size_t offset) {
  3849. if (a->grad) {
  3850. GGML_ASSERT(false); // gradient propagation is not supported
  3851. }
  3852. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3853. result->op = GGML_OP_VIEW;
  3854. result->grad = NULL;
  3855. result->src0 = a;
  3856. result->src1 = NULL; // TODO: maybe store the offset here?
  3857. return result;
  3858. }
  3859. // ggml_view_2d
  3860. struct ggml_tensor * ggml_view_2d(
  3861. struct ggml_context * ctx,
  3862. struct ggml_tensor * a,
  3863. int64_t ne0,
  3864. int64_t ne1,
  3865. size_t nb1,
  3866. size_t offset) {
  3867. if (a->grad) {
  3868. GGML_ASSERT(false); // gradient propagation is not supported
  3869. }
  3870. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3871. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3872. result->nb[1] = nb1;
  3873. result->nb[2] = result->nb[1]*ne1;
  3874. result->nb[3] = result->nb[2];
  3875. result->op = GGML_OP_VIEW;
  3876. result->grad = NULL;
  3877. result->src0 = a;
  3878. result->src1 = NULL; // TODO: maybe store the offset here?
  3879. return result;
  3880. }
  3881. // ggml_view_3d
  3882. struct ggml_tensor * ggml_view_3d(
  3883. struct ggml_context * ctx,
  3884. struct ggml_tensor * a,
  3885. int64_t ne0,
  3886. int64_t ne1,
  3887. int64_t ne2,
  3888. size_t nb1,
  3889. size_t nb2,
  3890. size_t offset) {
  3891. if (a->grad) {
  3892. GGML_ASSERT(false); // gradient propagation is not supported
  3893. }
  3894. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  3895. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  3896. result->nb[1] = nb1;
  3897. result->nb[2] = nb2;
  3898. result->nb[3] = result->nb[2]*ne2;
  3899. result->op = GGML_OP_VIEW;
  3900. result->grad = NULL;
  3901. result->src0 = a;
  3902. result->src1 = NULL; // TODO: maybe store the offset here?
  3903. return result;
  3904. }
  3905. // ggml_permute
  3906. struct ggml_tensor * ggml_permute(
  3907. struct ggml_context * ctx,
  3908. struct ggml_tensor * a,
  3909. int axis0,
  3910. int axis1,
  3911. int axis2,
  3912. int axis3) {
  3913. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3914. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3915. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3916. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3917. GGML_ASSERT(axis0 != axis1);
  3918. GGML_ASSERT(axis0 != axis2);
  3919. GGML_ASSERT(axis0 != axis3);
  3920. GGML_ASSERT(axis1 != axis2);
  3921. GGML_ASSERT(axis1 != axis3);
  3922. GGML_ASSERT(axis2 != axis3);
  3923. bool is_node = false;
  3924. if (a->grad) {
  3925. GGML_ASSERT(false); // TODO: implement backward
  3926. is_node = true;
  3927. }
  3928. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3929. int ne[GGML_MAX_DIMS];
  3930. int nb[GGML_MAX_DIMS];
  3931. ne[axis0] = a->ne[0];
  3932. ne[axis1] = a->ne[1];
  3933. ne[axis2] = a->ne[2];
  3934. ne[axis3] = a->ne[3];
  3935. nb[axis0] = a->nb[0];
  3936. nb[axis1] = a->nb[1];
  3937. nb[axis2] = a->nb[2];
  3938. nb[axis3] = a->nb[3];
  3939. result->ne[0] = ne[0];
  3940. result->ne[1] = ne[1];
  3941. result->ne[2] = ne[2];
  3942. result->ne[3] = ne[3];
  3943. result->nb[0] = nb[0];
  3944. result->nb[1] = nb[1];
  3945. result->nb[2] = nb[2];
  3946. result->nb[3] = nb[3];
  3947. result->op = GGML_OP_PERMUTE;
  3948. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3949. result->src0 = a;
  3950. result->src1 = NULL; // TODO: maybe store the permutation here?
  3951. return result;
  3952. }
  3953. // ggml_transpose
  3954. struct ggml_tensor * ggml_transpose(
  3955. struct ggml_context * ctx,
  3956. struct ggml_tensor * a) {
  3957. bool is_node = false;
  3958. if (a->grad) {
  3959. GGML_ASSERT(false); // TODO: implement backward
  3960. is_node = true;
  3961. }
  3962. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3963. result->ne[0] = a->ne[1];
  3964. result->ne[1] = a->ne[0];
  3965. result->nb[0] = a->nb[1];
  3966. result->nb[1] = a->nb[0];
  3967. result->op = GGML_OP_TRANSPOSE;
  3968. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3969. result->src0 = a;
  3970. result->src1 = NULL;
  3971. return result;
  3972. }
  3973. // ggml_get_rows
  3974. struct ggml_tensor * ggml_get_rows(
  3975. struct ggml_context * ctx,
  3976. struct ggml_tensor * a,
  3977. struct ggml_tensor * b) {
  3978. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3979. bool is_node = false;
  3980. if (a->grad || b->grad) {
  3981. GGML_ASSERT(false); // TODO: implement backward
  3982. is_node = true;
  3983. }
  3984. // TODO: implement non F32 return
  3985. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3986. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3987. result->op = GGML_OP_GET_ROWS;
  3988. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3989. result->src0 = a;
  3990. result->src1 = b;
  3991. return result;
  3992. }
  3993. // ggml_diag_mask_inf
  3994. struct ggml_tensor * ggml_diag_mask_inf(
  3995. struct ggml_context * ctx,
  3996. struct ggml_tensor * a,
  3997. int n_past) {
  3998. bool is_node = false;
  3999. if (a->grad) {
  4000. GGML_ASSERT(false); // TODO: implement backward
  4001. is_node = true;
  4002. }
  4003. // TODO: when implement backward, fix this:
  4004. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4005. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4006. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4007. result->op = GGML_OP_DIAG_MASK_INF;
  4008. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4009. result->src0 = a;
  4010. result->src1 = b;
  4011. return result;
  4012. }
  4013. // ggml_soft_max
  4014. struct ggml_tensor * ggml_soft_max(
  4015. struct ggml_context * ctx,
  4016. struct ggml_tensor * a) {
  4017. bool is_node = false;
  4018. if (a->grad) {
  4019. GGML_ASSERT(false); // TODO: implement backward
  4020. is_node = true;
  4021. }
  4022. // TODO: when implement backward, fix this:
  4023. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4024. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4025. result->op = GGML_OP_SOFT_MAX;
  4026. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4027. result->src0 = a;
  4028. result->src1 = NULL;
  4029. return result;
  4030. }
  4031. // ggml_rope
  4032. struct ggml_tensor * ggml_rope(
  4033. struct ggml_context * ctx,
  4034. struct ggml_tensor * a,
  4035. int n_past,
  4036. int n_dims,
  4037. int mode) {
  4038. GGML_ASSERT(n_past >= 0);
  4039. bool is_node = false;
  4040. if (a->grad) {
  4041. GGML_ASSERT(false); // TODO: implement backward
  4042. is_node = true;
  4043. }
  4044. // TODO: when implement backward, fix this:
  4045. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4046. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4047. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4048. ((int32_t *) b->data)[0] = n_past;
  4049. ((int32_t *) b->data)[1] = n_dims;
  4050. ((int32_t *) b->data)[2] = mode;
  4051. result->op = GGML_OP_ROPE;
  4052. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4053. result->src0 = a;
  4054. result->src1 = b;
  4055. return result;
  4056. }
  4057. // ggml_conv_1d_1s
  4058. struct ggml_tensor * ggml_conv_1d_1s(
  4059. struct ggml_context * ctx,
  4060. struct ggml_tensor * a,
  4061. struct ggml_tensor * b) {
  4062. GGML_ASSERT(ggml_is_matrix(b));
  4063. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4064. GGML_ASSERT(a->ne[3] == 1);
  4065. bool is_node = false;
  4066. if (a->grad || b->grad) {
  4067. GGML_ASSERT(false); // TODO: implement backward
  4068. is_node = true;
  4069. }
  4070. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4071. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4072. result->op = GGML_OP_CONV_1D_1S;
  4073. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4074. result->src0 = a;
  4075. result->src1 = b;
  4076. return result;
  4077. }
  4078. // ggml_conv_1d_2s
  4079. struct ggml_tensor * ggml_conv_1d_2s(
  4080. struct ggml_context * ctx,
  4081. struct ggml_tensor * a,
  4082. struct ggml_tensor * b) {
  4083. GGML_ASSERT(ggml_is_matrix(b));
  4084. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4085. GGML_ASSERT(a->ne[3] == 1);
  4086. bool is_node = false;
  4087. if (a->grad || b->grad) {
  4088. GGML_ASSERT(false); // TODO: implement backward
  4089. is_node = true;
  4090. }
  4091. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4092. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4093. result->op = GGML_OP_CONV_1D_2S;
  4094. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4095. result->src0 = a;
  4096. result->src1 = b;
  4097. return result;
  4098. }
  4099. // ggml_flash_attn
  4100. struct ggml_tensor * ggml_flash_attn(
  4101. struct ggml_context * ctx,
  4102. struct ggml_tensor * q,
  4103. struct ggml_tensor * k,
  4104. struct ggml_tensor * v,
  4105. bool masked) {
  4106. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4107. // TODO: check if vT can be multiplied by (k*qT)
  4108. bool is_node = false;
  4109. if (q->grad || k->grad || v->grad) {
  4110. GGML_ASSERT(false); // TODO: implement backward
  4111. is_node = true;
  4112. }
  4113. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4114. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4115. result->op = GGML_OP_FLASH_ATTN;
  4116. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4117. result->src0 = q;
  4118. result->src1 = k;
  4119. result->opt[0] = v;
  4120. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4121. return result;
  4122. }
  4123. // ggml_flash_ff
  4124. struct ggml_tensor * ggml_flash_ff(
  4125. struct ggml_context * ctx,
  4126. struct ggml_tensor * a,
  4127. struct ggml_tensor * b0,
  4128. struct ggml_tensor * b1,
  4129. struct ggml_tensor * c0,
  4130. struct ggml_tensor * c1) {
  4131. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4132. // TODO: more checks
  4133. bool is_node = false;
  4134. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4135. GGML_ASSERT(false); // TODO: implement backward
  4136. is_node = true;
  4137. }
  4138. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4139. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4140. result->op = GGML_OP_FLASH_FF;
  4141. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4142. result->src0 = a;
  4143. result->src1 = b0;
  4144. result->opt[0] = b1;
  4145. result->opt[1] = c0;
  4146. result->opt[2] = c1;
  4147. return result;
  4148. }
  4149. // ggml_map_unary
  4150. struct ggml_tensor * ggml_map_unary_impl_f32(
  4151. struct ggml_context * ctx,
  4152. struct ggml_tensor * a,
  4153. const ggml_unary_op_f32_t fun,
  4154. bool inplace) {
  4155. bool is_node = false;
  4156. if (!inplace && a->grad) {
  4157. is_node = true;
  4158. }
  4159. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4160. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4161. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4162. result->op = GGML_OP_MAP_UNARY;
  4163. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4164. result->src0 = a;
  4165. result->opt[0] = addr_tensor;
  4166. return result;
  4167. }
  4168. struct ggml_tensor * ggml_map_unary_f32(
  4169. struct ggml_context * ctx,
  4170. struct ggml_tensor * a,
  4171. const ggml_unary_op_f32_t fun) {
  4172. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4173. }
  4174. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4175. struct ggml_context * ctx,
  4176. struct ggml_tensor * a,
  4177. const ggml_unary_op_f32_t fun) {
  4178. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4179. }
  4180. // ggml_map_binary
  4181. struct ggml_tensor * ggml_map_binary_impl_f32(
  4182. struct ggml_context * ctx,
  4183. struct ggml_tensor * a,
  4184. struct ggml_tensor * b,
  4185. const ggml_binary_op_f32_t fun,
  4186. bool inplace) {
  4187. GGML_ASSERT(ggml_are_same_shape(a, b));
  4188. bool is_node = false;
  4189. if (!inplace && (a->grad || b->grad)) {
  4190. is_node = true;
  4191. }
  4192. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4193. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4194. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4195. result->op = GGML_OP_MAP_BINARY;
  4196. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4197. result->src0 = a;
  4198. result->src1 = b;
  4199. result->opt[0] = addr_tensor;
  4200. return result;
  4201. }
  4202. struct ggml_tensor * ggml_map_binary_f32(
  4203. struct ggml_context * ctx,
  4204. struct ggml_tensor * a,
  4205. struct ggml_tensor * b,
  4206. const ggml_binary_op_f32_t fun) {
  4207. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4208. }
  4209. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4210. struct ggml_context * ctx,
  4211. struct ggml_tensor * a,
  4212. struct ggml_tensor * b,
  4213. const ggml_binary_op_f32_t fun) {
  4214. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4215. }
  4216. ////////////////////////////////////////////////////////////////////////////////
  4217. void ggml_set_param(
  4218. struct ggml_context * ctx,
  4219. struct ggml_tensor * tensor) {
  4220. tensor->is_param = true;
  4221. GGML_ASSERT(tensor->grad == NULL);
  4222. tensor->grad = ggml_dup_tensor(ctx, tensor);
  4223. }
  4224. // ggml_compute_forward_dup
  4225. static void ggml_compute_forward_dup_f16(
  4226. const struct ggml_compute_params * params,
  4227. const struct ggml_tensor * src0,
  4228. struct ggml_tensor * dst) {
  4229. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4230. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4231. return;
  4232. }
  4233. const int64_t ne00 = src0->ne[0];
  4234. const int64_t ne01 = src0->ne[1];
  4235. const int64_t ne02 = src0->ne[2];
  4236. const int64_t ne03 = src0->ne[3];
  4237. const int64_t ne0 = dst->ne[0];
  4238. const int64_t ne1 = dst->ne[1];
  4239. const int64_t ne2 = dst->ne[2];
  4240. const int64_t ne3 = dst->ne[3];
  4241. const size_t nb00 = src0->nb[0];
  4242. const size_t nb01 = src0->nb[1];
  4243. const size_t nb02 = src0->nb[2];
  4244. const size_t nb03 = src0->nb[3];
  4245. const size_t nb0 = dst->nb[0];
  4246. const size_t nb1 = dst->nb[1];
  4247. const size_t nb2 = dst->nb[2];
  4248. const size_t nb3 = dst->nb[3];
  4249. const int ith = params->ith; // thread index
  4250. const int nth = params->nth; // number of threads
  4251. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4252. // parallelize by elements
  4253. const int ne = ggml_nelements(dst);
  4254. const int dr = (ne + nth - 1) / nth;
  4255. const int ie0 = dr * ith;
  4256. const int ie1 = MIN(ie0 + dr, ne);
  4257. memcpy(
  4258. ((char *) dst->data + ie0*nb0),
  4259. ((char *) src0->data + ie0*nb00),
  4260. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4261. return;
  4262. }
  4263. // parallelize by rows
  4264. const int nr = ne01;
  4265. // number of rows per thread
  4266. const int dr = (nr + nth - 1) / nth;
  4267. // row range for this thread
  4268. const int ir0 = dr * ith;
  4269. const int ir1 = MIN(ir0 + dr, nr);
  4270. if (src0->type == dst->type &&
  4271. ne00 == ne0 &&
  4272. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4273. // copy by rows
  4274. const size_t rs = ne00*nb00;
  4275. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4276. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4277. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4278. memcpy(
  4279. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4280. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4281. rs);
  4282. }
  4283. }
  4284. }
  4285. return;
  4286. }
  4287. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  4288. if (ggml_is_contiguous(dst)) {
  4289. if (nb00 == sizeof(ggml_fp16_t)) {
  4290. if (dst->type == GGML_TYPE_F16) {
  4291. size_t id = 0;
  4292. const size_t rs = ne00 * nb00;
  4293. char * dst_ptr = (char *) dst->data;
  4294. for (int i03 = 0; i03 < ne03; i03++) {
  4295. for (int i02 = 0; i02 < ne02; i02++) {
  4296. id += rs * ir0;
  4297. for (int i01 = ir0; i01 < ir1; i01++) {
  4298. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4299. memcpy(dst_ptr + id, src0_ptr, rs);
  4300. id += rs;
  4301. }
  4302. id += rs * (ne01 - ir1);
  4303. }
  4304. }
  4305. } else if (dst->type == GGML_TYPE_F32) {
  4306. size_t id = 0;
  4307. float * dst_ptr = (float *) dst->data;
  4308. for (int i03 = 0; i03 < ne03; i03++) {
  4309. for (int i02 = 0; i02 < ne02; i02++) {
  4310. id += ne00 * ir0;
  4311. for (int i01 = ir0; i01 < ir1; i01++) {
  4312. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4313. for (int i00 = 0; i00 < ne00; i00++) {
  4314. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4315. id++;
  4316. }
  4317. }
  4318. id += ne00 * (ne01 - ir1);
  4319. }
  4320. }
  4321. } else if (ggml_is_quantized(dst->type)) {
  4322. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4323. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  4324. size_t id = 0;
  4325. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4326. char * dst_ptr = (char *) dst->data;
  4327. for (int i03 = 0; i03 < ne03; i03++) {
  4328. for (int i02 = 0; i02 < ne02; i02++) {
  4329. id += rs * ir0;
  4330. for (int i01 = ir0; i01 < ir1; i01++) {
  4331. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4332. for (int i00 = 0; i00 < ne00; i00++) {
  4333. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4334. }
  4335. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  4336. id += rs;
  4337. }
  4338. id += rs * (ne01 - ir1);
  4339. }
  4340. }
  4341. } else {
  4342. GGML_ASSERT(false); // TODO: implement
  4343. }
  4344. } else {
  4345. //printf("%s: this is not optimal - fix me\n", __func__);
  4346. if (dst->type == GGML_TYPE_F32) {
  4347. size_t id = 0;
  4348. float * dst_ptr = (float *) dst->data;
  4349. for (int i03 = 0; i03 < ne03; i03++) {
  4350. for (int i02 = 0; i02 < ne02; i02++) {
  4351. id += ne00 * ir0;
  4352. for (int i01 = ir0; i01 < ir1; i01++) {
  4353. for (int i00 = 0; i00 < ne00; i00++) {
  4354. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4355. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4356. id++;
  4357. }
  4358. }
  4359. id += ne00 * (ne01 - ir1);
  4360. }
  4361. }
  4362. } else if (dst->type == GGML_TYPE_F16) {
  4363. size_t id = 0;
  4364. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4365. for (int i03 = 0; i03 < ne03; i03++) {
  4366. for (int i02 = 0; i02 < ne02; i02++) {
  4367. id += ne00 * ir0;
  4368. for (int i01 = ir0; i01 < ir1; i01++) {
  4369. for (int i00 = 0; i00 < ne00; i00++) {
  4370. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4371. dst_ptr[id] = *src0_ptr;
  4372. id++;
  4373. }
  4374. }
  4375. id += ne00 * (ne01 - ir1);
  4376. }
  4377. }
  4378. } else {
  4379. GGML_ASSERT(false); // TODO: implement
  4380. }
  4381. }
  4382. return;
  4383. }
  4384. // dst counters
  4385. int64_t i10 = 0;
  4386. int64_t i11 = 0;
  4387. int64_t i12 = 0;
  4388. int64_t i13 = 0;
  4389. if (dst->type == GGML_TYPE_F16) {
  4390. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4391. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4392. i10 += ne00 * ir0;
  4393. while (i10 >= ne0) {
  4394. i10 -= ne0;
  4395. if (++i11 == ne1) {
  4396. i11 = 0;
  4397. if (++i12 == ne2) {
  4398. i12 = 0;
  4399. if (++i13 == ne3) {
  4400. i13 = 0;
  4401. }
  4402. }
  4403. }
  4404. }
  4405. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4406. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4407. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4408. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4409. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  4410. if (++i10 == ne00) {
  4411. i10 = 0;
  4412. if (++i11 == ne01) {
  4413. i11 = 0;
  4414. if (++i12 == ne02) {
  4415. i12 = 0;
  4416. if (++i13 == ne03) {
  4417. i13 = 0;
  4418. }
  4419. }
  4420. }
  4421. }
  4422. }
  4423. }
  4424. i10 += ne00 * (ne01 - ir1);
  4425. while (i10 >= ne0) {
  4426. i10 -= ne0;
  4427. if (++i11 == ne1) {
  4428. i11 = 0;
  4429. if (++i12 == ne2) {
  4430. i12 = 0;
  4431. if (++i13 == ne3) {
  4432. i13 = 0;
  4433. }
  4434. }
  4435. }
  4436. }
  4437. }
  4438. }
  4439. } else if (dst->type == GGML_TYPE_F32) {
  4440. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4441. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4442. i10 += ne00 * ir0;
  4443. while (i10 >= ne0) {
  4444. i10 -= ne0;
  4445. if (++i11 == ne1) {
  4446. i11 = 0;
  4447. if (++i12 == ne2) {
  4448. i12 = 0;
  4449. if (++i13 == ne3) {
  4450. i13 = 0;
  4451. }
  4452. }
  4453. }
  4454. }
  4455. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4456. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4457. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4458. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4459. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  4460. if (++i10 == ne0) {
  4461. i10 = 0;
  4462. if (++i11 == ne1) {
  4463. i11 = 0;
  4464. if (++i12 == ne2) {
  4465. i12 = 0;
  4466. if (++i13 == ne3) {
  4467. i13 = 0;
  4468. }
  4469. }
  4470. }
  4471. }
  4472. }
  4473. }
  4474. i10 += ne00 * (ne01 - ir1);
  4475. while (i10 >= ne0) {
  4476. i10 -= ne0;
  4477. if (++i11 == ne1) {
  4478. i11 = 0;
  4479. if (++i12 == ne2) {
  4480. i12 = 0;
  4481. if (++i13 == ne3) {
  4482. i13 = 0;
  4483. }
  4484. }
  4485. }
  4486. }
  4487. }
  4488. }
  4489. } else {
  4490. GGML_ASSERT(false); // TODO: implement
  4491. }
  4492. }
  4493. static void ggml_compute_forward_dup_f32(
  4494. const struct ggml_compute_params * params,
  4495. const struct ggml_tensor * src0,
  4496. struct ggml_tensor * dst) {
  4497. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4498. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4499. return;
  4500. }
  4501. const int64_t ne00 = src0->ne[0];
  4502. const int64_t ne01 = src0->ne[1];
  4503. const int64_t ne02 = src0->ne[2];
  4504. const int64_t ne03 = src0->ne[3];
  4505. const int64_t ne0 = dst->ne[0];
  4506. const int64_t ne1 = dst->ne[1];
  4507. const int64_t ne2 = dst->ne[2];
  4508. const int64_t ne3 = dst->ne[3];
  4509. const size_t nb00 = src0->nb[0];
  4510. const size_t nb01 = src0->nb[1];
  4511. const size_t nb02 = src0->nb[2];
  4512. const size_t nb03 = src0->nb[3];
  4513. const size_t nb0 = dst->nb[0];
  4514. const size_t nb1 = dst->nb[1];
  4515. const size_t nb2 = dst->nb[2];
  4516. const size_t nb3 = dst->nb[3];
  4517. const int ith = params->ith; // thread index
  4518. const int nth = params->nth; // number of threads
  4519. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4520. // parallelize by elements
  4521. const int ne = ggml_nelements(dst);
  4522. const int dr = (ne + nth - 1) / nth;
  4523. const int ie0 = dr * ith;
  4524. const int ie1 = MIN(ie0 + dr, ne);
  4525. memcpy(
  4526. ((char *) dst->data + ie0*nb0),
  4527. ((char *) src0->data + ie0*nb00),
  4528. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4529. return;
  4530. }
  4531. // parallelize by rows
  4532. const int nr = ne01;
  4533. // number of rows per thread
  4534. const int dr = (nr + nth - 1) / nth;
  4535. // row range for this thread
  4536. const int ir0 = dr * ith;
  4537. const int ir1 = MIN(ir0 + dr, nr);
  4538. if (src0->type == dst->type &&
  4539. ne00 == ne0 &&
  4540. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4541. // copy by rows
  4542. const size_t rs = ne00*nb00;
  4543. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4544. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4545. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4546. memcpy(
  4547. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4548. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4549. rs);
  4550. }
  4551. }
  4552. }
  4553. return;
  4554. }
  4555. if (ggml_is_contiguous(dst)) {
  4556. // TODO: simplify
  4557. if (nb00 == sizeof(float)) {
  4558. if (dst->type == GGML_TYPE_F32) {
  4559. size_t id = 0;
  4560. const size_t rs = ne00 * nb00;
  4561. char * dst_ptr = (char *) dst->data;
  4562. for (int i03 = 0; i03 < ne03; i03++) {
  4563. for (int i02 = 0; i02 < ne02; i02++) {
  4564. id += rs * ir0;
  4565. for (int i01 = ir0; i01 < ir1; i01++) {
  4566. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4567. memcpy(dst_ptr + id, src0_ptr, rs);
  4568. id += rs;
  4569. }
  4570. id += rs * (ne01 - ir1);
  4571. }
  4572. }
  4573. } else if (dst->type == GGML_TYPE_F16) {
  4574. size_t id = 0;
  4575. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4576. for (int i03 = 0; i03 < ne03; i03++) {
  4577. for (int i02 = 0; i02 < ne02; i02++) {
  4578. id += ne00 * ir0;
  4579. for (int i01 = ir0; i01 < ir1; i01++) {
  4580. for (int i00 = 0; i00 < ne00; i00++) {
  4581. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4582. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4583. id++;
  4584. }
  4585. }
  4586. id += ne00 * (ne01 - ir1);
  4587. }
  4588. }
  4589. } else if (ggml_is_quantized(dst->type)) {
  4590. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4591. size_t id = 0;
  4592. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4593. char * dst_ptr = (char *) dst->data;
  4594. for (int i03 = 0; i03 < ne03; i03++) {
  4595. for (int i02 = 0; i02 < ne02; i02++) {
  4596. id += rs * ir0;
  4597. for (int i01 = ir0; i01 < ir1; i01++) {
  4598. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4599. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  4600. id += rs;
  4601. }
  4602. id += rs * (ne01 - ir1);
  4603. }
  4604. }
  4605. } else {
  4606. GGML_ASSERT(false); // TODO: implement
  4607. }
  4608. } else {
  4609. //printf("%s: this is not optimal - fix me\n", __func__);
  4610. if (dst->type == GGML_TYPE_F32) {
  4611. size_t id = 0;
  4612. float * dst_ptr = (float *) dst->data;
  4613. for (int i03 = 0; i03 < ne03; i03++) {
  4614. for (int i02 = 0; i02 < ne02; i02++) {
  4615. id += ne00 * ir0;
  4616. for (int i01 = ir0; i01 < ir1; i01++) {
  4617. for (int i00 = 0; i00 < ne00; i00++) {
  4618. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4619. dst_ptr[id] = *src0_ptr;
  4620. id++;
  4621. }
  4622. }
  4623. id += ne00 * (ne01 - ir1);
  4624. }
  4625. }
  4626. } else if (dst->type == GGML_TYPE_F16) {
  4627. size_t id = 0;
  4628. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4629. for (int i03 = 0; i03 < ne03; i03++) {
  4630. for (int i02 = 0; i02 < ne02; i02++) {
  4631. id += ne00 * ir0;
  4632. for (int i01 = ir0; i01 < ir1; i01++) {
  4633. for (int i00 = 0; i00 < ne00; i00++) {
  4634. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4635. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4636. id++;
  4637. }
  4638. }
  4639. id += ne00 * (ne01 - ir1);
  4640. }
  4641. }
  4642. } else {
  4643. GGML_ASSERT(false); // TODO: implement
  4644. }
  4645. }
  4646. return;
  4647. }
  4648. // dst counters
  4649. int64_t i10 = 0;
  4650. int64_t i11 = 0;
  4651. int64_t i12 = 0;
  4652. int64_t i13 = 0;
  4653. if (dst->type == GGML_TYPE_F32) {
  4654. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4655. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4656. i10 += ne00 * ir0;
  4657. while (i10 >= ne0) {
  4658. i10 -= ne0;
  4659. i11++;
  4660. if (++i11 == ne1) {
  4661. i11 = 0;
  4662. if (++i12 == ne2) {
  4663. i12 = 0;
  4664. if (++i13 == ne3) {
  4665. i13 = 0;
  4666. }
  4667. }
  4668. }
  4669. }
  4670. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4671. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4672. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4673. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4674. memcpy(dst_ptr, src0_ptr, sizeof(float));
  4675. if (++i10 == ne0) {
  4676. i10 = 0;
  4677. if (++i11 == ne1) {
  4678. i11 = 0;
  4679. if (++i12 == ne2) {
  4680. i12 = 0;
  4681. if (++i13 == ne3) {
  4682. i13 = 0;
  4683. }
  4684. }
  4685. }
  4686. }
  4687. }
  4688. }
  4689. i10 += ne00 * (ne01 - ir1);
  4690. while (i10 >= ne0) {
  4691. i10 -= ne0;
  4692. if (++i11 == ne1) {
  4693. i11 = 0;
  4694. if (++i12 == ne2) {
  4695. i12 = 0;
  4696. if (++i13 == ne3) {
  4697. i13 = 0;
  4698. }
  4699. }
  4700. }
  4701. }
  4702. }
  4703. }
  4704. } else if (dst->type == GGML_TYPE_F16) {
  4705. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4706. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4707. i10 += ne00 * ir0;
  4708. while (i10 >= ne0) {
  4709. i10 -= ne0;
  4710. if (++i11 == ne1) {
  4711. i11 = 0;
  4712. if (++i12 == ne2) {
  4713. i12 = 0;
  4714. if (++i13 == ne3) {
  4715. i13 = 0;
  4716. }
  4717. }
  4718. }
  4719. }
  4720. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4721. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4722. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4723. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4724. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  4725. if (++i10 == ne0) {
  4726. i10 = 0;
  4727. if (++i11 == ne1) {
  4728. i11 = 0;
  4729. if (++i12 == ne2) {
  4730. i12 = 0;
  4731. if (++i13 == ne3) {
  4732. i13 = 0;
  4733. }
  4734. }
  4735. }
  4736. }
  4737. }
  4738. }
  4739. i10 += ne00 * (ne01 - ir1);
  4740. while (i10 >= ne0) {
  4741. i10 -= ne0;
  4742. if (++i11 == ne1) {
  4743. i11 = 0;
  4744. if (++i12 == ne2) {
  4745. i12 = 0;
  4746. if (++i13 == ne3) {
  4747. i13 = 0;
  4748. }
  4749. }
  4750. }
  4751. }
  4752. }
  4753. }
  4754. } else {
  4755. GGML_ASSERT(false); // TODO: implement
  4756. }
  4757. }
  4758. static void ggml_compute_forward_dup(
  4759. const struct ggml_compute_params * params,
  4760. const struct ggml_tensor * src0,
  4761. struct ggml_tensor * dst) {
  4762. switch (src0->type) {
  4763. case GGML_TYPE_F16:
  4764. {
  4765. ggml_compute_forward_dup_f16(params, src0, dst);
  4766. } break;
  4767. case GGML_TYPE_F32:
  4768. {
  4769. ggml_compute_forward_dup_f32(params, src0, dst);
  4770. } break;
  4771. default:
  4772. {
  4773. GGML_ASSERT(false);
  4774. } break;
  4775. }
  4776. }
  4777. // ggml_compute_forward_add
  4778. static void ggml_compute_forward_add_f32(
  4779. const struct ggml_compute_params * params,
  4780. const struct ggml_tensor * src0,
  4781. const struct ggml_tensor * src1,
  4782. struct ggml_tensor * dst) {
  4783. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4784. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4785. return;
  4786. }
  4787. const int ith = params->ith;
  4788. const int nth = params->nth;
  4789. const int n = ggml_nrows(src0);
  4790. const int nc = src0->ne[0];
  4791. const size_t nb00 = src0->nb[0];
  4792. const size_t nb01 = src0->nb[1];
  4793. const size_t nb10 = src1->nb[0];
  4794. const size_t nb11 = src1->nb[1];
  4795. const size_t nb0 = dst->nb[0];
  4796. const size_t nb1 = dst->nb[1];
  4797. GGML_ASSERT( nb0 == sizeof(float));
  4798. GGML_ASSERT(nb00 == sizeof(float));
  4799. if (nb10 == sizeof(float)) {
  4800. for (int j = ith; j < n; j += nth) {
  4801. #ifdef GGML_USE_ACCELERATE
  4802. vDSP_vadd(
  4803. (float *) ((char *) src0->data + j*nb01), 1,
  4804. (float *) ((char *) src1->data + j*nb11), 1,
  4805. (float *) ((char *) dst->data + j*nb1), 1, nc);
  4806. #else
  4807. ggml_vec_add_f32(nc,
  4808. (float *) ((char *) dst->data + j*nb1),
  4809. (float *) ((char *) src0->data + j*nb01),
  4810. (float *) ((char *) src1->data + j*nb11));
  4811. #endif
  4812. }
  4813. } else {
  4814. // src1 is not contiguous
  4815. for (int j = ith; j < n; j += nth) {
  4816. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  4817. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  4818. for (int i = 0; i < nc; i++) {
  4819. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  4820. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  4821. }
  4822. }
  4823. }
  4824. }
  4825. static void ggml_compute_forward_add_f16_f32(
  4826. const struct ggml_compute_params * params,
  4827. const struct ggml_tensor * src0,
  4828. const struct ggml_tensor * src1,
  4829. struct ggml_tensor * dst) {
  4830. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4831. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4832. return;
  4833. }
  4834. const int ith = params->ith;
  4835. const int nth = params->nth;
  4836. const int n = ggml_nrows(src0);
  4837. const int nc = src0->ne[0];
  4838. const size_t nb00 = src0->nb[0];
  4839. const size_t nb01 = src0->nb[1];
  4840. const size_t nb10 = src1->nb[0];
  4841. const size_t nb11 = src1->nb[1];
  4842. const size_t nb0 = dst->nb[0];
  4843. const size_t nb1 = dst->nb[1];
  4844. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  4845. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  4846. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  4847. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  4848. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  4849. if (nb10 == sizeof(float)) {
  4850. for (int j = ith; j < n; j += nth) {
  4851. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  4852. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  4853. for (int i = 0; i < nc; i++) {
  4854. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  4855. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  4856. }
  4857. }
  4858. }
  4859. else {
  4860. // src1 is not contiguous
  4861. GGML_ASSERT(false);
  4862. }
  4863. }
  4864. static void ggml_compute_forward_add_f16_f16(
  4865. const struct ggml_compute_params * params,
  4866. const struct ggml_tensor * src0,
  4867. const struct ggml_tensor * src1,
  4868. struct ggml_tensor * dst) {
  4869. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4870. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4871. return;
  4872. }
  4873. const int ith = params->ith;
  4874. const int nth = params->nth;
  4875. const int n = ggml_nrows(src0);
  4876. const int nc = src0->ne[0];
  4877. const size_t nb00 = src0->nb[0];
  4878. const size_t nb01 = src0->nb[1];
  4879. const size_t nb10 = src1->nb[0];
  4880. const size_t nb11 = src1->nb[1];
  4881. const size_t nb0 = dst->nb[0];
  4882. const size_t nb1 = dst->nb[1];
  4883. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  4884. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  4885. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  4886. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  4887. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  4888. if (nb10 == sizeof(ggml_fp16_t)) {
  4889. for (int j = ith; j < n; j += nth) {
  4890. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  4891. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  4892. for (int i = 0; i < nc; i++) {
  4893. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  4894. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  4895. }
  4896. }
  4897. }
  4898. else {
  4899. // src1 is not contiguous
  4900. GGML_ASSERT(false);
  4901. }
  4902. }
  4903. static void ggml_compute_forward_add_q_f32(
  4904. const struct ggml_compute_params * params,
  4905. const struct ggml_tensor * src0,
  4906. const struct ggml_tensor * src1,
  4907. struct ggml_tensor * dst) {
  4908. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4909. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4910. return;
  4911. }
  4912. const int64_t ne00 = src0->ne[0];
  4913. const int64_t ne01 = src0->ne[1];
  4914. const int64_t ne02 = src0->ne[2];
  4915. const int64_t ne03 = src0->ne[3];
  4916. //const int64_t ne10 = src1->ne[0];
  4917. //const int64_t ne11 = src1->ne[1];
  4918. const int64_t ne12 = src1->ne[2];
  4919. const int64_t ne13 = src1->ne[3];
  4920. //const int64_t ne0 = dst->ne[0];
  4921. //const int64_t ne1 = dst->ne[1];
  4922. const int64_t ne2 = dst->ne[2];
  4923. const int64_t ne3 = dst->ne[3];
  4924. const int nb00 = src0->nb[0];
  4925. const int nb01 = src0->nb[1];
  4926. const int nb02 = src0->nb[2];
  4927. const int nb03 = src0->nb[3];
  4928. const int nb10 = src1->nb[0];
  4929. const int nb11 = src1->nb[1];
  4930. const int nb12 = src1->nb[2];
  4931. const int nb13 = src1->nb[3];
  4932. const int nb0 = dst->nb[0];
  4933. const int nb1 = dst->nb[1];
  4934. const int nb2 = dst->nb[2];
  4935. const int nb3 = dst->nb[3];
  4936. const int ith = params->ith;
  4937. const int nth = params->nth;
  4938. GGML_ASSERT(ne02 == ne12);
  4939. GGML_ASSERT(ne03 == ne13);
  4940. GGML_ASSERT(ne2 == ne12);
  4941. GGML_ASSERT(ne3 == ne13);
  4942. const enum ggml_type type = src0->type;
  4943. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  4944. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  4945. // we don't support permuted src0 or src1
  4946. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  4947. GGML_ASSERT(nb10 == sizeof(float));
  4948. // dst cannot be transposed or permuted
  4949. GGML_ASSERT(nb0 <= nb1);
  4950. GGML_ASSERT(nb1 <= nb2);
  4951. GGML_ASSERT(nb2 <= nb3);
  4952. GGML_ASSERT(ggml_is_quantized(src0->type));
  4953. GGML_ASSERT(dst->type == src0->type);
  4954. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  4955. // total rows in src0
  4956. const int nr = ne01*ne02*ne03;
  4957. // rows per thread
  4958. const int dr = (nr + nth - 1)/nth;
  4959. // row range for this thread
  4960. const int ir0 = dr*ith;
  4961. const int ir1 = MIN(ir0 + dr, nr);
  4962. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  4963. for (int ir = ir0; ir < ir1; ++ir) {
  4964. // src0 indices
  4965. const int i03 = ir/(ne02*ne01);
  4966. const int i02 = (ir - i03*ne02*ne01)/ne01;
  4967. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4968. // src1 and dst are same shape as src0 => same indices
  4969. const int i13 = i03;
  4970. const int i12 = i02;
  4971. const int i11 = i01;
  4972. const int i3 = i03;
  4973. const int i2 = i02;
  4974. const int i1 = i01;
  4975. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  4976. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  4977. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  4978. assert(ne00 % 32 == 0);
  4979. // unquantize row from src0 to temp buffer
  4980. dequantize_row_q(src0_row, wdata, ne00);
  4981. // add src1
  4982. ggml_vec_acc_f32(ne00, wdata, src1_row);
  4983. // quantize row to dst
  4984. quantize_row_q(wdata, dst_row, ne00);
  4985. }
  4986. }
  4987. static void ggml_compute_forward_add(
  4988. const struct ggml_compute_params * params,
  4989. const struct ggml_tensor * src0,
  4990. const struct ggml_tensor * src1,
  4991. struct ggml_tensor * dst) {
  4992. switch (src0->type) {
  4993. case GGML_TYPE_F32:
  4994. {
  4995. ggml_compute_forward_add_f32(params, src0, src1, dst);
  4996. } break;
  4997. case GGML_TYPE_F16:
  4998. {
  4999. if (src1->type == GGML_TYPE_F16) {
  5000. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5001. }
  5002. else if (src1->type == GGML_TYPE_F32) {
  5003. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5004. }
  5005. else {
  5006. GGML_ASSERT(false);
  5007. }
  5008. } break;
  5009. case GGML_TYPE_Q4_0:
  5010. case GGML_TYPE_Q4_1:
  5011. case GGML_TYPE_Q4_2:
  5012. {
  5013. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5014. } break;
  5015. default:
  5016. {
  5017. GGML_ASSERT(false);
  5018. } break;
  5019. }
  5020. }
  5021. // ggml_compute_forward_sub
  5022. static void ggml_compute_forward_sub_f32(
  5023. const struct ggml_compute_params * params,
  5024. const struct ggml_tensor * src0,
  5025. const struct ggml_tensor * src1,
  5026. struct ggml_tensor * dst) {
  5027. assert(params->ith == 0);
  5028. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5029. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5030. return;
  5031. }
  5032. const int n = ggml_nrows(src0);
  5033. const int nc = src0->ne[0];
  5034. assert( dst->nb[0] == sizeof(float));
  5035. assert(src0->nb[0] == sizeof(float));
  5036. assert(src1->nb[0] == sizeof(float));
  5037. for (int i = 0; i < n; i++) {
  5038. ggml_vec_sub_f32(nc,
  5039. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5040. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5041. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5042. }
  5043. }
  5044. static void ggml_compute_forward_sub(
  5045. const struct ggml_compute_params * params,
  5046. const struct ggml_tensor * src0,
  5047. const struct ggml_tensor * src1,
  5048. struct ggml_tensor * dst) {
  5049. switch (src0->type) {
  5050. case GGML_TYPE_F32:
  5051. {
  5052. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  5053. } break;
  5054. default:
  5055. {
  5056. GGML_ASSERT(false);
  5057. } break;
  5058. }
  5059. }
  5060. // ggml_compute_forward_mul
  5061. static void ggml_compute_forward_mul_f32(
  5062. const struct ggml_compute_params * params,
  5063. const struct ggml_tensor * src0,
  5064. const struct ggml_tensor * src1,
  5065. struct ggml_tensor * dst) {
  5066. assert(params->ith == 0);
  5067. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5068. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5069. return;
  5070. }
  5071. const int n = ggml_nrows(src0);
  5072. const int nc = src0->ne[0];
  5073. assert( dst->nb[0] == sizeof(float));
  5074. assert(src0->nb[0] == sizeof(float));
  5075. assert(src1->nb[0] == sizeof(float));
  5076. for (int i = 0; i < n; i++) {
  5077. ggml_vec_mul_f32(nc,
  5078. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5079. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5080. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5081. }
  5082. }
  5083. static void ggml_compute_forward_mul(
  5084. const struct ggml_compute_params * params,
  5085. const struct ggml_tensor * src0,
  5086. const struct ggml_tensor * src1,
  5087. struct ggml_tensor * dst) {
  5088. switch (src0->type) {
  5089. case GGML_TYPE_F32:
  5090. {
  5091. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  5092. } break;
  5093. default:
  5094. {
  5095. GGML_ASSERT(false);
  5096. } break;
  5097. }
  5098. }
  5099. // ggml_compute_forward_div
  5100. static void ggml_compute_forward_div_f32(
  5101. const struct ggml_compute_params * params,
  5102. const struct ggml_tensor * src0,
  5103. const struct ggml_tensor * src1,
  5104. struct ggml_tensor * dst) {
  5105. assert(params->ith == 0);
  5106. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5107. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5108. return;
  5109. }
  5110. const int n = ggml_nrows(src0);
  5111. const int nc = src0->ne[0];
  5112. assert( dst->nb[0] == sizeof(float));
  5113. assert(src0->nb[0] == sizeof(float));
  5114. assert(src1->nb[0] == sizeof(float));
  5115. for (int i = 0; i < n; i++) {
  5116. ggml_vec_div_f32(nc,
  5117. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5118. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5119. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5120. }
  5121. }
  5122. static void ggml_compute_forward_div(
  5123. const struct ggml_compute_params * params,
  5124. const struct ggml_tensor * src0,
  5125. const struct ggml_tensor * src1,
  5126. struct ggml_tensor * dst) {
  5127. switch (src0->type) {
  5128. case GGML_TYPE_F32:
  5129. {
  5130. ggml_compute_forward_div_f32(params, src0, src1, dst);
  5131. } break;
  5132. default:
  5133. {
  5134. GGML_ASSERT(false);
  5135. } break;
  5136. }
  5137. }
  5138. // ggml_compute_forward_sqr
  5139. static void ggml_compute_forward_sqr_f32(
  5140. const struct ggml_compute_params * params,
  5141. const struct ggml_tensor * src0,
  5142. struct ggml_tensor * dst) {
  5143. assert(params->ith == 0);
  5144. assert(ggml_are_same_shape(src0, dst));
  5145. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5146. return;
  5147. }
  5148. const int n = ggml_nrows(src0);
  5149. const int nc = src0->ne[0];
  5150. assert( dst->nb[0] == sizeof(float));
  5151. assert(src0->nb[0] == sizeof(float));
  5152. for (int i = 0; i < n; i++) {
  5153. ggml_vec_sqr_f32(nc,
  5154. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5155. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5156. }
  5157. }
  5158. static void ggml_compute_forward_sqr(
  5159. const struct ggml_compute_params * params,
  5160. const struct ggml_tensor * src0,
  5161. struct ggml_tensor * dst) {
  5162. switch (src0->type) {
  5163. case GGML_TYPE_F32:
  5164. {
  5165. ggml_compute_forward_sqr_f32(params, src0, dst);
  5166. } break;
  5167. default:
  5168. {
  5169. GGML_ASSERT(false);
  5170. } break;
  5171. }
  5172. }
  5173. // ggml_compute_forward_sqrt
  5174. static void ggml_compute_forward_sqrt_f32(
  5175. const struct ggml_compute_params * params,
  5176. const struct ggml_tensor * src0,
  5177. struct ggml_tensor * dst) {
  5178. assert(params->ith == 0);
  5179. assert(ggml_are_same_shape(src0, dst));
  5180. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5181. return;
  5182. }
  5183. const int n = ggml_nrows(src0);
  5184. const int nc = src0->ne[0];
  5185. assert( dst->nb[0] == sizeof(float));
  5186. assert(src0->nb[0] == sizeof(float));
  5187. for (int i = 0; i < n; i++) {
  5188. ggml_vec_sqrt_f32(nc,
  5189. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5190. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5191. }
  5192. }
  5193. static void ggml_compute_forward_sqrt(
  5194. const struct ggml_compute_params * params,
  5195. const struct ggml_tensor * src0,
  5196. struct ggml_tensor * dst) {
  5197. switch (src0->type) {
  5198. case GGML_TYPE_F32:
  5199. {
  5200. ggml_compute_forward_sqrt_f32(params, src0, dst);
  5201. } break;
  5202. default:
  5203. {
  5204. GGML_ASSERT(false);
  5205. } break;
  5206. }
  5207. }
  5208. // ggml_compute_forward_sum
  5209. static void ggml_compute_forward_sum_f32(
  5210. const struct ggml_compute_params * params,
  5211. const struct ggml_tensor * src0,
  5212. struct ggml_tensor * dst) {
  5213. assert(params->ith == 0);
  5214. assert(ggml_is_scalar(dst));
  5215. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5216. return;
  5217. }
  5218. assert(ggml_is_scalar(dst));
  5219. assert(src0->nb[0] == sizeof(float));
  5220. const int64_t ne00 = src0->ne[0];
  5221. const int64_t ne01 = src0->ne[1];
  5222. const int64_t ne02 = src0->ne[2];
  5223. const int64_t ne03 = src0->ne[3];
  5224. const size_t nb01 = src0->nb[1];
  5225. const size_t nb02 = src0->nb[2];
  5226. const size_t nb03 = src0->nb[3];
  5227. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5228. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5229. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5230. ggml_vec_sum_f32(ne00,
  5231. (float *) (dst->data),
  5232. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5233. }
  5234. }
  5235. }
  5236. }
  5237. static void ggml_compute_forward_sum(
  5238. const struct ggml_compute_params * params,
  5239. const struct ggml_tensor * src0,
  5240. struct ggml_tensor * dst) {
  5241. switch (src0->type) {
  5242. case GGML_TYPE_F32:
  5243. {
  5244. ggml_compute_forward_sum_f32(params, src0, dst);
  5245. } break;
  5246. default:
  5247. {
  5248. GGML_ASSERT(false);
  5249. } break;
  5250. }
  5251. }
  5252. // ggml_compute_forward_mean
  5253. static void ggml_compute_forward_mean_f32(
  5254. const struct ggml_compute_params * params,
  5255. const struct ggml_tensor * src0,
  5256. struct ggml_tensor * dst) {
  5257. assert(params->ith == 0);
  5258. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5259. return;
  5260. }
  5261. assert(src0->nb[0] == sizeof(float));
  5262. const int64_t ne00 = src0->ne[0];
  5263. const int64_t ne01 = src0->ne[1];
  5264. const int64_t ne02 = src0->ne[2];
  5265. const int64_t ne03 = src0->ne[3];
  5266. const size_t nb01 = src0->nb[1];
  5267. const size_t nb02 = src0->nb[2];
  5268. const size_t nb03 = src0->nb[3];
  5269. const int64_t ne0 = dst->ne[0];
  5270. const int64_t ne1 = dst->ne[1];
  5271. const int64_t ne2 = dst->ne[2];
  5272. const int64_t ne3 = dst->ne[3];
  5273. assert(ne0 == 1);
  5274. assert(ne1 == ne01);
  5275. assert(ne2 == ne02);
  5276. assert(ne3 == ne03);
  5277. UNUSED(ne0);
  5278. UNUSED(ne1);
  5279. UNUSED(ne2);
  5280. UNUSED(ne3);
  5281. const size_t nb1 = dst->nb[1];
  5282. const size_t nb2 = dst->nb[2];
  5283. const size_t nb3 = dst->nb[3];
  5284. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5285. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5286. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5287. ggml_vec_sum_f32(ne00,
  5288. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5289. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5290. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  5291. }
  5292. }
  5293. }
  5294. }
  5295. static void ggml_compute_forward_mean(
  5296. const struct ggml_compute_params * params,
  5297. const struct ggml_tensor * src0,
  5298. struct ggml_tensor * dst) {
  5299. switch (src0->type) {
  5300. case GGML_TYPE_F32:
  5301. {
  5302. ggml_compute_forward_mean_f32(params, src0, dst);
  5303. } break;
  5304. default:
  5305. {
  5306. GGML_ASSERT(false);
  5307. } break;
  5308. }
  5309. }
  5310. // ggml_compute_forward_repeat
  5311. static void ggml_compute_forward_repeat_f32(
  5312. const struct ggml_compute_params * params,
  5313. const struct ggml_tensor * src0,
  5314. struct ggml_tensor * dst) {
  5315. assert(params->ith == 0);
  5316. assert(ggml_can_repeat(src0, dst));
  5317. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5318. return;
  5319. }
  5320. // TODO: implement support for rank > 2 tensors
  5321. assert(src0->ne[2] == 1);
  5322. assert(src0->ne[3] == 1);
  5323. assert( dst->ne[2] == 1);
  5324. assert( dst->ne[3] == 1);
  5325. const int nc = dst->ne[0];
  5326. const int nr = dst->ne[1];
  5327. const int nc0 = src0->ne[0];
  5328. const int nr0 = src0->ne[1];
  5329. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5330. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5331. // TODO: support for transposed / permuted tensors
  5332. assert( dst->nb[0] == sizeof(float));
  5333. assert(src0->nb[0] == sizeof(float));
  5334. // TODO: maybe this is not optimal?
  5335. for (int i = 0; i < nrr; i++) {
  5336. for (int j = 0; j < ncr; j++) {
  5337. for (int k = 0; k < nr0; k++) {
  5338. ggml_vec_cpy_f32(nc0,
  5339. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  5340. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  5341. }
  5342. }
  5343. }
  5344. }
  5345. static void ggml_compute_forward_repeat(
  5346. const struct ggml_compute_params * params,
  5347. const struct ggml_tensor * src0,
  5348. struct ggml_tensor * dst) {
  5349. switch (src0->type) {
  5350. case GGML_TYPE_F32:
  5351. {
  5352. ggml_compute_forward_repeat_f32(params, src0, dst);
  5353. } break;
  5354. default:
  5355. {
  5356. GGML_ASSERT(false);
  5357. } break;
  5358. }
  5359. }
  5360. // ggml_compute_forward_abs
  5361. static void ggml_compute_forward_abs_f32(
  5362. const struct ggml_compute_params * params,
  5363. const struct ggml_tensor * src0,
  5364. struct ggml_tensor * dst) {
  5365. assert(params->ith == 0);
  5366. assert(ggml_are_same_shape(src0, dst));
  5367. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5368. return;
  5369. }
  5370. const int n = ggml_nrows(src0);
  5371. const int nc = src0->ne[0];
  5372. assert(dst->nb[0] == sizeof(float));
  5373. assert(src0->nb[0] == sizeof(float));
  5374. for (int i = 0; i < n; i++) {
  5375. ggml_vec_abs_f32(nc,
  5376. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5377. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5378. }
  5379. }
  5380. static void ggml_compute_forward_abs(
  5381. const struct ggml_compute_params * params,
  5382. const struct ggml_tensor * src0,
  5383. struct ggml_tensor * dst) {
  5384. switch (src0->type) {
  5385. case GGML_TYPE_F32:
  5386. {
  5387. ggml_compute_forward_abs_f32(params, src0, dst);
  5388. } break;
  5389. default:
  5390. {
  5391. GGML_ASSERT(false);
  5392. } break;
  5393. }
  5394. }
  5395. // ggml_compute_forward_sgn
  5396. static void ggml_compute_forward_sgn_f32(
  5397. const struct ggml_compute_params * params,
  5398. const struct ggml_tensor * src0,
  5399. struct ggml_tensor * dst) {
  5400. assert(params->ith == 0);
  5401. assert(ggml_are_same_shape(src0, dst));
  5402. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5403. return;
  5404. }
  5405. const int n = ggml_nrows(src0);
  5406. const int nc = src0->ne[0];
  5407. assert(dst->nb[0] == sizeof(float));
  5408. assert(src0->nb[0] == sizeof(float));
  5409. for (int i = 0; i < n; i++) {
  5410. ggml_vec_sgn_f32(nc,
  5411. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5412. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5413. }
  5414. }
  5415. static void ggml_compute_forward_sgn(
  5416. const struct ggml_compute_params * params,
  5417. const struct ggml_tensor * src0,
  5418. struct ggml_tensor * dst) {
  5419. switch (src0->type) {
  5420. case GGML_TYPE_F32:
  5421. {
  5422. ggml_compute_forward_sgn_f32(params, src0, dst);
  5423. } break;
  5424. default:
  5425. {
  5426. GGML_ASSERT(false);
  5427. } break;
  5428. }
  5429. }
  5430. // ggml_compute_forward_neg
  5431. static void ggml_compute_forward_neg_f32(
  5432. const struct ggml_compute_params * params,
  5433. const struct ggml_tensor * src0,
  5434. struct ggml_tensor * dst) {
  5435. assert(params->ith == 0);
  5436. assert(ggml_are_same_shape(src0, dst));
  5437. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5438. return;
  5439. }
  5440. const int n = ggml_nrows(src0);
  5441. const int nc = src0->ne[0];
  5442. assert(dst->nb[0] == sizeof(float));
  5443. assert(src0->nb[0] == sizeof(float));
  5444. for (int i = 0; i < n; i++) {
  5445. ggml_vec_neg_f32(nc,
  5446. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5447. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5448. }
  5449. }
  5450. static void ggml_compute_forward_neg(
  5451. const struct ggml_compute_params * params,
  5452. const struct ggml_tensor * src0,
  5453. struct ggml_tensor * dst) {
  5454. switch (src0->type) {
  5455. case GGML_TYPE_F32:
  5456. {
  5457. ggml_compute_forward_neg_f32(params, src0, dst);
  5458. } break;
  5459. default:
  5460. {
  5461. GGML_ASSERT(false);
  5462. } break;
  5463. }
  5464. }
  5465. // ggml_compute_forward_step
  5466. static void ggml_compute_forward_step_f32(
  5467. const struct ggml_compute_params * params,
  5468. const struct ggml_tensor * src0,
  5469. struct ggml_tensor * dst) {
  5470. assert(params->ith == 0);
  5471. assert(ggml_are_same_shape(src0, dst));
  5472. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5473. return;
  5474. }
  5475. const int n = ggml_nrows(src0);
  5476. const int nc = src0->ne[0];
  5477. assert(dst->nb[0] == sizeof(float));
  5478. assert(src0->nb[0] == sizeof(float));
  5479. for (int i = 0; i < n; i++) {
  5480. ggml_vec_step_f32(nc,
  5481. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5482. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5483. }
  5484. }
  5485. static void ggml_compute_forward_step(
  5486. const struct ggml_compute_params * params,
  5487. const struct ggml_tensor * src0,
  5488. struct ggml_tensor * dst) {
  5489. switch (src0->type) {
  5490. case GGML_TYPE_F32:
  5491. {
  5492. ggml_compute_forward_step_f32(params, src0, dst);
  5493. } break;
  5494. default:
  5495. {
  5496. GGML_ASSERT(false);
  5497. } break;
  5498. }
  5499. }
  5500. // ggml_compute_forward_relu
  5501. static void ggml_compute_forward_relu_f32(
  5502. const struct ggml_compute_params * params,
  5503. const struct ggml_tensor * src0,
  5504. struct ggml_tensor * dst) {
  5505. assert(params->ith == 0);
  5506. assert(ggml_are_same_shape(src0, dst));
  5507. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5508. return;
  5509. }
  5510. const int n = ggml_nrows(src0);
  5511. const int nc = src0->ne[0];
  5512. assert(dst->nb[0] == sizeof(float));
  5513. assert(src0->nb[0] == sizeof(float));
  5514. for (int i = 0; i < n; i++) {
  5515. ggml_vec_relu_f32(nc,
  5516. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5517. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5518. }
  5519. }
  5520. static void ggml_compute_forward_relu(
  5521. const struct ggml_compute_params * params,
  5522. const struct ggml_tensor * src0,
  5523. struct ggml_tensor * dst) {
  5524. switch (src0->type) {
  5525. case GGML_TYPE_F32:
  5526. {
  5527. ggml_compute_forward_relu_f32(params, src0, dst);
  5528. } break;
  5529. default:
  5530. {
  5531. GGML_ASSERT(false);
  5532. } break;
  5533. }
  5534. }
  5535. // ggml_compute_forward_gelu
  5536. static void ggml_compute_forward_gelu_f32(
  5537. const struct ggml_compute_params * params,
  5538. const struct ggml_tensor * src0,
  5539. struct ggml_tensor * dst) {
  5540. GGML_ASSERT(ggml_is_contiguous(src0));
  5541. GGML_ASSERT(ggml_is_contiguous(dst));
  5542. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5543. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5544. return;
  5545. }
  5546. const int ith = params->ith;
  5547. const int nth = params->nth;
  5548. const int nc = src0->ne[0];
  5549. const int nr = ggml_nrows(src0);
  5550. // rows per thread
  5551. const int dr = (nr + nth - 1)/nth;
  5552. // row range for this thread
  5553. const int ir0 = dr*ith;
  5554. const int ir1 = MIN(ir0 + dr, nr);
  5555. for (int i1 = ir0; i1 < ir1; i1++) {
  5556. ggml_vec_gelu_f32(nc,
  5557. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5558. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5559. #ifndef NDEBUG
  5560. for (int k = 0; k < nc; k++) {
  5561. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5562. UNUSED(x);
  5563. assert(!isnan(x));
  5564. assert(!isinf(x));
  5565. }
  5566. #endif
  5567. }
  5568. }
  5569. static void ggml_compute_forward_gelu(
  5570. const struct ggml_compute_params * params,
  5571. const struct ggml_tensor * src0,
  5572. struct ggml_tensor * dst) {
  5573. switch (src0->type) {
  5574. case GGML_TYPE_F32:
  5575. {
  5576. ggml_compute_forward_gelu_f32(params, src0, dst);
  5577. } break;
  5578. default:
  5579. {
  5580. GGML_ASSERT(false);
  5581. } break;
  5582. }
  5583. //printf("XXXXXXXX gelu\n");
  5584. }
  5585. // ggml_compute_forward_silu
  5586. static void ggml_compute_forward_silu_f32(
  5587. const struct ggml_compute_params * params,
  5588. const struct ggml_tensor * src0,
  5589. struct ggml_tensor * dst) {
  5590. GGML_ASSERT(ggml_is_contiguous(src0));
  5591. GGML_ASSERT(ggml_is_contiguous(dst));
  5592. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5593. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5594. return;
  5595. }
  5596. const int ith = params->ith;
  5597. const int nth = params->nth;
  5598. const int nc = src0->ne[0];
  5599. const int nr = ggml_nrows(src0);
  5600. // rows per thread
  5601. const int dr = (nr + nth - 1)/nth;
  5602. // row range for this thread
  5603. const int ir0 = dr*ith;
  5604. const int ir1 = MIN(ir0 + dr, nr);
  5605. for (int i1 = ir0; i1 < ir1; i1++) {
  5606. ggml_vec_silu_f32(nc,
  5607. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5608. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5609. #ifndef NDEBUG
  5610. for (int k = 0; k < nc; k++) {
  5611. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5612. UNUSED(x);
  5613. assert(!isnan(x));
  5614. assert(!isinf(x));
  5615. }
  5616. #endif
  5617. }
  5618. }
  5619. static void ggml_compute_forward_silu(
  5620. const struct ggml_compute_params * params,
  5621. const struct ggml_tensor * src0,
  5622. struct ggml_tensor * dst) {
  5623. switch (src0->type) {
  5624. case GGML_TYPE_F32:
  5625. {
  5626. ggml_compute_forward_silu_f32(params, src0, dst);
  5627. } break;
  5628. default:
  5629. {
  5630. GGML_ASSERT(false);
  5631. } break;
  5632. }
  5633. }
  5634. // ggml_compute_forward_norm
  5635. static void ggml_compute_forward_norm_f32(
  5636. const struct ggml_compute_params * params,
  5637. const struct ggml_tensor * src0,
  5638. struct ggml_tensor * dst) {
  5639. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5640. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5641. return;
  5642. }
  5643. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5644. const int ith = params->ith;
  5645. const int nth = params->nth;
  5646. const int64_t ne00 = src0->ne[0];
  5647. const int64_t ne01 = src0->ne[1];
  5648. const int64_t ne02 = src0->ne[2];
  5649. const int64_t ne03 = src0->ne[3];
  5650. const size_t nb01 = src0->nb[1];
  5651. const size_t nb02 = src0->nb[2];
  5652. const size_t nb03 = src0->nb[3];
  5653. const size_t nb1 = dst->nb[1];
  5654. const size_t nb2 = dst->nb[2];
  5655. const size_t nb3 = dst->nb[3];
  5656. const float eps = 1e-5f; // TODO: make this a parameter
  5657. // TODO: optimize
  5658. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5659. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5660. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5661. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5662. ggml_float sum = 0.0;
  5663. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5664. sum += (ggml_float)x[i00];
  5665. }
  5666. float mean = sum/ne00;
  5667. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5668. ggml_float sum2 = 0.0;
  5669. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5670. float v = x[i00] - mean;
  5671. y[i00] = v;
  5672. sum2 += (ggml_float)(v*v);
  5673. }
  5674. float variance = sum2/ne00;
  5675. const float scale = 1.0f/sqrtf(variance + eps);
  5676. ggml_vec_scale_f32(ne00, y, scale);
  5677. }
  5678. }
  5679. }
  5680. }
  5681. static void ggml_compute_forward_norm(
  5682. const struct ggml_compute_params * params,
  5683. const struct ggml_tensor * src0,
  5684. struct ggml_tensor * dst) {
  5685. switch (src0->type) {
  5686. case GGML_TYPE_F32:
  5687. {
  5688. ggml_compute_forward_norm_f32(params, src0, dst);
  5689. } break;
  5690. default:
  5691. {
  5692. GGML_ASSERT(false);
  5693. } break;
  5694. }
  5695. }
  5696. static void ggml_compute_forward_rms_norm_f32(
  5697. const struct ggml_compute_params * params,
  5698. const struct ggml_tensor * src0,
  5699. struct ggml_tensor * dst) {
  5700. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5701. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5702. return;
  5703. }
  5704. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5705. const int ith = params->ith;
  5706. const int nth = params->nth;
  5707. const int64_t ne00 = src0->ne[0];
  5708. const int64_t ne01 = src0->ne[1];
  5709. const int64_t ne02 = src0->ne[2];
  5710. const int64_t ne03 = src0->ne[3];
  5711. const size_t nb01 = src0->nb[1];
  5712. const size_t nb02 = src0->nb[2];
  5713. const size_t nb03 = src0->nb[3];
  5714. const size_t nb1 = dst->nb[1];
  5715. const size_t nb2 = dst->nb[2];
  5716. const size_t nb3 = dst->nb[3];
  5717. const float eps = 1e-6f; // TODO: make this a parameter
  5718. // TODO: optimize
  5719. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5720. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5721. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5722. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5723. ggml_float sum = 0.0;
  5724. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5725. sum += (ggml_float)(x[i00] * x[i00]);
  5726. }
  5727. float mean = sum/ne00;
  5728. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5729. memcpy(y, x, ne00 * sizeof(float));
  5730. // for (int i00 = 0; i00 < ne00; i00++) {
  5731. // y[i00] = x[i00];
  5732. // }
  5733. const float scale = 1.0f/sqrtf(mean + eps);
  5734. ggml_vec_scale_f32(ne00, y, scale);
  5735. }
  5736. }
  5737. }
  5738. }
  5739. static void ggml_compute_forward_rms_norm(
  5740. const struct ggml_compute_params * params,
  5741. const struct ggml_tensor * src0,
  5742. struct ggml_tensor * dst) {
  5743. switch (src0->type) {
  5744. case GGML_TYPE_F32:
  5745. {
  5746. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  5747. } break;
  5748. default:
  5749. {
  5750. GGML_ASSERT(false);
  5751. } break;
  5752. }
  5753. }
  5754. // ggml_compute_forward_mul_mat
  5755. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  5756. // helper function to determine if it is better to use BLAS or not
  5757. // for large matrices, BLAS is faster
  5758. static bool ggml_compute_forward_mul_mat_use_blas(
  5759. const struct ggml_tensor * src0,
  5760. const struct ggml_tensor * src1,
  5761. struct ggml_tensor * dst) {
  5762. //const int64_t ne00 = src0->ne[0];
  5763. //const int64_t ne01 = src0->ne[1];
  5764. const int64_t ne10 = src1->ne[0];
  5765. const int64_t ne0 = dst->ne[0];
  5766. const int64_t ne1 = dst->ne[1];
  5767. // TODO: find the optimal values for these
  5768. if (ggml_is_contiguous(src0) &&
  5769. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  5770. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  5771. return true;
  5772. }
  5773. return false;
  5774. }
  5775. #endif
  5776. static void ggml_compute_forward_mul_mat_f32(
  5777. const struct ggml_compute_params * params,
  5778. const struct ggml_tensor * src0,
  5779. const struct ggml_tensor * src1,
  5780. struct ggml_tensor * dst) {
  5781. int64_t t0 = ggml_perf_time_us();
  5782. UNUSED(t0);
  5783. const int64_t ne00 = src0->ne[0];
  5784. const int64_t ne01 = src0->ne[1];
  5785. const int64_t ne02 = src0->ne[2];
  5786. const int64_t ne03 = src0->ne[3];
  5787. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  5788. const int64_t ne10 = src1->ne[0];
  5789. #endif
  5790. const int64_t ne11 = src1->ne[1];
  5791. #ifndef NDEBUG
  5792. const int64_t ne12 = src1->ne[2];
  5793. const int64_t ne13 = src1->ne[3];
  5794. const int64_t ne0 = dst->ne[0];
  5795. const int64_t ne1 = dst->ne[1];
  5796. const int64_t ne2 = dst->ne[2];
  5797. const int64_t ne3 = dst->ne[3];
  5798. const int nb00 = src0->nb[0];
  5799. #endif
  5800. const int nb01 = src0->nb[1];
  5801. const int nb02 = src0->nb[2];
  5802. const int nb03 = src0->nb[3];
  5803. #ifndef NDEBUG
  5804. const int nb10 = src1->nb[0];
  5805. #endif
  5806. const int nb11 = src1->nb[1];
  5807. const int nb12 = src1->nb[2];
  5808. const int nb13 = src1->nb[3];
  5809. const int nb0 = dst->nb[0];
  5810. const int nb1 = dst->nb[1];
  5811. const int nb2 = dst->nb[2];
  5812. const int nb3 = dst->nb[3];
  5813. const int ith = params->ith;
  5814. const int nth = params->nth;
  5815. assert(ne02 == ne12);
  5816. assert(ne03 == ne13);
  5817. assert(ne2 == ne12);
  5818. assert(ne3 == ne13);
  5819. // we don't support permuted src0 or src1
  5820. assert(nb00 == sizeof(float));
  5821. assert(nb10 == sizeof(float));
  5822. // dst cannot be transposed or permuted
  5823. assert(nb0 == sizeof(float));
  5824. assert(nb0 <= nb1);
  5825. assert(nb1 <= nb2);
  5826. assert(nb2 <= nb3);
  5827. assert(ne0 == ne01);
  5828. assert(ne1 == ne11);
  5829. assert(ne2 == ne02);
  5830. assert(ne3 == ne03);
  5831. // nb01 >= nb00 - src0 is not transposed
  5832. // compute by src0 rows
  5833. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  5834. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5835. if (params->ith != 0) {
  5836. return;
  5837. }
  5838. if (params->type == GGML_TASK_INIT) {
  5839. return;
  5840. }
  5841. if (params->type == GGML_TASK_FINALIZE) {
  5842. return;
  5843. }
  5844. #if defined(GGML_USE_CUBLAS)
  5845. float *d_X = NULL;
  5846. float *d_Y = NULL;
  5847. float *d_D = NULL;
  5848. const float alpha = 1.0f;
  5849. const float beta = 0.0f;
  5850. const int x_ne = ne01 * ne10;
  5851. const int y_ne = ne11 * ne10;
  5852. const int d_ne = ne11 * ne01;
  5853. CUDA_CHECK(cudaMalloc((void **)(&d_X), sizeof(float) * x_ne));
  5854. CUDA_CHECK(cudaMalloc((void **)(&d_Y), sizeof(float) * y_ne));
  5855. CUDA_CHECK(cudaMalloc((void **)(&d_D), sizeof(float) * d_ne));
  5856. #endif
  5857. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5858. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5859. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  5860. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5861. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5862. #if defined(GGML_USE_CUBLAS)
  5863. // copy data to device
  5864. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, cudaStream));
  5865. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, cudaStream));
  5866. // compute
  5867. CUBLAS_CHECK(
  5868. cublasSgemm(cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  5869. ne01, ne11, ne10,
  5870. &alpha, d_X, ne00,
  5871. d_Y, ne10,
  5872. &beta, d_D, ne01));
  5873. // copy data to host
  5874. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
  5875. CUDA_CHECK(cudaStreamSynchronize(cudaStream));
  5876. #else
  5877. // zT = y * xT
  5878. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5879. ne11, ne01, ne10,
  5880. 1.0f, y, ne10,
  5881. x, ne00,
  5882. 0.0f, d, ne01);
  5883. #endif
  5884. }
  5885. }
  5886. #if defined(GGML_USE_CUBLAS)
  5887. CUDA_CHECK(cudaFree(d_X));
  5888. CUDA_CHECK(cudaFree(d_Y));
  5889. CUDA_CHECK(cudaFree(d_D));
  5890. #endif
  5891. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5892. return;
  5893. }
  5894. #endif
  5895. if (params->type == GGML_TASK_INIT) {
  5896. return;
  5897. }
  5898. if (params->type == GGML_TASK_FINALIZE) {
  5899. return;
  5900. }
  5901. // parallelize by src0 rows using ggml_vec_dot_f32
  5902. // total rows in src0
  5903. const int nr = ne01*ne02*ne03;
  5904. // rows per thread
  5905. const int dr = (nr + nth - 1)/nth;
  5906. // row range for this thread
  5907. const int ir0 = dr*ith;
  5908. const int ir1 = MIN(ir0 + dr, nr);
  5909. for (int ir = ir0; ir < ir1; ++ir) {
  5910. // src0 indices
  5911. const int i03 = ir/(ne02*ne01);
  5912. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5913. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5914. for (int64_t ic = 0; ic < ne11; ++ic) {
  5915. // src1 indices
  5916. const int i13 = i03;
  5917. const int i12 = i02;
  5918. const int i11 = ic;
  5919. // dst indices
  5920. const int i0 = i01;
  5921. const int i1 = i11;
  5922. const int i2 = i02;
  5923. const int i3 = i03;
  5924. ggml_vec_dot_f32(ne00,
  5925. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  5926. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  5927. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  5928. }
  5929. }
  5930. //int64_t t1 = ggml_perf_time_us();
  5931. //static int64_t acc = 0;
  5932. //acc += t1 - t0;
  5933. //if (t1 - t0 > 10) {
  5934. // printf("\n");
  5935. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5936. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5937. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5938. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  5939. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5940. //}
  5941. }
  5942. static void ggml_compute_forward_mul_mat_f16_f32(
  5943. const struct ggml_compute_params * params,
  5944. const struct ggml_tensor * src0,
  5945. const struct ggml_tensor * src1,
  5946. struct ggml_tensor * dst) {
  5947. int64_t t0 = ggml_perf_time_us();
  5948. UNUSED(t0);
  5949. const int64_t ne00 = src0->ne[0];
  5950. const int64_t ne01 = src0->ne[1];
  5951. const int64_t ne02 = src0->ne[2];
  5952. const int64_t ne03 = src0->ne[3];
  5953. const int64_t ne10 = src1->ne[0];
  5954. const int64_t ne11 = src1->ne[1];
  5955. const int64_t ne12 = src1->ne[2];
  5956. const int64_t ne13 = src1->ne[3];
  5957. const int64_t ne0 = dst->ne[0];
  5958. const int64_t ne1 = dst->ne[1];
  5959. const int64_t ne2 = dst->ne[2];
  5960. const int64_t ne3 = dst->ne[3];
  5961. //const int64_t ne = ne0*ne1*ne2*ne3;
  5962. const int nb00 = src0->nb[0];
  5963. const int nb01 = src0->nb[1];
  5964. const int nb02 = src0->nb[2];
  5965. const int nb03 = src0->nb[3];
  5966. const int nb10 = src1->nb[0];
  5967. const int nb11 = src1->nb[1];
  5968. const int nb12 = src1->nb[2];
  5969. const int nb13 = src1->nb[3];
  5970. const int nb0 = dst->nb[0];
  5971. const int nb1 = dst->nb[1];
  5972. const int nb2 = dst->nb[2];
  5973. const int nb3 = dst->nb[3];
  5974. const int ith = params->ith;
  5975. const int nth = params->nth;
  5976. GGML_ASSERT(ne02 == ne12);
  5977. GGML_ASSERT(ne03 == ne13);
  5978. GGML_ASSERT(ne2 == ne12);
  5979. GGML_ASSERT(ne3 == ne13);
  5980. // TODO: we don't support permuted src0
  5981. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5982. // dst cannot be transposed or permuted
  5983. GGML_ASSERT(nb0 == sizeof(float));
  5984. GGML_ASSERT(nb0 <= nb1);
  5985. GGML_ASSERT(nb1 <= nb2);
  5986. GGML_ASSERT(nb2 <= nb3);
  5987. GGML_ASSERT(ne0 == ne01);
  5988. GGML_ASSERT(ne1 == ne11);
  5989. GGML_ASSERT(ne2 == ne02);
  5990. GGML_ASSERT(ne3 == ne03);
  5991. // nb01 >= nb00 - src0 is not transposed
  5992. // compute by src0 rows
  5993. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  5994. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5995. GGML_ASSERT(nb10 == sizeof(float));
  5996. if (params->ith != 0) {
  5997. return;
  5998. }
  5999. if (params->type == GGML_TASK_INIT) {
  6000. return;
  6001. }
  6002. if (params->type == GGML_TASK_FINALIZE) {
  6003. return;
  6004. }
  6005. #if defined(GGML_USE_CUBLAS)
  6006. ggml_fp16_t * const wdata = params->wdata;
  6007. float *d_X = NULL;
  6008. float *d_Y = NULL;
  6009. float *d_D = NULL;
  6010. const float alpha = 1.0f;
  6011. const float beta = 0.0f;
  6012. const int x_ne = ne01 * ne10;
  6013. const int y_ne = ne11 * ne10;
  6014. const int d_ne = ne11 * ne01;
  6015. CUDA_CHECK(cudaMalloc((void **)(&d_X), sizeof(ggml_fp16_t) * x_ne));
  6016. CUDA_CHECK(cudaMalloc((void **)(&d_Y), sizeof(float) * y_ne));
  6017. CUDA_CHECK(cudaMalloc((void **)(&d_D), sizeof(float) * d_ne));
  6018. #else
  6019. float * const wdata = params->wdata;
  6020. #endif
  6021. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6022. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6023. #if defined(GGML_USE_CUBLAS)
  6024. // with cuBlAS, instead of converting src0 to fp32, we convert src1 to fp16
  6025. {
  6026. size_t id = 0;
  6027. for (int64_t i01 = 0; i01 < ne11; ++i01) {
  6028. for (int64_t i00 = 0; i00 < ne10; ++i00) {
  6029. wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10));
  6030. }
  6031. }
  6032. }
  6033. #else
  6034. {
  6035. size_t id = 0;
  6036. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6037. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6038. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6039. }
  6040. }
  6041. }
  6042. #endif
  6043. #if defined(GGML_USE_CUBLAS)
  6044. const ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6045. const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
  6046. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6047. // copy data to device
  6048. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(ggml_fp16_t) * x_ne, cudaMemcpyHostToDevice, cudaStream));
  6049. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, cudaStream));
  6050. // compute
  6051. CUBLAS_CHECK(
  6052. cublasGemmEx(cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6053. ne01, ne11, ne10,
  6054. &alpha, d_X, CUDA_R_16F, ne00,
  6055. d_Y, CUDA_R_16F, ne10,
  6056. &beta, d_D, CUDA_R_32F, ne01,
  6057. CUBLAS_COMPUTE_32F,
  6058. CUBLAS_GEMM_DEFAULT));
  6059. // copy data to host
  6060. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
  6061. CUDA_CHECK(cudaStreamSynchronize(cudaStream));
  6062. #else
  6063. const float * x = wdata;
  6064. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6065. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6066. // zT = y * xT
  6067. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6068. ne11, ne01, ne10,
  6069. 1.0f, y, ne10,
  6070. x, ne00,
  6071. 0.0f, d, ne01);
  6072. #endif
  6073. }
  6074. }
  6075. #if defined(GGML_USE_CUBLAS)
  6076. CUDA_CHECK(cudaFree(d_X));
  6077. CUDA_CHECK(cudaFree(d_Y));
  6078. CUDA_CHECK(cudaFree(d_D));
  6079. #endif
  6080. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6081. return;
  6082. }
  6083. #endif
  6084. if (params->type == GGML_TASK_INIT) {
  6085. ggml_fp16_t * const wdata = params->wdata;
  6086. size_t id = 0;
  6087. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6088. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6089. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6090. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  6091. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  6092. }
  6093. }
  6094. }
  6095. }
  6096. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  6097. return;
  6098. }
  6099. if (params->type == GGML_TASK_FINALIZE) {
  6100. return;
  6101. }
  6102. // fp16 -> half the size, so divide by 2
  6103. // TODO: do not support transposed src1
  6104. assert(nb10/2 == sizeof(ggml_fp16_t));
  6105. // parallelize by src0 rows using ggml_vec_dot_f16
  6106. // total rows in src0
  6107. const int nr = ne01*ne02*ne03;
  6108. // rows per thread
  6109. const int dr = (nr + nth - 1)/nth;
  6110. // row range for this thread
  6111. const int ir0 = dr*ith;
  6112. const int ir1 = MIN(ir0 + dr, nr);
  6113. ggml_fp16_t * wdata = params->wdata;
  6114. for (int ir = ir0; ir < ir1; ++ir) {
  6115. // src0 indices
  6116. const int i03 = ir/(ne02*ne01);
  6117. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6118. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6119. const int i13 = i03;
  6120. const int i12 = i02;
  6121. const int i0 = i01;
  6122. const int i2 = i02;
  6123. const int i3 = i03;
  6124. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6125. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  6126. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6127. for (int64_t ic = 0; ic < ne11; ++ic) {
  6128. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  6129. }
  6130. }
  6131. //int64_t t1 = ggml_time_us();
  6132. //static int64_t acc = 0;
  6133. //acc += t1 - t0;
  6134. //if (t1 - t0 > 10) {
  6135. // printf("\n");
  6136. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6137. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6138. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6139. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6140. //}
  6141. }
  6142. static void ggml_compute_forward_mul_mat_q_f32(
  6143. const struct ggml_compute_params * params,
  6144. const struct ggml_tensor * src0,
  6145. const struct ggml_tensor * src1,
  6146. struct ggml_tensor * dst) {
  6147. int64_t t0 = ggml_perf_time_us();
  6148. UNUSED(t0);
  6149. const int64_t ne00 = src0->ne[0];
  6150. const int64_t ne01 = src0->ne[1];
  6151. const int64_t ne02 = src0->ne[2];
  6152. const int64_t ne03 = src0->ne[3];
  6153. const int64_t ne10 = src1->ne[0];
  6154. const int64_t ne11 = src1->ne[1];
  6155. const int64_t ne12 = src1->ne[2];
  6156. const int64_t ne13 = src1->ne[3];
  6157. const int64_t ne0 = dst->ne[0];
  6158. const int64_t ne1 = dst->ne[1];
  6159. const int64_t ne2 = dst->ne[2];
  6160. const int64_t ne3 = dst->ne[3];
  6161. const int nb00 = src0->nb[0];
  6162. const int nb01 = src0->nb[1];
  6163. const int nb02 = src0->nb[2];
  6164. const int nb03 = src0->nb[3];
  6165. const int nb10 = src1->nb[0];
  6166. const int nb11 = src1->nb[1];
  6167. const int nb12 = src1->nb[2];
  6168. const int nb13 = src1->nb[3];
  6169. const int nb0 = dst->nb[0];
  6170. const int nb1 = dst->nb[1];
  6171. const int nb2 = dst->nb[2];
  6172. const int nb3 = dst->nb[3];
  6173. const int ith = params->ith;
  6174. const int nth = params->nth;
  6175. GGML_ASSERT(ne02 == ne12);
  6176. GGML_ASSERT(ne03 == ne13);
  6177. GGML_ASSERT(ne2 == ne12);
  6178. GGML_ASSERT(ne3 == ne13);
  6179. const enum ggml_type type = src0->type;
  6180. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  6181. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  6182. // we don't support permuted src0 or src1
  6183. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  6184. GGML_ASSERT(nb10 == sizeof(float));
  6185. // dst cannot be transposed or permuted
  6186. GGML_ASSERT(nb0 == sizeof(float));
  6187. GGML_ASSERT(nb0 <= nb1);
  6188. GGML_ASSERT(nb1 <= nb2);
  6189. GGML_ASSERT(nb2 <= nb3);
  6190. GGML_ASSERT(ne0 == ne01);
  6191. GGML_ASSERT(ne1 == ne11);
  6192. GGML_ASSERT(ne2 == ne02);
  6193. GGML_ASSERT(ne3 == ne03);
  6194. // nb01 >= nb00 - src0 is not transposed
  6195. // compute by src0 rows
  6196. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6197. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6198. if (params->ith != 0) {
  6199. return;
  6200. }
  6201. if (params->type == GGML_TASK_INIT) {
  6202. return;
  6203. }
  6204. if (params->type == GGML_TASK_FINALIZE) {
  6205. return;
  6206. }
  6207. float * const wdata = params->wdata;
  6208. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6209. #if defined(GGML_USE_CUBLAS)
  6210. float *d_X = NULL;
  6211. float *d_Y = NULL;
  6212. float *d_D = NULL;
  6213. const float alpha = 1.0f;
  6214. const float beta = 0.0f;
  6215. const int x_ne = ne01 * ne10;
  6216. const int y_ne = ne11 * ne10;
  6217. const int d_ne = ne11 * ne01;
  6218. CUDA_CHECK(cudaMalloc((void **)(&d_X), sizeof(float) * x_ne));
  6219. CUDA_CHECK(cudaMalloc((void **)(&d_Y), sizeof(float) * y_ne));
  6220. CUDA_CHECK(cudaMalloc((void **)(&d_D), sizeof(float) * d_ne));
  6221. #endif
  6222. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6223. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6224. {
  6225. size_t id = 0;
  6226. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6227. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  6228. id += ne00;
  6229. }
  6230. }
  6231. const float * x = wdata;
  6232. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6233. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6234. #if defined(GGML_USE_CUBLAS)
  6235. // copy data to device
  6236. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, cudaStream));
  6237. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, cudaStream));
  6238. // compute
  6239. CUBLAS_CHECK(
  6240. cublasSgemm(cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6241. ne01, ne11, ne10,
  6242. &alpha, d_X, ne00,
  6243. d_Y, ne10,
  6244. &beta, d_D, ne01));
  6245. // copy data to host
  6246. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
  6247. CUDA_CHECK(cudaStreamSynchronize(cudaStream));
  6248. #else
  6249. // zT = y * xT
  6250. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6251. ne11, ne01, ne10,
  6252. 1.0f, y, ne10,
  6253. x, ne00,
  6254. 0.0f, d, ne01);
  6255. #endif
  6256. }
  6257. }
  6258. #if defined(GGML_USE_CUBLAS)
  6259. CUDA_CHECK(cudaFree(d_X));
  6260. CUDA_CHECK(cudaFree(d_Y));
  6261. CUDA_CHECK(cudaFree(d_D));
  6262. #endif
  6263. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6264. return;
  6265. }
  6266. #endif
  6267. if (params->type == GGML_TASK_INIT) {
  6268. char * wdata = params->wdata;
  6269. const size_t row_size = ne10*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6270. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6271. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6272. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6273. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  6274. wdata += row_size;
  6275. }
  6276. }
  6277. }
  6278. return;
  6279. }
  6280. if (params->type == GGML_TASK_FINALIZE) {
  6281. return;
  6282. }
  6283. // parallelize by src0 rows using ggml_vec_dot_q
  6284. // total rows in src0
  6285. const int nr = ne01*ne02*ne03;
  6286. // rows per thread
  6287. const int dr = (nr + nth - 1)/nth;
  6288. // row range for this thread
  6289. const int ir0 = dr*ith;
  6290. const int ir1 = MIN(ir0 + dr, nr);
  6291. void * wdata = params->wdata;
  6292. const size_t row_size = ne00*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6293. for (int ir = ir0; ir < ir1; ++ir) {
  6294. // src0 indices
  6295. const int i03 = ir/(ne02*ne01);
  6296. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6297. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6298. const int i13 = i03;
  6299. const int i12 = i02;
  6300. const int i0 = i01;
  6301. const int i2 = i02;
  6302. const int i3 = i03;
  6303. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6304. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  6305. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6306. assert(ne00 % 32 == 0);
  6307. for (int64_t ic = 0; ic < ne11; ++ic) {
  6308. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  6309. }
  6310. }
  6311. //int64_t t1 = ggml_time_us();
  6312. //static int64_t acc = 0;
  6313. //acc += t1 - t0;
  6314. //if (t1 - t0 > 10) {
  6315. // printf("\n");
  6316. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6317. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6318. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6319. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6320. //}
  6321. }
  6322. static void ggml_compute_forward_mul_mat(
  6323. const struct ggml_compute_params * params,
  6324. const struct ggml_tensor * src0,
  6325. const struct ggml_tensor * src1,
  6326. struct ggml_tensor * dst) {
  6327. switch (src0->type) {
  6328. case GGML_TYPE_Q4_0:
  6329. case GGML_TYPE_Q4_1:
  6330. case GGML_TYPE_Q4_2:
  6331. case GGML_TYPE_Q8_0:
  6332. {
  6333. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  6334. } break;
  6335. case GGML_TYPE_F16:
  6336. {
  6337. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  6338. } break;
  6339. case GGML_TYPE_F32:
  6340. {
  6341. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  6342. } break;
  6343. default:
  6344. {
  6345. GGML_ASSERT(false);
  6346. } break;
  6347. }
  6348. #if 0
  6349. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  6350. static int first = 8;
  6351. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  6352. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  6353. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6354. if (first) {
  6355. --first;
  6356. } else {
  6357. for (int k = 0; k < dst->ne[1]; ++k) {
  6358. for (int j = 0; j < dst->ne[0]/16; ++j) {
  6359. for (int i = 0; i < 16; ++i) {
  6360. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  6361. }
  6362. printf("\n");
  6363. }
  6364. printf("\n");
  6365. }
  6366. printf("\n");
  6367. exit(0);
  6368. }
  6369. } else {
  6370. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  6371. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  6372. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6373. }
  6374. #endif
  6375. }
  6376. // ggml_compute_forward_scale
  6377. static void ggml_compute_forward_scale_f32(
  6378. const struct ggml_compute_params * params,
  6379. const struct ggml_tensor * src0,
  6380. const struct ggml_tensor * src1,
  6381. struct ggml_tensor * dst) {
  6382. GGML_ASSERT(ggml_is_contiguous(src0));
  6383. GGML_ASSERT(ggml_is_contiguous(dst));
  6384. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6385. GGML_ASSERT(ggml_is_scalar(src1));
  6386. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6387. return;
  6388. }
  6389. // scale factor
  6390. const float v = *(float *) src1->data;
  6391. const int ith = params->ith;
  6392. const int nth = params->nth;
  6393. const int nc = src0->ne[0];
  6394. const int nr = ggml_nrows(src0);
  6395. // rows per thread
  6396. const int dr = (nr + nth - 1)/nth;
  6397. // row range for this thread
  6398. const int ir0 = dr*ith;
  6399. const int ir1 = MIN(ir0 + dr, nr);
  6400. for (int i1 = ir0; i1 < ir1; i1++) {
  6401. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  6402. }
  6403. }
  6404. static void ggml_compute_forward_scale(
  6405. const struct ggml_compute_params * params,
  6406. const struct ggml_tensor * src0,
  6407. const struct ggml_tensor * src1,
  6408. struct ggml_tensor * dst) {
  6409. switch (src0->type) {
  6410. case GGML_TYPE_F32:
  6411. {
  6412. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  6413. } break;
  6414. default:
  6415. {
  6416. GGML_ASSERT(false);
  6417. } break;
  6418. }
  6419. }
  6420. // ggml_compute_forward_cpy
  6421. static void ggml_compute_forward_cpy(
  6422. const struct ggml_compute_params * params,
  6423. const struct ggml_tensor * src0,
  6424. struct ggml_tensor * dst) {
  6425. ggml_compute_forward_dup(params, src0, dst);
  6426. }
  6427. // ggml_compute_forward_cont
  6428. static void ggml_compute_forward_cont(
  6429. const struct ggml_compute_params * params,
  6430. const struct ggml_tensor * src0,
  6431. struct ggml_tensor * dst) {
  6432. ggml_compute_forward_dup(params, src0, dst);
  6433. }
  6434. // ggml_compute_forward_reshape
  6435. static void ggml_compute_forward_reshape(
  6436. const struct ggml_compute_params * params,
  6437. const struct ggml_tensor * src0,
  6438. struct ggml_tensor * dst) {
  6439. // NOP
  6440. UNUSED(params);
  6441. UNUSED(src0);
  6442. UNUSED(dst);
  6443. }
  6444. // ggml_compute_forward_view
  6445. static void ggml_compute_forward_view(
  6446. const struct ggml_compute_params * params,
  6447. const struct ggml_tensor * src0) {
  6448. // NOP
  6449. UNUSED(params);
  6450. UNUSED(src0);
  6451. }
  6452. // ggml_compute_forward_permute
  6453. static void ggml_compute_forward_permute(
  6454. const struct ggml_compute_params * params,
  6455. const struct ggml_tensor * src0) {
  6456. // NOP
  6457. UNUSED(params);
  6458. UNUSED(src0);
  6459. }
  6460. // ggml_compute_forward_transpose
  6461. static void ggml_compute_forward_transpose(
  6462. const struct ggml_compute_params * params,
  6463. const struct ggml_tensor * src0) {
  6464. // NOP
  6465. UNUSED(params);
  6466. UNUSED(src0);
  6467. }
  6468. // ggml_compute_forward_get_rows
  6469. static void ggml_compute_forward_get_rows_q(
  6470. const struct ggml_compute_params * params,
  6471. const struct ggml_tensor * src0,
  6472. const struct ggml_tensor * src1,
  6473. struct ggml_tensor * dst) {
  6474. assert(params->ith == 0);
  6475. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6476. return;
  6477. }
  6478. const int nc = src0->ne[0];
  6479. const int nr = ggml_nelements(src1);
  6480. const enum ggml_type type = src0->type;
  6481. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6482. assert( dst->ne[0] == nc);
  6483. assert( dst->ne[1] == nr);
  6484. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  6485. for (int i = 0; i < nr; ++i) {
  6486. const int r = ((int32_t *) src1->data)[i];
  6487. dequantize_row_q(
  6488. (const void *) ((char *) src0->data + r*src0->nb[1]),
  6489. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  6490. }
  6491. }
  6492. static void ggml_compute_forward_get_rows_f16(
  6493. const struct ggml_compute_params * params,
  6494. const struct ggml_tensor * src0,
  6495. const struct ggml_tensor * src1,
  6496. struct ggml_tensor * dst) {
  6497. assert(params->ith == 0);
  6498. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6499. return;
  6500. }
  6501. const int nc = src0->ne[0];
  6502. const int nr = ggml_nelements(src1);
  6503. assert( dst->ne[0] == nc);
  6504. assert( dst->ne[1] == nr);
  6505. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6506. for (int i = 0; i < nr; ++i) {
  6507. const int r = ((int32_t *) src1->data)[i];
  6508. for (int j = 0; j < nc; ++j) {
  6509. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  6510. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  6511. }
  6512. }
  6513. }
  6514. static void ggml_compute_forward_get_rows_f32(
  6515. const struct ggml_compute_params * params,
  6516. const struct ggml_tensor * src0,
  6517. const struct ggml_tensor * src1,
  6518. struct ggml_tensor * dst) {
  6519. assert(params->ith == 0);
  6520. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6521. return;
  6522. }
  6523. const int nc = src0->ne[0];
  6524. const int nr = ggml_nelements(src1);
  6525. assert( dst->ne[0] == nc);
  6526. assert( dst->ne[1] == nr);
  6527. assert(src0->nb[0] == sizeof(float));
  6528. for (int i = 0; i < nr; ++i) {
  6529. const int r = ((int32_t *) src1->data)[i];
  6530. ggml_vec_cpy_f32(nc,
  6531. (float *) ((char *) dst->data + i*dst->nb[1]),
  6532. (float *) ((char *) src0->data + r*src0->nb[1]));
  6533. }
  6534. }
  6535. static void ggml_compute_forward_get_rows(
  6536. const struct ggml_compute_params * params,
  6537. const struct ggml_tensor * src0,
  6538. const struct ggml_tensor * src1,
  6539. struct ggml_tensor * dst) {
  6540. switch (src0->type) {
  6541. case GGML_TYPE_Q4_0:
  6542. case GGML_TYPE_Q4_1:
  6543. case GGML_TYPE_Q4_2:
  6544. case GGML_TYPE_Q8_0:
  6545. {
  6546. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  6547. } break;
  6548. case GGML_TYPE_F16:
  6549. {
  6550. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  6551. } break;
  6552. case GGML_TYPE_F32:
  6553. {
  6554. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  6555. } break;
  6556. default:
  6557. {
  6558. GGML_ASSERT(false);
  6559. } break;
  6560. }
  6561. //static bool first = true;
  6562. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6563. //if (first) {
  6564. // first = false;
  6565. //} else {
  6566. // for (int k = 0; k < dst->ne[1]; ++k) {
  6567. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  6568. // for (int i = 0; i < 16; ++i) {
  6569. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  6570. // }
  6571. // printf("\n");
  6572. // }
  6573. // printf("\n");
  6574. // }
  6575. // printf("\n");
  6576. // exit(0);
  6577. //}
  6578. }
  6579. // ggml_compute_forward_diag_mask_inf
  6580. static void ggml_compute_forward_diag_mask_inf_f32(
  6581. const struct ggml_compute_params * params,
  6582. const struct ggml_tensor * src0,
  6583. const struct ggml_tensor * src1,
  6584. struct ggml_tensor * dst) {
  6585. assert(params->ith == 0);
  6586. assert(src1->type == GGML_TYPE_I32);
  6587. assert(ggml_nelements(src1) == 1);
  6588. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6589. return;
  6590. }
  6591. const int n_past = ((int32_t *) src1->data)[0];
  6592. // TODO: handle transposed/permuted matrices
  6593. const int n = ggml_nrows(src0);
  6594. const int nc = src0->ne[0];
  6595. const int nr = src0->ne[1];
  6596. const int nz = n/nr;
  6597. assert( dst->nb[0] == sizeof(float));
  6598. assert(src0->nb[0] == sizeof(float));
  6599. for (int k = 0; k < nz; k++) {
  6600. for (int j = 0; j < nr; j++) {
  6601. for (int i = n_past; i < nc; i++) {
  6602. if (i > n_past + j) {
  6603. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  6604. }
  6605. }
  6606. }
  6607. }
  6608. }
  6609. static void ggml_compute_forward_diag_mask_inf(
  6610. const struct ggml_compute_params * params,
  6611. const struct ggml_tensor * src0,
  6612. const struct ggml_tensor * src1,
  6613. struct ggml_tensor * dst) {
  6614. switch (src0->type) {
  6615. case GGML_TYPE_F32:
  6616. {
  6617. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  6618. } break;
  6619. default:
  6620. {
  6621. GGML_ASSERT(false);
  6622. } break;
  6623. }
  6624. }
  6625. // ggml_compute_forward_soft_max
  6626. static void ggml_compute_forward_soft_max_f32(
  6627. const struct ggml_compute_params * params,
  6628. const struct ggml_tensor * src0,
  6629. struct ggml_tensor * dst) {
  6630. GGML_ASSERT(ggml_is_contiguous(src0));
  6631. GGML_ASSERT(ggml_is_contiguous(dst));
  6632. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6633. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6634. return;
  6635. }
  6636. // TODO: handle transposed/permuted matrices
  6637. const int ith = params->ith;
  6638. const int nth = params->nth;
  6639. const int nc = src0->ne[0];
  6640. const int nr = ggml_nrows(src0);
  6641. // rows per thread
  6642. const int dr = (nr + nth - 1)/nth;
  6643. // row range for this thread
  6644. const int ir0 = dr*ith;
  6645. const int ir1 = MIN(ir0 + dr, nr);
  6646. for (int i1 = ir0; i1 < ir1; i1++) {
  6647. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  6648. #ifndef NDEBUG
  6649. for (int i = 0; i < nc; ++i) {
  6650. //printf("p[%d] = %f\n", i, p[i]);
  6651. assert(!isnan(p[i]));
  6652. }
  6653. #endif
  6654. float max = -INFINITY;
  6655. ggml_vec_max_f32(nc, &max, p);
  6656. ggml_float sum = 0.0;
  6657. uint16_t scvt;
  6658. for (int i = 0; i < nc; i++) {
  6659. if (p[i] == -INFINITY) {
  6660. p[i] = 0.0f;
  6661. } else {
  6662. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  6663. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  6664. memcpy(&scvt, &s, sizeof(scvt));
  6665. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  6666. sum += (ggml_float)val;
  6667. p[i] = val;
  6668. }
  6669. }
  6670. assert(sum > 0.0);
  6671. sum = 1.0/sum;
  6672. ggml_vec_scale_f32(nc, p, sum);
  6673. #ifndef NDEBUG
  6674. for (int i = 0; i < nc; ++i) {
  6675. assert(!isnan(p[i]));
  6676. assert(!isinf(p[i]));
  6677. }
  6678. #endif
  6679. }
  6680. }
  6681. static void ggml_compute_forward_soft_max(
  6682. const struct ggml_compute_params * params,
  6683. const struct ggml_tensor * src0,
  6684. struct ggml_tensor * dst) {
  6685. switch (src0->type) {
  6686. case GGML_TYPE_F32:
  6687. {
  6688. ggml_compute_forward_soft_max_f32(params, src0, dst);
  6689. } break;
  6690. default:
  6691. {
  6692. GGML_ASSERT(false);
  6693. } break;
  6694. }
  6695. }
  6696. // ggml_compute_forward_rope
  6697. static void ggml_compute_forward_rope_f32(
  6698. const struct ggml_compute_params * params,
  6699. const struct ggml_tensor * src0,
  6700. const struct ggml_tensor * src1,
  6701. struct ggml_tensor * dst) {
  6702. assert(src1->type == GGML_TYPE_I32);
  6703. assert(ggml_nelements(src1) == 3);
  6704. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6705. return;
  6706. }
  6707. const int n_past = ((int32_t *) src1->data)[0];
  6708. const int n_dims = ((int32_t *) src1->data)[1];
  6709. const int mode = ((int32_t *) src1->data)[2];
  6710. //const int64_t ne0 = src0->ne[0];
  6711. const int64_t ne1 = src0->ne[1];
  6712. const int64_t ne2 = src0->ne[2];
  6713. const int64_t ne3 = src0->ne[3];
  6714. const int nb0 = src0->nb[0];
  6715. const int nb1 = src0->nb[1];
  6716. const int nb2 = src0->nb[2];
  6717. const int nb3 = src0->nb[3];
  6718. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6719. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6720. assert(nb0 == sizeof(float));
  6721. const int ith = params->ith;
  6722. const int nth = params->nth;
  6723. const int nr = ggml_nrows(src0);
  6724. // rows per thread
  6725. const int dr = (nr + nth - 1)/nth;
  6726. // row range for this thread
  6727. const int ir0 = dr*ith;
  6728. const int ir1 = MIN(ir0 + dr, nr);
  6729. // row index used to determine which thread to use
  6730. int ir = 0;
  6731. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  6732. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6733. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6734. const int p = (mode == 0 ? n_past + i2 : i2);
  6735. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6736. if (ir++ < ir0) continue;
  6737. if (ir > ir1) break;
  6738. float theta = (float)p;
  6739. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6740. const float cos_theta = cosf(theta);
  6741. const float sin_theta = sinf(theta);
  6742. theta *= theta_scale;
  6743. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6744. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6745. const float x0 = src[0];
  6746. const float x1 = src[1];
  6747. dst_data[0] = x0*cos_theta - x1*sin_theta;
  6748. dst_data[1] = x0*sin_theta + x1*cos_theta;
  6749. }
  6750. }
  6751. }
  6752. }
  6753. }
  6754. static void ggml_compute_forward_rope_f16(
  6755. const struct ggml_compute_params * params,
  6756. const struct ggml_tensor * src0,
  6757. const struct ggml_tensor * src1,
  6758. struct ggml_tensor * dst) {
  6759. assert(src1->type == GGML_TYPE_I32);
  6760. assert(ggml_nelements(src1) == 3);
  6761. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6762. return;
  6763. }
  6764. const int n_past = ((int32_t *) src1->data)[0];
  6765. const int n_dims = ((int32_t *) src1->data)[1];
  6766. const int mode = ((int32_t *) src1->data)[2];
  6767. //const int64_t ne0 = src0->ne[0];
  6768. const int64_t ne1 = src0->ne[1];
  6769. const int64_t ne2 = src0->ne[2];
  6770. const int64_t ne3 = src0->ne[3];
  6771. const int nb0 = src0->nb[0];
  6772. const int nb1 = src0->nb[1];
  6773. const int nb2 = src0->nb[2];
  6774. const int nb3 = src0->nb[3];
  6775. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6776. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6777. assert(nb0 == sizeof(ggml_fp16_t));
  6778. const int ith = params->ith;
  6779. const int nth = params->nth;
  6780. const int nr = ggml_nrows(src0);
  6781. // rows per thread
  6782. const int dr = (nr + nth - 1)/nth;
  6783. // row range for this thread
  6784. const int ir0 = dr*ith;
  6785. const int ir1 = MIN(ir0 + dr, nr);
  6786. // row index used to determine which thread to use
  6787. int ir = 0;
  6788. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  6789. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6790. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6791. const int p = (mode == 0 ? n_past + i2 : i2);
  6792. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6793. if (ir++ < ir0) continue;
  6794. if (ir > ir1) break;
  6795. float theta = (float)p;
  6796. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6797. const float cos_theta = cosf(theta);
  6798. const float sin_theta = sinf(theta);
  6799. theta *= theta_scale;
  6800. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6801. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6802. const float x0 = GGML_FP16_TO_FP32(src[0]);
  6803. const float x1 = GGML_FP16_TO_FP32(src[1]);
  6804. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  6805. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  6806. }
  6807. }
  6808. }
  6809. }
  6810. }
  6811. static void ggml_compute_forward_rope(
  6812. const struct ggml_compute_params * params,
  6813. const struct ggml_tensor * src0,
  6814. const struct ggml_tensor * src1,
  6815. struct ggml_tensor * dst) {
  6816. switch (src0->type) {
  6817. case GGML_TYPE_F16:
  6818. {
  6819. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  6820. } break;
  6821. case GGML_TYPE_F32:
  6822. {
  6823. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  6824. } break;
  6825. default:
  6826. {
  6827. GGML_ASSERT(false);
  6828. } break;
  6829. }
  6830. }
  6831. // ggml_compute_forward_conv_1d_1s
  6832. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  6833. const struct ggml_compute_params * params,
  6834. const struct ggml_tensor * src0,
  6835. const struct ggml_tensor * src1,
  6836. struct ggml_tensor * dst) {
  6837. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6838. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6839. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6840. int64_t t0 = ggml_perf_time_us();
  6841. UNUSED(t0);
  6842. const int64_t ne00 = src0->ne[0];
  6843. const int64_t ne01 = src0->ne[1];
  6844. const int64_t ne02 = src0->ne[2];
  6845. //const int64_t ne03 = src0->ne[3];
  6846. const int64_t ne10 = src1->ne[0];
  6847. const int64_t ne11 = src1->ne[1];
  6848. //const int64_t ne12 = src1->ne[2];
  6849. //const int64_t ne13 = src1->ne[3];
  6850. //const int64_t ne0 = dst->ne[0];
  6851. //const int64_t ne1 = dst->ne[1];
  6852. //const int64_t ne2 = dst->ne[2];
  6853. //const int64_t ne3 = dst->ne[3];
  6854. //const int64_t ne = ne0*ne1*ne2*ne3;
  6855. const int nb00 = src0->nb[0];
  6856. const int nb01 = src0->nb[1];
  6857. const int nb02 = src0->nb[2];
  6858. //const int nb03 = src0->nb[3];
  6859. const int nb10 = src1->nb[0];
  6860. const int nb11 = src1->nb[1];
  6861. //const int nb12 = src1->nb[2];
  6862. //const int nb13 = src1->nb[3];
  6863. //const int nb0 = dst->nb[0];
  6864. const int nb1 = dst->nb[1];
  6865. //const int nb2 = dst->nb[2];
  6866. //const int nb3 = dst->nb[3];
  6867. const int ith = params->ith;
  6868. const int nth = params->nth;
  6869. const int nk = ne00;
  6870. const int nh = nk/2;
  6871. const int ew0 = ggml_up32(ne01);
  6872. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6873. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6874. GGML_ASSERT(nb10 == sizeof(float));
  6875. if (params->type == GGML_TASK_INIT) {
  6876. // TODO: fix this memset (wsize is overestimated)
  6877. memset(params->wdata, 0, params->wsize);
  6878. // prepare kernel data (src0)
  6879. {
  6880. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6881. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6882. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6883. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6884. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6885. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6886. dst_data[i00*ew0 + i01] = src[i00];
  6887. }
  6888. }
  6889. }
  6890. }
  6891. // prepare source data (src1)
  6892. {
  6893. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6894. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6895. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6896. ggml_fp16_t * dst_data = wdata;
  6897. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6898. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6899. }
  6900. }
  6901. }
  6902. return;
  6903. }
  6904. if (params->type == GGML_TASK_FINALIZE) {
  6905. return;
  6906. }
  6907. // total rows in dst
  6908. const int nr = ne02;
  6909. // rows per thread
  6910. const int dr = (nr + nth - 1)/nth;
  6911. // row range for this thread
  6912. const int ir0 = dr*ith;
  6913. const int ir1 = MIN(ir0 + dr, nr);
  6914. for (int i1 = ir0; i1 < ir1; i1++) {
  6915. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6916. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6917. dst_data[i0] = 0;
  6918. for (int k = -nh; k <= nh; k++) {
  6919. float v = 0.0f;
  6920. ggml_vec_dot_f16(ew0, &v,
  6921. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6922. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6923. dst_data[i0] += v;
  6924. }
  6925. }
  6926. }
  6927. }
  6928. static void ggml_compute_forward_conv_1d_1s_f32(
  6929. const struct ggml_compute_params * params,
  6930. const struct ggml_tensor * src0,
  6931. const struct ggml_tensor * src1,
  6932. struct ggml_tensor * dst) {
  6933. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6934. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6935. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6936. int64_t t0 = ggml_perf_time_us();
  6937. UNUSED(t0);
  6938. const int64_t ne00 = src0->ne[0];
  6939. const int64_t ne01 = src0->ne[1];
  6940. const int64_t ne02 = src0->ne[2];
  6941. //const int64_t ne03 = src0->ne[3];
  6942. const int64_t ne10 = src1->ne[0];
  6943. const int64_t ne11 = src1->ne[1];
  6944. //const int64_t ne12 = src1->ne[2];
  6945. //const int64_t ne13 = src1->ne[3];
  6946. //const int64_t ne0 = dst->ne[0];
  6947. //const int64_t ne1 = dst->ne[1];
  6948. //const int64_t ne2 = dst->ne[2];
  6949. //const int64_t ne3 = dst->ne[3];
  6950. //const int64_t ne = ne0*ne1*ne2*ne3;
  6951. const int nb00 = src0->nb[0];
  6952. const int nb01 = src0->nb[1];
  6953. const int nb02 = src0->nb[2];
  6954. //const int nb03 = src0->nb[3];
  6955. const int nb10 = src1->nb[0];
  6956. const int nb11 = src1->nb[1];
  6957. //const int nb12 = src1->nb[2];
  6958. //const int nb13 = src1->nb[3];
  6959. //const int nb0 = dst->nb[0];
  6960. const int nb1 = dst->nb[1];
  6961. //const int nb2 = dst->nb[2];
  6962. //const int nb3 = dst->nb[3];
  6963. const int ith = params->ith;
  6964. const int nth = params->nth;
  6965. const int nk = ne00;
  6966. const int nh = nk/2;
  6967. const int ew0 = ggml_up32(ne01);
  6968. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6969. GGML_ASSERT(nb00 == sizeof(float));
  6970. GGML_ASSERT(nb10 == sizeof(float));
  6971. if (params->type == GGML_TASK_INIT) {
  6972. // TODO: fix this memset (wsize is overestimated)
  6973. memset(params->wdata, 0, params->wsize);
  6974. // prepare kernel data (src0)
  6975. {
  6976. float * const wdata = (float *) params->wdata + 0;
  6977. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6978. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6979. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6980. float * dst_data = wdata + i02*ew0*ne00;
  6981. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6982. dst_data[i00*ew0 + i01] = src[i00];
  6983. }
  6984. }
  6985. }
  6986. }
  6987. // prepare source data (src1)
  6988. {
  6989. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6990. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6991. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6992. float * dst_data = wdata;
  6993. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6994. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6995. }
  6996. }
  6997. }
  6998. return;
  6999. }
  7000. if (params->type == GGML_TASK_FINALIZE) {
  7001. return;
  7002. }
  7003. // total rows in dst
  7004. const int nr = ne02;
  7005. // rows per thread
  7006. const int dr = (nr + nth - 1)/nth;
  7007. // row range for this thread
  7008. const int ir0 = dr*ith;
  7009. const int ir1 = MIN(ir0 + dr, nr);
  7010. for (int i1 = ir0; i1 < ir1; i1++) {
  7011. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7012. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7013. dst_data[i0] = 0;
  7014. for (int k = -nh; k <= nh; k++) {
  7015. float v = 0.0f;
  7016. ggml_vec_dot_f32(ew0, &v,
  7017. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7018. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7019. dst_data[i0] += v;
  7020. }
  7021. }
  7022. }
  7023. }
  7024. static void ggml_compute_forward_conv_1d_1s(
  7025. const struct ggml_compute_params * params,
  7026. const struct ggml_tensor * src0,
  7027. const struct ggml_tensor * src1,
  7028. struct ggml_tensor * dst) {
  7029. switch (src0->type) {
  7030. case GGML_TYPE_F16:
  7031. {
  7032. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  7033. } break;
  7034. case GGML_TYPE_F32:
  7035. {
  7036. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  7037. } break;
  7038. default:
  7039. {
  7040. GGML_ASSERT(false);
  7041. } break;
  7042. }
  7043. }
  7044. // ggml_compute_forward_conv_1d_2s
  7045. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  7046. const struct ggml_compute_params * params,
  7047. const struct ggml_tensor * src0,
  7048. const struct ggml_tensor * src1,
  7049. struct ggml_tensor * dst) {
  7050. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7051. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7052. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7053. int64_t t0 = ggml_perf_time_us();
  7054. UNUSED(t0);
  7055. const int64_t ne00 = src0->ne[0];
  7056. const int64_t ne01 = src0->ne[1];
  7057. const int64_t ne02 = src0->ne[2];
  7058. //const int64_t ne03 = src0->ne[3];
  7059. const int64_t ne10 = src1->ne[0];
  7060. const int64_t ne11 = src1->ne[1];
  7061. //const int64_t ne12 = src1->ne[2];
  7062. //const int64_t ne13 = src1->ne[3];
  7063. //const int64_t ne0 = dst->ne[0];
  7064. //const int64_t ne1 = dst->ne[1];
  7065. //const int64_t ne2 = dst->ne[2];
  7066. //const int64_t ne3 = dst->ne[3];
  7067. //const int64_t ne = ne0*ne1*ne2*ne3;
  7068. const int nb00 = src0->nb[0];
  7069. const int nb01 = src0->nb[1];
  7070. const int nb02 = src0->nb[2];
  7071. //const int nb03 = src0->nb[3];
  7072. const int nb10 = src1->nb[0];
  7073. const int nb11 = src1->nb[1];
  7074. //const int nb12 = src1->nb[2];
  7075. //const int nb13 = src1->nb[3];
  7076. //const int nb0 = dst->nb[0];
  7077. const int nb1 = dst->nb[1];
  7078. //const int nb2 = dst->nb[2];
  7079. //const int nb3 = dst->nb[3];
  7080. const int ith = params->ith;
  7081. const int nth = params->nth;
  7082. const int nk = ne00;
  7083. const int nh = nk/2;
  7084. const int ew0 = ggml_up32(ne01);
  7085. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7086. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7087. GGML_ASSERT(nb10 == sizeof(float));
  7088. if (params->type == GGML_TASK_INIT) {
  7089. // TODO: fix this memset (wsize is overestimated)
  7090. memset(params->wdata, 0, params->wsize);
  7091. // prepare kernel data (src0)
  7092. {
  7093. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7094. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7095. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7096. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7097. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7098. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7099. dst_data[i00*ew0 + i01] = src[i00];
  7100. }
  7101. }
  7102. }
  7103. }
  7104. // prepare source data (src1)
  7105. {
  7106. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7107. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7108. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7109. ggml_fp16_t * dst_data = wdata;
  7110. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7111. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7112. }
  7113. }
  7114. }
  7115. return;
  7116. }
  7117. if (params->type == GGML_TASK_FINALIZE) {
  7118. return;
  7119. }
  7120. // total rows in dst
  7121. const int nr = ne02;
  7122. // rows per thread
  7123. const int dr = (nr + nth - 1)/nth;
  7124. // row range for this thread
  7125. const int ir0 = dr*ith;
  7126. const int ir1 = MIN(ir0 + dr, nr);
  7127. for (int i1 = ir0; i1 < ir1; i1++) {
  7128. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7129. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7130. dst_data[i0/2] = 0;
  7131. for (int k = -nh; k <= nh; k++) {
  7132. float v = 0.0f;
  7133. ggml_vec_dot_f16(ew0, &v,
  7134. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7135. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7136. dst_data[i0/2] += v;
  7137. }
  7138. }
  7139. }
  7140. }
  7141. static void ggml_compute_forward_conv_1d_2s_f32(
  7142. const struct ggml_compute_params * params,
  7143. const struct ggml_tensor * src0,
  7144. const struct ggml_tensor * src1,
  7145. struct ggml_tensor * dst) {
  7146. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7147. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7148. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7149. int64_t t0 = ggml_perf_time_us();
  7150. UNUSED(t0);
  7151. const int64_t ne00 = src0->ne[0];
  7152. const int64_t ne01 = src0->ne[1];
  7153. const int64_t ne02 = src0->ne[2];
  7154. //const int64_t ne03 = src0->ne[3];
  7155. const int64_t ne10 = src1->ne[0];
  7156. const int64_t ne11 = src1->ne[1];
  7157. //const int64_t ne12 = src1->ne[2];
  7158. //const int64_t ne13 = src1->ne[3];
  7159. //const int64_t ne0 = dst->ne[0];
  7160. //const int64_t ne1 = dst->ne[1];
  7161. //const int64_t ne2 = dst->ne[2];
  7162. //const int64_t ne3 = dst->ne[3];
  7163. //const int64_t ne = ne0*ne1*ne2*ne3;
  7164. const int nb00 = src0->nb[0];
  7165. const int nb01 = src0->nb[1];
  7166. const int nb02 = src0->nb[2];
  7167. //const int nb03 = src0->nb[3];
  7168. const int nb10 = src1->nb[0];
  7169. const int nb11 = src1->nb[1];
  7170. //const int nb12 = src1->nb[2];
  7171. //const int nb13 = src1->nb[3];
  7172. //const int nb0 = dst->nb[0];
  7173. const int nb1 = dst->nb[1];
  7174. //const int nb2 = dst->nb[2];
  7175. //const int nb3 = dst->nb[3];
  7176. const int ith = params->ith;
  7177. const int nth = params->nth;
  7178. const int nk = ne00;
  7179. const int nh = nk/2;
  7180. const int ew0 = ggml_up32(ne01);
  7181. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7182. GGML_ASSERT(nb00 == sizeof(float));
  7183. GGML_ASSERT(nb10 == sizeof(float));
  7184. if (params->type == GGML_TASK_INIT) {
  7185. // TODO: fix this memset (wsize is overestimated)
  7186. memset(params->wdata, 0, params->wsize);
  7187. // prepare kernel data (src0)
  7188. {
  7189. float * const wdata = (float *) params->wdata + 0;
  7190. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7191. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7192. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7193. float * dst_data = wdata + i02*ew0*ne00;
  7194. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7195. dst_data[i00*ew0 + i01] = src[i00];
  7196. }
  7197. }
  7198. }
  7199. }
  7200. // prepare source data (src1)
  7201. {
  7202. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7203. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7204. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7205. float * dst_data = wdata;
  7206. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7207. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7208. }
  7209. }
  7210. }
  7211. return;
  7212. }
  7213. if (params->type == GGML_TASK_FINALIZE) {
  7214. return;
  7215. }
  7216. // total rows in dst
  7217. const int nr = ne02;
  7218. // rows per thread
  7219. const int dr = (nr + nth - 1)/nth;
  7220. // row range for this thread
  7221. const int ir0 = dr*ith;
  7222. const int ir1 = MIN(ir0 + dr, nr);
  7223. for (int i1 = ir0; i1 < ir1; i1++) {
  7224. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7225. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7226. dst_data[i0/2] = 0;
  7227. for (int k = -nh; k <= nh; k++) {
  7228. float v = 0.0f;
  7229. ggml_vec_dot_f32(ew0, &v,
  7230. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7231. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7232. dst_data[i0/2] += v;
  7233. }
  7234. }
  7235. }
  7236. }
  7237. static void ggml_compute_forward_conv_1d_2s(
  7238. const struct ggml_compute_params * params,
  7239. const struct ggml_tensor * src0,
  7240. const struct ggml_tensor * src1,
  7241. struct ggml_tensor * dst) {
  7242. switch (src0->type) {
  7243. case GGML_TYPE_F16:
  7244. {
  7245. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  7246. } break;
  7247. case GGML_TYPE_F32:
  7248. {
  7249. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  7250. } break;
  7251. default:
  7252. {
  7253. GGML_ASSERT(false);
  7254. } break;
  7255. }
  7256. }
  7257. // ggml_compute_forward_flash_attn
  7258. static void ggml_compute_forward_flash_attn_f32(
  7259. const struct ggml_compute_params * params,
  7260. const struct ggml_tensor * q,
  7261. const struct ggml_tensor * k,
  7262. const struct ggml_tensor * v,
  7263. const bool masked,
  7264. struct ggml_tensor * dst) {
  7265. int64_t t0 = ggml_perf_time_us();
  7266. UNUSED(t0);
  7267. const int64_t neq0 = q->ne[0];
  7268. const int64_t neq1 = q->ne[1];
  7269. const int64_t neq2 = q->ne[2];
  7270. const int64_t neq3 = q->ne[3];
  7271. const int64_t nek0 = k->ne[0];
  7272. const int64_t nek1 = k->ne[1];
  7273. //const int64_t nek2 = k->ne[2];
  7274. //const int64_t nek3 = k->ne[3];
  7275. //const int64_t nev0 = v->ne[0];
  7276. const int64_t nev1 = v->ne[1];
  7277. //const int64_t nev2 = v->ne[2];
  7278. //const int64_t nev3 = v->ne[3];
  7279. const int64_t ne0 = dst->ne[0];
  7280. const int64_t ne1 = dst->ne[1];
  7281. //const int64_t ne2 = dst->ne[2];
  7282. //const int64_t ne3 = dst->ne[3];
  7283. const int nbk0 = k->nb[0];
  7284. const int nbk1 = k->nb[1];
  7285. const int nbk2 = k->nb[2];
  7286. const int nbk3 = k->nb[3];
  7287. const int nbq0 = q->nb[0];
  7288. const int nbq1 = q->nb[1];
  7289. const int nbq2 = q->nb[2];
  7290. const int nbq3 = q->nb[3];
  7291. const int nbv0 = v->nb[0];
  7292. const int nbv1 = v->nb[1];
  7293. const int nbv2 = v->nb[2];
  7294. const int nbv3 = v->nb[3];
  7295. const int nb0 = dst->nb[0];
  7296. const int nb1 = dst->nb[1];
  7297. const int nb2 = dst->nb[2];
  7298. const int nb3 = dst->nb[3];
  7299. const int ith = params->ith;
  7300. const int nth = params->nth;
  7301. const int64_t D = neq0;
  7302. const int64_t N = neq1;
  7303. const int64_t P = nek1 - N;
  7304. const int64_t M = P + N;
  7305. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7306. GGML_ASSERT(ne0 == D);
  7307. GGML_ASSERT(ne1 == N);
  7308. GGML_ASSERT(P >= 0);
  7309. GGML_ASSERT(nbq0 == sizeof(float));
  7310. GGML_ASSERT(nbk0 == sizeof(float));
  7311. GGML_ASSERT(nbv0 == sizeof(float));
  7312. GGML_ASSERT(neq0 == D);
  7313. GGML_ASSERT(nek0 == D);
  7314. GGML_ASSERT(nev1 == D);
  7315. GGML_ASSERT(neq1 == N);
  7316. GGML_ASSERT(nek1 == N + P);
  7317. GGML_ASSERT(nev1 == D);
  7318. // dst cannot be transposed or permuted
  7319. GGML_ASSERT(nb0 == sizeof(float));
  7320. GGML_ASSERT(nb0 <= nb1);
  7321. GGML_ASSERT(nb1 <= nb2);
  7322. GGML_ASSERT(nb2 <= nb3);
  7323. if (params->type == GGML_TASK_INIT) {
  7324. return;
  7325. }
  7326. if (params->type == GGML_TASK_FINALIZE) {
  7327. return;
  7328. }
  7329. // parallelize by q rows using ggml_vec_dot_f32
  7330. // total rows in q
  7331. const int nr = neq1*neq2*neq3;
  7332. // rows per thread
  7333. const int dr = (nr + nth - 1)/nth;
  7334. // row range for this thread
  7335. const int ir0 = dr*ith;
  7336. const int ir1 = MIN(ir0 + dr, nr);
  7337. const float scale = 1.0f/sqrtf(D);
  7338. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7339. for (int ir = ir0; ir < ir1; ++ir) {
  7340. // q indices
  7341. const int iq3 = ir/(neq2*neq1);
  7342. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7343. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7344. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  7345. for (int i = M; i < Mup; ++i) {
  7346. S[i] = -INFINITY;
  7347. }
  7348. for (int64_t ic = 0; ic < nek1; ++ic) {
  7349. // k indices
  7350. const int ik3 = iq3;
  7351. const int ik2 = iq2;
  7352. const int ik1 = ic;
  7353. // S indices
  7354. const int i1 = ik1;
  7355. ggml_vec_dot_f32(neq0,
  7356. S + i1,
  7357. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7358. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7359. }
  7360. // scale
  7361. ggml_vec_scale_f32(nek1, S, scale);
  7362. if (masked) {
  7363. for (int64_t i = P; i < M; i++) {
  7364. if (i > P + iq1) {
  7365. S[i] = -INFINITY;
  7366. }
  7367. }
  7368. }
  7369. // softmax
  7370. {
  7371. float max = -INFINITY;
  7372. ggml_vec_max_f32(M, &max, S);
  7373. ggml_float sum = 0.0;
  7374. {
  7375. #ifdef GGML_SOFT_MAX_ACCELERATE
  7376. max = -max;
  7377. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7378. vvexpf(S, S, &Mup);
  7379. ggml_vec_sum_f32(Mup, &sum, S);
  7380. #else
  7381. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7382. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7383. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7384. float * SS = S + i;
  7385. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7386. if (SS[j] == -INFINITY) {
  7387. SS[j] = 0.0f;
  7388. } else {
  7389. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7390. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7391. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7392. sump[j] += (ggml_float)val;
  7393. SS[j] = val;
  7394. }
  7395. }
  7396. }
  7397. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7398. sum += sump[i];
  7399. }
  7400. #endif
  7401. }
  7402. assert(sum > 0.0);
  7403. sum = 1.0/sum;
  7404. ggml_vec_scale_f32(M, S, sum);
  7405. #ifndef NDEBUG
  7406. for (int i = 0; i < M; ++i) {
  7407. assert(!isnan(S[i]));
  7408. assert(!isinf(S[i]));
  7409. }
  7410. #endif
  7411. }
  7412. for (int64_t ic = 0; ic < nev1; ++ic) {
  7413. // dst indices
  7414. const int i1 = iq1;
  7415. const int i2 = iq2;
  7416. const int i3 = iq3;
  7417. ggml_vec_dot_f32(nek1,
  7418. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7419. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7420. S);
  7421. }
  7422. }
  7423. }
  7424. static void ggml_compute_forward_flash_attn_f16(
  7425. const struct ggml_compute_params * params,
  7426. const struct ggml_tensor * q,
  7427. const struct ggml_tensor * k,
  7428. const struct ggml_tensor * v,
  7429. const bool masked,
  7430. struct ggml_tensor * dst) {
  7431. int64_t t0 = ggml_perf_time_us();
  7432. UNUSED(t0);
  7433. const int64_t neq0 = q->ne[0];
  7434. const int64_t neq1 = q->ne[1];
  7435. const int64_t neq2 = q->ne[2];
  7436. const int64_t neq3 = q->ne[3];
  7437. const int64_t nek0 = k->ne[0];
  7438. const int64_t nek1 = k->ne[1];
  7439. //const int64_t nek2 = k->ne[2];
  7440. //const int64_t nek3 = k->ne[3];
  7441. //const int64_t nev0 = v->ne[0];
  7442. const int64_t nev1 = v->ne[1];
  7443. //const int64_t nev2 = v->ne[2];
  7444. //const int64_t nev3 = v->ne[3];
  7445. const int64_t ne0 = dst->ne[0];
  7446. const int64_t ne1 = dst->ne[1];
  7447. //const int64_t ne2 = dst->ne[2];
  7448. //const int64_t ne3 = dst->ne[3];
  7449. const int nbk0 = k->nb[0];
  7450. const int nbk1 = k->nb[1];
  7451. const int nbk2 = k->nb[2];
  7452. const int nbk3 = k->nb[3];
  7453. const int nbq0 = q->nb[0];
  7454. const int nbq1 = q->nb[1];
  7455. const int nbq2 = q->nb[2];
  7456. const int nbq3 = q->nb[3];
  7457. const int nbv0 = v->nb[0];
  7458. const int nbv1 = v->nb[1];
  7459. const int nbv2 = v->nb[2];
  7460. const int nbv3 = v->nb[3];
  7461. const int nb0 = dst->nb[0];
  7462. const int nb1 = dst->nb[1];
  7463. const int nb2 = dst->nb[2];
  7464. const int nb3 = dst->nb[3];
  7465. const int ith = params->ith;
  7466. const int nth = params->nth;
  7467. const int64_t D = neq0;
  7468. const int64_t N = neq1;
  7469. const int64_t P = nek1 - N;
  7470. const int64_t M = P + N;
  7471. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7472. GGML_ASSERT(ne0 == D);
  7473. GGML_ASSERT(ne1 == N);
  7474. GGML_ASSERT(P >= 0);
  7475. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  7476. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  7477. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  7478. GGML_ASSERT(neq0 == D);
  7479. GGML_ASSERT(nek0 == D);
  7480. GGML_ASSERT(nev1 == D);
  7481. GGML_ASSERT(neq1 == N);
  7482. GGML_ASSERT(nek1 == N + P);
  7483. GGML_ASSERT(nev1 == D);
  7484. // dst cannot be transposed or permuted
  7485. GGML_ASSERT(nb0 == sizeof(float));
  7486. GGML_ASSERT(nb0 <= nb1);
  7487. GGML_ASSERT(nb1 <= nb2);
  7488. GGML_ASSERT(nb2 <= nb3);
  7489. if (params->type == GGML_TASK_INIT) {
  7490. return;
  7491. }
  7492. if (params->type == GGML_TASK_FINALIZE) {
  7493. return;
  7494. }
  7495. // parallelize by q rows using ggml_vec_dot_f32
  7496. // total rows in q
  7497. const int nr = neq1*neq2*neq3;
  7498. // rows per thread
  7499. const int dr = (nr + nth - 1)/nth;
  7500. // row range for this thread
  7501. const int ir0 = dr*ith;
  7502. const int ir1 = MIN(ir0 + dr, nr);
  7503. const float scale = 1.0f/sqrtf(D);
  7504. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7505. for (int ir = ir0; ir < ir1; ++ir) {
  7506. // q indices
  7507. const int iq3 = ir/(neq2*neq1);
  7508. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7509. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7510. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  7511. for (int i = M; i < Mup; ++i) {
  7512. S[i] = -INFINITY;
  7513. }
  7514. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  7515. for (int64_t ic = 0; ic < nek1; ++ic) {
  7516. // k indices
  7517. const int ik3 = iq3;
  7518. const int ik2 = iq2;
  7519. const int ik1 = ic;
  7520. // S indices
  7521. const int i1 = ik1;
  7522. ggml_vec_dot_f16(neq0,
  7523. S + i1,
  7524. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7525. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7526. }
  7527. } else {
  7528. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  7529. // k indices
  7530. const int ik3 = iq3;
  7531. const int ik2 = iq2;
  7532. const int ik1 = ic;
  7533. // S indices
  7534. const int i1 = ik1;
  7535. ggml_vec_dot_f16_unroll(neq0, nbk1,
  7536. S + i1,
  7537. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7538. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7539. }
  7540. }
  7541. // scale
  7542. ggml_vec_scale_f32(nek1, S, scale);
  7543. if (masked) {
  7544. for (int64_t i = P; i < M; i++) {
  7545. if (i > P + iq1) {
  7546. S[i] = -INFINITY;
  7547. }
  7548. }
  7549. }
  7550. // softmax
  7551. {
  7552. float max = -INFINITY;
  7553. ggml_vec_max_f32(M, &max, S);
  7554. ggml_float sum = 0.0;
  7555. {
  7556. #ifdef GGML_SOFT_MAX_ACCELERATE
  7557. max = -max;
  7558. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7559. vvexpf(S, S, &Mup);
  7560. ggml_vec_sum_f32(Mup, &sum, S);
  7561. #else
  7562. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7563. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7564. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7565. float * SS = S + i;
  7566. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7567. if (SS[j] == -INFINITY) {
  7568. SS[j] = 0.0f;
  7569. } else {
  7570. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7571. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7572. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7573. sump[j] += (ggml_float)val;
  7574. SS[j] = val;
  7575. }
  7576. }
  7577. }
  7578. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7579. sum += sump[i];
  7580. }
  7581. #endif
  7582. }
  7583. assert(sum > 0.0);
  7584. sum = 1.0/sum;
  7585. ggml_vec_scale_f32(M, S, sum);
  7586. #ifndef NDEBUG
  7587. for (int i = 0; i < M; ++i) {
  7588. assert(!isnan(S[i]));
  7589. assert(!isinf(S[i]));
  7590. }
  7591. #endif
  7592. }
  7593. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  7594. for (int64_t i = 0; i < M; i++) {
  7595. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7596. }
  7597. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  7598. for (int64_t ic = 0; ic < nev1; ++ic) {
  7599. // dst indices
  7600. const int i1 = iq1;
  7601. const int i2 = iq2;
  7602. const int i3 = iq3;
  7603. ggml_vec_dot_f16(nek1,
  7604. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7605. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7606. S16);
  7607. }
  7608. } else {
  7609. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  7610. // dst indices
  7611. const int i1 = iq1;
  7612. const int i2 = iq2;
  7613. const int i3 = iq3;
  7614. ggml_vec_dot_f16_unroll(nek1, nbv1,
  7615. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7616. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7617. S16);
  7618. }
  7619. }
  7620. }
  7621. }
  7622. static void ggml_compute_forward_flash_attn(
  7623. const struct ggml_compute_params * params,
  7624. const struct ggml_tensor * q,
  7625. const struct ggml_tensor * k,
  7626. const struct ggml_tensor * v,
  7627. const bool masked,
  7628. struct ggml_tensor * dst) {
  7629. switch (q->type) {
  7630. case GGML_TYPE_F16:
  7631. {
  7632. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  7633. } break;
  7634. case GGML_TYPE_F32:
  7635. {
  7636. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  7637. } break;
  7638. default:
  7639. {
  7640. GGML_ASSERT(false);
  7641. } break;
  7642. }
  7643. }
  7644. // ggml_compute_forward_flash_ff
  7645. static void ggml_compute_forward_flash_ff_f16(
  7646. const struct ggml_compute_params * params,
  7647. const struct ggml_tensor * a, // F16
  7648. const struct ggml_tensor * b0, // F16 fc_w
  7649. const struct ggml_tensor * b1, // F32 fc_b
  7650. const struct ggml_tensor * c0, // F16 proj_w
  7651. const struct ggml_tensor * c1, // F32 proj_b
  7652. struct ggml_tensor * dst) {
  7653. int64_t t0 = ggml_perf_time_us();
  7654. UNUSED(t0);
  7655. const int64_t nea0 = a->ne[0];
  7656. const int64_t nea1 = a->ne[1];
  7657. const int64_t nea2 = a->ne[2];
  7658. const int64_t nea3 = a->ne[3];
  7659. const int64_t neb00 = b0->ne[0];
  7660. const int64_t neb01 = b0->ne[1];
  7661. //const int64_t neb02 = b0->ne[2];
  7662. //const int64_t neb03 = b0->ne[3];
  7663. const int64_t neb10 = b1->ne[0];
  7664. const int64_t neb11 = b1->ne[1];
  7665. //const int64_t neb12 = b1->ne[2];
  7666. //const int64_t neb13 = b1->ne[3];
  7667. const int64_t nec00 = c0->ne[0];
  7668. const int64_t nec01 = c0->ne[1];
  7669. //const int64_t nec02 = c0->ne[2];
  7670. //const int64_t nec03 = c0->ne[3];
  7671. const int64_t nec10 = c1->ne[0];
  7672. const int64_t nec11 = c1->ne[1];
  7673. //const int64_t nec12 = c1->ne[2];
  7674. //const int64_t nec13 = c1->ne[3];
  7675. const int64_t ne0 = dst->ne[0];
  7676. const int64_t ne1 = dst->ne[1];
  7677. const int64_t ne2 = dst->ne[2];
  7678. //const int64_t ne3 = dst->ne[3];
  7679. const int nba0 = a->nb[0];
  7680. const int nba1 = a->nb[1];
  7681. const int nba2 = a->nb[2];
  7682. const int nba3 = a->nb[3];
  7683. const int nbb00 = b0->nb[0];
  7684. const int nbb01 = b0->nb[1];
  7685. const int nbb02 = b0->nb[2];
  7686. const int nbb03 = b0->nb[3];
  7687. const int nbb10 = b1->nb[0];
  7688. //const int nbb11 = b1->nb[1];
  7689. //const int nbb12 = b1->nb[2];
  7690. //const int nbb13 = b1->nb[3];
  7691. const int nbc00 = c0->nb[0];
  7692. const int nbc01 = c0->nb[1];
  7693. const int nbc02 = c0->nb[2];
  7694. const int nbc03 = c0->nb[3];
  7695. const int nbc10 = c1->nb[0];
  7696. //const int nbc11 = c1->nb[1];
  7697. //const int nbc12 = c1->nb[2];
  7698. //const int nbc13 = c1->nb[3];
  7699. const int nb0 = dst->nb[0];
  7700. const int nb1 = dst->nb[1];
  7701. const int nb2 = dst->nb[2];
  7702. const int nb3 = dst->nb[3];
  7703. const int ith = params->ith;
  7704. const int nth = params->nth;
  7705. const int64_t D = nea0;
  7706. //const int64_t N = nea1;
  7707. const int64_t M = neb01;
  7708. GGML_ASSERT(ne0 == nea0);
  7709. GGML_ASSERT(ne1 == nea1);
  7710. GGML_ASSERT(ne2 == nea2);
  7711. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  7712. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  7713. GGML_ASSERT(nbb10 == sizeof(float));
  7714. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  7715. GGML_ASSERT(nbc10 == sizeof(float));
  7716. GGML_ASSERT(neb00 == D);
  7717. GGML_ASSERT(neb01 == M);
  7718. GGML_ASSERT(neb10 == M);
  7719. GGML_ASSERT(neb11 == 1);
  7720. GGML_ASSERT(nec00 == M);
  7721. GGML_ASSERT(nec01 == D);
  7722. GGML_ASSERT(nec10 == D);
  7723. GGML_ASSERT(nec11 == 1);
  7724. // dst cannot be transposed or permuted
  7725. GGML_ASSERT(nb0 == sizeof(float));
  7726. GGML_ASSERT(nb0 <= nb1);
  7727. GGML_ASSERT(nb1 <= nb2);
  7728. GGML_ASSERT(nb2 <= nb3);
  7729. if (params->type == GGML_TASK_INIT) {
  7730. return;
  7731. }
  7732. if (params->type == GGML_TASK_FINALIZE) {
  7733. return;
  7734. }
  7735. // parallelize by a rows using ggml_vec_dot_f32
  7736. // total rows in a
  7737. const int nr = nea1*nea2*nea3;
  7738. // rows per thread
  7739. const int dr = (nr + nth - 1)/nth;
  7740. // row range for this thread
  7741. const int ir0 = dr*ith;
  7742. const int ir1 = MIN(ir0 + dr, nr);
  7743. for (int ir = ir0; ir < ir1; ++ir) {
  7744. // a indices
  7745. const int ia3 = ir/(nea2*nea1);
  7746. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  7747. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  7748. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  7749. for (int64_t ic = 0; ic < neb01; ++ic) {
  7750. // b0 indices
  7751. const int ib03 = ia3;
  7752. const int ib02 = ia2;
  7753. const int ib01 = ic;
  7754. // S indices
  7755. const int i1 = ib01;
  7756. ggml_vec_dot_f16(nea0,
  7757. S + i1,
  7758. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  7759. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  7760. }
  7761. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  7762. //ggml_vec_gelu_f32(neb01, S, S);
  7763. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  7764. for (int64_t i = 0; i < M; i++) {
  7765. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7766. }
  7767. ggml_vec_gelu_f16(neb01, S16, S16);
  7768. {
  7769. // dst indices
  7770. const int i1 = ia1;
  7771. const int i2 = ia2;
  7772. const int i3 = ia3;
  7773. for (int64_t ic = 0; ic < nec01; ++ic) {
  7774. ggml_vec_dot_f16(neb01,
  7775. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7776. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  7777. S16);
  7778. }
  7779. ggml_vec_add_f32(nec01,
  7780. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7781. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7782. (float *) c1->data);
  7783. }
  7784. }
  7785. }
  7786. static void ggml_compute_forward_flash_ff(
  7787. const struct ggml_compute_params * params,
  7788. const struct ggml_tensor * a,
  7789. const struct ggml_tensor * b0,
  7790. const struct ggml_tensor * b1,
  7791. const struct ggml_tensor * c0,
  7792. const struct ggml_tensor * c1,
  7793. struct ggml_tensor * dst) {
  7794. switch (b0->type) {
  7795. case GGML_TYPE_F16:
  7796. {
  7797. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  7798. } break;
  7799. case GGML_TYPE_F32:
  7800. {
  7801. GGML_ASSERT(false); // TODO
  7802. } break;
  7803. default:
  7804. {
  7805. GGML_ASSERT(false);
  7806. } break;
  7807. }
  7808. }
  7809. // ggml_compute_forward_map_unary
  7810. static void ggml_compute_forward_map_unary_f32(
  7811. const struct ggml_compute_params * params,
  7812. const struct ggml_tensor * src0,
  7813. struct ggml_tensor * dst,
  7814. const ggml_unary_op_f32_t fun) {
  7815. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7816. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7817. return;
  7818. }
  7819. const int n = ggml_nrows(src0);
  7820. const int nc = src0->ne[0];
  7821. assert( dst->nb[0] == sizeof(float));
  7822. assert(src0->nb[0] == sizeof(float));
  7823. for (int i = 0; i < n; i++) {
  7824. fun(nc,
  7825. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7826. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7827. }
  7828. }
  7829. static void ggml_compute_forward_map_unary(
  7830. const struct ggml_compute_params * params,
  7831. const struct ggml_tensor * src0,
  7832. struct ggml_tensor * dst,
  7833. const ggml_unary_op_f32_t fun) {
  7834. switch (src0->type) {
  7835. case GGML_TYPE_F32:
  7836. {
  7837. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  7838. } break;
  7839. default:
  7840. {
  7841. GGML_ASSERT(false);
  7842. } break;
  7843. }
  7844. }
  7845. // ggml_compute_forward_map_binary
  7846. static void ggml_compute_forward_map_binary_f32(
  7847. const struct ggml_compute_params * params,
  7848. const struct ggml_tensor * src0,
  7849. const struct ggml_tensor * src1,
  7850. struct ggml_tensor * dst,
  7851. const ggml_binary_op_f32_t fun) {
  7852. assert(params->ith == 0);
  7853. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7854. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7855. return;
  7856. }
  7857. const int n = ggml_nrows(src0);
  7858. const int nc = src0->ne[0];
  7859. assert( dst->nb[0] == sizeof(float));
  7860. assert(src0->nb[0] == sizeof(float));
  7861. assert(src1->nb[0] == sizeof(float));
  7862. for (int i = 0; i < n; i++) {
  7863. fun(nc,
  7864. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7865. (float *) ((char *) src0->data + i*(src0->nb[1])),
  7866. (float *) ((char *) src1->data + i*(src1->nb[1])));
  7867. }
  7868. }
  7869. static void ggml_compute_forward_map_binary(
  7870. const struct ggml_compute_params * params,
  7871. const struct ggml_tensor * src0,
  7872. const struct ggml_tensor * src1,
  7873. struct ggml_tensor * dst,
  7874. const ggml_binary_op_f32_t fun) {
  7875. switch (src0->type) {
  7876. case GGML_TYPE_F32:
  7877. {
  7878. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  7879. } break;
  7880. default:
  7881. {
  7882. GGML_ASSERT(false);
  7883. } break;
  7884. }
  7885. }
  7886. /////////////////////////////////
  7887. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  7888. GGML_ASSERT(params);
  7889. switch (tensor->op) {
  7890. case GGML_OP_DUP:
  7891. {
  7892. ggml_compute_forward_dup(params, tensor->src0, tensor);
  7893. } break;
  7894. case GGML_OP_ADD:
  7895. {
  7896. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  7897. } break;
  7898. case GGML_OP_SUB:
  7899. {
  7900. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  7901. } break;
  7902. case GGML_OP_MUL:
  7903. {
  7904. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  7905. } break;
  7906. case GGML_OP_DIV:
  7907. {
  7908. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  7909. } break;
  7910. case GGML_OP_SQR:
  7911. {
  7912. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  7913. } break;
  7914. case GGML_OP_SQRT:
  7915. {
  7916. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  7917. } break;
  7918. case GGML_OP_SUM:
  7919. {
  7920. ggml_compute_forward_sum(params, tensor->src0, tensor);
  7921. } break;
  7922. case GGML_OP_MEAN:
  7923. {
  7924. ggml_compute_forward_mean(params, tensor->src0, tensor);
  7925. } break;
  7926. case GGML_OP_REPEAT:
  7927. {
  7928. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  7929. } break;
  7930. case GGML_OP_ABS:
  7931. {
  7932. ggml_compute_forward_abs(params, tensor->src0, tensor);
  7933. } break;
  7934. case GGML_OP_SGN:
  7935. {
  7936. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  7937. } break;
  7938. case GGML_OP_NEG:
  7939. {
  7940. ggml_compute_forward_neg(params, tensor->src0, tensor);
  7941. } break;
  7942. case GGML_OP_STEP:
  7943. {
  7944. ggml_compute_forward_step(params, tensor->src0, tensor);
  7945. } break;
  7946. case GGML_OP_RELU:
  7947. {
  7948. ggml_compute_forward_relu(params, tensor->src0, tensor);
  7949. } break;
  7950. case GGML_OP_GELU:
  7951. {
  7952. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  7953. } break;
  7954. case GGML_OP_SILU:
  7955. {
  7956. ggml_compute_forward_silu(params, tensor->src0, tensor);
  7957. } break;
  7958. case GGML_OP_NORM:
  7959. {
  7960. ggml_compute_forward_norm(params, tensor->src0, tensor);
  7961. } break;
  7962. case GGML_OP_RMS_NORM:
  7963. {
  7964. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  7965. } break;
  7966. case GGML_OP_MUL_MAT:
  7967. {
  7968. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  7969. } break;
  7970. case GGML_OP_SCALE:
  7971. {
  7972. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  7973. } break;
  7974. case GGML_OP_CPY:
  7975. {
  7976. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  7977. } break;
  7978. case GGML_OP_CONT:
  7979. {
  7980. ggml_compute_forward_cont(params, tensor->src0, tensor);
  7981. } break;
  7982. case GGML_OP_RESHAPE:
  7983. {
  7984. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  7985. } break;
  7986. case GGML_OP_VIEW:
  7987. {
  7988. ggml_compute_forward_view(params, tensor->src0);
  7989. } break;
  7990. case GGML_OP_PERMUTE:
  7991. {
  7992. ggml_compute_forward_permute(params, tensor->src0);
  7993. } break;
  7994. case GGML_OP_TRANSPOSE:
  7995. {
  7996. ggml_compute_forward_transpose(params, tensor->src0);
  7997. } break;
  7998. case GGML_OP_GET_ROWS:
  7999. {
  8000. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  8001. } break;
  8002. case GGML_OP_DIAG_MASK_INF:
  8003. {
  8004. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  8005. } break;
  8006. case GGML_OP_SOFT_MAX:
  8007. {
  8008. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  8009. } break;
  8010. case GGML_OP_ROPE:
  8011. {
  8012. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  8013. } break;
  8014. case GGML_OP_CONV_1D_1S:
  8015. {
  8016. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  8017. } break;
  8018. case GGML_OP_CONV_1D_2S:
  8019. {
  8020. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  8021. } break;
  8022. case GGML_OP_FLASH_ATTN:
  8023. {
  8024. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  8025. GGML_ASSERT(t == 0 || t == 1);
  8026. bool masked = t != 0;
  8027. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  8028. } break;
  8029. case GGML_OP_FLASH_FF:
  8030. {
  8031. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  8032. } break;
  8033. case GGML_OP_MAP_UNARY:
  8034. {
  8035. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  8036. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  8037. }
  8038. break;
  8039. case GGML_OP_MAP_BINARY:
  8040. {
  8041. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  8042. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  8043. }
  8044. break;
  8045. case GGML_OP_NONE:
  8046. {
  8047. // nop
  8048. } break;
  8049. case GGML_OP_COUNT:
  8050. {
  8051. GGML_ASSERT(false);
  8052. } break;
  8053. }
  8054. }
  8055. ////////////////////////////////////////////////////////////////////////////////
  8056. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  8057. struct ggml_tensor * src0 = tensor->src0;
  8058. struct ggml_tensor * src1 = tensor->src1;
  8059. switch (tensor->op) {
  8060. case GGML_OP_DUP:
  8061. {
  8062. if (src0->grad) {
  8063. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8064. }
  8065. } break;
  8066. case GGML_OP_ADD:
  8067. {
  8068. if (src0->grad) {
  8069. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8070. }
  8071. if (src1->grad) {
  8072. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  8073. }
  8074. } break;
  8075. case GGML_OP_SUB:
  8076. {
  8077. if (src0->grad) {
  8078. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8079. }
  8080. if (src1->grad) {
  8081. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  8082. }
  8083. } break;
  8084. case GGML_OP_MUL:
  8085. {
  8086. if (src0->grad) {
  8087. src0->grad =
  8088. ggml_add_impl(ctx,
  8089. src0->grad,
  8090. ggml_mul(ctx, src1, tensor->grad),
  8091. inplace);
  8092. }
  8093. if (src1->grad) {
  8094. src1->grad =
  8095. ggml_add_impl(ctx,
  8096. src1->grad,
  8097. ggml_mul(ctx, src0, tensor->grad),
  8098. inplace);
  8099. }
  8100. } break;
  8101. case GGML_OP_DIV:
  8102. {
  8103. if (src0->grad) {
  8104. src0->grad =
  8105. ggml_add_impl(ctx,
  8106. src0->grad,
  8107. ggml_div(ctx, tensor->grad, src1),
  8108. inplace);
  8109. }
  8110. if (src1->grad) {
  8111. src1->grad =
  8112. ggml_sub_impl(ctx,
  8113. src1->grad,
  8114. ggml_mul(ctx,
  8115. tensor->grad,
  8116. ggml_div(ctx, tensor, src1)),
  8117. inplace);
  8118. }
  8119. } break;
  8120. case GGML_OP_SQR:
  8121. {
  8122. if (src0->grad) {
  8123. src0->grad =
  8124. ggml_add_impl(ctx,
  8125. src0->grad,
  8126. ggml_mul(ctx,
  8127. ggml_mul(ctx, src0, tensor->grad),
  8128. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  8129. inplace);
  8130. }
  8131. } break;
  8132. case GGML_OP_SQRT:
  8133. {
  8134. if (src0->grad) {
  8135. src0->grad =
  8136. ggml_add_impl(ctx,
  8137. src0->grad,
  8138. ggml_div(ctx,
  8139. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  8140. tensor),
  8141. inplace);
  8142. }
  8143. } break;
  8144. case GGML_OP_SUM:
  8145. {
  8146. if (src0->grad) {
  8147. src0->grad =
  8148. ggml_add_impl(ctx,
  8149. src0->grad,
  8150. ggml_repeat(ctx, tensor->grad, src0->grad),
  8151. inplace);
  8152. }
  8153. } break;
  8154. case GGML_OP_MEAN:
  8155. {
  8156. GGML_ASSERT(false); // TODO: implement
  8157. } break;
  8158. case GGML_OP_REPEAT:
  8159. {
  8160. if (src0->grad) {
  8161. src0->grad =
  8162. ggml_add_impl(ctx,
  8163. src0->grad,
  8164. ggml_sum(ctx, tensor->grad),
  8165. inplace);
  8166. }
  8167. } break;
  8168. case GGML_OP_ABS:
  8169. {
  8170. if (src0->grad) {
  8171. src0->grad =
  8172. ggml_add_impl(ctx,
  8173. src0->grad,
  8174. ggml_mul(ctx,
  8175. ggml_sgn(ctx, src0),
  8176. tensor->grad),
  8177. inplace);
  8178. }
  8179. } break;
  8180. case GGML_OP_SGN:
  8181. {
  8182. if (src0->grad) {
  8183. // noop
  8184. }
  8185. } break;
  8186. case GGML_OP_NEG:
  8187. {
  8188. if (src0->grad) {
  8189. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  8190. }
  8191. } break;
  8192. case GGML_OP_STEP:
  8193. {
  8194. if (src0->grad) {
  8195. // noop
  8196. }
  8197. } break;
  8198. case GGML_OP_RELU:
  8199. {
  8200. if (src0->grad) {
  8201. src0->grad = ggml_sub_impl(ctx,
  8202. src0->grad,
  8203. ggml_mul(ctx,
  8204. ggml_step(ctx, src0),
  8205. tensor->grad),
  8206. inplace);
  8207. }
  8208. } break;
  8209. case GGML_OP_GELU:
  8210. {
  8211. GGML_ASSERT(false); // TODO: not implemented
  8212. } break;
  8213. case GGML_OP_SILU:
  8214. {
  8215. GGML_ASSERT(false); // TODO: not implemented
  8216. } break;
  8217. case GGML_OP_NORM:
  8218. {
  8219. GGML_ASSERT(false); // TODO: not implemented
  8220. } break;
  8221. case GGML_OP_RMS_NORM:
  8222. {
  8223. GGML_ASSERT(false); // TODO: not implemented
  8224. } break;
  8225. case GGML_OP_MUL_MAT:
  8226. {
  8227. if (src0->grad) {
  8228. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  8229. GGML_ASSERT(false);
  8230. }
  8231. if (src1->grad) {
  8232. src1->grad =
  8233. ggml_add_impl(ctx,
  8234. src1->grad,
  8235. ggml_mul_mat(ctx,
  8236. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  8237. tensor->grad),
  8238. inplace);
  8239. }
  8240. } break;
  8241. case GGML_OP_SCALE:
  8242. {
  8243. GGML_ASSERT(false); // TODO: not implemented
  8244. } break;
  8245. case GGML_OP_CPY:
  8246. {
  8247. GGML_ASSERT(false); // TODO: not implemented
  8248. } break;
  8249. case GGML_OP_CONT:
  8250. {
  8251. GGML_ASSERT(false); // TODO: not implemented
  8252. } break;
  8253. case GGML_OP_RESHAPE:
  8254. {
  8255. GGML_ASSERT(false); // TODO: not implemented
  8256. } break;
  8257. case GGML_OP_VIEW:
  8258. {
  8259. GGML_ASSERT(false); // not supported
  8260. } break;
  8261. case GGML_OP_PERMUTE:
  8262. {
  8263. GGML_ASSERT(false); // TODO: not implemented
  8264. } break;
  8265. case GGML_OP_TRANSPOSE:
  8266. {
  8267. GGML_ASSERT(false); // TODO: not implemented
  8268. } break;
  8269. case GGML_OP_GET_ROWS:
  8270. {
  8271. GGML_ASSERT(false); // TODO: not implemented
  8272. } break;
  8273. case GGML_OP_DIAG_MASK_INF:
  8274. {
  8275. GGML_ASSERT(false); // TODO: not implemented
  8276. } break;
  8277. case GGML_OP_SOFT_MAX:
  8278. {
  8279. GGML_ASSERT(false); // TODO: not implemented
  8280. } break;
  8281. case GGML_OP_ROPE:
  8282. {
  8283. GGML_ASSERT(false); // TODO: not implemented
  8284. } break;
  8285. case GGML_OP_CONV_1D_1S:
  8286. {
  8287. GGML_ASSERT(false); // TODO: not implemented
  8288. } break;
  8289. case GGML_OP_CONV_1D_2S:
  8290. {
  8291. GGML_ASSERT(false); // TODO: not implemented
  8292. } break;
  8293. case GGML_OP_FLASH_ATTN:
  8294. {
  8295. GGML_ASSERT(false); // not supported
  8296. } break;
  8297. case GGML_OP_FLASH_FF:
  8298. {
  8299. GGML_ASSERT(false); // not supported
  8300. } break;
  8301. case GGML_OP_MAP_UNARY:
  8302. case GGML_OP_MAP_BINARY:
  8303. {
  8304. GGML_ASSERT(false); // not supported
  8305. } break;
  8306. case GGML_OP_NONE:
  8307. {
  8308. // nop
  8309. } break;
  8310. case GGML_OP_COUNT:
  8311. {
  8312. GGML_ASSERT(false);
  8313. } break;
  8314. }
  8315. }
  8316. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  8317. if (node->grad == NULL) {
  8318. // this usually happens when we generate intermediate nodes from constants in the backward pass
  8319. // it can also happen during forward pass, if the user performs computations with constants
  8320. if (node->op != GGML_OP_NONE) {
  8321. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  8322. }
  8323. }
  8324. // check if already visited
  8325. for (int i = 0; i < cgraph->n_nodes; i++) {
  8326. if (cgraph->nodes[i] == node) {
  8327. return;
  8328. }
  8329. }
  8330. for (int i = 0; i < cgraph->n_leafs; i++) {
  8331. if (cgraph->leafs[i] == node) {
  8332. return;
  8333. }
  8334. }
  8335. if (node->src0) {
  8336. ggml_visit_parents(cgraph, node->src0);
  8337. }
  8338. if (node->src1) {
  8339. ggml_visit_parents(cgraph, node->src1);
  8340. }
  8341. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  8342. if (node->opt[i]) {
  8343. ggml_visit_parents(cgraph, node->opt[i]);
  8344. }
  8345. }
  8346. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  8347. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  8348. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  8349. cgraph->leafs[cgraph->n_leafs] = node;
  8350. cgraph->n_leafs++;
  8351. } else {
  8352. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  8353. cgraph->nodes[cgraph->n_nodes] = node;
  8354. cgraph->grads[cgraph->n_nodes] = node->grad;
  8355. cgraph->n_nodes++;
  8356. }
  8357. }
  8358. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  8359. if (!expand) {
  8360. cgraph->n_nodes = 0;
  8361. cgraph->n_leafs = 0;
  8362. }
  8363. const int n0 = cgraph->n_nodes;
  8364. UNUSED(n0);
  8365. ggml_visit_parents(cgraph, tensor);
  8366. const int n_new = cgraph->n_nodes - n0;
  8367. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  8368. if (n_new > 0) {
  8369. // the last added node should always be starting point
  8370. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  8371. }
  8372. }
  8373. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  8374. ggml_build_forward_impl(cgraph, tensor, true);
  8375. }
  8376. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  8377. struct ggml_cgraph result = {
  8378. /*.n_nodes =*/ 0,
  8379. /*.n_leafs =*/ 0,
  8380. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  8381. /*.work_size =*/ 0,
  8382. /*.work =*/ NULL,
  8383. /*.nodes =*/ { NULL },
  8384. /*.grads =*/ { NULL },
  8385. /*.leafs =*/ { NULL },
  8386. /*.perf_runs =*/ 0,
  8387. /*.perf_cycles =*/ 0,
  8388. /*.perf_time_us =*/ 0,
  8389. };
  8390. ggml_build_forward_impl(&result, tensor, false);
  8391. return result;
  8392. }
  8393. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  8394. struct ggml_cgraph result = *gf;
  8395. GGML_ASSERT(gf->n_nodes > 0);
  8396. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  8397. if (keep) {
  8398. for (int i = 0; i < gf->n_nodes; i++) {
  8399. struct ggml_tensor * node = gf->nodes[i];
  8400. if (node->grad) {
  8401. node->grad = ggml_dup_tensor(ctx, node);
  8402. gf->grads[i] = node->grad;
  8403. }
  8404. }
  8405. }
  8406. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8407. struct ggml_tensor * node = gf->nodes[i];
  8408. // because we detached the grad nodes from the original graph, we can afford inplace operations
  8409. if (node->grad) {
  8410. ggml_compute_backward(ctx, node, keep);
  8411. }
  8412. }
  8413. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8414. struct ggml_tensor * node = gf->nodes[i];
  8415. if (node->is_param) {
  8416. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  8417. ggml_build_forward_impl(&result, node->grad, true);
  8418. }
  8419. }
  8420. return result;
  8421. }
  8422. //
  8423. // thread data
  8424. //
  8425. // synchronization is done via busy loops
  8426. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  8427. //
  8428. #ifdef __APPLE__
  8429. //#include <os/lock.h>
  8430. //
  8431. //typedef os_unfair_lock ggml_lock_t;
  8432. //
  8433. //#define ggml_lock_init(x) UNUSED(x)
  8434. //#define ggml_lock_destroy(x) UNUSED(x)
  8435. //#define ggml_lock_lock os_unfair_lock_lock
  8436. //#define ggml_lock_unlock os_unfair_lock_unlock
  8437. //
  8438. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  8439. typedef int ggml_lock_t;
  8440. #define ggml_lock_init(x) UNUSED(x)
  8441. #define ggml_lock_destroy(x) UNUSED(x)
  8442. #define ggml_lock_lock(x) UNUSED(x)
  8443. #define ggml_lock_unlock(x) UNUSED(x)
  8444. #define GGML_LOCK_INITIALIZER 0
  8445. typedef pthread_t ggml_thread_t;
  8446. #define ggml_thread_create pthread_create
  8447. #define ggml_thread_join pthread_join
  8448. #else
  8449. //typedef pthread_spinlock_t ggml_lock_t;
  8450. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  8451. //#define ggml_lock_destroy pthread_spin_destroy
  8452. //#define ggml_lock_lock pthread_spin_lock
  8453. //#define ggml_lock_unlock pthread_spin_unlock
  8454. typedef int ggml_lock_t;
  8455. #define ggml_lock_init(x) UNUSED(x)
  8456. #define ggml_lock_destroy(x) UNUSED(x)
  8457. #define ggml_lock_lock(x) UNUSED(x)
  8458. #define ggml_lock_unlock(x) UNUSED(x)
  8459. #define GGML_LOCK_INITIALIZER 0
  8460. typedef pthread_t ggml_thread_t;
  8461. #define ggml_thread_create pthread_create
  8462. #define ggml_thread_join pthread_join
  8463. #endif
  8464. struct ggml_compute_state_shared {
  8465. ggml_lock_t spin;
  8466. int n_threads;
  8467. // synchronization primitives
  8468. atomic_int n_ready;
  8469. atomic_bool has_work;
  8470. atomic_bool stop; // stop all threads
  8471. };
  8472. struct ggml_compute_state {
  8473. ggml_thread_t thrd;
  8474. struct ggml_compute_params params;
  8475. struct ggml_tensor * node;
  8476. struct ggml_compute_state_shared * shared;
  8477. };
  8478. static thread_ret_t ggml_graph_compute_thread(void * data) {
  8479. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  8480. const int n_threads = state->shared->n_threads;
  8481. while (true) {
  8482. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  8483. atomic_store(&state->shared->has_work, false);
  8484. } else {
  8485. while (atomic_load(&state->shared->has_work)) {
  8486. if (atomic_load(&state->shared->stop)) {
  8487. return 0;
  8488. }
  8489. ggml_lock_lock (&state->shared->spin);
  8490. ggml_lock_unlock(&state->shared->spin);
  8491. }
  8492. }
  8493. atomic_fetch_sub(&state->shared->n_ready, 1);
  8494. // wait for work
  8495. while (!atomic_load(&state->shared->has_work)) {
  8496. if (atomic_load(&state->shared->stop)) {
  8497. return 0;
  8498. }
  8499. ggml_lock_lock (&state->shared->spin);
  8500. ggml_lock_unlock(&state->shared->spin);
  8501. }
  8502. // check if we should stop
  8503. if (atomic_load(&state->shared->stop)) {
  8504. break;
  8505. }
  8506. if (state->node) {
  8507. if (state->params.ith < state->params.nth) {
  8508. ggml_compute_forward(&state->params, state->node);
  8509. }
  8510. state->node = NULL;
  8511. } else {
  8512. break;
  8513. }
  8514. }
  8515. return 0;
  8516. }
  8517. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  8518. const int n_threads = cgraph->n_threads;
  8519. struct ggml_compute_state_shared state_shared = {
  8520. /*.spin =*/ GGML_LOCK_INITIALIZER,
  8521. /*.n_threads =*/ n_threads,
  8522. /*.n_ready =*/ 0,
  8523. /*.has_work =*/ false,
  8524. /*.stop =*/ false,
  8525. };
  8526. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  8527. // create thread pool
  8528. if (n_threads > 1) {
  8529. ggml_lock_init(&state_shared.spin);
  8530. atomic_store(&state_shared.has_work, true);
  8531. for (int j = 0; j < n_threads - 1; j++) {
  8532. workers[j] = (struct ggml_compute_state) {
  8533. .thrd = 0,
  8534. .params = {
  8535. .type = GGML_TASK_COMPUTE,
  8536. .ith = j + 1,
  8537. .nth = n_threads,
  8538. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8539. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8540. },
  8541. .node = NULL,
  8542. .shared = &state_shared,
  8543. };
  8544. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  8545. GGML_ASSERT(rc == 0);
  8546. UNUSED(rc);
  8547. }
  8548. }
  8549. // initialize tasks + work buffer
  8550. {
  8551. size_t work_size = 0;
  8552. // thread scheduling for the different operations
  8553. for (int i = 0; i < cgraph->n_nodes; i++) {
  8554. struct ggml_tensor * node = cgraph->nodes[i];
  8555. switch (node->op) {
  8556. case GGML_OP_CPY:
  8557. case GGML_OP_DUP:
  8558. {
  8559. node->n_tasks = n_threads;
  8560. size_t cur = 0;
  8561. if (ggml_is_quantized(node->type)) {
  8562. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  8563. }
  8564. work_size = MAX(work_size, cur);
  8565. } break;
  8566. case GGML_OP_ADD:
  8567. {
  8568. node->n_tasks = n_threads;
  8569. size_t cur = 0;
  8570. if (ggml_is_quantized(node->src0->type)) {
  8571. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  8572. }
  8573. work_size = MAX(work_size, cur);
  8574. } break;
  8575. case GGML_OP_SUB:
  8576. case GGML_OP_MUL:
  8577. case GGML_OP_DIV:
  8578. case GGML_OP_SQR:
  8579. case GGML_OP_SQRT:
  8580. case GGML_OP_SUM:
  8581. case GGML_OP_MEAN:
  8582. case GGML_OP_REPEAT:
  8583. case GGML_OP_ABS:
  8584. case GGML_OP_SGN:
  8585. case GGML_OP_NEG:
  8586. case GGML_OP_STEP:
  8587. case GGML_OP_RELU:
  8588. {
  8589. node->n_tasks = 1;
  8590. } break;
  8591. case GGML_OP_GELU:
  8592. {
  8593. node->n_tasks = n_threads;
  8594. } break;
  8595. case GGML_OP_SILU:
  8596. {
  8597. node->n_tasks = n_threads;
  8598. } break;
  8599. case GGML_OP_NORM:
  8600. case GGML_OP_RMS_NORM:
  8601. {
  8602. node->n_tasks = n_threads;
  8603. } break;
  8604. case GGML_OP_MUL_MAT:
  8605. {
  8606. node->n_tasks = n_threads;
  8607. // TODO: use different scheduling for different matrix sizes
  8608. //const int nr0 = ggml_nrows(node->src0);
  8609. //const int nr1 = ggml_nrows(node->src1);
  8610. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  8611. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  8612. size_t cur = 0;
  8613. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  8614. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  8615. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8616. node->n_tasks = 1; // TODO: this actually is doing nothing
  8617. // the threads are still spinning
  8618. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8619. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  8620. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  8621. //printf("cur = %zu\n", cur);
  8622. } else {
  8623. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8624. }
  8625. #else
  8626. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8627. #endif
  8628. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  8629. cur = 0;
  8630. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  8631. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  8632. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8633. node->n_tasks = 1;
  8634. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8635. } else
  8636. #endif
  8637. {
  8638. cur = GGML_TYPE_SIZE[GGML_TYPE_Q8_0]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  8639. }
  8640. } else {
  8641. GGML_ASSERT(false);
  8642. }
  8643. work_size = MAX(work_size, cur);
  8644. } break;
  8645. case GGML_OP_SCALE:
  8646. {
  8647. node->n_tasks = n_threads;
  8648. } break;
  8649. case GGML_OP_CONT:
  8650. case GGML_OP_RESHAPE:
  8651. case GGML_OP_VIEW:
  8652. case GGML_OP_PERMUTE:
  8653. case GGML_OP_TRANSPOSE:
  8654. case GGML_OP_GET_ROWS:
  8655. case GGML_OP_DIAG_MASK_INF:
  8656. {
  8657. node->n_tasks = 1;
  8658. } break;
  8659. case GGML_OP_SOFT_MAX:
  8660. {
  8661. node->n_tasks = n_threads;
  8662. } break;
  8663. case GGML_OP_ROPE:
  8664. {
  8665. node->n_tasks = n_threads;
  8666. } break;
  8667. case GGML_OP_CONV_1D_1S:
  8668. case GGML_OP_CONV_1D_2S:
  8669. {
  8670. node->n_tasks = n_threads;
  8671. GGML_ASSERT(node->src0->ne[3] == 1);
  8672. GGML_ASSERT(node->src1->ne[2] == 1);
  8673. GGML_ASSERT(node->src1->ne[3] == 1);
  8674. size_t cur = 0;
  8675. const int nk = node->src0->ne[0];
  8676. if (node->src0->type == GGML_TYPE_F16 &&
  8677. node->src1->type == GGML_TYPE_F32) {
  8678. cur = sizeof(ggml_fp16_t)*(
  8679. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8680. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8681. );
  8682. } else if (node->src0->type == GGML_TYPE_F32 &&
  8683. node->src1->type == GGML_TYPE_F32) {
  8684. cur = sizeof(float)*(
  8685. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8686. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8687. );
  8688. } else {
  8689. GGML_ASSERT(false);
  8690. }
  8691. work_size = MAX(work_size, cur);
  8692. } break;
  8693. case GGML_OP_FLASH_ATTN:
  8694. {
  8695. node->n_tasks = n_threads;
  8696. size_t cur = 0;
  8697. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  8698. if (node->src1->type == GGML_TYPE_F32) {
  8699. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  8700. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8701. }
  8702. if (node->src1->type == GGML_TYPE_F16) {
  8703. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  8704. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8705. }
  8706. work_size = MAX(work_size, cur);
  8707. } break;
  8708. case GGML_OP_FLASH_FF:
  8709. {
  8710. node->n_tasks = n_threads;
  8711. size_t cur = 0;
  8712. if (node->src1->type == GGML_TYPE_F32) {
  8713. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  8714. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  8715. }
  8716. if (node->src1->type == GGML_TYPE_F16) {
  8717. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  8718. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  8719. }
  8720. work_size = MAX(work_size, cur);
  8721. } break;
  8722. case GGML_OP_MAP_UNARY:
  8723. case GGML_OP_MAP_BINARY:
  8724. {
  8725. node->n_tasks = 1;
  8726. } break;
  8727. case GGML_OP_NONE:
  8728. {
  8729. node->n_tasks = 1;
  8730. } break;
  8731. case GGML_OP_COUNT:
  8732. {
  8733. GGML_ASSERT(false);
  8734. } break;
  8735. }
  8736. }
  8737. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  8738. GGML_ASSERT(false); // TODO: better handling
  8739. }
  8740. if (work_size > 0 && cgraph->work == NULL) {
  8741. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  8742. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  8743. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  8744. }
  8745. }
  8746. const int64_t perf_start_cycles = ggml_perf_cycles();
  8747. const int64_t perf_start_time_us = ggml_perf_time_us();
  8748. for (int i = 0; i < cgraph->n_nodes; i++) {
  8749. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  8750. struct ggml_tensor * node = cgraph->nodes[i];
  8751. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  8752. //if (node->grad == NULL && node->perf_runs > 0) {
  8753. // continue;
  8754. //}
  8755. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  8756. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  8757. // INIT
  8758. struct ggml_compute_params params = {
  8759. /*.type =*/ GGML_TASK_INIT,
  8760. /*.ith =*/ 0,
  8761. /*.nth =*/ node->n_tasks,
  8762. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8763. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  8764. };
  8765. ggml_compute_forward(&params, node);
  8766. // COMPUTE
  8767. if (node->n_tasks > 1) {
  8768. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8769. atomic_store(&state_shared.has_work, false);
  8770. }
  8771. while (atomic_load(&state_shared.has_work)) {
  8772. ggml_lock_lock (&state_shared.spin);
  8773. ggml_lock_unlock(&state_shared.spin);
  8774. }
  8775. // launch thread pool
  8776. for (int j = 0; j < n_threads - 1; j++) {
  8777. workers[j].params = (struct ggml_compute_params) {
  8778. .type = GGML_TASK_COMPUTE,
  8779. .ith = j + 1,
  8780. .nth = node->n_tasks,
  8781. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8782. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8783. };
  8784. workers[j].node = node;
  8785. }
  8786. atomic_fetch_sub(&state_shared.n_ready, 1);
  8787. while (atomic_load(&state_shared.n_ready) > 0) {
  8788. ggml_lock_lock (&state_shared.spin);
  8789. ggml_lock_unlock(&state_shared.spin);
  8790. }
  8791. atomic_store(&state_shared.has_work, true);
  8792. }
  8793. params.type = GGML_TASK_COMPUTE;
  8794. ggml_compute_forward(&params, node);
  8795. // wait for thread pool
  8796. if (node->n_tasks > 1) {
  8797. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8798. atomic_store(&state_shared.has_work, false);
  8799. }
  8800. while (atomic_load(&state_shared.has_work)) {
  8801. ggml_lock_lock (&state_shared.spin);
  8802. ggml_lock_unlock(&state_shared.spin);
  8803. }
  8804. atomic_fetch_sub(&state_shared.n_ready, 1);
  8805. while (atomic_load(&state_shared.n_ready) != 0) {
  8806. ggml_lock_lock (&state_shared.spin);
  8807. ggml_lock_unlock(&state_shared.spin);
  8808. }
  8809. }
  8810. // FINALIZE
  8811. if (node->n_tasks > 1) {
  8812. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8813. atomic_store(&state_shared.has_work, false);
  8814. }
  8815. while (atomic_load(&state_shared.has_work)) {
  8816. ggml_lock_lock (&state_shared.spin);
  8817. ggml_lock_unlock(&state_shared.spin);
  8818. }
  8819. // launch thread pool
  8820. for (int j = 0; j < n_threads - 1; j++) {
  8821. workers[j].params = (struct ggml_compute_params) {
  8822. .type = GGML_TASK_FINALIZE,
  8823. .ith = j + 1,
  8824. .nth = node->n_tasks,
  8825. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8826. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8827. };
  8828. workers[j].node = node;
  8829. }
  8830. atomic_fetch_sub(&state_shared.n_ready, 1);
  8831. while (atomic_load(&state_shared.n_ready) > 0) {
  8832. ggml_lock_lock (&state_shared.spin);
  8833. ggml_lock_unlock(&state_shared.spin);
  8834. }
  8835. atomic_store(&state_shared.has_work, true);
  8836. }
  8837. params.type = GGML_TASK_FINALIZE;
  8838. ggml_compute_forward(&params, node);
  8839. // wait for thread pool
  8840. if (node->n_tasks > 1) {
  8841. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8842. atomic_store(&state_shared.has_work, false);
  8843. }
  8844. while (atomic_load(&state_shared.has_work)) {
  8845. ggml_lock_lock (&state_shared.spin);
  8846. ggml_lock_unlock(&state_shared.spin);
  8847. }
  8848. atomic_fetch_sub(&state_shared.n_ready, 1);
  8849. while (atomic_load(&state_shared.n_ready) != 0) {
  8850. ggml_lock_lock (&state_shared.spin);
  8851. ggml_lock_unlock(&state_shared.spin);
  8852. }
  8853. }
  8854. // performance stats (node)
  8855. {
  8856. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  8857. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  8858. node->perf_runs++;
  8859. node->perf_cycles += perf_cycles_cur;
  8860. node->perf_time_us += perf_time_us_cur;
  8861. }
  8862. }
  8863. // join thread pool
  8864. if (n_threads > 1) {
  8865. atomic_store(&state_shared.stop, true);
  8866. atomic_store(&state_shared.has_work, true);
  8867. for (int j = 0; j < n_threads - 1; j++) {
  8868. int rc = ggml_thread_join(workers[j].thrd, NULL);
  8869. GGML_ASSERT(rc == 0);
  8870. UNUSED(rc);
  8871. }
  8872. ggml_lock_destroy(&state_shared.spin);
  8873. }
  8874. // performance stats (graph)
  8875. {
  8876. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  8877. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  8878. cgraph->perf_runs++;
  8879. cgraph->perf_cycles += perf_cycles_cur;
  8880. cgraph->perf_time_us += perf_time_us_cur;
  8881. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  8882. __func__, cgraph->perf_runs,
  8883. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  8884. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  8885. (double) perf_time_us_cur / 1000.0,
  8886. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  8887. }
  8888. }
  8889. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  8890. for (int i = 0; i < cgraph->n_nodes; i++) {
  8891. struct ggml_tensor * grad = cgraph->grads[i];
  8892. if (grad) {
  8893. ggml_set_zero(grad);
  8894. }
  8895. }
  8896. }
  8897. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  8898. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  8899. GGML_PRINT("=== GRAPH ===\n");
  8900. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  8901. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  8902. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  8903. for (int i = 0; i < cgraph->n_nodes; i++) {
  8904. struct ggml_tensor * node = cgraph->nodes[i];
  8905. perf_total_per_op_us[node->op] += node->perf_time_us;
  8906. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 ", %" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  8907. i,
  8908. node->ne[0], node->ne[1], node->ne[2],
  8909. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  8910. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  8911. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  8912. (double) node->perf_time_us / 1000.0,
  8913. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  8914. }
  8915. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  8916. for (int i = 0; i < cgraph->n_leafs; i++) {
  8917. struct ggml_tensor * node = cgraph->leafs[i];
  8918. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 "] %8s\n",
  8919. i,
  8920. node->ne[0], node->ne[1],
  8921. GGML_OP_LABEL[node->op]);
  8922. }
  8923. for (int i = 0; i < GGML_OP_COUNT; i++) {
  8924. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  8925. }
  8926. GGML_PRINT("========================================\n");
  8927. }
  8928. // check if node is part of the graph
  8929. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8930. if (cgraph == NULL) {
  8931. return true;
  8932. }
  8933. for (int i = 0; i < cgraph->n_nodes; i++) {
  8934. if (cgraph->nodes[i] == node) {
  8935. return true;
  8936. }
  8937. }
  8938. return false;
  8939. }
  8940. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8941. for (int i = 0; i < cgraph->n_nodes; i++) {
  8942. struct ggml_tensor * parent = cgraph->nodes[i];
  8943. if (parent->grad == node) {
  8944. return parent;
  8945. }
  8946. }
  8947. return NULL;
  8948. }
  8949. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  8950. char color[16];
  8951. FILE * fp = fopen(filename, "w");
  8952. GGML_ASSERT(fp);
  8953. fprintf(fp, "digraph G {\n");
  8954. fprintf(fp, " newrank = true;\n");
  8955. fprintf(fp, " rankdir = LR;\n");
  8956. for (int i = 0; i < gb->n_nodes; i++) {
  8957. struct ggml_tensor * node = gb->nodes[i];
  8958. if (ggml_graph_get_parent(gb, node) != NULL) {
  8959. continue;
  8960. }
  8961. if (node->is_param) {
  8962. snprintf(color, sizeof(color), "yellow");
  8963. } else if (node->grad) {
  8964. if (ggml_graph_find(gf, node)) {
  8965. snprintf(color, sizeof(color), "green");
  8966. } else {
  8967. snprintf(color, sizeof(color), "lightblue");
  8968. }
  8969. } else {
  8970. snprintf(color, sizeof(color), "white");
  8971. }
  8972. fprintf(fp, " \"%p\" [ \
  8973. style = filled; fillcolor = %s; shape = record; \
  8974. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  8975. (void *) node, color,
  8976. i, node->ne[0], node->ne[1],
  8977. GGML_OP_SYMBOL[node->op]);
  8978. if (node->grad) {
  8979. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  8980. } else {
  8981. fprintf(fp, "\"; ]\n");
  8982. }
  8983. }
  8984. for (int i = 0; i < gb->n_leafs; i++) {
  8985. struct ggml_tensor * node = gb->leafs[i];
  8986. snprintf(color, sizeof(color), "pink");
  8987. if (ggml_nelements(node) == 1) {
  8988. fprintf(fp, " \"%p\" [ \
  8989. style = filled; fillcolor = %s; shape = record; \
  8990. label=\"<x>%.1e\"; ]\n",
  8991. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  8992. } else {
  8993. fprintf(fp, " \"%p\" [ \
  8994. style = filled; fillcolor = %s; shape = record; \
  8995. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  8996. (void *) node, color,
  8997. i, node->ne[0], node->ne[1]);
  8998. }
  8999. }
  9000. for (int i = 0; i < gb->n_nodes; i++) {
  9001. struct ggml_tensor * node = gb->nodes[i];
  9002. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  9003. if (node->src0) {
  9004. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  9005. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  9006. parent0 ? (void *) parent0 : (void *) node->src0,
  9007. parent0 ? "g" : "x",
  9008. parent ? (void *) parent : (void *) node,
  9009. parent ? "g" : "x",
  9010. parent ? "empty" : "vee",
  9011. parent ? "dashed" : "solid");
  9012. }
  9013. if (node->src1) {
  9014. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  9015. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  9016. parent1 ? (void *) parent1 : (void *) node->src1,
  9017. parent1 ? "g" : "x",
  9018. parent ? (void *) parent : (void *) node,
  9019. parent ? "g" : "x",
  9020. parent ? "empty" : "vee",
  9021. parent ? "dashed" : "solid");
  9022. }
  9023. }
  9024. for (int i = 0; i < gb->n_leafs; i++) {
  9025. struct ggml_tensor * node = gb->leafs[i];
  9026. if (node->src0) {
  9027. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  9028. (void *) node->src0, "x",
  9029. (void *) node, "x");
  9030. }
  9031. if (node->src1) {
  9032. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  9033. (void *) node->src1, "x",
  9034. (void *) node, "x");
  9035. }
  9036. }
  9037. fprintf(fp, "}\n");
  9038. fclose(fp);
  9039. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  9040. }
  9041. ////////////////////////////////////////////////////////////////////////////////
  9042. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  9043. int i = 0;
  9044. for (int p = 0; p < np; ++p) {
  9045. const int64_t ne = ggml_nelements(ps[p]) ;
  9046. // TODO: add function to set tensor from array
  9047. for (int64_t j = 0; j < ne; ++j) {
  9048. ggml_set_f32_1d(ps[p], j, x[i++]);
  9049. }
  9050. }
  9051. }
  9052. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  9053. int i = 0;
  9054. for (int p = 0; p < np; ++p) {
  9055. const int64_t ne = ggml_nelements(ps[p]) ;
  9056. // TODO: add function to get all elements at once
  9057. for (int64_t j = 0; j < ne; ++j) {
  9058. x[i++] = ggml_get_f32_1d(ps[p], j);
  9059. }
  9060. }
  9061. }
  9062. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  9063. int i = 0;
  9064. for (int p = 0; p < np; ++p) {
  9065. const int64_t ne = ggml_nelements(ps[p]) ;
  9066. // TODO: add function to get all elements at once
  9067. for (int64_t j = 0; j < ne; ++j) {
  9068. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  9069. }
  9070. }
  9071. }
  9072. //
  9073. // ADAM
  9074. //
  9075. // ref: https://arxiv.org/pdf/1412.6980.pdf
  9076. //
  9077. static enum ggml_opt_result ggml_opt_adam(
  9078. struct ggml_context * ctx,
  9079. struct ggml_opt_params params,
  9080. struct ggml_tensor * f,
  9081. struct ggml_cgraph * gf,
  9082. struct ggml_cgraph * gb) {
  9083. GGML_ASSERT(ggml_is_scalar(f));
  9084. gf->n_threads = params.n_threads;
  9085. gb->n_threads = params.n_threads;
  9086. // these will store the parameters we want to optimize
  9087. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9088. int np = 0;
  9089. int nx = 0;
  9090. for (int i = 0; i < gf->n_nodes; ++i) {
  9091. if (gf->nodes[i]->is_param) {
  9092. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9093. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9094. ps[np++] = gf->nodes[i];
  9095. nx += ggml_nelements(gf->nodes[i]);
  9096. }
  9097. }
  9098. // constants
  9099. const float alpha = params.adam.alpha;
  9100. const float beta1 = params.adam.beta1;
  9101. const float beta2 = params.adam.beta2;
  9102. const float eps = params.adam.eps;
  9103. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  9104. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  9105. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  9106. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  9107. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  9108. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  9109. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  9110. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9111. // initialize
  9112. ggml_vec_set_f32(nx, m, 0.0f);
  9113. ggml_vec_set_f32(nx, v, 0.0f);
  9114. // update view
  9115. ggml_opt_get_params(np, ps, x);
  9116. // compute the function value
  9117. ggml_graph_reset (gf);
  9118. ggml_set_f32 (f->grad, 1.0f);
  9119. ggml_graph_compute(ctx, gb);
  9120. float fx_prev = ggml_get_f32_1d(f, 0);
  9121. if (pf) {
  9122. pf[0] = fx_prev;
  9123. }
  9124. int n_no_improvement = 0;
  9125. float fx_best = fx_prev;
  9126. // run the optimizer
  9127. for (int t = 0; t < params.adam.n_iter; ++t) {
  9128. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  9129. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9130. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  9131. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  9132. for (int i = 0; i < np; ++i) {
  9133. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  9134. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  9135. }
  9136. const int64_t t_start_wall = ggml_time_us();
  9137. const int64_t t_start_cpu = ggml_cycles();
  9138. UNUSED(t_start_wall);
  9139. UNUSED(t_start_cpu);
  9140. {
  9141. // update the gradient
  9142. ggml_opt_get_grad(np, ps, g1);
  9143. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  9144. ggml_vec_scale_f32(nx, m, beta1);
  9145. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  9146. // g2 = g1^2
  9147. ggml_vec_sqr_f32 (nx, g2, g1);
  9148. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  9149. ggml_vec_scale_f32(nx, v, beta2);
  9150. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  9151. // m^hat = m_t / (1 - beta1^t)
  9152. // v^hat = v_t / (1 - beta2^t)
  9153. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  9154. ggml_vec_cpy_f32 (nx, mh, m);
  9155. ggml_vec_cpy_f32 (nx, vh, v);
  9156. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  9157. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  9158. ggml_vec_sqrt_f32 (nx, vh, vh);
  9159. ggml_vec_acc1_f32 (nx, vh, eps);
  9160. ggml_vec_div_f32 (nx, mh, mh, vh);
  9161. ggml_vec_sub_f32 (nx, x, x, mh);
  9162. // update the parameters
  9163. ggml_opt_set_params(np, ps, x);
  9164. }
  9165. ggml_graph_reset (gf);
  9166. ggml_set_f32 (f->grad, 1.0f);
  9167. ggml_graph_compute(ctx, gb);
  9168. const float fx = ggml_get_f32_1d(f, 0);
  9169. // check convergence
  9170. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  9171. GGML_PRINT_DEBUG("converged\n");
  9172. return GGML_OPT_OK;
  9173. }
  9174. // delta-based convergence test
  9175. if (pf != NULL) {
  9176. // need at least params.past iterations to start checking for convergence
  9177. if (params.past <= t) {
  9178. const float rate = (pf[t%params.past] - fx)/fx;
  9179. if (fabsf(rate) < params.delta) {
  9180. return GGML_OPT_OK;
  9181. }
  9182. }
  9183. pf[t%params.past] = fx;
  9184. }
  9185. // check for improvement
  9186. if (params.max_no_improvement > 0) {
  9187. if (fx_best > fx) {
  9188. fx_best = fx;
  9189. n_no_improvement = 0;
  9190. } else {
  9191. ++n_no_improvement;
  9192. if (n_no_improvement >= params.max_no_improvement) {
  9193. return GGML_OPT_OK;
  9194. }
  9195. }
  9196. }
  9197. fx_prev = fx;
  9198. {
  9199. const int64_t t_end_cpu = ggml_cycles();
  9200. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  9201. UNUSED(t_end_cpu);
  9202. const int64_t t_end_wall = ggml_time_us();
  9203. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  9204. UNUSED(t_end_wall);
  9205. }
  9206. }
  9207. return GGML_OPT_DID_NOT_CONVERGE;
  9208. }
  9209. //
  9210. // L-BFGS
  9211. //
  9212. // the L-BFGS implementation below is based on the following implementation:
  9213. //
  9214. // https://github.com/chokkan/liblbfgs
  9215. //
  9216. struct ggml_lbfgs_iteration_data {
  9217. float alpha;
  9218. float ys;
  9219. float * s;
  9220. float * y;
  9221. };
  9222. static enum ggml_opt_result linesearch_backtracking(
  9223. struct ggml_context * ctx,
  9224. const struct ggml_opt_params * params,
  9225. int nx,
  9226. float * x,
  9227. float * fx,
  9228. float * g,
  9229. float * d,
  9230. float * step,
  9231. const float * xp,
  9232. struct ggml_tensor * f,
  9233. struct ggml_cgraph * gf,
  9234. struct ggml_cgraph * gb,
  9235. const int np,
  9236. struct ggml_tensor * ps[]) {
  9237. int count = 0;
  9238. float width = 0.0f;
  9239. float dg = 0.0f;
  9240. float finit = 0.0f;
  9241. float dginit = 0.0f;
  9242. float dgtest = 0.0f;
  9243. const float dec = 0.5f;
  9244. const float inc = 2.1f;
  9245. if (*step <= 0.f) {
  9246. return GGML_LINESEARCH_INVALID_PARAMETERS;
  9247. }
  9248. // compute the initial gradient in the search direction
  9249. ggml_vec_dot_f32(nx, &dginit, g, d);
  9250. // make sure that d points to a descent direction
  9251. if (0 < dginit) {
  9252. return GGML_LINESEARCH_FAIL;
  9253. }
  9254. // initialize local variables
  9255. finit = *fx;
  9256. dgtest = params->lbfgs.ftol*dginit;
  9257. while (true) {
  9258. ggml_vec_cpy_f32(nx, x, xp);
  9259. ggml_vec_mad_f32(nx, x, d, *step);
  9260. // evaluate the function and gradient values
  9261. {
  9262. ggml_opt_set_params(np, ps, x);
  9263. ggml_graph_reset (gf);
  9264. ggml_set_f32 (f->grad, 1.0f);
  9265. ggml_graph_compute(ctx, gb);
  9266. ggml_opt_get_grad(np, ps, g);
  9267. *fx = ggml_get_f32_1d(f, 0);
  9268. }
  9269. ++count;
  9270. if (*fx > finit + (*step)*dgtest) {
  9271. width = dec;
  9272. } else {
  9273. // Armijo condition is satisfied
  9274. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  9275. return count;
  9276. }
  9277. ggml_vec_dot_f32(nx, &dg, g, d);
  9278. // check the Wolfe condition
  9279. if (dg < params->lbfgs.wolfe * dginit) {
  9280. width = inc;
  9281. } else {
  9282. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  9283. // regular Wolfe conditions
  9284. return count;
  9285. }
  9286. if(dg > -params->lbfgs.wolfe*dginit) {
  9287. width = dec;
  9288. } else {
  9289. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  9290. return count;
  9291. }
  9292. return count;
  9293. }
  9294. }
  9295. if (*step < params->lbfgs.min_step) {
  9296. return GGML_LINESEARCH_MINIMUM_STEP;
  9297. }
  9298. if (*step > params->lbfgs.max_step) {
  9299. return GGML_LINESEARCH_MAXIMUM_STEP;
  9300. }
  9301. if (params->lbfgs.max_linesearch <= count) {
  9302. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  9303. }
  9304. (*step) *= width;
  9305. }
  9306. return GGML_LINESEARCH_FAIL;
  9307. }
  9308. static enum ggml_opt_result ggml_opt_lbfgs(
  9309. struct ggml_context * ctx,
  9310. struct ggml_opt_params params,
  9311. struct ggml_tensor * f,
  9312. struct ggml_cgraph * gf,
  9313. struct ggml_cgraph * gb) {
  9314. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  9315. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  9316. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  9317. return GGML_OPT_INVALID_WOLFE;
  9318. }
  9319. }
  9320. gf->n_threads = params.n_threads;
  9321. gb->n_threads = params.n_threads;
  9322. const int m = params.lbfgs.m;
  9323. // these will store the parameters we want to optimize
  9324. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9325. int np = 0;
  9326. int nx = 0;
  9327. for (int i = 0; i < gf->n_nodes; ++i) {
  9328. if (gf->nodes[i]->is_param) {
  9329. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9330. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9331. ps[np++] = gf->nodes[i];
  9332. nx += ggml_nelements(gf->nodes[i]);
  9333. }
  9334. }
  9335. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  9336. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  9337. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  9338. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  9339. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  9340. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9341. float fx = 0.0f; // cost function value
  9342. float xnorm = 0.0f; // ||x||
  9343. float gnorm = 0.0f; // ||g||
  9344. float step = 0.0f;
  9345. // initialize x from the graph nodes
  9346. ggml_opt_get_params(np, ps, x);
  9347. // the L-BFGS memory
  9348. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  9349. for (int i = 0; i < m; ++i) {
  9350. lm[i].alpha = 0.0f;
  9351. lm[i].ys = 0.0f;
  9352. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9353. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9354. }
  9355. // evaluate the function value and its gradient
  9356. {
  9357. ggml_opt_set_params(np, ps, x);
  9358. ggml_graph_reset (gf);
  9359. ggml_set_f32 (f->grad, 1.0f);
  9360. ggml_graph_compute(ctx, gb);
  9361. ggml_opt_get_grad(np, ps, g);
  9362. fx = ggml_get_f32_1d(f, 0);
  9363. }
  9364. if (pf) {
  9365. pf[0] = fx;
  9366. }
  9367. float fx_best = fx;
  9368. // search direction = -gradient
  9369. ggml_vec_neg_f32(nx, d, g);
  9370. // ||x||, ||g||
  9371. ggml_vec_norm_f32(nx, &xnorm, x);
  9372. ggml_vec_norm_f32(nx, &gnorm, g);
  9373. if (xnorm < 1.0f) {
  9374. xnorm = 1.0f;
  9375. }
  9376. // already optimized
  9377. if (gnorm/xnorm <= params.lbfgs.eps) {
  9378. return GGML_OPT_OK;
  9379. }
  9380. // initial step
  9381. ggml_vec_norm_inv_f32(nx, &step, d);
  9382. int j = 0;
  9383. int k = 1;
  9384. int ls = 0;
  9385. int end = 0;
  9386. int bound = 0;
  9387. int n_no_improvement = 0;
  9388. float ys = 0.0f;
  9389. float yy = 0.0f;
  9390. float beta = 0.0f;
  9391. while (true) {
  9392. // store the current position and gradient vectors
  9393. ggml_vec_cpy_f32(nx, xp, x);
  9394. ggml_vec_cpy_f32(nx, gp, g);
  9395. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  9396. if (ls < 0) {
  9397. // linesearch failed - go back to the previous point and return
  9398. ggml_vec_cpy_f32(nx, x, xp);
  9399. ggml_vec_cpy_f32(nx, g, gp);
  9400. return ls;
  9401. }
  9402. ggml_vec_norm_f32(nx, &xnorm, x);
  9403. ggml_vec_norm_f32(nx, &gnorm, g);
  9404. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9405. if (xnorm < 1.0f) {
  9406. xnorm = 1.0f;
  9407. }
  9408. if (gnorm/xnorm <= params.lbfgs.eps) {
  9409. // converged
  9410. return GGML_OPT_OK;
  9411. }
  9412. // delta-based convergence test
  9413. if (pf != NULL) {
  9414. // need at least params.past iterations to start checking for convergence
  9415. if (params.past <= k) {
  9416. const float rate = (pf[k%params.past] - fx)/fx;
  9417. if (fabsf(rate) < params.delta) {
  9418. return GGML_OPT_OK;
  9419. }
  9420. }
  9421. pf[k%params.past] = fx;
  9422. }
  9423. // check for improvement
  9424. if (params.max_no_improvement > 0) {
  9425. if (fx < fx_best) {
  9426. fx_best = fx;
  9427. n_no_improvement = 0;
  9428. } else {
  9429. n_no_improvement++;
  9430. if (n_no_improvement >= params.max_no_improvement) {
  9431. return GGML_OPT_OK;
  9432. }
  9433. }
  9434. }
  9435. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  9436. // reached the maximum number of iterations
  9437. return GGML_OPT_DID_NOT_CONVERGE;
  9438. }
  9439. // update vectors s and y:
  9440. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  9441. // y_{k+1} = g_{k+1} - g_{k}.
  9442. //
  9443. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  9444. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  9445. // compute scalars ys and yy:
  9446. // ys = y^t \cdot s -> 1 / \rho.
  9447. // yy = y^t \cdot y.
  9448. //
  9449. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  9450. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  9451. lm[end].ys = ys;
  9452. // find new search direction
  9453. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  9454. bound = (m <= k) ? m : k;
  9455. k++;
  9456. end = (end + 1)%m;
  9457. // initialize search direction with -g
  9458. ggml_vec_neg_f32(nx, d, g);
  9459. j = end;
  9460. for (int i = 0; i < bound; ++i) {
  9461. j = (j + m - 1) % m;
  9462. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  9463. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  9464. lm[j].alpha /= lm[j].ys;
  9465. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  9466. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  9467. }
  9468. ggml_vec_scale_f32(nx, d, ys/yy);
  9469. for (int i = 0; i < bound; ++i) {
  9470. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  9471. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  9472. beta /= lm[j].ys;
  9473. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  9474. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  9475. j = (j + 1)%m;
  9476. }
  9477. step = 1.0;
  9478. }
  9479. return GGML_OPT_DID_NOT_CONVERGE;
  9480. }
  9481. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  9482. struct ggml_opt_params result;
  9483. switch (type) {
  9484. case GGML_OPT_ADAM:
  9485. {
  9486. result = (struct ggml_opt_params) {
  9487. .type = GGML_OPT_ADAM,
  9488. .n_threads = 1,
  9489. .past = 0,
  9490. .delta = 1e-5f,
  9491. .max_no_improvement = 100,
  9492. .print_forward_graph = true,
  9493. .print_backward_graph = true,
  9494. .adam = {
  9495. .n_iter = 10000,
  9496. .alpha = 0.001f,
  9497. .beta1 = 0.9f,
  9498. .beta2 = 0.999f,
  9499. .eps = 1e-8f,
  9500. .eps_f = 1e-5f,
  9501. .eps_g = 1e-3f,
  9502. },
  9503. };
  9504. } break;
  9505. case GGML_OPT_LBFGS:
  9506. {
  9507. result = (struct ggml_opt_params) {
  9508. .type = GGML_OPT_LBFGS,
  9509. .n_threads = 1,
  9510. .past = 0,
  9511. .delta = 1e-5f,
  9512. .max_no_improvement = 0,
  9513. .print_forward_graph = true,
  9514. .print_backward_graph = true,
  9515. .lbfgs = {
  9516. .m = 6,
  9517. .n_iter = 100,
  9518. .max_linesearch = 20,
  9519. .eps = 1e-5f,
  9520. .ftol = 1e-4f,
  9521. .wolfe = 0.9f,
  9522. .min_step = 1e-20f,
  9523. .max_step = 1e+20f,
  9524. .linesearch = GGML_LINESEARCH_DEFAULT,
  9525. },
  9526. };
  9527. } break;
  9528. }
  9529. return result;
  9530. }
  9531. enum ggml_opt_result ggml_opt(
  9532. struct ggml_context * ctx,
  9533. struct ggml_opt_params params,
  9534. struct ggml_tensor * f) {
  9535. bool free_ctx = false;
  9536. if (ctx == NULL) {
  9537. struct ggml_init_params params_ctx = {
  9538. .mem_size = 16*1024*1024,
  9539. .mem_buffer = NULL,
  9540. .no_alloc = false,
  9541. };
  9542. ctx = ggml_init(params_ctx);
  9543. if (ctx == NULL) {
  9544. return GGML_OPT_NO_CONTEXT;
  9545. }
  9546. free_ctx = true;
  9547. }
  9548. enum ggml_opt_result result = GGML_OPT_OK;
  9549. // build forward + backward compute graphs
  9550. struct ggml_cgraph gf = ggml_build_forward (f);
  9551. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  9552. switch (params.type) {
  9553. case GGML_OPT_ADAM:
  9554. {
  9555. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  9556. } break;
  9557. case GGML_OPT_LBFGS:
  9558. {
  9559. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  9560. } break;
  9561. }
  9562. if (params.print_forward_graph) {
  9563. ggml_graph_print (&gf);
  9564. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  9565. }
  9566. if (params.print_backward_graph) {
  9567. ggml_graph_print (&gb);
  9568. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  9569. }
  9570. if (free_ctx) {
  9571. ggml_free(ctx);
  9572. }
  9573. return result;
  9574. }
  9575. ////////////////////////////////////////////////////////////////////////////////
  9576. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  9577. assert(k % QK4_0 == 0);
  9578. const int nb = k / QK4_0;
  9579. for (int j = 0; j < n; j += k) {
  9580. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  9581. quantize_row_q4_0_reference(src + j, y, k);
  9582. for (int i = 0; i < nb; i++) {
  9583. for (int l = 0; l < QK4_0; l += 2) {
  9584. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9585. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9586. hist[vi0]++;
  9587. hist[vi1]++;
  9588. }
  9589. }
  9590. }
  9591. return (n/QK4_0*sizeof(block_q4_0));
  9592. }
  9593. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  9594. assert(k % QK4_1 == 0);
  9595. const int nb = k / QK4_1;
  9596. for (int j = 0; j < n; j += k) {
  9597. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  9598. quantize_row_q4_1_reference(src + j, y, k);
  9599. for (int i = 0; i < nb; i++) {
  9600. for (int l = 0; l < QK4_1; l += 2) {
  9601. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9602. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9603. hist[vi0]++;
  9604. hist[vi1]++;
  9605. }
  9606. }
  9607. }
  9608. return (n/QK4_1*sizeof(block_q4_1));
  9609. }
  9610. size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist) {
  9611. assert(k % QK4_2 == 0);
  9612. const int nb = k / QK4_2;
  9613. for (int j = 0; j < n; j += k) {
  9614. block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2;
  9615. quantize_row_q4_2_reference(src + j, y, k);
  9616. for (int i = 0; i < nb; i++) {
  9617. for (int l = 0; l < QK4_2; l += 2) {
  9618. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9619. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9620. hist[vi0]++;
  9621. hist[vi1]++;
  9622. }
  9623. }
  9624. }
  9625. return (n/QK4_2*sizeof(block_q4_2));
  9626. }
  9627. ////////////////////////////////////////////////////////////////////////////////
  9628. int ggml_cpu_has_avx(void) {
  9629. #if defined(__AVX__)
  9630. return 1;
  9631. #else
  9632. return 0;
  9633. #endif
  9634. }
  9635. int ggml_cpu_has_avx2(void) {
  9636. #if defined(__AVX2__)
  9637. return 1;
  9638. #else
  9639. return 0;
  9640. #endif
  9641. }
  9642. int ggml_cpu_has_avx512(void) {
  9643. #if defined(__AVX512F__)
  9644. return 1;
  9645. #else
  9646. return 0;
  9647. #endif
  9648. }
  9649. int ggml_cpu_has_avx512_vbmi(void) {
  9650. #if defined(__AVX512VBMI__)
  9651. return 1;
  9652. #else
  9653. return 0;
  9654. #endif
  9655. }
  9656. int ggml_cpu_has_avx512_vnni(void) {
  9657. #if defined(__AVX512VNNI__)
  9658. return 1;
  9659. #else
  9660. return 0;
  9661. #endif
  9662. }
  9663. int ggml_cpu_has_fma(void) {
  9664. #if defined(__FMA__)
  9665. return 1;
  9666. #else
  9667. return 0;
  9668. #endif
  9669. }
  9670. int ggml_cpu_has_neon(void) {
  9671. #if defined(__ARM_NEON)
  9672. return 1;
  9673. #else
  9674. return 0;
  9675. #endif
  9676. }
  9677. int ggml_cpu_has_arm_fma(void) {
  9678. #if defined(__ARM_FEATURE_FMA)
  9679. return 1;
  9680. #else
  9681. return 0;
  9682. #endif
  9683. }
  9684. int ggml_cpu_has_f16c(void) {
  9685. #if defined(__F16C__)
  9686. return 1;
  9687. #else
  9688. return 0;
  9689. #endif
  9690. }
  9691. int ggml_cpu_has_fp16_va(void) {
  9692. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  9693. return 1;
  9694. #else
  9695. return 0;
  9696. #endif
  9697. }
  9698. int ggml_cpu_has_wasm_simd(void) {
  9699. #if defined(__wasm_simd128__)
  9700. return 1;
  9701. #else
  9702. return 0;
  9703. #endif
  9704. }
  9705. int ggml_cpu_has_blas(void) {
  9706. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  9707. return 1;
  9708. #else
  9709. return 0;
  9710. #endif
  9711. }
  9712. int ggml_cpu_has_cublas(void) {
  9713. #if defined(GGML_USE_CUBLAS)
  9714. return 1;
  9715. #else
  9716. return 0;
  9717. #endif
  9718. }
  9719. int ggml_cpu_has_sse3(void) {
  9720. #if defined(__SSE3__)
  9721. return 1;
  9722. #else
  9723. return 0;
  9724. #endif
  9725. }
  9726. int ggml_cpu_has_vsx(void) {
  9727. #if defined(__POWER9_VECTOR__)
  9728. return 1;
  9729. #else
  9730. return 0;
  9731. #endif
  9732. }
  9733. ////////////////////////////////////////////////////////////////////////////////