ggml.c 664 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. #if defined(_MSC_VER)
  27. // disable "possible loss of data" to avoid hundreds of casts
  28. // we should just be careful :)
  29. #pragma warning(disable: 4244 4267)
  30. // disable POSIX deprecation warnings
  31. // these functions are never going away, anyway
  32. #pragma warning(disable: 4996)
  33. #endif
  34. #if defined(_WIN32)
  35. #include <windows.h>
  36. typedef volatile LONG atomic_int;
  37. typedef atomic_int atomic_bool;
  38. static void atomic_store(atomic_int * ptr, LONG val) {
  39. InterlockedExchange(ptr, val);
  40. }
  41. static LONG atomic_load(atomic_int * ptr) {
  42. return InterlockedCompareExchange(ptr, 0, 0);
  43. }
  44. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  45. return InterlockedExchangeAdd(ptr, inc);
  46. }
  47. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  48. return atomic_fetch_add(ptr, -(dec));
  49. }
  50. typedef HANDLE pthread_t;
  51. typedef DWORD thread_ret_t;
  52. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  53. (void) unused;
  54. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  55. if (handle == NULL)
  56. {
  57. return EAGAIN;
  58. }
  59. *out = handle;
  60. return 0;
  61. }
  62. static int pthread_join(pthread_t thread, void * unused) {
  63. (void) unused;
  64. int ret = (int) WaitForSingleObject(thread, INFINITE);
  65. CloseHandle(thread);
  66. return ret;
  67. }
  68. static int sched_yield (void) {
  69. Sleep (0);
  70. return 0;
  71. }
  72. #else
  73. #include <pthread.h>
  74. #include <stdatomic.h>
  75. typedef void * thread_ret_t;
  76. #include <sys/types.h>
  77. #include <sys/stat.h>
  78. #include <unistd.h>
  79. #endif
  80. #ifdef GGML_USE_CPU_HBM
  81. #include <hbwmalloc.h>
  82. #endif
  83. #if defined(__APPLE__)
  84. #include <TargetConditionals.h>
  85. #endif
  86. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  87. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  88. #include <sys/wait.h>
  89. void ggml_print_backtrace(void) {
  90. /*
  91. #include <execinfo.h>
  92. #include <dlfcn.h>
  93. void * trace[100];
  94. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  95. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  96. */
  97. // backtrack_symbols does not show line numbers, use gdb instead
  98. char attach[32];
  99. snprintf(attach, sizeof(attach), "attach %d", getpid());
  100. int pid = fork();
  101. if (pid == 0) {
  102. execlp("gdb", "gdb", "--batch",
  103. "-ex", "set style enabled on",
  104. "-ex", attach,
  105. "-ex", "bt -frame-info source-and-location",
  106. "-ex", "detach",
  107. "-ex", "quit",
  108. (char *) NULL);
  109. } else {
  110. waitpid(pid, NULL, 0);
  111. }
  112. }
  113. #else
  114. void ggml_print_backtrace(void) {
  115. // platform not supported
  116. }
  117. #endif
  118. /*#define GGML_PERF*/
  119. #define GGML_DEBUG 0
  120. #define GGML_GELU_FP16
  121. #define GGML_GELU_QUICK_FP16
  122. #define GGML_SILU_FP16
  123. // #define GGML_CROSS_ENTROPY_EXP_FP16
  124. // #define GGML_FLASH_ATTN_EXP_FP16
  125. #define GGML_SOFT_MAX_UNROLL 4
  126. #define GGML_VEC_DOT_UNROLL 2
  127. #define GGML_VEC_MAD_UNROLL 32
  128. //
  129. // logging
  130. //
  131. #if (GGML_DEBUG >= 1)
  132. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  133. #else
  134. #define GGML_PRINT_DEBUG(...)
  135. #endif
  136. #if (GGML_DEBUG >= 5)
  137. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  138. #else
  139. #define GGML_PRINT_DEBUG_5(...)
  140. #endif
  141. #if (GGML_DEBUG >= 10)
  142. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG_10(...)
  145. #endif
  146. #define GGML_PRINT(...) printf(__VA_ARGS__)
  147. //
  148. // end of logging block
  149. //
  150. #ifdef GGML_USE_ACCELERATE
  151. // uncomment to use vDSP for soft max computation
  152. // note: not sure if it is actually faster
  153. //#define GGML_SOFT_MAX_ACCELERATE
  154. #endif
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  157. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  158. #else
  159. inline static void * ggml_aligned_malloc(size_t size) {
  160. if (size == 0) {
  161. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  162. return NULL;
  163. }
  164. void * aligned_memory = NULL;
  165. #ifdef GGML_USE_CPU_HBM
  166. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  167. #elif GGML_USE_METAL
  168. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  169. #else
  170. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  171. #endif
  172. if (result != 0) {
  173. // Handle allocation failure
  174. const char *error_desc = "unknown allocation error";
  175. switch (result) {
  176. case EINVAL:
  177. error_desc = "invalid alignment value";
  178. break;
  179. case ENOMEM:
  180. error_desc = "insufficient memory";
  181. break;
  182. }
  183. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  184. GGML_ASSERT(false);
  185. return NULL;
  186. }
  187. return aligned_memory;
  188. }
  189. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  190. #ifdef GGML_USE_CPU_HBM
  191. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  192. #else
  193. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  194. #endif
  195. #endif
  196. inline static void * ggml_malloc(size_t size) {
  197. if (size == 0) {
  198. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  199. return NULL;
  200. }
  201. void * result = malloc(size);
  202. if (result == NULL) {
  203. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  204. GGML_ASSERT(false);
  205. }
  206. return result;
  207. }
  208. // calloc
  209. inline static void * ggml_calloc(size_t num, size_t size) {
  210. if (num == 0 || size == 0) {
  211. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  212. return NULL;
  213. }
  214. void * result = calloc(num, size);
  215. if (result == NULL) {
  216. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  217. GGML_ASSERT(false);
  218. }
  219. return result;
  220. }
  221. #define GGML_MALLOC(size) ggml_malloc(size)
  222. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  223. #define GGML_FREE(ptr) free(ptr)
  224. #define UNUSED GGML_UNUSED
  225. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  226. #if defined(GGML_USE_ACCELERATE)
  227. #include <Accelerate/Accelerate.h>
  228. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  229. #include "ggml-opencl.h"
  230. #endif
  231. #elif defined(GGML_USE_OPENBLAS)
  232. #if defined(GGML_BLAS_USE_MKL)
  233. #include <mkl.h>
  234. #else
  235. #include <cblas.h>
  236. #endif
  237. #elif defined(GGML_USE_CUBLAS)
  238. #include "ggml-cuda.h"
  239. #elif defined(GGML_USE_CLBLAST)
  240. #include "ggml-opencl.h"
  241. #elif defined(GGML_USE_VULKAN)
  242. #include "ggml-vulkan.h"
  243. #elif defined(GGML_USE_SYCL)
  244. #include "ggml-sycl.h"
  245. #endif
  246. // floating point type used to accumulate sums
  247. typedef double ggml_float;
  248. #undef MIN
  249. #undef MAX
  250. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  251. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  252. //
  253. // global data
  254. //
  255. // precomputed gelu table for f16 (128 KB)
  256. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  257. // precomputed quick gelu table for f16 (128 KB)
  258. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  259. // precomputed silu table for f16 (128 KB)
  260. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  261. // precomputed exp table for f16 (128 KB)
  262. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  263. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  264. float ggml_table_f32_f16[1 << 16];
  265. // note: do not use these inside ggml.c
  266. // these are meant to be used via the ggml.h API
  267. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  268. return (float) GGML_FP16_TO_FP32(x);
  269. }
  270. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  271. return GGML_FP32_TO_FP16(x);
  272. }
  273. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  274. for (int i = 0; i < n; i++) {
  275. y[i] = GGML_FP16_TO_FP32(x[i]);
  276. }
  277. }
  278. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  279. int i = 0;
  280. #if defined(__F16C__)
  281. for (; i + 7 < n; i += 8) {
  282. __m256 x_vec = _mm256_loadu_ps(x + i);
  283. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  284. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  285. }
  286. for(; i + 3 < n; i += 4) {
  287. __m128 x_vec = _mm_loadu_ps(x + i);
  288. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  289. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  290. }
  291. #endif
  292. for (; i < n; i++) {
  293. y[i] = GGML_FP32_TO_FP16(x[i]);
  294. }
  295. }
  296. //
  297. // timing
  298. //
  299. #if defined(_MSC_VER) || defined(__MINGW32__)
  300. static int64_t timer_freq, timer_start;
  301. void ggml_time_init(void) {
  302. LARGE_INTEGER t;
  303. QueryPerformanceFrequency(&t);
  304. timer_freq = t.QuadPart;
  305. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  306. // and the uptime is high enough.
  307. // We subtract the program start time to reduce the likelihood of that happening.
  308. QueryPerformanceCounter(&t);
  309. timer_start = t.QuadPart;
  310. }
  311. int64_t ggml_time_ms(void) {
  312. LARGE_INTEGER t;
  313. QueryPerformanceCounter(&t);
  314. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  315. }
  316. int64_t ggml_time_us(void) {
  317. LARGE_INTEGER t;
  318. QueryPerformanceCounter(&t);
  319. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  320. }
  321. #else
  322. void ggml_time_init(void) {}
  323. int64_t ggml_time_ms(void) {
  324. struct timespec ts;
  325. clock_gettime(CLOCK_MONOTONIC, &ts);
  326. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  327. }
  328. int64_t ggml_time_us(void) {
  329. struct timespec ts;
  330. clock_gettime(CLOCK_MONOTONIC, &ts);
  331. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  332. }
  333. #endif
  334. int64_t ggml_cycles(void) {
  335. return clock();
  336. }
  337. int64_t ggml_cycles_per_ms(void) {
  338. return CLOCKS_PER_SEC/1000;
  339. }
  340. #ifdef GGML_PERF
  341. #define ggml_perf_time_ms() ggml_time_ms()
  342. #define ggml_perf_time_us() ggml_time_us()
  343. #define ggml_perf_cycles() ggml_cycles()
  344. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  345. #else
  346. #define ggml_perf_time_ms() 0
  347. #define ggml_perf_time_us() 0
  348. #define ggml_perf_cycles() 0
  349. #define ggml_perf_cycles_per_ms() 0
  350. #endif
  351. //
  352. // cache line
  353. //
  354. #if defined(__cpp_lib_hardware_interference_size)
  355. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  356. #else
  357. #if defined(__POWER9_VECTOR__)
  358. #define CACHE_LINE_SIZE 128
  359. #else
  360. #define CACHE_LINE_SIZE 64
  361. #endif
  362. #endif
  363. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  364. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  365. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  366. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  367. [GGML_TYPE_I8] = {
  368. .type_name = "i8",
  369. .blck_size = 1,
  370. .type_size = sizeof(int8_t),
  371. .is_quantized = false,
  372. },
  373. [GGML_TYPE_I16] = {
  374. .type_name = "i16",
  375. .blck_size = 1,
  376. .type_size = sizeof(int16_t),
  377. .is_quantized = false,
  378. },
  379. [GGML_TYPE_I32] = {
  380. .type_name = "i32",
  381. .blck_size = 1,
  382. .type_size = sizeof(int32_t),
  383. .is_quantized = false,
  384. },
  385. [GGML_TYPE_F32] = {
  386. .type_name = "f32",
  387. .blck_size = 1,
  388. .type_size = sizeof(float),
  389. .is_quantized = false,
  390. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  391. .vec_dot_type = GGML_TYPE_F32,
  392. },
  393. [GGML_TYPE_F16] = {
  394. .type_name = "f16",
  395. .blck_size = 1,
  396. .type_size = sizeof(ggml_fp16_t),
  397. .is_quantized = false,
  398. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  399. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  400. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  401. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  402. .vec_dot_type = GGML_TYPE_F16,
  403. },
  404. [GGML_TYPE_Q4_0] = {
  405. .type_name = "q4_0",
  406. .blck_size = QK4_0,
  407. .type_size = sizeof(block_q4_0),
  408. .is_quantized = true,
  409. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  410. .from_float = quantize_row_q4_0,
  411. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  412. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  413. .vec_dot_type = GGML_TYPE_Q8_0,
  414. },
  415. [GGML_TYPE_Q4_1] = {
  416. .type_name = "q4_1",
  417. .blck_size = QK4_1,
  418. .type_size = sizeof(block_q4_1),
  419. .is_quantized = true,
  420. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  421. .from_float = quantize_row_q4_1,
  422. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  423. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  424. .vec_dot_type = GGML_TYPE_Q8_1,
  425. },
  426. [4] = { // GGML_TYPE_Q4_2
  427. .type_name = "DEPRECATED",
  428. .blck_size = 0,
  429. .type_size = 0,
  430. .is_quantized = false,
  431. .to_float = NULL,
  432. .from_float = NULL,
  433. .from_float_reference = NULL,
  434. .vec_dot = NULL,
  435. .vec_dot_type = GGML_TYPE_COUNT,
  436. },
  437. [5] = { // GGML_TYPE_Q4_3
  438. .type_name = "DEPRECATED",
  439. .blck_size = 0,
  440. .type_size = 0,
  441. .is_quantized = false,
  442. .to_float = NULL,
  443. .from_float = NULL,
  444. .from_float_reference = NULL,
  445. .vec_dot = NULL,
  446. .vec_dot_type = GGML_TYPE_COUNT,
  447. },
  448. [GGML_TYPE_Q5_0] = {
  449. .type_name = "q5_0",
  450. .blck_size = QK5_0,
  451. .type_size = sizeof(block_q5_0),
  452. .is_quantized = true,
  453. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  454. .from_float = quantize_row_q5_0,
  455. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  456. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  457. .vec_dot_type = GGML_TYPE_Q8_0,
  458. },
  459. [GGML_TYPE_Q5_1] = {
  460. .type_name = "q5_1",
  461. .blck_size = QK5_1,
  462. .type_size = sizeof(block_q5_1),
  463. .is_quantized = true,
  464. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  465. .from_float = quantize_row_q5_1,
  466. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  467. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  468. .vec_dot_type = GGML_TYPE_Q8_1,
  469. },
  470. [GGML_TYPE_Q8_0] = {
  471. .type_name = "q8_0",
  472. .blck_size = QK8_0,
  473. .type_size = sizeof(block_q8_0),
  474. .is_quantized = true,
  475. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  476. .from_float = quantize_row_q8_0,
  477. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  478. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  479. .vec_dot_type = GGML_TYPE_Q8_0,
  480. },
  481. [GGML_TYPE_Q8_1] = {
  482. .type_name = "q8_1",
  483. .blck_size = QK8_1,
  484. .type_size = sizeof(block_q8_1),
  485. .is_quantized = true,
  486. .from_float = quantize_row_q8_1,
  487. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  488. .vec_dot_type = GGML_TYPE_Q8_1,
  489. },
  490. [GGML_TYPE_Q2_K] = {
  491. .type_name = "q2_K",
  492. .blck_size = QK_K,
  493. .type_size = sizeof(block_q2_K),
  494. .is_quantized = true,
  495. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  496. .from_float = quantize_row_q2_K,
  497. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  498. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  499. .vec_dot_type = GGML_TYPE_Q8_K,
  500. },
  501. [GGML_TYPE_Q3_K] = {
  502. .type_name = "q3_K",
  503. .blck_size = QK_K,
  504. .type_size = sizeof(block_q3_K),
  505. .is_quantized = true,
  506. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  507. .from_float = quantize_row_q3_K,
  508. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  509. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  510. .vec_dot_type = GGML_TYPE_Q8_K,
  511. },
  512. [GGML_TYPE_Q4_K] = {
  513. .type_name = "q4_K",
  514. .blck_size = QK_K,
  515. .type_size = sizeof(block_q4_K),
  516. .is_quantized = true,
  517. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  518. .from_float = quantize_row_q4_K,
  519. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  520. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  521. .vec_dot_type = GGML_TYPE_Q8_K,
  522. },
  523. [GGML_TYPE_Q5_K] = {
  524. .type_name = "q5_K",
  525. .blck_size = QK_K,
  526. .type_size = sizeof(block_q5_K),
  527. .is_quantized = true,
  528. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  529. .from_float = quantize_row_q5_K,
  530. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  531. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  532. .vec_dot_type = GGML_TYPE_Q8_K,
  533. },
  534. [GGML_TYPE_Q6_K] = {
  535. .type_name = "q6_K",
  536. .blck_size = QK_K,
  537. .type_size = sizeof(block_q6_K),
  538. .is_quantized = true,
  539. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  540. .from_float = quantize_row_q6_K,
  541. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  542. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  543. .vec_dot_type = GGML_TYPE_Q8_K,
  544. },
  545. [GGML_TYPE_IQ2_XXS] = {
  546. .type_name = "iq2_xxs",
  547. .blck_size = QK_K,
  548. .type_size = sizeof(block_iq2_xxs),
  549. .is_quantized = true,
  550. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  551. .from_float = NULL,
  552. .from_float_reference = NULL,
  553. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  554. .vec_dot_type = GGML_TYPE_Q8_K,
  555. },
  556. [GGML_TYPE_IQ2_XS] = {
  557. .type_name = "iq2_xs",
  558. .blck_size = QK_K,
  559. .type_size = sizeof(block_iq2_xs),
  560. .is_quantized = true,
  561. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  562. .from_float = NULL,
  563. .from_float_reference = NULL,
  564. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  565. .vec_dot_type = GGML_TYPE_Q8_K,
  566. },
  567. [GGML_TYPE_IQ3_XXS] = {
  568. .type_name = "iq3_xxs",
  569. .blck_size = QK_K,
  570. .type_size = sizeof(block_iq3_xxs),
  571. .is_quantized = true,
  572. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  573. .from_float = quantize_row_iq3_xxs,
  574. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  575. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  576. .vec_dot_type = GGML_TYPE_Q8_K,
  577. },
  578. [GGML_TYPE_Q8_K] = {
  579. .type_name = "q8_K",
  580. .blck_size = QK_K,
  581. .type_size = sizeof(block_q8_K),
  582. .is_quantized = true,
  583. .from_float = quantize_row_q8_K,
  584. }
  585. };
  586. // For internal test use
  587. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  588. GGML_ASSERT(type < GGML_TYPE_COUNT);
  589. return type_traits[type];
  590. }
  591. //
  592. // simd mappings
  593. //
  594. #if defined(__ARM_NEON)
  595. #if !defined(__aarch64__)
  596. // 64-bit compatibility
  597. inline static float vaddvq_f32(float32x4_t v) {
  598. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  599. }
  600. #endif
  601. #endif
  602. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  603. // we then implement the fundamental computation operations below using only these macros
  604. // adding support for new architectures requires to define the corresponding SIMD macros
  605. //
  606. // GGML_F32_STEP / GGML_F16_STEP
  607. // number of elements to process in a single step
  608. //
  609. // GGML_F32_EPR / GGML_F16_EPR
  610. // number of elements to fit in a single register
  611. //
  612. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  613. #define GGML_SIMD
  614. // F32 NEON
  615. #define GGML_F32_STEP 16
  616. #define GGML_F32_EPR 4
  617. #define GGML_F32x4 float32x4_t
  618. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  619. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  620. #define GGML_F32x4_LOAD vld1q_f32
  621. #define GGML_F32x4_STORE vst1q_f32
  622. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  623. #define GGML_F32x4_ADD vaddq_f32
  624. #define GGML_F32x4_MUL vmulq_f32
  625. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  626. #define GGML_F32x4_REDUCE(res, x) \
  627. { \
  628. int offset = GGML_F32_ARR >> 1; \
  629. for (int i = 0; i < offset; ++i) { \
  630. x[i] = vaddq_f32(x[i], x[offset+i]); \
  631. } \
  632. offset >>= 1; \
  633. for (int i = 0; i < offset; ++i) { \
  634. x[i] = vaddq_f32(x[i], x[offset+i]); \
  635. } \
  636. offset >>= 1; \
  637. for (int i = 0; i < offset; ++i) { \
  638. x[i] = vaddq_f32(x[i], x[offset+i]); \
  639. } \
  640. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  641. }
  642. #define GGML_F32_VEC GGML_F32x4
  643. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  644. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  645. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  646. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  647. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  648. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  649. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  650. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  651. // F16 NEON
  652. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  653. #define GGML_F16_STEP 32
  654. #define GGML_F16_EPR 8
  655. #define GGML_F16x8 float16x8_t
  656. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  657. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  658. #define GGML_F16x8_LOAD vld1q_f16
  659. #define GGML_F16x8_STORE vst1q_f16
  660. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  661. #define GGML_F16x8_ADD vaddq_f16
  662. #define GGML_F16x8_MUL vmulq_f16
  663. #define GGML_F16x8_REDUCE(res, x) \
  664. do { \
  665. int offset = GGML_F16_ARR >> 1; \
  666. for (int i = 0; i < offset; ++i) { \
  667. x[i] = vaddq_f16(x[i], x[offset+i]); \
  668. } \
  669. offset >>= 1; \
  670. for (int i = 0; i < offset; ++i) { \
  671. x[i] = vaddq_f16(x[i], x[offset+i]); \
  672. } \
  673. offset >>= 1; \
  674. for (int i = 0; i < offset; ++i) { \
  675. x[i] = vaddq_f16(x[i], x[offset+i]); \
  676. } \
  677. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  678. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  679. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  680. } while (0)
  681. #define GGML_F16_VEC GGML_F16x8
  682. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  683. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  684. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  685. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  686. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  687. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  688. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  689. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  690. #else
  691. // if FP16 vector arithmetic is not supported, we use FP32 instead
  692. // and take advantage of the vcvt_ functions to convert to/from FP16
  693. #define GGML_F16_STEP 16
  694. #define GGML_F16_EPR 4
  695. #define GGML_F32Cx4 float32x4_t
  696. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  697. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  698. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  699. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  700. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  701. #define GGML_F32Cx4_ADD vaddq_f32
  702. #define GGML_F32Cx4_MUL vmulq_f32
  703. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  704. #define GGML_F16_VEC GGML_F32Cx4
  705. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  706. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  707. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  708. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  709. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  710. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  711. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  712. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  713. #endif
  714. #elif defined(__AVX__)
  715. #define GGML_SIMD
  716. // F32 AVX
  717. #define GGML_F32_STEP 32
  718. #define GGML_F32_EPR 8
  719. #define GGML_F32x8 __m256
  720. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  721. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  722. #define GGML_F32x8_LOAD _mm256_loadu_ps
  723. #define GGML_F32x8_STORE _mm256_storeu_ps
  724. #if defined(__FMA__)
  725. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  726. #else
  727. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  728. #endif
  729. #define GGML_F32x8_ADD _mm256_add_ps
  730. #define GGML_F32x8_MUL _mm256_mul_ps
  731. #define GGML_F32x8_REDUCE(res, x) \
  732. do { \
  733. int offset = GGML_F32_ARR >> 1; \
  734. for (int i = 0; i < offset; ++i) { \
  735. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  736. } \
  737. offset >>= 1; \
  738. for (int i = 0; i < offset; ++i) { \
  739. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  740. } \
  741. offset >>= 1; \
  742. for (int i = 0; i < offset; ++i) { \
  743. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  744. } \
  745. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  746. _mm256_extractf128_ps(x[0], 1)); \
  747. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  748. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  749. } while (0)
  750. // TODO: is this optimal ?
  751. #define GGML_F32_VEC GGML_F32x8
  752. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  753. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  754. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  755. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  756. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  757. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  758. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  759. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  760. // F16 AVX
  761. #define GGML_F16_STEP 32
  762. #define GGML_F16_EPR 8
  763. // F16 arithmetic is not supported by AVX, so we use F32 instead
  764. #define GGML_F32Cx8 __m256
  765. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  766. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  767. #if defined(__F16C__)
  768. // the _mm256_cvt intrinsics require F16C
  769. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  770. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  771. #else
  772. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  773. float tmp[8];
  774. for (int i = 0; i < 8; i++) {
  775. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  776. }
  777. return _mm256_loadu_ps(tmp);
  778. }
  779. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  780. float arr[8];
  781. _mm256_storeu_ps(arr, y);
  782. for (int i = 0; i < 8; i++)
  783. x[i] = GGML_FP32_TO_FP16(arr[i]);
  784. }
  785. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  786. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  787. #endif
  788. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  789. #define GGML_F32Cx8_ADD _mm256_add_ps
  790. #define GGML_F32Cx8_MUL _mm256_mul_ps
  791. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  792. #define GGML_F16_VEC GGML_F32Cx8
  793. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  794. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  795. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  796. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  797. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  798. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  799. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  800. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  801. #elif defined(__POWER9_VECTOR__)
  802. #define GGML_SIMD
  803. // F32 POWER9
  804. #define GGML_F32_STEP 32
  805. #define GGML_F32_EPR 4
  806. #define GGML_F32x4 vector float
  807. #define GGML_F32x4_ZERO 0.0f
  808. #define GGML_F32x4_SET1 vec_splats
  809. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  810. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  811. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  812. #define GGML_F32x4_ADD vec_add
  813. #define GGML_F32x4_MUL vec_mul
  814. #define GGML_F32x4_REDUCE(res, x) \
  815. { \
  816. int offset = GGML_F32_ARR >> 1; \
  817. for (int i = 0; i < offset; ++i) { \
  818. x[i] = vec_add(x[i], x[offset+i]); \
  819. } \
  820. offset >>= 1; \
  821. for (int i = 0; i < offset; ++i) { \
  822. x[i] = vec_add(x[i], x[offset+i]); \
  823. } \
  824. offset >>= 1; \
  825. for (int i = 0; i < offset; ++i) { \
  826. x[i] = vec_add(x[i], x[offset+i]); \
  827. } \
  828. res = vec_extract(x[0], 0) + \
  829. vec_extract(x[0], 1) + \
  830. vec_extract(x[0], 2) + \
  831. vec_extract(x[0], 3); \
  832. }
  833. #define GGML_F32_VEC GGML_F32x4
  834. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  835. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  836. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  837. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  838. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  839. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  840. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  841. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  842. // F16 POWER9
  843. #define GGML_F16_STEP GGML_F32_STEP
  844. #define GGML_F16_EPR GGML_F32_EPR
  845. #define GGML_F16_VEC GGML_F32x4
  846. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  847. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  848. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  849. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  850. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  851. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  852. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  853. vec_extract_fp32_from_shortl(vec_xl(0, p))
  854. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  855. #define GGML_F16_VEC_STORE(p, r, i) \
  856. if (i & 0x1) \
  857. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  858. r[i - GGML_ENDIAN_BYTE(0)]), \
  859. 0, p - GGML_F16_EPR)
  860. #elif defined(__wasm_simd128__)
  861. #define GGML_SIMD
  862. // F32 WASM
  863. #define GGML_F32_STEP 16
  864. #define GGML_F32_EPR 4
  865. #define GGML_F32x4 v128_t
  866. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  867. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  868. #define GGML_F32x4_LOAD wasm_v128_load
  869. #define GGML_F32x4_STORE wasm_v128_store
  870. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  871. #define GGML_F32x4_ADD wasm_f32x4_add
  872. #define GGML_F32x4_MUL wasm_f32x4_mul
  873. #define GGML_F32x4_REDUCE(res, x) \
  874. { \
  875. int offset = GGML_F32_ARR >> 1; \
  876. for (int i = 0; i < offset; ++i) { \
  877. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  878. } \
  879. offset >>= 1; \
  880. for (int i = 0; i < offset; ++i) { \
  881. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  882. } \
  883. offset >>= 1; \
  884. for (int i = 0; i < offset; ++i) { \
  885. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  886. } \
  887. res = wasm_f32x4_extract_lane(x[0], 0) + \
  888. wasm_f32x4_extract_lane(x[0], 1) + \
  889. wasm_f32x4_extract_lane(x[0], 2) + \
  890. wasm_f32x4_extract_lane(x[0], 3); \
  891. }
  892. #define GGML_F32_VEC GGML_F32x4
  893. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  894. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  895. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  896. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  897. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  898. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  899. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  900. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  901. // F16 WASM
  902. #define GGML_F16_STEP 16
  903. #define GGML_F16_EPR 4
  904. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  905. float tmp[4];
  906. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  907. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  908. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  909. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  910. return wasm_v128_load(tmp);
  911. }
  912. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  913. float tmp[4];
  914. wasm_v128_store(tmp, x);
  915. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  916. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  917. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  918. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  919. }
  920. #define GGML_F16x4 v128_t
  921. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  922. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  923. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  924. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  925. #define GGML_F16x4_FMA GGML_F32x4_FMA
  926. #define GGML_F16x4_ADD wasm_f32x4_add
  927. #define GGML_F16x4_MUL wasm_f32x4_mul
  928. #define GGML_F16x4_REDUCE(res, x) \
  929. { \
  930. int offset = GGML_F16_ARR >> 1; \
  931. for (int i = 0; i < offset; ++i) { \
  932. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  933. } \
  934. offset >>= 1; \
  935. for (int i = 0; i < offset; ++i) { \
  936. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  937. } \
  938. offset >>= 1; \
  939. for (int i = 0; i < offset; ++i) { \
  940. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  941. } \
  942. res = wasm_f32x4_extract_lane(x[0], 0) + \
  943. wasm_f32x4_extract_lane(x[0], 1) + \
  944. wasm_f32x4_extract_lane(x[0], 2) + \
  945. wasm_f32x4_extract_lane(x[0], 3); \
  946. }
  947. #define GGML_F16_VEC GGML_F16x4
  948. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  949. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  950. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  951. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  952. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  953. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  954. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  955. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  956. #elif defined(__SSE3__)
  957. #define GGML_SIMD
  958. // F32 SSE
  959. #define GGML_F32_STEP 32
  960. #define GGML_F32_EPR 4
  961. #define GGML_F32x4 __m128
  962. #define GGML_F32x4_ZERO _mm_setzero_ps()
  963. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  964. #define GGML_F32x4_LOAD _mm_loadu_ps
  965. #define GGML_F32x4_STORE _mm_storeu_ps
  966. #if defined(__FMA__)
  967. // TODO: Does this work?
  968. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  969. #else
  970. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  971. #endif
  972. #define GGML_F32x4_ADD _mm_add_ps
  973. #define GGML_F32x4_MUL _mm_mul_ps
  974. #define GGML_F32x4_REDUCE(res, x) \
  975. { \
  976. int offset = GGML_F32_ARR >> 1; \
  977. for (int i = 0; i < offset; ++i) { \
  978. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  979. } \
  980. offset >>= 1; \
  981. for (int i = 0; i < offset; ++i) { \
  982. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  983. } \
  984. offset >>= 1; \
  985. for (int i = 0; i < offset; ++i) { \
  986. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  987. } \
  988. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  989. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  990. }
  991. // TODO: is this optimal ?
  992. #define GGML_F32_VEC GGML_F32x4
  993. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  994. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  995. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  996. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  997. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  998. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  999. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1000. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1001. // F16 SSE
  1002. #define GGML_F16_STEP 32
  1003. #define GGML_F16_EPR 4
  1004. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1005. float tmp[4];
  1006. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1007. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1008. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1009. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1010. return _mm_loadu_ps(tmp);
  1011. }
  1012. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1013. float arr[4];
  1014. _mm_storeu_ps(arr, y);
  1015. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1016. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1017. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1018. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1019. }
  1020. #define GGML_F32Cx4 __m128
  1021. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1022. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1023. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1024. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1025. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1026. #define GGML_F32Cx4_ADD _mm_add_ps
  1027. #define GGML_F32Cx4_MUL _mm_mul_ps
  1028. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1029. #define GGML_F16_VEC GGML_F32Cx4
  1030. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1031. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1032. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1033. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1034. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1035. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1036. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1037. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1038. #endif
  1039. // GGML_F32_ARR / GGML_F16_ARR
  1040. // number of registers to use per step
  1041. #ifdef GGML_SIMD
  1042. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1043. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1044. #endif
  1045. //
  1046. // fundamental operations
  1047. //
  1048. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1049. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1050. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1051. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1052. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1053. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1054. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1055. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1056. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1057. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1058. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1059. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1060. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1061. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1062. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1063. #ifdef GGML_SIMD
  1064. float sumf = 0.0f;
  1065. const int np = (n & ~(GGML_F32_STEP - 1));
  1066. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1067. GGML_F32_VEC ax[GGML_F32_ARR];
  1068. GGML_F32_VEC ay[GGML_F32_ARR];
  1069. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1070. for (int j = 0; j < GGML_F32_ARR; j++) {
  1071. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1072. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1073. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1074. }
  1075. }
  1076. // reduce sum0..sum3 to sum0
  1077. GGML_F32_VEC_REDUCE(sumf, sum);
  1078. // leftovers
  1079. for (int i = np; i < n; ++i) {
  1080. sumf += x[i]*y[i];
  1081. }
  1082. #else
  1083. // scalar
  1084. ggml_float sumf = 0.0;
  1085. for (int i = 0; i < n; ++i) {
  1086. sumf += (ggml_float)(x[i]*y[i]);
  1087. }
  1088. #endif
  1089. *s = sumf;
  1090. }
  1091. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1092. ggml_float sumf = 0.0;
  1093. #if defined(GGML_SIMD)
  1094. const int np = (n & ~(GGML_F16_STEP - 1));
  1095. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1096. GGML_F16_VEC ax[GGML_F16_ARR];
  1097. GGML_F16_VEC ay[GGML_F16_ARR];
  1098. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1099. for (int j = 0; j < GGML_F16_ARR; j++) {
  1100. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1101. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1102. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1103. }
  1104. }
  1105. // reduce sum0..sum3 to sum0
  1106. GGML_F16_VEC_REDUCE(sumf, sum);
  1107. // leftovers
  1108. for (int i = np; i < n; ++i) {
  1109. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1110. }
  1111. #else
  1112. for (int i = 0; i < n; ++i) {
  1113. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1114. }
  1115. #endif
  1116. *s = sumf;
  1117. }
  1118. // compute GGML_VEC_DOT_UNROLL dot products at once
  1119. // xs - x row stride in bytes
  1120. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1121. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1122. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1123. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1124. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1125. }
  1126. #if defined(GGML_SIMD)
  1127. const int np = (n & ~(GGML_F16_STEP - 1));
  1128. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1129. GGML_F16_VEC ax[GGML_F16_ARR];
  1130. GGML_F16_VEC ay[GGML_F16_ARR];
  1131. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1132. for (int j = 0; j < GGML_F16_ARR; j++) {
  1133. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1134. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1135. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1136. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1137. }
  1138. }
  1139. }
  1140. // reduce sum0..sum3 to sum0
  1141. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1142. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1143. }
  1144. // leftovers
  1145. for (int i = np; i < n; ++i) {
  1146. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1147. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1148. }
  1149. }
  1150. #else
  1151. for (int i = 0; i < n; ++i) {
  1152. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1153. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1154. }
  1155. }
  1156. #endif
  1157. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1158. s[i] = sumf[i];
  1159. }
  1160. }
  1161. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1162. #if defined(GGML_SIMD)
  1163. const int np = (n & ~(GGML_F32_STEP - 1));
  1164. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1165. GGML_F32_VEC ax[GGML_F32_ARR];
  1166. GGML_F32_VEC ay[GGML_F32_ARR];
  1167. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1168. for (int j = 0; j < GGML_F32_ARR; j++) {
  1169. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1170. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1171. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1172. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1173. }
  1174. }
  1175. // leftovers
  1176. for (int i = np; i < n; ++i) {
  1177. y[i] += x[i]*v;
  1178. }
  1179. #else
  1180. // scalar
  1181. for (int i = 0; i < n; ++i) {
  1182. y[i] += x[i]*v;
  1183. }
  1184. #endif
  1185. }
  1186. // xs and vs are byte strides of x and v
  1187. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1188. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1189. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1190. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1191. x[i] = (const float *) ((const char *) xv + i*xs);
  1192. v[i] = (const float *) ((const char *) vv + i*vs);
  1193. }
  1194. #if defined(GGML_SIMD)
  1195. const int np = (n & ~(GGML_F32_STEP - 1));
  1196. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1197. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1198. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1199. }
  1200. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1201. GGML_F32_VEC ay[GGML_F32_ARR];
  1202. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1203. for (int j = 0; j < GGML_F32_ARR; j++) {
  1204. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1205. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1206. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1207. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1208. }
  1209. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1210. }
  1211. }
  1212. // leftovers
  1213. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1214. for (int i = np; i < n; ++i) {
  1215. y[i] += x[k][i]*v[k][0];
  1216. }
  1217. }
  1218. #else
  1219. // scalar
  1220. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1221. for (int i = 0; i < n; ++i) {
  1222. y[i] += x[k][i]*v[k][0];
  1223. }
  1224. }
  1225. #endif
  1226. }
  1227. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1228. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1229. #if defined(GGML_USE_ACCELERATE)
  1230. vDSP_vsmul(y, 1, &v, y, 1, n);
  1231. #elif defined(GGML_SIMD)
  1232. const int np = (n & ~(GGML_F32_STEP - 1));
  1233. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1234. GGML_F32_VEC ay[GGML_F32_ARR];
  1235. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1236. for (int j = 0; j < GGML_F32_ARR; j++) {
  1237. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1238. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1239. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1240. }
  1241. }
  1242. // leftovers
  1243. for (int i = np; i < n; ++i) {
  1244. y[i] *= v;
  1245. }
  1246. #else
  1247. // scalar
  1248. for (int i = 0; i < n; ++i) {
  1249. y[i] *= v;
  1250. }
  1251. #endif
  1252. }
  1253. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1254. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1255. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1256. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1257. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1258. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1259. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1260. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1261. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1262. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1263. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1264. // TODO: optimize performance
  1265. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1266. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1267. static const float GELU_COEF_A = 0.044715f;
  1268. static const float GELU_QUICK_COEF = -1.702f;
  1269. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1270. inline static float ggml_gelu_f32(float x) {
  1271. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1272. }
  1273. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1274. const uint16_t * i16 = (const uint16_t *) x;
  1275. for (int i = 0; i < n; ++i) {
  1276. y[i] = ggml_table_gelu_f16[i16[i]];
  1277. }
  1278. }
  1279. #ifdef GGML_GELU_FP16
  1280. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1281. uint16_t t;
  1282. for (int i = 0; i < n; ++i) {
  1283. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1284. memcpy(&t, &fp16, sizeof(uint16_t));
  1285. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1286. }
  1287. }
  1288. #else
  1289. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1290. for (int i = 0; i < n; ++i) {
  1291. y[i] = ggml_gelu_f32(x[i]);
  1292. }
  1293. }
  1294. #endif
  1295. inline static float ggml_gelu_quick_f32(float x) {
  1296. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1297. }
  1298. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1299. // const uint16_t * i16 = (const uint16_t *) x;
  1300. // for (int i = 0; i < n; ++i) {
  1301. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1302. // }
  1303. //}
  1304. #ifdef GGML_GELU_QUICK_FP16
  1305. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1306. uint16_t t;
  1307. for (int i = 0; i < n; ++i) {
  1308. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1309. memcpy(&t, &fp16, sizeof(uint16_t));
  1310. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1311. }
  1312. }
  1313. #else
  1314. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1315. for (int i = 0; i < n; ++i) {
  1316. y[i] = ggml_gelu_quick_f32(x[i]);
  1317. }
  1318. }
  1319. #endif
  1320. // Sigmoid Linear Unit (SiLU) function
  1321. inline static float ggml_silu_f32(float x) {
  1322. return x/(1.0f + expf(-x));
  1323. }
  1324. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1325. // const uint16_t * i16 = (const uint16_t *) x;
  1326. // for (int i = 0; i < n; ++i) {
  1327. // y[i] = ggml_table_silu_f16[i16[i]];
  1328. // }
  1329. //}
  1330. #ifdef GGML_SILU_FP16
  1331. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1332. uint16_t t;
  1333. for (int i = 0; i < n; ++i) {
  1334. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1335. memcpy(&t, &fp16, sizeof(uint16_t));
  1336. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1337. }
  1338. }
  1339. #else
  1340. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1341. for (int i = 0; i < n; ++i) {
  1342. y[i] = ggml_silu_f32(x[i]);
  1343. }
  1344. }
  1345. #endif
  1346. inline static float ggml_silu_backward_f32(float x, float dy) {
  1347. const float s = 1.0f/(1.0f + expf(-x));
  1348. return dy*s*(1.0f + x*(1.0f - s));
  1349. }
  1350. #ifdef GGML_SILU_FP16
  1351. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1352. for (int i = 0; i < n; ++i) {
  1353. // we did not use x[i] to compute forward silu but its f16 equivalent
  1354. // take derivative at f16 of x[i]:
  1355. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1356. float usedx = GGML_FP16_TO_FP32(fp16);
  1357. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1358. }
  1359. }
  1360. #else
  1361. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1362. for (int i = 0; i < n; ++i) {
  1363. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1364. }
  1365. }
  1366. #endif
  1367. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1368. #ifndef GGML_USE_ACCELERATE
  1369. ggml_float sum = 0.0;
  1370. for (int i = 0; i < n; ++i) {
  1371. sum += (ggml_float)x[i];
  1372. }
  1373. *s = sum;
  1374. #else
  1375. vDSP_sve(x, 1, s, n);
  1376. #endif
  1377. }
  1378. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1379. ggml_float sum = 0.0;
  1380. for (int i = 0; i < n; ++i) {
  1381. sum += (ggml_float)x[i];
  1382. }
  1383. *s = sum;
  1384. }
  1385. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1386. float sum = 0.0f;
  1387. for (int i = 0; i < n; ++i) {
  1388. sum += GGML_FP16_TO_FP32(x[i]);
  1389. }
  1390. *s = sum;
  1391. }
  1392. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1393. #ifndef GGML_USE_ACCELERATE
  1394. float max = -INFINITY;
  1395. for (int i = 0; i < n; ++i) {
  1396. max = MAX(max, x[i]);
  1397. }
  1398. *s = max;
  1399. #else
  1400. vDSP_maxv(x, 1, s, n);
  1401. #endif
  1402. }
  1403. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1404. ggml_vec_norm_f32(n, s, x);
  1405. *s = 1.f/(*s);
  1406. }
  1407. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1408. float max = -INFINITY;
  1409. int idx = 0;
  1410. for (int i = 0; i < n; ++i) {
  1411. max = MAX(max, x[i]);
  1412. if (max == x[i]) { idx = i; }
  1413. }
  1414. *s = idx;
  1415. }
  1416. //
  1417. // data types
  1418. //
  1419. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1420. "NONE",
  1421. "DUP",
  1422. "ADD",
  1423. "ADD1",
  1424. "ACC",
  1425. "SUB",
  1426. "MUL",
  1427. "DIV",
  1428. "SQR",
  1429. "SQRT",
  1430. "LOG",
  1431. "SUM",
  1432. "SUM_ROWS",
  1433. "MEAN",
  1434. "ARGMAX",
  1435. "REPEAT",
  1436. "REPEAT_BACK",
  1437. "CONCAT",
  1438. "SILU_BACK",
  1439. "NORM",
  1440. "RMS_NORM",
  1441. "RMS_NORM_BACK",
  1442. "GROUP_NORM",
  1443. "MUL_MAT",
  1444. "MUL_MAT_ID",
  1445. "OUT_PROD",
  1446. "SCALE",
  1447. "SET",
  1448. "CPY",
  1449. "CONT",
  1450. "RESHAPE",
  1451. "VIEW",
  1452. "PERMUTE",
  1453. "TRANSPOSE",
  1454. "GET_ROWS",
  1455. "GET_ROWS_BACK",
  1456. "DIAG",
  1457. "DIAG_MASK_INF",
  1458. "DIAG_MASK_ZERO",
  1459. "SOFT_MAX",
  1460. "SOFT_MAX_BACK",
  1461. "ROPE",
  1462. "ROPE_BACK",
  1463. "ALIBI",
  1464. "CLAMP",
  1465. "CONV_TRANSPOSE_1D",
  1466. "IM2COL",
  1467. "CONV_TRANSPOSE_2D",
  1468. "POOL_1D",
  1469. "POOL_2D",
  1470. "UPSCALE",
  1471. "PAD",
  1472. "ARGSORT",
  1473. "LEAKY_RELU",
  1474. "FLASH_ATTN",
  1475. "FLASH_FF",
  1476. "FLASH_ATTN_BACK",
  1477. "WIN_PART",
  1478. "WIN_UNPART",
  1479. "GET_REL_POS",
  1480. "ADD_REL_POS",
  1481. "UNARY",
  1482. "MAP_UNARY",
  1483. "MAP_BINARY",
  1484. "MAP_CUSTOM1_F32",
  1485. "MAP_CUSTOM2_F32",
  1486. "MAP_CUSTOM3_F32",
  1487. "MAP_CUSTOM1",
  1488. "MAP_CUSTOM2",
  1489. "MAP_CUSTOM3",
  1490. "CROSS_ENTROPY_LOSS",
  1491. "CROSS_ENTROPY_LOSS_BACK",
  1492. };
  1493. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1494. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1495. "none",
  1496. "x",
  1497. "x+y",
  1498. "x+y",
  1499. "view(x,nb,offset)+=y->x",
  1500. "x-y",
  1501. "x*y",
  1502. "x/y",
  1503. "x^2",
  1504. "√x",
  1505. "log(x)",
  1506. "Σx",
  1507. "Σx_k",
  1508. "Σx/n",
  1509. "argmax(x)",
  1510. "repeat(x)",
  1511. "repeat_back(x)",
  1512. "concat(x, y)",
  1513. "silu_back(x)",
  1514. "norm(x)",
  1515. "rms_norm(x)",
  1516. "rms_norm_back(x)",
  1517. "group_norm(x)",
  1518. "X*Y",
  1519. "X[i]*Y",
  1520. "X*Y",
  1521. "x*v",
  1522. "y-\\>view(x)",
  1523. "x-\\>y",
  1524. "cont(x)",
  1525. "reshape(x)",
  1526. "view(x)",
  1527. "permute(x)",
  1528. "transpose(x)",
  1529. "get_rows(x)",
  1530. "get_rows_back(x)",
  1531. "diag(x)",
  1532. "diag_mask_inf(x)",
  1533. "diag_mask_zero(x)",
  1534. "soft_max(x)",
  1535. "soft_max_back(x)",
  1536. "rope(x)",
  1537. "rope_back(x)",
  1538. "alibi(x)",
  1539. "clamp(x)",
  1540. "conv_transpose_1d(x)",
  1541. "im2col(x)",
  1542. "conv_transpose_2d(x)",
  1543. "pool_1d(x)",
  1544. "pool_2d(x)",
  1545. "upscale(x)",
  1546. "pad(x)",
  1547. "argsort(x)",
  1548. "leaky_relu(x)",
  1549. "flash_attn(x)",
  1550. "flash_ff(x)",
  1551. "flash_attn_back(x)",
  1552. "win_part(x)",
  1553. "win_unpart(x)",
  1554. "get_rel_pos(x)",
  1555. "add_rel_pos(x)",
  1556. "unary(x)",
  1557. "f(x)",
  1558. "f(x,y)",
  1559. "custom_f32(x)",
  1560. "custom_f32(x,y)",
  1561. "custom_f32(x,y,z)",
  1562. "custom(x)",
  1563. "custom(x,y)",
  1564. "custom(x,y,z)",
  1565. "cross_entropy_loss(x,y)",
  1566. "cross_entropy_loss_back(x,y)",
  1567. };
  1568. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1569. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1570. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1571. "ABS",
  1572. "SGN",
  1573. "NEG",
  1574. "STEP",
  1575. "TANH",
  1576. "ELU",
  1577. "RELU",
  1578. "GELU",
  1579. "GELU_QUICK",
  1580. "SILU",
  1581. "HARDSWISH",
  1582. "HARDSIGMOID",
  1583. };
  1584. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1585. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1586. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1587. // WARN:
  1588. // Mis-configuration can lead to problem that's hard to reason about:
  1589. // * At best it crash or talks nosense.
  1590. // * At worst it talks slightly difference but hard to perceive.
  1591. //
  1592. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1593. // Take care about compile options (e.g., GGML_USE_xxx).
  1594. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1595. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1596. static void ggml_setup_op_has_task_pass(void) {
  1597. { // INIT
  1598. bool * p = GGML_OP_HAS_INIT;
  1599. p[GGML_OP_ACC ] = true;
  1600. p[GGML_OP_MUL_MAT ] = true;
  1601. p[GGML_OP_MUL_MAT_ID ] = true;
  1602. p[GGML_OP_OUT_PROD ] = true;
  1603. p[GGML_OP_SET ] = true;
  1604. p[GGML_OP_GET_ROWS_BACK ] = true;
  1605. p[GGML_OP_DIAG_MASK_INF ] = true;
  1606. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1607. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1608. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1609. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1610. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1611. p[GGML_OP_ADD_REL_POS ] = true;
  1612. }
  1613. { // FINALIZE
  1614. bool * p = GGML_OP_HAS_FINALIZE;
  1615. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1616. }
  1617. }
  1618. //
  1619. // ggml context
  1620. //
  1621. struct ggml_context {
  1622. size_t mem_size;
  1623. void * mem_buffer;
  1624. bool mem_buffer_owned;
  1625. bool no_alloc;
  1626. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1627. int n_objects;
  1628. struct ggml_object * objects_begin;
  1629. struct ggml_object * objects_end;
  1630. struct ggml_scratch scratch;
  1631. struct ggml_scratch scratch_save;
  1632. };
  1633. struct ggml_context_container {
  1634. bool used;
  1635. struct ggml_context context;
  1636. };
  1637. //
  1638. // NUMA support
  1639. //
  1640. #define GGML_NUMA_MAX_NODES 8
  1641. #define GGML_NUMA_MAX_CPUS 512
  1642. struct ggml_numa_node {
  1643. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1644. uint32_t n_cpus;
  1645. };
  1646. struct ggml_numa_nodes {
  1647. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1648. uint32_t n_nodes;
  1649. uint32_t total_cpus; // hardware threads on system
  1650. };
  1651. //
  1652. // ggml state
  1653. //
  1654. struct ggml_state {
  1655. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1656. struct ggml_numa_nodes numa;
  1657. };
  1658. // global state
  1659. static struct ggml_state g_state;
  1660. static atomic_int g_state_barrier = 0;
  1661. // barrier via spin lock
  1662. inline static void ggml_critical_section_start(void) {
  1663. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1664. while (processing > 0) {
  1665. // wait for other threads to finish
  1666. atomic_fetch_sub(&g_state_barrier, 1);
  1667. sched_yield(); // TODO: reconsider this
  1668. processing = atomic_fetch_add(&g_state_barrier, 1);
  1669. }
  1670. }
  1671. // TODO: make this somehow automatically executed
  1672. // some sort of "sentry" mechanism
  1673. inline static void ggml_critical_section_end(void) {
  1674. atomic_fetch_sub(&g_state_barrier, 1);
  1675. }
  1676. void ggml_numa_init(void) {
  1677. if (g_state.numa.n_nodes > 0) {
  1678. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1679. return;
  1680. }
  1681. #ifdef __linux__
  1682. struct stat st;
  1683. char path[256];
  1684. int rv;
  1685. // enumerate nodes
  1686. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1687. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1688. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1689. if (stat(path, &st) != 0) { break; }
  1690. ++g_state.numa.n_nodes;
  1691. }
  1692. // enumerate CPUs
  1693. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1694. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1695. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1696. if (stat(path, &st) != 0) { break; }
  1697. ++g_state.numa.total_cpus;
  1698. }
  1699. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1700. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  1701. g_state.numa.n_nodes = 0;
  1702. return;
  1703. }
  1704. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1705. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1706. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1707. node->n_cpus = 0;
  1708. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1709. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1710. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1711. if (stat(path, &st) == 0) {
  1712. node->cpus[node->n_cpus++] = c;
  1713. GGML_PRINT_DEBUG(" %u", c);
  1714. }
  1715. }
  1716. GGML_PRINT_DEBUG("\n");
  1717. }
  1718. if (ggml_is_numa()) {
  1719. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1720. if (fptr != NULL) {
  1721. char buf[42];
  1722. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1723. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1724. }
  1725. fclose(fptr);
  1726. }
  1727. }
  1728. #else
  1729. // TODO
  1730. #endif
  1731. }
  1732. bool ggml_is_numa(void) {
  1733. return g_state.numa.n_nodes > 1;
  1734. }
  1735. ////////////////////////////////////////////////////////////////////////////////
  1736. void ggml_print_object(const struct ggml_object * obj) {
  1737. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1738. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1739. }
  1740. void ggml_print_objects(const struct ggml_context * ctx) {
  1741. struct ggml_object * obj = ctx->objects_begin;
  1742. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1743. while (obj != NULL) {
  1744. ggml_print_object(obj);
  1745. obj = obj->next;
  1746. }
  1747. GGML_PRINT("%s: --- end ---\n", __func__);
  1748. }
  1749. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1750. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1751. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1752. }
  1753. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1754. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1755. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1756. }
  1757. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1758. size_t nbytes;
  1759. size_t blck_size = ggml_blck_size(tensor->type);
  1760. if (blck_size == 1) {
  1761. nbytes = ggml_type_size(tensor->type);
  1762. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1763. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1764. }
  1765. }
  1766. else {
  1767. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1768. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1769. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1770. }
  1771. }
  1772. return nbytes;
  1773. }
  1774. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1775. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1776. }
  1777. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  1778. return type_traits[type].blck_size;
  1779. }
  1780. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  1781. return type_traits[type].type_size;
  1782. }
  1783. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  1784. assert(ne % ggml_blck_size(type) == 0);
  1785. return ggml_type_size(type)*ne/ggml_blck_size(type);
  1786. }
  1787. double ggml_type_sizef(enum ggml_type type) {
  1788. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  1789. }
  1790. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  1791. return type_traits[type].type_name;
  1792. }
  1793. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  1794. return type_traits[type].is_quantized;
  1795. }
  1796. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  1797. return GGML_OP_NAME[op];
  1798. }
  1799. const char * ggml_op_symbol(enum ggml_op op) {
  1800. return GGML_OP_SYMBOL[op];
  1801. }
  1802. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1803. return GGML_UNARY_OP_NAME[op];
  1804. }
  1805. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  1806. if (t->op == GGML_OP_UNARY) {
  1807. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1808. return ggml_unary_op_name(uop);
  1809. }
  1810. else {
  1811. return ggml_op_name(t->op);
  1812. }
  1813. }
  1814. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1815. return ggml_type_size(tensor->type);
  1816. }
  1817. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1818. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1819. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1820. }
  1821. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1822. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1823. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1824. }
  1825. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1826. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1827. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1828. }
  1829. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  1830. return tensor->ne[3] == 1;
  1831. }
  1832. int ggml_n_dims(const struct ggml_tensor * tensor) {
  1833. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  1834. if (tensor->ne[i] > 1) {
  1835. return i + 1;
  1836. }
  1837. }
  1838. return 1;
  1839. }
  1840. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1841. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1842. return (t0->ne[0] == t1->ne[0]) &&
  1843. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1844. (t1->ne[3]%t0->ne[3] == 0);
  1845. }
  1846. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1847. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1848. return (t0->ne[1] == t1->ne[1]) &&
  1849. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1850. (t1->ne[3]%t0->ne[3] == 0);
  1851. }
  1852. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1853. enum ggml_type wtype = GGML_TYPE_COUNT;
  1854. switch (ftype) {
  1855. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1856. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1857. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1858. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1859. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1860. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1861. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1862. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1863. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1864. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1865. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1866. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1867. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  1868. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  1869. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  1870. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1871. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1872. }
  1873. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1874. return wtype;
  1875. }
  1876. size_t ggml_tensor_overhead(void) {
  1877. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1878. }
  1879. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1880. return tensor->nb[0] > tensor->nb[1];
  1881. }
  1882. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1883. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1884. return
  1885. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1886. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1887. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1888. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1889. }
  1890. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  1891. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1892. return
  1893. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1894. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1895. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1896. }
  1897. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  1898. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1899. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  1900. }
  1901. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1902. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1903. return
  1904. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1905. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1906. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1907. }
  1908. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1909. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1910. return
  1911. (t0->ne[0] == t1->ne[0] ) &&
  1912. (t0->ne[1] == t1->ne[1] ) &&
  1913. (t0->ne[2] == t1->ne[2] ) &&
  1914. (t0->ne[3] == t1->ne[3] );
  1915. }
  1916. // check if t1 can be represented as a repeatition of t0
  1917. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1918. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1919. return
  1920. (t1->ne[0]%t0->ne[0] == 0) &&
  1921. (t1->ne[1]%t0->ne[1] == 0) &&
  1922. (t1->ne[2]%t0->ne[2] == 0) &&
  1923. (t1->ne[3]%t0->ne[3] == 0);
  1924. }
  1925. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1926. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1927. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  1928. }
  1929. static inline int ggml_up32(int n) {
  1930. return (n + 31) & ~31;
  1931. }
  1932. //static inline int ggml_up64(int n) {
  1933. // return (n + 63) & ~63;
  1934. //}
  1935. static inline int ggml_up(int n, int m) {
  1936. // assert m is a power of 2
  1937. GGML_ASSERT((m & (m - 1)) == 0);
  1938. return (n + m - 1) & ~(m - 1);
  1939. }
  1940. // assert that pointer is aligned to GGML_MEM_ALIGN
  1941. #define ggml_assert_aligned(ptr) \
  1942. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  1943. ////////////////////////////////////////////////////////////////////////////////
  1944. struct ggml_context * ggml_init(struct ggml_init_params params) {
  1945. // make this function thread safe
  1946. ggml_critical_section_start();
  1947. static bool is_first_call = true;
  1948. if (is_first_call) {
  1949. // initialize time system (required on Windows)
  1950. ggml_time_init();
  1951. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  1952. {
  1953. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1954. ggml_fp16_t ii;
  1955. for (int i = 0; i < (1 << 16); ++i) {
  1956. uint16_t ui = i;
  1957. memcpy(&ii, &ui, sizeof(ii));
  1958. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  1959. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  1960. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  1961. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  1962. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  1963. }
  1964. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1965. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1966. }
  1967. // initialize g_state
  1968. {
  1969. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1970. g_state = (struct ggml_state) {
  1971. /*.contexts =*/ { { 0 } },
  1972. /*.numa =*/ {
  1973. .n_nodes = 0,
  1974. .total_cpus = 0,
  1975. },
  1976. };
  1977. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  1978. g_state.contexts[i].used = false;
  1979. }
  1980. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1981. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1982. }
  1983. #if defined(GGML_USE_CUBLAS)
  1984. ggml_init_cublas();
  1985. #elif defined(GGML_USE_CLBLAST)
  1986. ggml_cl_init();
  1987. #elif defined(GGML_USE_VULKAN)
  1988. ggml_vk_init();
  1989. #elif defined(GGML_USE_SYCL)
  1990. ggml_init_sycl();
  1991. #endif
  1992. ggml_setup_op_has_task_pass();
  1993. is_first_call = false;
  1994. }
  1995. // find non-used context in g_state
  1996. struct ggml_context * ctx = NULL;
  1997. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1998. if (!g_state.contexts[i].used) {
  1999. g_state.contexts[i].used = true;
  2000. ctx = &g_state.contexts[i].context;
  2001. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2002. break;
  2003. }
  2004. }
  2005. if (ctx == NULL) {
  2006. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2007. ggml_critical_section_end();
  2008. return NULL;
  2009. }
  2010. // allow to call ggml_init with 0 size
  2011. if (params.mem_size == 0) {
  2012. params.mem_size = GGML_MEM_ALIGN;
  2013. }
  2014. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2015. *ctx = (struct ggml_context) {
  2016. /*.mem_size =*/ mem_size,
  2017. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2018. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2019. /*.no_alloc =*/ params.no_alloc,
  2020. /*.no_alloc_save =*/ params.no_alloc,
  2021. /*.n_objects =*/ 0,
  2022. /*.objects_begin =*/ NULL,
  2023. /*.objects_end =*/ NULL,
  2024. /*.scratch =*/ { 0, 0, NULL, },
  2025. /*.scratch_save =*/ { 0, 0, NULL, },
  2026. };
  2027. GGML_ASSERT(ctx->mem_buffer != NULL);
  2028. ggml_assert_aligned(ctx->mem_buffer);
  2029. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2030. ggml_critical_section_end();
  2031. return ctx;
  2032. }
  2033. void ggml_free(struct ggml_context * ctx) {
  2034. if (ctx == NULL) {
  2035. return;
  2036. }
  2037. // make this function thread safe
  2038. ggml_critical_section_start();
  2039. bool found = false;
  2040. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2041. if (&g_state.contexts[i].context == ctx) {
  2042. g_state.contexts[i].used = false;
  2043. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2044. __func__, i, ggml_used_mem(ctx));
  2045. if (ctx->mem_buffer_owned) {
  2046. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2047. }
  2048. found = true;
  2049. break;
  2050. }
  2051. }
  2052. if (!found) {
  2053. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2054. }
  2055. ggml_critical_section_end();
  2056. }
  2057. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2058. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2059. }
  2060. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2061. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2062. ctx->scratch = scratch;
  2063. return result;
  2064. }
  2065. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2066. return ctx->no_alloc;
  2067. }
  2068. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2069. ctx->no_alloc = no_alloc;
  2070. }
  2071. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2072. return ctx->mem_buffer;
  2073. }
  2074. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2075. return ctx->mem_size;
  2076. }
  2077. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2078. size_t max_size = 0;
  2079. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2080. size_t bytes = ggml_nbytes(tensor);
  2081. max_size = MAX(max_size, bytes);
  2082. }
  2083. return max_size;
  2084. }
  2085. // IMPORTANT:
  2086. // when creating "opt" tensors, always save and load the scratch buffer
  2087. // this is an error prone process, but it is necessary to support inplace
  2088. // operators when using scratch buffers
  2089. // TODO: implement a better way
  2090. static void ggml_scratch_save(struct ggml_context * ctx) {
  2091. // this is needed to allow opt tensors to store their data
  2092. // TODO: again, need to find a better way
  2093. ctx->no_alloc_save = ctx->no_alloc;
  2094. ctx->no_alloc = false;
  2095. ctx->scratch_save = ctx->scratch;
  2096. ctx->scratch.data = NULL;
  2097. }
  2098. static void ggml_scratch_load(struct ggml_context * ctx) {
  2099. ctx->no_alloc = ctx->no_alloc_save;
  2100. ctx->scratch = ctx->scratch_save;
  2101. }
  2102. ////////////////////////////////////////////////////////////////////////////////
  2103. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2104. // always insert objects at the end of the context's memory pool
  2105. struct ggml_object * obj_cur = ctx->objects_end;
  2106. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2107. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2108. const size_t cur_end = cur_offs + cur_size;
  2109. // align to GGML_MEM_ALIGN
  2110. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2111. char * const mem_buffer = ctx->mem_buffer;
  2112. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2113. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2114. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2115. __func__, cur_end + size_needed, ctx->mem_size);
  2116. assert(false);
  2117. return NULL;
  2118. }
  2119. *obj_new = (struct ggml_object) {
  2120. .offs = cur_end + GGML_OBJECT_SIZE,
  2121. .size = size_needed,
  2122. .next = NULL,
  2123. .type = type,
  2124. };
  2125. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2126. if (obj_cur != NULL) {
  2127. obj_cur->next = obj_new;
  2128. } else {
  2129. // this is the first object in this context
  2130. ctx->objects_begin = obj_new;
  2131. }
  2132. ctx->objects_end = obj_new;
  2133. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2134. return obj_new;
  2135. }
  2136. static struct ggml_tensor * ggml_new_tensor_impl(
  2137. struct ggml_context * ctx,
  2138. enum ggml_type type,
  2139. int n_dims,
  2140. const int64_t * ne,
  2141. struct ggml_tensor * view_src,
  2142. size_t view_offs) {
  2143. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2144. // find the base tensor and absolute offset
  2145. if (view_src != NULL && view_src->view_src != NULL) {
  2146. view_offs += view_src->view_offs;
  2147. view_src = view_src->view_src;
  2148. }
  2149. size_t data_size = ggml_row_size(type, ne[0]);
  2150. for (int i = 1; i < n_dims; i++) {
  2151. data_size *= ne[i];
  2152. }
  2153. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2154. void * data = view_src != NULL ? view_src->data : NULL;
  2155. if (data != NULL) {
  2156. data = (char *) data + view_offs;
  2157. }
  2158. size_t obj_alloc_size = 0;
  2159. if (view_src == NULL && !ctx->no_alloc) {
  2160. if (ctx->scratch.data != NULL) {
  2161. // allocate tensor data in the scratch buffer
  2162. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2163. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2164. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2165. assert(false);
  2166. return NULL;
  2167. }
  2168. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2169. ctx->scratch.offs += data_size;
  2170. } else {
  2171. // allocate tensor data in the context's memory pool
  2172. obj_alloc_size = data_size;
  2173. }
  2174. }
  2175. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2176. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2177. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2178. *result = (struct ggml_tensor) {
  2179. /*.type =*/ type,
  2180. /*.backend =*/ GGML_BACKEND_CPU,
  2181. /*.buffer =*/ NULL,
  2182. /*.ne =*/ { 1, 1, 1, 1 },
  2183. /*.nb =*/ { 0, 0, 0, 0 },
  2184. /*.op =*/ GGML_OP_NONE,
  2185. /*.op_params =*/ { 0 },
  2186. /*.is_param =*/ false,
  2187. /*.grad =*/ NULL,
  2188. /*.src =*/ { NULL },
  2189. /*.perf_runs =*/ 0,
  2190. /*.perf_cycles =*/ 0,
  2191. /*.perf_time_us =*/ 0,
  2192. /*.view_src =*/ view_src,
  2193. /*.view_offs =*/ view_offs,
  2194. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2195. /*.name =*/ { 0 },
  2196. /*.extra =*/ NULL,
  2197. /*.padding =*/ { 0 },
  2198. };
  2199. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2200. //ggml_assert_aligned(result->data);
  2201. for (int i = 0; i < n_dims; i++) {
  2202. result->ne[i] = ne[i];
  2203. }
  2204. result->nb[0] = ggml_type_size(type);
  2205. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2206. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2207. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2208. }
  2209. ctx->n_objects++;
  2210. return result;
  2211. }
  2212. struct ggml_tensor * ggml_new_tensor(
  2213. struct ggml_context * ctx,
  2214. enum ggml_type type,
  2215. int n_dims,
  2216. const int64_t * ne) {
  2217. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2218. }
  2219. struct ggml_tensor * ggml_new_tensor_1d(
  2220. struct ggml_context * ctx,
  2221. enum ggml_type type,
  2222. int64_t ne0) {
  2223. return ggml_new_tensor(ctx, type, 1, &ne0);
  2224. }
  2225. struct ggml_tensor * ggml_new_tensor_2d(
  2226. struct ggml_context * ctx,
  2227. enum ggml_type type,
  2228. int64_t ne0,
  2229. int64_t ne1) {
  2230. const int64_t ne[2] = { ne0, ne1 };
  2231. return ggml_new_tensor(ctx, type, 2, ne);
  2232. }
  2233. struct ggml_tensor * ggml_new_tensor_3d(
  2234. struct ggml_context * ctx,
  2235. enum ggml_type type,
  2236. int64_t ne0,
  2237. int64_t ne1,
  2238. int64_t ne2) {
  2239. const int64_t ne[3] = { ne0, ne1, ne2 };
  2240. return ggml_new_tensor(ctx, type, 3, ne);
  2241. }
  2242. struct ggml_tensor * ggml_new_tensor_4d(
  2243. struct ggml_context * ctx,
  2244. enum ggml_type type,
  2245. int64_t ne0,
  2246. int64_t ne1,
  2247. int64_t ne2,
  2248. int64_t ne3) {
  2249. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2250. return ggml_new_tensor(ctx, type, 4, ne);
  2251. }
  2252. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2253. ggml_scratch_save(ctx);
  2254. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2255. ggml_scratch_load(ctx);
  2256. ggml_set_i32(result, value);
  2257. return result;
  2258. }
  2259. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2260. ggml_scratch_save(ctx);
  2261. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2262. ggml_scratch_load(ctx);
  2263. ggml_set_f32(result, value);
  2264. return result;
  2265. }
  2266. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2267. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2268. }
  2269. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2270. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2271. assert(params_size <= GGML_MAX_OP_PARAMS);
  2272. memcpy(tensor->op_params, params, params_size);
  2273. }
  2274. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2275. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2276. return ((const int32_t *)(tensor->op_params))[i];
  2277. }
  2278. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2279. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2280. ((int32_t *)(tensor->op_params))[i] = value;
  2281. }
  2282. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2283. memset(tensor->data, 0, ggml_nbytes(tensor));
  2284. return tensor;
  2285. }
  2286. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2287. const int n = ggml_nrows(tensor);
  2288. const int nc = tensor->ne[0];
  2289. const size_t n1 = tensor->nb[1];
  2290. char * const data = tensor->data;
  2291. switch (tensor->type) {
  2292. case GGML_TYPE_I8:
  2293. {
  2294. assert(tensor->nb[0] == sizeof(int8_t));
  2295. for (int i = 0; i < n; i++) {
  2296. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2297. }
  2298. } break;
  2299. case GGML_TYPE_I16:
  2300. {
  2301. assert(tensor->nb[0] == sizeof(int16_t));
  2302. for (int i = 0; i < n; i++) {
  2303. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2304. }
  2305. } break;
  2306. case GGML_TYPE_I32:
  2307. {
  2308. assert(tensor->nb[0] == sizeof(int32_t));
  2309. for (int i = 0; i < n; i++) {
  2310. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2311. }
  2312. } break;
  2313. case GGML_TYPE_F16:
  2314. {
  2315. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2316. for (int i = 0; i < n; i++) {
  2317. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2318. }
  2319. } break;
  2320. case GGML_TYPE_F32:
  2321. {
  2322. assert(tensor->nb[0] == sizeof(float));
  2323. for (int i = 0; i < n; i++) {
  2324. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2325. }
  2326. } break;
  2327. default:
  2328. {
  2329. GGML_ASSERT(false);
  2330. } break;
  2331. }
  2332. return tensor;
  2333. }
  2334. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2335. const int n = ggml_nrows(tensor);
  2336. const int nc = tensor->ne[0];
  2337. const size_t n1 = tensor->nb[1];
  2338. char * const data = tensor->data;
  2339. switch (tensor->type) {
  2340. case GGML_TYPE_I8:
  2341. {
  2342. assert(tensor->nb[0] == sizeof(int8_t));
  2343. for (int i = 0; i < n; i++) {
  2344. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2345. }
  2346. } break;
  2347. case GGML_TYPE_I16:
  2348. {
  2349. assert(tensor->nb[0] == sizeof(int16_t));
  2350. for (int i = 0; i < n; i++) {
  2351. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2352. }
  2353. } break;
  2354. case GGML_TYPE_I32:
  2355. {
  2356. assert(tensor->nb[0] == sizeof(int32_t));
  2357. for (int i = 0; i < n; i++) {
  2358. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2359. }
  2360. } break;
  2361. case GGML_TYPE_F16:
  2362. {
  2363. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2364. for (int i = 0; i < n; i++) {
  2365. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2366. }
  2367. } break;
  2368. case GGML_TYPE_F32:
  2369. {
  2370. assert(tensor->nb[0] == sizeof(float));
  2371. for (int i = 0; i < n; i++) {
  2372. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2373. }
  2374. } break;
  2375. default:
  2376. {
  2377. GGML_ASSERT(false);
  2378. } break;
  2379. }
  2380. return tensor;
  2381. }
  2382. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2383. const int64_t ne2 = tensor->ne[2];
  2384. const int64_t ne1 = tensor->ne[1];
  2385. const int64_t ne0 = tensor->ne[0];
  2386. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2387. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2388. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2389. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2390. if (i0) {
  2391. * i0 = i0_;
  2392. }
  2393. if (i1) {
  2394. * i1 = i1_;
  2395. }
  2396. if (i2) {
  2397. * i2 = i2_;
  2398. }
  2399. if (i3) {
  2400. * i3 = i3_;
  2401. }
  2402. }
  2403. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2404. if (!ggml_is_contiguous(tensor)) {
  2405. int64_t id[4] = { 0, 0, 0, 0 };
  2406. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2407. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2408. }
  2409. switch (tensor->type) {
  2410. case GGML_TYPE_I8:
  2411. {
  2412. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2413. return ((int8_t *)(tensor->data))[i];
  2414. }
  2415. case GGML_TYPE_I16:
  2416. {
  2417. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2418. return ((int16_t *)(tensor->data))[i];
  2419. }
  2420. case GGML_TYPE_I32:
  2421. {
  2422. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2423. return ((int32_t *)(tensor->data))[i];
  2424. }
  2425. case GGML_TYPE_F16:
  2426. {
  2427. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2428. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2429. }
  2430. case GGML_TYPE_F32:
  2431. {
  2432. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2433. return ((float *)(tensor->data))[i];
  2434. }
  2435. default:
  2436. {
  2437. GGML_ASSERT(false);
  2438. }
  2439. }
  2440. return 0.0f;
  2441. }
  2442. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2443. if (!ggml_is_contiguous(tensor)) {
  2444. int64_t id[4] = { 0, 0, 0, 0 };
  2445. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2446. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2447. return;
  2448. }
  2449. switch (tensor->type) {
  2450. case GGML_TYPE_I8:
  2451. {
  2452. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2453. ((int8_t *)(tensor->data))[i] = value;
  2454. } break;
  2455. case GGML_TYPE_I16:
  2456. {
  2457. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2458. ((int16_t *)(tensor->data))[i] = value;
  2459. } break;
  2460. case GGML_TYPE_I32:
  2461. {
  2462. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2463. ((int32_t *)(tensor->data))[i] = value;
  2464. } break;
  2465. case GGML_TYPE_F16:
  2466. {
  2467. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2468. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2469. } break;
  2470. case GGML_TYPE_F32:
  2471. {
  2472. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2473. ((float *)(tensor->data))[i] = value;
  2474. } break;
  2475. default:
  2476. {
  2477. GGML_ASSERT(false);
  2478. } break;
  2479. }
  2480. }
  2481. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2482. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2483. switch (tensor->type) {
  2484. case GGML_TYPE_I8:
  2485. return ((int8_t *) data)[0];
  2486. case GGML_TYPE_I16:
  2487. return ((int16_t *) data)[0];
  2488. case GGML_TYPE_I32:
  2489. return ((int32_t *) data)[0];
  2490. case GGML_TYPE_F16:
  2491. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2492. case GGML_TYPE_F32:
  2493. return ((float *) data)[0];
  2494. default:
  2495. GGML_ASSERT(false);
  2496. }
  2497. return 0.0f;
  2498. }
  2499. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2500. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2501. switch (tensor->type) {
  2502. case GGML_TYPE_I8:
  2503. {
  2504. ((int8_t *)(data))[0] = value;
  2505. } break;
  2506. case GGML_TYPE_I16:
  2507. {
  2508. ((int16_t *)(data))[0] = value;
  2509. } break;
  2510. case GGML_TYPE_I32:
  2511. {
  2512. ((int32_t *)(data))[0] = value;
  2513. } break;
  2514. case GGML_TYPE_F16:
  2515. {
  2516. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2517. } break;
  2518. case GGML_TYPE_F32:
  2519. {
  2520. ((float *)(data))[0] = value;
  2521. } break;
  2522. default:
  2523. {
  2524. GGML_ASSERT(false);
  2525. } break;
  2526. }
  2527. }
  2528. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2529. if (!ggml_is_contiguous(tensor)) {
  2530. int64_t id[4] = { 0, 0, 0, 0 };
  2531. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2532. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2533. }
  2534. switch (tensor->type) {
  2535. case GGML_TYPE_I8:
  2536. {
  2537. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2538. return ((int8_t *)(tensor->data))[i];
  2539. }
  2540. case GGML_TYPE_I16:
  2541. {
  2542. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2543. return ((int16_t *)(tensor->data))[i];
  2544. }
  2545. case GGML_TYPE_I32:
  2546. {
  2547. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2548. return ((int32_t *)(tensor->data))[i];
  2549. }
  2550. case GGML_TYPE_F16:
  2551. {
  2552. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2553. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2554. }
  2555. case GGML_TYPE_F32:
  2556. {
  2557. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2558. return ((float *)(tensor->data))[i];
  2559. }
  2560. default:
  2561. {
  2562. GGML_ASSERT(false);
  2563. }
  2564. }
  2565. return 0.0f;
  2566. }
  2567. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2568. if (!ggml_is_contiguous(tensor)) {
  2569. int64_t id[4] = { 0, 0, 0, 0 };
  2570. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2571. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2572. return;
  2573. }
  2574. switch (tensor->type) {
  2575. case GGML_TYPE_I8:
  2576. {
  2577. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2578. ((int8_t *)(tensor->data))[i] = value;
  2579. } break;
  2580. case GGML_TYPE_I16:
  2581. {
  2582. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2583. ((int16_t *)(tensor->data))[i] = value;
  2584. } break;
  2585. case GGML_TYPE_I32:
  2586. {
  2587. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2588. ((int32_t *)(tensor->data))[i] = value;
  2589. } break;
  2590. case GGML_TYPE_F16:
  2591. {
  2592. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2593. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2594. } break;
  2595. case GGML_TYPE_F32:
  2596. {
  2597. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2598. ((float *)(tensor->data))[i] = value;
  2599. } break;
  2600. default:
  2601. {
  2602. GGML_ASSERT(false);
  2603. } break;
  2604. }
  2605. }
  2606. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2607. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2608. switch (tensor->type) {
  2609. case GGML_TYPE_I8:
  2610. return ((int8_t *) data)[0];
  2611. case GGML_TYPE_I16:
  2612. return ((int16_t *) data)[0];
  2613. case GGML_TYPE_I32:
  2614. return ((int32_t *) data)[0];
  2615. case GGML_TYPE_F16:
  2616. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2617. case GGML_TYPE_F32:
  2618. return ((float *) data)[0];
  2619. default:
  2620. GGML_ASSERT(false);
  2621. }
  2622. return 0.0f;
  2623. }
  2624. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2625. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2626. switch (tensor->type) {
  2627. case GGML_TYPE_I8:
  2628. {
  2629. ((int8_t *)(data))[0] = value;
  2630. } break;
  2631. case GGML_TYPE_I16:
  2632. {
  2633. ((int16_t *)(data))[0] = value;
  2634. } break;
  2635. case GGML_TYPE_I32:
  2636. {
  2637. ((int32_t *)(data))[0] = value;
  2638. } break;
  2639. case GGML_TYPE_F16:
  2640. {
  2641. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2642. } break;
  2643. case GGML_TYPE_F32:
  2644. {
  2645. ((float *)(data))[0] = value;
  2646. } break;
  2647. default:
  2648. {
  2649. GGML_ASSERT(false);
  2650. } break;
  2651. }
  2652. }
  2653. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2654. return tensor->data;
  2655. }
  2656. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2657. assert(tensor->type == GGML_TYPE_F32);
  2658. return (float *)(tensor->data);
  2659. }
  2660. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2661. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2662. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2663. }
  2664. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2665. return tensor->name;
  2666. }
  2667. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2668. strncpy(tensor->name, name, sizeof(tensor->name));
  2669. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2670. return tensor;
  2671. }
  2672. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2673. va_list args;
  2674. va_start(args, fmt);
  2675. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2676. va_end(args);
  2677. return tensor;
  2678. }
  2679. struct ggml_tensor * ggml_view_tensor(
  2680. struct ggml_context * ctx,
  2681. struct ggml_tensor * src) {
  2682. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2683. ggml_format_name(result, "%s (view)", src->name);
  2684. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2685. result->nb[i] = src->nb[i];
  2686. }
  2687. return result;
  2688. }
  2689. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2690. struct ggml_object * obj = ctx->objects_begin;
  2691. char * const mem_buffer = ctx->mem_buffer;
  2692. while (obj != NULL) {
  2693. if (obj->type == GGML_OBJECT_TENSOR) {
  2694. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2695. }
  2696. obj = obj->next;
  2697. }
  2698. return NULL;
  2699. }
  2700. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2701. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2702. obj = obj->next;
  2703. char * const mem_buffer = ctx->mem_buffer;
  2704. while (obj != NULL) {
  2705. if (obj->type == GGML_OBJECT_TENSOR) {
  2706. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2707. }
  2708. obj = obj->next;
  2709. }
  2710. return NULL;
  2711. }
  2712. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2713. struct ggml_object * obj = ctx->objects_begin;
  2714. char * const mem_buffer = ctx->mem_buffer;
  2715. while (obj != NULL) {
  2716. if (obj->type == GGML_OBJECT_TENSOR) {
  2717. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2718. if (strcmp(cur->name, name) == 0) {
  2719. return cur;
  2720. }
  2721. }
  2722. obj = obj->next;
  2723. }
  2724. return NULL;
  2725. }
  2726. ////////////////////////////////////////////////////////////////////////////////
  2727. // ggml_dup
  2728. static struct ggml_tensor * ggml_dup_impl(
  2729. struct ggml_context * ctx,
  2730. struct ggml_tensor * a,
  2731. bool inplace) {
  2732. bool is_node = false;
  2733. if (!inplace && (a->grad)) {
  2734. is_node = true;
  2735. }
  2736. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2737. result->op = GGML_OP_DUP;
  2738. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2739. result->src[0] = a;
  2740. return result;
  2741. }
  2742. struct ggml_tensor * ggml_dup(
  2743. struct ggml_context * ctx,
  2744. struct ggml_tensor * a) {
  2745. return ggml_dup_impl(ctx, a, false);
  2746. }
  2747. struct ggml_tensor * ggml_dup_inplace(
  2748. struct ggml_context * ctx,
  2749. struct ggml_tensor * a) {
  2750. return ggml_dup_impl(ctx, a, true);
  2751. }
  2752. // ggml_add
  2753. static struct ggml_tensor * ggml_add_impl(
  2754. struct ggml_context * ctx,
  2755. struct ggml_tensor * a,
  2756. struct ggml_tensor * b,
  2757. bool inplace) {
  2758. GGML_ASSERT(ggml_can_repeat(b, a));
  2759. bool is_node = false;
  2760. if (!inplace && (a->grad || b->grad)) {
  2761. // TODO: support backward pass for broadcasting
  2762. GGML_ASSERT(ggml_are_same_shape(a, b));
  2763. is_node = true;
  2764. }
  2765. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2766. result->op = GGML_OP_ADD;
  2767. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2768. result->src[0] = a;
  2769. result->src[1] = b;
  2770. return result;
  2771. }
  2772. struct ggml_tensor * ggml_add(
  2773. struct ggml_context * ctx,
  2774. struct ggml_tensor * a,
  2775. struct ggml_tensor * b) {
  2776. return ggml_add_impl(ctx, a, b, false);
  2777. }
  2778. struct ggml_tensor * ggml_add_inplace(
  2779. struct ggml_context * ctx,
  2780. struct ggml_tensor * a,
  2781. struct ggml_tensor * b) {
  2782. return ggml_add_impl(ctx, a, b, true);
  2783. }
  2784. // ggml_add_cast
  2785. static struct ggml_tensor * ggml_add_cast_impl(
  2786. struct ggml_context * ctx,
  2787. struct ggml_tensor * a,
  2788. struct ggml_tensor * b,
  2789. enum ggml_type type) {
  2790. // TODO: support less-strict constraint
  2791. // GGML_ASSERT(ggml_can_repeat(b, a));
  2792. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2793. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2794. bool is_node = false;
  2795. if (a->grad || b->grad) {
  2796. // TODO: support backward pass for broadcasting
  2797. GGML_ASSERT(ggml_are_same_shape(a, b));
  2798. is_node = true;
  2799. }
  2800. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  2801. result->op = GGML_OP_ADD;
  2802. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  2803. result->src[0] = a;
  2804. result->src[1] = b;
  2805. return result;
  2806. }
  2807. struct ggml_tensor * ggml_add_cast(
  2808. struct ggml_context * ctx,
  2809. struct ggml_tensor * a,
  2810. struct ggml_tensor * b,
  2811. enum ggml_type type) {
  2812. return ggml_add_cast_impl(ctx, a, b, type);
  2813. }
  2814. // ggml_add1
  2815. static struct ggml_tensor * ggml_add1_impl(
  2816. struct ggml_context * ctx,
  2817. struct ggml_tensor * a,
  2818. struct ggml_tensor * b,
  2819. bool inplace) {
  2820. GGML_ASSERT(ggml_is_scalar(b));
  2821. GGML_ASSERT(ggml_is_padded_1d(a));
  2822. bool is_node = false;
  2823. if (a->grad || b->grad) {
  2824. is_node = true;
  2825. }
  2826. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2827. result->op = GGML_OP_ADD1;
  2828. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2829. result->src[0] = a;
  2830. result->src[1] = b;
  2831. return result;
  2832. }
  2833. struct ggml_tensor * ggml_add1(
  2834. struct ggml_context * ctx,
  2835. struct ggml_tensor * a,
  2836. struct ggml_tensor * b) {
  2837. return ggml_add1_impl(ctx, a, b, false);
  2838. }
  2839. struct ggml_tensor * ggml_add1_inplace(
  2840. struct ggml_context * ctx,
  2841. struct ggml_tensor * a,
  2842. struct ggml_tensor * b) {
  2843. return ggml_add1_impl(ctx, a, b, true);
  2844. }
  2845. // ggml_acc
  2846. static struct ggml_tensor * ggml_acc_impl(
  2847. struct ggml_context * ctx,
  2848. struct ggml_tensor * a,
  2849. struct ggml_tensor * b,
  2850. size_t nb1,
  2851. size_t nb2,
  2852. size_t nb3,
  2853. size_t offset,
  2854. bool inplace) {
  2855. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2856. GGML_ASSERT(ggml_is_contiguous(a));
  2857. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2858. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2859. bool is_node = false;
  2860. if (!inplace && (a->grad || b->grad)) {
  2861. is_node = true;
  2862. }
  2863. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2864. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2865. ggml_set_op_params(result, params, sizeof(params));
  2866. result->op = GGML_OP_ACC;
  2867. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2868. result->src[0] = a;
  2869. result->src[1] = b;
  2870. return result;
  2871. }
  2872. struct ggml_tensor * ggml_acc(
  2873. struct ggml_context * ctx,
  2874. struct ggml_tensor * a,
  2875. struct ggml_tensor * b,
  2876. size_t nb1,
  2877. size_t nb2,
  2878. size_t nb3,
  2879. size_t offset) {
  2880. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  2881. }
  2882. struct ggml_tensor * ggml_acc_inplace(
  2883. struct ggml_context * ctx,
  2884. struct ggml_tensor * a,
  2885. struct ggml_tensor * b,
  2886. size_t nb1,
  2887. size_t nb2,
  2888. size_t nb3,
  2889. size_t offset) {
  2890. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  2891. }
  2892. // ggml_sub
  2893. static struct ggml_tensor * ggml_sub_impl(
  2894. struct ggml_context * ctx,
  2895. struct ggml_tensor * a,
  2896. struct ggml_tensor * b,
  2897. bool inplace) {
  2898. GGML_ASSERT(ggml_are_same_shape(a, b));
  2899. bool is_node = false;
  2900. if (!inplace && (a->grad || b->grad)) {
  2901. is_node = true;
  2902. }
  2903. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2904. result->op = GGML_OP_SUB;
  2905. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2906. result->src[0] = a;
  2907. result->src[1] = b;
  2908. return result;
  2909. }
  2910. struct ggml_tensor * ggml_sub(
  2911. struct ggml_context * ctx,
  2912. struct ggml_tensor * a,
  2913. struct ggml_tensor * b) {
  2914. return ggml_sub_impl(ctx, a, b, false);
  2915. }
  2916. struct ggml_tensor * ggml_sub_inplace(
  2917. struct ggml_context * ctx,
  2918. struct ggml_tensor * a,
  2919. struct ggml_tensor * b) {
  2920. return ggml_sub_impl(ctx, a, b, true);
  2921. }
  2922. // ggml_mul
  2923. static struct ggml_tensor * ggml_mul_impl(
  2924. struct ggml_context * ctx,
  2925. struct ggml_tensor * a,
  2926. struct ggml_tensor * b,
  2927. bool inplace) {
  2928. GGML_ASSERT(ggml_can_repeat(b, a));
  2929. bool is_node = false;
  2930. if (!inplace && (a->grad || b->grad)) {
  2931. // TODO: support backward pass for broadcasting
  2932. GGML_ASSERT(ggml_are_same_shape(a, b));
  2933. is_node = true;
  2934. }
  2935. if (inplace) {
  2936. GGML_ASSERT(!is_node);
  2937. }
  2938. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2939. result->op = GGML_OP_MUL;
  2940. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2941. result->src[0] = a;
  2942. result->src[1] = b;
  2943. return result;
  2944. }
  2945. struct ggml_tensor * ggml_mul(
  2946. struct ggml_context * ctx,
  2947. struct ggml_tensor * a,
  2948. struct ggml_tensor * b) {
  2949. return ggml_mul_impl(ctx, a, b, false);
  2950. }
  2951. struct ggml_tensor * ggml_mul_inplace(
  2952. struct ggml_context * ctx,
  2953. struct ggml_tensor * a,
  2954. struct ggml_tensor * b) {
  2955. return ggml_mul_impl(ctx, a, b, true);
  2956. }
  2957. // ggml_div
  2958. static struct ggml_tensor * ggml_div_impl(
  2959. struct ggml_context * ctx,
  2960. struct ggml_tensor * a,
  2961. struct ggml_tensor * b,
  2962. bool inplace) {
  2963. GGML_ASSERT(ggml_can_repeat(b, a));
  2964. bool is_node = false;
  2965. if (!inplace && (a->grad || b->grad)) {
  2966. is_node = true;
  2967. }
  2968. if (inplace) {
  2969. GGML_ASSERT(!is_node);
  2970. }
  2971. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2972. result->op = GGML_OP_DIV;
  2973. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2974. result->src[0] = a;
  2975. result->src[1] = b;
  2976. return result;
  2977. }
  2978. struct ggml_tensor * ggml_div(
  2979. struct ggml_context * ctx,
  2980. struct ggml_tensor * a,
  2981. struct ggml_tensor * b) {
  2982. return ggml_div_impl(ctx, a, b, false);
  2983. }
  2984. struct ggml_tensor * ggml_div_inplace(
  2985. struct ggml_context * ctx,
  2986. struct ggml_tensor * a,
  2987. struct ggml_tensor * b) {
  2988. return ggml_div_impl(ctx, a, b, true);
  2989. }
  2990. // ggml_sqr
  2991. static struct ggml_tensor * ggml_sqr_impl(
  2992. struct ggml_context * ctx,
  2993. struct ggml_tensor * a,
  2994. bool inplace) {
  2995. bool is_node = false;
  2996. if (!inplace && (a->grad)) {
  2997. is_node = true;
  2998. }
  2999. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3000. result->op = GGML_OP_SQR;
  3001. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3002. result->src[0] = a;
  3003. return result;
  3004. }
  3005. struct ggml_tensor * ggml_sqr(
  3006. struct ggml_context * ctx,
  3007. struct ggml_tensor * a) {
  3008. return ggml_sqr_impl(ctx, a, false);
  3009. }
  3010. struct ggml_tensor * ggml_sqr_inplace(
  3011. struct ggml_context * ctx,
  3012. struct ggml_tensor * a) {
  3013. return ggml_sqr_impl(ctx, a, true);
  3014. }
  3015. // ggml_sqrt
  3016. static struct ggml_tensor * ggml_sqrt_impl(
  3017. struct ggml_context * ctx,
  3018. struct ggml_tensor * a,
  3019. bool inplace) {
  3020. bool is_node = false;
  3021. if (!inplace && (a->grad)) {
  3022. is_node = true;
  3023. }
  3024. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3025. result->op = GGML_OP_SQRT;
  3026. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3027. result->src[0] = a;
  3028. return result;
  3029. }
  3030. struct ggml_tensor * ggml_sqrt(
  3031. struct ggml_context * ctx,
  3032. struct ggml_tensor * a) {
  3033. return ggml_sqrt_impl(ctx, a, false);
  3034. }
  3035. struct ggml_tensor * ggml_sqrt_inplace(
  3036. struct ggml_context * ctx,
  3037. struct ggml_tensor * a) {
  3038. return ggml_sqrt_impl(ctx, a, true);
  3039. }
  3040. // ggml_log
  3041. static struct ggml_tensor * ggml_log_impl(
  3042. struct ggml_context * ctx,
  3043. struct ggml_tensor * a,
  3044. bool inplace) {
  3045. bool is_node = false;
  3046. if (!inplace && (a->grad)) {
  3047. is_node = true;
  3048. }
  3049. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3050. result->op = GGML_OP_LOG;
  3051. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3052. result->src[0] = a;
  3053. return result;
  3054. }
  3055. struct ggml_tensor * ggml_log(
  3056. struct ggml_context * ctx,
  3057. struct ggml_tensor * a) {
  3058. return ggml_log_impl(ctx, a, false);
  3059. }
  3060. struct ggml_tensor * ggml_log_inplace(
  3061. struct ggml_context * ctx,
  3062. struct ggml_tensor * a) {
  3063. return ggml_log_impl(ctx, a, true);
  3064. }
  3065. // ggml_sum
  3066. struct ggml_tensor * ggml_sum(
  3067. struct ggml_context * ctx,
  3068. struct ggml_tensor * a) {
  3069. bool is_node = false;
  3070. if (a->grad) {
  3071. is_node = true;
  3072. }
  3073. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3074. result->op = GGML_OP_SUM;
  3075. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3076. result->src[0] = a;
  3077. return result;
  3078. }
  3079. // ggml_sum_rows
  3080. struct ggml_tensor * ggml_sum_rows(
  3081. struct ggml_context * ctx,
  3082. struct ggml_tensor * a) {
  3083. bool is_node = false;
  3084. if (a->grad) {
  3085. is_node = true;
  3086. }
  3087. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3088. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3089. ne[i] = a->ne[i];
  3090. }
  3091. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3092. result->op = GGML_OP_SUM_ROWS;
  3093. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3094. result->src[0] = a;
  3095. return result;
  3096. }
  3097. // ggml_mean
  3098. struct ggml_tensor * ggml_mean(
  3099. struct ggml_context * ctx,
  3100. struct ggml_tensor * a) {
  3101. bool is_node = false;
  3102. if (a->grad) {
  3103. GGML_ASSERT(false); // TODO: implement
  3104. is_node = true;
  3105. }
  3106. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3107. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3108. result->op = GGML_OP_MEAN;
  3109. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3110. result->src[0] = a;
  3111. return result;
  3112. }
  3113. // ggml_argmax
  3114. struct ggml_tensor * ggml_argmax(
  3115. struct ggml_context * ctx,
  3116. struct ggml_tensor * a) {
  3117. GGML_ASSERT(ggml_is_matrix(a));
  3118. bool is_node = false;
  3119. if (a->grad) {
  3120. GGML_ASSERT(false);
  3121. is_node = true;
  3122. }
  3123. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3124. result->op = GGML_OP_ARGMAX;
  3125. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3126. result->src[0] = a;
  3127. return result;
  3128. }
  3129. // ggml_repeat
  3130. struct ggml_tensor * ggml_repeat(
  3131. struct ggml_context * ctx,
  3132. struct ggml_tensor * a,
  3133. struct ggml_tensor * b) {
  3134. GGML_ASSERT(ggml_can_repeat(a, b));
  3135. bool is_node = false;
  3136. if (a->grad) {
  3137. is_node = true;
  3138. }
  3139. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3140. result->op = GGML_OP_REPEAT;
  3141. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3142. result->src[0] = a;
  3143. return result;
  3144. }
  3145. // ggml_repeat_back
  3146. struct ggml_tensor * ggml_repeat_back(
  3147. struct ggml_context * ctx,
  3148. struct ggml_tensor * a,
  3149. struct ggml_tensor * b) {
  3150. GGML_ASSERT(ggml_can_repeat(b, a));
  3151. bool is_node = false;
  3152. if (a->grad) {
  3153. is_node = true;
  3154. }
  3155. if (ggml_are_same_shape(a, b) && !is_node) {
  3156. return a;
  3157. }
  3158. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3159. result->op = GGML_OP_REPEAT_BACK;
  3160. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3161. result->src[0] = a;
  3162. return result;
  3163. }
  3164. // ggml_concat
  3165. struct ggml_tensor * ggml_concat(
  3166. struct ggml_context* ctx,
  3167. struct ggml_tensor* a,
  3168. struct ggml_tensor* b) {
  3169. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3170. bool is_node = false;
  3171. if (a->grad || b->grad) {
  3172. is_node = true;
  3173. }
  3174. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3175. result->op = GGML_OP_CONCAT;
  3176. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3177. result->src[0] = a;
  3178. result->src[1] = b;
  3179. return result;
  3180. }
  3181. // ggml_abs
  3182. struct ggml_tensor * ggml_abs(
  3183. struct ggml_context * ctx,
  3184. struct ggml_tensor * a) {
  3185. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3186. }
  3187. struct ggml_tensor * ggml_abs_inplace(
  3188. struct ggml_context * ctx,
  3189. struct ggml_tensor * a) {
  3190. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3191. }
  3192. // ggml_sgn
  3193. struct ggml_tensor * ggml_sgn(
  3194. struct ggml_context * ctx,
  3195. struct ggml_tensor * a) {
  3196. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3197. }
  3198. struct ggml_tensor * ggml_sgn_inplace(
  3199. struct ggml_context * ctx,
  3200. struct ggml_tensor * a) {
  3201. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3202. }
  3203. // ggml_neg
  3204. struct ggml_tensor * ggml_neg(
  3205. struct ggml_context * ctx,
  3206. struct ggml_tensor * a) {
  3207. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3208. }
  3209. struct ggml_tensor * ggml_neg_inplace(
  3210. struct ggml_context * ctx,
  3211. struct ggml_tensor * a) {
  3212. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3213. }
  3214. // ggml_step
  3215. struct ggml_tensor * ggml_step(
  3216. struct ggml_context * ctx,
  3217. struct ggml_tensor * a) {
  3218. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3219. }
  3220. struct ggml_tensor * ggml_step_inplace(
  3221. struct ggml_context * ctx,
  3222. struct ggml_tensor * a) {
  3223. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3224. }
  3225. // ggml_tanh
  3226. struct ggml_tensor * ggml_tanh(
  3227. struct ggml_context * ctx,
  3228. struct ggml_tensor * a) {
  3229. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3230. }
  3231. struct ggml_tensor * ggml_tanh_inplace(
  3232. struct ggml_context * ctx,
  3233. struct ggml_tensor * a) {
  3234. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3235. }
  3236. // ggml_elu
  3237. struct ggml_tensor * ggml_elu(
  3238. struct ggml_context * ctx,
  3239. struct ggml_tensor * a) {
  3240. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3241. }
  3242. struct ggml_tensor * ggml_elu_inplace(
  3243. struct ggml_context * ctx,
  3244. struct ggml_tensor * a) {
  3245. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3246. }
  3247. // ggml_relu
  3248. struct ggml_tensor * ggml_relu(
  3249. struct ggml_context * ctx,
  3250. struct ggml_tensor * a) {
  3251. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3252. }
  3253. struct ggml_tensor * ggml_relu_inplace(
  3254. struct ggml_context * ctx,
  3255. struct ggml_tensor * a) {
  3256. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3257. }
  3258. // ggml_leaky_relu
  3259. struct ggml_tensor * ggml_leaky_relu(
  3260. struct ggml_context * ctx,
  3261. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3262. bool is_node = false;
  3263. if (!inplace && (a->grad)) {
  3264. is_node = true;
  3265. }
  3266. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3267. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3268. result->op = GGML_OP_LEAKY_RELU;
  3269. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3270. result->src[0] = a;
  3271. return result;
  3272. }
  3273. // ggml_gelu
  3274. struct ggml_tensor * ggml_gelu(
  3275. struct ggml_context * ctx,
  3276. struct ggml_tensor * a) {
  3277. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3278. }
  3279. struct ggml_tensor * ggml_gelu_inplace(
  3280. struct ggml_context * ctx,
  3281. struct ggml_tensor * a) {
  3282. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3283. }
  3284. // ggml_gelu_quick
  3285. struct ggml_tensor * ggml_gelu_quick(
  3286. struct ggml_context * ctx,
  3287. struct ggml_tensor * a) {
  3288. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3289. }
  3290. struct ggml_tensor * ggml_gelu_quick_inplace(
  3291. struct ggml_context * ctx,
  3292. struct ggml_tensor * a) {
  3293. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3294. }
  3295. // ggml_silu
  3296. struct ggml_tensor * ggml_silu(
  3297. struct ggml_context * ctx,
  3298. struct ggml_tensor * a) {
  3299. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3300. }
  3301. struct ggml_tensor * ggml_silu_inplace(
  3302. struct ggml_context * ctx,
  3303. struct ggml_tensor * a) {
  3304. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3305. }
  3306. // ggml_silu_back
  3307. struct ggml_tensor * ggml_silu_back(
  3308. struct ggml_context * ctx,
  3309. struct ggml_tensor * a,
  3310. struct ggml_tensor * b) {
  3311. bool is_node = false;
  3312. if (a->grad || b->grad) {
  3313. // TODO: implement backward
  3314. is_node = true;
  3315. }
  3316. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3317. result->op = GGML_OP_SILU_BACK;
  3318. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3319. result->src[0] = a;
  3320. result->src[1] = b;
  3321. return result;
  3322. }
  3323. // ggml hardswish
  3324. struct ggml_tensor * ggml_hardswish(
  3325. struct ggml_context * ctx,
  3326. struct ggml_tensor * a) {
  3327. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3328. }
  3329. // ggml hardsigmoid
  3330. struct ggml_tensor * ggml_hardsigmoid(
  3331. struct ggml_context * ctx,
  3332. struct ggml_tensor * a) {
  3333. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3334. }
  3335. // ggml_norm
  3336. static struct ggml_tensor * ggml_norm_impl(
  3337. struct ggml_context * ctx,
  3338. struct ggml_tensor * a,
  3339. float eps,
  3340. bool inplace) {
  3341. bool is_node = false;
  3342. if (!inplace && (a->grad)) {
  3343. GGML_ASSERT(false); // TODO: implement backward
  3344. is_node = true;
  3345. }
  3346. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3347. ggml_set_op_params(result, &eps, sizeof(eps));
  3348. result->op = GGML_OP_NORM;
  3349. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3350. result->src[0] = a;
  3351. return result;
  3352. }
  3353. struct ggml_tensor * ggml_norm(
  3354. struct ggml_context * ctx,
  3355. struct ggml_tensor * a,
  3356. float eps) {
  3357. return ggml_norm_impl(ctx, a, eps, false);
  3358. }
  3359. struct ggml_tensor * ggml_norm_inplace(
  3360. struct ggml_context * ctx,
  3361. struct ggml_tensor * a,
  3362. float eps) {
  3363. return ggml_norm_impl(ctx, a, eps, true);
  3364. }
  3365. // ggml_rms_norm
  3366. static struct ggml_tensor * ggml_rms_norm_impl(
  3367. struct ggml_context * ctx,
  3368. struct ggml_tensor * a,
  3369. float eps,
  3370. bool inplace) {
  3371. bool is_node = false;
  3372. if (!inplace && (a->grad)) {
  3373. is_node = true;
  3374. }
  3375. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3376. ggml_set_op_params(result, &eps, sizeof(eps));
  3377. result->op = GGML_OP_RMS_NORM;
  3378. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3379. result->src[0] = a;
  3380. return result;
  3381. }
  3382. struct ggml_tensor * ggml_rms_norm(
  3383. struct ggml_context * ctx,
  3384. struct ggml_tensor * a,
  3385. float eps) {
  3386. return ggml_rms_norm_impl(ctx, a, eps, false);
  3387. }
  3388. struct ggml_tensor * ggml_rms_norm_inplace(
  3389. struct ggml_context * ctx,
  3390. struct ggml_tensor * a,
  3391. float eps) {
  3392. return ggml_rms_norm_impl(ctx, a, eps, true);
  3393. }
  3394. // ggml_rms_norm_back
  3395. struct ggml_tensor * ggml_rms_norm_back(
  3396. struct ggml_context * ctx,
  3397. struct ggml_tensor * a,
  3398. struct ggml_tensor * b,
  3399. float eps) {
  3400. bool is_node = false;
  3401. if (a->grad) {
  3402. // TODO: implement backward
  3403. is_node = true;
  3404. }
  3405. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3406. ggml_set_op_params(result, &eps, sizeof(eps));
  3407. result->op = GGML_OP_RMS_NORM_BACK;
  3408. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3409. result->src[0] = a;
  3410. result->src[1] = b;
  3411. return result;
  3412. }
  3413. // ggml_group_norm
  3414. static struct ggml_tensor * ggml_group_norm_impl(
  3415. struct ggml_context * ctx,
  3416. struct ggml_tensor * a,
  3417. int n_groups,
  3418. bool inplace) {
  3419. bool is_node = false;
  3420. if (!inplace && (a->grad)) {
  3421. GGML_ASSERT(false); // TODO: implement backward
  3422. is_node = true;
  3423. }
  3424. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3425. result->op_params[0] = n_groups;
  3426. result->op = GGML_OP_GROUP_NORM;
  3427. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3428. result->src[0] = a;
  3429. return result;
  3430. }
  3431. struct ggml_tensor * ggml_group_norm(
  3432. struct ggml_context * ctx,
  3433. struct ggml_tensor * a,
  3434. int n_groups) {
  3435. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3436. }
  3437. struct ggml_tensor * ggml_group_norm_inplace(
  3438. struct ggml_context * ctx,
  3439. struct ggml_tensor * a,
  3440. int n_groups) {
  3441. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3442. }
  3443. // ggml_mul_mat
  3444. struct ggml_tensor * ggml_mul_mat(
  3445. struct ggml_context * ctx,
  3446. struct ggml_tensor * a,
  3447. struct ggml_tensor * b) {
  3448. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3449. GGML_ASSERT(!ggml_is_transposed(a));
  3450. bool is_node = false;
  3451. if (a->grad || b->grad) {
  3452. is_node = true;
  3453. }
  3454. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3455. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3456. result->op = GGML_OP_MUL_MAT;
  3457. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3458. result->src[0] = a;
  3459. result->src[1] = b;
  3460. return result;
  3461. }
  3462. void ggml_mul_mat_set_prec(
  3463. struct ggml_tensor * a,
  3464. enum ggml_prec prec) {
  3465. const int32_t prec_i32 = (int32_t) prec;
  3466. ggml_set_op_params_i32(a, 0, prec_i32);
  3467. }
  3468. // ggml_mul_mat_id
  3469. struct ggml_tensor * ggml_mul_mat_id(
  3470. struct ggml_context * ctx,
  3471. struct ggml_tensor * const as[],
  3472. int n_as,
  3473. struct ggml_tensor * ids,
  3474. int id,
  3475. struct ggml_tensor * b) {
  3476. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3477. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3478. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3479. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3480. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3481. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3482. bool is_node = false;
  3483. if (as[0]->grad || b->grad) {
  3484. is_node = true;
  3485. }
  3486. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3487. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3488. ggml_set_op_params_i32(result, 0, id);
  3489. ggml_set_op_params_i32(result, 1, n_as);
  3490. result->op = GGML_OP_MUL_MAT_ID;
  3491. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3492. result->src[0] = ids;
  3493. result->src[1] = b;
  3494. for (int i = 0; i < n_as; i++) {
  3495. struct ggml_tensor * a = as[i];
  3496. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3497. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3498. GGML_ASSERT(!ggml_is_transposed(a));
  3499. result->src[i + 2] = a;
  3500. }
  3501. return result;
  3502. }
  3503. // ggml_out_prod
  3504. struct ggml_tensor * ggml_out_prod(
  3505. struct ggml_context * ctx,
  3506. struct ggml_tensor * a,
  3507. struct ggml_tensor * b) {
  3508. GGML_ASSERT(ggml_can_out_prod(a, b));
  3509. GGML_ASSERT(!ggml_is_transposed(a));
  3510. bool is_node = false;
  3511. if (a->grad || b->grad) {
  3512. is_node = true;
  3513. }
  3514. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3515. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3516. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3517. result->op = GGML_OP_OUT_PROD;
  3518. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3519. result->src[0] = a;
  3520. result->src[1] = b;
  3521. return result;
  3522. }
  3523. // ggml_scale
  3524. static struct ggml_tensor * ggml_scale_impl(
  3525. struct ggml_context * ctx,
  3526. struct ggml_tensor * a,
  3527. float s,
  3528. bool inplace) {
  3529. GGML_ASSERT(ggml_is_padded_1d(a));
  3530. bool is_node = false;
  3531. if (a->grad) {
  3532. is_node = true;
  3533. }
  3534. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3535. ggml_set_op_params(result, &s, sizeof(s));
  3536. result->op = GGML_OP_SCALE;
  3537. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3538. result->src[0] = a;
  3539. return result;
  3540. }
  3541. struct ggml_tensor * ggml_scale(
  3542. struct ggml_context * ctx,
  3543. struct ggml_tensor * a,
  3544. float s) {
  3545. return ggml_scale_impl(ctx, a, s, false);
  3546. }
  3547. struct ggml_tensor * ggml_scale_inplace(
  3548. struct ggml_context * ctx,
  3549. struct ggml_tensor * a,
  3550. float s) {
  3551. return ggml_scale_impl(ctx, a, s, true);
  3552. }
  3553. // ggml_set
  3554. static struct ggml_tensor * ggml_set_impl(
  3555. struct ggml_context * ctx,
  3556. struct ggml_tensor * a,
  3557. struct ggml_tensor * b,
  3558. size_t nb1,
  3559. size_t nb2,
  3560. size_t nb3,
  3561. size_t offset,
  3562. bool inplace) {
  3563. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3564. bool is_node = false;
  3565. if (a->grad || b->grad) {
  3566. is_node = true;
  3567. }
  3568. // make a view of the destination
  3569. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3570. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3571. ggml_set_op_params(result, params, sizeof(params));
  3572. result->op = GGML_OP_SET;
  3573. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3574. result->src[0] = a;
  3575. result->src[1] = b;
  3576. return result;
  3577. }
  3578. struct ggml_tensor * ggml_set(
  3579. struct ggml_context * ctx,
  3580. struct ggml_tensor * a,
  3581. struct ggml_tensor * b,
  3582. size_t nb1,
  3583. size_t nb2,
  3584. size_t nb3,
  3585. size_t offset) {
  3586. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3587. }
  3588. struct ggml_tensor * ggml_set_inplace(
  3589. struct ggml_context * ctx,
  3590. struct ggml_tensor * a,
  3591. struct ggml_tensor * b,
  3592. size_t nb1,
  3593. size_t nb2,
  3594. size_t nb3,
  3595. size_t offset) {
  3596. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3597. }
  3598. struct ggml_tensor * ggml_set_1d(
  3599. struct ggml_context * ctx,
  3600. struct ggml_tensor * a,
  3601. struct ggml_tensor * b,
  3602. size_t offset) {
  3603. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3604. }
  3605. struct ggml_tensor * ggml_set_1d_inplace(
  3606. struct ggml_context * ctx,
  3607. struct ggml_tensor * a,
  3608. struct ggml_tensor * b,
  3609. size_t offset) {
  3610. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3611. }
  3612. struct ggml_tensor * ggml_set_2d(
  3613. struct ggml_context * ctx,
  3614. struct ggml_tensor * a,
  3615. struct ggml_tensor * b,
  3616. size_t nb1,
  3617. size_t offset) {
  3618. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3619. }
  3620. struct ggml_tensor * ggml_set_2d_inplace(
  3621. struct ggml_context * ctx,
  3622. struct ggml_tensor * a,
  3623. struct ggml_tensor * b,
  3624. size_t nb1,
  3625. size_t offset) {
  3626. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3627. }
  3628. // ggml_cpy
  3629. static struct ggml_tensor * ggml_cpy_impl(
  3630. struct ggml_context * ctx,
  3631. struct ggml_tensor * a,
  3632. struct ggml_tensor * b) {
  3633. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3634. bool is_node = false;
  3635. if (a->grad || b->grad) {
  3636. // inplace is false and either one have a grad
  3637. is_node = true;
  3638. }
  3639. // make a view of the destination
  3640. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3641. if (strlen(b->name) > 0) {
  3642. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3643. } else {
  3644. ggml_format_name(result, "%s (copy)", a->name);
  3645. }
  3646. result->op = GGML_OP_CPY;
  3647. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3648. result->src[0] = a;
  3649. result->src[1] = b;
  3650. return result;
  3651. }
  3652. struct ggml_tensor * ggml_cpy(
  3653. struct ggml_context * ctx,
  3654. struct ggml_tensor * a,
  3655. struct ggml_tensor * b) {
  3656. return ggml_cpy_impl(ctx, a, b);
  3657. }
  3658. struct ggml_tensor * ggml_cast(
  3659. struct ggml_context * ctx,
  3660. struct ggml_tensor * a,
  3661. enum ggml_type type) {
  3662. bool is_node = false;
  3663. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3664. ggml_format_name(result, "%s (copy)", a->name);
  3665. result->op = GGML_OP_CPY;
  3666. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3667. result->src[0] = a;
  3668. result->src[1] = result;
  3669. return result;
  3670. }
  3671. // ggml_cont
  3672. static struct ggml_tensor * ggml_cont_impl(
  3673. struct ggml_context * ctx,
  3674. struct ggml_tensor * a) {
  3675. bool is_node = false;
  3676. if (a->grad) {
  3677. is_node = true;
  3678. }
  3679. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3680. ggml_format_name(result, "%s (cont)", a->name);
  3681. result->op = GGML_OP_CONT;
  3682. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3683. result->src[0] = a;
  3684. return result;
  3685. }
  3686. struct ggml_tensor * ggml_cont(
  3687. struct ggml_context * ctx,
  3688. struct ggml_tensor * a) {
  3689. return ggml_cont_impl(ctx, a);
  3690. }
  3691. // make contiguous, with new shape
  3692. GGML_API struct ggml_tensor * ggml_cont_1d(
  3693. struct ggml_context * ctx,
  3694. struct ggml_tensor * a,
  3695. int64_t ne0) {
  3696. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3697. }
  3698. GGML_API struct ggml_tensor * ggml_cont_2d(
  3699. struct ggml_context * ctx,
  3700. struct ggml_tensor * a,
  3701. int64_t ne0,
  3702. int64_t ne1) {
  3703. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3704. }
  3705. GGML_API struct ggml_tensor * ggml_cont_3d(
  3706. struct ggml_context * ctx,
  3707. struct ggml_tensor * a,
  3708. int64_t ne0,
  3709. int64_t ne1,
  3710. int64_t ne2) {
  3711. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3712. }
  3713. struct ggml_tensor * ggml_cont_4d(
  3714. struct ggml_context * ctx,
  3715. struct ggml_tensor * a,
  3716. int64_t ne0,
  3717. int64_t ne1,
  3718. int64_t ne2,
  3719. int64_t ne3) {
  3720. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3721. bool is_node = false;
  3722. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3723. ggml_format_name(result, "%s (cont)", a->name);
  3724. result->op = GGML_OP_CONT;
  3725. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3726. result->src[0] = a;
  3727. return result;
  3728. }
  3729. // ggml_reshape
  3730. struct ggml_tensor * ggml_reshape(
  3731. struct ggml_context * ctx,
  3732. struct ggml_tensor * a,
  3733. struct ggml_tensor * b) {
  3734. GGML_ASSERT(ggml_is_contiguous(a));
  3735. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3736. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3737. bool is_node = false;
  3738. if (a->grad) {
  3739. is_node = true;
  3740. }
  3741. if (b->grad) {
  3742. // gradient propagation is not supported
  3743. //GGML_ASSERT(false);
  3744. }
  3745. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  3746. ggml_format_name(result, "%s (reshaped)", a->name);
  3747. result->op = GGML_OP_RESHAPE;
  3748. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3749. result->src[0] = a;
  3750. return result;
  3751. }
  3752. struct ggml_tensor * ggml_reshape_1d(
  3753. struct ggml_context * ctx,
  3754. struct ggml_tensor * a,
  3755. int64_t ne0) {
  3756. GGML_ASSERT(ggml_is_contiguous(a));
  3757. GGML_ASSERT(ggml_nelements(a) == ne0);
  3758. bool is_node = false;
  3759. if (a->grad) {
  3760. is_node = true;
  3761. }
  3762. const int64_t ne[1] = { ne0 };
  3763. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3764. ggml_format_name(result, "%s (reshaped)", a->name);
  3765. result->op = GGML_OP_RESHAPE;
  3766. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3767. result->src[0] = a;
  3768. return result;
  3769. }
  3770. struct ggml_tensor * ggml_reshape_2d(
  3771. struct ggml_context * ctx,
  3772. struct ggml_tensor * a,
  3773. int64_t ne0,
  3774. int64_t ne1) {
  3775. GGML_ASSERT(ggml_is_contiguous(a));
  3776. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3777. bool is_node = false;
  3778. if (a->grad) {
  3779. is_node = true;
  3780. }
  3781. const int64_t ne[2] = { ne0, ne1 };
  3782. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3783. ggml_format_name(result, "%s (reshaped)", a->name);
  3784. result->op = GGML_OP_RESHAPE;
  3785. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3786. result->src[0] = a;
  3787. return result;
  3788. }
  3789. struct ggml_tensor * ggml_reshape_3d(
  3790. struct ggml_context * ctx,
  3791. struct ggml_tensor * a,
  3792. int64_t ne0,
  3793. int64_t ne1,
  3794. int64_t ne2) {
  3795. GGML_ASSERT(ggml_is_contiguous(a));
  3796. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3797. bool is_node = false;
  3798. if (a->grad) {
  3799. is_node = true;
  3800. }
  3801. const int64_t ne[3] = { ne0, ne1, ne2 };
  3802. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3803. ggml_format_name(result, "%s (reshaped)", a->name);
  3804. result->op = GGML_OP_RESHAPE;
  3805. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3806. result->src[0] = a;
  3807. return result;
  3808. }
  3809. struct ggml_tensor * ggml_reshape_4d(
  3810. struct ggml_context * ctx,
  3811. struct ggml_tensor * a,
  3812. int64_t ne0,
  3813. int64_t ne1,
  3814. int64_t ne2,
  3815. int64_t ne3) {
  3816. GGML_ASSERT(ggml_is_contiguous(a));
  3817. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3818. bool is_node = false;
  3819. if (a->grad) {
  3820. is_node = true;
  3821. }
  3822. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3823. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3824. ggml_format_name(result, "%s (reshaped)", a->name);
  3825. result->op = GGML_OP_RESHAPE;
  3826. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3827. result->src[0] = a;
  3828. return result;
  3829. }
  3830. static struct ggml_tensor * ggml_view_impl(
  3831. struct ggml_context * ctx,
  3832. struct ggml_tensor * a,
  3833. int n_dims,
  3834. const int64_t * ne,
  3835. size_t offset) {
  3836. bool is_node = false;
  3837. if (a->grad) {
  3838. is_node = true;
  3839. }
  3840. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3841. ggml_format_name(result, "%s (view)", a->name);
  3842. ggml_set_op_params(result, &offset, sizeof(offset));
  3843. result->op = GGML_OP_VIEW;
  3844. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3845. result->src[0] = a;
  3846. return result;
  3847. }
  3848. // ggml_view_1d
  3849. struct ggml_tensor * ggml_view_1d(
  3850. struct ggml_context * ctx,
  3851. struct ggml_tensor * a,
  3852. int64_t ne0,
  3853. size_t offset) {
  3854. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3855. return result;
  3856. }
  3857. // ggml_view_2d
  3858. struct ggml_tensor * ggml_view_2d(
  3859. struct ggml_context * ctx,
  3860. struct ggml_tensor * a,
  3861. int64_t ne0,
  3862. int64_t ne1,
  3863. size_t nb1,
  3864. size_t offset) {
  3865. const int64_t ne[2] = { ne0, ne1 };
  3866. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3867. result->nb[1] = nb1;
  3868. result->nb[2] = result->nb[1]*ne1;
  3869. result->nb[3] = result->nb[2];
  3870. return result;
  3871. }
  3872. // ggml_view_3d
  3873. struct ggml_tensor * ggml_view_3d(
  3874. struct ggml_context * ctx,
  3875. struct ggml_tensor * a,
  3876. int64_t ne0,
  3877. int64_t ne1,
  3878. int64_t ne2,
  3879. size_t nb1,
  3880. size_t nb2,
  3881. size_t offset) {
  3882. const int64_t ne[3] = { ne0, ne1, ne2 };
  3883. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  3884. result->nb[1] = nb1;
  3885. result->nb[2] = nb2;
  3886. result->nb[3] = result->nb[2]*ne2;
  3887. return result;
  3888. }
  3889. // ggml_view_4d
  3890. struct ggml_tensor * ggml_view_4d(
  3891. struct ggml_context * ctx,
  3892. struct ggml_tensor * a,
  3893. int64_t ne0,
  3894. int64_t ne1,
  3895. int64_t ne2,
  3896. int64_t ne3,
  3897. size_t nb1,
  3898. size_t nb2,
  3899. size_t nb3,
  3900. size_t offset) {
  3901. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3902. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  3903. result->nb[1] = nb1;
  3904. result->nb[2] = nb2;
  3905. result->nb[3] = nb3;
  3906. return result;
  3907. }
  3908. // ggml_permute
  3909. struct ggml_tensor * ggml_permute(
  3910. struct ggml_context * ctx,
  3911. struct ggml_tensor * a,
  3912. int axis0,
  3913. int axis1,
  3914. int axis2,
  3915. int axis3) {
  3916. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3917. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3918. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3919. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3920. GGML_ASSERT(axis0 != axis1);
  3921. GGML_ASSERT(axis0 != axis2);
  3922. GGML_ASSERT(axis0 != axis3);
  3923. GGML_ASSERT(axis1 != axis2);
  3924. GGML_ASSERT(axis1 != axis3);
  3925. GGML_ASSERT(axis2 != axis3);
  3926. bool is_node = false;
  3927. if (a->grad) {
  3928. is_node = true;
  3929. }
  3930. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3931. ggml_format_name(result, "%s (permuted)", a->name);
  3932. int ne[GGML_MAX_DIMS];
  3933. int nb[GGML_MAX_DIMS];
  3934. ne[axis0] = a->ne[0];
  3935. ne[axis1] = a->ne[1];
  3936. ne[axis2] = a->ne[2];
  3937. ne[axis3] = a->ne[3];
  3938. nb[axis0] = a->nb[0];
  3939. nb[axis1] = a->nb[1];
  3940. nb[axis2] = a->nb[2];
  3941. nb[axis3] = a->nb[3];
  3942. result->ne[0] = ne[0];
  3943. result->ne[1] = ne[1];
  3944. result->ne[2] = ne[2];
  3945. result->ne[3] = ne[3];
  3946. result->nb[0] = nb[0];
  3947. result->nb[1] = nb[1];
  3948. result->nb[2] = nb[2];
  3949. result->nb[3] = nb[3];
  3950. result->op = GGML_OP_PERMUTE;
  3951. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3952. result->src[0] = a;
  3953. int32_t params[] = { axis0, axis1, axis2, axis3 };
  3954. ggml_set_op_params(result, params, sizeof(params));
  3955. return result;
  3956. }
  3957. // ggml_transpose
  3958. struct ggml_tensor * ggml_transpose(
  3959. struct ggml_context * ctx,
  3960. struct ggml_tensor * a) {
  3961. bool is_node = false;
  3962. if (a->grad) {
  3963. is_node = true;
  3964. }
  3965. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3966. ggml_format_name(result, "%s (transposed)", a->name);
  3967. result->ne[0] = a->ne[1];
  3968. result->ne[1] = a->ne[0];
  3969. result->nb[0] = a->nb[1];
  3970. result->nb[1] = a->nb[0];
  3971. result->op = GGML_OP_TRANSPOSE;
  3972. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3973. result->src[0] = a;
  3974. return result;
  3975. }
  3976. // ggml_get_rows
  3977. struct ggml_tensor * ggml_get_rows(
  3978. struct ggml_context * ctx,
  3979. struct ggml_tensor * a,
  3980. struct ggml_tensor * b) {
  3981. GGML_ASSERT(a->ne[2] == b->ne[1]);
  3982. GGML_ASSERT(b->ne[3] == 1);
  3983. GGML_ASSERT(b->type == GGML_TYPE_I32);
  3984. bool is_node = false;
  3985. if (a->grad || b->grad) {
  3986. is_node = true;
  3987. }
  3988. // TODO: implement non F32 return
  3989. enum ggml_type type = GGML_TYPE_F32;
  3990. if (a->type == GGML_TYPE_I32) {
  3991. type = a->type;
  3992. }
  3993. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  3994. result->op = GGML_OP_GET_ROWS;
  3995. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3996. result->src[0] = a;
  3997. result->src[1] = b;
  3998. return result;
  3999. }
  4000. // ggml_get_rows_back
  4001. struct ggml_tensor * ggml_get_rows_back(
  4002. struct ggml_context * ctx,
  4003. struct ggml_tensor * a,
  4004. struct ggml_tensor * b,
  4005. struct ggml_tensor * c) {
  4006. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4007. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4008. bool is_node = false;
  4009. if (a->grad || b->grad) {
  4010. is_node = true;
  4011. }
  4012. // TODO: implement non F32 return
  4013. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4014. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4015. result->op = GGML_OP_GET_ROWS_BACK;
  4016. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4017. result->src[0] = a;
  4018. result->src[1] = b;
  4019. return result;
  4020. }
  4021. // ggml_diag
  4022. struct ggml_tensor * ggml_diag(
  4023. struct ggml_context * ctx,
  4024. struct ggml_tensor * a) {
  4025. GGML_ASSERT(a->ne[1] == 1);
  4026. bool is_node = false;
  4027. if (a->grad) {
  4028. is_node = true;
  4029. }
  4030. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4031. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4032. result->op = GGML_OP_DIAG;
  4033. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4034. result->src[0] = a;
  4035. return result;
  4036. }
  4037. // ggml_diag_mask_inf
  4038. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4039. struct ggml_context * ctx,
  4040. struct ggml_tensor * a,
  4041. int n_past,
  4042. bool inplace) {
  4043. bool is_node = false;
  4044. if (a->grad) {
  4045. is_node = true;
  4046. }
  4047. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4048. int32_t params[] = { n_past };
  4049. ggml_set_op_params(result, params, sizeof(params));
  4050. result->op = GGML_OP_DIAG_MASK_INF;
  4051. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4052. result->src[0] = a;
  4053. return result;
  4054. }
  4055. struct ggml_tensor * ggml_diag_mask_inf(
  4056. struct ggml_context * ctx,
  4057. struct ggml_tensor * a,
  4058. int n_past) {
  4059. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4060. }
  4061. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4062. struct ggml_context * ctx,
  4063. struct ggml_tensor * a,
  4064. int n_past) {
  4065. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4066. }
  4067. // ggml_diag_mask_zero
  4068. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4069. struct ggml_context * ctx,
  4070. struct ggml_tensor * a,
  4071. int n_past,
  4072. bool inplace) {
  4073. bool is_node = false;
  4074. if (a->grad) {
  4075. is_node = true;
  4076. }
  4077. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4078. int32_t params[] = { n_past };
  4079. ggml_set_op_params(result, params, sizeof(params));
  4080. result->op = GGML_OP_DIAG_MASK_ZERO;
  4081. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4082. result->src[0] = a;
  4083. return result;
  4084. }
  4085. struct ggml_tensor * ggml_diag_mask_zero(
  4086. struct ggml_context * ctx,
  4087. struct ggml_tensor * a,
  4088. int n_past) {
  4089. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4090. }
  4091. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4092. struct ggml_context * ctx,
  4093. struct ggml_tensor * a,
  4094. int n_past) {
  4095. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4096. }
  4097. // ggml_soft_max
  4098. static struct ggml_tensor * ggml_soft_max_impl(
  4099. struct ggml_context * ctx,
  4100. struct ggml_tensor * a,
  4101. struct ggml_tensor * mask,
  4102. float scale,
  4103. bool inplace) {
  4104. GGML_ASSERT(ggml_is_contiguous(a));
  4105. if (mask) {
  4106. GGML_ASSERT(ggml_is_contiguous(mask));
  4107. GGML_ASSERT(mask->ne[2] == 1);
  4108. GGML_ASSERT(mask->ne[3] == 1);
  4109. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4110. }
  4111. bool is_node = false;
  4112. if (a->grad) {
  4113. is_node = true;
  4114. }
  4115. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4116. float params[] = { scale };
  4117. ggml_set_op_params(result, params, sizeof(params));
  4118. result->op = GGML_OP_SOFT_MAX;
  4119. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4120. result->src[0] = a;
  4121. result->src[1] = mask;
  4122. return result;
  4123. }
  4124. struct ggml_tensor * ggml_soft_max(
  4125. struct ggml_context * ctx,
  4126. struct ggml_tensor * a) {
  4127. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, false);
  4128. }
  4129. struct ggml_tensor * ggml_soft_max_inplace(
  4130. struct ggml_context * ctx,
  4131. struct ggml_tensor * a) {
  4132. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, true);
  4133. }
  4134. struct ggml_tensor * ggml_soft_max_ext(
  4135. struct ggml_context * ctx,
  4136. struct ggml_tensor * a,
  4137. struct ggml_tensor * mask,
  4138. float scale) {
  4139. return ggml_soft_max_impl(ctx, a, mask, scale, false);
  4140. }
  4141. // ggml_soft_max_back
  4142. static struct ggml_tensor * ggml_soft_max_back_impl(
  4143. struct ggml_context * ctx,
  4144. struct ggml_tensor * a,
  4145. struct ggml_tensor * b,
  4146. bool inplace) {
  4147. bool is_node = false;
  4148. if (a->grad || b->grad) {
  4149. is_node = true; // TODO : implement backward pass
  4150. }
  4151. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4152. result->op = GGML_OP_SOFT_MAX_BACK;
  4153. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4154. result->src[0] = a;
  4155. result->src[1] = b;
  4156. return result;
  4157. }
  4158. struct ggml_tensor * ggml_soft_max_back(
  4159. struct ggml_context * ctx,
  4160. struct ggml_tensor * a,
  4161. struct ggml_tensor * b) {
  4162. return ggml_soft_max_back_impl(ctx, a, b, false);
  4163. }
  4164. struct ggml_tensor * ggml_soft_max_back_inplace(
  4165. struct ggml_context * ctx,
  4166. struct ggml_tensor * a,
  4167. struct ggml_tensor * b) {
  4168. return ggml_soft_max_back_impl(ctx, a, b, true);
  4169. }
  4170. // ggml_rope
  4171. static struct ggml_tensor * ggml_rope_impl(
  4172. struct ggml_context * ctx,
  4173. struct ggml_tensor * a,
  4174. struct ggml_tensor * b,
  4175. int n_dims,
  4176. int mode,
  4177. int n_ctx,
  4178. int n_orig_ctx,
  4179. float freq_base,
  4180. float freq_scale,
  4181. float ext_factor,
  4182. float attn_factor,
  4183. float beta_fast,
  4184. float beta_slow,
  4185. float xpos_base,
  4186. bool xpos_down,
  4187. bool inplace) {
  4188. GGML_ASSERT(ggml_is_vector(b));
  4189. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4190. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4191. bool is_node = false;
  4192. if (a->grad) {
  4193. is_node = true;
  4194. }
  4195. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4196. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4197. memcpy(params + 5, &freq_base, sizeof(float));
  4198. memcpy(params + 6, &freq_scale, sizeof(float));
  4199. memcpy(params + 7, &ext_factor, sizeof(float));
  4200. memcpy(params + 8, &attn_factor, sizeof(float));
  4201. memcpy(params + 9, &beta_fast, sizeof(float));
  4202. memcpy(params + 10, &beta_slow, sizeof(float));
  4203. memcpy(params + 11, &xpos_base, sizeof(float));
  4204. memcpy(params + 12, &xpos_down, sizeof(bool));
  4205. ggml_set_op_params(result, params, sizeof(params));
  4206. result->op = GGML_OP_ROPE;
  4207. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4208. result->src[0] = a;
  4209. result->src[1] = b;
  4210. return result;
  4211. }
  4212. struct ggml_tensor * ggml_rope(
  4213. struct ggml_context * ctx,
  4214. struct ggml_tensor * a,
  4215. struct ggml_tensor * b,
  4216. int n_dims,
  4217. int mode,
  4218. int n_ctx) {
  4219. return ggml_rope_impl(
  4220. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4221. );
  4222. }
  4223. struct ggml_tensor * ggml_rope_inplace(
  4224. struct ggml_context * ctx,
  4225. struct ggml_tensor * a,
  4226. struct ggml_tensor * b,
  4227. int n_dims,
  4228. int mode,
  4229. int n_ctx) {
  4230. return ggml_rope_impl(
  4231. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4232. );
  4233. }
  4234. struct ggml_tensor * ggml_rope_custom(
  4235. struct ggml_context * ctx,
  4236. struct ggml_tensor * a,
  4237. struct ggml_tensor * b,
  4238. int n_dims,
  4239. int mode,
  4240. int n_ctx,
  4241. int n_orig_ctx,
  4242. float freq_base,
  4243. float freq_scale,
  4244. float ext_factor,
  4245. float attn_factor,
  4246. float beta_fast,
  4247. float beta_slow) {
  4248. return ggml_rope_impl(
  4249. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4250. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4251. );
  4252. }
  4253. struct ggml_tensor * ggml_rope_custom_inplace(
  4254. struct ggml_context * ctx,
  4255. struct ggml_tensor * a,
  4256. struct ggml_tensor * b,
  4257. int n_dims,
  4258. int mode,
  4259. int n_ctx,
  4260. int n_orig_ctx,
  4261. float freq_base,
  4262. float freq_scale,
  4263. float ext_factor,
  4264. float attn_factor,
  4265. float beta_fast,
  4266. float beta_slow) {
  4267. return ggml_rope_impl(
  4268. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4269. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4270. );
  4271. }
  4272. struct ggml_tensor * ggml_rope_xpos_inplace(
  4273. struct ggml_context * ctx,
  4274. struct ggml_tensor * a,
  4275. struct ggml_tensor * b,
  4276. int n_dims,
  4277. float base,
  4278. bool down) {
  4279. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4280. }
  4281. // ggml_rope_back
  4282. struct ggml_tensor * ggml_rope_back(
  4283. struct ggml_context * ctx,
  4284. struct ggml_tensor * a,
  4285. struct ggml_tensor * b,
  4286. int n_dims,
  4287. int mode,
  4288. int n_ctx,
  4289. int n_orig_ctx,
  4290. float freq_base,
  4291. float freq_scale,
  4292. float ext_factor,
  4293. float attn_factor,
  4294. float beta_fast,
  4295. float beta_slow,
  4296. float xpos_base,
  4297. bool xpos_down) {
  4298. GGML_ASSERT(ggml_is_vector(b));
  4299. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4300. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4301. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4302. bool is_node = false;
  4303. if (a->grad) {
  4304. is_node = false; // TODO: implement backward
  4305. }
  4306. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4307. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4308. memcpy(params + 5, &freq_base, sizeof(float));
  4309. memcpy(params + 6, &freq_scale, sizeof(float));
  4310. memcpy(params + 7, &ext_factor, sizeof(float));
  4311. memcpy(params + 8, &attn_factor, sizeof(float));
  4312. memcpy(params + 9, &beta_fast, sizeof(float));
  4313. memcpy(params + 10, &beta_slow, sizeof(float));
  4314. memcpy(params + 11, &xpos_base, sizeof(float));
  4315. memcpy(params + 12, &xpos_down, sizeof(bool));
  4316. ggml_set_op_params(result, params, sizeof(params));
  4317. result->op = GGML_OP_ROPE_BACK;
  4318. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4319. result->src[0] = a;
  4320. result->src[1] = b;
  4321. return result;
  4322. }
  4323. // ggml_alibi
  4324. struct ggml_tensor * ggml_alibi(
  4325. struct ggml_context * ctx,
  4326. struct ggml_tensor * a,
  4327. int n_past,
  4328. int n_head,
  4329. float bias_max) {
  4330. GGML_ASSERT(n_past >= 0);
  4331. bool is_node = false;
  4332. if (a->grad) {
  4333. GGML_ASSERT(false); // TODO: implement backward
  4334. is_node = true;
  4335. }
  4336. // TODO: when implement backward, fix this:
  4337. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4338. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4339. int32_t op_params[3] = { n_past, n_head };
  4340. memcpy(op_params + 2, &bias_max, sizeof(float));
  4341. ggml_set_op_params(result, op_params, sizeof(op_params));
  4342. result->op = GGML_OP_ALIBI;
  4343. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4344. result->src[0] = a;
  4345. return result;
  4346. }
  4347. // ggml_clamp
  4348. struct ggml_tensor * ggml_clamp(
  4349. struct ggml_context * ctx,
  4350. struct ggml_tensor * a,
  4351. float min,
  4352. float max) {
  4353. bool is_node = false;
  4354. if (a->grad) {
  4355. GGML_ASSERT(false); // TODO: implement backward
  4356. is_node = true;
  4357. }
  4358. // TODO: when implement backward, fix this:
  4359. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4360. float params[] = { min, max };
  4361. ggml_set_op_params(result, params, sizeof(params));
  4362. result->op = GGML_OP_CLAMP;
  4363. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4364. result->src[0] = a;
  4365. return result;
  4366. }
  4367. // ggml_conv_1d
  4368. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4369. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4370. }
  4371. GGML_API struct ggml_tensor * ggml_conv_1d(
  4372. struct ggml_context * ctx,
  4373. struct ggml_tensor * a,
  4374. struct ggml_tensor * b,
  4375. int s0,
  4376. int p0,
  4377. int d0) {
  4378. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4379. struct ggml_tensor * result =
  4380. ggml_mul_mat(ctx,
  4381. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4382. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4383. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4384. return result;
  4385. }
  4386. // ggml_conv_1d_ph
  4387. struct ggml_tensor* ggml_conv_1d_ph(
  4388. struct ggml_context * ctx,
  4389. struct ggml_tensor * a,
  4390. struct ggml_tensor * b,
  4391. int s,
  4392. int d) {
  4393. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4394. }
  4395. // ggml_conv_transpose_1d
  4396. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4397. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4398. }
  4399. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4400. struct ggml_context * ctx,
  4401. struct ggml_tensor * a,
  4402. struct ggml_tensor * b,
  4403. int s0,
  4404. int p0,
  4405. int d0) {
  4406. GGML_ASSERT(ggml_is_matrix(b));
  4407. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4408. GGML_ASSERT(a->ne[3] == 1);
  4409. GGML_ASSERT(p0 == 0);
  4410. GGML_ASSERT(d0 == 1);
  4411. bool is_node = false;
  4412. if (a->grad || b->grad) {
  4413. GGML_ASSERT(false); // TODO: implement backward
  4414. is_node = true;
  4415. }
  4416. const int64_t ne[4] = {
  4417. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4418. a->ne[1], b->ne[2], 1,
  4419. };
  4420. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4421. int32_t params[] = { s0, p0, d0 };
  4422. ggml_set_op_params(result, params, sizeof(params));
  4423. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4424. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4425. result->src[0] = a;
  4426. result->src[1] = b;
  4427. return result;
  4428. }
  4429. // ggml_conv_depthwise
  4430. struct ggml_tensor * ggml_conv_depthwise_2d(
  4431. struct ggml_context * ctx,
  4432. struct ggml_tensor * a,
  4433. struct ggml_tensor * b,
  4434. int s0,
  4435. int s1,
  4436. int p0,
  4437. int p1,
  4438. int d0,
  4439. int d1) {
  4440. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4441. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4442. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4443. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  4444. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4445. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4446. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  4447. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4448. return result;
  4449. }
  4450. // ggml_conv_2d
  4451. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4452. // a: [OC,IC, KH, KW]
  4453. // b: [N, IC, IH, IW]
  4454. // result: [N, OH, OW, IC*KH*KW]
  4455. struct ggml_tensor * ggml_im2col(
  4456. struct ggml_context * ctx,
  4457. struct ggml_tensor * a,
  4458. struct ggml_tensor * b,
  4459. int s0,
  4460. int s1,
  4461. int p0,
  4462. int p1,
  4463. int d0,
  4464. int d1,
  4465. bool is_2D,
  4466. enum ggml_type dst_type) {
  4467. if(is_2D) {
  4468. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4469. } else {
  4470. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4471. }
  4472. bool is_node = false;
  4473. if (a->grad || b->grad) {
  4474. GGML_ASSERT(false); // TODO: implement backward
  4475. is_node = true;
  4476. }
  4477. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4478. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4479. const int64_t ne[4] = {
  4480. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4481. OW,
  4482. is_2D ? OH : b->ne[2],
  4483. is_2D ? b->ne[3] : 1,
  4484. };
  4485. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  4486. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4487. ggml_set_op_params(result, params, sizeof(params));
  4488. result->op = GGML_OP_IM2COL;
  4489. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4490. result->src[0] = a;
  4491. result->src[1] = b;
  4492. return result;
  4493. }
  4494. // a: [OC,IC, KH, KW]
  4495. // b: [N, IC, IH, IW]
  4496. // result: [N, OC, OH, OW]
  4497. struct ggml_tensor * ggml_conv_2d(
  4498. struct ggml_context * ctx,
  4499. struct ggml_tensor * a,
  4500. struct ggml_tensor * b,
  4501. int s0,
  4502. int s1,
  4503. int p0,
  4504. int p1,
  4505. int d0,
  4506. int d1) {
  4507. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  4508. struct ggml_tensor * result =
  4509. ggml_mul_mat(ctx,
  4510. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4511. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4512. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], a->ne[3], im2col->ne[3]); // [N, OC, OH, OW]
  4513. return result;
  4514. }
  4515. // ggml_conv_2d_sk_p0
  4516. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4517. struct ggml_context * ctx,
  4518. struct ggml_tensor * a,
  4519. struct ggml_tensor * b) {
  4520. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4521. }
  4522. // ggml_conv_2d_s1_ph
  4523. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4524. struct ggml_context * ctx,
  4525. struct ggml_tensor * a,
  4526. struct ggml_tensor * b) {
  4527. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4528. }
  4529. // ggml_conv_transpose_2d_p0
  4530. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4531. return (ins - 1) * s - 2 * p + ks;
  4532. }
  4533. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4534. struct ggml_context * ctx,
  4535. struct ggml_tensor * a,
  4536. struct ggml_tensor * b,
  4537. int stride) {
  4538. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4539. bool is_node = false;
  4540. if (a->grad || b->grad) {
  4541. GGML_ASSERT(false); // TODO: implement backward
  4542. is_node = true;
  4543. }
  4544. const int64_t ne[4] = {
  4545. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4546. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4547. a->ne[2], b->ne[3],
  4548. };
  4549. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4550. ggml_set_op_params_i32(result, 0, stride);
  4551. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4552. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4553. result->src[0] = a;
  4554. result->src[1] = b;
  4555. return result;
  4556. }
  4557. // ggml_pool_*
  4558. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4559. return (ins + 2 * p - ks) / s + 1;
  4560. }
  4561. // ggml_pool_1d
  4562. struct ggml_tensor * ggml_pool_1d(
  4563. struct ggml_context * ctx,
  4564. struct ggml_tensor * a,
  4565. enum ggml_op_pool op,
  4566. int k0,
  4567. int s0,
  4568. int p0) {
  4569. bool is_node = false;
  4570. if (a->grad) {
  4571. GGML_ASSERT(false); // TODO: implement backward
  4572. is_node = true;
  4573. }
  4574. const int64_t ne[2] = {
  4575. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4576. a->ne[1],
  4577. };
  4578. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4579. int32_t params[] = { op, k0, s0, p0 };
  4580. ggml_set_op_params(result, params, sizeof(params));
  4581. result->op = GGML_OP_POOL_1D;
  4582. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4583. result->src[0] = a;
  4584. return result;
  4585. }
  4586. // ggml_pool_2d
  4587. struct ggml_tensor * ggml_pool_2d(
  4588. struct ggml_context * ctx,
  4589. struct ggml_tensor * a,
  4590. enum ggml_op_pool op,
  4591. int k0,
  4592. int k1,
  4593. int s0,
  4594. int s1,
  4595. float p0,
  4596. float p1) {
  4597. bool is_node = false;
  4598. if (a->grad) {
  4599. GGML_ASSERT(false); // TODO: implement backward
  4600. is_node = true;
  4601. }
  4602. struct ggml_tensor * result;
  4603. const int64_t ne[3] = {
  4604. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4605. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4606. a->ne[2],
  4607. };
  4608. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4609. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4610. ggml_set_op_params(result, params, sizeof(params));
  4611. result->op = GGML_OP_POOL_2D;
  4612. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4613. result->src[0] = a;
  4614. return result;
  4615. }
  4616. // ggml_upscale
  4617. static struct ggml_tensor * ggml_upscale_impl(
  4618. struct ggml_context * ctx,
  4619. struct ggml_tensor * a,
  4620. int scale_factor) {
  4621. bool is_node = false;
  4622. if (a->grad) {
  4623. GGML_ASSERT(false); // TODO: implement backward
  4624. is_node = true;
  4625. }
  4626. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4627. a->ne[0] * scale_factor,
  4628. a->ne[1] * scale_factor,
  4629. a->ne[2], a->ne[3]);
  4630. result->op = GGML_OP_UPSCALE;
  4631. result->op_params[0] = scale_factor;
  4632. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4633. result->src[0] = a;
  4634. return result;
  4635. }
  4636. struct ggml_tensor * ggml_pad(
  4637. struct ggml_context * ctx,
  4638. struct ggml_tensor * a,
  4639. int p0, int p1, int p2, int p3) {
  4640. bool is_node = false;
  4641. if (a->grad) {
  4642. GGML_ASSERT(false); // TODO: implement backward
  4643. is_node = true;
  4644. }
  4645. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4646. a->ne[0] + p0,
  4647. a->ne[1] + p1,
  4648. a->ne[2] + p2,
  4649. a->ne[3] + p3);
  4650. result->op = GGML_OP_PAD;
  4651. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4652. result->src[0] = a;
  4653. return result;
  4654. }
  4655. struct ggml_tensor * ggml_upscale(
  4656. struct ggml_context * ctx,
  4657. struct ggml_tensor * a,
  4658. int scale_factor) {
  4659. return ggml_upscale_impl(ctx, a, scale_factor);
  4660. }
  4661. // ggml_argsort
  4662. struct ggml_tensor * ggml_argsort(
  4663. struct ggml_context * ctx,
  4664. struct ggml_tensor * a,
  4665. enum ggml_sort_order order) {
  4666. bool is_node = false;
  4667. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4668. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4669. result->op = GGML_OP_ARGSORT;
  4670. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4671. result->src[0] = a;
  4672. return result;
  4673. }
  4674. // ggml_top_k
  4675. struct ggml_tensor * ggml_top_k(
  4676. struct ggml_context * ctx,
  4677. struct ggml_tensor * a,
  4678. int k) {
  4679. GGML_ASSERT(a->ne[0] >= k);
  4680. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_DESC);
  4681. result = ggml_view_4d(ctx, result,
  4682. k, result->ne[1], result->ne[2], result->ne[3],
  4683. result->nb[1], result->nb[2], result->nb[3],
  4684. 0);
  4685. return result;
  4686. }
  4687. // ggml_flash_attn
  4688. struct ggml_tensor * ggml_flash_attn(
  4689. struct ggml_context * ctx,
  4690. struct ggml_tensor * q,
  4691. struct ggml_tensor * k,
  4692. struct ggml_tensor * v,
  4693. bool masked) {
  4694. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4695. // TODO: check if vT can be multiplied by (k*qT)
  4696. bool is_node = false;
  4697. if (q->grad || k->grad || v->grad) {
  4698. is_node = true;
  4699. }
  4700. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4701. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  4702. int32_t t = masked ? 1 : 0;
  4703. ggml_set_op_params(result, &t, sizeof(t));
  4704. result->op = GGML_OP_FLASH_ATTN;
  4705. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4706. result->src[0] = q;
  4707. result->src[1] = k;
  4708. result->src[2] = v;
  4709. return result;
  4710. }
  4711. // ggml_flash_ff
  4712. struct ggml_tensor * ggml_flash_ff(
  4713. struct ggml_context * ctx,
  4714. struct ggml_tensor * a,
  4715. struct ggml_tensor * b0,
  4716. struct ggml_tensor * b1,
  4717. struct ggml_tensor * c0,
  4718. struct ggml_tensor * c1) {
  4719. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4720. // TODO: more checks
  4721. bool is_node = false;
  4722. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4723. is_node = true;
  4724. }
  4725. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4726. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  4727. result->op = GGML_OP_FLASH_FF;
  4728. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4729. result->src[0] = a;
  4730. result->src[1] = b0;
  4731. result->src[2] = b1;
  4732. result->src[3] = c0;
  4733. result->src[4] = c1;
  4734. return result;
  4735. }
  4736. // ggml_flash_attn_back
  4737. struct ggml_tensor * ggml_flash_attn_back(
  4738. struct ggml_context * ctx,
  4739. struct ggml_tensor * q,
  4740. struct ggml_tensor * k,
  4741. struct ggml_tensor * v,
  4742. struct ggml_tensor * d,
  4743. bool masked) {
  4744. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4745. // TODO: check if vT can be multiplied by (k*qT)
  4746. // d shape [D,N,ne2,ne3]
  4747. // q shape [D,N,ne2,ne3]
  4748. // k shape [D,M,kvne2,ne3]
  4749. // v shape [M,D,kvne2,ne3]
  4750. const int64_t D = q->ne[0];
  4751. const int64_t N = q->ne[1];
  4752. const int64_t M = k->ne[1];
  4753. const int64_t ne2 = q->ne[2];
  4754. const int64_t ne3 = q->ne[3];
  4755. const int64_t kvne2 = k->ne[2];
  4756. GGML_ASSERT(k->ne[0] == D);
  4757. GGML_ASSERT(v->ne[0] == M);
  4758. GGML_ASSERT(v->ne[1] == D);
  4759. GGML_ASSERT(d->ne[0] == D);
  4760. GGML_ASSERT(d->ne[1] == N);
  4761. GGML_ASSERT(k->ne[2] == kvne2);
  4762. GGML_ASSERT(k->ne[3] == ne3);
  4763. GGML_ASSERT(v->ne[2] == kvne2);
  4764. GGML_ASSERT(v->ne[3] == ne3);
  4765. GGML_ASSERT(d->ne[2] == ne2);
  4766. GGML_ASSERT(d->ne[3] == ne3);
  4767. GGML_ASSERT(ne2 % kvne2 == 0);
  4768. bool is_node = false;
  4769. if (q->grad || k->grad || v->grad) {
  4770. // when using this operation (in backwards pass) these grads are set.
  4771. // we don't want to create (big) grad of our result, so is_node is false.
  4772. is_node = false;
  4773. }
  4774. // store gradients of q, k and v as continuous tensors concatenated in result.
  4775. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4776. const int64_t elem_q = ggml_nelements(q);
  4777. const int64_t elem_k = ggml_nelements(k);
  4778. const int64_t elem_v = ggml_nelements(v);
  4779. enum ggml_type result_type = GGML_TYPE_F32;
  4780. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4781. const size_t tsize = ggml_type_size(result_type);
  4782. const size_t offs_q = 0;
  4783. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4784. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4785. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4786. const size_t nelements = (end + tsize - 1)/tsize;
  4787. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4788. int32_t masked_i = masked ? 1 : 0;
  4789. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4790. result->op = GGML_OP_FLASH_ATTN_BACK;
  4791. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4792. result->src[0] = q;
  4793. result->src[1] = k;
  4794. result->src[2] = v;
  4795. result->src[3] = d;
  4796. return result;
  4797. }
  4798. // ggml_win_part
  4799. struct ggml_tensor * ggml_win_part(
  4800. struct ggml_context * ctx,
  4801. struct ggml_tensor * a,
  4802. int w) {
  4803. GGML_ASSERT(a->ne[3] == 1);
  4804. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4805. bool is_node = false;
  4806. if (a->grad) {
  4807. GGML_ASSERT(false); // TODO: implement backward
  4808. is_node = true;
  4809. }
  4810. // padding
  4811. const int px = (w - a->ne[1]%w)%w;
  4812. const int py = (w - a->ne[2]%w)%w;
  4813. const int npx = (px + a->ne[1])/w;
  4814. const int npy = (py + a->ne[2])/w;
  4815. const int np = npx*npy;
  4816. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4817. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4818. int32_t params[] = { npx, npy, w };
  4819. ggml_set_op_params(result, params, sizeof(params));
  4820. result->op = GGML_OP_WIN_PART;
  4821. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4822. result->src[0] = a;
  4823. return result;
  4824. }
  4825. // ggml_win_unpart
  4826. struct ggml_tensor * ggml_win_unpart(
  4827. struct ggml_context * ctx,
  4828. struct ggml_tensor * a,
  4829. int w0,
  4830. int h0,
  4831. int w) {
  4832. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4833. bool is_node = false;
  4834. if (a->grad) {
  4835. GGML_ASSERT(false); // TODO: implement backward
  4836. is_node = true;
  4837. }
  4838. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4839. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4840. int32_t params[] = { w };
  4841. ggml_set_op_params(result, params, sizeof(params));
  4842. result->op = GGML_OP_WIN_UNPART;
  4843. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4844. result->src[0] = a;
  4845. return result;
  4846. }
  4847. // ggml_get_rel_pos
  4848. struct ggml_tensor * ggml_get_rel_pos(
  4849. struct ggml_context * ctx,
  4850. struct ggml_tensor * a,
  4851. int qh,
  4852. int kh) {
  4853. GGML_ASSERT(qh == kh);
  4854. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4855. bool is_node = false;
  4856. if (a->grad) {
  4857. GGML_ASSERT(false); // TODO: implement backward
  4858. is_node = true;
  4859. }
  4860. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4861. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4862. result->op = GGML_OP_GET_REL_POS;
  4863. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4864. result->src[0] = a;
  4865. return result;
  4866. }
  4867. // ggml_add_rel_pos
  4868. static struct ggml_tensor * ggml_add_rel_pos_impl(
  4869. struct ggml_context * ctx,
  4870. struct ggml_tensor * a,
  4871. struct ggml_tensor * pw,
  4872. struct ggml_tensor * ph,
  4873. bool inplace) {
  4874. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  4875. GGML_ASSERT(ggml_is_contiguous(a));
  4876. GGML_ASSERT(ggml_is_contiguous(pw));
  4877. GGML_ASSERT(ggml_is_contiguous(ph));
  4878. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  4879. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  4880. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  4881. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  4882. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  4883. bool is_node = false;
  4884. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  4885. is_node = true;
  4886. }
  4887. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4888. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  4889. result->op = GGML_OP_ADD_REL_POS;
  4890. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4891. result->src[0] = a;
  4892. result->src[1] = pw;
  4893. result->src[2] = ph;
  4894. return result;
  4895. }
  4896. struct ggml_tensor * ggml_add_rel_pos(
  4897. struct ggml_context * ctx,
  4898. struct ggml_tensor * a,
  4899. struct ggml_tensor * pw,
  4900. struct ggml_tensor * ph) {
  4901. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  4902. }
  4903. struct ggml_tensor * ggml_add_rel_pos_inplace(
  4904. struct ggml_context * ctx,
  4905. struct ggml_tensor * a,
  4906. struct ggml_tensor * pw,
  4907. struct ggml_tensor * ph) {
  4908. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  4909. }
  4910. // gmml_unary
  4911. static struct ggml_tensor * ggml_unary_impl(
  4912. struct ggml_context * ctx,
  4913. struct ggml_tensor * a,
  4914. enum ggml_unary_op op,
  4915. bool inplace) {
  4916. bool is_node = false;
  4917. if (!inplace && (a->grad)) {
  4918. is_node = true;
  4919. }
  4920. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4921. ggml_set_op_params_i32(result, 0, (int32_t) op);
  4922. result->op = GGML_OP_UNARY;
  4923. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4924. result->src[0] = a;
  4925. return result;
  4926. }
  4927. struct ggml_tensor * ggml_unary(
  4928. struct ggml_context * ctx,
  4929. struct ggml_tensor * a,
  4930. enum ggml_unary_op op) {
  4931. return ggml_unary_impl(ctx, a, op, false);
  4932. }
  4933. struct ggml_tensor * ggml_unary_inplace(
  4934. struct ggml_context * ctx,
  4935. struct ggml_tensor * a,
  4936. enum ggml_unary_op op) {
  4937. return ggml_unary_impl(ctx, a, op, true);
  4938. }
  4939. // ggml_map_unary
  4940. static struct ggml_tensor * ggml_map_unary_impl_f32(
  4941. struct ggml_context * ctx,
  4942. struct ggml_tensor * a,
  4943. const ggml_unary_op_f32_t fun,
  4944. bool inplace) {
  4945. bool is_node = false;
  4946. if (!inplace && a->grad) {
  4947. is_node = true;
  4948. }
  4949. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4950. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4951. result->op = GGML_OP_MAP_UNARY;
  4952. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4953. result->src[0] = a;
  4954. return result;
  4955. }
  4956. struct ggml_tensor * ggml_map_unary_f32(
  4957. struct ggml_context * ctx,
  4958. struct ggml_tensor * a,
  4959. const ggml_unary_op_f32_t fun) {
  4960. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4961. }
  4962. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4963. struct ggml_context * ctx,
  4964. struct ggml_tensor * a,
  4965. const ggml_unary_op_f32_t fun) {
  4966. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4967. }
  4968. // ggml_map_binary
  4969. static struct ggml_tensor * ggml_map_binary_impl_f32(
  4970. struct ggml_context * ctx,
  4971. struct ggml_tensor * a,
  4972. struct ggml_tensor * b,
  4973. const ggml_binary_op_f32_t fun,
  4974. bool inplace) {
  4975. GGML_ASSERT(ggml_are_same_shape(a, b));
  4976. bool is_node = false;
  4977. if (!inplace && (a->grad || b->grad)) {
  4978. is_node = true;
  4979. }
  4980. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4981. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4982. result->op = GGML_OP_MAP_BINARY;
  4983. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4984. result->src[0] = a;
  4985. result->src[1] = b;
  4986. return result;
  4987. }
  4988. struct ggml_tensor * ggml_map_binary_f32(
  4989. struct ggml_context * ctx,
  4990. struct ggml_tensor * a,
  4991. struct ggml_tensor * b,
  4992. const ggml_binary_op_f32_t fun) {
  4993. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4994. }
  4995. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4996. struct ggml_context * ctx,
  4997. struct ggml_tensor * a,
  4998. struct ggml_tensor * b,
  4999. const ggml_binary_op_f32_t fun) {
  5000. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5001. }
  5002. // ggml_map_custom1_f32
  5003. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5004. struct ggml_context * ctx,
  5005. struct ggml_tensor * a,
  5006. const ggml_custom1_op_f32_t fun,
  5007. bool inplace) {
  5008. bool is_node = false;
  5009. if (!inplace && a->grad) {
  5010. is_node = true;
  5011. }
  5012. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5013. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5014. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5015. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5016. result->src[0] = a;
  5017. return result;
  5018. }
  5019. struct ggml_tensor * ggml_map_custom1_f32(
  5020. struct ggml_context * ctx,
  5021. struct ggml_tensor * a,
  5022. const ggml_custom1_op_f32_t fun) {
  5023. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5024. }
  5025. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5026. struct ggml_context * ctx,
  5027. struct ggml_tensor * a,
  5028. const ggml_custom1_op_f32_t fun) {
  5029. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5030. }
  5031. // ggml_map_custom2_f32
  5032. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5033. struct ggml_context * ctx,
  5034. struct ggml_tensor * a,
  5035. struct ggml_tensor * b,
  5036. const ggml_custom2_op_f32_t fun,
  5037. bool inplace) {
  5038. bool is_node = false;
  5039. if (!inplace && (a->grad || b->grad)) {
  5040. is_node = true;
  5041. }
  5042. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5043. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5044. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5045. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5046. result->src[0] = a;
  5047. result->src[1] = b;
  5048. return result;
  5049. }
  5050. struct ggml_tensor * ggml_map_custom2_f32(
  5051. struct ggml_context * ctx,
  5052. struct ggml_tensor * a,
  5053. struct ggml_tensor * b,
  5054. const ggml_custom2_op_f32_t fun) {
  5055. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5056. }
  5057. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5058. struct ggml_context * ctx,
  5059. struct ggml_tensor * a,
  5060. struct ggml_tensor * b,
  5061. const ggml_custom2_op_f32_t fun) {
  5062. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5063. }
  5064. // ggml_map_custom3_f32
  5065. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5066. struct ggml_context * ctx,
  5067. struct ggml_tensor * a,
  5068. struct ggml_tensor * b,
  5069. struct ggml_tensor * c,
  5070. const ggml_custom3_op_f32_t fun,
  5071. bool inplace) {
  5072. bool is_node = false;
  5073. if (!inplace && (a->grad || b->grad || c->grad)) {
  5074. is_node = true;
  5075. }
  5076. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5077. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5078. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5079. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5080. result->src[0] = a;
  5081. result->src[1] = b;
  5082. result->src[2] = c;
  5083. return result;
  5084. }
  5085. struct ggml_tensor * ggml_map_custom3_f32(
  5086. struct ggml_context * ctx,
  5087. struct ggml_tensor * a,
  5088. struct ggml_tensor * b,
  5089. struct ggml_tensor * c,
  5090. const ggml_custom3_op_f32_t fun) {
  5091. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5092. }
  5093. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5094. struct ggml_context * ctx,
  5095. struct ggml_tensor * a,
  5096. struct ggml_tensor * b,
  5097. struct ggml_tensor * c,
  5098. const ggml_custom3_op_f32_t fun) {
  5099. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5100. }
  5101. // ggml_map_custom1
  5102. struct ggml_map_custom1_op_params {
  5103. ggml_custom1_op_t fun;
  5104. int n_tasks;
  5105. void * userdata;
  5106. };
  5107. static struct ggml_tensor * ggml_map_custom1_impl(
  5108. struct ggml_context * ctx,
  5109. struct ggml_tensor * a,
  5110. const ggml_custom1_op_t fun,
  5111. int n_tasks,
  5112. void * userdata,
  5113. bool inplace) {
  5114. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5115. bool is_node = false;
  5116. if (!inplace && a->grad) {
  5117. is_node = true;
  5118. }
  5119. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5120. struct ggml_map_custom1_op_params params = {
  5121. /*.fun =*/ fun,
  5122. /*.n_tasks =*/ n_tasks,
  5123. /*.userdata =*/ userdata
  5124. };
  5125. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5126. result->op = GGML_OP_MAP_CUSTOM1;
  5127. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5128. result->src[0] = a;
  5129. return result;
  5130. }
  5131. struct ggml_tensor * ggml_map_custom1(
  5132. struct ggml_context * ctx,
  5133. struct ggml_tensor * a,
  5134. const ggml_custom1_op_t fun,
  5135. int n_tasks,
  5136. void * userdata) {
  5137. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5138. }
  5139. struct ggml_tensor * ggml_map_custom1_inplace(
  5140. struct ggml_context * ctx,
  5141. struct ggml_tensor * a,
  5142. const ggml_custom1_op_t fun,
  5143. int n_tasks,
  5144. void * userdata) {
  5145. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5146. }
  5147. // ggml_map_custom2
  5148. struct ggml_map_custom2_op_params {
  5149. ggml_custom2_op_t fun;
  5150. int n_tasks;
  5151. void * userdata;
  5152. };
  5153. static struct ggml_tensor * ggml_map_custom2_impl(
  5154. struct ggml_context * ctx,
  5155. struct ggml_tensor * a,
  5156. struct ggml_tensor * b,
  5157. const ggml_custom2_op_t fun,
  5158. int n_tasks,
  5159. void * userdata,
  5160. bool inplace) {
  5161. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5162. bool is_node = false;
  5163. if (!inplace && (a->grad || b->grad)) {
  5164. is_node = true;
  5165. }
  5166. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5167. struct ggml_map_custom2_op_params params = {
  5168. /*.fun =*/ fun,
  5169. /*.n_tasks =*/ n_tasks,
  5170. /*.userdata =*/ userdata
  5171. };
  5172. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5173. result->op = GGML_OP_MAP_CUSTOM2;
  5174. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5175. result->src[0] = a;
  5176. result->src[1] = b;
  5177. return result;
  5178. }
  5179. struct ggml_tensor * ggml_map_custom2(
  5180. struct ggml_context * ctx,
  5181. struct ggml_tensor * a,
  5182. struct ggml_tensor * b,
  5183. const ggml_custom2_op_t fun,
  5184. int n_tasks,
  5185. void * userdata) {
  5186. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5187. }
  5188. struct ggml_tensor * ggml_map_custom2_inplace(
  5189. struct ggml_context * ctx,
  5190. struct ggml_tensor * a,
  5191. struct ggml_tensor * b,
  5192. const ggml_custom2_op_t fun,
  5193. int n_tasks,
  5194. void * userdata) {
  5195. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5196. }
  5197. // ggml_map_custom3
  5198. struct ggml_map_custom3_op_params {
  5199. ggml_custom3_op_t fun;
  5200. int n_tasks;
  5201. void * userdata;
  5202. };
  5203. static struct ggml_tensor * ggml_map_custom3_impl(
  5204. struct ggml_context * ctx,
  5205. struct ggml_tensor * a,
  5206. struct ggml_tensor * b,
  5207. struct ggml_tensor * c,
  5208. const ggml_custom3_op_t fun,
  5209. int n_tasks,
  5210. void * userdata,
  5211. bool inplace) {
  5212. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5213. bool is_node = false;
  5214. if (!inplace && (a->grad || b->grad || c->grad)) {
  5215. is_node = true;
  5216. }
  5217. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5218. struct ggml_map_custom3_op_params params = {
  5219. /*.fun =*/ fun,
  5220. /*.n_tasks =*/ n_tasks,
  5221. /*.userdata =*/ userdata
  5222. };
  5223. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5224. result->op = GGML_OP_MAP_CUSTOM3;
  5225. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5226. result->src[0] = a;
  5227. result->src[1] = b;
  5228. result->src[2] = c;
  5229. return result;
  5230. }
  5231. struct ggml_tensor * ggml_map_custom3(
  5232. struct ggml_context * ctx,
  5233. struct ggml_tensor * a,
  5234. struct ggml_tensor * b,
  5235. struct ggml_tensor * c,
  5236. const ggml_custom3_op_t fun,
  5237. int n_tasks,
  5238. void * userdata) {
  5239. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5240. }
  5241. struct ggml_tensor * ggml_map_custom3_inplace(
  5242. struct ggml_context * ctx,
  5243. struct ggml_tensor * a,
  5244. struct ggml_tensor * b,
  5245. struct ggml_tensor * c,
  5246. const ggml_custom3_op_t fun,
  5247. int n_tasks,
  5248. void * userdata) {
  5249. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5250. }
  5251. // ggml_cross_entropy_loss
  5252. struct ggml_tensor * ggml_cross_entropy_loss(
  5253. struct ggml_context * ctx,
  5254. struct ggml_tensor * a,
  5255. struct ggml_tensor * b) {
  5256. GGML_ASSERT(ggml_are_same_shape(a, b));
  5257. bool is_node = false;
  5258. if (a->grad || b->grad) {
  5259. is_node = true;
  5260. }
  5261. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5262. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5263. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5264. result->src[0] = a;
  5265. result->src[1] = b;
  5266. return result;
  5267. }
  5268. // ggml_cross_entropy_loss_back
  5269. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5270. struct ggml_context * ctx,
  5271. struct ggml_tensor * a,
  5272. struct ggml_tensor * b,
  5273. struct ggml_tensor * c) {
  5274. GGML_ASSERT(ggml_are_same_shape(a, b));
  5275. GGML_ASSERT(ggml_is_scalar(c));
  5276. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5277. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5278. result->grad = NULL;
  5279. result->src[0] = a;
  5280. result->src[1] = b;
  5281. result->src[2] = c;
  5282. return result;
  5283. }
  5284. ////////////////////////////////////////////////////////////////////////////////
  5285. void ggml_set_param(
  5286. struct ggml_context * ctx,
  5287. struct ggml_tensor * tensor) {
  5288. tensor->is_param = true;
  5289. GGML_ASSERT(tensor->grad == NULL);
  5290. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5291. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5292. }
  5293. // ggml_compute_forward_dup
  5294. static void ggml_compute_forward_dup_same_cont(
  5295. const struct ggml_compute_params * params,
  5296. const struct ggml_tensor * src0,
  5297. struct ggml_tensor * dst) {
  5298. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5299. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5300. GGML_ASSERT(src0->type == dst->type);
  5301. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5302. return;
  5303. }
  5304. const size_t nb00 = src0->nb[0];
  5305. const size_t nb0 = dst->nb[0];
  5306. const int ith = params->ith; // thread index
  5307. const int nth = params->nth; // number of threads
  5308. // parallelize by elements
  5309. const int ne = ggml_nelements(dst);
  5310. const int dr = (ne + nth - 1) / nth;
  5311. const int ie0 = dr * ith;
  5312. const int ie1 = MIN(ie0 + dr, ne);
  5313. if (ie0 < ie1) {
  5314. memcpy(
  5315. ((char *) dst->data + ie0*nb0),
  5316. ((char *) src0->data + ie0*nb00),
  5317. (ie1 - ie0) * ggml_type_size(src0->type));
  5318. }
  5319. }
  5320. static void ggml_compute_forward_dup_f16(
  5321. const struct ggml_compute_params * params,
  5322. const struct ggml_tensor * src0,
  5323. struct ggml_tensor * dst) {
  5324. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5325. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5326. return;
  5327. }
  5328. GGML_TENSOR_UNARY_OP_LOCALS
  5329. const int ith = params->ith; // thread index
  5330. const int nth = params->nth; // number of threads
  5331. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5332. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5333. return;
  5334. }
  5335. // parallelize by rows
  5336. const int nr = ne01;
  5337. // number of rows per thread
  5338. const int dr = (nr + nth - 1) / nth;
  5339. // row range for this thread
  5340. const int ir0 = dr * ith;
  5341. const int ir1 = MIN(ir0 + dr, nr);
  5342. if (src0->type == dst->type &&
  5343. ne00 == ne0 &&
  5344. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5345. // copy by rows
  5346. const size_t rs = ne00*nb00;
  5347. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5348. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5349. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5350. memcpy(
  5351. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5352. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5353. rs);
  5354. }
  5355. }
  5356. }
  5357. return;
  5358. }
  5359. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5360. if (ggml_is_contiguous(dst)) {
  5361. if (nb00 == sizeof(ggml_fp16_t)) {
  5362. if (dst->type == GGML_TYPE_F16) {
  5363. size_t id = 0;
  5364. const size_t rs = ne00 * nb00;
  5365. char * dst_ptr = (char *) dst->data;
  5366. for (int i03 = 0; i03 < ne03; i03++) {
  5367. for (int i02 = 0; i02 < ne02; i02++) {
  5368. id += rs * ir0;
  5369. for (int i01 = ir0; i01 < ir1; i01++) {
  5370. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5371. memcpy(dst_ptr + id, src0_ptr, rs);
  5372. id += rs;
  5373. }
  5374. id += rs * (ne01 - ir1);
  5375. }
  5376. }
  5377. } else if (dst->type == GGML_TYPE_F32) {
  5378. size_t id = 0;
  5379. float * dst_ptr = (float *) dst->data;
  5380. for (int i03 = 0; i03 < ne03; i03++) {
  5381. for (int i02 = 0; i02 < ne02; i02++) {
  5382. id += ne00 * ir0;
  5383. for (int i01 = ir0; i01 < ir1; i01++) {
  5384. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5385. for (int i00 = 0; i00 < ne00; i00++) {
  5386. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5387. id++;
  5388. }
  5389. }
  5390. id += ne00 * (ne01 - ir1);
  5391. }
  5392. }
  5393. } else if (type_traits[dst->type].from_float) {
  5394. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5395. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5396. size_t id = 0;
  5397. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5398. char * dst_ptr = (char *) dst->data;
  5399. for (int i03 = 0; i03 < ne03; i03++) {
  5400. for (int i02 = 0; i02 < ne02; i02++) {
  5401. id += rs * ir0;
  5402. for (int i01 = ir0; i01 < ir1; i01++) {
  5403. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5404. for (int i00 = 0; i00 < ne00; i00++) {
  5405. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5406. }
  5407. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5408. id += rs;
  5409. }
  5410. id += rs * (ne01 - ir1);
  5411. }
  5412. }
  5413. } else {
  5414. GGML_ASSERT(false); // TODO: implement
  5415. }
  5416. } else {
  5417. //printf("%s: this is not optimal - fix me\n", __func__);
  5418. if (dst->type == GGML_TYPE_F32) {
  5419. size_t id = 0;
  5420. float * dst_ptr = (float *) dst->data;
  5421. for (int i03 = 0; i03 < ne03; i03++) {
  5422. for (int i02 = 0; i02 < ne02; i02++) {
  5423. id += ne00 * ir0;
  5424. for (int i01 = ir0; i01 < ir1; i01++) {
  5425. for (int i00 = 0; i00 < ne00; i00++) {
  5426. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5427. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5428. id++;
  5429. }
  5430. }
  5431. id += ne00 * (ne01 - ir1);
  5432. }
  5433. }
  5434. } else if (dst->type == GGML_TYPE_F16) {
  5435. size_t id = 0;
  5436. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5437. for (int i03 = 0; i03 < ne03; i03++) {
  5438. for (int i02 = 0; i02 < ne02; i02++) {
  5439. id += ne00 * ir0;
  5440. for (int i01 = ir0; i01 < ir1; i01++) {
  5441. for (int i00 = 0; i00 < ne00; i00++) {
  5442. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5443. dst_ptr[id] = *src0_ptr;
  5444. id++;
  5445. }
  5446. }
  5447. id += ne00 * (ne01 - ir1);
  5448. }
  5449. }
  5450. } else {
  5451. GGML_ASSERT(false); // TODO: implement
  5452. }
  5453. }
  5454. return;
  5455. }
  5456. // dst counters
  5457. int64_t i10 = 0;
  5458. int64_t i11 = 0;
  5459. int64_t i12 = 0;
  5460. int64_t i13 = 0;
  5461. if (dst->type == GGML_TYPE_F16) {
  5462. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5463. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5464. i10 += ne00 * ir0;
  5465. while (i10 >= ne0) {
  5466. i10 -= ne0;
  5467. if (++i11 == ne1) {
  5468. i11 = 0;
  5469. if (++i12 == ne2) {
  5470. i12 = 0;
  5471. if (++i13 == ne3) {
  5472. i13 = 0;
  5473. }
  5474. }
  5475. }
  5476. }
  5477. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5478. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5479. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5480. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5481. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5482. if (++i10 == ne00) {
  5483. i10 = 0;
  5484. if (++i11 == ne01) {
  5485. i11 = 0;
  5486. if (++i12 == ne02) {
  5487. i12 = 0;
  5488. if (++i13 == ne03) {
  5489. i13 = 0;
  5490. }
  5491. }
  5492. }
  5493. }
  5494. }
  5495. }
  5496. i10 += ne00 * (ne01 - ir1);
  5497. while (i10 >= ne0) {
  5498. i10 -= ne0;
  5499. if (++i11 == ne1) {
  5500. i11 = 0;
  5501. if (++i12 == ne2) {
  5502. i12 = 0;
  5503. if (++i13 == ne3) {
  5504. i13 = 0;
  5505. }
  5506. }
  5507. }
  5508. }
  5509. }
  5510. }
  5511. } else if (dst->type == GGML_TYPE_F32) {
  5512. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5513. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5514. i10 += ne00 * ir0;
  5515. while (i10 >= ne0) {
  5516. i10 -= ne0;
  5517. if (++i11 == ne1) {
  5518. i11 = 0;
  5519. if (++i12 == ne2) {
  5520. i12 = 0;
  5521. if (++i13 == ne3) {
  5522. i13 = 0;
  5523. }
  5524. }
  5525. }
  5526. }
  5527. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5528. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5529. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5530. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5531. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5532. if (++i10 == ne0) {
  5533. i10 = 0;
  5534. if (++i11 == ne1) {
  5535. i11 = 0;
  5536. if (++i12 == ne2) {
  5537. i12 = 0;
  5538. if (++i13 == ne3) {
  5539. i13 = 0;
  5540. }
  5541. }
  5542. }
  5543. }
  5544. }
  5545. }
  5546. i10 += ne00 * (ne01 - ir1);
  5547. while (i10 >= ne0) {
  5548. i10 -= ne0;
  5549. if (++i11 == ne1) {
  5550. i11 = 0;
  5551. if (++i12 == ne2) {
  5552. i12 = 0;
  5553. if (++i13 == ne3) {
  5554. i13 = 0;
  5555. }
  5556. }
  5557. }
  5558. }
  5559. }
  5560. }
  5561. } else {
  5562. GGML_ASSERT(false); // TODO: implement
  5563. }
  5564. }
  5565. static void ggml_compute_forward_dup_f32(
  5566. const struct ggml_compute_params * params,
  5567. const struct ggml_tensor * src0,
  5568. struct ggml_tensor * dst) {
  5569. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5570. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5571. return;
  5572. }
  5573. GGML_TENSOR_UNARY_OP_LOCALS
  5574. const int ith = params->ith; // thread index
  5575. const int nth = params->nth; // number of threads
  5576. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5577. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5578. return;
  5579. }
  5580. // parallelize by rows
  5581. const int nr = ne01;
  5582. // number of rows per thread
  5583. const int dr = (nr + nth - 1) / nth;
  5584. // row range for this thread
  5585. const int ir0 = dr * ith;
  5586. const int ir1 = MIN(ir0 + dr, nr);
  5587. if (src0->type == dst->type &&
  5588. ne00 == ne0 &&
  5589. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5590. // copy by rows
  5591. const size_t rs = ne00*nb00;
  5592. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5593. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5594. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5595. memcpy(
  5596. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5597. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5598. rs);
  5599. }
  5600. }
  5601. }
  5602. return;
  5603. }
  5604. if (ggml_is_contiguous(dst)) {
  5605. // TODO: simplify
  5606. if (nb00 == sizeof(float)) {
  5607. if (dst->type == GGML_TYPE_F32) {
  5608. size_t id = 0;
  5609. const size_t rs = ne00 * nb00;
  5610. char * dst_ptr = (char *) dst->data;
  5611. for (int i03 = 0; i03 < ne03; i03++) {
  5612. for (int i02 = 0; i02 < ne02; i02++) {
  5613. id += rs * ir0;
  5614. for (int i01 = ir0; i01 < ir1; i01++) {
  5615. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5616. memcpy(dst_ptr + id, src0_ptr, rs);
  5617. id += rs;
  5618. }
  5619. id += rs * (ne01 - ir1);
  5620. }
  5621. }
  5622. } else if (type_traits[dst->type].from_float) {
  5623. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5624. size_t id = 0;
  5625. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5626. char * dst_ptr = (char *) dst->data;
  5627. for (int i03 = 0; i03 < ne03; i03++) {
  5628. for (int i02 = 0; i02 < ne02; i02++) {
  5629. id += rs * ir0;
  5630. for (int i01 = ir0; i01 < ir1; i01++) {
  5631. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5632. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5633. id += rs;
  5634. }
  5635. id += rs * (ne01 - ir1);
  5636. }
  5637. }
  5638. } else {
  5639. GGML_ASSERT(false); // TODO: implement
  5640. }
  5641. } else {
  5642. //printf("%s: this is not optimal - fix me\n", __func__);
  5643. if (dst->type == GGML_TYPE_F32) {
  5644. size_t id = 0;
  5645. float * dst_ptr = (float *) dst->data;
  5646. for (int i03 = 0; i03 < ne03; i03++) {
  5647. for (int i02 = 0; i02 < ne02; i02++) {
  5648. id += ne00 * ir0;
  5649. for (int i01 = ir0; i01 < ir1; i01++) {
  5650. for (int i00 = 0; i00 < ne00; i00++) {
  5651. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5652. dst_ptr[id] = *src0_ptr;
  5653. id++;
  5654. }
  5655. }
  5656. id += ne00 * (ne01 - ir1);
  5657. }
  5658. }
  5659. } else if (dst->type == GGML_TYPE_F16) {
  5660. size_t id = 0;
  5661. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5662. for (int i03 = 0; i03 < ne03; i03++) {
  5663. for (int i02 = 0; i02 < ne02; i02++) {
  5664. id += ne00 * ir0;
  5665. for (int i01 = ir0; i01 < ir1; i01++) {
  5666. for (int i00 = 0; i00 < ne00; i00++) {
  5667. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5668. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5669. id++;
  5670. }
  5671. }
  5672. id += ne00 * (ne01 - ir1);
  5673. }
  5674. }
  5675. } else {
  5676. GGML_ASSERT(false); // TODO: implement
  5677. }
  5678. }
  5679. return;
  5680. }
  5681. // dst counters
  5682. int64_t i10 = 0;
  5683. int64_t i11 = 0;
  5684. int64_t i12 = 0;
  5685. int64_t i13 = 0;
  5686. if (dst->type == GGML_TYPE_F32) {
  5687. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5688. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5689. i10 += ne00 * ir0;
  5690. while (i10 >= ne0) {
  5691. i10 -= ne0;
  5692. if (++i11 == ne1) {
  5693. i11 = 0;
  5694. if (++i12 == ne2) {
  5695. i12 = 0;
  5696. if (++i13 == ne3) {
  5697. i13 = 0;
  5698. }
  5699. }
  5700. }
  5701. }
  5702. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5703. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5704. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5705. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5706. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5707. if (++i10 == ne0) {
  5708. i10 = 0;
  5709. if (++i11 == ne1) {
  5710. i11 = 0;
  5711. if (++i12 == ne2) {
  5712. i12 = 0;
  5713. if (++i13 == ne3) {
  5714. i13 = 0;
  5715. }
  5716. }
  5717. }
  5718. }
  5719. }
  5720. }
  5721. i10 += ne00 * (ne01 - ir1);
  5722. while (i10 >= ne0) {
  5723. i10 -= ne0;
  5724. if (++i11 == ne1) {
  5725. i11 = 0;
  5726. if (++i12 == ne2) {
  5727. i12 = 0;
  5728. if (++i13 == ne3) {
  5729. i13 = 0;
  5730. }
  5731. }
  5732. }
  5733. }
  5734. }
  5735. }
  5736. } else if (dst->type == GGML_TYPE_F16) {
  5737. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5738. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5739. i10 += ne00 * ir0;
  5740. while (i10 >= ne0) {
  5741. i10 -= ne0;
  5742. if (++i11 == ne1) {
  5743. i11 = 0;
  5744. if (++i12 == ne2) {
  5745. i12 = 0;
  5746. if (++i13 == ne3) {
  5747. i13 = 0;
  5748. }
  5749. }
  5750. }
  5751. }
  5752. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5753. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5754. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5755. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5756. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5757. if (++i10 == ne0) {
  5758. i10 = 0;
  5759. if (++i11 == ne1) {
  5760. i11 = 0;
  5761. if (++i12 == ne2) {
  5762. i12 = 0;
  5763. if (++i13 == ne3) {
  5764. i13 = 0;
  5765. }
  5766. }
  5767. }
  5768. }
  5769. }
  5770. }
  5771. i10 += ne00 * (ne01 - ir1);
  5772. while (i10 >= ne0) {
  5773. i10 -= ne0;
  5774. if (++i11 == ne1) {
  5775. i11 = 0;
  5776. if (++i12 == ne2) {
  5777. i12 = 0;
  5778. if (++i13 == ne3) {
  5779. i13 = 0;
  5780. }
  5781. }
  5782. }
  5783. }
  5784. }
  5785. }
  5786. } else {
  5787. GGML_ASSERT(false); // TODO: implement
  5788. }
  5789. }
  5790. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  5791. static void ggml_compute_forward_dup_bytes(
  5792. const struct ggml_compute_params * params,
  5793. const struct ggml_tensor * src0,
  5794. struct ggml_tensor * dst) {
  5795. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5796. GGML_ASSERT(src0->type == dst->type);
  5797. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5798. return;
  5799. }
  5800. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  5801. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5802. return;
  5803. }
  5804. GGML_TENSOR_UNARY_OP_LOCALS;
  5805. const size_t type_size = ggml_type_size(src0->type);
  5806. const int ith = params->ith; // thread index
  5807. const int nth = params->nth; // number of threads
  5808. // parallelize by rows
  5809. const int nr = ne01;
  5810. // number of rows per thread
  5811. const int dr = (nr + nth - 1) / nth;
  5812. // row range for this thread
  5813. const int ir0 = dr * ith;
  5814. const int ir1 = MIN(ir0 + dr, nr);
  5815. if (src0->type == dst->type &&
  5816. ne00 == ne0 &&
  5817. nb00 == type_size && nb0 == type_size) {
  5818. // copy by rows
  5819. const size_t rs = ne00 * type_size;
  5820. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5821. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5822. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5823. memcpy(
  5824. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5825. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5826. rs);
  5827. }
  5828. }
  5829. }
  5830. return;
  5831. }
  5832. if (ggml_is_contiguous(dst)) {
  5833. size_t id = 0;
  5834. char * dst_ptr = (char *) dst->data;
  5835. const size_t rs = ne00 * type_size;
  5836. if (nb00 == type_size) {
  5837. // src0 is contigous on first dimension, copy by rows
  5838. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5839. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5840. id += rs * ir0;
  5841. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5842. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5843. memcpy(dst_ptr + id, src0_ptr, rs);
  5844. id += rs;
  5845. }
  5846. id += rs * (ne01 - ir1);
  5847. }
  5848. }
  5849. } else {
  5850. //printf("%s: this is not optimal - fix me\n", __func__);
  5851. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5852. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5853. id += rs * ir0;
  5854. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5855. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5856. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  5857. memcpy(dst_ptr + id, src0_ptr, type_size);
  5858. id += type_size;
  5859. }
  5860. }
  5861. id += rs * (ne01 - ir1);
  5862. }
  5863. }
  5864. }
  5865. return;
  5866. }
  5867. // dst counters
  5868. int64_t i10 = 0;
  5869. int64_t i11 = 0;
  5870. int64_t i12 = 0;
  5871. int64_t i13 = 0;
  5872. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5873. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5874. i10 += ne00 * ir0;
  5875. while (i10 >= ne0) {
  5876. i10 -= ne0;
  5877. if (++i11 == ne1) {
  5878. i11 = 0;
  5879. if (++i12 == ne2) {
  5880. i12 = 0;
  5881. if (++i13 == ne3) {
  5882. i13 = 0;
  5883. }
  5884. }
  5885. }
  5886. }
  5887. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5888. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5889. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5890. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5891. memcpy(dst_ptr, src0_ptr, type_size);
  5892. if (++i10 == ne0) {
  5893. i10 = 0;
  5894. if (++i11 == ne1) {
  5895. i11 = 0;
  5896. if (++i12 == ne2) {
  5897. i12 = 0;
  5898. if (++i13 == ne3) {
  5899. i13 = 0;
  5900. }
  5901. }
  5902. }
  5903. }
  5904. }
  5905. }
  5906. i10 += ne00 * (ne01 - ir1);
  5907. while (i10 >= ne0) {
  5908. i10 -= ne0;
  5909. if (++i11 == ne1) {
  5910. i11 = 0;
  5911. if (++i12 == ne2) {
  5912. i12 = 0;
  5913. if (++i13 == ne3) {
  5914. i13 = 0;
  5915. }
  5916. }
  5917. }
  5918. }
  5919. }
  5920. }
  5921. }
  5922. static void ggml_compute_forward_dup(
  5923. const struct ggml_compute_params * params,
  5924. const struct ggml_tensor * src0,
  5925. struct ggml_tensor * dst) {
  5926. if (src0->type == dst->type) {
  5927. ggml_compute_forward_dup_bytes(params, src0, dst);
  5928. return;
  5929. }
  5930. switch (src0->type) {
  5931. case GGML_TYPE_F16:
  5932. {
  5933. ggml_compute_forward_dup_f16(params, src0, dst);
  5934. } break;
  5935. case GGML_TYPE_F32:
  5936. {
  5937. ggml_compute_forward_dup_f32(params, src0, dst);
  5938. } break;
  5939. default:
  5940. {
  5941. GGML_ASSERT(false);
  5942. } break;
  5943. }
  5944. }
  5945. // ggml_compute_forward_add
  5946. static void ggml_compute_forward_add_f32(
  5947. const struct ggml_compute_params * params,
  5948. const struct ggml_tensor * src0,
  5949. const struct ggml_tensor * src1,
  5950. struct ggml_tensor * dst) {
  5951. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  5952. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5953. return;
  5954. }
  5955. const int ith = params->ith;
  5956. const int nth = params->nth;
  5957. #ifdef GGML_USE_CLBLAST
  5958. if (src1->backend == GGML_BACKEND_GPU) {
  5959. // TODO: OpenCL kernel support full broadcast
  5960. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  5961. if (ith == 0) {
  5962. ggml_cl_add(src0, src1, dst);
  5963. }
  5964. return;
  5965. }
  5966. #endif
  5967. const int nr = ggml_nrows(src0);
  5968. GGML_TENSOR_BINARY_OP_LOCALS
  5969. GGML_ASSERT( nb0 == sizeof(float));
  5970. GGML_ASSERT(nb00 == sizeof(float));
  5971. // rows per thread
  5972. const int dr = (nr + nth - 1)/nth;
  5973. // row range for this thread
  5974. const int ir0 = dr*ith;
  5975. const int ir1 = MIN(ir0 + dr, nr);
  5976. if (nb10 == sizeof(float)) {
  5977. for (int ir = ir0; ir < ir1; ++ir) {
  5978. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5979. const int64_t i03 = ir/(ne02*ne01);
  5980. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5981. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5982. const int64_t i13 = i03 % ne13;
  5983. const int64_t i12 = i02 % ne12;
  5984. const int64_t i11 = i01 % ne11;
  5985. const int64_t nr0 = ne00 / ne10;
  5986. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5987. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5988. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  5989. for (int64_t r = 0; r < nr0; ++r) {
  5990. #ifdef GGML_USE_ACCELERATE
  5991. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  5992. #else
  5993. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  5994. #endif
  5995. }
  5996. }
  5997. } else {
  5998. // src1 is not contiguous
  5999. for (int ir = ir0; ir < ir1; ++ir) {
  6000. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6001. const int64_t i03 = ir/(ne02*ne01);
  6002. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6003. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6004. const int64_t i13 = i03 % ne13;
  6005. const int64_t i12 = i02 % ne12;
  6006. const int64_t i11 = i01 % ne11;
  6007. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6008. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6009. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6010. const int64_t i10 = i0 % ne10;
  6011. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6012. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6013. }
  6014. }
  6015. }
  6016. }
  6017. static void ggml_compute_forward_add_f16_f32(
  6018. const struct ggml_compute_params * params,
  6019. const struct ggml_tensor * src0,
  6020. const struct ggml_tensor * src1,
  6021. struct ggml_tensor * dst) {
  6022. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6023. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6024. return;
  6025. }
  6026. const int ith = params->ith;
  6027. const int nth = params->nth;
  6028. const int nr = ggml_nrows(src0);
  6029. GGML_TENSOR_BINARY_OP_LOCALS
  6030. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6031. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6032. if (dst->type == GGML_TYPE_F32) {
  6033. GGML_ASSERT( nb0 == sizeof(float));
  6034. }
  6035. else {
  6036. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6037. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6038. }
  6039. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6040. // rows per thread
  6041. const int dr = (nr + nth - 1)/nth;
  6042. // row range for this thread
  6043. const int ir0 = dr*ith;
  6044. const int ir1 = MIN(ir0 + dr, nr);
  6045. if (nb10 == sizeof(float)) {
  6046. if (dst->type == GGML_TYPE_F16) {
  6047. for (int ir = ir0; ir < ir1; ++ir) {
  6048. // src0, src1 and dst are same shape => same indices
  6049. const int i3 = ir/(ne2*ne1);
  6050. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6051. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6052. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6053. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6054. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6055. for (int i = 0; i < ne0; i++) {
  6056. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6057. }
  6058. }
  6059. } else {
  6060. for (int ir = ir0; ir < ir1; ++ir) {
  6061. // src0, src1 and dst are same shape => same indices
  6062. const int i3 = ir/(ne2*ne1);
  6063. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6064. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6065. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6066. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6067. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6068. for (int i = 0; i < ne0; i++) {
  6069. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6070. }
  6071. }
  6072. }
  6073. }
  6074. else {
  6075. // src1 is not contiguous
  6076. GGML_ASSERT(false);
  6077. }
  6078. }
  6079. static void ggml_compute_forward_add_f16_f16(
  6080. const struct ggml_compute_params * params,
  6081. const struct ggml_tensor * src0,
  6082. const struct ggml_tensor * src1,
  6083. struct ggml_tensor * dst) {
  6084. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6085. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6086. return;
  6087. }
  6088. const int ith = params->ith;
  6089. const int nth = params->nth;
  6090. const int nr = ggml_nrows(src0);
  6091. GGML_TENSOR_BINARY_OP_LOCALS
  6092. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6093. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6094. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6095. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6096. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6097. // rows per thread
  6098. const int dr = (nr + nth - 1)/nth;
  6099. // row range for this thread
  6100. const int ir0 = dr*ith;
  6101. const int ir1 = MIN(ir0 + dr, nr);
  6102. if (nb10 == sizeof(ggml_fp16_t)) {
  6103. for (int ir = ir0; ir < ir1; ++ir) {
  6104. // src0, src1 and dst are same shape => same indices
  6105. const int i3 = ir/(ne2*ne1);
  6106. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6107. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6108. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6109. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6110. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6111. for (int i = 0; i < ne0; i++) {
  6112. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6113. }
  6114. }
  6115. }
  6116. else {
  6117. // src1 is not contiguous
  6118. GGML_ASSERT(false);
  6119. }
  6120. }
  6121. static void ggml_compute_forward_add_q_f32(
  6122. const struct ggml_compute_params * params,
  6123. const struct ggml_tensor * src0,
  6124. const struct ggml_tensor * src1,
  6125. struct ggml_tensor * dst) {
  6126. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6127. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6128. return;
  6129. }
  6130. const int nr = ggml_nrows(src0);
  6131. GGML_TENSOR_BINARY_OP_LOCALS
  6132. const int ith = params->ith;
  6133. const int nth = params->nth;
  6134. const enum ggml_type type = src0->type;
  6135. const enum ggml_type dtype = dst->type;
  6136. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6137. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6138. // we don't support permuted src0 or src1
  6139. GGML_ASSERT(nb00 == ggml_type_size(type));
  6140. GGML_ASSERT(nb10 == sizeof(float));
  6141. // dst cannot be transposed or permuted
  6142. GGML_ASSERT(nb0 <= nb1);
  6143. GGML_ASSERT(nb1 <= nb2);
  6144. GGML_ASSERT(nb2 <= nb3);
  6145. GGML_ASSERT(ggml_is_quantized(src0->type));
  6146. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6147. // rows per thread
  6148. const int dr = (nr + nth - 1)/nth;
  6149. // row range for this thread
  6150. const int ir0 = dr*ith;
  6151. const int ir1 = MIN(ir0 + dr, nr);
  6152. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6153. for (int ir = ir0; ir < ir1; ++ir) {
  6154. // src0 indices
  6155. const int i03 = ir/(ne02*ne01);
  6156. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6157. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6158. // src1 and dst are same shape as src0 => same indices
  6159. const int i13 = i03;
  6160. const int i12 = i02;
  6161. const int i11 = i01;
  6162. const int i3 = i03;
  6163. const int i2 = i02;
  6164. const int i1 = i01;
  6165. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6166. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6167. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6168. assert(ne00 % 32 == 0);
  6169. // unquantize row from src0 to temp buffer
  6170. dequantize_row_q(src0_row, wdata, ne00);
  6171. // add src1
  6172. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6173. // quantize row to dst
  6174. if (quantize_row_q != NULL) {
  6175. quantize_row_q(wdata, dst_row, ne00);
  6176. } else {
  6177. memcpy(dst_row, wdata, ne0*nb0);
  6178. }
  6179. }
  6180. }
  6181. static void ggml_compute_forward_add(
  6182. const struct ggml_compute_params * params,
  6183. const struct ggml_tensor * src0,
  6184. const struct ggml_tensor * src1,
  6185. struct ggml_tensor * dst) {
  6186. switch (src0->type) {
  6187. case GGML_TYPE_F32:
  6188. {
  6189. if (src1->type == GGML_TYPE_F32) {
  6190. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6191. }
  6192. else {
  6193. GGML_ASSERT(false);
  6194. }
  6195. } break;
  6196. case GGML_TYPE_F16:
  6197. {
  6198. if (src1->type == GGML_TYPE_F16) {
  6199. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6200. }
  6201. else if (src1->type == GGML_TYPE_F32) {
  6202. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6203. }
  6204. else {
  6205. GGML_ASSERT(false);
  6206. }
  6207. } break;
  6208. case GGML_TYPE_Q4_0:
  6209. case GGML_TYPE_Q4_1:
  6210. case GGML_TYPE_Q5_0:
  6211. case GGML_TYPE_Q5_1:
  6212. case GGML_TYPE_Q8_0:
  6213. case GGML_TYPE_Q2_K:
  6214. case GGML_TYPE_Q3_K:
  6215. case GGML_TYPE_Q4_K:
  6216. case GGML_TYPE_Q5_K:
  6217. case GGML_TYPE_Q6_K:
  6218. case GGML_TYPE_IQ2_XXS:
  6219. case GGML_TYPE_IQ2_XS:
  6220. case GGML_TYPE_IQ3_XXS:
  6221. {
  6222. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6223. } break;
  6224. default:
  6225. {
  6226. GGML_ASSERT(false);
  6227. } break;
  6228. }
  6229. }
  6230. // ggml_compute_forward_add1
  6231. static void ggml_compute_forward_add1_f32(
  6232. const struct ggml_compute_params * params,
  6233. const struct ggml_tensor * src0,
  6234. const struct ggml_tensor * src1,
  6235. struct ggml_tensor * dst) {
  6236. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6237. GGML_ASSERT(ggml_is_scalar(src1));
  6238. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6239. return;
  6240. }
  6241. const int ith = params->ith;
  6242. const int nth = params->nth;
  6243. const int nr = ggml_nrows(src0);
  6244. GGML_TENSOR_UNARY_OP_LOCALS
  6245. GGML_ASSERT( nb0 == sizeof(float));
  6246. GGML_ASSERT(nb00 == sizeof(float));
  6247. // rows per thread
  6248. const int dr = (nr + nth - 1)/nth;
  6249. // row range for this thread
  6250. const int ir0 = dr*ith;
  6251. const int ir1 = MIN(ir0 + dr, nr);
  6252. for (int ir = ir0; ir < ir1; ++ir) {
  6253. // src0 and dst are same shape => same indices
  6254. const int i3 = ir/(ne2*ne1);
  6255. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6256. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6257. #ifdef GGML_USE_ACCELERATE
  6258. UNUSED(ggml_vec_add1_f32);
  6259. vDSP_vadd(
  6260. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6261. (float *) ((char *) src1->data), 0,
  6262. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6263. ne0);
  6264. #else
  6265. ggml_vec_add1_f32(ne0,
  6266. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6267. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6268. *(float *) src1->data);
  6269. #endif
  6270. }
  6271. }
  6272. static void ggml_compute_forward_add1_f16_f32(
  6273. const struct ggml_compute_params * params,
  6274. const struct ggml_tensor * src0,
  6275. const struct ggml_tensor * src1,
  6276. struct ggml_tensor * dst) {
  6277. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6278. GGML_ASSERT(ggml_is_scalar(src1));
  6279. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6280. return;
  6281. }
  6282. // scalar to add
  6283. const float v = *(float *) src1->data;
  6284. const int ith = params->ith;
  6285. const int nth = params->nth;
  6286. const int nr = ggml_nrows(src0);
  6287. GGML_TENSOR_UNARY_OP_LOCALS
  6288. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6289. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6290. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6291. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6292. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6293. // rows per thread
  6294. const int dr = (nr + nth - 1)/nth;
  6295. // row range for this thread
  6296. const int ir0 = dr*ith;
  6297. const int ir1 = MIN(ir0 + dr, nr);
  6298. for (int ir = ir0; ir < ir1; ++ir) {
  6299. // src0 and dst are same shape => same indices
  6300. const int i3 = ir/(ne2*ne1);
  6301. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6302. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6303. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6304. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6305. for (int i = 0; i < ne0; i++) {
  6306. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6307. }
  6308. }
  6309. }
  6310. static void ggml_compute_forward_add1_f16_f16(
  6311. const struct ggml_compute_params * params,
  6312. const struct ggml_tensor * src0,
  6313. const struct ggml_tensor * src1,
  6314. struct ggml_tensor * dst) {
  6315. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6316. GGML_ASSERT(ggml_is_scalar(src1));
  6317. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6318. return;
  6319. }
  6320. // scalar to add
  6321. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6322. const int ith = params->ith;
  6323. const int nth = params->nth;
  6324. const int nr = ggml_nrows(src0);
  6325. GGML_TENSOR_UNARY_OP_LOCALS
  6326. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6327. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6328. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6329. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6330. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6331. // rows per thread
  6332. const int dr = (nr + nth - 1)/nth;
  6333. // row range for this thread
  6334. const int ir0 = dr*ith;
  6335. const int ir1 = MIN(ir0 + dr, nr);
  6336. for (int ir = ir0; ir < ir1; ++ir) {
  6337. // src0 and dst are same shape => same indices
  6338. const int i3 = ir/(ne2*ne1);
  6339. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6340. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6341. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6342. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6343. for (int i = 0; i < ne0; i++) {
  6344. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6345. }
  6346. }
  6347. }
  6348. static void ggml_compute_forward_add1_q_f32(
  6349. const struct ggml_compute_params * params,
  6350. const struct ggml_tensor * src0,
  6351. const struct ggml_tensor * src1,
  6352. struct ggml_tensor * dst) {
  6353. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6354. GGML_ASSERT(ggml_is_scalar(src1));
  6355. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6356. return;
  6357. }
  6358. // scalar to add
  6359. const float v = *(float *) src1->data;
  6360. const int ith = params->ith;
  6361. const int nth = params->nth;
  6362. const int nr = ggml_nrows(src0);
  6363. GGML_TENSOR_UNARY_OP_LOCALS
  6364. const enum ggml_type type = src0->type;
  6365. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6366. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6367. // we don't support permuted src0
  6368. GGML_ASSERT(nb00 == ggml_type_size(type));
  6369. // dst cannot be transposed or permuted
  6370. GGML_ASSERT(nb0 <= nb1);
  6371. GGML_ASSERT(nb1 <= nb2);
  6372. GGML_ASSERT(nb2 <= nb3);
  6373. GGML_ASSERT(ggml_is_quantized(src0->type));
  6374. GGML_ASSERT(dst->type == src0->type);
  6375. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6376. // rows per thread
  6377. const int dr = (nr + nth - 1)/nth;
  6378. // row range for this thread
  6379. const int ir0 = dr*ith;
  6380. const int ir1 = MIN(ir0 + dr, nr);
  6381. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6382. for (int ir = ir0; ir < ir1; ++ir) {
  6383. // src0 and dst are same shape => same indices
  6384. const int i3 = ir/(ne2*ne1);
  6385. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6386. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6387. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6388. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6389. assert(ne0 % 32 == 0);
  6390. // unquantize row from src0 to temp buffer
  6391. dequantize_row_q(src0_row, wdata, ne0);
  6392. // add src1
  6393. ggml_vec_acc1_f32(ne0, wdata, v);
  6394. // quantize row to dst
  6395. quantize_row_q(wdata, dst_row, ne0);
  6396. }
  6397. }
  6398. static void ggml_compute_forward_add1(
  6399. const struct ggml_compute_params * params,
  6400. const struct ggml_tensor * src0,
  6401. const struct ggml_tensor * src1,
  6402. struct ggml_tensor * dst) {
  6403. switch (src0->type) {
  6404. case GGML_TYPE_F32:
  6405. {
  6406. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6407. } break;
  6408. case GGML_TYPE_F16:
  6409. {
  6410. if (src1->type == GGML_TYPE_F16) {
  6411. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6412. }
  6413. else if (src1->type == GGML_TYPE_F32) {
  6414. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6415. }
  6416. else {
  6417. GGML_ASSERT(false);
  6418. }
  6419. } break;
  6420. case GGML_TYPE_Q4_0:
  6421. case GGML_TYPE_Q4_1:
  6422. case GGML_TYPE_Q5_0:
  6423. case GGML_TYPE_Q5_1:
  6424. case GGML_TYPE_Q8_0:
  6425. case GGML_TYPE_Q8_1:
  6426. case GGML_TYPE_Q2_K:
  6427. case GGML_TYPE_Q3_K:
  6428. case GGML_TYPE_Q4_K:
  6429. case GGML_TYPE_Q5_K:
  6430. case GGML_TYPE_Q6_K:
  6431. case GGML_TYPE_IQ2_XXS:
  6432. case GGML_TYPE_IQ2_XS:
  6433. case GGML_TYPE_IQ3_XXS:
  6434. {
  6435. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6436. } break;
  6437. default:
  6438. {
  6439. GGML_ASSERT(false);
  6440. } break;
  6441. }
  6442. }
  6443. // ggml_compute_forward_acc
  6444. static void ggml_compute_forward_acc_f32(
  6445. const struct ggml_compute_params * params,
  6446. const struct ggml_tensor * src0,
  6447. const struct ggml_tensor * src1,
  6448. struct ggml_tensor * dst) {
  6449. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6450. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6451. // view src0 and dst with these strides and data offset inbytes during acc
  6452. // nb0 is implicitly element_size because src0 and dst are contiguous
  6453. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6454. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6455. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6456. size_t offset = ((int32_t *) dst->op_params)[3];
  6457. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6458. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6459. if (params->ith != 0) {
  6460. return;
  6461. }
  6462. // memcpy needs to be synchronized across threads to avoid race conditions.
  6463. // => do it in INIT phase
  6464. memcpy(
  6465. ((char *) dst->data),
  6466. ((char *) src0->data),
  6467. ggml_nbytes(dst));
  6468. }
  6469. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6470. return;
  6471. }
  6472. const int ith = params->ith;
  6473. const int nth = params->nth;
  6474. const int nr = ggml_nrows(src1);
  6475. const int nc = src1->ne[0];
  6476. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6477. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6478. // src0 and dst as viewed during acc
  6479. const size_t nb0 = ggml_element_size(src0);
  6480. const size_t nb00 = nb0;
  6481. const size_t nb01 = nb1;
  6482. const size_t nb02 = nb2;
  6483. const size_t nb03 = nb3;
  6484. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6485. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6486. GGML_ASSERT(nb10 == sizeof(float));
  6487. // rows per thread
  6488. const int dr = (nr + nth - 1)/nth;
  6489. // row range for this thread
  6490. const int ir0 = dr*ith;
  6491. const int ir1 = MIN(ir0 + dr, nr);
  6492. for (int ir = ir0; ir < ir1; ++ir) {
  6493. // src0 and dst are viewed with shape of src1 and offset
  6494. // => same indices
  6495. const int i3 = ir/(ne12*ne11);
  6496. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6497. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6498. #ifdef GGML_USE_ACCELERATE
  6499. vDSP_vadd(
  6500. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6501. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6502. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6503. #else
  6504. ggml_vec_add_f32(nc,
  6505. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6506. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6507. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6508. #endif
  6509. }
  6510. }
  6511. static void ggml_compute_forward_acc(
  6512. const struct ggml_compute_params * params,
  6513. const struct ggml_tensor * src0,
  6514. const struct ggml_tensor * src1,
  6515. struct ggml_tensor * dst) {
  6516. switch (src0->type) {
  6517. case GGML_TYPE_F32:
  6518. {
  6519. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  6520. } break;
  6521. case GGML_TYPE_F16:
  6522. case GGML_TYPE_Q4_0:
  6523. case GGML_TYPE_Q4_1:
  6524. case GGML_TYPE_Q5_0:
  6525. case GGML_TYPE_Q5_1:
  6526. case GGML_TYPE_Q8_0:
  6527. case GGML_TYPE_Q8_1:
  6528. case GGML_TYPE_Q2_K:
  6529. case GGML_TYPE_Q3_K:
  6530. case GGML_TYPE_Q4_K:
  6531. case GGML_TYPE_Q5_K:
  6532. case GGML_TYPE_Q6_K:
  6533. case GGML_TYPE_IQ2_XXS:
  6534. case GGML_TYPE_IQ2_XS:
  6535. case GGML_TYPE_IQ3_XXS:
  6536. default:
  6537. {
  6538. GGML_ASSERT(false);
  6539. } break;
  6540. }
  6541. }
  6542. // ggml_compute_forward_sub
  6543. static void ggml_compute_forward_sub_f32(
  6544. const struct ggml_compute_params * params,
  6545. const struct ggml_tensor * src0,
  6546. const struct ggml_tensor * src1,
  6547. struct ggml_tensor * dst) {
  6548. assert(params->ith == 0);
  6549. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6550. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6551. return;
  6552. }
  6553. const int nr = ggml_nrows(src0);
  6554. GGML_TENSOR_BINARY_OP_LOCALS
  6555. GGML_ASSERT( nb0 == sizeof(float));
  6556. GGML_ASSERT(nb00 == sizeof(float));
  6557. if (nb10 == sizeof(float)) {
  6558. for (int ir = 0; ir < nr; ++ir) {
  6559. // src0, src1 and dst are same shape => same indices
  6560. const int i3 = ir/(ne2*ne1);
  6561. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6562. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6563. #ifdef GGML_USE_ACCELERATE
  6564. vDSP_vsub(
  6565. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6566. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6567. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6568. ne0);
  6569. #else
  6570. ggml_vec_sub_f32(ne0,
  6571. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6572. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6573. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6574. #endif
  6575. // }
  6576. // }
  6577. }
  6578. } else {
  6579. // src1 is not contiguous
  6580. for (int ir = 0; ir < nr; ++ir) {
  6581. // src0, src1 and dst are same shape => same indices
  6582. const int i3 = ir/(ne2*ne1);
  6583. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6584. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6585. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6586. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6587. for (int i0 = 0; i0 < ne0; i0++) {
  6588. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6589. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6590. }
  6591. }
  6592. }
  6593. }
  6594. static void ggml_compute_forward_sub(
  6595. const struct ggml_compute_params * params,
  6596. const struct ggml_tensor * src0,
  6597. const struct ggml_tensor * src1,
  6598. struct ggml_tensor * dst) {
  6599. switch (src0->type) {
  6600. case GGML_TYPE_F32:
  6601. {
  6602. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6603. } break;
  6604. default:
  6605. {
  6606. GGML_ASSERT(false);
  6607. } break;
  6608. }
  6609. }
  6610. // ggml_compute_forward_mul
  6611. static void ggml_compute_forward_mul_f32(
  6612. const struct ggml_compute_params * params,
  6613. const struct ggml_tensor * src0,
  6614. const struct ggml_tensor * src1,
  6615. struct ggml_tensor * dst) {
  6616. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6617. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6618. return;
  6619. }
  6620. const int ith = params->ith;
  6621. const int nth = params->nth;
  6622. #if defined(GGML_USE_CLBLAST)
  6623. if (src1->backend == GGML_BACKEND_GPU) {
  6624. // TODO: OpenCL kernel support full broadcast
  6625. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6626. if (ith == 0) {
  6627. ggml_cl_mul(src0, src1, dst);
  6628. }
  6629. return;
  6630. }
  6631. #endif
  6632. const int64_t nr = ggml_nrows(src0);
  6633. GGML_TENSOR_BINARY_OP_LOCALS
  6634. GGML_ASSERT( nb0 == sizeof(float));
  6635. GGML_ASSERT(nb00 == sizeof(float));
  6636. if (nb10 == sizeof(float)) {
  6637. for (int64_t ir = ith; ir < nr; ir += nth) {
  6638. // src0 and dst are same shape => same indices
  6639. const int64_t i03 = ir/(ne02*ne01);
  6640. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6641. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6642. const int64_t i13 = i03 % ne13;
  6643. const int64_t i12 = i02 % ne12;
  6644. const int64_t i11 = i01 % ne11;
  6645. const int64_t nr0 = ne00 / ne10;
  6646. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6647. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6648. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6649. for (int64_t r = 0 ; r < nr0; ++r) {
  6650. #ifdef GGML_USE_ACCELERATE
  6651. UNUSED(ggml_vec_mul_f32);
  6652. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6653. #else
  6654. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6655. #endif
  6656. }
  6657. }
  6658. } else {
  6659. // src1 is not contiguous
  6660. for (int64_t ir = ith; ir < nr; ir += nth) {
  6661. // src0 and dst are same shape => same indices
  6662. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6663. const int64_t i03 = ir/(ne02*ne01);
  6664. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6665. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6666. const int64_t i13 = i03 % ne13;
  6667. const int64_t i12 = i02 % ne12;
  6668. const int64_t i11 = i01 % ne11;
  6669. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6670. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6671. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6672. const int64_t i10 = i0 % ne10;
  6673. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6674. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6675. }
  6676. }
  6677. }
  6678. }
  6679. static void ggml_compute_forward_mul(
  6680. const struct ggml_compute_params * params,
  6681. const struct ggml_tensor * src0,
  6682. const struct ggml_tensor * src1,
  6683. struct ggml_tensor * dst) {
  6684. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6685. switch (src0->type) {
  6686. case GGML_TYPE_F32:
  6687. {
  6688. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6689. } break;
  6690. default:
  6691. {
  6692. GGML_ASSERT(false);
  6693. } break;
  6694. }
  6695. }
  6696. // ggml_compute_forward_div
  6697. static void ggml_compute_forward_div_f32(
  6698. const struct ggml_compute_params * params,
  6699. const struct ggml_tensor * src0,
  6700. const struct ggml_tensor * src1,
  6701. struct ggml_tensor * dst) {
  6702. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6703. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6704. return;
  6705. }
  6706. const int ith = params->ith;
  6707. const int nth = params->nth;
  6708. const int64_t nr = ggml_nrows(src0);
  6709. GGML_TENSOR_BINARY_OP_LOCALS
  6710. GGML_ASSERT( nb0 == sizeof(float));
  6711. GGML_ASSERT(nb00 == sizeof(float));
  6712. if (nb10 == sizeof(float)) {
  6713. for (int64_t ir = ith; ir < nr; ir += nth) {
  6714. // src0 and dst are same shape => same indices
  6715. const int64_t i03 = ir/(ne02*ne01);
  6716. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6717. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6718. const int64_t i13 = i03 % ne13;
  6719. const int64_t i12 = i02 % ne12;
  6720. const int64_t i11 = i01 % ne11;
  6721. const int64_t nr0 = ne00 / ne10;
  6722. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6723. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6724. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6725. for (int64_t r = 0; r < nr0; ++r) {
  6726. #ifdef GGML_USE_ACCELERATE
  6727. UNUSED(ggml_vec_div_f32);
  6728. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  6729. #else
  6730. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6731. #endif
  6732. }
  6733. }
  6734. } else {
  6735. // src1 is not contiguous
  6736. for (int64_t ir = ith; ir < nr; ir += nth) {
  6737. // src0 and dst are same shape => same indices
  6738. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6739. const int64_t i03 = ir/(ne02*ne01);
  6740. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6741. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6742. const int64_t i13 = i03 % ne13;
  6743. const int64_t i12 = i02 % ne12;
  6744. const int64_t i11 = i01 % ne11;
  6745. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6746. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6747. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6748. const int64_t i10 = i0 % ne10;
  6749. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6750. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6751. }
  6752. }
  6753. }
  6754. }
  6755. static void ggml_compute_forward_div(
  6756. const struct ggml_compute_params * params,
  6757. const struct ggml_tensor * src0,
  6758. const struct ggml_tensor * src1,
  6759. struct ggml_tensor * dst) {
  6760. switch (src0->type) {
  6761. case GGML_TYPE_F32:
  6762. {
  6763. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6764. } break;
  6765. default:
  6766. {
  6767. GGML_ASSERT(false);
  6768. } break;
  6769. }
  6770. }
  6771. // ggml_compute_forward_sqr
  6772. static void ggml_compute_forward_sqr_f32(
  6773. const struct ggml_compute_params * params,
  6774. const struct ggml_tensor * src0,
  6775. struct ggml_tensor * dst) {
  6776. assert(params->ith == 0);
  6777. assert(ggml_are_same_shape(src0, dst));
  6778. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6779. return;
  6780. }
  6781. const int n = ggml_nrows(src0);
  6782. const int nc = src0->ne[0];
  6783. assert( dst->nb[0] == sizeof(float));
  6784. assert(src0->nb[0] == sizeof(float));
  6785. for (int i = 0; i < n; i++) {
  6786. ggml_vec_sqr_f32(nc,
  6787. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6788. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6789. }
  6790. }
  6791. static void ggml_compute_forward_sqr(
  6792. const struct ggml_compute_params * params,
  6793. const struct ggml_tensor * src0,
  6794. struct ggml_tensor * dst) {
  6795. switch (src0->type) {
  6796. case GGML_TYPE_F32:
  6797. {
  6798. ggml_compute_forward_sqr_f32(params, src0, dst);
  6799. } break;
  6800. default:
  6801. {
  6802. GGML_ASSERT(false);
  6803. } break;
  6804. }
  6805. }
  6806. // ggml_compute_forward_sqrt
  6807. static void ggml_compute_forward_sqrt_f32(
  6808. const struct ggml_compute_params * params,
  6809. const struct ggml_tensor * src0,
  6810. struct ggml_tensor * dst) {
  6811. assert(params->ith == 0);
  6812. assert(ggml_are_same_shape(src0, dst));
  6813. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6814. return;
  6815. }
  6816. const int n = ggml_nrows(src0);
  6817. const int nc = src0->ne[0];
  6818. assert( dst->nb[0] == sizeof(float));
  6819. assert(src0->nb[0] == sizeof(float));
  6820. for (int i = 0; i < n; i++) {
  6821. ggml_vec_sqrt_f32(nc,
  6822. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6823. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6824. }
  6825. }
  6826. static void ggml_compute_forward_sqrt(
  6827. const struct ggml_compute_params * params,
  6828. const struct ggml_tensor * src0,
  6829. struct ggml_tensor * dst) {
  6830. switch (src0->type) {
  6831. case GGML_TYPE_F32:
  6832. {
  6833. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6834. } break;
  6835. default:
  6836. {
  6837. GGML_ASSERT(false);
  6838. } break;
  6839. }
  6840. }
  6841. // ggml_compute_forward_log
  6842. static void ggml_compute_forward_log_f32(
  6843. const struct ggml_compute_params * params,
  6844. const struct ggml_tensor * src0,
  6845. struct ggml_tensor * dst) {
  6846. GGML_ASSERT(params->ith == 0);
  6847. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6848. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6849. return;
  6850. }
  6851. const int n = ggml_nrows(src0);
  6852. const int nc = src0->ne[0];
  6853. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6854. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6855. for (int i = 0; i < n; i++) {
  6856. ggml_vec_log_f32(nc,
  6857. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6858. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6859. }
  6860. }
  6861. static void ggml_compute_forward_log(
  6862. const struct ggml_compute_params * params,
  6863. const struct ggml_tensor * src0,
  6864. struct ggml_tensor * dst) {
  6865. switch (src0->type) {
  6866. case GGML_TYPE_F32:
  6867. {
  6868. ggml_compute_forward_log_f32(params, src0, dst);
  6869. } break;
  6870. default:
  6871. {
  6872. GGML_ASSERT(false);
  6873. } break;
  6874. }
  6875. }
  6876. // ggml_compute_forward_sum
  6877. static void ggml_compute_forward_sum_f32(
  6878. const struct ggml_compute_params * params,
  6879. const struct ggml_tensor * src0,
  6880. struct ggml_tensor * dst) {
  6881. assert(params->ith == 0);
  6882. assert(ggml_is_scalar(dst));
  6883. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6884. return;
  6885. }
  6886. assert(ggml_is_scalar(dst));
  6887. assert(src0->nb[0] == sizeof(float));
  6888. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6889. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6890. ggml_float sum = 0;
  6891. ggml_float row_sum = 0;
  6892. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6893. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6894. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6895. ggml_vec_sum_f32_ggf(ne00,
  6896. &row_sum,
  6897. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6898. sum += row_sum;
  6899. }
  6900. }
  6901. }
  6902. ((float *) dst->data)[0] = sum;
  6903. }
  6904. static void ggml_compute_forward_sum_f16(
  6905. const struct ggml_compute_params * params,
  6906. const struct ggml_tensor * src0,
  6907. struct ggml_tensor * dst) {
  6908. assert(params->ith == 0);
  6909. assert(ggml_is_scalar(dst));
  6910. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6911. return;
  6912. }
  6913. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6914. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6915. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6916. float sum = 0;
  6917. float row_sum = 0;
  6918. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6919. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6920. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6921. ggml_vec_sum_f16_ggf(ne00,
  6922. &row_sum,
  6923. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  6924. sum += row_sum;
  6925. }
  6926. }
  6927. }
  6928. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  6929. }
  6930. static void ggml_compute_forward_sum(
  6931. const struct ggml_compute_params * params,
  6932. const struct ggml_tensor * src0,
  6933. struct ggml_tensor * dst) {
  6934. switch (src0->type) {
  6935. case GGML_TYPE_F32:
  6936. {
  6937. ggml_compute_forward_sum_f32(params, src0, dst);
  6938. } break;
  6939. case GGML_TYPE_F16:
  6940. {
  6941. ggml_compute_forward_sum_f16(params, src0, dst);
  6942. } break;
  6943. default:
  6944. {
  6945. GGML_ASSERT(false);
  6946. } break;
  6947. }
  6948. }
  6949. // ggml_compute_forward_sum_rows
  6950. static void ggml_compute_forward_sum_rows_f32(
  6951. const struct ggml_compute_params * params,
  6952. const struct ggml_tensor * src0,
  6953. struct ggml_tensor * dst) {
  6954. GGML_ASSERT(params->ith == 0);
  6955. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6956. return;
  6957. }
  6958. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6959. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6960. GGML_TENSOR_UNARY_OP_LOCALS
  6961. GGML_ASSERT(ne0 == 1);
  6962. GGML_ASSERT(ne1 == ne01);
  6963. GGML_ASSERT(ne2 == ne02);
  6964. GGML_ASSERT(ne3 == ne03);
  6965. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6966. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6967. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6968. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6969. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6970. float row_sum = 0;
  6971. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6972. dst_row[0] = row_sum;
  6973. }
  6974. }
  6975. }
  6976. }
  6977. static void ggml_compute_forward_sum_rows(
  6978. const struct ggml_compute_params * params,
  6979. const struct ggml_tensor * src0,
  6980. struct ggml_tensor * dst) {
  6981. switch (src0->type) {
  6982. case GGML_TYPE_F32:
  6983. {
  6984. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6985. } break;
  6986. default:
  6987. {
  6988. GGML_ASSERT(false);
  6989. } break;
  6990. }
  6991. }
  6992. // ggml_compute_forward_mean
  6993. static void ggml_compute_forward_mean_f32(
  6994. const struct ggml_compute_params * params,
  6995. const struct ggml_tensor * src0,
  6996. struct ggml_tensor * dst) {
  6997. assert(params->ith == 0);
  6998. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6999. return;
  7000. }
  7001. assert(src0->nb[0] == sizeof(float));
  7002. GGML_TENSOR_UNARY_OP_LOCALS
  7003. assert(ne0 == 1);
  7004. assert(ne1 == ne01);
  7005. assert(ne2 == ne02);
  7006. assert(ne3 == ne03);
  7007. UNUSED(ne0);
  7008. UNUSED(ne1);
  7009. UNUSED(ne2);
  7010. UNUSED(ne3);
  7011. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7012. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7013. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7014. ggml_vec_sum_f32(ne00,
  7015. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7016. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7017. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7018. }
  7019. }
  7020. }
  7021. }
  7022. static void ggml_compute_forward_mean(
  7023. const struct ggml_compute_params * params,
  7024. const struct ggml_tensor * src0,
  7025. struct ggml_tensor * dst) {
  7026. switch (src0->type) {
  7027. case GGML_TYPE_F32:
  7028. {
  7029. ggml_compute_forward_mean_f32(params, src0, dst);
  7030. } break;
  7031. default:
  7032. {
  7033. GGML_ASSERT(false);
  7034. } break;
  7035. }
  7036. }
  7037. // ggml_compute_forward_argmax
  7038. static void ggml_compute_forward_argmax_f32(
  7039. const struct ggml_compute_params * params,
  7040. const struct ggml_tensor * src0,
  7041. struct ggml_tensor * dst) {
  7042. assert(params->ith == 0);
  7043. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7044. return;
  7045. }
  7046. assert(src0->nb[0] == sizeof(float));
  7047. assert(dst->nb[0] == sizeof(float));
  7048. const int64_t ne00 = src0->ne[0];
  7049. const int64_t ne01 = src0->ne[1];
  7050. const size_t nb01 = src0->nb[1];
  7051. const size_t nb0 = dst->nb[0];
  7052. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7053. float * src = (float *) ((char *) src0->data + i1*nb01);
  7054. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7055. int v = 0;
  7056. ggml_vec_argmax_f32(ne00, &v, src);
  7057. dst_[0] = v;
  7058. }
  7059. }
  7060. static void ggml_compute_forward_argmax(
  7061. const struct ggml_compute_params * params,
  7062. const struct ggml_tensor * src0,
  7063. struct ggml_tensor * dst) {
  7064. switch (src0->type) {
  7065. case GGML_TYPE_F32:
  7066. {
  7067. ggml_compute_forward_argmax_f32(params, src0, dst);
  7068. } break;
  7069. default:
  7070. {
  7071. GGML_ASSERT(false);
  7072. } break;
  7073. }
  7074. }
  7075. // ggml_compute_forward_repeat
  7076. static void ggml_compute_forward_repeat_f32(
  7077. const struct ggml_compute_params * params,
  7078. const struct ggml_tensor * src0,
  7079. struct ggml_tensor * dst) {
  7080. GGML_ASSERT(params->ith == 0);
  7081. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7082. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7083. return;
  7084. }
  7085. GGML_TENSOR_UNARY_OP_LOCALS
  7086. // guaranteed to be an integer due to the check in ggml_can_repeat
  7087. const int nr0 = (int)(ne0/ne00);
  7088. const int nr1 = (int)(ne1/ne01);
  7089. const int nr2 = (int)(ne2/ne02);
  7090. const int nr3 = (int)(ne3/ne03);
  7091. // TODO: support for transposed / permuted tensors
  7092. GGML_ASSERT(nb0 == sizeof(float));
  7093. GGML_ASSERT(nb00 == sizeof(float));
  7094. // TODO: maybe this is not optimal?
  7095. for (int i3 = 0; i3 < nr3; i3++) {
  7096. for (int k3 = 0; k3 < ne03; k3++) {
  7097. for (int i2 = 0; i2 < nr2; i2++) {
  7098. for (int k2 = 0; k2 < ne02; k2++) {
  7099. for (int i1 = 0; i1 < nr1; i1++) {
  7100. for (int k1 = 0; k1 < ne01; k1++) {
  7101. for (int i0 = 0; i0 < nr0; i0++) {
  7102. ggml_vec_cpy_f32(ne00,
  7103. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7104. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7105. }
  7106. }
  7107. }
  7108. }
  7109. }
  7110. }
  7111. }
  7112. }
  7113. static void ggml_compute_forward_repeat_f16(
  7114. const struct ggml_compute_params * params,
  7115. const struct ggml_tensor * src0,
  7116. struct ggml_tensor * dst) {
  7117. GGML_ASSERT(params->ith == 0);
  7118. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7119. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7120. return;
  7121. }
  7122. GGML_TENSOR_UNARY_OP_LOCALS
  7123. // guaranteed to be an integer due to the check in ggml_can_repeat
  7124. const int nr0 = (int)(ne0/ne00);
  7125. const int nr1 = (int)(ne1/ne01);
  7126. const int nr2 = (int)(ne2/ne02);
  7127. const int nr3 = (int)(ne3/ne03);
  7128. // TODO: support for transposed / permuted tensors
  7129. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7130. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7131. // TODO: maybe this is not optimal?
  7132. for (int i3 = 0; i3 < nr3; i3++) {
  7133. for (int k3 = 0; k3 < ne03; k3++) {
  7134. for (int i2 = 0; i2 < nr2; i2++) {
  7135. for (int k2 = 0; k2 < ne02; k2++) {
  7136. for (int i1 = 0; i1 < nr1; i1++) {
  7137. for (int k1 = 0; k1 < ne01; k1++) {
  7138. for (int i0 = 0; i0 < nr0; i0++) {
  7139. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7140. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7141. // ggml_vec_cpy_f16(ne00, y, x)
  7142. for (int i = 0; i < ne00; ++i) {
  7143. y[i] = x[i];
  7144. }
  7145. }
  7146. }
  7147. }
  7148. }
  7149. }
  7150. }
  7151. }
  7152. }
  7153. static void ggml_compute_forward_repeat(
  7154. const struct ggml_compute_params * params,
  7155. const struct ggml_tensor * src0,
  7156. struct ggml_tensor * dst) {
  7157. switch (src0->type) {
  7158. case GGML_TYPE_F16:
  7159. case GGML_TYPE_I16:
  7160. {
  7161. ggml_compute_forward_repeat_f16(params, src0, dst);
  7162. } break;
  7163. case GGML_TYPE_F32:
  7164. case GGML_TYPE_I32:
  7165. {
  7166. ggml_compute_forward_repeat_f32(params, src0, dst);
  7167. } break;
  7168. default:
  7169. {
  7170. GGML_ASSERT(false);
  7171. } break;
  7172. }
  7173. }
  7174. // ggml_compute_forward_repeat_back
  7175. static void ggml_compute_forward_repeat_back_f32(
  7176. const struct ggml_compute_params * params,
  7177. const struct ggml_tensor * src0,
  7178. struct ggml_tensor * dst) {
  7179. GGML_ASSERT(params->ith == 0);
  7180. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7181. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7182. return;
  7183. }
  7184. GGML_TENSOR_UNARY_OP_LOCALS
  7185. // guaranteed to be an integer due to the check in ggml_can_repeat
  7186. const int nr0 = (int)(ne00/ne0);
  7187. const int nr1 = (int)(ne01/ne1);
  7188. const int nr2 = (int)(ne02/ne2);
  7189. const int nr3 = (int)(ne03/ne3);
  7190. // TODO: support for transposed / permuted tensors
  7191. GGML_ASSERT(nb0 == sizeof(float));
  7192. GGML_ASSERT(nb00 == sizeof(float));
  7193. if (ggml_is_contiguous(dst)) {
  7194. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7195. } else {
  7196. for (int k3 = 0; k3 < ne3; k3++) {
  7197. for (int k2 = 0; k2 < ne2; k2++) {
  7198. for (int k1 = 0; k1 < ne1; k1++) {
  7199. ggml_vec_set_f32(ne0,
  7200. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7201. 0);
  7202. }
  7203. }
  7204. }
  7205. }
  7206. // TODO: maybe this is not optimal?
  7207. for (int i3 = 0; i3 < nr3; i3++) {
  7208. for (int k3 = 0; k3 < ne3; k3++) {
  7209. for (int i2 = 0; i2 < nr2; i2++) {
  7210. for (int k2 = 0; k2 < ne2; k2++) {
  7211. for (int i1 = 0; i1 < nr1; i1++) {
  7212. for (int k1 = 0; k1 < ne1; k1++) {
  7213. for (int i0 = 0; i0 < nr0; i0++) {
  7214. ggml_vec_acc_f32(ne0,
  7215. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7216. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7217. }
  7218. }
  7219. }
  7220. }
  7221. }
  7222. }
  7223. }
  7224. }
  7225. static void ggml_compute_forward_repeat_back(
  7226. const struct ggml_compute_params * params,
  7227. const struct ggml_tensor * src0,
  7228. struct ggml_tensor * dst) {
  7229. switch (src0->type) {
  7230. case GGML_TYPE_F32:
  7231. {
  7232. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7233. } break;
  7234. default:
  7235. {
  7236. GGML_ASSERT(false);
  7237. } break;
  7238. }
  7239. }
  7240. // ggml_compute_forward_concat
  7241. static void ggml_compute_forward_concat_f32(
  7242. const struct ggml_compute_params * params,
  7243. const struct ggml_tensor * src0,
  7244. const struct ggml_tensor * src1,
  7245. struct ggml_tensor * dst) {
  7246. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7247. return;
  7248. }
  7249. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7250. const int ith = params->ith;
  7251. const int nth = params->nth;
  7252. GGML_TENSOR_BINARY_OP_LOCALS
  7253. // TODO: support for transposed / permuted tensors
  7254. GGML_ASSERT(nb0 == sizeof(float));
  7255. GGML_ASSERT(nb00 == sizeof(float));
  7256. GGML_ASSERT(nb10 == sizeof(float));
  7257. for (int i3 = 0; i3 < ne3; i3++) {
  7258. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7259. if (i2 < ne02) { // src0
  7260. for (int i1 = 0; i1 < ne1; i1++) {
  7261. for (int i0 = 0; i0 < ne0; i0++) {
  7262. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7263. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7264. *y = *x;
  7265. }
  7266. }
  7267. } // src1
  7268. else {
  7269. for (int i1 = 0; i1 < ne1; i1++) {
  7270. for (int i0 = 0; i0 < ne0; i0++) {
  7271. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7272. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7273. *y = *x;
  7274. }
  7275. }
  7276. }
  7277. }
  7278. }
  7279. }
  7280. static void ggml_compute_forward_concat(
  7281. const struct ggml_compute_params* params,
  7282. const struct ggml_tensor* src0,
  7283. const struct ggml_tensor* src1,
  7284. struct ggml_tensor* dst) {
  7285. switch (src0->type) {
  7286. case GGML_TYPE_F32:
  7287. case GGML_TYPE_I32:
  7288. {
  7289. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  7290. } break;
  7291. default:
  7292. {
  7293. GGML_ASSERT(false);
  7294. } break;
  7295. }
  7296. }
  7297. // ggml_compute_forward_abs
  7298. static void ggml_compute_forward_abs_f32(
  7299. const struct ggml_compute_params * params,
  7300. const struct ggml_tensor * src0,
  7301. struct ggml_tensor * dst) {
  7302. assert(params->ith == 0);
  7303. assert(ggml_are_same_shape(src0, dst));
  7304. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7305. return;
  7306. }
  7307. const int n = ggml_nrows(src0);
  7308. const int nc = src0->ne[0];
  7309. assert(dst->nb[0] == sizeof(float));
  7310. assert(src0->nb[0] == sizeof(float));
  7311. for (int i = 0; i < n; i++) {
  7312. ggml_vec_abs_f32(nc,
  7313. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7314. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7315. }
  7316. }
  7317. static void ggml_compute_forward_abs(
  7318. const struct ggml_compute_params * params,
  7319. const struct ggml_tensor * src0,
  7320. struct ggml_tensor * dst) {
  7321. switch (src0->type) {
  7322. case GGML_TYPE_F32:
  7323. {
  7324. ggml_compute_forward_abs_f32(params, src0, dst);
  7325. } break;
  7326. default:
  7327. {
  7328. GGML_ASSERT(false);
  7329. } break;
  7330. }
  7331. }
  7332. // ggml_compute_forward_sgn
  7333. static void ggml_compute_forward_sgn_f32(
  7334. const struct ggml_compute_params * params,
  7335. const struct ggml_tensor * src0,
  7336. struct ggml_tensor * dst) {
  7337. assert(params->ith == 0);
  7338. assert(ggml_are_same_shape(src0, dst));
  7339. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7340. return;
  7341. }
  7342. const int n = ggml_nrows(src0);
  7343. const int nc = src0->ne[0];
  7344. assert(dst->nb[0] == sizeof(float));
  7345. assert(src0->nb[0] == sizeof(float));
  7346. for (int i = 0; i < n; i++) {
  7347. ggml_vec_sgn_f32(nc,
  7348. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7349. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7350. }
  7351. }
  7352. static void ggml_compute_forward_sgn(
  7353. const struct ggml_compute_params * params,
  7354. const struct ggml_tensor * src0,
  7355. struct ggml_tensor * dst) {
  7356. switch (src0->type) {
  7357. case GGML_TYPE_F32:
  7358. {
  7359. ggml_compute_forward_sgn_f32(params, src0, dst);
  7360. } break;
  7361. default:
  7362. {
  7363. GGML_ASSERT(false);
  7364. } break;
  7365. }
  7366. }
  7367. // ggml_compute_forward_neg
  7368. static void ggml_compute_forward_neg_f32(
  7369. const struct ggml_compute_params * params,
  7370. const struct ggml_tensor * src0,
  7371. struct ggml_tensor * dst) {
  7372. assert(params->ith == 0);
  7373. assert(ggml_are_same_shape(src0, dst));
  7374. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7375. return;
  7376. }
  7377. const int n = ggml_nrows(src0);
  7378. const int nc = src0->ne[0];
  7379. assert(dst->nb[0] == sizeof(float));
  7380. assert(src0->nb[0] == sizeof(float));
  7381. for (int i = 0; i < n; i++) {
  7382. ggml_vec_neg_f32(nc,
  7383. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7384. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7385. }
  7386. }
  7387. static void ggml_compute_forward_neg(
  7388. const struct ggml_compute_params * params,
  7389. const struct ggml_tensor * src0,
  7390. struct ggml_tensor * dst) {
  7391. switch (src0->type) {
  7392. case GGML_TYPE_F32:
  7393. {
  7394. ggml_compute_forward_neg_f32(params, src0, dst);
  7395. } break;
  7396. default:
  7397. {
  7398. GGML_ASSERT(false);
  7399. } break;
  7400. }
  7401. }
  7402. // ggml_compute_forward_step
  7403. static void ggml_compute_forward_step_f32(
  7404. const struct ggml_compute_params * params,
  7405. const struct ggml_tensor * src0,
  7406. struct ggml_tensor * dst) {
  7407. assert(params->ith == 0);
  7408. assert(ggml_are_same_shape(src0, dst));
  7409. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7410. return;
  7411. }
  7412. const int n = ggml_nrows(src0);
  7413. const int nc = src0->ne[0];
  7414. assert(dst->nb[0] == sizeof(float));
  7415. assert(src0->nb[0] == sizeof(float));
  7416. for (int i = 0; i < n; i++) {
  7417. ggml_vec_step_f32(nc,
  7418. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7419. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7420. }
  7421. }
  7422. static void ggml_compute_forward_step(
  7423. const struct ggml_compute_params * params,
  7424. const struct ggml_tensor * src0,
  7425. struct ggml_tensor * dst) {
  7426. switch (src0->type) {
  7427. case GGML_TYPE_F32:
  7428. {
  7429. ggml_compute_forward_step_f32(params, src0, dst);
  7430. } break;
  7431. default:
  7432. {
  7433. GGML_ASSERT(false);
  7434. } break;
  7435. }
  7436. }
  7437. // ggml_compute_forward_tanh
  7438. static void ggml_compute_forward_tanh_f32(
  7439. const struct ggml_compute_params * params,
  7440. const struct ggml_tensor * src0,
  7441. struct ggml_tensor * dst) {
  7442. assert(params->ith == 0);
  7443. assert(ggml_are_same_shape(src0, dst));
  7444. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7445. return;
  7446. }
  7447. const int n = ggml_nrows(src0);
  7448. const int nc = src0->ne[0];
  7449. assert(dst->nb[0] == sizeof(float));
  7450. assert(src0->nb[0] == sizeof(float));
  7451. for (int i = 0; i < n; i++) {
  7452. ggml_vec_tanh_f32(nc,
  7453. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7454. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7455. }
  7456. }
  7457. static void ggml_compute_forward_tanh(
  7458. const struct ggml_compute_params * params,
  7459. const struct ggml_tensor * src0,
  7460. struct ggml_tensor * dst) {
  7461. switch (src0->type) {
  7462. case GGML_TYPE_F32:
  7463. {
  7464. ggml_compute_forward_tanh_f32(params, src0, dst);
  7465. } break;
  7466. default:
  7467. {
  7468. GGML_ASSERT(false);
  7469. } break;
  7470. }
  7471. }
  7472. // ggml_compute_forward_elu
  7473. static void ggml_compute_forward_elu_f32(
  7474. const struct ggml_compute_params * params,
  7475. const struct ggml_tensor * src0,
  7476. struct ggml_tensor * dst) {
  7477. assert(params->ith == 0);
  7478. assert(ggml_are_same_shape(src0, dst));
  7479. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7480. return;
  7481. }
  7482. const int n = ggml_nrows(src0);
  7483. const int nc = src0->ne[0];
  7484. assert(dst->nb[0] == sizeof(float));
  7485. assert(src0->nb[0] == sizeof(float));
  7486. for (int i = 0; i < n; i++) {
  7487. ggml_vec_elu_f32(nc,
  7488. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7489. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7490. }
  7491. }
  7492. static void ggml_compute_forward_elu(
  7493. const struct ggml_compute_params * params,
  7494. const struct ggml_tensor * src0,
  7495. struct ggml_tensor * dst) {
  7496. switch (src0->type) {
  7497. case GGML_TYPE_F32:
  7498. {
  7499. ggml_compute_forward_elu_f32(params, src0, dst);
  7500. } break;
  7501. default:
  7502. {
  7503. GGML_ASSERT(false);
  7504. } break;
  7505. }
  7506. }
  7507. // ggml_compute_forward_relu
  7508. static void ggml_compute_forward_relu_f32(
  7509. const struct ggml_compute_params * params,
  7510. const struct ggml_tensor * src0,
  7511. struct ggml_tensor * dst) {
  7512. assert(params->ith == 0);
  7513. assert(ggml_are_same_shape(src0, dst));
  7514. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7515. return;
  7516. }
  7517. const int n = ggml_nrows(src0);
  7518. const int nc = src0->ne[0];
  7519. assert(dst->nb[0] == sizeof(float));
  7520. assert(src0->nb[0] == sizeof(float));
  7521. for (int i = 0; i < n; i++) {
  7522. ggml_vec_relu_f32(nc,
  7523. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7524. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7525. }
  7526. }
  7527. static void ggml_compute_forward_relu(
  7528. const struct ggml_compute_params * params,
  7529. const struct ggml_tensor * src0,
  7530. struct ggml_tensor * dst) {
  7531. switch (src0->type) {
  7532. case GGML_TYPE_F32:
  7533. {
  7534. ggml_compute_forward_relu_f32(params, src0, dst);
  7535. } break;
  7536. default:
  7537. {
  7538. GGML_ASSERT(false);
  7539. } break;
  7540. }
  7541. }
  7542. // ggml_compute_forward_gelu
  7543. static void ggml_compute_forward_gelu_f32(
  7544. const struct ggml_compute_params * params,
  7545. const struct ggml_tensor * src0,
  7546. struct ggml_tensor * dst) {
  7547. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7548. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7549. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7550. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7551. return;
  7552. }
  7553. const int ith = params->ith;
  7554. const int nth = params->nth;
  7555. const int nc = src0->ne[0];
  7556. const int nr = ggml_nrows(src0);
  7557. // rows per thread
  7558. const int dr = (nr + nth - 1)/nth;
  7559. // row range for this thread
  7560. const int ir0 = dr*ith;
  7561. const int ir1 = MIN(ir0 + dr, nr);
  7562. for (int i1 = ir0; i1 < ir1; i1++) {
  7563. ggml_vec_gelu_f32(nc,
  7564. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7565. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7566. #ifndef NDEBUG
  7567. for (int k = 0; k < nc; k++) {
  7568. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7569. UNUSED(x);
  7570. assert(!isnan(x));
  7571. assert(!isinf(x));
  7572. }
  7573. #endif
  7574. }
  7575. }
  7576. static void ggml_compute_forward_gelu(
  7577. const struct ggml_compute_params * params,
  7578. const struct ggml_tensor * src0,
  7579. struct ggml_tensor * dst) {
  7580. switch (src0->type) {
  7581. case GGML_TYPE_F32:
  7582. {
  7583. ggml_compute_forward_gelu_f32(params, src0, dst);
  7584. } break;
  7585. default:
  7586. {
  7587. GGML_ASSERT(false);
  7588. } break;
  7589. }
  7590. }
  7591. // ggml_compute_forward_gelu_quick
  7592. static void ggml_compute_forward_gelu_quick_f32(
  7593. const struct ggml_compute_params * params,
  7594. const struct ggml_tensor * src0,
  7595. struct ggml_tensor * dst) {
  7596. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7597. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7598. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7599. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7600. return;
  7601. }
  7602. const int ith = params->ith;
  7603. const int nth = params->nth;
  7604. const int nc = src0->ne[0];
  7605. const int nr = ggml_nrows(src0);
  7606. // rows per thread
  7607. const int dr = (nr + nth - 1)/nth;
  7608. // row range for this thread
  7609. const int ir0 = dr*ith;
  7610. const int ir1 = MIN(ir0 + dr, nr);
  7611. for (int i1 = ir0; i1 < ir1; i1++) {
  7612. ggml_vec_gelu_quick_f32(nc,
  7613. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7614. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7615. #ifndef NDEBUG
  7616. for (int k = 0; k < nc; k++) {
  7617. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7618. UNUSED(x);
  7619. assert(!isnan(x));
  7620. assert(!isinf(x));
  7621. }
  7622. #endif
  7623. }
  7624. }
  7625. static void ggml_compute_forward_gelu_quick(
  7626. const struct ggml_compute_params * params,
  7627. const struct ggml_tensor * src0,
  7628. struct ggml_tensor * dst) {
  7629. switch (src0->type) {
  7630. case GGML_TYPE_F32:
  7631. {
  7632. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7633. } break;
  7634. default:
  7635. {
  7636. GGML_ASSERT(false);
  7637. } break;
  7638. }
  7639. }
  7640. // ggml_compute_forward_silu
  7641. static void ggml_compute_forward_silu_f32(
  7642. const struct ggml_compute_params * params,
  7643. const struct ggml_tensor * src0,
  7644. struct ggml_tensor * dst) {
  7645. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7646. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7647. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7648. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7649. return;
  7650. }
  7651. const int ith = params->ith;
  7652. const int nth = params->nth;
  7653. const int nc = src0->ne[0];
  7654. const int nr = ggml_nrows(src0);
  7655. // rows per thread
  7656. const int dr = (nr + nth - 1)/nth;
  7657. // row range for this thread
  7658. const int ir0 = dr*ith;
  7659. const int ir1 = MIN(ir0 + dr, nr);
  7660. for (int i1 = ir0; i1 < ir1; i1++) {
  7661. ggml_vec_silu_f32(nc,
  7662. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7663. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7664. #ifndef NDEBUG
  7665. for (int k = 0; k < nc; k++) {
  7666. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7667. UNUSED(x);
  7668. assert(!isnan(x));
  7669. assert(!isinf(x));
  7670. }
  7671. #endif
  7672. }
  7673. }
  7674. static void ggml_compute_forward_silu(
  7675. const struct ggml_compute_params * params,
  7676. const struct ggml_tensor * src0,
  7677. struct ggml_tensor * dst) {
  7678. switch (src0->type) {
  7679. case GGML_TYPE_F32:
  7680. {
  7681. ggml_compute_forward_silu_f32(params, src0, dst);
  7682. } break;
  7683. default:
  7684. {
  7685. GGML_ASSERT(false);
  7686. } break;
  7687. }
  7688. }
  7689. // ggml_compute_forward_leaky_relu
  7690. static void ggml_compute_forward_leaky_relu_f32(
  7691. const struct ggml_compute_params * params,
  7692. const struct ggml_tensor * src0,
  7693. struct ggml_tensor * dst) {
  7694. assert(params->ith == 0);
  7695. assert(ggml_are_same_shape(src0, dst));
  7696. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7697. return;
  7698. }
  7699. const int n = ggml_nrows(src0);
  7700. const int nc = src0->ne[0];
  7701. float negative_slope;
  7702. memcpy(&negative_slope, dst->op_params, sizeof(float));
  7703. assert(dst->nb[0] == sizeof(float));
  7704. assert(src0->nb[0] == sizeof(float));
  7705. for (int i = 0; i < n; i++) {
  7706. ggml_vec_leaky_relu_f32(nc,
  7707. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7708. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  7709. }
  7710. }
  7711. static void ggml_compute_forward_leaky_relu(
  7712. const struct ggml_compute_params * params,
  7713. const struct ggml_tensor * src0,
  7714. struct ggml_tensor * dst) {
  7715. switch (src0->type) {
  7716. case GGML_TYPE_F32:
  7717. {
  7718. ggml_compute_forward_leaky_relu_f32(params, src0, dst);
  7719. } break;
  7720. default:
  7721. {
  7722. GGML_ASSERT(false);
  7723. } break;
  7724. }
  7725. }
  7726. // ggml_compute_forward_silu_back
  7727. static void ggml_compute_forward_silu_back_f32(
  7728. const struct ggml_compute_params * params,
  7729. const struct ggml_tensor * src0,
  7730. const struct ggml_tensor * grad,
  7731. struct ggml_tensor * dst) {
  7732. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7733. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7734. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7735. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7736. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7737. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7738. return;
  7739. }
  7740. const int ith = params->ith;
  7741. const int nth = params->nth;
  7742. const int nc = src0->ne[0];
  7743. const int nr = ggml_nrows(src0);
  7744. // rows per thread
  7745. const int dr = (nr + nth - 1)/nth;
  7746. // row range for this thread
  7747. const int ir0 = dr*ith;
  7748. const int ir1 = MIN(ir0 + dr, nr);
  7749. for (int i1 = ir0; i1 < ir1; i1++) {
  7750. ggml_vec_silu_backward_f32(nc,
  7751. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7752. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7753. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7754. #ifndef NDEBUG
  7755. for (int k = 0; k < nc; k++) {
  7756. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7757. UNUSED(x);
  7758. assert(!isnan(x));
  7759. assert(!isinf(x));
  7760. }
  7761. #endif
  7762. }
  7763. }
  7764. static void ggml_compute_forward_silu_back(
  7765. const struct ggml_compute_params * params,
  7766. const struct ggml_tensor * src0,
  7767. const struct ggml_tensor * grad,
  7768. struct ggml_tensor * dst) {
  7769. switch (src0->type) {
  7770. case GGML_TYPE_F32:
  7771. {
  7772. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7773. } break;
  7774. default:
  7775. {
  7776. GGML_ASSERT(false);
  7777. } break;
  7778. }
  7779. }
  7780. static void ggml_compute_forward_hardswish_f32(
  7781. const struct ggml_compute_params * params,
  7782. const struct ggml_tensor * src0,
  7783. struct ggml_tensor * dst) {
  7784. assert(params->ith == 0);
  7785. assert(ggml_are_same_shape(src0, dst));
  7786. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7787. return;
  7788. }
  7789. const int n = ggml_nrows(src0);
  7790. const int nc = src0->ne[0];
  7791. assert(dst->nb[0] == sizeof(float));
  7792. assert(src0->nb[0] == sizeof(float));
  7793. for (int i = 0; i < n; i++) {
  7794. ggml_vec_hardswish_f32(nc,
  7795. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7796. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7797. }
  7798. }
  7799. static void ggml_compute_forward_hardswish(
  7800. const struct ggml_compute_params * params,
  7801. const struct ggml_tensor * src0,
  7802. struct ggml_tensor * dst) {
  7803. switch (src0->type) {
  7804. case GGML_TYPE_F32:
  7805. {
  7806. ggml_compute_forward_hardswish_f32(params, src0, dst);
  7807. } break;
  7808. default:
  7809. {
  7810. GGML_ASSERT(false);
  7811. } break;
  7812. }
  7813. }
  7814. static void ggml_compute_forward_hardsigmoid_f32(
  7815. const struct ggml_compute_params * params,
  7816. const struct ggml_tensor * src0,
  7817. struct ggml_tensor * dst) {
  7818. assert(params->ith == 0);
  7819. assert(ggml_are_same_shape(src0, dst));
  7820. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7821. return;
  7822. }
  7823. const int n = ggml_nrows(src0);
  7824. const int nc = src0->ne[0];
  7825. assert(dst->nb[0] == sizeof(float));
  7826. assert(src0->nb[0] == sizeof(float));
  7827. for (int i = 0; i < n; i++) {
  7828. ggml_vec_hardsigmoid_f32(nc,
  7829. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7830. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7831. }
  7832. }
  7833. static void ggml_compute_forward_hardsigmoid(
  7834. const struct ggml_compute_params * params,
  7835. const struct ggml_tensor * src0,
  7836. struct ggml_tensor * dst) {
  7837. switch (src0->type) {
  7838. case GGML_TYPE_F32:
  7839. {
  7840. ggml_compute_forward_hardsigmoid_f32(params, src0, dst);
  7841. } break;
  7842. default:
  7843. {
  7844. GGML_ASSERT(false);
  7845. } break;
  7846. }
  7847. }
  7848. // ggml_compute_forward_norm
  7849. static void ggml_compute_forward_norm_f32(
  7850. const struct ggml_compute_params * params,
  7851. const struct ggml_tensor * src0,
  7852. struct ggml_tensor * dst) {
  7853. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7854. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7855. return;
  7856. }
  7857. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7858. const int ith = params->ith;
  7859. const int nth = params->nth;
  7860. GGML_TENSOR_UNARY_OP_LOCALS
  7861. float eps;
  7862. memcpy(&eps, dst->op_params, sizeof(float));
  7863. GGML_ASSERT(eps > 0.0f);
  7864. // TODO: optimize
  7865. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7866. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7867. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7868. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7869. ggml_float sum = 0.0;
  7870. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7871. sum += (ggml_float)x[i00];
  7872. }
  7873. float mean = sum/ne00;
  7874. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7875. ggml_float sum2 = 0.0;
  7876. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7877. float v = x[i00] - mean;
  7878. y[i00] = v;
  7879. sum2 += (ggml_float)(v*v);
  7880. }
  7881. float variance = sum2/ne00;
  7882. const float scale = 1.0f/sqrtf(variance + eps);
  7883. ggml_vec_scale_f32(ne00, y, scale);
  7884. }
  7885. }
  7886. }
  7887. }
  7888. static void ggml_compute_forward_norm(
  7889. const struct ggml_compute_params * params,
  7890. const struct ggml_tensor * src0,
  7891. struct ggml_tensor * dst) {
  7892. switch (src0->type) {
  7893. case GGML_TYPE_F32:
  7894. {
  7895. ggml_compute_forward_norm_f32(params, src0, dst);
  7896. } break;
  7897. default:
  7898. {
  7899. GGML_ASSERT(false);
  7900. } break;
  7901. }
  7902. }
  7903. // ggml_compute_forward_group_rms_norm
  7904. static void ggml_compute_forward_rms_norm_f32(
  7905. const struct ggml_compute_params * params,
  7906. const struct ggml_tensor * src0,
  7907. struct ggml_tensor * dst) {
  7908. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7909. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7910. return;
  7911. }
  7912. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7913. const int ith = params->ith;
  7914. const int nth = params->nth;
  7915. GGML_TENSOR_UNARY_OP_LOCALS
  7916. float eps;
  7917. memcpy(&eps, dst->op_params, sizeof(float));
  7918. GGML_ASSERT(eps > 0.0f);
  7919. // TODO: optimize
  7920. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7921. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7922. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7923. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7924. ggml_float sum = 0.0;
  7925. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7926. sum += (ggml_float)(x[i00] * x[i00]);
  7927. }
  7928. const float mean = sum/ne00;
  7929. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7930. memcpy(y, x, ne00 * sizeof(float));
  7931. // for (int i00 = 0; i00 < ne00; i00++) {
  7932. // y[i00] = x[i00];
  7933. // }
  7934. const float scale = 1.0f/sqrtf(mean + eps);
  7935. ggml_vec_scale_f32(ne00, y, scale);
  7936. }
  7937. }
  7938. }
  7939. }
  7940. static void ggml_compute_forward_rms_norm(
  7941. const struct ggml_compute_params * params,
  7942. const struct ggml_tensor * src0,
  7943. struct ggml_tensor * dst) {
  7944. switch (src0->type) {
  7945. case GGML_TYPE_F32:
  7946. {
  7947. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7948. } break;
  7949. default:
  7950. {
  7951. GGML_ASSERT(false);
  7952. } break;
  7953. }
  7954. }
  7955. static void ggml_compute_forward_rms_norm_back_f32(
  7956. const struct ggml_compute_params * params,
  7957. const struct ggml_tensor * src0,
  7958. const struct ggml_tensor * src1,
  7959. struct ggml_tensor * dst) {
  7960. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7961. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7962. return;
  7963. }
  7964. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7965. const int ith = params->ith;
  7966. const int nth = params->nth;
  7967. GGML_TENSOR_BINARY_OP_LOCALS
  7968. float eps;
  7969. memcpy(&eps, dst->op_params, sizeof(float));
  7970. // TODO: optimize
  7971. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7972. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7973. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7974. // src1 is same shape as src0 => same indices
  7975. const int64_t i11 = i01;
  7976. const int64_t i12 = i02;
  7977. const int64_t i13 = i03;
  7978. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7979. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7980. ggml_float sum_xx = 0.0;
  7981. ggml_float sum_xdz = 0.0;
  7982. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7983. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7984. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7985. }
  7986. //const float mean = (float)(sum_xx)/ne00;
  7987. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7988. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7989. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7990. // we could cache rms from forward pass to improve performance.
  7991. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7992. //const float rms = sqrtf(mean_eps);
  7993. const float rrms = 1.0f / sqrtf(mean_eps);
  7994. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7995. {
  7996. // z = rms_norm(x)
  7997. //
  7998. // rms_norm(src0) =
  7999. // scale(
  8000. // src0,
  8001. // div(
  8002. // 1,
  8003. // sqrt(
  8004. // add(
  8005. // scale(
  8006. // sum(
  8007. // sqr(
  8008. // src0)),
  8009. // (1.0/N)),
  8010. // eps))));
  8011. // postorder:
  8012. // ## op args grad
  8013. // 00 param src0 grad[#00]
  8014. // 01 const 1
  8015. // 02 sqr (#00) grad[#02]
  8016. // 03 sum (#02) grad[#03]
  8017. // 04 const 1/N
  8018. // 05 scale (#03, #04) grad[#05]
  8019. // 06 const eps
  8020. // 07 add (#05, #06) grad[#07]
  8021. // 08 sqrt (#07) grad[#08]
  8022. // 09 div (#01,#08) grad[#09]
  8023. // 10 scale (#00,#09) grad[#10]
  8024. //
  8025. // backward pass, given grad[#10]
  8026. // #10: scale
  8027. // grad[#00] += scale(grad[#10],#09)
  8028. // grad[#09] += sum(mul(grad[#10],#00))
  8029. // #09: div
  8030. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8031. // #08: sqrt
  8032. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8033. // #07: add
  8034. // grad[#05] += grad[#07]
  8035. // #05: scale
  8036. // grad[#03] += scale(grad[#05],#04)
  8037. // #03: sum
  8038. // grad[#02] += repeat(grad[#03], #02)
  8039. // #02:
  8040. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8041. //
  8042. // substitute and simplify:
  8043. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8044. // grad[#02] = repeat(grad[#03], #02)
  8045. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8046. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8047. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8048. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8049. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8050. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8051. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8052. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8053. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8054. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8055. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8056. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8057. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8058. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8059. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8060. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8061. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8062. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8063. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8064. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8065. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8066. // a = b*c + d*e
  8067. // a = b*c*f/f + d*e*f/f
  8068. // a = (b*c*f + d*e*f)*(1/f)
  8069. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8070. // a = (b + d*e/c)*c
  8071. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8072. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8073. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8074. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8075. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8076. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8077. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8078. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8079. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8080. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8081. }
  8082. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8083. // post-order:
  8084. // dx := x
  8085. // dx := scale(dx,-mean_xdz/mean_eps)
  8086. // dx := add(dx, dz)
  8087. // dx := scale(dx, rrms)
  8088. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8089. ggml_vec_cpy_f32 (ne00, dx, x);
  8090. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8091. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8092. ggml_vec_acc_f32 (ne00, dx, dz);
  8093. ggml_vec_scale_f32(ne00, dx, rrms);
  8094. }
  8095. }
  8096. }
  8097. }
  8098. static void ggml_compute_forward_rms_norm_back(
  8099. const struct ggml_compute_params * params,
  8100. const struct ggml_tensor * src0,
  8101. const struct ggml_tensor * src1,
  8102. struct ggml_tensor * dst) {
  8103. switch (src0->type) {
  8104. case GGML_TYPE_F32:
  8105. {
  8106. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8107. } break;
  8108. default:
  8109. {
  8110. GGML_ASSERT(false);
  8111. } break;
  8112. }
  8113. }
  8114. // ggml_compute_forward_group_norm
  8115. static void ggml_compute_forward_group_norm_f32(
  8116. const struct ggml_compute_params * params,
  8117. const struct ggml_tensor * src0,
  8118. struct ggml_tensor * dst) {
  8119. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8120. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8121. return;
  8122. }
  8123. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8124. const int ith = params->ith;
  8125. const int nth = params->nth;
  8126. GGML_TENSOR_UNARY_OP_LOCALS
  8127. const float eps = 1e-6f; // TODO: make this a parameter
  8128. // TODO: optimize
  8129. int n_channels = src0->ne[2];
  8130. int n_groups = dst->op_params[0];
  8131. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8132. for (int i = ith; i < n_groups; i+=nth) {
  8133. int start = i * n_channels_per_group;
  8134. int end = start + n_channels_per_group;
  8135. if (end > n_channels) {
  8136. end = n_channels;
  8137. }
  8138. int step = end - start;
  8139. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8140. ggml_float sum = 0.0;
  8141. for (int64_t i02 = start; i02 < end; i02++) {
  8142. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8143. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8144. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8145. sum += (ggml_float)x[i00];
  8146. }
  8147. }
  8148. }
  8149. float mean = sum / (ne00 * ne01 * step);
  8150. ggml_float sum2 = 0.0;
  8151. for (int64_t i02 = start; i02 < end; i02++) {
  8152. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8153. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8154. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8155. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8156. float v = x[i00] - mean;
  8157. y[i00] = v;
  8158. sum2 += (ggml_float)(v * v);
  8159. }
  8160. }
  8161. }
  8162. float variance = sum2 / (ne00 * ne01 * step);
  8163. const float scale = 1.0f / sqrtf(variance + eps);
  8164. for (int64_t i02 = start; i02 < end; i02++) {
  8165. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8166. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8167. ggml_vec_scale_f32(ne00, y, scale);
  8168. }
  8169. }
  8170. }
  8171. }
  8172. }
  8173. static void ggml_compute_forward_group_norm(
  8174. const struct ggml_compute_params * params,
  8175. const struct ggml_tensor * src0,
  8176. struct ggml_tensor * dst) {
  8177. switch (src0->type) {
  8178. case GGML_TYPE_F32:
  8179. {
  8180. ggml_compute_forward_group_norm_f32(params, src0, dst);
  8181. } break;
  8182. default:
  8183. {
  8184. GGML_ASSERT(false);
  8185. } break;
  8186. }
  8187. }
  8188. // ggml_compute_forward_mul_mat
  8189. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8190. // helper function to determine if it is better to use BLAS or not
  8191. // for large matrices, BLAS is faster
  8192. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8193. const struct ggml_tensor * src0 = dst->src[0];
  8194. const struct ggml_tensor * src1 = dst->src[1];
  8195. //const int64_t ne00 = src0->ne[0];
  8196. //const int64_t ne01 = src0->ne[1];
  8197. const int64_t ne10 = src1->ne[0];
  8198. const int64_t ne0 = dst->ne[0];
  8199. const int64_t ne1 = dst->ne[1];
  8200. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8201. // all the experts for each batch element and the processing would become incredibly slow
  8202. // TODO: find the optimal values for these
  8203. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8204. ggml_is_contiguous(src0) &&
  8205. ggml_is_contiguous(src1) &&
  8206. //src0->type == GGML_TYPE_F32 &&
  8207. src1->type == GGML_TYPE_F32 &&
  8208. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8209. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8210. return true;
  8211. }
  8212. return false;
  8213. }
  8214. #endif
  8215. static void ggml_compute_forward_mul_mat(
  8216. const struct ggml_compute_params * params,
  8217. const struct ggml_tensor * src0,
  8218. const struct ggml_tensor * src1,
  8219. struct ggml_tensor * dst) {
  8220. int64_t t0 = ggml_perf_time_us();
  8221. UNUSED(t0);
  8222. GGML_TENSOR_BINARY_OP_LOCALS
  8223. const int ith = params->ith;
  8224. const int nth = params->nth;
  8225. const enum ggml_type type = src0->type;
  8226. const bool src1_cont = ggml_is_contiguous(src1);
  8227. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8228. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8229. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8230. GGML_ASSERT(ne0 == ne01);
  8231. GGML_ASSERT(ne1 == ne11);
  8232. GGML_ASSERT(ne2 == ne12);
  8233. GGML_ASSERT(ne3 == ne13);
  8234. // we don't support permuted src0 or src1
  8235. GGML_ASSERT(nb00 == ggml_type_size(type));
  8236. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8237. // dst cannot be transposed or permuted
  8238. GGML_ASSERT(nb0 == sizeof(float));
  8239. GGML_ASSERT(nb0 <= nb1);
  8240. GGML_ASSERT(nb1 <= nb2);
  8241. GGML_ASSERT(nb2 <= nb3);
  8242. // broadcast factors
  8243. const int64_t r2 = ne12/ne02;
  8244. const int64_t r3 = ne13/ne03;
  8245. // nb01 >= nb00 - src0 is not transposed
  8246. // compute by src0 rows
  8247. #if defined(GGML_USE_CLBLAST)
  8248. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8249. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8250. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8251. }
  8252. return;
  8253. }
  8254. #endif
  8255. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8256. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8257. const int64_t ne_plane = ne01*ne00;
  8258. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8259. UNUSED(desired_wsize);
  8260. if (params->type == GGML_TASK_INIT) {
  8261. if (type != GGML_TYPE_F32) {
  8262. assert(params->wsize >= desired_wsize);
  8263. // parallelize by src0 rows
  8264. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8265. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8266. // broadcast src0 into src1 across 2nd,3rd dimension
  8267. const int64_t i03 = i13/r3;
  8268. const int64_t i02 = i12/r2;
  8269. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8270. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8271. ggml_to_float_t const to_float = type_traits[type].to_float;
  8272. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8273. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8274. }
  8275. }
  8276. }
  8277. }
  8278. return;
  8279. }
  8280. if (params->type == GGML_TASK_FINALIZE) {
  8281. return;
  8282. }
  8283. // perform sgemm, parallelization controlled by blas lib
  8284. if (ith != 0) {
  8285. return;
  8286. }
  8287. //const int64_t tgemm0 = ggml_perf_time_us();
  8288. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8289. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8290. const int64_t i03 = i13/r3;
  8291. const int64_t i02 = i12/r2;
  8292. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8293. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8294. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8295. if (type != GGML_TYPE_F32) {
  8296. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8297. }
  8298. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8299. ne1, ne01, ne10,
  8300. 1.0f, y, ne10,
  8301. x, ne00,
  8302. 0.0f, d, ne01);
  8303. }
  8304. }
  8305. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8306. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8307. return;
  8308. }
  8309. #endif
  8310. if (params->type == GGML_TASK_INIT) {
  8311. if (ith != 0) {
  8312. return;
  8313. }
  8314. if (src1->type != vec_dot_type) {
  8315. char * wdata = params->wdata;
  8316. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8317. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8318. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8319. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8320. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8321. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8322. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8323. wdata += row_size;
  8324. }
  8325. }
  8326. }
  8327. }
  8328. return;
  8329. }
  8330. if (params->type == GGML_TASK_FINALIZE) {
  8331. return;
  8332. }
  8333. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8334. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8335. const int64_t nr0 = ne01; // src0 rows
  8336. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8337. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8338. // distribute the thread work across the inner or outer loop based on which one is larger
  8339. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8340. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8341. const int64_t ith0 = ith % nth0;
  8342. const int64_t ith1 = ith / nth0;
  8343. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8344. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8345. const int64_t ir010 = dr0*ith0;
  8346. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8347. const int64_t ir110 = dr1*ith1;
  8348. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8349. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8350. // threads with no work simply yield (not sure if it helps)
  8351. if (ir010 >= ir011 || ir110 >= ir111) {
  8352. sched_yield();
  8353. return;
  8354. }
  8355. assert(ne12 % ne02 == 0);
  8356. assert(ne13 % ne03 == 0);
  8357. // block-tiling attempt
  8358. const int64_t blck_0 = 16;
  8359. const int64_t blck_1 = 16;
  8360. // attempt to reduce false-sharing (does not seem to make a difference)
  8361. float tmp[16];
  8362. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8363. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8364. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8365. const int64_t i13 = (ir1/(ne12*ne1));
  8366. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8367. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8368. // broadcast src0 into src1
  8369. const int64_t i03 = i13/r3;
  8370. const int64_t i02 = i12/r2;
  8371. const int64_t i1 = i11;
  8372. const int64_t i2 = i12;
  8373. const int64_t i3 = i13;
  8374. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8375. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8376. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8377. // the original src1 data pointer, so we should index using the indices directly
  8378. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8379. const char * src1_col = (const char *) wdata +
  8380. (src1_cont || src1->type != vec_dot_type
  8381. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8382. : (i11*nb11 + i12*nb12 + i13*nb13));
  8383. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8384. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8385. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8386. //}
  8387. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8388. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8389. }
  8390. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8391. }
  8392. }
  8393. }
  8394. }
  8395. // ggml_compute_forward_mul_mat_id
  8396. static void ggml_compute_forward_mul_mat_id(
  8397. const struct ggml_compute_params * params,
  8398. const struct ggml_tensor * ids,
  8399. const struct ggml_tensor * src1,
  8400. struct ggml_tensor * dst) {
  8401. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8402. GGML_TENSOR_BINARY_OP_LOCALS
  8403. const int ith = params->ith;
  8404. const int nth = params->nth;
  8405. const enum ggml_type type = src0->type;
  8406. const bool src1_cont = ggml_is_contiguous(src1);
  8407. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8408. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8409. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8410. GGML_ASSERT(ne0 == ne01);
  8411. GGML_ASSERT(ne1 == ne11);
  8412. GGML_ASSERT(ne2 == ne12);
  8413. GGML_ASSERT(ne3 == ne13);
  8414. // we don't support permuted src0 or src1
  8415. GGML_ASSERT(nb00 == ggml_type_size(type));
  8416. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8417. // dst cannot be transposed or permuted
  8418. GGML_ASSERT(nb0 == sizeof(float));
  8419. GGML_ASSERT(nb0 <= nb1);
  8420. GGML_ASSERT(nb1 <= nb2);
  8421. GGML_ASSERT(nb2 <= nb3);
  8422. // broadcast factors
  8423. const int64_t r2 = ne12/ne02;
  8424. const int64_t r3 = ne13/ne03;
  8425. // row groups
  8426. const int id = ggml_get_op_params_i32(dst, 0);
  8427. const int n_as = ggml_get_op_params_i32(dst, 1);
  8428. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8429. (char *) params->wdata :
  8430. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8431. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8432. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8433. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8434. if (params->type == GGML_TASK_INIT) {
  8435. if (ith != 0) {
  8436. return;
  8437. }
  8438. char * wdata = params->wdata;
  8439. if (src1->type != vec_dot_type) {
  8440. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8441. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8442. assert(src1->type == GGML_TYPE_F32);
  8443. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8444. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8445. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8446. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8447. wdata += row_size;
  8448. }
  8449. }
  8450. }
  8451. }
  8452. // initialize matrix_row_counts
  8453. GGML_ASSERT(wdata == wdata_src1_end);
  8454. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8455. // group rows by src0 matrix
  8456. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8457. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8458. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8459. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8460. matrix_row_counts[row_id] += 1;
  8461. }
  8462. return;
  8463. }
  8464. if (params->type == GGML_TASK_FINALIZE) {
  8465. return;
  8466. }
  8467. // compute each matrix multiplication in sequence
  8468. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8469. const int64_t cne1 = matrix_row_counts[cur_a];
  8470. if (cne1 == 0) {
  8471. continue;
  8472. }
  8473. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8474. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8475. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8476. const int64_t nr0 = ne01; // src0 rows
  8477. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8478. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8479. // distribute the thread work across the inner or outer loop based on which one is larger
  8480. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8481. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8482. const int64_t ith0 = ith % nth0;
  8483. const int64_t ith1 = ith / nth0;
  8484. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8485. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8486. const int64_t ir010 = dr0*ith0;
  8487. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8488. const int64_t ir110 = dr1*ith1;
  8489. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8490. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8491. // threads with no work simply yield (not sure if it helps)
  8492. if (ir010 >= ir011 || ir110 >= ir111) {
  8493. sched_yield();
  8494. continue;
  8495. }
  8496. assert(ne12 % ne02 == 0);
  8497. assert(ne13 % ne03 == 0);
  8498. // block-tiling attempt
  8499. const int64_t blck_0 = 16;
  8500. const int64_t blck_1 = 16;
  8501. // attempt to reduce false-sharing (does not seem to make a difference)
  8502. float tmp[16];
  8503. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8504. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8505. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8506. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8507. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8508. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8509. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8510. // broadcast src0 into src1
  8511. const int64_t i03 = i13/r3;
  8512. const int64_t i02 = i12/r2;
  8513. const int64_t i1 = i11;
  8514. const int64_t i2 = i12;
  8515. const int64_t i3 = i13;
  8516. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8517. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8518. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8519. // the original src1 data pointer, so we should index using the indices directly
  8520. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8521. const char * src1_col = (const char *) wdata +
  8522. (src1_cont || src1->type != vec_dot_type
  8523. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8524. : (i11*nb11 + i12*nb12 + i13*nb13));
  8525. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8526. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8527. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8528. //}
  8529. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8530. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8531. }
  8532. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8533. }
  8534. }
  8535. }
  8536. }
  8537. #undef MMID_MATRIX_ROW
  8538. }
  8539. // ggml_compute_forward_out_prod
  8540. static void ggml_compute_forward_out_prod_f32(
  8541. const struct ggml_compute_params * params,
  8542. const struct ggml_tensor * src0,
  8543. const struct ggml_tensor * src1,
  8544. struct ggml_tensor * dst) {
  8545. // int64_t t0 = ggml_perf_time_us();
  8546. // UNUSED(t0);
  8547. GGML_TENSOR_BINARY_OP_LOCALS
  8548. const int ith = params->ith;
  8549. const int nth = params->nth;
  8550. GGML_ASSERT(ne0 == ne00);
  8551. GGML_ASSERT(ne1 == ne10);
  8552. GGML_ASSERT(ne2 == ne02);
  8553. GGML_ASSERT(ne02 == ne12);
  8554. GGML_ASSERT(ne3 == ne13);
  8555. GGML_ASSERT(ne03 == ne13);
  8556. // we don't support permuted src0 or src1
  8557. GGML_ASSERT(nb00 == sizeof(float));
  8558. // dst cannot be transposed or permuted
  8559. GGML_ASSERT(nb0 == sizeof(float));
  8560. // GGML_ASSERT(nb0 <= nb1);
  8561. // GGML_ASSERT(nb1 <= nb2);
  8562. // GGML_ASSERT(nb2 <= nb3);
  8563. // nb01 >= nb00 - src0 is not transposed
  8564. // compute by src0 rows
  8565. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8566. // TODO: #if defined(GGML_USE_CLBLAST)
  8567. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8568. bool use_blas = ggml_is_matrix(src0) &&
  8569. ggml_is_matrix(src1) &&
  8570. ggml_is_contiguous(src0) &&
  8571. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8572. #endif
  8573. if (params->type == GGML_TASK_INIT) {
  8574. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8575. if (use_blas) {
  8576. return;
  8577. }
  8578. #endif
  8579. if (ith != 0) {
  8580. return;
  8581. }
  8582. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8583. return;
  8584. }
  8585. if (params->type == GGML_TASK_FINALIZE) {
  8586. return;
  8587. }
  8588. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8589. if (use_blas) {
  8590. if (params->ith != 0) { // All threads other than the first do no work.
  8591. return;
  8592. }
  8593. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8594. // src0: (k,n)
  8595. // src1: (k,m)
  8596. // dst: (m,n)
  8597. //
  8598. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8599. // Also expressed as (major,minor)
  8600. // a: (m,k): so src1 transposed
  8601. // b: (k,n): so src0
  8602. // c: (m,n)
  8603. //
  8604. // However, if ggml_is_transposed(src1) is true, then
  8605. // src1->data already contains a transposed version, so sgemm mustn't
  8606. // transpose it further.
  8607. int n = src0->ne[0];
  8608. int k = src0->ne[1];
  8609. int m = src1->ne[0];
  8610. int transposeA, lda;
  8611. if (!ggml_is_transposed(src1)) {
  8612. transposeA = CblasTrans;
  8613. lda = m;
  8614. } else {
  8615. transposeA = CblasNoTrans;
  8616. lda = k;
  8617. }
  8618. float * a = (float *) ((char *) src1->data);
  8619. float * b = (float *) ((char *) src0->data);
  8620. float * c = (float *) ((char *) dst->data);
  8621. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8622. return;
  8623. }
  8624. #endif
  8625. // dst[:,:,:,:] = 0
  8626. // for i2,i3:
  8627. // for i1:
  8628. // for i01:
  8629. // for i0:
  8630. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8631. // parallelize by last three dimensions
  8632. // total rows in dst
  8633. const int64_t nr = ne1*ne2*ne3;
  8634. // rows per thread
  8635. const int64_t dr = (nr + nth - 1)/nth;
  8636. // row range for this thread
  8637. const int64_t ir0 = dr*ith;
  8638. const int64_t ir1 = MIN(ir0 + dr, nr);
  8639. // block-tiling attempt
  8640. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8641. const int64_t blck_1 = 16;
  8642. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8643. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8644. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8645. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8646. for (int64_t ir = bir; ir < bir1; ++ir) {
  8647. // dst indices
  8648. const int64_t i3 = ir/(ne2*ne1);
  8649. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8650. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8651. const int64_t i02 = i2;
  8652. const int64_t i03 = i3;
  8653. //const int64_t i10 = i1;
  8654. const int64_t i12 = i2;
  8655. const int64_t i13 = i3;
  8656. #if GGML_VEC_MAD_UNROLL > 2
  8657. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8658. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8659. const int64_t i11 = i01;
  8660. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8661. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8662. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8663. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8664. }
  8665. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8666. const int64_t i11 = i01;
  8667. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8668. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8669. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8670. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8671. }
  8672. #else
  8673. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8674. const int64_t i11 = i01;
  8675. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8676. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8677. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8678. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8679. }
  8680. #endif
  8681. }
  8682. }
  8683. }
  8684. //int64_t t1 = ggml_perf_time_us();
  8685. //static int64_t acc = 0;
  8686. //acc += t1 - t0;
  8687. //if (t1 - t0 > 10) {
  8688. // printf("\n");
  8689. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8690. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8691. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8692. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8693. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8694. //}
  8695. }
  8696. static void ggml_compute_forward_out_prod_q_f32(
  8697. const struct ggml_compute_params * params,
  8698. const struct ggml_tensor * src0,
  8699. const struct ggml_tensor * src1,
  8700. struct ggml_tensor * dst) {
  8701. // int64_t t0 = ggml_perf_time_us();
  8702. // UNUSED(t0);
  8703. GGML_TENSOR_BINARY_OP_LOCALS;
  8704. const int ith = params->ith;
  8705. const int nth = params->nth;
  8706. const enum ggml_type type = src0->type;
  8707. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8708. GGML_ASSERT(ne02 == ne12);
  8709. GGML_ASSERT(ne03 == ne13);
  8710. GGML_ASSERT(ne2 == ne12);
  8711. GGML_ASSERT(ne3 == ne13);
  8712. // we don't support permuted src0 dim0
  8713. GGML_ASSERT(nb00 == ggml_type_size(type));
  8714. // dst dim0 cannot be transposed or permuted
  8715. GGML_ASSERT(nb0 == sizeof(float));
  8716. // GGML_ASSERT(nb0 <= nb1);
  8717. // GGML_ASSERT(nb1 <= nb2);
  8718. // GGML_ASSERT(nb2 <= nb3);
  8719. GGML_ASSERT(ne0 == ne00);
  8720. GGML_ASSERT(ne1 == ne10);
  8721. GGML_ASSERT(ne2 == ne02);
  8722. GGML_ASSERT(ne3 == ne03);
  8723. // nb01 >= nb00 - src0 is not transposed
  8724. // compute by src0 rows
  8725. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8726. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8727. if (params->type == GGML_TASK_INIT) {
  8728. if (ith != 0) {
  8729. return;
  8730. }
  8731. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8732. return;
  8733. }
  8734. if (params->type == GGML_TASK_FINALIZE) {
  8735. return;
  8736. }
  8737. // parallelize by last three dimensions
  8738. // total rows in dst
  8739. const int64_t nr = ne1*ne2*ne3;
  8740. // rows per thread
  8741. const int64_t dr = (nr + nth - 1)/nth;
  8742. // row range for this thread
  8743. const int64_t ir0 = dr*ith;
  8744. const int64_t ir1 = MIN(ir0 + dr, nr);
  8745. // dst[:,:,:,:] = 0
  8746. // for i2,i3:
  8747. // for i1:
  8748. // for i01:
  8749. // for i0:
  8750. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8751. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8752. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8753. // dst indices
  8754. const int64_t i3 = ir/(ne2*ne1);
  8755. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8756. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8757. const int64_t i02 = i2;
  8758. const int64_t i03 = i3;
  8759. //const int64_t i10 = i1;
  8760. const int64_t i12 = i2;
  8761. const int64_t i13 = i3;
  8762. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8763. const int64_t i11 = i01;
  8764. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8765. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8766. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8767. dequantize_row_q(s0, wdata, ne0);
  8768. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8769. }
  8770. }
  8771. //int64_t t1 = ggml_perf_time_us();
  8772. //static int64_t acc = 0;
  8773. //acc += t1 - t0;
  8774. //if (t1 - t0 > 10) {
  8775. // printf("\n");
  8776. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8777. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8778. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8779. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8780. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8781. //}
  8782. }
  8783. static void ggml_compute_forward_out_prod(
  8784. const struct ggml_compute_params * params,
  8785. const struct ggml_tensor * src0,
  8786. const struct ggml_tensor * src1,
  8787. struct ggml_tensor * dst) {
  8788. switch (src0->type) {
  8789. case GGML_TYPE_Q4_0:
  8790. case GGML_TYPE_Q4_1:
  8791. case GGML_TYPE_Q5_0:
  8792. case GGML_TYPE_Q5_1:
  8793. case GGML_TYPE_Q8_0:
  8794. case GGML_TYPE_Q2_K:
  8795. case GGML_TYPE_Q3_K:
  8796. case GGML_TYPE_Q4_K:
  8797. case GGML_TYPE_Q5_K:
  8798. case GGML_TYPE_Q6_K:
  8799. case GGML_TYPE_IQ2_XXS:
  8800. case GGML_TYPE_IQ2_XS:
  8801. case GGML_TYPE_IQ3_XXS:
  8802. {
  8803. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8804. } break;
  8805. case GGML_TYPE_F16:
  8806. {
  8807. GGML_ASSERT(false); // todo
  8808. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8809. } break;
  8810. case GGML_TYPE_F32:
  8811. {
  8812. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8813. } break;
  8814. default:
  8815. {
  8816. GGML_ASSERT(false);
  8817. } break;
  8818. }
  8819. }
  8820. // ggml_compute_forward_scale
  8821. static void ggml_compute_forward_scale_f32(
  8822. const struct ggml_compute_params * params,
  8823. const struct ggml_tensor * src0,
  8824. struct ggml_tensor * dst) {
  8825. GGML_ASSERT(ggml_is_contiguous(src0));
  8826. GGML_ASSERT(ggml_is_contiguous(dst));
  8827. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8828. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8829. return;
  8830. }
  8831. // scale factor
  8832. float v;
  8833. memcpy(&v, dst->op_params, sizeof(float));
  8834. const int ith = params->ith;
  8835. const int nth = params->nth;
  8836. const int nc = src0->ne[0];
  8837. const int nr = ggml_nrows(src0);
  8838. // rows per thread
  8839. const int dr = (nr + nth - 1)/nth;
  8840. // row range for this thread
  8841. const int ir0 = dr*ith;
  8842. const int ir1 = MIN(ir0 + dr, nr);
  8843. const size_t nb01 = src0->nb[1];
  8844. const size_t nb1 = dst->nb[1];
  8845. for (int i1 = ir0; i1 < ir1; i1++) {
  8846. if (dst->data != src0->data) {
  8847. // src0 is same shape as dst => same indices
  8848. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8849. }
  8850. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8851. }
  8852. }
  8853. static void ggml_compute_forward_scale(
  8854. const struct ggml_compute_params * params,
  8855. const struct ggml_tensor * src0,
  8856. struct ggml_tensor * dst) {
  8857. switch (src0->type) {
  8858. case GGML_TYPE_F32:
  8859. {
  8860. ggml_compute_forward_scale_f32(params, src0, dst);
  8861. } break;
  8862. default:
  8863. {
  8864. GGML_ASSERT(false);
  8865. } break;
  8866. }
  8867. }
  8868. // ggml_compute_forward_set
  8869. static void ggml_compute_forward_set_f32(
  8870. const struct ggml_compute_params * params,
  8871. const struct ggml_tensor * src0,
  8872. const struct ggml_tensor * src1,
  8873. struct ggml_tensor * dst) {
  8874. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8875. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8876. // view src0 and dst with these strides and data offset inbytes during set
  8877. // nb0 is implicitly element_size because src0 and dst are contiguous
  8878. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8879. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8880. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8881. size_t offset = ((int32_t *) dst->op_params)[3];
  8882. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8883. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8884. if (params->ith != 0) {
  8885. return;
  8886. }
  8887. // memcpy needs to be synchronized across threads to avoid race conditions.
  8888. // => do it in INIT phase
  8889. memcpy(
  8890. ((char *) dst->data),
  8891. ((char *) src0->data),
  8892. ggml_nbytes(dst));
  8893. }
  8894. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8895. return;
  8896. }
  8897. const int ith = params->ith;
  8898. const int nth = params->nth;
  8899. const int nr = ggml_nrows(src1);
  8900. const int nc = src1->ne[0];
  8901. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8902. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8903. // src0 and dst as viewed during set
  8904. const size_t nb0 = ggml_element_size(src0);
  8905. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8906. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8907. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8908. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8909. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8910. GGML_ASSERT(nb10 == sizeof(float));
  8911. // rows per thread
  8912. const int dr = (nr + nth - 1)/nth;
  8913. // row range for this thread
  8914. const int ir0 = dr*ith;
  8915. const int ir1 = MIN(ir0 + dr, nr);
  8916. for (int ir = ir0; ir < ir1; ++ir) {
  8917. // src0 and dst are viewed with shape of src1 and offset
  8918. // => same indices
  8919. const int i3 = ir/(ne12*ne11);
  8920. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8921. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8922. ggml_vec_cpy_f32(nc,
  8923. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8924. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8925. }
  8926. }
  8927. static void ggml_compute_forward_set(
  8928. const struct ggml_compute_params * params,
  8929. const struct ggml_tensor * src0,
  8930. const struct ggml_tensor * src1,
  8931. struct ggml_tensor * dst) {
  8932. switch (src0->type) {
  8933. case GGML_TYPE_F32:
  8934. {
  8935. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8936. } break;
  8937. case GGML_TYPE_F16:
  8938. case GGML_TYPE_Q4_0:
  8939. case GGML_TYPE_Q4_1:
  8940. case GGML_TYPE_Q5_0:
  8941. case GGML_TYPE_Q5_1:
  8942. case GGML_TYPE_Q8_0:
  8943. case GGML_TYPE_Q8_1:
  8944. case GGML_TYPE_Q2_K:
  8945. case GGML_TYPE_Q3_K:
  8946. case GGML_TYPE_Q4_K:
  8947. case GGML_TYPE_Q5_K:
  8948. case GGML_TYPE_Q6_K:
  8949. case GGML_TYPE_IQ2_XXS:
  8950. case GGML_TYPE_IQ2_XS:
  8951. case GGML_TYPE_IQ3_XXS:
  8952. default:
  8953. {
  8954. GGML_ASSERT(false);
  8955. } break;
  8956. }
  8957. }
  8958. // ggml_compute_forward_cpy
  8959. static void ggml_compute_forward_cpy(
  8960. const struct ggml_compute_params * params,
  8961. const struct ggml_tensor * src0,
  8962. struct ggml_tensor * dst) {
  8963. ggml_compute_forward_dup(params, src0, dst);
  8964. }
  8965. // ggml_compute_forward_cont
  8966. static void ggml_compute_forward_cont(
  8967. const struct ggml_compute_params * params,
  8968. const struct ggml_tensor * src0,
  8969. struct ggml_tensor * dst) {
  8970. ggml_compute_forward_dup(params, src0, dst);
  8971. }
  8972. // ggml_compute_forward_reshape
  8973. static void ggml_compute_forward_reshape(
  8974. const struct ggml_compute_params * params,
  8975. const struct ggml_tensor * src0,
  8976. struct ggml_tensor * dst) {
  8977. // NOP
  8978. UNUSED(params);
  8979. UNUSED(src0);
  8980. UNUSED(dst);
  8981. }
  8982. // ggml_compute_forward_view
  8983. static void ggml_compute_forward_view(
  8984. const struct ggml_compute_params * params,
  8985. const struct ggml_tensor * src0) {
  8986. // NOP
  8987. UNUSED(params);
  8988. UNUSED(src0);
  8989. }
  8990. // ggml_compute_forward_permute
  8991. static void ggml_compute_forward_permute(
  8992. const struct ggml_compute_params * params,
  8993. const struct ggml_tensor * src0) {
  8994. // NOP
  8995. UNUSED(params);
  8996. UNUSED(src0);
  8997. }
  8998. // ggml_compute_forward_transpose
  8999. static void ggml_compute_forward_transpose(
  9000. const struct ggml_compute_params * params,
  9001. const struct ggml_tensor * src0) {
  9002. // NOP
  9003. UNUSED(params);
  9004. UNUSED(src0);
  9005. }
  9006. // ggml_compute_forward_get_rows
  9007. static void ggml_compute_forward_get_rows_q(
  9008. const struct ggml_compute_params * params,
  9009. const struct ggml_tensor * src0,
  9010. const struct ggml_tensor * src1,
  9011. struct ggml_tensor * dst) {
  9012. assert(params->ith == 0);
  9013. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9014. return;
  9015. }
  9016. GGML_TENSOR_BINARY_OP_LOCALS
  9017. const int64_t nc = ne00;
  9018. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9019. const enum ggml_type type = src0->type;
  9020. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9021. assert(ne0 == nc);
  9022. assert(ne02 == ne11);
  9023. assert(nb00 == ggml_type_size(type));
  9024. assert(ggml_nrows(dst) == nr);
  9025. // TODO: multi-thread
  9026. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9027. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9028. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9029. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9030. dequantize_row_q(
  9031. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9032. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9033. }
  9034. }
  9035. }
  9036. }
  9037. static void ggml_compute_forward_get_rows_f16(
  9038. const struct ggml_compute_params * params,
  9039. const struct ggml_tensor * src0,
  9040. const struct ggml_tensor * src1,
  9041. struct ggml_tensor * dst) {
  9042. assert(params->ith == 0);
  9043. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9044. return;
  9045. }
  9046. GGML_TENSOR_BINARY_OP_LOCALS
  9047. const int64_t nc = ne00;
  9048. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9049. assert(ne0 == nc);
  9050. assert(ne02 == ne11);
  9051. assert(nb00 == sizeof(ggml_fp16_t));
  9052. assert(ggml_nrows(dst) == nr);
  9053. // TODO: multi-thread
  9054. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9055. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9056. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9057. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9058. ggml_fp16_to_fp32_row(
  9059. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9060. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9061. }
  9062. }
  9063. }
  9064. }
  9065. static void ggml_compute_forward_get_rows_f32(
  9066. const struct ggml_compute_params * params,
  9067. const struct ggml_tensor * src0,
  9068. const struct ggml_tensor * src1,
  9069. struct ggml_tensor * dst) {
  9070. assert(params->ith == 0);
  9071. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9072. return;
  9073. }
  9074. GGML_TENSOR_BINARY_OP_LOCALS
  9075. const int64_t nc = ne00;
  9076. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9077. assert(ne0 == nc);
  9078. assert(ne02 == ne11);
  9079. assert(nb00 == sizeof(float));
  9080. assert(ggml_nrows(dst) == nr);
  9081. // TODO: multi-thread
  9082. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9083. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9084. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9085. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9086. ggml_vec_cpy_f32(nc,
  9087. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9088. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9089. }
  9090. }
  9091. }
  9092. }
  9093. static void ggml_compute_forward_get_rows(
  9094. const struct ggml_compute_params * params,
  9095. const struct ggml_tensor * src0,
  9096. const struct ggml_tensor * src1,
  9097. struct ggml_tensor * dst) {
  9098. switch (src0->type) {
  9099. case GGML_TYPE_Q4_0:
  9100. case GGML_TYPE_Q4_1:
  9101. case GGML_TYPE_Q5_0:
  9102. case GGML_TYPE_Q5_1:
  9103. case GGML_TYPE_Q8_0:
  9104. case GGML_TYPE_Q8_1:
  9105. case GGML_TYPE_Q2_K:
  9106. case GGML_TYPE_Q3_K:
  9107. case GGML_TYPE_Q4_K:
  9108. case GGML_TYPE_Q5_K:
  9109. case GGML_TYPE_Q6_K:
  9110. case GGML_TYPE_IQ2_XXS:
  9111. case GGML_TYPE_IQ2_XS:
  9112. case GGML_TYPE_IQ3_XXS:
  9113. {
  9114. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9115. } break;
  9116. case GGML_TYPE_F16:
  9117. {
  9118. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9119. } break;
  9120. case GGML_TYPE_F32:
  9121. case GGML_TYPE_I32:
  9122. {
  9123. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9124. } break;
  9125. default:
  9126. {
  9127. GGML_ASSERT(false);
  9128. } break;
  9129. }
  9130. //static bool first = true;
  9131. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9132. //if (first) {
  9133. // first = false;
  9134. //} else {
  9135. // for (int k = 0; k < dst->ne[1]; ++k) {
  9136. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9137. // for (int i = 0; i < 16; ++i) {
  9138. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9139. // }
  9140. // printf("\n");
  9141. // }
  9142. // printf("\n");
  9143. // }
  9144. // printf("\n");
  9145. // exit(0);
  9146. //}
  9147. }
  9148. // ggml_compute_forward_get_rows_back
  9149. static void ggml_compute_forward_get_rows_back_f32_f16(
  9150. const struct ggml_compute_params * params,
  9151. const struct ggml_tensor * src0,
  9152. const struct ggml_tensor * src1,
  9153. struct ggml_tensor * dst) {
  9154. GGML_ASSERT(params->ith == 0);
  9155. GGML_ASSERT(ggml_is_contiguous(dst));
  9156. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9157. if (params->type == GGML_TASK_INIT) {
  9158. if (params->ith != 0) {
  9159. return;
  9160. }
  9161. memset(dst->data, 0, ggml_nbytes(dst));
  9162. }
  9163. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9164. return;
  9165. }
  9166. const int nc = src0->ne[0];
  9167. const int nr = ggml_nelements(src1);
  9168. GGML_ASSERT( dst->ne[0] == nc);
  9169. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9170. for (int i = 0; i < nr; ++i) {
  9171. const int r = ((int32_t *) src1->data)[i];
  9172. for (int j = 0; j < nc; ++j) {
  9173. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9174. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9175. }
  9176. }
  9177. }
  9178. static void ggml_compute_forward_get_rows_back_f32(
  9179. const struct ggml_compute_params * params,
  9180. const struct ggml_tensor * src0,
  9181. const struct ggml_tensor * src1,
  9182. struct ggml_tensor * dst) {
  9183. GGML_ASSERT(params->ith == 0);
  9184. GGML_ASSERT(ggml_is_contiguous(dst));
  9185. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9186. if (params->type == GGML_TASK_INIT) {
  9187. if (params->ith != 0) {
  9188. return;
  9189. }
  9190. memset(dst->data, 0, ggml_nbytes(dst));
  9191. }
  9192. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9193. return;
  9194. }
  9195. const int nc = src0->ne[0];
  9196. const int nr = ggml_nelements(src1);
  9197. GGML_ASSERT( dst->ne[0] == nc);
  9198. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9199. for (int i = 0; i < nr; ++i) {
  9200. const int r = ((int32_t *) src1->data)[i];
  9201. ggml_vec_add_f32(nc,
  9202. (float *) ((char *) dst->data + r*dst->nb[1]),
  9203. (float *) ((char *) dst->data + r*dst->nb[1]),
  9204. (float *) ((char *) src0->data + i*src0->nb[1]));
  9205. }
  9206. }
  9207. static void ggml_compute_forward_get_rows_back(
  9208. const struct ggml_compute_params * params,
  9209. const struct ggml_tensor * src0,
  9210. const struct ggml_tensor * src1,
  9211. struct ggml_tensor * dst) {
  9212. switch (src0->type) {
  9213. case GGML_TYPE_F16:
  9214. {
  9215. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  9216. } break;
  9217. case GGML_TYPE_F32:
  9218. {
  9219. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  9220. } break;
  9221. default:
  9222. {
  9223. GGML_ASSERT(false);
  9224. } break;
  9225. }
  9226. //static bool first = true;
  9227. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9228. //if (first) {
  9229. // first = false;
  9230. //} else {
  9231. // for (int k = 0; k < dst->ne[1]; ++k) {
  9232. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9233. // for (int i = 0; i < 16; ++i) {
  9234. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9235. // }
  9236. // printf("\n");
  9237. // }
  9238. // printf("\n");
  9239. // }
  9240. // printf("\n");
  9241. // exit(0);
  9242. //}
  9243. }
  9244. // ggml_compute_forward_diag
  9245. static void ggml_compute_forward_diag_f32(
  9246. const struct ggml_compute_params * params,
  9247. const struct ggml_tensor * src0,
  9248. struct ggml_tensor * dst) {
  9249. GGML_ASSERT(params->ith == 0);
  9250. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9251. return;
  9252. }
  9253. // TODO: handle transposed/permuted matrices
  9254. GGML_TENSOR_UNARY_OP_LOCALS
  9255. GGML_ASSERT(ne00 == ne0);
  9256. GGML_ASSERT(ne00 == ne1);
  9257. GGML_ASSERT(ne01 == 1);
  9258. GGML_ASSERT(ne02 == ne2);
  9259. GGML_ASSERT(ne03 == ne3);
  9260. GGML_ASSERT(nb00 == sizeof(float));
  9261. GGML_ASSERT(nb0 == sizeof(float));
  9262. for (int i3 = 0; i3 < ne3; i3++) {
  9263. for (int i2 = 0; i2 < ne2; i2++) {
  9264. for (int i1 = 0; i1 < ne1; i1++) {
  9265. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9266. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9267. for (int i0 = 0; i0 < i1; i0++) {
  9268. d[i0] = 0;
  9269. }
  9270. d[i1] = s[i1];
  9271. for (int i0 = i1+1; i0 < ne0; i0++) {
  9272. d[i0] = 0;
  9273. }
  9274. }
  9275. }
  9276. }
  9277. }
  9278. static void ggml_compute_forward_diag(
  9279. const struct ggml_compute_params * params,
  9280. const struct ggml_tensor * src0,
  9281. struct ggml_tensor * dst) {
  9282. switch (src0->type) {
  9283. case GGML_TYPE_F32:
  9284. {
  9285. ggml_compute_forward_diag_f32(params, src0, dst);
  9286. } break;
  9287. default:
  9288. {
  9289. GGML_ASSERT(false);
  9290. } break;
  9291. }
  9292. }
  9293. // ggml_compute_forward_diag_mask_inf
  9294. static void ggml_compute_forward_diag_mask_f32(
  9295. const struct ggml_compute_params * params,
  9296. const struct ggml_tensor * src0,
  9297. struct ggml_tensor * dst,
  9298. const float value) {
  9299. const int ith = params->ith;
  9300. const int nth = params->nth;
  9301. const int n_past = ((int32_t *) dst->op_params)[0];
  9302. const bool inplace = src0->data == dst->data;
  9303. GGML_ASSERT(n_past >= 0);
  9304. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9305. if (ith != 0) {
  9306. return;
  9307. }
  9308. // memcpy needs to be synchronized across threads to avoid race conditions.
  9309. // => do it in INIT phase
  9310. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9311. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9312. memcpy(
  9313. ((char *) dst->data),
  9314. ((char *) src0->data),
  9315. ggml_nbytes(dst));
  9316. }
  9317. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9318. return;
  9319. }
  9320. // TODO: handle transposed/permuted matrices
  9321. const int n = ggml_nrows(src0);
  9322. const int nc = src0->ne[0];
  9323. const int nr = src0->ne[1];
  9324. const int nz = n/nr;
  9325. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9326. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9327. for (int k = 0; k < nz; k++) {
  9328. for (int j = ith; j < nr; j += nth) {
  9329. for (int i = n_past; i < nc; i++) {
  9330. if (i > n_past + j) {
  9331. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9332. }
  9333. }
  9334. }
  9335. }
  9336. }
  9337. static void ggml_compute_forward_diag_mask_inf(
  9338. const struct ggml_compute_params * params,
  9339. const struct ggml_tensor * src0,
  9340. struct ggml_tensor * dst) {
  9341. switch (src0->type) {
  9342. case GGML_TYPE_F32:
  9343. {
  9344. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9345. } break;
  9346. default:
  9347. {
  9348. GGML_ASSERT(false);
  9349. } break;
  9350. }
  9351. }
  9352. static void ggml_compute_forward_diag_mask_zero(
  9353. const struct ggml_compute_params * params,
  9354. const struct ggml_tensor * src0,
  9355. struct ggml_tensor * dst) {
  9356. switch (src0->type) {
  9357. case GGML_TYPE_F32:
  9358. {
  9359. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9360. } break;
  9361. default:
  9362. {
  9363. GGML_ASSERT(false);
  9364. } break;
  9365. }
  9366. }
  9367. // ggml_compute_forward_soft_max
  9368. static void ggml_compute_forward_soft_max_f32(
  9369. const struct ggml_compute_params * params,
  9370. const struct ggml_tensor * src0,
  9371. const struct ggml_tensor * src1,
  9372. struct ggml_tensor * dst) {
  9373. assert(ggml_is_contiguous(dst));
  9374. assert(ggml_are_same_shape(src0, dst));
  9375. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9376. return;
  9377. }
  9378. float scale = 1.0f;
  9379. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9380. // TODO: handle transposed/permuted matrices
  9381. const int ith = params->ith;
  9382. const int nth = params->nth;
  9383. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9384. const int nc = src0->ne[0];
  9385. const int nr = ggml_nrows(src0);
  9386. // rows per thread
  9387. const int dr = (nr + nth - 1)/nth;
  9388. // row range for this thread
  9389. const int ir0 = dr*ith;
  9390. const int ir1 = MIN(ir0 + dr, nr);
  9391. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9392. for (int i1 = ir0; i1 < ir1; i1++) {
  9393. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9394. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9395. // broadcast the mask across rows
  9396. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9397. ggml_vec_cpy_f32 (nc, wp, sp);
  9398. ggml_vec_scale_f32(nc, wp, scale);
  9399. if (mp) {
  9400. ggml_vec_acc_f32(nc, wp, mp);
  9401. }
  9402. #ifndef NDEBUG
  9403. for (int i = 0; i < nc; ++i) {
  9404. //printf("p[%d] = %f\n", i, p[i]);
  9405. assert(!isnan(wp[i]));
  9406. }
  9407. #endif
  9408. float max = -INFINITY;
  9409. ggml_vec_max_f32(nc, &max, wp);
  9410. ggml_float sum = 0.0;
  9411. uint16_t scvt;
  9412. for (int i = 0; i < nc; i++) {
  9413. if (wp[i] == -INFINITY) {
  9414. dp[i] = 0.0f;
  9415. } else {
  9416. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9417. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9418. memcpy(&scvt, &s, sizeof(scvt));
  9419. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9420. sum += (ggml_float)val;
  9421. dp[i] = val;
  9422. }
  9423. }
  9424. assert(sum > 0.0);
  9425. sum = 1.0/sum;
  9426. ggml_vec_scale_f32(nc, dp, sum);
  9427. #ifndef NDEBUG
  9428. for (int i = 0; i < nc; ++i) {
  9429. assert(!isnan(dp[i]));
  9430. assert(!isinf(dp[i]));
  9431. }
  9432. #endif
  9433. }
  9434. }
  9435. static void ggml_compute_forward_soft_max(
  9436. const struct ggml_compute_params * params,
  9437. const struct ggml_tensor * src0,
  9438. const struct ggml_tensor * src1,
  9439. struct ggml_tensor * dst) {
  9440. switch (src0->type) {
  9441. case GGML_TYPE_F32:
  9442. {
  9443. ggml_compute_forward_soft_max_f32(params, src0, src1, dst);
  9444. } break;
  9445. default:
  9446. {
  9447. GGML_ASSERT(false);
  9448. } break;
  9449. }
  9450. }
  9451. // ggml_compute_forward_soft_max_back
  9452. static void ggml_compute_forward_soft_max_back_f32(
  9453. const struct ggml_compute_params * params,
  9454. const struct ggml_tensor * src0,
  9455. const struct ggml_tensor * src1,
  9456. struct ggml_tensor * dst) {
  9457. GGML_ASSERT(ggml_is_contiguous(src0));
  9458. GGML_ASSERT(ggml_is_contiguous(src1));
  9459. GGML_ASSERT(ggml_is_contiguous(dst));
  9460. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9461. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9462. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9463. return;
  9464. }
  9465. // TODO: handle transposed/permuted matrices
  9466. const int ith = params->ith;
  9467. const int nth = params->nth;
  9468. const int nc = src0->ne[0];
  9469. const int nr = ggml_nrows(src0);
  9470. // rows per thread
  9471. const int dr = (nr + nth - 1)/nth;
  9472. // row range for this thread
  9473. const int ir0 = dr*ith;
  9474. const int ir1 = MIN(ir0 + dr, nr);
  9475. for (int i1 = ir0; i1 < ir1; i1++) {
  9476. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9477. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9478. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9479. #ifndef NDEBUG
  9480. for (int i = 0; i < nc; ++i) {
  9481. //printf("p[%d] = %f\n", i, p[i]);
  9482. assert(!isnan(dy[i]));
  9483. assert(!isnan(y[i]));
  9484. }
  9485. #endif
  9486. // Jii = yi - yi*yi
  9487. // Jij = -yi*yj
  9488. // J = diag(y)-y.T*y
  9489. // dx = J * dy
  9490. // dxk = sum_i(Jki * dyi)
  9491. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9492. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9493. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9494. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9495. // dxk = -yk * dot(y, dy) + yk*dyk
  9496. // dxk = yk * (- dot(y, dy) + dyk)
  9497. // dxk = yk * (dyk - dot(y, dy))
  9498. //
  9499. // post-order:
  9500. // dot_y_dy := dot(y, dy)
  9501. // dx := dy
  9502. // dx := dx - dot_y_dy
  9503. // dx := dx * y
  9504. // linear runtime, no additional memory
  9505. float dot_y_dy = 0;
  9506. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9507. ggml_vec_cpy_f32 (nc, dx, dy);
  9508. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9509. ggml_vec_mul_f32 (nc, dx, dx, y);
  9510. #ifndef NDEBUG
  9511. for (int i = 0; i < nc; ++i) {
  9512. assert(!isnan(dx[i]));
  9513. assert(!isinf(dx[i]));
  9514. }
  9515. #endif
  9516. }
  9517. }
  9518. static void ggml_compute_forward_soft_max_back(
  9519. const struct ggml_compute_params * params,
  9520. const struct ggml_tensor * src0,
  9521. const struct ggml_tensor * src1,
  9522. struct ggml_tensor * dst) {
  9523. switch (src0->type) {
  9524. case GGML_TYPE_F32:
  9525. {
  9526. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9527. } break;
  9528. default:
  9529. {
  9530. GGML_ASSERT(false);
  9531. } break;
  9532. }
  9533. }
  9534. // ggml_compute_forward_alibi
  9535. static void ggml_compute_forward_alibi_f32(
  9536. const struct ggml_compute_params * params,
  9537. const struct ggml_tensor * src0,
  9538. struct ggml_tensor * dst) {
  9539. assert(params->ith == 0);
  9540. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9541. return;
  9542. }
  9543. //const int n_past = ((int32_t *) dst->op_params)[0];
  9544. const int n_head = ((int32_t *) dst->op_params)[1];
  9545. float max_bias;
  9546. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9547. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9548. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  9549. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  9550. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9551. const int64_t n = ggml_nrows(src0);
  9552. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9553. const size_t nb0 = src0->nb[0];
  9554. const size_t nb1 = src0->nb[1];
  9555. const size_t nb2 = src0->nb[2];
  9556. //const int nb3 = src0->nb[3];
  9557. GGML_ASSERT(nb0 == sizeof(float));
  9558. GGML_ASSERT(n_head == ne2);
  9559. // add alibi to src0 (KQ_scaled)
  9560. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9561. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9562. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9563. for (int64_t i = 0; i < ne0; i++) {
  9564. for (int64_t j = 0; j < ne1; j++) {
  9565. for (int64_t k = 0; k < ne2_ne3; k++) {
  9566. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9567. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9568. // TODO: k*nb2 or k*nb3
  9569. float m_k;
  9570. if (k < n_heads_log2_floor) {
  9571. m_k = powf(m0, k + 1);
  9572. } else {
  9573. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9574. }
  9575. pdst[0] = i * m_k + src[0];
  9576. }
  9577. }
  9578. }
  9579. }
  9580. static void ggml_compute_forward_alibi_f16(
  9581. const struct ggml_compute_params * params,
  9582. const struct ggml_tensor * src0,
  9583. struct ggml_tensor * dst) {
  9584. assert(params->ith == 0);
  9585. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9586. return;
  9587. }
  9588. //const int n_past = ((int32_t *) dst->op_params)[0];
  9589. const int n_head = ((int32_t *) dst->op_params)[1];
  9590. float max_bias;
  9591. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9592. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9593. const int ne1 = src0->ne[1]; // seq_len_without_past
  9594. const int ne2 = src0->ne[2]; // n_head -> this is k
  9595. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9596. const int n = ggml_nrows(src0);
  9597. const int ne2_ne3 = n/ne1; // ne2*ne3
  9598. const int nb0 = src0->nb[0];
  9599. const int nb1 = src0->nb[1];
  9600. const int nb2 = src0->nb[2];
  9601. //const int nb3 = src0->nb[3];
  9602. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9603. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9604. GGML_ASSERT(n_head == ne2);
  9605. // add alibi to src0 (KQ_scaled)
  9606. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9607. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9608. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9609. for (int i = 0; i < ne0; i++) {
  9610. for (int j = 0; j < ne1; j++) {
  9611. for (int k = 0; k < ne2_ne3; k++) {
  9612. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9613. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9614. // TODO: k*nb2 or k*nb3
  9615. float m_k;
  9616. if (k < n_heads_log2_floor) {
  9617. m_k = powf(m0, k + 1);
  9618. } else {
  9619. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9620. }
  9621. // we return F32
  9622. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9623. }
  9624. }
  9625. }
  9626. }
  9627. static void ggml_compute_forward_alibi(
  9628. const struct ggml_compute_params * params,
  9629. const struct ggml_tensor * src0,
  9630. struct ggml_tensor * dst) {
  9631. switch (src0->type) {
  9632. case GGML_TYPE_F16:
  9633. {
  9634. ggml_compute_forward_alibi_f16(params, src0, dst);
  9635. } break;
  9636. case GGML_TYPE_F32:
  9637. {
  9638. ggml_compute_forward_alibi_f32(params, src0, dst);
  9639. } break;
  9640. case GGML_TYPE_Q4_0:
  9641. case GGML_TYPE_Q4_1:
  9642. case GGML_TYPE_Q5_0:
  9643. case GGML_TYPE_Q5_1:
  9644. case GGML_TYPE_Q8_0:
  9645. case GGML_TYPE_Q8_1:
  9646. case GGML_TYPE_Q2_K:
  9647. case GGML_TYPE_Q3_K:
  9648. case GGML_TYPE_Q4_K:
  9649. case GGML_TYPE_Q5_K:
  9650. case GGML_TYPE_Q6_K:
  9651. case GGML_TYPE_IQ2_XXS:
  9652. case GGML_TYPE_IQ2_XS:
  9653. case GGML_TYPE_IQ3_XXS:
  9654. case GGML_TYPE_Q8_K:
  9655. case GGML_TYPE_I8:
  9656. case GGML_TYPE_I16:
  9657. case GGML_TYPE_I32:
  9658. case GGML_TYPE_COUNT:
  9659. {
  9660. GGML_ASSERT(false);
  9661. } break;
  9662. }
  9663. }
  9664. // ggml_compute_forward_clamp
  9665. static void ggml_compute_forward_clamp_f32(
  9666. const struct ggml_compute_params * params,
  9667. const struct ggml_tensor * src0,
  9668. struct ggml_tensor * dst) {
  9669. assert(params->ith == 0);
  9670. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9671. return;
  9672. }
  9673. float min;
  9674. float max;
  9675. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9676. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9677. const int ith = params->ith;
  9678. const int nth = params->nth;
  9679. const int n = ggml_nrows(src0);
  9680. const int nc = src0->ne[0];
  9681. const size_t nb00 = src0->nb[0];
  9682. const size_t nb01 = src0->nb[1];
  9683. const size_t nb0 = dst->nb[0];
  9684. const size_t nb1 = dst->nb[1];
  9685. GGML_ASSERT( nb0 == sizeof(float));
  9686. GGML_ASSERT(nb00 == sizeof(float));
  9687. for (int j = ith; j < n; j += nth) {
  9688. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9689. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9690. for (int i = 0; i < nc; i++) {
  9691. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9692. }
  9693. }
  9694. }
  9695. static void ggml_compute_forward_clamp(
  9696. const struct ggml_compute_params * params,
  9697. const struct ggml_tensor * src0,
  9698. struct ggml_tensor * dst) {
  9699. switch (src0->type) {
  9700. case GGML_TYPE_F32:
  9701. {
  9702. ggml_compute_forward_clamp_f32(params, src0, dst);
  9703. } break;
  9704. case GGML_TYPE_F16:
  9705. case GGML_TYPE_Q4_0:
  9706. case GGML_TYPE_Q4_1:
  9707. case GGML_TYPE_Q5_0:
  9708. case GGML_TYPE_Q5_1:
  9709. case GGML_TYPE_Q8_0:
  9710. case GGML_TYPE_Q8_1:
  9711. case GGML_TYPE_Q2_K:
  9712. case GGML_TYPE_Q3_K:
  9713. case GGML_TYPE_Q4_K:
  9714. case GGML_TYPE_Q5_K:
  9715. case GGML_TYPE_Q6_K:
  9716. case GGML_TYPE_IQ2_XXS:
  9717. case GGML_TYPE_IQ2_XS:
  9718. case GGML_TYPE_IQ3_XXS:
  9719. case GGML_TYPE_Q8_K:
  9720. case GGML_TYPE_I8:
  9721. case GGML_TYPE_I16:
  9722. case GGML_TYPE_I32:
  9723. case GGML_TYPE_COUNT:
  9724. {
  9725. GGML_ASSERT(false);
  9726. } break;
  9727. }
  9728. }
  9729. // ggml_compute_forward_rope
  9730. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  9731. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  9732. return 1 - MIN(1, MAX(0, y));
  9733. }
  9734. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  9735. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  9736. static void rope_yarn(
  9737. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  9738. float * cos_theta, float * sin_theta
  9739. ) {
  9740. // Get n-d rotational scaling corrected for extrapolation
  9741. float theta_interp = freq_scale * theta_extrap;
  9742. float theta = theta_interp;
  9743. if (ext_factor != 0.0f) {
  9744. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  9745. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9746. // Get n-d magnitude scaling corrected for interpolation
  9747. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9748. }
  9749. *cos_theta = cosf(theta) * mscale;
  9750. *sin_theta = sinf(theta) * mscale;
  9751. }
  9752. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9753. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9754. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9755. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9756. }
  9757. static void ggml_rope_cache_init(
  9758. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  9759. float * cache, float sin_sign, float theta_scale
  9760. ) {
  9761. float theta = theta_base;
  9762. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9763. rope_yarn(
  9764. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  9765. );
  9766. cache[i0 + 1] *= sin_sign;
  9767. theta *= theta_scale;
  9768. }
  9769. }
  9770. GGML_CALL void ggml_rope_yarn_corr_dims(
  9771. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9772. ) {
  9773. // start and end correction dims
  9774. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  9775. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  9776. dims[0] = MAX(0, start);
  9777. dims[1] = MIN(n_dims - 1, end);
  9778. }
  9779. static void ggml_compute_forward_rope_f32(
  9780. const struct ggml_compute_params * params,
  9781. const struct ggml_tensor * src0,
  9782. const struct ggml_tensor * src1,
  9783. struct ggml_tensor * dst,
  9784. const bool forward) {
  9785. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9786. return;
  9787. }
  9788. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9789. // these two only relevant for xPos RoPE:
  9790. float xpos_base;
  9791. bool xpos_down;
  9792. //const int n_past = ((int32_t *) dst->op_params)[0];
  9793. const int n_dims = ((int32_t *) dst->op_params)[1];
  9794. const int mode = ((int32_t *) dst->op_params)[2];
  9795. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9796. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9797. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9798. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9799. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9800. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9801. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9802. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9803. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  9804. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  9805. GGML_TENSOR_UNARY_OP_LOCALS
  9806. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9807. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9808. GGML_ASSERT(nb00 == sizeof(float));
  9809. const int ith = params->ith;
  9810. const int nth = params->nth;
  9811. const int nr = ggml_nrows(dst);
  9812. GGML_ASSERT(n_dims <= ne0);
  9813. GGML_ASSERT(n_dims % 2 == 0);
  9814. // rows per thread
  9815. const int dr = (nr + nth - 1)/nth;
  9816. // row range for this thread
  9817. const int ir0 = dr*ith;
  9818. const int ir1 = MIN(ir0 + dr, nr);
  9819. // row index used to determine which thread to use
  9820. int ir = 0;
  9821. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9822. const float inv_ndims = -1.f/n_dims;
  9823. float corr_dims[2];
  9824. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9825. const bool is_neox = mode & 2;
  9826. const bool is_glm = mode & 4;
  9827. // backward process uses inverse rotation by cos and sin.
  9828. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9829. // this essentially just switches the sign of sin.
  9830. const float sin_sign = forward ? 1.0f : -1.0f;
  9831. const int32_t * pos = (const int32_t *) src1->data;
  9832. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9833. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9834. const int64_t p = pos[i2];
  9835. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  9836. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  9837. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  9838. }
  9839. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9840. if (ir++ < ir0) continue;
  9841. if (ir > ir1) break;
  9842. float theta_base = (float)p;
  9843. if (is_glm) {
  9844. theta_base = MIN(p, n_ctx - 2);
  9845. float block_theta = MAX(p - (n_ctx - 2), 0);
  9846. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9847. const float cos_theta = cosf(theta_base);
  9848. const float sin_theta = sinf(theta_base) * sin_sign;
  9849. const float cos_block_theta = cosf(block_theta);
  9850. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9851. theta_base *= theta_scale;
  9852. block_theta *= theta_scale;
  9853. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9854. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9855. const float x0 = src[0];
  9856. const float x1 = src[n_dims/2];
  9857. const float x2 = src[n_dims];
  9858. const float x3 = src[n_dims/2*3];
  9859. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9860. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9861. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9862. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9863. }
  9864. } else if (!is_neox) {
  9865. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9866. const float cos_theta = cache[i0 + 0];
  9867. const float sin_theta = cache[i0 + 1];
  9868. // zeta scaling for xPos only:
  9869. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9870. if (xpos_down) zeta = 1.0f / zeta;
  9871. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9872. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9873. const float x0 = src[0];
  9874. const float x1 = src[1];
  9875. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  9876. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  9877. }
  9878. } else {
  9879. // TODO: this might be wrong for ne0 != n_dims - need double check
  9880. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  9881. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  9882. theta_base *= freq_scale;
  9883. for (int64_t ic = 0; ic < ne0; ic += 2) {
  9884. if (ic < n_dims) {
  9885. const int64_t ib = 0;
  9886. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9887. float cur_rot = inv_ndims * ic - ib;
  9888. float cos_theta, sin_theta;
  9889. rope_yarn(
  9890. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9891. &cos_theta, &sin_theta
  9892. );
  9893. sin_theta *= sin_sign;
  9894. theta_base *= theta_scale;
  9895. const int64_t i0 = ib*n_dims + ic/2;
  9896. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9897. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9898. const float x0 = src[0];
  9899. const float x1 = src[n_dims/2];
  9900. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9901. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9902. } else {
  9903. const int64_t i0 = ic;
  9904. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9905. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9906. dst_data[0] = src[0];
  9907. dst_data[1] = src[1];
  9908. }
  9909. }
  9910. }
  9911. }
  9912. }
  9913. }
  9914. }
  9915. static void ggml_compute_forward_rope_f16(
  9916. const struct ggml_compute_params * params,
  9917. const struct ggml_tensor * src0,
  9918. const struct ggml_tensor * src1,
  9919. struct ggml_tensor * dst,
  9920. const bool forward) {
  9921. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9922. return;
  9923. }
  9924. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9925. //const int n_past = ((int32_t *) dst->op_params)[0];
  9926. const int n_dims = ((int32_t *) dst->op_params)[1];
  9927. const int mode = ((int32_t *) dst->op_params)[2];
  9928. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9929. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9930. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9931. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9932. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9933. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9934. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9935. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9936. GGML_TENSOR_UNARY_OP_LOCALS
  9937. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9938. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9939. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9940. const int ith = params->ith;
  9941. const int nth = params->nth;
  9942. const int nr = ggml_nrows(dst);
  9943. GGML_ASSERT(n_dims <= ne0);
  9944. GGML_ASSERT(n_dims % 2 == 0);
  9945. // rows per thread
  9946. const int dr = (nr + nth - 1)/nth;
  9947. // row range for this thread
  9948. const int ir0 = dr*ith;
  9949. const int ir1 = MIN(ir0 + dr, nr);
  9950. // row index used to determine which thread to use
  9951. int ir = 0;
  9952. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9953. const float inv_ndims = -1.f/n_dims;
  9954. float corr_dims[2];
  9955. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9956. const bool is_neox = mode & 2;
  9957. const bool is_glm = mode & 4;
  9958. // backward process uses inverse rotation by cos and sin.
  9959. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9960. // this essentially just switches the sign of sin.
  9961. const float sin_sign = forward ? 1.0f : -1.0f;
  9962. const int32_t * pos = (const int32_t *) src1->data;
  9963. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9964. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9965. const int64_t p = pos[i2];
  9966. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  9967. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  9968. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  9969. }
  9970. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9971. if (ir++ < ir0) continue;
  9972. if (ir > ir1) break;
  9973. float theta_base = (float)p;
  9974. if (is_glm) {
  9975. theta_base = MIN(p, n_ctx - 2);
  9976. float block_theta = MAX(p - (n_ctx - 2), 0);
  9977. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9978. const float cos_theta = cosf(theta_base);
  9979. const float sin_theta = sinf(theta_base) * sin_sign;
  9980. const float cos_block_theta = cosf(block_theta);
  9981. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9982. theta_base *= theta_scale;
  9983. block_theta *= theta_scale;
  9984. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9985. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9986. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9987. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9988. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9989. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9990. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9991. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9992. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9993. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9994. }
  9995. } else if (!is_neox) {
  9996. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9997. const float cos_theta = cache[i0 + 0];
  9998. const float sin_theta = cache[i0 + 1];
  9999. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10000. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10001. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10002. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10003. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10004. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10005. }
  10006. } else {
  10007. // TODO: this might be wrong for ne0 != n_dims - need double check
  10008. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10009. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10010. theta_base *= freq_scale;
  10011. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10012. if (ic < n_dims) {
  10013. const int64_t ib = 0;
  10014. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10015. float cur_rot = inv_ndims * ic - ib;
  10016. float cos_theta, sin_theta;
  10017. rope_yarn(
  10018. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10019. &cos_theta, &sin_theta
  10020. );
  10021. sin_theta *= sin_sign;
  10022. theta_base *= theta_scale;
  10023. const int64_t i0 = ib*n_dims + ic/2;
  10024. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10025. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10026. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10027. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10028. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10029. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10030. } else {
  10031. const int64_t i0 = ic;
  10032. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10033. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10034. dst_data[0] = src[0];
  10035. dst_data[1] = src[1];
  10036. }
  10037. }
  10038. }
  10039. }
  10040. }
  10041. }
  10042. }
  10043. static void ggml_compute_forward_rope(
  10044. const struct ggml_compute_params * params,
  10045. const struct ggml_tensor * src0,
  10046. const struct ggml_tensor * src1,
  10047. struct ggml_tensor * dst) {
  10048. switch (src0->type) {
  10049. case GGML_TYPE_F16:
  10050. {
  10051. ggml_compute_forward_rope_f16(params, src0, src1, dst, true);
  10052. } break;
  10053. case GGML_TYPE_F32:
  10054. {
  10055. ggml_compute_forward_rope_f32(params, src0, src1, dst, true);
  10056. } break;
  10057. default:
  10058. {
  10059. GGML_ASSERT(false);
  10060. } break;
  10061. }
  10062. }
  10063. // ggml_compute_forward_rope_back
  10064. static void ggml_compute_forward_rope_back(
  10065. const struct ggml_compute_params * params,
  10066. const struct ggml_tensor * src0,
  10067. const struct ggml_tensor * src1,
  10068. struct ggml_tensor * dst) {
  10069. switch (src0->type) {
  10070. case GGML_TYPE_F16:
  10071. {
  10072. ggml_compute_forward_rope_f16(params, src0, src1, dst, false);
  10073. } break;
  10074. case GGML_TYPE_F32:
  10075. {
  10076. ggml_compute_forward_rope_f32(params, src0, src1, dst, false);
  10077. } break;
  10078. default:
  10079. {
  10080. GGML_ASSERT(false);
  10081. } break;
  10082. }
  10083. }
  10084. // ggml_compute_forward_conv_transpose_1d
  10085. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10086. const struct ggml_compute_params * params,
  10087. const struct ggml_tensor * src0,
  10088. const struct ggml_tensor * src1,
  10089. struct ggml_tensor * dst) {
  10090. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10091. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10092. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10093. int64_t t0 = ggml_perf_time_us();
  10094. UNUSED(t0);
  10095. GGML_TENSOR_BINARY_OP_LOCALS
  10096. const int ith = params->ith;
  10097. const int nth = params->nth;
  10098. const int nk = ne00*ne01*ne02;
  10099. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10100. GGML_ASSERT(nb10 == sizeof(float));
  10101. if (params->type == GGML_TASK_INIT) {
  10102. if (ith != 0) {
  10103. return;
  10104. }
  10105. memset(params->wdata, 0, params->wsize);
  10106. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10107. {
  10108. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10109. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10110. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10111. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10112. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10113. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10114. dst_data[i00*ne02 + i02] = src[i00];
  10115. }
  10116. }
  10117. }
  10118. }
  10119. // permute source data (src1) from (L x Cin) to (Cin x L)
  10120. {
  10121. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10122. ggml_fp16_t * dst_data = wdata;
  10123. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10124. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10125. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10126. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10127. }
  10128. }
  10129. }
  10130. // need to zero dst since we are accumulating into it
  10131. memset(dst->data, 0, ggml_nbytes(dst));
  10132. return;
  10133. }
  10134. if (params->type == GGML_TASK_FINALIZE) {
  10135. return;
  10136. }
  10137. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10138. // total rows in dst
  10139. const int nr = ne1;
  10140. // rows per thread
  10141. const int dr = (nr + nth - 1)/nth;
  10142. // row range for this thread
  10143. const int ir0 = dr*ith;
  10144. const int ir1 = MIN(ir0 + dr, nr);
  10145. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10146. ggml_fp16_t * const wdata_src = wdata + nk;
  10147. for (int i1 = ir0; i1 < ir1; i1++) {
  10148. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10149. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10150. for (int i10 = 0; i10 < ne10; i10++) {
  10151. const int i1n = i10*ne11;
  10152. for (int i00 = 0; i00 < ne00; i00++) {
  10153. float v = 0;
  10154. ggml_vec_dot_f16(ne02, &v,
  10155. (ggml_fp16_t *) wdata_src + i1n,
  10156. (ggml_fp16_t *) wdata_kernel + i00*ne02);
  10157. dst_data[i10*s0 + i00] += v;
  10158. }
  10159. }
  10160. }
  10161. }
  10162. static void ggml_compute_forward_conv_transpose_1d_f32(
  10163. const struct ggml_compute_params * params,
  10164. const struct ggml_tensor * src0,
  10165. const struct ggml_tensor * src1,
  10166. struct ggml_tensor * dst) {
  10167. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10168. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10169. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10170. int64_t t0 = ggml_perf_time_us();
  10171. UNUSED(t0);
  10172. GGML_TENSOR_BINARY_OP_LOCALS
  10173. const int ith = params->ith;
  10174. const int nth = params->nth;
  10175. const int nk = ne00*ne01*ne02;
  10176. GGML_ASSERT(nb00 == sizeof(float));
  10177. GGML_ASSERT(nb10 == sizeof(float));
  10178. if (params->type == GGML_TASK_INIT) {
  10179. if (ith != 0) {
  10180. return;
  10181. }
  10182. memset(params->wdata, 0, params->wsize);
  10183. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10184. {
  10185. float * const wdata = (float *) params->wdata + 0;
  10186. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10187. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10188. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10189. float * dst_data = wdata + i01*ne00*ne02;
  10190. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10191. dst_data[i00*ne02 + i02] = src[i00];
  10192. }
  10193. }
  10194. }
  10195. }
  10196. // prepare source data (src1)
  10197. {
  10198. float * const wdata = (float *) params->wdata + nk;
  10199. float * dst_data = wdata;
  10200. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10201. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10202. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10203. dst_data[i10*ne11 + i11] = src[i10];
  10204. }
  10205. }
  10206. }
  10207. // need to zero dst since we are accumulating into it
  10208. memset(dst->data, 0, ggml_nbytes(dst));
  10209. return;
  10210. }
  10211. if (params->type == GGML_TASK_FINALIZE) {
  10212. return;
  10213. }
  10214. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10215. // total rows in dst
  10216. const int nr = ne1;
  10217. // rows per thread
  10218. const int dr = (nr + nth - 1)/nth;
  10219. // row range for this thread
  10220. const int ir0 = dr*ith;
  10221. const int ir1 = MIN(ir0 + dr, nr);
  10222. float * const wdata = (float *) params->wdata + 0;
  10223. float * const wdata_src = wdata + nk;
  10224. for (int i1 = ir0; i1 < ir1; i1++) {
  10225. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10226. float * wdata_kernel = wdata + i1*ne02*ne00;
  10227. for (int i10 = 0; i10 < ne10; i10++) {
  10228. const int i1n = i10*ne11;
  10229. for (int i00 = 0; i00 < ne00; i00++) {
  10230. float v = 0;
  10231. ggml_vec_dot_f32(ne02, &v,
  10232. wdata_src + i1n,
  10233. wdata_kernel + i00*ne02);
  10234. dst_data[i10*s0 + i00] += v;
  10235. }
  10236. }
  10237. }
  10238. }
  10239. static void ggml_compute_forward_conv_transpose_1d(
  10240. const struct ggml_compute_params * params,
  10241. const struct ggml_tensor * src0,
  10242. const struct ggml_tensor * src1,
  10243. struct ggml_tensor * dst) {
  10244. switch (src0->type) {
  10245. case GGML_TYPE_F16:
  10246. {
  10247. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  10248. } break;
  10249. case GGML_TYPE_F32:
  10250. {
  10251. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  10252. } break;
  10253. default:
  10254. {
  10255. GGML_ASSERT(false);
  10256. } break;
  10257. }
  10258. }
  10259. // src0: kernel [OC, IC, KH, KW]
  10260. // src1: image [N, IC, IH, IW]
  10261. // dst: result [N, OH, OW, IC*KH*KW]
  10262. static void ggml_compute_forward_im2col_f32(
  10263. const struct ggml_compute_params * params,
  10264. const struct ggml_tensor * src0,
  10265. const struct ggml_tensor * src1,
  10266. struct ggml_tensor * dst) {
  10267. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10268. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10269. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10270. int64_t t0 = ggml_perf_time_us();
  10271. UNUSED(t0);
  10272. GGML_TENSOR_BINARY_OP_LOCALS;
  10273. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10274. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10275. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10276. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10277. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10278. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10279. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10280. const int ith = params->ith;
  10281. const int nth = params->nth;
  10282. const int64_t N = is_2D ? ne13 : ne12;
  10283. const int64_t IC = is_2D ? ne12 : ne11;
  10284. const int64_t IH = is_2D ? ne11 : 1;
  10285. const int64_t IW = ne10;
  10286. const int64_t KH = is_2D ? ne01 : 1;
  10287. const int64_t KW = ne00;
  10288. const int64_t OH = is_2D ? ne2 : 1;
  10289. const int64_t OW = ne1;
  10290. int ofs0 = is_2D ? nb13 : nb12;
  10291. int ofs1 = is_2D ? nb12 : nb11;
  10292. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10293. GGML_ASSERT(nb10 == sizeof(float));
  10294. if (params->type == GGML_TASK_INIT) {
  10295. return;
  10296. }
  10297. if (params->type == GGML_TASK_FINALIZE) {
  10298. return;
  10299. }
  10300. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10301. {
  10302. float * const wdata = (float *) dst->data;
  10303. for (int64_t in = 0; in < N; in++) {
  10304. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10305. for (int64_t iow = 0; iow < OW; iow++) {
  10306. for (int64_t iic = ith; iic < IC; iic += nth) {
  10307. // micro kernel
  10308. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10309. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10310. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10311. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10312. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10313. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10314. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10315. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10316. } else {
  10317. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  10318. }
  10319. }
  10320. }
  10321. }
  10322. }
  10323. }
  10324. }
  10325. }
  10326. }
  10327. // src0: kernel [OC, IC, KH, KW]
  10328. // src1: image [N, IC, IH, IW]
  10329. // dst: result [N, OH, OW, IC*KH*KW]
  10330. static void ggml_compute_forward_im2col_f16(
  10331. const struct ggml_compute_params * params,
  10332. const struct ggml_tensor * src0,
  10333. const struct ggml_tensor * src1,
  10334. struct ggml_tensor * dst) {
  10335. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10336. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10337. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10338. int64_t t0 = ggml_perf_time_us();
  10339. UNUSED(t0);
  10340. GGML_TENSOR_BINARY_OP_LOCALS;
  10341. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10342. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10343. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10344. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10345. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10346. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10347. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10348. const int ith = params->ith;
  10349. const int nth = params->nth;
  10350. const int64_t N = is_2D ? ne13 : ne12;
  10351. const int64_t IC = is_2D ? ne12 : ne11;
  10352. const int64_t IH = is_2D ? ne11 : 1;
  10353. const int64_t IW = ne10;
  10354. const int64_t KH = is_2D ? ne01 : 1;
  10355. const int64_t KW = ne00;
  10356. const int64_t OH = is_2D ? ne2 : 1;
  10357. const int64_t OW = ne1;
  10358. int ofs0 = is_2D ? nb13 : nb12;
  10359. int ofs1 = is_2D ? nb12 : nb11;
  10360. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10361. GGML_ASSERT(nb10 == sizeof(float));
  10362. if (params->type == GGML_TASK_INIT) {
  10363. return;
  10364. }
  10365. if (params->type == GGML_TASK_FINALIZE) {
  10366. return;
  10367. }
  10368. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10369. {
  10370. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10371. for (int64_t in = 0; in < N; in++) {
  10372. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10373. for (int64_t iow = 0; iow < OW; iow++) {
  10374. for (int64_t iic = ith; iic < IC; iic += nth) {
  10375. // micro kernel
  10376. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10377. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10378. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10379. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10380. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10381. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10382. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10383. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10384. } else {
  10385. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10386. }
  10387. }
  10388. }
  10389. }
  10390. }
  10391. }
  10392. }
  10393. }
  10394. }
  10395. static void ggml_compute_forward_im2col(
  10396. const struct ggml_compute_params * params,
  10397. const struct ggml_tensor * src0,
  10398. const struct ggml_tensor * src1,
  10399. struct ggml_tensor * dst) {
  10400. switch (dst->type) {
  10401. case GGML_TYPE_F16:
  10402. {
  10403. ggml_compute_forward_im2col_f16(params, src0, src1, dst);
  10404. } break;
  10405. case GGML_TYPE_F32:
  10406. {
  10407. ggml_compute_forward_im2col_f32(params, src0, src1, dst);
  10408. } break;
  10409. default:
  10410. {
  10411. GGML_ASSERT(false);
  10412. } break;
  10413. }
  10414. }
  10415. // ggml_compute_forward_conv_transpose_2d
  10416. static void ggml_compute_forward_conv_transpose_2d(
  10417. const struct ggml_compute_params * params,
  10418. const struct ggml_tensor * src0,
  10419. const struct ggml_tensor * src1,
  10420. struct ggml_tensor * dst) {
  10421. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10422. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10423. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10424. int64_t t0 = ggml_perf_time_us();
  10425. UNUSED(t0);
  10426. GGML_TENSOR_BINARY_OP_LOCALS
  10427. const int ith = params->ith;
  10428. const int nth = params->nth;
  10429. const int nk = ne00*ne01*ne02*ne03;
  10430. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10431. GGML_ASSERT(nb10 == sizeof(float));
  10432. if (params->type == GGML_TASK_INIT) {
  10433. if (ith != 0) {
  10434. return;
  10435. }
  10436. memset(params->wdata, 0, params->wsize);
  10437. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10438. {
  10439. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10440. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10441. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10442. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10443. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10444. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10445. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10446. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10447. }
  10448. }
  10449. }
  10450. }
  10451. }
  10452. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10453. {
  10454. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10455. for (int i12 = 0; i12 < ne12; i12++) {
  10456. for (int i11 = 0; i11 < ne11; i11++) {
  10457. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10458. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10459. for (int i10 = 0; i10 < ne10; i10++) {
  10460. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10461. }
  10462. }
  10463. }
  10464. }
  10465. memset(dst->data, 0, ggml_nbytes(dst));
  10466. return;
  10467. }
  10468. if (params->type == GGML_TASK_FINALIZE) {
  10469. return;
  10470. }
  10471. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10472. // total patches in dst
  10473. const int np = ne2;
  10474. // patches per thread
  10475. const int dp = (np + nth - 1)/nth;
  10476. // patch range for this thread
  10477. const int ip0 = dp*ith;
  10478. const int ip1 = MIN(ip0 + dp, np);
  10479. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10480. ggml_fp16_t * const wdata_src = wdata + nk;
  10481. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10482. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10483. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10484. for (int i11 = 0; i11 < ne11; i11++) {
  10485. for (int i10 = 0; i10 < ne10; i10++) {
  10486. const int i1n = i11*ne10*ne12 + i10*ne12;
  10487. for (int i01 = 0; i01 < ne01; i01++) {
  10488. for (int i00 = 0; i00 < ne00; i00++) {
  10489. float v = 0;
  10490. ggml_vec_dot_f16(ne03, &v,
  10491. wdata_src + i1n,
  10492. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  10493. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10494. }
  10495. }
  10496. }
  10497. }
  10498. }
  10499. }
  10500. // ggml_compute_forward_pool_1d_sk_p0
  10501. static void ggml_compute_forward_pool_1d_sk_p0(
  10502. const struct ggml_compute_params * params,
  10503. const enum ggml_op_pool op,
  10504. const struct ggml_tensor * src,
  10505. const int k,
  10506. struct ggml_tensor * dst) {
  10507. assert(src->type == GGML_TYPE_F32);
  10508. assert(params->ith == 0);
  10509. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10510. return;
  10511. }
  10512. const char * cdata = (const char *)src->data;
  10513. const char * const data_end = cdata + ggml_nbytes(src);
  10514. float * drow = (float *)dst->data;
  10515. const int64_t rs = dst->ne[0];
  10516. while (cdata < data_end) {
  10517. const float * const srow = (const float *)cdata;
  10518. int j = 0;
  10519. for (int64_t i = 0; i < rs; ++i) {
  10520. switch (op) {
  10521. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10522. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10523. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10524. }
  10525. for (int ki = 0; ki < k; ++ki) {
  10526. switch (op) {
  10527. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10528. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10529. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10530. }
  10531. ++j;
  10532. }
  10533. switch (op) {
  10534. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10535. case GGML_OP_POOL_MAX: break;
  10536. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10537. }
  10538. }
  10539. cdata += src->nb[1];
  10540. drow += rs;
  10541. }
  10542. }
  10543. // ggml_compute_forward_pool_1d
  10544. static void ggml_compute_forward_pool_1d(
  10545. const struct ggml_compute_params * params,
  10546. const struct ggml_tensor * src0,
  10547. struct ggml_tensor * dst) {
  10548. const int32_t * opts = (const int32_t *)dst->op_params;
  10549. enum ggml_op_pool op = opts[0];
  10550. const int k0 = opts[1];
  10551. const int s0 = opts[2];
  10552. const int p0 = opts[3];
  10553. GGML_ASSERT(p0 == 0); // padding not supported
  10554. GGML_ASSERT(k0 == s0); // only s = k supported
  10555. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10556. }
  10557. // ggml_compute_forward_pool_2d
  10558. static void ggml_compute_forward_pool_2d(
  10559. const struct ggml_compute_params * params,
  10560. const struct ggml_tensor * src,
  10561. struct ggml_tensor * dst) {
  10562. GGML_ASSERT(src->type == GGML_TYPE_F32);
  10563. GGML_ASSERT(params->ith == 0);
  10564. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10565. return;
  10566. }
  10567. const int32_t * opts = (const int32_t *)dst->op_params;
  10568. enum ggml_op_pool op = opts[0];
  10569. const int k0 = opts[1];
  10570. const int k1 = opts[2];
  10571. const int s0 = opts[3];
  10572. const int s1 = opts[4];
  10573. const int p0 = opts[5];
  10574. const int p1 = opts[6];
  10575. const char * cdata = (const char*)src->data;
  10576. const char * const data_end = cdata + ggml_nbytes(src);
  10577. const int64_t px = dst->ne[0];
  10578. const int64_t py = dst->ne[1];
  10579. const int64_t pa = px * py;
  10580. float * dplane = (float *)dst->data;
  10581. const int ka = k0 * k1;
  10582. const int offset0 = -p0;
  10583. const int offset1 = -p1;
  10584. while (cdata < data_end) {
  10585. for (int oy = 0; oy < py; ++oy) {
  10586. float * const drow = dplane + oy * px;
  10587. for (int ox = 0; ox < px; ++ox) {
  10588. float * const out = drow + ox;
  10589. switch (op) {
  10590. case GGML_OP_POOL_AVG: *out = 0; break;
  10591. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10592. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10593. }
  10594. const int ix = offset0 + ox * s0;
  10595. const int iy = offset1 + oy * s1;
  10596. for (int ky = 0; ky < k1; ++ky) {
  10597. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  10598. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10599. for (int kx = 0; kx < k0; ++kx) {
  10600. int j = ix + kx;
  10601. if (j < 0 || j >= src->ne[0]) continue;
  10602. switch (op) {
  10603. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10604. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10605. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10606. }
  10607. }
  10608. }
  10609. switch (op) {
  10610. case GGML_OP_POOL_AVG: *out /= ka; break;
  10611. case GGML_OP_POOL_MAX: break;
  10612. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10613. }
  10614. }
  10615. }
  10616. cdata += src->nb[2];
  10617. dplane += pa;
  10618. }
  10619. }
  10620. // ggml_compute_forward_upscale
  10621. static void ggml_compute_forward_upscale_f32(
  10622. const struct ggml_compute_params * params,
  10623. const struct ggml_tensor * src0,
  10624. struct ggml_tensor * dst) {
  10625. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10626. return;
  10627. }
  10628. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10629. const int ith = params->ith;
  10630. const int nth = params->nth;
  10631. GGML_TENSOR_UNARY_OP_LOCALS
  10632. const int scale_factor = dst->op_params[0];
  10633. // TODO: optimize
  10634. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10635. const int64_t i03 = i3;
  10636. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  10637. const int64_t i02 = i2;
  10638. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10639. const int64_t i01 = i1 / scale_factor;
  10640. for (int64_t i0 = 0; i0 < ne0; i0++) {
  10641. const int64_t i00 = i0 / scale_factor;
  10642. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  10643. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  10644. *y = *x;
  10645. }
  10646. }
  10647. }
  10648. }
  10649. }
  10650. static void ggml_compute_forward_upscale(
  10651. const struct ggml_compute_params * params,
  10652. const struct ggml_tensor * src0,
  10653. struct ggml_tensor * dst) {
  10654. switch (src0->type) {
  10655. case GGML_TYPE_F32:
  10656. {
  10657. ggml_compute_forward_upscale_f32(params, src0, dst);
  10658. } break;
  10659. default:
  10660. {
  10661. GGML_ASSERT(false);
  10662. } break;
  10663. }
  10664. }
  10665. // ggml_compute_forward_pad
  10666. static void ggml_compute_forward_pad_f32(
  10667. const struct ggml_compute_params * params,
  10668. const struct ggml_tensor * src0,
  10669. struct ggml_tensor * dst) {
  10670. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10671. return;
  10672. }
  10673. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10674. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10675. const int ith = params->ith;
  10676. const int nth = params->nth;
  10677. GGML_TENSOR_UNARY_OP_LOCALS
  10678. float * dst_ptr = (float *) dst->data;
  10679. // TODO: optimize
  10680. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10681. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  10682. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10683. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  10684. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  10685. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10686. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  10687. dst_ptr[dst_idx] = *src_ptr;
  10688. } else {
  10689. dst_ptr[dst_idx] = 0;
  10690. }
  10691. }
  10692. }
  10693. }
  10694. }
  10695. }
  10696. static void ggml_compute_forward_pad(
  10697. const struct ggml_compute_params * params,
  10698. const struct ggml_tensor * src0,
  10699. struct ggml_tensor * dst) {
  10700. switch (src0->type) {
  10701. case GGML_TYPE_F32:
  10702. {
  10703. ggml_compute_forward_pad_f32(params, src0, dst);
  10704. } break;
  10705. default:
  10706. {
  10707. GGML_ASSERT(false);
  10708. } break;
  10709. }
  10710. }
  10711. // ggml_compute_forward_argsort
  10712. static void ggml_compute_forward_argsort_f32(
  10713. const struct ggml_compute_params * params,
  10714. const struct ggml_tensor * src0,
  10715. struct ggml_tensor * dst) {
  10716. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10717. return;
  10718. }
  10719. GGML_TENSOR_UNARY_OP_LOCALS
  10720. GGML_ASSERT(nb0 == sizeof(float));
  10721. const int ith = params->ith;
  10722. const int nth = params->nth;
  10723. const int64_t nr = ggml_nrows(src0);
  10724. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  10725. for (int64_t i = ith; i < nr; i += nth) {
  10726. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  10727. const float * src_data = (float *)((char *) src0->data + i*nb01);
  10728. for (int64_t j = 0; j < ne0; j++) {
  10729. dst_data[j] = j;
  10730. }
  10731. // C doesn't have a functional sort, so we do a bubble sort instead
  10732. for (int64_t j = 0; j < ne0; j++) {
  10733. for (int64_t k = j + 1; k < ne0; k++) {
  10734. if ((order == GGML_SORT_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  10735. (order == GGML_SORT_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  10736. int32_t tmp = dst_data[j];
  10737. dst_data[j] = dst_data[k];
  10738. dst_data[k] = tmp;
  10739. }
  10740. }
  10741. }
  10742. }
  10743. }
  10744. static void ggml_compute_forward_argsort(
  10745. const struct ggml_compute_params * params,
  10746. const struct ggml_tensor * src0,
  10747. struct ggml_tensor * dst) {
  10748. switch (src0->type) {
  10749. case GGML_TYPE_F32:
  10750. {
  10751. ggml_compute_forward_argsort_f32(params, src0, dst);
  10752. } break;
  10753. default:
  10754. {
  10755. GGML_ASSERT(false);
  10756. } break;
  10757. }
  10758. }
  10759. // ggml_compute_forward_flash_attn
  10760. static void ggml_compute_forward_flash_attn_f32(
  10761. const struct ggml_compute_params * params,
  10762. const struct ggml_tensor * q,
  10763. const struct ggml_tensor * k,
  10764. const struct ggml_tensor * v,
  10765. const bool masked,
  10766. struct ggml_tensor * dst) {
  10767. int64_t t0 = ggml_perf_time_us();
  10768. UNUSED(t0);
  10769. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10770. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10771. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10772. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10773. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10774. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10775. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10776. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10777. const int ith = params->ith;
  10778. const int nth = params->nth;
  10779. const int64_t D = neq0;
  10780. const int64_t N = neq1;
  10781. const int64_t P = nek1 - N;
  10782. const int64_t M = P + N;
  10783. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10784. GGML_ASSERT(ne0 == D);
  10785. GGML_ASSERT(ne1 == N);
  10786. GGML_ASSERT(P >= 0);
  10787. GGML_ASSERT(nbq0 == sizeof(float));
  10788. GGML_ASSERT(nbk0 == sizeof(float));
  10789. GGML_ASSERT(nbv0 == sizeof(float));
  10790. GGML_ASSERT(neq0 == D);
  10791. GGML_ASSERT(nek0 == D);
  10792. GGML_ASSERT(nev1 == D);
  10793. GGML_ASSERT(neq1 == N);
  10794. GGML_ASSERT(nek1 == N + P);
  10795. GGML_ASSERT(nev1 == D);
  10796. // dst cannot be transposed or permuted
  10797. GGML_ASSERT(nb0 == sizeof(float));
  10798. GGML_ASSERT(nb0 <= nb1);
  10799. GGML_ASSERT(nb1 <= nb2);
  10800. GGML_ASSERT(nb2 <= nb3);
  10801. if (params->type == GGML_TASK_INIT) {
  10802. return;
  10803. }
  10804. if (params->type == GGML_TASK_FINALIZE) {
  10805. return;
  10806. }
  10807. // parallelize by q rows using ggml_vec_dot_f32
  10808. // total rows in q
  10809. const int nr = neq1*neq2*neq3;
  10810. // rows per thread
  10811. const int dr = (nr + nth - 1)/nth;
  10812. // row range for this thread
  10813. const int ir0 = dr*ith;
  10814. const int ir1 = MIN(ir0 + dr, nr);
  10815. const float scale = 1.0f/sqrtf(D);
  10816. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10817. for (int ir = ir0; ir < ir1; ++ir) {
  10818. // q indices
  10819. const int iq3 = ir/(neq2*neq1);
  10820. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10821. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10822. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10823. for (int i = M; i < Mup; ++i) {
  10824. S[i] = -INFINITY;
  10825. }
  10826. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10827. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10828. // k indices
  10829. const int ik3 = iq3;
  10830. const int ik2 = iq2 % nek2;
  10831. const int ik1 = ic;
  10832. // S indices
  10833. const int i1 = ik1;
  10834. ggml_vec_dot_f32(neq0,
  10835. S + i1,
  10836. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10837. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10838. }
  10839. // scale
  10840. ggml_vec_scale_f32(masked_begin, S, scale);
  10841. for (int64_t i = masked_begin; i < M; i++) {
  10842. S[i] = -INFINITY;
  10843. }
  10844. // softmax
  10845. // exclude known -INF S[..] values from max and loop
  10846. // dont forget to set their SW values to zero
  10847. {
  10848. float max = -INFINITY;
  10849. ggml_vec_max_f32(masked_begin, &max, S);
  10850. ggml_float sum = 0.0;
  10851. {
  10852. #ifdef GGML_SOFT_MAX_ACCELERATE
  10853. max = -max;
  10854. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10855. vvexpf(S, S, &Mup);
  10856. ggml_vec_sum_f32(Mup, &sum, S);
  10857. #else
  10858. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10859. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10860. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10861. if (i >= masked_begin) {
  10862. break;
  10863. }
  10864. float * SS = S + i;
  10865. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10866. if (i + j >= masked_begin) {
  10867. break;
  10868. } else if (SS[j] == -INFINITY) {
  10869. SS[j] = 0.0f;
  10870. } else {
  10871. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10872. const float val = expf(SS[j] - max);
  10873. #else
  10874. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10875. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10876. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10877. #endif
  10878. sump[j] += (ggml_float)val;
  10879. SS[j] = val;
  10880. }
  10881. }
  10882. }
  10883. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10884. sum += sump[i];
  10885. }
  10886. #endif
  10887. }
  10888. assert(sum > 0.0);
  10889. sum = 1.0/sum;
  10890. ggml_vec_scale_f32(masked_begin, S, sum);
  10891. #ifndef NDEBUG
  10892. for (int i = 0; i < masked_begin; ++i) {
  10893. assert(!isnan(S[i]));
  10894. assert(!isinf(S[i]));
  10895. }
  10896. #endif
  10897. }
  10898. for (int64_t ic = 0; ic < nev1; ++ic) {
  10899. // dst indices
  10900. const int i1 = iq1;
  10901. const int i2 = iq2;
  10902. const int i3 = iq3;
  10903. // v indices
  10904. const int iv2 = iq2 % nev2;
  10905. const int iv3 = iq3;
  10906. ggml_vec_dot_f32(masked_begin,
  10907. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10908. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10909. S);
  10910. }
  10911. }
  10912. }
  10913. static void ggml_compute_forward_flash_attn_f16(
  10914. const struct ggml_compute_params * params,
  10915. const struct ggml_tensor * q,
  10916. const struct ggml_tensor * k,
  10917. const struct ggml_tensor * v,
  10918. const bool masked,
  10919. struct ggml_tensor * dst) {
  10920. int64_t t0 = ggml_perf_time_us();
  10921. UNUSED(t0);
  10922. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10923. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10924. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10925. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10926. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10927. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10928. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10929. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10930. const int ith = params->ith;
  10931. const int nth = params->nth;
  10932. const int64_t D = neq0;
  10933. const int64_t N = neq1;
  10934. const int64_t P = nek1 - N;
  10935. const int64_t M = P + N;
  10936. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10937. GGML_ASSERT(ne0 == D);
  10938. GGML_ASSERT(ne1 == N);
  10939. GGML_ASSERT(P >= 0);
  10940. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10941. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10942. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10943. GGML_ASSERT(neq0 == D);
  10944. GGML_ASSERT(nek0 == D);
  10945. GGML_ASSERT(nev1 == D);
  10946. GGML_ASSERT(neq1 == N);
  10947. GGML_ASSERT(nek1 == N + P);
  10948. GGML_ASSERT(nev1 == D);
  10949. // dst cannot be transposed or permuted
  10950. GGML_ASSERT(nb0 == sizeof(float));
  10951. GGML_ASSERT(nb0 <= nb1);
  10952. GGML_ASSERT(nb1 <= nb2);
  10953. GGML_ASSERT(nb2 <= nb3);
  10954. if (params->type == GGML_TASK_INIT) {
  10955. return;
  10956. }
  10957. if (params->type == GGML_TASK_FINALIZE) {
  10958. return;
  10959. }
  10960. // parallelize by q rows using ggml_vec_dot_f32
  10961. // total rows in q
  10962. const int nr = neq1*neq2*neq3;
  10963. // rows per thread
  10964. const int dr = (nr + nth - 1)/nth;
  10965. // row range for this thread
  10966. const int ir0 = dr*ith;
  10967. const int ir1 = MIN(ir0 + dr, nr);
  10968. const float scale = 1.0f/sqrtf(D);
  10969. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10970. for (int ir = ir0; ir < ir1; ++ir) {
  10971. // q indices
  10972. const int iq3 = ir/(neq2*neq1);
  10973. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10974. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10975. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10976. for (int i = M; i < Mup; ++i) {
  10977. S[i] = -INFINITY;
  10978. }
  10979. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10980. for (int64_t ic = 0; ic < nek1; ++ic) {
  10981. // k indices
  10982. const int ik3 = iq3;
  10983. const int ik2 = iq2 % nek2;
  10984. const int ik1 = ic;
  10985. // S indices
  10986. const int i1 = ik1;
  10987. ggml_vec_dot_f16(neq0,
  10988. S + i1,
  10989. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10990. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10991. }
  10992. } else {
  10993. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10994. // k indices
  10995. const int ik3 = iq3;
  10996. const int ik2 = iq2 % nek2;
  10997. const int ik1 = ic;
  10998. // S indices
  10999. const int i1 = ik1;
  11000. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11001. S + i1,
  11002. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11003. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11004. }
  11005. }
  11006. // scale
  11007. ggml_vec_scale_f32(nek1, S, scale);
  11008. if (masked) {
  11009. for (int64_t i = P; i < M; i++) {
  11010. if (i > P + iq1) {
  11011. S[i] = -INFINITY;
  11012. }
  11013. }
  11014. }
  11015. // softmax
  11016. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  11017. // dont forget to set their S values to zero
  11018. {
  11019. float max = -INFINITY;
  11020. ggml_vec_max_f32(M, &max, S);
  11021. ggml_float sum = 0.0;
  11022. {
  11023. #ifdef GGML_SOFT_MAX_ACCELERATE
  11024. max = -max;
  11025. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11026. vvexpf(S, S, &Mup);
  11027. ggml_vec_sum_f32(Mup, &sum, S);
  11028. #else
  11029. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11030. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11031. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11032. float * SS = S + i;
  11033. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11034. if (SS[j] == -INFINITY) {
  11035. SS[j] = 0.0f;
  11036. } else {
  11037. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11038. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11039. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11040. sump[j] += (ggml_float)val;
  11041. SS[j] = val;
  11042. }
  11043. }
  11044. }
  11045. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11046. sum += sump[i];
  11047. }
  11048. #endif
  11049. }
  11050. assert(sum > 0.0);
  11051. sum = 1.0/sum;
  11052. ggml_vec_scale_f32(M, S, sum);
  11053. #ifndef NDEBUG
  11054. for (int i = 0; i < M; ++i) {
  11055. assert(!isnan(S[i]));
  11056. assert(!isinf(S[i]));
  11057. }
  11058. #endif
  11059. }
  11060. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11061. for (int64_t i = 0; i < M; i++) {
  11062. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11063. }
  11064. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  11065. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11066. for (int64_t ic = 0; ic < nev1; ++ic) {
  11067. // dst indices
  11068. const int i1 = iq1;
  11069. const int i2 = iq2;
  11070. const int i3 = iq3;
  11071. // v indices
  11072. const int iv2 = iq2 % nev2;
  11073. const int iv3 = iq3;
  11074. ggml_vec_dot_f16(nev0,
  11075. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11076. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11077. S16);
  11078. }
  11079. } else {
  11080. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11081. // dst indices
  11082. const int i1 = iq1;
  11083. const int i2 = iq2;
  11084. const int i3 = iq3;
  11085. // v indices
  11086. const int iv2 = iq2 % nev2;
  11087. const int iv3 = iq3;
  11088. ggml_vec_dot_f16_unroll(nev0, nbv1,
  11089. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11090. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11091. S16);
  11092. }
  11093. }
  11094. }
  11095. }
  11096. static void ggml_compute_forward_flash_attn(
  11097. const struct ggml_compute_params * params,
  11098. const struct ggml_tensor * q,
  11099. const struct ggml_tensor * k,
  11100. const struct ggml_tensor * v,
  11101. const bool masked,
  11102. struct ggml_tensor * dst) {
  11103. switch (q->type) {
  11104. case GGML_TYPE_F16:
  11105. {
  11106. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  11107. } break;
  11108. case GGML_TYPE_F32:
  11109. {
  11110. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  11111. } break;
  11112. default:
  11113. {
  11114. GGML_ASSERT(false);
  11115. } break;
  11116. }
  11117. }
  11118. // ggml_compute_forward_flash_ff
  11119. static void ggml_compute_forward_flash_ff_f16(
  11120. const struct ggml_compute_params * params,
  11121. const struct ggml_tensor * a, // F16
  11122. const struct ggml_tensor * b0, // F16 fc_w
  11123. const struct ggml_tensor * b1, // F32 fc_b
  11124. const struct ggml_tensor * c0, // F16 proj_w
  11125. const struct ggml_tensor * c1, // F32 proj_b
  11126. struct ggml_tensor * dst) {
  11127. int64_t t0 = ggml_perf_time_us();
  11128. UNUSED(t0);
  11129. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11130. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11131. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11132. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11133. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11134. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11135. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11136. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11137. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11138. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11139. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11140. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11141. const int ith = params->ith;
  11142. const int nth = params->nth;
  11143. const int64_t D = nea0;
  11144. //const int64_t N = nea1;
  11145. const int64_t M = neb01;
  11146. GGML_ASSERT(ne0 == nea0);
  11147. GGML_ASSERT(ne1 == nea1);
  11148. GGML_ASSERT(ne2 == nea2);
  11149. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11150. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11151. GGML_ASSERT(nbb10 == sizeof(float));
  11152. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11153. GGML_ASSERT(nbc10 == sizeof(float));
  11154. GGML_ASSERT(neb00 == D);
  11155. GGML_ASSERT(neb01 == M);
  11156. GGML_ASSERT(neb10 == M);
  11157. GGML_ASSERT(neb11 == 1);
  11158. GGML_ASSERT(nec00 == M);
  11159. GGML_ASSERT(nec01 == D);
  11160. GGML_ASSERT(nec10 == D);
  11161. GGML_ASSERT(nec11 == 1);
  11162. // dst cannot be transposed or permuted
  11163. GGML_ASSERT(nb0 == sizeof(float));
  11164. GGML_ASSERT(nb0 <= nb1);
  11165. GGML_ASSERT(nb1 <= nb2);
  11166. GGML_ASSERT(nb2 <= nb3);
  11167. if (params->type == GGML_TASK_INIT) {
  11168. return;
  11169. }
  11170. if (params->type == GGML_TASK_FINALIZE) {
  11171. return;
  11172. }
  11173. // parallelize by a rows using ggml_vec_dot_f32
  11174. // total rows in a
  11175. const int nr = nea1*nea2*nea3;
  11176. // rows per thread
  11177. const int dr = (nr + nth - 1)/nth;
  11178. // row range for this thread
  11179. const int ir0 = dr*ith;
  11180. const int ir1 = MIN(ir0 + dr, nr);
  11181. for (int ir = ir0; ir < ir1; ++ir) {
  11182. // a indices
  11183. const int ia3 = ir/(nea2*nea1);
  11184. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11185. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11186. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11187. for (int64_t ic = 0; ic < neb01; ++ic) {
  11188. // b0 indices
  11189. const int ib03 = ia3;
  11190. const int ib02 = ia2;
  11191. const int ib01 = ic;
  11192. // S indices
  11193. const int i1 = ib01;
  11194. ggml_vec_dot_f16(nea0,
  11195. S + i1,
  11196. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  11197. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  11198. }
  11199. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11200. //ggml_vec_gelu_f32(neb01, S, S);
  11201. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11202. for (int64_t i = 0; i < M; i++) {
  11203. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11204. }
  11205. ggml_vec_gelu_f16(neb01, S16, S16);
  11206. {
  11207. // dst indices
  11208. const int i1 = ia1;
  11209. const int i2 = ia2;
  11210. const int i3 = ia3;
  11211. for (int64_t ic = 0; ic < nec01; ++ic) {
  11212. ggml_vec_dot_f16(neb01,
  11213. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11214. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  11215. S16);
  11216. }
  11217. ggml_vec_add_f32(nec01,
  11218. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11219. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11220. (float *) c1->data);
  11221. }
  11222. }
  11223. }
  11224. static void ggml_compute_forward_flash_ff(
  11225. const struct ggml_compute_params * params,
  11226. const struct ggml_tensor * a,
  11227. const struct ggml_tensor * b0,
  11228. const struct ggml_tensor * b1,
  11229. const struct ggml_tensor * c0,
  11230. const struct ggml_tensor * c1,
  11231. struct ggml_tensor * dst) {
  11232. switch (b0->type) {
  11233. case GGML_TYPE_F16:
  11234. {
  11235. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11236. } break;
  11237. case GGML_TYPE_F32:
  11238. {
  11239. GGML_ASSERT(false); // TODO
  11240. } break;
  11241. default:
  11242. {
  11243. GGML_ASSERT(false);
  11244. } break;
  11245. }
  11246. }
  11247. // ggml_compute_forward_flash_attn_back
  11248. static void ggml_compute_forward_flash_attn_back_f32(
  11249. const struct ggml_compute_params * params,
  11250. const struct ggml_tensor * q,
  11251. const struct ggml_tensor * k,
  11252. const struct ggml_tensor * v,
  11253. const struct ggml_tensor * d,
  11254. const bool masked,
  11255. struct ggml_tensor * dst) {
  11256. int64_t t0 = ggml_perf_time_us();
  11257. UNUSED(t0);
  11258. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11259. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11260. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11261. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11262. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11263. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11264. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11265. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11266. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11267. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11268. const int ith = params->ith;
  11269. const int nth = params->nth;
  11270. const int64_t D = neq0;
  11271. const int64_t N = neq1;
  11272. const int64_t P = nek1 - N;
  11273. const int64_t M = P + N;
  11274. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11275. const int mxDM = MAX(D, Mup);
  11276. // GGML_ASSERT(ne0 == D);
  11277. // GGML_ASSERT(ne1 == N);
  11278. GGML_ASSERT(P >= 0);
  11279. GGML_ASSERT(nbq0 == sizeof(float));
  11280. GGML_ASSERT(nbk0 == sizeof(float));
  11281. GGML_ASSERT(nbv0 == sizeof(float));
  11282. GGML_ASSERT(neq0 == D);
  11283. GGML_ASSERT(nek0 == D);
  11284. GGML_ASSERT(nev1 == D);
  11285. GGML_ASSERT(ned0 == D);
  11286. GGML_ASSERT(neq1 == N);
  11287. GGML_ASSERT(nek1 == N + P);
  11288. GGML_ASSERT(nev1 == D);
  11289. GGML_ASSERT(ned1 == N);
  11290. // dst cannot be transposed or permuted
  11291. GGML_ASSERT(nb0 == sizeof(float));
  11292. GGML_ASSERT(nb0 <= nb1);
  11293. GGML_ASSERT(nb1 <= nb2);
  11294. GGML_ASSERT(nb2 <= nb3);
  11295. if (params->type == GGML_TASK_INIT) {
  11296. if (ith == 0) {
  11297. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11298. }
  11299. return;
  11300. }
  11301. if (params->type == GGML_TASK_FINALIZE) {
  11302. return;
  11303. }
  11304. const int64_t elem_q = ggml_nelements(q);
  11305. const int64_t elem_k = ggml_nelements(k);
  11306. enum ggml_type result_type = dst->type;
  11307. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11308. const size_t tsize = ggml_type_size(result_type);
  11309. const size_t offs_q = 0;
  11310. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11311. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11312. void * grad_q = (char *) dst->data;
  11313. void * grad_k = (char *) dst->data + offs_k;
  11314. void * grad_v = (char *) dst->data + offs_v;
  11315. const size_t nbgq1 = nb0*neq0;
  11316. const size_t nbgq2 = nb0*neq0*neq1;
  11317. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11318. const size_t nbgk1 = nb0*nek0;
  11319. const size_t nbgk2 = nb0*nek0*nek1;
  11320. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11321. const size_t nbgv1 = nb0*nev0;
  11322. const size_t nbgv2 = nb0*nev0*nev1;
  11323. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11324. // parallelize by k rows using ggml_vec_dot_f32
  11325. // total rows in k
  11326. const int nr = nek2*nek3;
  11327. // rows per thread
  11328. const int dr = (nr + nth - 1)/nth;
  11329. // row range for this thread
  11330. const int ir0 = dr*ith;
  11331. const int ir1 = MIN(ir0 + dr, nr);
  11332. const float scale = 1.0f/sqrtf(D);
  11333. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11334. // how often k2 (and v2) is repeated in q2
  11335. int nrep = neq2/nek2;
  11336. for (int ir = ir0; ir < ir1; ++ir) {
  11337. // q indices
  11338. const int ik3 = ir/(nek2);
  11339. const int ik2 = ir - ik3*nek2;
  11340. const int iq3 = ik3;
  11341. const int id3 = ik3;
  11342. const int iv3 = ik3;
  11343. const int iv2 = ik2;
  11344. for (int irep = 0; irep < nrep; ++irep) {
  11345. const int iq2 = ik2 + irep*nek2;
  11346. const int id2 = iq2;
  11347. // (ik2 + irep*nek2) % nek2 == ik2
  11348. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11349. const int id1 = iq1;
  11350. // not sure about CACHE_LINE_SIZE_F32..
  11351. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11352. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11353. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11354. for (int i = M; i < Mup; ++i) {
  11355. S[i] = -INFINITY;
  11356. }
  11357. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11358. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11359. // k indices
  11360. const int ik1 = ic;
  11361. // S indices
  11362. const int i1 = ik1;
  11363. ggml_vec_dot_f32(neq0,
  11364. S + i1,
  11365. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11366. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11367. }
  11368. // scale
  11369. ggml_vec_scale_f32(masked_begin, S, scale);
  11370. for (int64_t i = masked_begin; i < M; i++) {
  11371. S[i] = -INFINITY;
  11372. }
  11373. // softmax
  11374. // exclude known -INF S[..] values from max and loop
  11375. // dont forget to set their SM values to zero
  11376. {
  11377. float max = -INFINITY;
  11378. ggml_vec_max_f32(masked_begin, &max, S);
  11379. ggml_float sum = 0.0;
  11380. {
  11381. #ifdef GGML_SOFT_MAX_ACCELERATE
  11382. max = -max;
  11383. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11384. vvexpf(SM, SM, &Mup);
  11385. ggml_vec_sum_f32(Mup, &sum, SM);
  11386. #else
  11387. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11388. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11389. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11390. if (i >= masked_begin) {
  11391. break;
  11392. }
  11393. float * SR = S + i;
  11394. float * SW = SM + i;
  11395. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11396. if (i + j >= masked_begin) {
  11397. break;
  11398. } else if (SR[j] == -INFINITY) {
  11399. SW[j] = 0.0f;
  11400. } else {
  11401. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11402. const float val = expf(SR[j] - max);
  11403. #else
  11404. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11405. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11406. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11407. #endif
  11408. sump[j] += (ggml_float)val;
  11409. SW[j] = val;
  11410. }
  11411. }
  11412. }
  11413. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11414. sum += sump[i];
  11415. }
  11416. #endif
  11417. }
  11418. assert(sum > 0.0);
  11419. sum = 1.0/sum;
  11420. ggml_vec_scale_f32(masked_begin, SM, sum);
  11421. }
  11422. // step-by-step explanation
  11423. {
  11424. // forward-process shape grads from backward process
  11425. // parallel_for ik2,ik3:
  11426. // for irep:
  11427. // iq2 = ik2 + irep*nek2
  11428. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11429. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11430. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11431. // for iq1:
  11432. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11433. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11434. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11435. // S0 = -Inf [D,1,1,1]
  11436. // ~S1[i] = dot(kcur[:D,i], qcur)
  11437. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11438. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11439. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11440. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11441. // ~S5[i] = dot(vcur[:,i], S4)
  11442. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11443. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11444. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11445. // dst backward-/ grad[dst] = d
  11446. //
  11447. // output gradients with their dependencies:
  11448. //
  11449. // grad[kcur] = grad[S1].T @ qcur
  11450. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11451. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11452. // grad[S4] = grad[S5] @ vcur
  11453. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11454. // grad[qcur] = grad[S1] @ kcur
  11455. // grad[vcur] = grad[S5].T @ S4
  11456. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11457. //
  11458. // in post-order:
  11459. //
  11460. // S1 = qcur @ kcur.T
  11461. // S2 = S1 * scale
  11462. // S3 = diag_mask_inf(S2, P)
  11463. // S4 = softmax(S3)
  11464. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11465. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11466. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11467. // grad[qcur] = grad[S1] @ kcur
  11468. // grad[kcur] = grad[S1].T @ qcur
  11469. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11470. //
  11471. // using less variables (SM=S4):
  11472. //
  11473. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11474. // SM = softmax(S)
  11475. // S = d[:D,iq1,iq2,iq3] @ vcur
  11476. // dot_SM_gradSM = dot(SM, S)
  11477. // S = SM * (S - dot(SM, S))
  11478. // S = diag_mask_zero(S, P) * scale
  11479. //
  11480. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11481. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11482. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11483. }
  11484. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11485. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11486. // for ic:
  11487. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11488. // exclude known future zero S[..] values from operation
  11489. ggml_vec_set_f32(masked_begin, S, 0);
  11490. for (int64_t ic = 0; ic < D; ++ic) {
  11491. ggml_vec_mad_f32(masked_begin,
  11492. S,
  11493. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11494. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11495. }
  11496. // S = SM * (S - dot(SM, S))
  11497. float dot_SM_gradSM = 0;
  11498. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S);
  11499. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11500. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11501. // S = diag_mask_zero(S, P) * scale
  11502. // already done by above ggml_vec_set_f32
  11503. // exclude known zero S[..] values from operation
  11504. ggml_vec_scale_f32(masked_begin, S, scale);
  11505. // S shape [M,1]
  11506. // SM shape [M,1]
  11507. // kcur shape [D,M]
  11508. // qcur shape [D,1]
  11509. // vcur shape [M,D]
  11510. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11511. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11512. // for ic:
  11513. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11514. // exclude known zero S[..] values from loop
  11515. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11516. ggml_vec_mad_f32(D,
  11517. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11518. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11519. S[ic]);
  11520. }
  11521. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11522. // for ic:
  11523. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11524. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11525. // exclude known zero S[..] values from loop
  11526. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11527. ggml_vec_mad_f32(D,
  11528. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11529. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11530. S[ic]);
  11531. }
  11532. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11533. // for ic:
  11534. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11535. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11536. // exclude known zero SM[..] values from mad
  11537. for (int64_t ic = 0; ic < D; ++ic) {
  11538. ggml_vec_mad_f32(masked_begin,
  11539. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11540. SM,
  11541. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11542. }
  11543. }
  11544. }
  11545. }
  11546. }
  11547. static void ggml_compute_forward_flash_attn_back(
  11548. const struct ggml_compute_params * params,
  11549. const struct ggml_tensor * q,
  11550. const struct ggml_tensor * k,
  11551. const struct ggml_tensor * v,
  11552. const struct ggml_tensor * d,
  11553. const bool masked,
  11554. struct ggml_tensor * dst) {
  11555. switch (q->type) {
  11556. case GGML_TYPE_F32:
  11557. {
  11558. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11559. } break;
  11560. default:
  11561. {
  11562. GGML_ASSERT(false);
  11563. } break;
  11564. }
  11565. }
  11566. // ggml_compute_forward_win_part
  11567. static void ggml_compute_forward_win_part_f32(
  11568. const struct ggml_compute_params * params,
  11569. const struct ggml_tensor * src0,
  11570. struct ggml_tensor * dst) {
  11571. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11572. return;
  11573. }
  11574. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11575. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11576. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11577. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11578. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11579. assert(ne00 == ne0);
  11580. assert(ne3 == nep0*nep1);
  11581. // TODO: optimize / multi-thread
  11582. for (int py = 0; py < nep1; ++py) {
  11583. for (int px = 0; px < nep0; ++px) {
  11584. const int64_t i3 = py*nep0 + px;
  11585. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11586. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11587. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11588. const int64_t i02 = py*w + i2;
  11589. const int64_t i01 = px*w + i1;
  11590. const int64_t i00 = i0;
  11591. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11592. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11593. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11594. ((float *) dst->data)[i] = 0.0f;
  11595. } else {
  11596. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11597. }
  11598. }
  11599. }
  11600. }
  11601. }
  11602. }
  11603. }
  11604. static void ggml_compute_forward_win_part(
  11605. const struct ggml_compute_params * params,
  11606. const struct ggml_tensor * src0,
  11607. struct ggml_tensor * dst) {
  11608. switch (src0->type) {
  11609. case GGML_TYPE_F32:
  11610. {
  11611. ggml_compute_forward_win_part_f32(params, src0, dst);
  11612. } break;
  11613. default:
  11614. {
  11615. GGML_ASSERT(false);
  11616. } break;
  11617. }
  11618. }
  11619. // ggml_compute_forward_win_unpart
  11620. static void ggml_compute_forward_win_unpart_f32(
  11621. const struct ggml_compute_params * params,
  11622. const struct ggml_tensor * src0,
  11623. struct ggml_tensor * dst) {
  11624. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11625. return;
  11626. }
  11627. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11628. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11629. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11630. // padding
  11631. const int px = (w - ne1%w)%w;
  11632. //const int py = (w - ne2%w)%w;
  11633. const int npx = (px + ne1)/w;
  11634. //const int npy = (py + ne2)/w;
  11635. assert(ne0 == ne00);
  11636. // TODO: optimize / multi-thread
  11637. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11638. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11639. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11640. const int ip2 = i2/w;
  11641. const int ip1 = i1/w;
  11642. const int64_t i02 = i2%w;
  11643. const int64_t i01 = i1%w;
  11644. const int64_t i00 = i0;
  11645. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11646. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11647. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11648. }
  11649. }
  11650. }
  11651. }
  11652. static void ggml_compute_forward_win_unpart(
  11653. const struct ggml_compute_params * params,
  11654. const struct ggml_tensor * src0,
  11655. struct ggml_tensor * dst) {
  11656. switch (src0->type) {
  11657. case GGML_TYPE_F32:
  11658. {
  11659. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11660. } break;
  11661. default:
  11662. {
  11663. GGML_ASSERT(false);
  11664. } break;
  11665. }
  11666. }
  11667. //gmml_compute_forward_unary
  11668. static void ggml_compute_forward_unary(
  11669. const struct ggml_compute_params * params,
  11670. const struct ggml_tensor * src0,
  11671. struct ggml_tensor * dst) {
  11672. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11673. switch (op) {
  11674. case GGML_UNARY_OP_ABS:
  11675. {
  11676. ggml_compute_forward_abs(params, src0, dst);
  11677. } break;
  11678. case GGML_UNARY_OP_SGN:
  11679. {
  11680. ggml_compute_forward_sgn(params, src0, dst);
  11681. } break;
  11682. case GGML_UNARY_OP_NEG:
  11683. {
  11684. ggml_compute_forward_neg(params, src0, dst);
  11685. } break;
  11686. case GGML_UNARY_OP_STEP:
  11687. {
  11688. ggml_compute_forward_step(params, src0, dst);
  11689. } break;
  11690. case GGML_UNARY_OP_TANH:
  11691. {
  11692. ggml_compute_forward_tanh(params, src0, dst);
  11693. } break;
  11694. case GGML_UNARY_OP_ELU:
  11695. {
  11696. ggml_compute_forward_elu(params, src0, dst);
  11697. } break;
  11698. case GGML_UNARY_OP_RELU:
  11699. {
  11700. ggml_compute_forward_relu(params, src0, dst);
  11701. } break;
  11702. case GGML_UNARY_OP_GELU:
  11703. {
  11704. ggml_compute_forward_gelu(params, src0, dst);
  11705. } break;
  11706. case GGML_UNARY_OP_GELU_QUICK:
  11707. {
  11708. ggml_compute_forward_gelu_quick(params, src0, dst);
  11709. } break;
  11710. case GGML_UNARY_OP_SILU:
  11711. {
  11712. ggml_compute_forward_silu(params, src0, dst);
  11713. } break;
  11714. case GGML_UNARY_OP_HARDSWISH:
  11715. {
  11716. ggml_compute_forward_hardswish(params, src0, dst);
  11717. } break;
  11718. case GGML_UNARY_OP_HARDSIGMOID:
  11719. {
  11720. ggml_compute_forward_hardsigmoid(params, src0, dst);
  11721. } break;
  11722. default:
  11723. {
  11724. GGML_ASSERT(false);
  11725. } break;
  11726. }
  11727. }
  11728. // ggml_compute_forward_get_rel_pos
  11729. static void ggml_compute_forward_get_rel_pos_f16(
  11730. const struct ggml_compute_params * params,
  11731. const struct ggml_tensor * src0,
  11732. struct ggml_tensor * dst) {
  11733. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11734. return;
  11735. }
  11736. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11737. GGML_TENSOR_UNARY_OP_LOCALS
  11738. const int64_t w = ne1;
  11739. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11740. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11741. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11742. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11743. const int64_t pos = (w - i1 - 1) + i2;
  11744. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11745. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11746. }
  11747. }
  11748. }
  11749. }
  11750. static void ggml_compute_forward_get_rel_pos(
  11751. const struct ggml_compute_params * params,
  11752. const struct ggml_tensor * src0,
  11753. struct ggml_tensor * dst) {
  11754. switch (src0->type) {
  11755. case GGML_TYPE_F16:
  11756. {
  11757. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  11758. } break;
  11759. default:
  11760. {
  11761. GGML_ASSERT(false);
  11762. } break;
  11763. }
  11764. }
  11765. // ggml_compute_forward_add_rel_pos
  11766. static void ggml_compute_forward_add_rel_pos_f32(
  11767. const struct ggml_compute_params * params,
  11768. const struct ggml_tensor * src0,
  11769. const struct ggml_tensor * src1,
  11770. const struct ggml_tensor * src2,
  11771. struct ggml_tensor * dst) {
  11772. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11773. if (!inplace && params->type == GGML_TASK_INIT) {
  11774. if (params->ith != 0) {
  11775. return;
  11776. }
  11777. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11778. return;
  11779. }
  11780. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11781. return;
  11782. }
  11783. int64_t t0 = ggml_perf_time_us();
  11784. UNUSED(t0);
  11785. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11786. float * src1_data = (float *) src1->data;
  11787. float * src2_data = (float *) src2->data;
  11788. float * dst_data = (float *) dst->data;
  11789. const int64_t ne10 = src1->ne[0];
  11790. const int64_t ne11 = src1->ne[1];
  11791. const int64_t ne12 = src1->ne[2];
  11792. const int64_t ne13 = src1->ne[3];
  11793. const int ith = params->ith;
  11794. const int nth = params->nth;
  11795. // total patches in dst
  11796. const int np = ne13;
  11797. // patches per thread
  11798. const int dp = (np + nth - 1)/nth;
  11799. // patch range for this thread
  11800. const int ip0 = dp*ith;
  11801. const int ip1 = MIN(ip0 + dp, np);
  11802. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  11803. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  11804. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  11805. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  11806. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  11807. const int64_t jp0 = jp1 + i10;
  11808. const float src1_e = src1_data[jp0];
  11809. const float src2_e = src2_data[jp0];
  11810. const int64_t jdh = jp0 * ne10;
  11811. const int64_t jdw = jdh - (ne10 - 1) * i10;
  11812. for (int64_t j = 0; j < ne10; ++j) {
  11813. dst_data[jdh + j ] += src2_e;
  11814. dst_data[jdw + j*ne10] += src1_e;
  11815. }
  11816. }
  11817. }
  11818. }
  11819. }
  11820. }
  11821. static void ggml_compute_forward_add_rel_pos(
  11822. const struct ggml_compute_params * params,
  11823. const struct ggml_tensor * src0,
  11824. const struct ggml_tensor * src1,
  11825. const struct ggml_tensor * src2,
  11826. struct ggml_tensor * dst) {
  11827. switch (src0->type) {
  11828. case GGML_TYPE_F32:
  11829. {
  11830. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  11831. } break;
  11832. default:
  11833. {
  11834. GGML_ASSERT(false);
  11835. } break;
  11836. }
  11837. }
  11838. // ggml_compute_forward_map_unary
  11839. static void ggml_compute_forward_map_unary_f32(
  11840. const struct ggml_compute_params * params,
  11841. const struct ggml_tensor * src0,
  11842. struct ggml_tensor * dst,
  11843. const ggml_unary_op_f32_t fun) {
  11844. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11845. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11846. return;
  11847. }
  11848. const int n = ggml_nrows(src0);
  11849. const int nc = src0->ne[0];
  11850. assert( dst->nb[0] == sizeof(float));
  11851. assert(src0->nb[0] == sizeof(float));
  11852. for (int i = 0; i < n; i++) {
  11853. fun(nc,
  11854. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11855. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11856. }
  11857. }
  11858. static void ggml_compute_forward_map_unary(
  11859. const struct ggml_compute_params * params,
  11860. const struct ggml_tensor * src0,
  11861. struct ggml_tensor * dst,
  11862. const ggml_unary_op_f32_t fun) {
  11863. switch (src0->type) {
  11864. case GGML_TYPE_F32:
  11865. {
  11866. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11867. } break;
  11868. default:
  11869. {
  11870. GGML_ASSERT(false);
  11871. } break;
  11872. }
  11873. }
  11874. // ggml_compute_forward_map_binary
  11875. static void ggml_compute_forward_map_binary_f32(
  11876. const struct ggml_compute_params * params,
  11877. const struct ggml_tensor * src0,
  11878. const struct ggml_tensor * src1,
  11879. struct ggml_tensor * dst,
  11880. const ggml_binary_op_f32_t fun) {
  11881. assert(params->ith == 0);
  11882. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11883. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11884. return;
  11885. }
  11886. const int n = ggml_nrows(src0);
  11887. const int nc = src0->ne[0];
  11888. assert( dst->nb[0] == sizeof(float));
  11889. assert(src0->nb[0] == sizeof(float));
  11890. assert(src1->nb[0] == sizeof(float));
  11891. for (int i = 0; i < n; i++) {
  11892. fun(nc,
  11893. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11894. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11895. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11896. }
  11897. }
  11898. static void ggml_compute_forward_map_binary(
  11899. const struct ggml_compute_params * params,
  11900. const struct ggml_tensor * src0,
  11901. const struct ggml_tensor * src1,
  11902. struct ggml_tensor * dst,
  11903. const ggml_binary_op_f32_t fun) {
  11904. switch (src0->type) {
  11905. case GGML_TYPE_F32:
  11906. {
  11907. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11908. } break;
  11909. default:
  11910. {
  11911. GGML_ASSERT(false);
  11912. } break;
  11913. }
  11914. }
  11915. // ggml_compute_forward_map_custom1
  11916. static void ggml_compute_forward_map_custom1_f32(
  11917. const struct ggml_compute_params * params,
  11918. const struct ggml_tensor * a,
  11919. struct ggml_tensor * dst,
  11920. const ggml_custom1_op_f32_t fun) {
  11921. assert(params->ith == 0);
  11922. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11923. return;
  11924. }
  11925. fun(dst, a);
  11926. }
  11927. // ggml_compute_forward_map_custom2
  11928. static void ggml_compute_forward_map_custom2_f32(
  11929. const struct ggml_compute_params * params,
  11930. const struct ggml_tensor * a,
  11931. const struct ggml_tensor * b,
  11932. struct ggml_tensor * dst,
  11933. const ggml_custom2_op_f32_t fun) {
  11934. assert(params->ith == 0);
  11935. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11936. return;
  11937. }
  11938. fun(dst, a, b);
  11939. }
  11940. // ggml_compute_forward_map_custom3
  11941. static void ggml_compute_forward_map_custom3_f32(
  11942. const struct ggml_compute_params * params,
  11943. const struct ggml_tensor * a,
  11944. const struct ggml_tensor * b,
  11945. const struct ggml_tensor * c,
  11946. struct ggml_tensor * dst,
  11947. const ggml_custom3_op_f32_t fun) {
  11948. assert(params->ith == 0);
  11949. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11950. return;
  11951. }
  11952. fun(dst, a, b, c);
  11953. }
  11954. // ggml_compute_forward_map_custom1
  11955. static void ggml_compute_forward_map_custom1(
  11956. const struct ggml_compute_params * params,
  11957. const struct ggml_tensor * a,
  11958. struct ggml_tensor * dst) {
  11959. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11960. return;
  11961. }
  11962. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  11963. p->fun(dst, a, params->ith, params->nth, p->userdata);
  11964. }
  11965. // ggml_compute_forward_map_custom2
  11966. static void ggml_compute_forward_map_custom2(
  11967. const struct ggml_compute_params * params,
  11968. const struct ggml_tensor * a,
  11969. const struct ggml_tensor * b,
  11970. struct ggml_tensor * dst) {
  11971. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11972. return;
  11973. }
  11974. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  11975. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  11976. }
  11977. // ggml_compute_forward_map_custom3
  11978. static void ggml_compute_forward_map_custom3(
  11979. const struct ggml_compute_params * params,
  11980. const struct ggml_tensor * a,
  11981. const struct ggml_tensor * b,
  11982. const struct ggml_tensor * c,
  11983. struct ggml_tensor * dst) {
  11984. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11985. return;
  11986. }
  11987. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  11988. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  11989. }
  11990. // ggml_compute_forward_cross_entropy_loss
  11991. static void ggml_compute_forward_cross_entropy_loss_f32(
  11992. const struct ggml_compute_params * params,
  11993. const struct ggml_tensor * src0,
  11994. const struct ggml_tensor * src1,
  11995. struct ggml_tensor * dst) {
  11996. GGML_ASSERT(ggml_is_contiguous(src0));
  11997. GGML_ASSERT(ggml_is_contiguous(src1));
  11998. GGML_ASSERT(ggml_is_scalar(dst));
  11999. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12000. const int ith = params->ith;
  12001. const int nth = params->nth;
  12002. float * sums = (float *) params->wdata;
  12003. // TODO: handle transposed/permuted matrices
  12004. const int nc = src0->ne[0];
  12005. const int nr = ggml_nrows(src0);
  12006. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12007. if (params->type == GGML_TASK_INIT) {
  12008. if (ith == 0) {
  12009. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12010. }
  12011. return;
  12012. }
  12013. if (params->type == GGML_TASK_FINALIZE) {
  12014. if (ith == 0) {
  12015. float * dp = (float *) dst->data;
  12016. ggml_vec_sum_f32(nth, dp, sums);
  12017. dp[0] *= -1.0f / (float) nr;
  12018. }
  12019. return;
  12020. }
  12021. const double eps = 1e-9;
  12022. // rows per thread
  12023. const int dr = (nr + nth - 1)/nth;
  12024. // row range for this thread
  12025. const int ir0 = dr*ith;
  12026. const int ir1 = MIN(ir0 + dr, nr);
  12027. for (int i1 = ir0; i1 < ir1; i1++) {
  12028. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12029. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12030. float * st = ((float *) params->wdata) + nth + ith*nc;
  12031. #ifndef NDEBUG
  12032. for (int i = 0; i < nc; ++i) {
  12033. //printf("p[%d] = %f\n", i, p[i]);
  12034. assert(!isnan(s0[i]));
  12035. assert(!isnan(s1[i]));
  12036. }
  12037. #endif
  12038. // soft_max
  12039. ggml_float sum = 0.0;
  12040. {
  12041. float max = -INFINITY;
  12042. ggml_vec_max_f32(nc, &max, s0);
  12043. uint16_t scvt; UNUSED(scvt);
  12044. for (int i = 0; i < nc; i++) {
  12045. if (s0[i] == -INFINITY) {
  12046. st[i] = 0.0f;
  12047. } else {
  12048. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12049. const float s = s0[i] - max;
  12050. const float val = expf(s);
  12051. #else
  12052. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12053. memcpy(&scvt, &s, sizeof(scvt));
  12054. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12055. #endif
  12056. sum += (ggml_float)val;
  12057. st[i] = val;
  12058. }
  12059. }
  12060. assert(sum > 0.0);
  12061. // sum = 1.0/sum;
  12062. }
  12063. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12064. sum = (1.0 - eps) / sum;
  12065. ggml_vec_scale_f32(nc, st, sum);
  12066. ggml_vec_add1_f32(nc, st, st, eps);
  12067. ggml_vec_log_f32(nc, st, st);
  12068. ggml_vec_mul_f32(nc, st, st, s1);
  12069. float st_sum = 0;
  12070. ggml_vec_sum_f32(nc, &st_sum, st);
  12071. sums[ith] += st_sum;
  12072. #ifndef NDEBUG
  12073. for (int i = 0; i < nc; ++i) {
  12074. assert(!isnan(st[i]));
  12075. assert(!isinf(st[i]));
  12076. }
  12077. #endif
  12078. }
  12079. }
  12080. static void ggml_compute_forward_cross_entropy_loss(
  12081. const struct ggml_compute_params * params,
  12082. const struct ggml_tensor * src0,
  12083. const struct ggml_tensor * src1,
  12084. struct ggml_tensor * dst) {
  12085. switch (src0->type) {
  12086. case GGML_TYPE_F32:
  12087. {
  12088. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  12089. } break;
  12090. default:
  12091. {
  12092. GGML_ASSERT(false);
  12093. } break;
  12094. }
  12095. }
  12096. // ggml_compute_forward_cross_entropy_loss_back
  12097. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12098. const struct ggml_compute_params * params,
  12099. const struct ggml_tensor * src0,
  12100. const struct ggml_tensor * src1,
  12101. const struct ggml_tensor * opt0,
  12102. struct ggml_tensor * dst) {
  12103. GGML_ASSERT(ggml_is_contiguous(dst));
  12104. GGML_ASSERT(ggml_is_contiguous(src0));
  12105. GGML_ASSERT(ggml_is_contiguous(src1));
  12106. GGML_ASSERT(ggml_is_contiguous(opt0));
  12107. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12108. const int64_t ith = params->ith;
  12109. const int64_t nth = params->nth;
  12110. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12111. return;
  12112. }
  12113. const double eps = 1e-9;
  12114. // TODO: handle transposed/permuted matrices
  12115. const int64_t nc = src0->ne[0];
  12116. const int64_t nr = ggml_nrows(src0);
  12117. // rows per thread
  12118. const int64_t dr = (nr + nth - 1)/nth;
  12119. // row range for this thread
  12120. const int64_t ir0 = dr*ith;
  12121. const int64_t ir1 = MIN(ir0 + dr, nr);
  12122. float * d = (float *) opt0->data;
  12123. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12124. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12125. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12126. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12127. #ifndef NDEBUG
  12128. for (int i = 0; i < nc; ++i) {
  12129. //printf("p[%d] = %f\n", i, p[i]);
  12130. assert(!isnan(s0[i]));
  12131. assert(!isnan(s1[i]));
  12132. }
  12133. #endif
  12134. // soft_max
  12135. ggml_float sum = 0.0;
  12136. {
  12137. float max = -INFINITY;
  12138. ggml_vec_max_f32(nc, &max, s0);
  12139. uint16_t scvt; UNUSED(scvt);
  12140. for (int i = 0; i < nc; i++) {
  12141. if (s0[i] == -INFINITY) {
  12142. ds0[i] = 0.0f;
  12143. } else {
  12144. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12145. const float s = s0[i] - max;
  12146. const float val = expf(s);
  12147. #else
  12148. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12149. memcpy(&scvt, &s, sizeof(scvt));
  12150. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12151. #endif
  12152. sum += (ggml_float)val;
  12153. ds0[i] = val;
  12154. }
  12155. }
  12156. assert(sum > 0.0);
  12157. sum = (1.0 - eps)/sum;
  12158. }
  12159. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12160. ggml_vec_scale_f32(nc, ds0, sum);
  12161. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12162. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12163. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12164. #ifndef NDEBUG
  12165. for (int i = 0; i < nc; ++i) {
  12166. assert(!isnan(ds0[i]));
  12167. assert(!isinf(ds0[i]));
  12168. }
  12169. #endif
  12170. }
  12171. }
  12172. static void ggml_compute_forward_cross_entropy_loss_back(
  12173. const struct ggml_compute_params * params,
  12174. const struct ggml_tensor * src0,
  12175. const struct ggml_tensor * src1,
  12176. const struct ggml_tensor * opt0,
  12177. struct ggml_tensor * dst) {
  12178. switch (src0->type) {
  12179. case GGML_TYPE_F32:
  12180. {
  12181. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12182. } break;
  12183. default:
  12184. {
  12185. GGML_ASSERT(false);
  12186. } break;
  12187. }
  12188. }
  12189. /////////////////////////////////
  12190. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12191. GGML_ASSERT(params);
  12192. if (tensor->op == GGML_OP_NONE) {
  12193. return;
  12194. }
  12195. #ifdef GGML_USE_CUBLAS
  12196. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12197. if (skip_cpu) {
  12198. return;
  12199. }
  12200. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12201. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12202. #elif defined(GGML_USE_VULKAN)
  12203. const bool skip_cpu = ggml_vk_compute_forward(params, tensor);
  12204. #ifdef GGML_VULKAN_CHECK_RESULTS
  12205. if (skip_cpu) {
  12206. ggml_vk_check_results_1(params, tensor);
  12207. }
  12208. #endif
  12209. if (skip_cpu) {
  12210. return;
  12211. }
  12212. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12213. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12214. #endif // GGML_USE_CUBLAS
  12215. #ifdef GGML_USE_SYCL
  12216. bool skip_cpu = ggml_sycl_compute_forward(params, tensor);
  12217. if (skip_cpu) {
  12218. return;
  12219. }
  12220. #endif // GGML_USE_SYCL
  12221. switch (tensor->op) {
  12222. case GGML_OP_DUP:
  12223. {
  12224. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  12225. } break;
  12226. case GGML_OP_ADD:
  12227. {
  12228. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  12229. } break;
  12230. case GGML_OP_ADD1:
  12231. {
  12232. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  12233. } break;
  12234. case GGML_OP_ACC:
  12235. {
  12236. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  12237. } break;
  12238. case GGML_OP_SUB:
  12239. {
  12240. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  12241. } break;
  12242. case GGML_OP_MUL:
  12243. {
  12244. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  12245. } break;
  12246. case GGML_OP_DIV:
  12247. {
  12248. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  12249. } break;
  12250. case GGML_OP_SQR:
  12251. {
  12252. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  12253. } break;
  12254. case GGML_OP_SQRT:
  12255. {
  12256. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  12257. } break;
  12258. case GGML_OP_LOG:
  12259. {
  12260. ggml_compute_forward_log(params, tensor->src[0], tensor);
  12261. } break;
  12262. case GGML_OP_SUM:
  12263. {
  12264. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  12265. } break;
  12266. case GGML_OP_SUM_ROWS:
  12267. {
  12268. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  12269. } break;
  12270. case GGML_OP_MEAN:
  12271. {
  12272. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  12273. } break;
  12274. case GGML_OP_ARGMAX:
  12275. {
  12276. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  12277. } break;
  12278. case GGML_OP_REPEAT:
  12279. {
  12280. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  12281. } break;
  12282. case GGML_OP_REPEAT_BACK:
  12283. {
  12284. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  12285. } break;
  12286. case GGML_OP_CONCAT:
  12287. {
  12288. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  12289. } break;
  12290. case GGML_OP_SILU_BACK:
  12291. {
  12292. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  12293. } break;
  12294. case GGML_OP_NORM:
  12295. {
  12296. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  12297. } break;
  12298. case GGML_OP_RMS_NORM:
  12299. {
  12300. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  12301. } break;
  12302. case GGML_OP_RMS_NORM_BACK:
  12303. {
  12304. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  12305. } break;
  12306. case GGML_OP_GROUP_NORM:
  12307. {
  12308. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  12309. } break;
  12310. case GGML_OP_MUL_MAT:
  12311. {
  12312. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  12313. } break;
  12314. case GGML_OP_MUL_MAT_ID:
  12315. {
  12316. ggml_compute_forward_mul_mat_id(params, tensor->src[0], tensor->src[1], tensor);
  12317. } break;
  12318. case GGML_OP_OUT_PROD:
  12319. {
  12320. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  12321. } break;
  12322. case GGML_OP_SCALE:
  12323. {
  12324. ggml_compute_forward_scale(params, tensor->src[0], tensor);
  12325. } break;
  12326. case GGML_OP_SET:
  12327. {
  12328. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  12329. } break;
  12330. case GGML_OP_CPY:
  12331. {
  12332. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12333. } break;
  12334. case GGML_OP_CONT:
  12335. {
  12336. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12337. } break;
  12338. case GGML_OP_RESHAPE:
  12339. {
  12340. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12341. } break;
  12342. case GGML_OP_VIEW:
  12343. {
  12344. ggml_compute_forward_view(params, tensor->src[0]);
  12345. } break;
  12346. case GGML_OP_PERMUTE:
  12347. {
  12348. ggml_compute_forward_permute(params, tensor->src[0]);
  12349. } break;
  12350. case GGML_OP_TRANSPOSE:
  12351. {
  12352. ggml_compute_forward_transpose(params, tensor->src[0]);
  12353. } break;
  12354. case GGML_OP_GET_ROWS:
  12355. {
  12356. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12357. } break;
  12358. case GGML_OP_GET_ROWS_BACK:
  12359. {
  12360. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  12361. } break;
  12362. case GGML_OP_DIAG:
  12363. {
  12364. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12365. } break;
  12366. case GGML_OP_DIAG_MASK_INF:
  12367. {
  12368. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12369. } break;
  12370. case GGML_OP_DIAG_MASK_ZERO:
  12371. {
  12372. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12373. } break;
  12374. case GGML_OP_SOFT_MAX:
  12375. {
  12376. ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor);
  12377. } break;
  12378. case GGML_OP_SOFT_MAX_BACK:
  12379. {
  12380. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12381. } break;
  12382. case GGML_OP_ROPE:
  12383. {
  12384. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  12385. } break;
  12386. case GGML_OP_ROPE_BACK:
  12387. {
  12388. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  12389. } break;
  12390. case GGML_OP_ALIBI:
  12391. {
  12392. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12393. } break;
  12394. case GGML_OP_CLAMP:
  12395. {
  12396. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12397. } break;
  12398. case GGML_OP_CONV_TRANSPOSE_1D:
  12399. {
  12400. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  12401. } break;
  12402. case GGML_OP_IM2COL:
  12403. {
  12404. ggml_compute_forward_im2col(params, tensor->src[0], tensor->src[1], tensor);
  12405. } break;
  12406. case GGML_OP_CONV_TRANSPOSE_2D:
  12407. {
  12408. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  12409. } break;
  12410. case GGML_OP_POOL_1D:
  12411. {
  12412. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12413. } break;
  12414. case GGML_OP_POOL_2D:
  12415. {
  12416. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12417. } break;
  12418. case GGML_OP_UPSCALE:
  12419. {
  12420. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  12421. } break;
  12422. case GGML_OP_PAD:
  12423. {
  12424. ggml_compute_forward_pad(params, tensor->src[0], tensor);
  12425. } break;
  12426. case GGML_OP_ARGSORT:
  12427. {
  12428. ggml_compute_forward_argsort(params, tensor->src[0], tensor);
  12429. } break;
  12430. case GGML_OP_LEAKY_RELU:
  12431. {
  12432. ggml_compute_forward_leaky_relu(params, tensor->src[0], tensor);
  12433. } break;
  12434. case GGML_OP_FLASH_ATTN:
  12435. {
  12436. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12437. GGML_ASSERT(t == 0 || t == 1);
  12438. const bool masked = t != 0;
  12439. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12440. } break;
  12441. case GGML_OP_FLASH_FF:
  12442. {
  12443. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12444. } break;
  12445. case GGML_OP_FLASH_ATTN_BACK:
  12446. {
  12447. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12448. GGML_ASSERT(t == 0 || t == 1);
  12449. bool masked = t != 0;
  12450. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12451. } break;
  12452. case GGML_OP_WIN_PART:
  12453. {
  12454. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12455. } break;
  12456. case GGML_OP_WIN_UNPART:
  12457. {
  12458. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12459. } break;
  12460. case GGML_OP_UNARY:
  12461. {
  12462. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12463. } break;
  12464. case GGML_OP_GET_REL_POS:
  12465. {
  12466. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12467. } break;
  12468. case GGML_OP_ADD_REL_POS:
  12469. {
  12470. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12471. } break;
  12472. case GGML_OP_MAP_UNARY:
  12473. {
  12474. ggml_unary_op_f32_t fun;
  12475. memcpy(&fun, tensor->op_params, sizeof(fun));
  12476. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12477. }
  12478. break;
  12479. case GGML_OP_MAP_BINARY:
  12480. {
  12481. ggml_binary_op_f32_t fun;
  12482. memcpy(&fun, tensor->op_params, sizeof(fun));
  12483. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12484. }
  12485. break;
  12486. case GGML_OP_MAP_CUSTOM1_F32:
  12487. {
  12488. ggml_custom1_op_f32_t fun;
  12489. memcpy(&fun, tensor->op_params, sizeof(fun));
  12490. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12491. }
  12492. break;
  12493. case GGML_OP_MAP_CUSTOM2_F32:
  12494. {
  12495. ggml_custom2_op_f32_t fun;
  12496. memcpy(&fun, tensor->op_params, sizeof(fun));
  12497. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12498. }
  12499. break;
  12500. case GGML_OP_MAP_CUSTOM3_F32:
  12501. {
  12502. ggml_custom3_op_f32_t fun;
  12503. memcpy(&fun, tensor->op_params, sizeof(fun));
  12504. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12505. }
  12506. break;
  12507. case GGML_OP_MAP_CUSTOM1:
  12508. {
  12509. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12510. }
  12511. break;
  12512. case GGML_OP_MAP_CUSTOM2:
  12513. {
  12514. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12515. }
  12516. break;
  12517. case GGML_OP_MAP_CUSTOM3:
  12518. {
  12519. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12520. }
  12521. break;
  12522. case GGML_OP_CROSS_ENTROPY_LOSS:
  12523. {
  12524. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12525. }
  12526. break;
  12527. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12528. {
  12529. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12530. }
  12531. break;
  12532. case GGML_OP_NONE:
  12533. {
  12534. // nop
  12535. } break;
  12536. case GGML_OP_COUNT:
  12537. {
  12538. GGML_ASSERT(false);
  12539. } break;
  12540. }
  12541. }
  12542. ////////////////////////////////////////////////////////////////////////////////
  12543. static size_t ggml_hash_size(size_t min_sz) {
  12544. // next primes after powers of two
  12545. static const size_t primes[] = {
  12546. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  12547. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  12548. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  12549. 16777259, 33554467, 67108879, 134217757, 268435459,
  12550. 536870923, 1073741827, 2147483659
  12551. };
  12552. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  12553. // find the smallest prime that is larger or equal to min_sz
  12554. size_t l = 0;
  12555. size_t r = n_primes;
  12556. while (l < r) {
  12557. size_t m = (l + r)/2;
  12558. if (primes[m] < min_sz) {
  12559. l = m + 1;
  12560. } else {
  12561. r = m;
  12562. }
  12563. }
  12564. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  12565. return sz;
  12566. }
  12567. static size_t ggml_hash(const void * p) {
  12568. return (size_t)p;
  12569. }
  12570. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12571. size_t h = ggml_hash(key) % hash_set.size;
  12572. // linear probing
  12573. size_t i = h;
  12574. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  12575. i = (i + 1) % hash_set.size;
  12576. if (i == h) {
  12577. // visited all hash table entries -> not found
  12578. return GGML_HASHTABLE_FULL;
  12579. }
  12580. }
  12581. return i;
  12582. }
  12583. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12584. size_t i = ggml_hash_find(hash_set, key);
  12585. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  12586. }
  12587. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12588. size_t i = ggml_hash_find(hash_set, key);
  12589. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12590. if (hash_set.keys[i] == key) {
  12591. return GGML_HASHTABLE_ALREADY_EXISTS;
  12592. }
  12593. // insert
  12594. GGML_ASSERT(hash_set.keys[i] == NULL);
  12595. hash_set.keys[i] = key;
  12596. return i;
  12597. }
  12598. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12599. size_t i = ggml_hash_find(hash_set, key);
  12600. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12601. hash_set.keys[i] = key;
  12602. return i;
  12603. }
  12604. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  12605. size = ggml_hash_size(size);
  12606. struct ggml_hash_set result;
  12607. result.size = size;
  12608. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  12609. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  12610. return result;
  12611. }
  12612. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  12613. GGML_FREE(hash_set.keys);
  12614. }
  12615. struct hash_map {
  12616. struct ggml_hash_set set;
  12617. struct ggml_tensor ** vals;
  12618. };
  12619. static struct hash_map * ggml_new_hash_map(size_t size) {
  12620. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  12621. result->set = ggml_hash_set_new(size);
  12622. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  12623. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  12624. return result;
  12625. }
  12626. static void ggml_hash_map_free(struct hash_map * map) {
  12627. ggml_hash_set_free(map->set);
  12628. GGML_FREE(map->vals);
  12629. GGML_FREE(map);
  12630. }
  12631. // gradient checkpointing
  12632. static struct ggml_tensor * ggml_recompute_graph_node(
  12633. struct ggml_context * ctx,
  12634. struct ggml_cgraph * graph,
  12635. struct hash_map * replacements,
  12636. struct ggml_tensor * node) {
  12637. if (node == NULL) {
  12638. return NULL;
  12639. }
  12640. if (node->is_param) {
  12641. return node;
  12642. }
  12643. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  12644. return node;
  12645. }
  12646. int count_children = 0;
  12647. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12648. if (node->src[k]) {
  12649. ++count_children;
  12650. }
  12651. }
  12652. if (count_children == 0) {
  12653. return node;
  12654. }
  12655. size_t i = ggml_hash_find(replacements->set, node);
  12656. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  12657. if (replacements->set.keys[i] == node) {
  12658. return replacements->vals[i];
  12659. }
  12660. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  12661. // insert clone into replacements
  12662. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  12663. replacements->set.keys[i] = node;
  12664. replacements->vals[i] = clone;
  12665. clone->op = node->op;
  12666. clone->grad = node->grad;
  12667. clone->is_param = node->is_param;
  12668. clone->extra = node->extra;
  12669. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12670. clone->nb[k] = node->nb[k];
  12671. }
  12672. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12673. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12674. }
  12675. if (node->view_src != NULL) {
  12676. clone->data = (node->view_src->data == NULL)
  12677. ? NULL // view_src not yet allocated
  12678. : (char *) node->view_src->data // view_src already allocated
  12679. + node->view_offs;
  12680. clone->view_src = node->view_src;
  12681. clone->view_offs = node->view_offs;
  12682. }
  12683. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12684. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12685. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12686. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12687. return clone;
  12688. }
  12689. void ggml_build_backward_gradient_checkpointing(
  12690. struct ggml_context * ctx,
  12691. struct ggml_cgraph * gf,
  12692. struct ggml_cgraph * gb,
  12693. struct ggml_cgraph * gb_tmp,
  12694. struct ggml_tensor * * checkpoints,
  12695. int n_checkpoints) {
  12696. ggml_graph_cpy(gf, gb_tmp);
  12697. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12698. if (n_checkpoints <= 0) {
  12699. ggml_graph_cpy(gb_tmp, gb);
  12700. return;
  12701. }
  12702. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  12703. // insert checkpoints in replacements
  12704. for (int i = 0; i < n_checkpoints; ++i) {
  12705. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  12706. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  12707. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  12708. replacements->set.keys[k] = checkpoints[i];
  12709. replacements->vals[k] = checkpoints[i];
  12710. }
  12711. ggml_graph_cpy(gf, gb);
  12712. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12713. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12714. // by recomputing them from checkpoints
  12715. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12716. struct ggml_tensor * node = gb_tmp->nodes[i];
  12717. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12718. // insert new tensors recomputing src, reusing already made replacements,
  12719. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12720. // recurse for input tensors,
  12721. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  12722. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12723. }
  12724. // insert rewritten backward node with replacements made into resulting backward graph gb
  12725. ggml_build_forward_expand(gb, node);
  12726. }
  12727. ggml_hash_map_free(replacements);
  12728. }
  12729. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12730. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12731. if (ggml_hash_contains(zero_table, a)) {
  12732. return b;
  12733. } else {
  12734. return ggml_add_impl(ctx, a, b, false);
  12735. }
  12736. }
  12737. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  12738. if (ggml_hash_contains(zero_table, a)) {
  12739. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  12740. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12741. } else {
  12742. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12743. }
  12744. }
  12745. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12746. if (ggml_hash_contains(zero_table, a)) {
  12747. return ggml_repeat(ctx, b, a);
  12748. } else {
  12749. return ggml_add1_impl(ctx, a, b, false);
  12750. }
  12751. }
  12752. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12753. if (ggml_hash_contains(zero_table, a)) {
  12754. return ggml_neg(ctx, b);
  12755. } else {
  12756. return ggml_sub_impl(ctx, a, b, false);
  12757. }
  12758. }
  12759. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  12760. struct ggml_tensor * src0 = tensor->src[0];
  12761. struct ggml_tensor * src1 = tensor->src[1];
  12762. switch (tensor->op) {
  12763. case GGML_OP_DUP:
  12764. {
  12765. if (src0->grad) {
  12766. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12767. }
  12768. } break;
  12769. case GGML_OP_ADD:
  12770. {
  12771. if (src0->grad) {
  12772. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12773. }
  12774. if (src1->grad) {
  12775. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12776. }
  12777. } break;
  12778. case GGML_OP_ADD1:
  12779. {
  12780. if (src0->grad) {
  12781. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12782. }
  12783. if (src1->grad) {
  12784. src1->grad = ggml_add_or_set(ctx,
  12785. src1->grad,
  12786. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12787. zero_table);
  12788. }
  12789. } break;
  12790. case GGML_OP_ACC:
  12791. {
  12792. if (src0->grad) {
  12793. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12794. }
  12795. if (src1->grad) {
  12796. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12797. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12798. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12799. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12800. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12801. tensor->grad,
  12802. src1->grad->ne[0],
  12803. src1->grad->ne[1],
  12804. src1->grad->ne[2],
  12805. src1->grad->ne[3],
  12806. nb1, nb2, nb3, offset);
  12807. src1->grad =
  12808. ggml_add_or_set(ctx,
  12809. src1->grad,
  12810. ggml_reshape(ctx,
  12811. ggml_cont(ctx, tensor_grad_view),
  12812. src1->grad),
  12813. zero_table);
  12814. }
  12815. } break;
  12816. case GGML_OP_SUB:
  12817. {
  12818. if (src0->grad) {
  12819. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12820. }
  12821. if (src1->grad) {
  12822. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12823. }
  12824. } break;
  12825. case GGML_OP_MUL:
  12826. {
  12827. if (src0->grad) {
  12828. src0->grad =
  12829. ggml_add_or_set(ctx,
  12830. src0->grad,
  12831. ggml_mul(ctx, src1, tensor->grad),
  12832. zero_table);
  12833. }
  12834. if (src1->grad) {
  12835. src1->grad =
  12836. ggml_add_or_set(ctx,
  12837. src1->grad,
  12838. ggml_mul(ctx, src0, tensor->grad),
  12839. zero_table);
  12840. }
  12841. } break;
  12842. case GGML_OP_DIV:
  12843. {
  12844. if (src0->grad) {
  12845. src0->grad =
  12846. ggml_add_or_set(ctx,
  12847. src0->grad,
  12848. ggml_div(ctx, tensor->grad, src1),
  12849. zero_table);
  12850. }
  12851. if (src1->grad) {
  12852. src1->grad =
  12853. ggml_sub_or_set(ctx,
  12854. src1->grad,
  12855. ggml_mul(ctx,
  12856. tensor->grad,
  12857. ggml_div(ctx, tensor, src1)),
  12858. zero_table);
  12859. }
  12860. } break;
  12861. case GGML_OP_SQR:
  12862. {
  12863. if (src0->grad) {
  12864. src0->grad =
  12865. ggml_add_or_set(ctx,
  12866. src0->grad,
  12867. ggml_scale(ctx,
  12868. ggml_mul(ctx, src0, tensor->grad),
  12869. 2.0f),
  12870. zero_table);
  12871. }
  12872. } break;
  12873. case GGML_OP_SQRT:
  12874. {
  12875. if (src0->grad) {
  12876. src0->grad =
  12877. ggml_add_or_set(ctx,
  12878. src0->grad,
  12879. ggml_scale(ctx,
  12880. ggml_div(ctx,
  12881. tensor->grad,
  12882. tensor),
  12883. 0.5f),
  12884. zero_table);
  12885. }
  12886. } break;
  12887. case GGML_OP_LOG:
  12888. {
  12889. if (src0->grad) {
  12890. src0->grad =
  12891. ggml_add_or_set(ctx,
  12892. src0->grad,
  12893. ggml_div(ctx,
  12894. tensor->grad,
  12895. src0),
  12896. zero_table);
  12897. }
  12898. } break;
  12899. case GGML_OP_SUM:
  12900. {
  12901. if (src0->grad) {
  12902. src0->grad =
  12903. ggml_add1_or_set(ctx,
  12904. src0->grad,
  12905. tensor->grad,
  12906. zero_table);
  12907. }
  12908. } break;
  12909. case GGML_OP_SUM_ROWS:
  12910. {
  12911. if (src0->grad) {
  12912. src0->grad =
  12913. ggml_add_or_set(ctx,
  12914. src0->grad,
  12915. ggml_repeat(ctx,
  12916. tensor->grad,
  12917. src0->grad),
  12918. zero_table);
  12919. }
  12920. } break;
  12921. case GGML_OP_MEAN:
  12922. case GGML_OP_ARGMAX:
  12923. {
  12924. GGML_ASSERT(false); // TODO: implement
  12925. } break;
  12926. case GGML_OP_REPEAT:
  12927. {
  12928. // necessary for llama
  12929. if (src0->grad) {
  12930. src0->grad = ggml_add_or_set(ctx,
  12931. src0->grad,
  12932. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12933. zero_table);
  12934. }
  12935. } break;
  12936. case GGML_OP_REPEAT_BACK:
  12937. {
  12938. if (src0->grad) {
  12939. // TODO: test this
  12940. src0->grad = ggml_add_or_set(ctx,
  12941. src0->grad,
  12942. ggml_repeat(ctx, tensor->grad, src0->grad),
  12943. zero_table);
  12944. }
  12945. } break;
  12946. case GGML_OP_CONCAT:
  12947. {
  12948. GGML_ASSERT(false); // TODO: implement
  12949. } break;
  12950. case GGML_OP_SILU_BACK:
  12951. {
  12952. GGML_ASSERT(false); // TODO: not implemented
  12953. } break;
  12954. case GGML_OP_NORM:
  12955. {
  12956. GGML_ASSERT(false); // TODO: not implemented
  12957. } break;
  12958. case GGML_OP_RMS_NORM:
  12959. {
  12960. // necessary for llama
  12961. if (src0->grad) {
  12962. float eps;
  12963. memcpy(&eps, tensor->op_params, sizeof(float));
  12964. src0->grad = ggml_add_or_set(ctx,
  12965. src0->grad,
  12966. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  12967. zero_table);
  12968. }
  12969. } break;
  12970. case GGML_OP_RMS_NORM_BACK:
  12971. {
  12972. GGML_ASSERT(false); // TODO: not implemented
  12973. } break;
  12974. case GGML_OP_GROUP_NORM:
  12975. {
  12976. GGML_ASSERT(false); // TODO: not implemented
  12977. } break;
  12978. case GGML_OP_MUL_MAT:
  12979. {
  12980. // https://cs231n.github.io/optimization-2/#staged
  12981. // # forward pass
  12982. // s0 = np.random.randn(5, 10)
  12983. // s1 = np.random.randn(10, 3)
  12984. // t = s0.dot(s1)
  12985. // # now suppose we had the gradient on t from above in the circuit
  12986. // dt = np.random.randn(*t.shape) # same shape as t
  12987. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12988. // ds1 = t.T.dot(dt)
  12989. // tensor.shape [m,p,qq,rr]
  12990. // src0.shape [n,m,q1,r1]
  12991. // src1.shape [n,p,qq,rr]
  12992. // necessary for llama
  12993. if (src0->grad) {
  12994. struct ggml_tensor * s1_tg =
  12995. ggml_out_prod(ctx, // [n,m,qq,rr]
  12996. src1, // [n,p,qq,rr]
  12997. tensor->grad); // [m,p,qq,rr]
  12998. const int64_t qq = s1_tg->ne[2];
  12999. const int64_t rr = s1_tg->ne[3];
  13000. const int64_t q1 = src0->ne[2];
  13001. const int64_t r1 = src0->ne[3];
  13002. const bool ne2_broadcasted = qq > q1;
  13003. const bool ne3_broadcasted = rr > r1;
  13004. if (ne2_broadcasted || ne3_broadcasted) {
  13005. // sum broadcast repetitions of s1_tg into shape of src0
  13006. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  13007. }
  13008. src0->grad =
  13009. ggml_add_or_set(ctx,
  13010. src0->grad, // [n,m,q1,r1]
  13011. s1_tg, // [n,m,q1,r1]
  13012. zero_table);
  13013. }
  13014. if (src1->grad) {
  13015. src1->grad =
  13016. ggml_add_or_set(ctx,
  13017. src1->grad, // [n,p,qq,rr]
  13018. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  13019. // ggml_cont(ctx, // [m,n,q1,r1]
  13020. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  13021. // tensor->grad), // [m,p,qq,rr]
  13022. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13023. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13024. // // and then use ggml_out_prod
  13025. ggml_out_prod(ctx, // [n,p,qq,rr]
  13026. src0, // [n,m,q1,r1]
  13027. ggml_transpose(ctx, // [p,m,qq,rr]
  13028. tensor->grad)), // [m,p,qq,rr]
  13029. zero_table);
  13030. }
  13031. } break;
  13032. case GGML_OP_MUL_MAT_ID:
  13033. {
  13034. GGML_ASSERT(false); // TODO: not implemented
  13035. } break;
  13036. case GGML_OP_OUT_PROD:
  13037. {
  13038. GGML_ASSERT(false); // TODO: not implemented
  13039. } break;
  13040. case GGML_OP_SCALE:
  13041. {
  13042. // necessary for llama
  13043. if (src0->grad) {
  13044. float s;
  13045. memcpy(&s, tensor->op_params, sizeof(float));
  13046. src0->grad =
  13047. ggml_add_or_set(ctx,
  13048. src0->grad,
  13049. ggml_scale_impl(ctx, tensor->grad, s, false),
  13050. zero_table);
  13051. }
  13052. } break;
  13053. case GGML_OP_SET:
  13054. {
  13055. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13056. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13057. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13058. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13059. struct ggml_tensor * tensor_grad_view = NULL;
  13060. if (src0->grad || src1->grad) {
  13061. GGML_ASSERT(src0->type == tensor->type);
  13062. GGML_ASSERT(tensor->grad->type == tensor->type);
  13063. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13064. tensor_grad_view = ggml_view_4d(ctx,
  13065. tensor->grad,
  13066. src1->grad->ne[0],
  13067. src1->grad->ne[1],
  13068. src1->grad->ne[2],
  13069. src1->grad->ne[3],
  13070. nb1, nb2, nb3, offset);
  13071. }
  13072. if (src0->grad) {
  13073. src0->grad = ggml_add_or_set(ctx,
  13074. src0->grad,
  13075. ggml_acc_impl(ctx,
  13076. tensor->grad,
  13077. ggml_neg(ctx, tensor_grad_view),
  13078. nb1, nb2, nb3, offset, false),
  13079. zero_table);
  13080. }
  13081. if (src1->grad) {
  13082. src1->grad =
  13083. ggml_add_or_set(ctx,
  13084. src1->grad,
  13085. ggml_reshape(ctx,
  13086. ggml_cont(ctx, tensor_grad_view),
  13087. src1->grad),
  13088. zero_table);
  13089. }
  13090. } break;
  13091. case GGML_OP_CPY:
  13092. {
  13093. // necessary for llama
  13094. // cpy overwrites value of src1 by src0 and returns view(src1)
  13095. // the overwriting is mathematically equivalent to:
  13096. // tensor = src0 * 1 + src1 * 0
  13097. if (src0->grad) {
  13098. // dsrc0 = dtensor * 1
  13099. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13100. }
  13101. if (src1->grad) {
  13102. // dsrc1 = dtensor * 0 -> noop
  13103. }
  13104. } break;
  13105. case GGML_OP_CONT:
  13106. {
  13107. // same as cpy
  13108. if (src0->grad) {
  13109. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13110. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13111. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13112. }
  13113. } break;
  13114. case GGML_OP_RESHAPE:
  13115. {
  13116. // necessary for llama
  13117. if (src0->grad) {
  13118. src0->grad =
  13119. ggml_add_or_set(ctx, src0->grad,
  13120. ggml_reshape(ctx,
  13121. ggml_is_contiguous(tensor->grad)
  13122. ? tensor->grad
  13123. : ggml_cont(ctx, tensor->grad),
  13124. src0->grad),
  13125. zero_table);
  13126. }
  13127. } break;
  13128. case GGML_OP_VIEW:
  13129. {
  13130. // necessary for llama
  13131. if (src0->grad) {
  13132. size_t offset;
  13133. memcpy(&offset, tensor->op_params, sizeof(offset));
  13134. size_t nb1 = tensor->nb[1];
  13135. size_t nb2 = tensor->nb[2];
  13136. size_t nb3 = tensor->nb[3];
  13137. if (src0->type != src0->grad->type) {
  13138. // gradient is typically F32, but src0 could be other type
  13139. size_t ng = ggml_element_size(src0->grad);
  13140. size_t n0 = ggml_element_size(src0);
  13141. GGML_ASSERT(offset % n0 == 0);
  13142. GGML_ASSERT(nb1 % n0 == 0);
  13143. GGML_ASSERT(nb2 % n0 == 0);
  13144. GGML_ASSERT(nb3 % n0 == 0);
  13145. offset = (offset / n0) * ng;
  13146. nb1 = (nb1 / n0) * ng;
  13147. nb2 = (nb2 / n0) * ng;
  13148. nb3 = (nb3 / n0) * ng;
  13149. }
  13150. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  13151. }
  13152. } break;
  13153. case GGML_OP_PERMUTE:
  13154. {
  13155. // necessary for llama
  13156. if (src0->grad) {
  13157. int32_t * axes = (int32_t *) tensor->op_params;
  13158. int axis0 = axes[0] & 0x3;
  13159. int axis1 = axes[1] & 0x3;
  13160. int axis2 = axes[2] & 0x3;
  13161. int axis3 = axes[3] & 0x3;
  13162. int axes_backward[4] = {0,0,0,0};
  13163. axes_backward[axis0] = 0;
  13164. axes_backward[axis1] = 1;
  13165. axes_backward[axis2] = 2;
  13166. axes_backward[axis3] = 3;
  13167. src0->grad =
  13168. ggml_add_or_set(ctx, src0->grad,
  13169. ggml_permute(ctx,
  13170. tensor->grad,
  13171. axes_backward[0],
  13172. axes_backward[1],
  13173. axes_backward[2],
  13174. axes_backward[3]),
  13175. zero_table);
  13176. }
  13177. } break;
  13178. case GGML_OP_TRANSPOSE:
  13179. {
  13180. // necessary for llama
  13181. if (src0->grad) {
  13182. src0->grad =
  13183. ggml_add_or_set(ctx, src0->grad,
  13184. ggml_transpose(ctx, tensor->grad),
  13185. zero_table);
  13186. }
  13187. } break;
  13188. case GGML_OP_GET_ROWS:
  13189. {
  13190. // necessary for llama (only for tokenizer)
  13191. if (src0->grad) {
  13192. src0->grad =
  13193. ggml_add_or_set(ctx, src0->grad,
  13194. // last ggml_get_rows_back argument src0->grad is only
  13195. // necessary to setup correct output shape
  13196. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13197. zero_table);
  13198. }
  13199. if (src1->grad) {
  13200. // noop
  13201. }
  13202. } break;
  13203. case GGML_OP_GET_ROWS_BACK:
  13204. {
  13205. GGML_ASSERT(false); // TODO: not implemented
  13206. } break;
  13207. case GGML_OP_DIAG:
  13208. {
  13209. GGML_ASSERT(false); // TODO: not implemented
  13210. } break;
  13211. case GGML_OP_DIAG_MASK_INF:
  13212. {
  13213. // necessary for llama
  13214. if (src0->grad) {
  13215. const int n_past = ((int32_t *) tensor->op_params)[0];
  13216. src0->grad =
  13217. ggml_add_or_set(ctx, src0->grad,
  13218. /* ggml_diag_mask_inf_impl() shouldn't be here */
  13219. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  13220. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13221. zero_table);
  13222. }
  13223. } break;
  13224. case GGML_OP_DIAG_MASK_ZERO:
  13225. {
  13226. // necessary for llama
  13227. if (src0->grad) {
  13228. const int n_past = ((int32_t *) tensor->op_params)[0];
  13229. src0->grad =
  13230. ggml_add_or_set(ctx, src0->grad,
  13231. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13232. zero_table);
  13233. }
  13234. } break;
  13235. case GGML_OP_SOFT_MAX:
  13236. {
  13237. // necessary for llama
  13238. if (src0->grad) {
  13239. src0->grad =
  13240. ggml_add_or_set(ctx, src0->grad,
  13241. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13242. zero_table);
  13243. }
  13244. } break;
  13245. case GGML_OP_SOFT_MAX_BACK:
  13246. {
  13247. GGML_ASSERT(false); // TODO: not implemented
  13248. } break;
  13249. case GGML_OP_ROPE:
  13250. {
  13251. // necessary for llama
  13252. if (src0->grad) {
  13253. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13254. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13255. const int mode = ((int32_t *) tensor->op_params)[2];
  13256. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13257. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13258. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13259. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13260. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13261. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13262. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13263. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13264. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13265. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13266. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13267. src0->grad = ggml_add_or_set(ctx,
  13268. src0->grad,
  13269. ggml_rope_back(ctx,
  13270. tensor->grad,
  13271. src1,
  13272. n_dims,
  13273. mode,
  13274. n_ctx,
  13275. n_orig_ctx,
  13276. freq_base,
  13277. freq_scale,
  13278. ext_factor,
  13279. attn_factor,
  13280. beta_fast,
  13281. beta_slow,
  13282. xpos_base,
  13283. xpos_down),
  13284. zero_table);
  13285. }
  13286. } break;
  13287. case GGML_OP_ROPE_BACK:
  13288. {
  13289. if (src0->grad) {
  13290. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13291. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13292. const int mode = ((int32_t *) tensor->op_params)[2];
  13293. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13294. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13295. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13296. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13297. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13298. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13299. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13300. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13301. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13302. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13303. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13304. src0->grad = ggml_add_or_set(ctx,
  13305. src0->grad,
  13306. ggml_rope_impl(ctx,
  13307. tensor->grad,
  13308. src1,
  13309. n_dims,
  13310. mode,
  13311. n_ctx,
  13312. n_orig_ctx,
  13313. freq_base,
  13314. freq_scale,
  13315. ext_factor,
  13316. attn_factor,
  13317. beta_fast,
  13318. beta_slow,
  13319. xpos_base,
  13320. xpos_down,
  13321. false),
  13322. zero_table);
  13323. }
  13324. } break;
  13325. case GGML_OP_ALIBI:
  13326. {
  13327. GGML_ASSERT(false); // TODO: not implemented
  13328. } break;
  13329. case GGML_OP_CLAMP:
  13330. {
  13331. GGML_ASSERT(false); // TODO: not implemented
  13332. } break;
  13333. case GGML_OP_CONV_TRANSPOSE_1D:
  13334. {
  13335. GGML_ASSERT(false); // TODO: not implemented
  13336. } break;
  13337. case GGML_OP_IM2COL:
  13338. {
  13339. GGML_ASSERT(false); // TODO: not implemented
  13340. } break;
  13341. case GGML_OP_CONV_TRANSPOSE_2D:
  13342. {
  13343. GGML_ASSERT(false); // TODO: not implemented
  13344. } break;
  13345. case GGML_OP_POOL_1D:
  13346. {
  13347. GGML_ASSERT(false); // TODO: not implemented
  13348. } break;
  13349. case GGML_OP_POOL_2D:
  13350. {
  13351. GGML_ASSERT(false); // TODO: not implemented
  13352. } break;
  13353. case GGML_OP_UPSCALE:
  13354. {
  13355. GGML_ASSERT(false); // TODO: not implemented
  13356. } break;
  13357. case GGML_OP_PAD:
  13358. {
  13359. GGML_ASSERT(false); // TODO: not implemented
  13360. } break;
  13361. case GGML_OP_ARGSORT:
  13362. {
  13363. GGML_ASSERT(false); // TODO: not implemented
  13364. } break;
  13365. case GGML_OP_LEAKY_RELU:
  13366. {
  13367. GGML_ASSERT(false); // TODO: not implemented
  13368. } break;
  13369. case GGML_OP_FLASH_ATTN:
  13370. {
  13371. struct ggml_tensor * flash_grad = NULL;
  13372. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13373. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13374. GGML_ASSERT(t == 0 || t == 1);
  13375. bool masked = t != 0;
  13376. flash_grad =
  13377. ggml_flash_attn_back(ctx,
  13378. src0,
  13379. src1,
  13380. tensor->src[2],
  13381. tensor->grad,
  13382. masked);
  13383. }
  13384. struct ggml_tensor * src2 = tensor->src[2];
  13385. const int64_t elem_q = ggml_nelements(src0);
  13386. const int64_t elem_k = ggml_nelements(src1);
  13387. const int64_t elem_v = ggml_nelements(src2);
  13388. enum ggml_type result_type = flash_grad->type;
  13389. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13390. const size_t tsize = ggml_type_size(result_type);
  13391. const size_t offs_q = 0;
  13392. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13393. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13394. if (src0->grad) {
  13395. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  13396. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  13397. src0->grad = ggml_add_or_set(ctx,
  13398. src0->grad,
  13399. grad_q,
  13400. zero_table);
  13401. }
  13402. if (src1->grad) {
  13403. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  13404. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  13405. src1->grad = ggml_add_or_set(ctx,
  13406. src1->grad,
  13407. grad_k,
  13408. zero_table);
  13409. }
  13410. if (src2->grad) {
  13411. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  13412. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  13413. src2->grad = ggml_add_or_set(ctx,
  13414. src2->grad,
  13415. grad_v,
  13416. zero_table);
  13417. }
  13418. } break;
  13419. case GGML_OP_FLASH_FF:
  13420. {
  13421. GGML_ASSERT(false); // not supported
  13422. } break;
  13423. case GGML_OP_FLASH_ATTN_BACK:
  13424. {
  13425. GGML_ASSERT(false); // not supported
  13426. } break;
  13427. case GGML_OP_WIN_PART:
  13428. case GGML_OP_WIN_UNPART:
  13429. case GGML_OP_UNARY:
  13430. {
  13431. switch (ggml_get_unary_op(tensor)) {
  13432. case GGML_UNARY_OP_ABS:
  13433. {
  13434. if (src0->grad) {
  13435. src0->grad =
  13436. ggml_add_or_set(ctx,
  13437. src0->grad,
  13438. ggml_mul(ctx,
  13439. ggml_sgn(ctx, src0),
  13440. tensor->grad),
  13441. zero_table);
  13442. }
  13443. } break;
  13444. case GGML_UNARY_OP_SGN:
  13445. {
  13446. if (src0->grad) {
  13447. // noop
  13448. }
  13449. } break;
  13450. case GGML_UNARY_OP_NEG:
  13451. {
  13452. if (src0->grad) {
  13453. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13454. }
  13455. } break;
  13456. case GGML_UNARY_OP_STEP:
  13457. {
  13458. if (src0->grad) {
  13459. // noop
  13460. }
  13461. } break;
  13462. case GGML_UNARY_OP_TANH:
  13463. {
  13464. GGML_ASSERT(false); // TODO: not implemented
  13465. } break;
  13466. case GGML_UNARY_OP_ELU:
  13467. {
  13468. GGML_ASSERT(false); // TODO: not implemented
  13469. } break;
  13470. case GGML_UNARY_OP_RELU:
  13471. {
  13472. if (src0->grad) {
  13473. src0->grad = ggml_add_or_set(ctx,
  13474. src0->grad,
  13475. ggml_mul(ctx,
  13476. ggml_step(ctx, src0),
  13477. tensor->grad),
  13478. zero_table);
  13479. }
  13480. } break;
  13481. case GGML_UNARY_OP_GELU:
  13482. {
  13483. GGML_ASSERT(false); // TODO: not implemented
  13484. } break;
  13485. case GGML_UNARY_OP_GELU_QUICK:
  13486. {
  13487. GGML_ASSERT(false); // TODO: not implemented
  13488. } break;
  13489. case GGML_UNARY_OP_SILU:
  13490. {
  13491. // necessary for llama
  13492. if (src0->grad) {
  13493. src0->grad = ggml_add_or_set(ctx,
  13494. src0->grad,
  13495. ggml_silu_back(ctx, src0, tensor->grad),
  13496. zero_table);
  13497. }
  13498. } break;
  13499. default:
  13500. GGML_ASSERT(false);
  13501. }
  13502. } break;
  13503. case GGML_OP_GET_REL_POS:
  13504. case GGML_OP_ADD_REL_POS:
  13505. case GGML_OP_MAP_UNARY:
  13506. case GGML_OP_MAP_BINARY:
  13507. case GGML_OP_MAP_CUSTOM1_F32:
  13508. case GGML_OP_MAP_CUSTOM2_F32:
  13509. case GGML_OP_MAP_CUSTOM3_F32:
  13510. case GGML_OP_MAP_CUSTOM1:
  13511. case GGML_OP_MAP_CUSTOM2:
  13512. case GGML_OP_MAP_CUSTOM3:
  13513. {
  13514. GGML_ASSERT(false); // not supported
  13515. } break;
  13516. case GGML_OP_CROSS_ENTROPY_LOSS:
  13517. {
  13518. if (src0->grad) {
  13519. src0->grad = ggml_add_or_set(ctx,
  13520. src0->grad,
  13521. ggml_cross_entropy_loss_back(ctx,
  13522. src0,
  13523. src1,
  13524. tensor->grad),
  13525. zero_table);
  13526. }
  13527. } break;
  13528. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13529. {
  13530. GGML_ASSERT(false); // not supported
  13531. } break;
  13532. case GGML_OP_NONE:
  13533. {
  13534. // nop
  13535. } break;
  13536. case GGML_OP_COUNT:
  13537. {
  13538. GGML_ASSERT(false);
  13539. } break;
  13540. }
  13541. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13542. if (tensor->src[i] && tensor->src[i]->grad) {
  13543. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13544. }
  13545. }
  13546. }
  13547. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13548. if (node->grad == NULL) {
  13549. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13550. // it can also happen during forward pass, if the user performs computations with constants
  13551. if (node->op != GGML_OP_NONE) {
  13552. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13553. }
  13554. }
  13555. // check if already visited
  13556. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  13557. return;
  13558. }
  13559. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13560. const int k =
  13561. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13562. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13563. /* unknown order, just fall back to using i*/ i;
  13564. if (node->src[k]) {
  13565. ggml_visit_parents(cgraph, node->src[k]);
  13566. }
  13567. }
  13568. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13569. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13570. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  13571. if (strlen(node->name) == 0) {
  13572. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13573. }
  13574. cgraph->leafs[cgraph->n_leafs] = node;
  13575. cgraph->n_leafs++;
  13576. } else {
  13577. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  13578. if (strlen(node->name) == 0) {
  13579. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13580. }
  13581. cgraph->nodes[cgraph->n_nodes] = node;
  13582. if (cgraph->grads) {
  13583. cgraph->grads[cgraph->n_nodes] = node->grad;
  13584. }
  13585. cgraph->n_nodes++;
  13586. }
  13587. }
  13588. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13589. if (!expand) {
  13590. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  13591. ggml_graph_clear(cgraph);
  13592. }
  13593. const int n0 = cgraph->n_nodes;
  13594. UNUSED(n0);
  13595. ggml_visit_parents(cgraph, tensor);
  13596. const int n_new = cgraph->n_nodes - n0;
  13597. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13598. if (n_new > 0) {
  13599. // the last added node should always be starting point
  13600. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13601. }
  13602. }
  13603. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13604. ggml_build_forward_impl(cgraph, tensor, true);
  13605. }
  13606. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13607. GGML_ASSERT(gf->n_nodes > 0);
  13608. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13609. if (keep) {
  13610. for (int i = 0; i < gf->n_nodes; i++) {
  13611. struct ggml_tensor * node = gf->nodes[i];
  13612. if (node->grad) {
  13613. node->grad = ggml_dup_tensor(ctx, node);
  13614. gf->grads[i] = node->grad;
  13615. }
  13616. }
  13617. }
  13618. // remember original gradients which start with zero values
  13619. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  13620. for (int i = 0; i < gf->n_nodes; i++) {
  13621. if (gf->grads[i]) {
  13622. ggml_hash_insert(zero_table, gf->grads[i]);
  13623. }
  13624. }
  13625. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13626. struct ggml_tensor * node = gf->nodes[i];
  13627. // inplace operations to add gradients are not created by ggml_compute_backward
  13628. // use allocator to automatically make inplace operations
  13629. if (node->grad) {
  13630. ggml_compute_backward(ctx, node, zero_table);
  13631. }
  13632. }
  13633. for (int i = 0; i < gf->n_nodes; i++) {
  13634. struct ggml_tensor * node = gf->nodes[i];
  13635. if (node->is_param) {
  13636. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13637. ggml_build_forward_expand(gb, node->grad);
  13638. }
  13639. }
  13640. ggml_hash_set_free(zero_table);
  13641. }
  13642. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  13643. size_t nbytes = sizeof(struct ggml_cgraph);
  13644. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  13645. if (grads) {
  13646. nbytes += size * sizeof(struct ggml_tensor *); // grads
  13647. }
  13648. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  13649. return nbytes;
  13650. }
  13651. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  13652. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  13653. }
  13654. size_t ggml_graph_overhead(void) {
  13655. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  13656. }
  13657. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  13658. const size_t obj_size = ggml_graph_nbytes(size, grads);
  13659. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
  13660. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13661. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  13662. size_t hash_size = ggml_hash_size(size * 2);
  13663. struct ggml_tensor ** nodes_ptr = data_start;
  13664. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  13665. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  13666. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  13667. // check that we allocated the correct amount of memory
  13668. assert(obj_size == (size_t) (
  13669. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  13670. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  13671. *cgraph = (struct ggml_cgraph) {
  13672. /*.size =*/ size,
  13673. /*.n_nodes =*/ 0,
  13674. /*.n_leafs =*/ 0,
  13675. /*.nodes =*/ nodes_ptr,
  13676. /*.grads =*/ grads_ptr,
  13677. /*.leafs =*/ leafs_ptr,
  13678. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  13679. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13680. /*.perf_runs =*/ 0,
  13681. /*.perf_cycles =*/ 0,
  13682. /*.perf_time_us =*/ 0,
  13683. };
  13684. return cgraph;
  13685. }
  13686. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13687. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  13688. }
  13689. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  13690. struct ggml_cgraph cgraph = {
  13691. /*.size =*/ 0,
  13692. /*.n_nodes =*/ i1 - i0,
  13693. /*.n_leafs =*/ 0,
  13694. /*.nodes =*/ cgraph0->nodes + i0,
  13695. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  13696. /*.leafs =*/ NULL,
  13697. /*.hash_table =*/ { 0, NULL },
  13698. /*.order =*/ cgraph0->order,
  13699. /*.perf_runs =*/ 0,
  13700. /*.perf_cycles =*/ 0,
  13701. /*.perf_time_us =*/ 0,
  13702. };
  13703. return cgraph;
  13704. }
  13705. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  13706. GGML_ASSERT(dst->size >= src->n_leafs);
  13707. GGML_ASSERT(dst->size >= src->n_nodes);
  13708. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  13709. dst->n_leafs = src->n_leafs;
  13710. dst->n_nodes = src->n_nodes;
  13711. dst->order = src->order;
  13712. for (int i = 0; i < src->n_leafs; ++i) {
  13713. dst->leafs[i] = src->leafs[i];
  13714. }
  13715. for (int i = 0; i < src->n_nodes; ++i) {
  13716. dst->nodes[i] = src->nodes[i];
  13717. }
  13718. if (src->grads) {
  13719. GGML_ASSERT(dst->grads != NULL);
  13720. for (int i = 0; i < src->n_nodes; ++i) {
  13721. dst->grads[i] = src->grads[i];
  13722. }
  13723. }
  13724. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  13725. if (src->visited_hash_table.keys[i]) {
  13726. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  13727. }
  13728. }
  13729. }
  13730. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13731. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  13732. ggml_graph_cpy(cgraph, result);
  13733. return result;
  13734. }
  13735. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13736. GGML_ASSERT(cgraph->grads != NULL);
  13737. for (int i = 0; i < cgraph->n_nodes; i++) {
  13738. struct ggml_tensor * grad = cgraph->grads[i];
  13739. if (grad) {
  13740. ggml_set_zero(grad);
  13741. }
  13742. }
  13743. }
  13744. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  13745. cgraph->n_leafs = 0;
  13746. cgraph->n_nodes = 0;
  13747. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  13748. }
  13749. //
  13750. // thread data
  13751. //
  13752. // synchronization is done via busy loops
  13753. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13754. //
  13755. #ifdef __APPLE__
  13756. //#include <os/lock.h>
  13757. //
  13758. //typedef os_unfair_lock ggml_lock_t;
  13759. //
  13760. //#define ggml_lock_init(x) UNUSED(x)
  13761. //#define ggml_lock_destroy(x) UNUSED(x)
  13762. //#define ggml_lock_lock os_unfair_lock_lock
  13763. //#define ggml_lock_unlock os_unfair_lock_unlock
  13764. //
  13765. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13766. typedef int ggml_lock_t;
  13767. #define ggml_lock_init(x) UNUSED(x)
  13768. #define ggml_lock_destroy(x) UNUSED(x)
  13769. #define ggml_lock_lock(x) UNUSED(x)
  13770. #define ggml_lock_unlock(x) UNUSED(x)
  13771. #define GGML_LOCK_INITIALIZER 0
  13772. typedef pthread_t ggml_thread_t;
  13773. #define ggml_thread_create pthread_create
  13774. #define ggml_thread_join pthread_join
  13775. #else
  13776. //typedef pthread_spinlock_t ggml_lock_t;
  13777. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13778. //#define ggml_lock_destroy pthread_spin_destroy
  13779. //#define ggml_lock_lock pthread_spin_lock
  13780. //#define ggml_lock_unlock pthread_spin_unlock
  13781. typedef int ggml_lock_t;
  13782. #define ggml_lock_init(x) UNUSED(x)
  13783. #define ggml_lock_destroy(x) UNUSED(x)
  13784. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13785. #define ggml_lock_lock(x) _mm_pause()
  13786. #else
  13787. #define ggml_lock_lock(x) UNUSED(x)
  13788. #endif
  13789. #define ggml_lock_unlock(x) UNUSED(x)
  13790. #define GGML_LOCK_INITIALIZER 0
  13791. typedef pthread_t ggml_thread_t;
  13792. #define ggml_thread_create pthread_create
  13793. #define ggml_thread_join pthread_join
  13794. #endif
  13795. // Android's libc implementation "bionic" does not support setting affinity
  13796. #if defined(__linux__) && !defined(__BIONIC__)
  13797. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13798. if (!ggml_is_numa()) {
  13799. return;
  13800. }
  13801. // run thread on node_num thread_n / (threads per node)
  13802. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13803. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13804. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13805. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13806. CPU_ZERO_S(setsize, cpus);
  13807. for (size_t i = 0; i < node->n_cpus; ++i) {
  13808. CPU_SET_S(node->cpus[i], setsize, cpus);
  13809. }
  13810. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13811. if (rv) {
  13812. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13813. strerror(rv));
  13814. }
  13815. CPU_FREE(cpus);
  13816. }
  13817. static void clear_numa_thread_affinity(void) {
  13818. if (!ggml_is_numa()) {
  13819. return;
  13820. }
  13821. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13822. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13823. CPU_ZERO_S(setsize, cpus);
  13824. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13825. CPU_SET_S(i, setsize, cpus);
  13826. }
  13827. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13828. if (rv) {
  13829. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13830. strerror(rv));
  13831. }
  13832. CPU_FREE(cpus);
  13833. }
  13834. #else
  13835. // TODO: Windows etc.
  13836. // (the linux implementation may also work on BSD, someone should test)
  13837. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13838. static void clear_numa_thread_affinity(void) {}
  13839. #endif
  13840. struct ggml_compute_state_shared {
  13841. const struct ggml_cgraph * cgraph;
  13842. const struct ggml_cplan * cplan;
  13843. int64_t perf_node_start_cycles;
  13844. int64_t perf_node_start_time_us;
  13845. const int n_threads;
  13846. // synchronization primitives
  13847. atomic_int n_active; // num active threads
  13848. atomic_int node_n; // active graph node
  13849. atomic_int node_task; // active graph node task phase
  13850. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13851. void * abort_callback_data;
  13852. };
  13853. struct ggml_compute_state {
  13854. ggml_thread_t thrd;
  13855. int ith;
  13856. struct ggml_compute_state_shared * shared;
  13857. };
  13858. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13859. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13860. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13861. node->perf_runs++;
  13862. node->perf_cycles += cycles_cur;
  13863. node->perf_time_us += time_us_cur;
  13864. }
  13865. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  13866. int n_tasks = 0;
  13867. switch (node->op) {
  13868. case GGML_OP_CPY:
  13869. case GGML_OP_DUP:
  13870. case GGML_OP_ADD:
  13871. case GGML_OP_ADD1:
  13872. case GGML_OP_ACC:
  13873. {
  13874. n_tasks = n_threads;
  13875. } break;
  13876. case GGML_OP_SUB:
  13877. case GGML_OP_SQR:
  13878. case GGML_OP_SQRT:
  13879. case GGML_OP_LOG:
  13880. case GGML_OP_SUM:
  13881. case GGML_OP_SUM_ROWS:
  13882. case GGML_OP_MEAN:
  13883. case GGML_OP_ARGMAX:
  13884. case GGML_OP_REPEAT:
  13885. case GGML_OP_REPEAT_BACK:
  13886. case GGML_OP_LEAKY_RELU:
  13887. {
  13888. n_tasks = 1;
  13889. } break;
  13890. case GGML_OP_UNARY:
  13891. switch (ggml_get_unary_op(node)) {
  13892. case GGML_UNARY_OP_ABS:
  13893. case GGML_UNARY_OP_SGN:
  13894. case GGML_UNARY_OP_NEG:
  13895. case GGML_UNARY_OP_STEP:
  13896. case GGML_UNARY_OP_TANH:
  13897. case GGML_UNARY_OP_ELU:
  13898. case GGML_UNARY_OP_RELU:
  13899. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  13900. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  13901. {
  13902. n_tasks = 1;
  13903. } break;
  13904. case GGML_UNARY_OP_GELU:
  13905. case GGML_UNARY_OP_GELU_QUICK:
  13906. case GGML_UNARY_OP_SILU:
  13907. {
  13908. n_tasks = n_threads;
  13909. } break;
  13910. default:
  13911. GGML_ASSERT(false);
  13912. }
  13913. break;
  13914. case GGML_OP_SILU_BACK:
  13915. case GGML_OP_MUL:
  13916. case GGML_OP_DIV:
  13917. case GGML_OP_NORM:
  13918. case GGML_OP_RMS_NORM:
  13919. case GGML_OP_RMS_NORM_BACK:
  13920. case GGML_OP_GROUP_NORM:
  13921. case GGML_OP_CONCAT:
  13922. {
  13923. n_tasks = n_threads;
  13924. } break;
  13925. case GGML_OP_MUL_MAT:
  13926. {
  13927. n_tasks = n_threads;
  13928. // TODO: use different scheduling for different matrix sizes
  13929. //const int nr0 = ggml_nrows(node->src[0]);
  13930. //const int nr1 = ggml_nrows(node->src[1]);
  13931. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13932. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13933. } break;
  13934. case GGML_OP_MUL_MAT_ID:
  13935. {
  13936. n_tasks = n_threads;
  13937. } break;
  13938. case GGML_OP_OUT_PROD:
  13939. {
  13940. n_tasks = n_threads;
  13941. } break;
  13942. case GGML_OP_SCALE:
  13943. case GGML_OP_SET:
  13944. case GGML_OP_CONT:
  13945. case GGML_OP_RESHAPE:
  13946. case GGML_OP_VIEW:
  13947. case GGML_OP_PERMUTE:
  13948. case GGML_OP_TRANSPOSE:
  13949. case GGML_OP_GET_ROWS:
  13950. case GGML_OP_GET_ROWS_BACK:
  13951. case GGML_OP_DIAG:
  13952. {
  13953. n_tasks = 1;
  13954. } break;
  13955. case GGML_OP_DIAG_MASK_ZERO:
  13956. case GGML_OP_DIAG_MASK_INF:
  13957. case GGML_OP_SOFT_MAX_BACK:
  13958. case GGML_OP_ROPE:
  13959. case GGML_OP_ROPE_BACK:
  13960. case GGML_OP_ADD_REL_POS:
  13961. {
  13962. n_tasks = n_threads;
  13963. } break;
  13964. case GGML_OP_ALIBI:
  13965. {
  13966. n_tasks = 1; //TODO
  13967. } break;
  13968. case GGML_OP_CLAMP:
  13969. {
  13970. n_tasks = 1; //TODO
  13971. } break;
  13972. case GGML_OP_SOFT_MAX:
  13973. {
  13974. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  13975. } break;
  13976. case GGML_OP_CONV_TRANSPOSE_1D:
  13977. {
  13978. n_tasks = n_threads;
  13979. } break;
  13980. case GGML_OP_IM2COL:
  13981. {
  13982. n_tasks = n_threads;
  13983. } break;
  13984. case GGML_OP_CONV_TRANSPOSE_2D:
  13985. {
  13986. n_tasks = n_threads;
  13987. } break;
  13988. case GGML_OP_POOL_1D:
  13989. case GGML_OP_POOL_2D:
  13990. {
  13991. n_tasks = 1;
  13992. } break;
  13993. case GGML_OP_UPSCALE:
  13994. {
  13995. n_tasks = n_threads;
  13996. } break;
  13997. case GGML_OP_PAD:
  13998. {
  13999. n_tasks = n_threads;
  14000. } break;
  14001. case GGML_OP_ARGSORT:
  14002. {
  14003. n_tasks = n_threads;
  14004. } break;
  14005. case GGML_OP_FLASH_ATTN:
  14006. {
  14007. n_tasks = n_threads;
  14008. } break;
  14009. case GGML_OP_FLASH_FF:
  14010. {
  14011. n_tasks = n_threads;
  14012. } break;
  14013. case GGML_OP_FLASH_ATTN_BACK:
  14014. {
  14015. n_tasks = n_threads;
  14016. } break;
  14017. case GGML_OP_WIN_PART:
  14018. case GGML_OP_WIN_UNPART:
  14019. case GGML_OP_GET_REL_POS:
  14020. case GGML_OP_MAP_UNARY:
  14021. case GGML_OP_MAP_BINARY:
  14022. case GGML_OP_MAP_CUSTOM1_F32:
  14023. case GGML_OP_MAP_CUSTOM2_F32:
  14024. case GGML_OP_MAP_CUSTOM3_F32:
  14025. {
  14026. n_tasks = 1;
  14027. } break;
  14028. case GGML_OP_MAP_CUSTOM1:
  14029. {
  14030. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  14031. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14032. n_tasks = n_threads;
  14033. } else {
  14034. n_tasks = MIN(p->n_tasks, n_threads);
  14035. }
  14036. } break;
  14037. case GGML_OP_MAP_CUSTOM2:
  14038. {
  14039. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  14040. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14041. n_tasks = n_threads;
  14042. } else {
  14043. n_tasks = MIN(p->n_tasks, n_threads);
  14044. }
  14045. } break;
  14046. case GGML_OP_MAP_CUSTOM3:
  14047. {
  14048. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  14049. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14050. n_tasks = n_threads;
  14051. } else {
  14052. n_tasks = MIN(p->n_tasks, n_threads);
  14053. }
  14054. } break;
  14055. case GGML_OP_CROSS_ENTROPY_LOSS:
  14056. {
  14057. n_tasks = n_threads;
  14058. } break;
  14059. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14060. {
  14061. n_tasks = n_threads;
  14062. } break;
  14063. case GGML_OP_NONE:
  14064. {
  14065. n_tasks = 1;
  14066. } break;
  14067. case GGML_OP_COUNT:
  14068. {
  14069. GGML_ASSERT(false);
  14070. } break;
  14071. default:
  14072. {
  14073. fprintf(stderr, "%s: op not implemented: ", __func__);
  14074. if (node->op < GGML_OP_COUNT) {
  14075. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  14076. } else {
  14077. fprintf(stderr, "%d\n", node->op);
  14078. }
  14079. GGML_ASSERT(false);
  14080. } break;
  14081. }
  14082. assert(n_tasks > 0);
  14083. return n_tasks;
  14084. }
  14085. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  14086. // wait for other threads to finish
  14087. const int last_node_n = * node_n;
  14088. while (true) {
  14089. if (do_yield) {
  14090. sched_yield();
  14091. }
  14092. * node_n = atomic_load(&state->shared->node_n);
  14093. if (* node_n != last_node_n) break;
  14094. }
  14095. }
  14096. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  14097. // wait for other threads to finish
  14098. const int last_task_phase = * task_phase;
  14099. while (true) {
  14100. if (do_yield) {
  14101. sched_yield();
  14102. }
  14103. * task_phase = atomic_load(&state->shared->node_task);
  14104. if (* task_phase != last_task_phase) break;
  14105. }
  14106. }
  14107. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14108. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14109. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14110. const struct ggml_cplan * cplan = state->shared->cplan;
  14111. const int n_threads = state->shared->n_threads;
  14112. set_numa_thread_affinity(state->ith, n_threads);
  14113. int node_n = -1;
  14114. int task_phase = GGML_TASK_FINALIZE;
  14115. while (true) {
  14116. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14117. state->shared->node_n += 1;
  14118. return (thread_ret_t) GGML_EXIT_ABORTED;
  14119. }
  14120. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14121. // all other threads are finished and spinning
  14122. // do finalize and init here so we don't have synchronize again
  14123. struct ggml_compute_params params = {
  14124. /*.type =*/ GGML_TASK_FINALIZE,
  14125. /*.ith =*/ 0,
  14126. /*.nth =*/ 0,
  14127. /*.wsize =*/ cplan->work_size,
  14128. /*.wdata =*/ cplan->work_data,
  14129. };
  14130. if (node_n != -1) {
  14131. /* FINALIZE */
  14132. struct ggml_tensor * node = cgraph->nodes[node_n];
  14133. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14134. params.nth = ggml_get_n_tasks(node, n_threads);
  14135. ggml_compute_forward(&params, node);
  14136. }
  14137. ggml_graph_compute_perf_stats_node(node, state->shared);
  14138. }
  14139. // distribute new work or execute it direct if 1T
  14140. while (++node_n < cgraph->n_nodes) {
  14141. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14142. struct ggml_tensor * node = cgraph->nodes[node_n];
  14143. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14144. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14145. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14146. params.nth = n_tasks;
  14147. if (n_tasks == 1) {
  14148. /* INIT */
  14149. if (GGML_OP_HAS_INIT[node->op]) {
  14150. params.type = GGML_TASK_INIT;
  14151. ggml_compute_forward(&params, node);
  14152. }
  14153. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14154. // they do something more efficient than spinning (?)
  14155. params.type = GGML_TASK_COMPUTE;
  14156. ggml_compute_forward(&params, node);
  14157. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14158. params.type = GGML_TASK_FINALIZE;
  14159. ggml_compute_forward(&params, node);
  14160. }
  14161. ggml_graph_compute_perf_stats_node(node, state->shared);
  14162. } else {
  14163. break;
  14164. }
  14165. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14166. break;
  14167. }
  14168. }
  14169. task_phase = GGML_TASK_INIT;
  14170. atomic_store(&state->shared->n_active, n_threads);
  14171. atomic_store(&state->shared->node_n, node_n);
  14172. atomic_store(&state->shared->node_task, task_phase);
  14173. } else {
  14174. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  14175. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14176. }
  14177. // check if we should stop
  14178. if (node_n >= cgraph->n_nodes) break;
  14179. /* INIT & COMPUTE */
  14180. struct ggml_tensor * node = cgraph->nodes[node_n];
  14181. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14182. struct ggml_compute_params params = {
  14183. /*.type =*/ GGML_TASK_INIT,
  14184. /*.ith =*/ state->ith,
  14185. /*.nth =*/ n_tasks,
  14186. /*.wsize =*/ cplan->work_size,
  14187. /*.wdata =*/ cplan->work_data,
  14188. };
  14189. if (state->ith < n_tasks) {
  14190. if (GGML_OP_HAS_INIT[node->op]) {
  14191. ggml_compute_forward(&params, node);
  14192. }
  14193. }
  14194. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14195. task_phase = GGML_TASK_COMPUTE;
  14196. atomic_store(&state->shared->n_active, n_threads);
  14197. atomic_store(&state->shared->node_task, task_phase);
  14198. }
  14199. else {
  14200. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  14201. // depending on the workload and the operating system.
  14202. // since it is not clear what is the best approach, it should potentially become user-configurable
  14203. // ref: https://github.com/ggerganov/ggml/issues/291
  14204. // UPD: adding the do_yield flag seems to resolve the issue universally
  14205. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  14206. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  14207. }
  14208. if (state->ith < n_tasks) {
  14209. params.type = GGML_TASK_COMPUTE;
  14210. ggml_compute_forward(&params, node);
  14211. }
  14212. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14213. task_phase = GGML_TASK_FINALIZE;
  14214. atomic_store(&state->shared->n_active, n_threads);
  14215. atomic_store(&state->shared->node_task, task_phase);
  14216. }
  14217. else {
  14218. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14219. }
  14220. }
  14221. return GGML_EXIT_SUCCESS;
  14222. }
  14223. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  14224. if (n_threads <= 0) {
  14225. n_threads = GGML_DEFAULT_N_THREADS;
  14226. }
  14227. size_t work_size = 0;
  14228. struct ggml_cplan cplan;
  14229. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14230. int max_tasks = 1;
  14231. // thread scheduling for the different operations + work buffer size estimation
  14232. for (int i = 0; i < cgraph->n_nodes; i++) {
  14233. struct ggml_tensor * node = cgraph->nodes[i];
  14234. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14235. max_tasks = MAX(max_tasks, n_tasks);
  14236. size_t cur = 0;
  14237. switch (node->op) {
  14238. case GGML_OP_CPY:
  14239. case GGML_OP_DUP:
  14240. {
  14241. if (ggml_is_quantized(node->type)) {
  14242. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14243. }
  14244. } break;
  14245. case GGML_OP_ADD:
  14246. case GGML_OP_ADD1:
  14247. {
  14248. if (ggml_is_quantized(node->src[0]->type)) {
  14249. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14250. }
  14251. } break;
  14252. case GGML_OP_ACC:
  14253. {
  14254. if (ggml_is_quantized(node->src[0]->type)) {
  14255. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  14256. }
  14257. } break;
  14258. case GGML_OP_MUL_MAT:
  14259. {
  14260. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  14261. #if defined(GGML_USE_CLBLAST)
  14262. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  14263. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  14264. } else
  14265. #endif
  14266. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14267. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  14268. if (node->src[0]->type != GGML_TYPE_F32) {
  14269. // here we need memory for fully dequantized matrix from src0
  14270. // take into account that src0 can be broadcasted into src1[2,3]
  14271. cur = ggml_type_size(GGML_TYPE_F32)
  14272. * node->src[0]->ne[0]*node->src[0]->ne[1]
  14273. * node->src[1]->ne[2]*node->src[1]->ne[3];
  14274. }
  14275. } else
  14276. #endif
  14277. if (node->src[1]->type != vec_dot_type) {
  14278. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  14279. }
  14280. } break;
  14281. case GGML_OP_MUL_MAT_ID:
  14282. {
  14283. cur = 0;
  14284. const struct ggml_tensor * src0 = node->src[2];
  14285. const struct ggml_tensor * src1 = node->src[1];
  14286. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  14287. if (src1->type != vec_dot_type) {
  14288. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  14289. }
  14290. const int n_as = ggml_get_op_params_i32(node, 1);
  14291. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  14292. cur += n_as * sizeof(int64_t); // matrix_row_counts
  14293. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  14294. } break;
  14295. case GGML_OP_OUT_PROD:
  14296. {
  14297. if (ggml_is_quantized(node->src[0]->type)) {
  14298. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14299. }
  14300. } break;
  14301. case GGML_OP_SOFT_MAX:
  14302. case GGML_OP_ROPE:
  14303. {
  14304. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14305. } break;
  14306. case GGML_OP_CONV_TRANSPOSE_1D:
  14307. {
  14308. GGML_ASSERT(node->src[0]->ne[3] == 1);
  14309. GGML_ASSERT(node->src[1]->ne[2] == 1);
  14310. GGML_ASSERT(node->src[1]->ne[3] == 1);
  14311. const int64_t ne00 = node->src[0]->ne[0]; // K
  14312. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  14313. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  14314. const int64_t ne10 = node->src[1]->ne[0]; // L
  14315. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  14316. if (node->src[0]->type == GGML_TYPE_F16 &&
  14317. node->src[1]->type == GGML_TYPE_F32) {
  14318. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  14319. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  14320. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14321. node->src[1]->type == GGML_TYPE_F32) {
  14322. cur += sizeof(float)*ne00*ne01*ne02;
  14323. cur += sizeof(float)*ne10*ne11;
  14324. } else {
  14325. GGML_ASSERT(false);
  14326. }
  14327. } break;
  14328. case GGML_OP_CONV_TRANSPOSE_2D:
  14329. {
  14330. const int64_t ne00 = node->src[0]->ne[0]; // W
  14331. const int64_t ne01 = node->src[0]->ne[1]; // H
  14332. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  14333. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  14334. const int64_t ne10 = node->src[1]->ne[0]; // W
  14335. const int64_t ne11 = node->src[1]->ne[1]; // H
  14336. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  14337. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  14338. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  14339. } break;
  14340. case GGML_OP_FLASH_ATTN:
  14341. {
  14342. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14343. if (node->src[1]->type == GGML_TYPE_F32) {
  14344. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14345. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14346. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14347. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14348. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14349. }
  14350. } break;
  14351. case GGML_OP_FLASH_FF:
  14352. {
  14353. if (node->src[1]->type == GGML_TYPE_F32) {
  14354. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14355. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14356. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14357. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14358. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14359. }
  14360. } break;
  14361. case GGML_OP_FLASH_ATTN_BACK:
  14362. {
  14363. const int64_t D = node->src[0]->ne[0];
  14364. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14365. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  14366. if (node->src[1]->type == GGML_TYPE_F32) {
  14367. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14368. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14369. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14370. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14371. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14372. }
  14373. } break;
  14374. case GGML_OP_CROSS_ENTROPY_LOSS:
  14375. {
  14376. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  14377. } break;
  14378. case GGML_OP_COUNT:
  14379. {
  14380. GGML_ASSERT(false);
  14381. } break;
  14382. default:
  14383. break;
  14384. }
  14385. work_size = MAX(work_size, cur);
  14386. }
  14387. if (work_size > 0) {
  14388. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  14389. }
  14390. cplan.n_threads = MIN(max_tasks, n_threads);
  14391. cplan.work_size = work_size;
  14392. cplan.work_data = NULL;
  14393. return cplan;
  14394. }
  14395. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  14396. {
  14397. GGML_ASSERT(cplan);
  14398. GGML_ASSERT(cplan->n_threads > 0);
  14399. if (cplan->work_size > 0) {
  14400. GGML_ASSERT(cplan->work_data);
  14401. }
  14402. }
  14403. #ifdef GGML_USE_VULKAN
  14404. for (int i = 0; i < cgraph->n_nodes; i++) {
  14405. ggml_vk_preallocate_buffers_graph(cgraph->nodes[i]);
  14406. }
  14407. ggml_vk_preallocate_buffers();
  14408. for (int i = 0; i < cgraph->n_nodes; i++) {
  14409. ggml_vk_build_graph(cgraph->nodes[i], i == cgraph->n_nodes - 1);
  14410. }
  14411. #endif
  14412. const int n_threads = cplan->n_threads;
  14413. struct ggml_compute_state_shared state_shared = {
  14414. /*.cgraph =*/ cgraph,
  14415. /*.cgraph_plan =*/ cplan,
  14416. /*.perf_node_start_cycles =*/ 0,
  14417. /*.perf_node_start_time_us =*/ 0,
  14418. /*.n_threads =*/ n_threads,
  14419. /*.n_active =*/ n_threads,
  14420. /*.node_n =*/ -1,
  14421. /*.node_task =*/ GGML_TASK_FINALIZE,
  14422. /*.abort_callback =*/ NULL,
  14423. /*.abort_callback_data =*/ NULL,
  14424. };
  14425. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14426. // create thread pool
  14427. if (n_threads > 1) {
  14428. for (int j = 1; j < n_threads; ++j) {
  14429. workers[j] = (struct ggml_compute_state) {
  14430. .thrd = 0,
  14431. .ith = j,
  14432. .shared = &state_shared,
  14433. };
  14434. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14435. GGML_ASSERT(rc == 0);
  14436. UNUSED(rc);
  14437. }
  14438. }
  14439. workers[0].ith = 0;
  14440. workers[0].shared = &state_shared;
  14441. const int64_t perf_start_cycles = ggml_perf_cycles();
  14442. const int64_t perf_start_time_us = ggml_perf_time_us();
  14443. // this is a work thread too
  14444. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14445. // don't leave affinity set on the main thread
  14446. clear_numa_thread_affinity();
  14447. // join or kill thread pool
  14448. if (n_threads > 1) {
  14449. for (int j = 1; j < n_threads; j++) {
  14450. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14451. GGML_ASSERT(rc == 0);
  14452. }
  14453. }
  14454. #ifdef GGML_USE_VULKAN
  14455. ggml_vk_graph_cleanup();
  14456. #endif
  14457. // performance stats (graph)
  14458. {
  14459. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14460. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14461. cgraph->perf_runs++;
  14462. cgraph->perf_cycles += perf_cycles_cur;
  14463. cgraph->perf_time_us += perf_time_us_cur;
  14464. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14465. __func__, cgraph->perf_runs,
  14466. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14467. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14468. (double) perf_time_us_cur / 1000.0,
  14469. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14470. }
  14471. return compute_status;
  14472. }
  14473. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14474. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14475. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14476. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14477. ggml_graph_compute(cgraph, &cplan);
  14478. }
  14479. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14480. for (int i = 0; i < cgraph->n_leafs; i++) {
  14481. struct ggml_tensor * leaf = cgraph->leafs[i];
  14482. if (strcmp(leaf->name, name) == 0) {
  14483. return leaf;
  14484. }
  14485. }
  14486. for (int i = 0; i < cgraph->n_nodes; i++) {
  14487. struct ggml_tensor * node = cgraph->nodes[i];
  14488. if (strcmp(node->name, name) == 0) {
  14489. return node;
  14490. }
  14491. }
  14492. return NULL;
  14493. }
  14494. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14495. const int64_t * ne = tensor->ne;
  14496. const size_t * nb = tensor->nb;
  14497. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14498. ggml_type_name(tensor->type),
  14499. ggml_op_name (tensor->op),
  14500. ggml_n_dims(tensor),
  14501. ne[0], ne[1], ne[2], ne[3],
  14502. nb[0], nb[1], nb[2], nb[3],
  14503. tensor->data,
  14504. tensor->name);
  14505. }
  14506. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14507. const int64_t * ne = tensor->ne;
  14508. const size_t * nb = tensor->nb;
  14509. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14510. arg,
  14511. ggml_type_name(tensor->type),
  14512. ggml_op_name (tensor->op),
  14513. ggml_n_dims(tensor),
  14514. ne[0], ne[1], ne[2], ne[3],
  14515. nb[0], nb[1], nb[2], nb[3],
  14516. tensor->data,
  14517. tensor->name);
  14518. }
  14519. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14520. uint64_t size_eval = 0;
  14521. // compute size of intermediate results
  14522. // TODO: does not take into account scratch buffers !!!!
  14523. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14524. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14525. }
  14526. // print
  14527. {
  14528. FILE * fout = stdout;
  14529. fprintf(fout, "\n");
  14530. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14531. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14532. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14533. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14534. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14535. // header
  14536. fprintf(fout, "\n");
  14537. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14538. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14539. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14540. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14541. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14542. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14543. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14544. }
  14545. // header
  14546. fprintf(fout, "\n");
  14547. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14548. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14549. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14550. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14551. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14552. if (cgraph->nodes[i]->src[j]) {
  14553. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14554. }
  14555. }
  14556. fprintf(fout, "\n");
  14557. }
  14558. fprintf(fout, "\n");
  14559. }
  14560. // write binary data
  14561. {
  14562. FILE * fout = fopen(fname, "wb");
  14563. if (!fout) {
  14564. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14565. return;
  14566. }
  14567. // header
  14568. {
  14569. const uint32_t magic = GGML_FILE_MAGIC;
  14570. const uint32_t version = GGML_FILE_VERSION;
  14571. const uint32_t n_leafs = cgraph->n_leafs;
  14572. const uint32_t n_nodes = cgraph->n_nodes;
  14573. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14574. fwrite(&version, sizeof(uint32_t), 1, fout);
  14575. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14576. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  14577. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14578. }
  14579. // leafs
  14580. {
  14581. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14582. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14583. const uint32_t type = tensor->type;
  14584. const uint32_t op = tensor->op;
  14585. fwrite(&type, sizeof(uint32_t), 1, fout);
  14586. fwrite(&op, sizeof(uint32_t), 1, fout);
  14587. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14588. const uint64_t ne = tensor->ne[j];
  14589. const uint64_t nb = tensor->nb[j];
  14590. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14591. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14592. }
  14593. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14594. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14595. // dump the data
  14596. // TODO: pad this to 32 byte boundary
  14597. {
  14598. const size_t size = ggml_nbytes(tensor);
  14599. fwrite(tensor->data, sizeof(char), size, fout);
  14600. }
  14601. }
  14602. }
  14603. // nodes
  14604. {
  14605. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14606. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14607. const uint32_t type = tensor->type;
  14608. const uint32_t op = tensor->op;
  14609. fwrite(&type, sizeof(uint32_t), 1, fout);
  14610. fwrite(&op, sizeof(uint32_t), 1, fout);
  14611. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14612. const uint64_t ne = tensor->ne[j];
  14613. const uint64_t nb = tensor->nb[j];
  14614. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14615. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14616. }
  14617. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14618. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14619. // output the op arguments
  14620. {
  14621. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14622. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14623. args[j] = tensor->src[j];
  14624. }
  14625. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14626. if (args[j]) {
  14627. int32_t idx = -1;
  14628. // check if leaf
  14629. {
  14630. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14631. if (args[j] == cgraph->leafs[k]) {
  14632. idx = k;
  14633. break;
  14634. }
  14635. }
  14636. }
  14637. // check if node
  14638. if (idx == -1) {
  14639. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14640. if (args[j] == cgraph->nodes[k]) {
  14641. idx = cgraph->n_leafs + k;
  14642. break;
  14643. }
  14644. }
  14645. }
  14646. if (idx == -1) {
  14647. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14648. fclose(fout);
  14649. return;
  14650. }
  14651. fwrite(&idx, sizeof(int32_t), 1, fout);
  14652. } else {
  14653. const int32_t nul = -1;
  14654. fwrite(&nul, sizeof(int32_t), 1, fout);
  14655. }
  14656. }
  14657. }
  14658. }
  14659. }
  14660. fclose(fout);
  14661. }
  14662. }
  14663. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14664. assert(*ctx_data == NULL);
  14665. assert(*ctx_eval == NULL);
  14666. struct ggml_cgraph * result = NULL;
  14667. struct ggml_tensor * data = NULL;
  14668. // read file into data
  14669. {
  14670. FILE * fin = fopen(fname, "rb");
  14671. if (!fin) {
  14672. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14673. return result;
  14674. }
  14675. size_t fsize = 0;
  14676. fseek(fin, 0, SEEK_END);
  14677. fsize = ftell(fin);
  14678. fseek(fin, 0, SEEK_SET);
  14679. // create the data context
  14680. {
  14681. const size_t overhead = 1*ggml_tensor_overhead();
  14682. struct ggml_init_params params = {
  14683. .mem_size = fsize + overhead,
  14684. .mem_buffer = NULL,
  14685. .no_alloc = false,
  14686. };
  14687. *ctx_data = ggml_init(params);
  14688. if (!*ctx_data) {
  14689. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14690. fclose(fin);
  14691. return result;
  14692. }
  14693. }
  14694. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14695. {
  14696. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14697. if (ret != fsize) {
  14698. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14699. fclose(fin);
  14700. return result;
  14701. }
  14702. }
  14703. fclose(fin);
  14704. }
  14705. // populate result
  14706. {
  14707. char * ptr = (char *) data->data;
  14708. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14709. if (magic != GGML_FILE_MAGIC) {
  14710. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14711. return result;
  14712. }
  14713. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14714. if (version != GGML_FILE_VERSION) {
  14715. fprintf(stderr, "%s: invalid version number\n", __func__);
  14716. return result;
  14717. }
  14718. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14719. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14720. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14721. const int graph_size = MAX(n_leafs, n_nodes);
  14722. // create the data context
  14723. {
  14724. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  14725. struct ggml_init_params params = {
  14726. .mem_size = size_eval + overhead,
  14727. .mem_buffer = NULL,
  14728. .no_alloc = true,
  14729. };
  14730. *ctx_eval = ggml_init(params);
  14731. if (!*ctx_eval) {
  14732. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14733. return result;
  14734. }
  14735. }
  14736. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  14737. result->n_leafs = n_leafs;
  14738. result->n_nodes = n_nodes;
  14739. // leafs
  14740. {
  14741. uint32_t type;
  14742. uint32_t op;
  14743. for (uint32_t i = 0; i < n_leafs; ++i) {
  14744. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14745. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14746. int64_t ne[GGML_MAX_DIMS];
  14747. size_t nb[GGML_MAX_DIMS];
  14748. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14749. uint64_t ne_cur;
  14750. uint64_t nb_cur;
  14751. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14752. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14753. ne[j] = ne_cur;
  14754. nb[j] = nb_cur;
  14755. }
  14756. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14757. tensor->op = (enum ggml_op) op;
  14758. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14759. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14760. tensor->data = (void *) ptr;
  14761. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14762. tensor->nb[j] = nb[j];
  14763. }
  14764. result->leafs[i] = tensor;
  14765. ptr += ggml_nbytes(tensor);
  14766. fprintf(stderr, "%s: loaded leaf %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14767. }
  14768. }
  14769. ggml_set_no_alloc(*ctx_eval, false);
  14770. // nodes
  14771. {
  14772. uint32_t type;
  14773. uint32_t op;
  14774. for (uint32_t i = 0; i < n_nodes; ++i) {
  14775. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14776. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14777. enum ggml_op eop = (enum ggml_op) op;
  14778. int64_t ne[GGML_MAX_DIMS];
  14779. size_t nb[GGML_MAX_DIMS];
  14780. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14781. uint64_t ne_cur;
  14782. uint64_t nb_cur;
  14783. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14784. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14785. ne[j] = ne_cur;
  14786. nb[j] = nb_cur;
  14787. }
  14788. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14789. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14790. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14791. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14792. // parse args
  14793. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14794. const int32_t arg_idx = ptr_arg_idx[j];
  14795. if (arg_idx == -1) {
  14796. continue;
  14797. }
  14798. if (arg_idx < result->n_leafs) {
  14799. args[j] = result->leafs[arg_idx];
  14800. } else {
  14801. args[j] = result->nodes[arg_idx - result->n_leafs];
  14802. }
  14803. }
  14804. // create the tensor
  14805. // "view" operations are handled differently
  14806. // TODO: handle inplace ops - currently a copy is always made
  14807. struct ggml_tensor * tensor = NULL;
  14808. switch (eop) {
  14809. // TODO: implement other view ops
  14810. case GGML_OP_RESHAPE:
  14811. {
  14812. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14813. } break;
  14814. case GGML_OP_VIEW:
  14815. {
  14816. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14817. size_t offs;
  14818. memcpy(&offs, ptr_op_params, sizeof(offs));
  14819. tensor->data = ((char *) tensor->data) + offs;
  14820. } break;
  14821. case GGML_OP_TRANSPOSE:
  14822. {
  14823. tensor = ggml_transpose(*ctx_eval, args[0]);
  14824. } break;
  14825. case GGML_OP_PERMUTE:
  14826. {
  14827. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14828. } break;
  14829. default:
  14830. {
  14831. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14832. tensor->op = eop;
  14833. } break;
  14834. }
  14835. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14836. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14837. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14838. tensor->nb[j] = nb[j];
  14839. }
  14840. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14841. tensor->src[j] = args[j];
  14842. }
  14843. result->nodes[i] = tensor;
  14844. fprintf(stderr, "%s: loaded node %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14845. }
  14846. }
  14847. }
  14848. return result;
  14849. }
  14850. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14851. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14852. GGML_PRINT("=== GRAPH ===\n");
  14853. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14854. for (int i = 0; i < cgraph->n_nodes; i++) {
  14855. struct ggml_tensor * node = cgraph->nodes[i];
  14856. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14857. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14858. i,
  14859. node->ne[0], node->ne[1], node->ne[2],
  14860. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14861. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14862. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14863. (double) node->perf_time_us / 1000.0,
  14864. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14865. }
  14866. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14867. for (int i = 0; i < cgraph->n_leafs; i++) {
  14868. struct ggml_tensor * node = cgraph->leafs[i];
  14869. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  14870. i,
  14871. node->ne[0], node->ne[1],
  14872. ggml_op_name(node->op),
  14873. ggml_get_name(node));
  14874. }
  14875. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14876. if (perf_total_per_op_us[i] == 0) {
  14877. continue;
  14878. }
  14879. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14880. }
  14881. GGML_PRINT("========================================\n");
  14882. }
  14883. // check if node is part of the graph
  14884. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14885. if (cgraph == NULL) {
  14886. return true;
  14887. }
  14888. for (int i = 0; i < cgraph->n_nodes; i++) {
  14889. if (cgraph->nodes[i] == node) {
  14890. return true;
  14891. }
  14892. }
  14893. return false;
  14894. }
  14895. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14896. for (int i = 0; i < cgraph->n_nodes; i++) {
  14897. struct ggml_tensor * parent = cgraph->nodes[i];
  14898. if (parent->grad == node) {
  14899. return parent;
  14900. }
  14901. }
  14902. return NULL;
  14903. }
  14904. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14905. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14906. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14907. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14908. gparent0 ? (void *) gparent0 : (void *) parent,
  14909. gparent0 ? "g" : "x",
  14910. gparent ? (void *) gparent : (void *) node,
  14911. gparent ? "g" : "x",
  14912. gparent ? "empty" : "vee",
  14913. gparent ? "dashed" : "solid",
  14914. label);
  14915. }
  14916. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14917. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14918. (void *) parent, "x",
  14919. (void *) node, "x",
  14920. label);
  14921. }
  14922. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14923. char color[16];
  14924. FILE * fp = fopen(filename, "w");
  14925. GGML_ASSERT(fp);
  14926. fprintf(fp, "digraph G {\n");
  14927. fprintf(fp, " newrank = true;\n");
  14928. fprintf(fp, " rankdir = LR;\n");
  14929. for (int i = 0; i < gb->n_nodes; i++) {
  14930. struct ggml_tensor * node = gb->nodes[i];
  14931. if (ggml_graph_get_parent(gb, node) != NULL) {
  14932. continue;
  14933. }
  14934. if (node->is_param) {
  14935. snprintf(color, sizeof(color), "yellow");
  14936. } else if (node->grad) {
  14937. if (ggml_graph_find(gf, node)) {
  14938. snprintf(color, sizeof(color), "green");
  14939. } else {
  14940. snprintf(color, sizeof(color), "lightblue");
  14941. }
  14942. } else {
  14943. snprintf(color, sizeof(color), "white");
  14944. }
  14945. fprintf(fp, " \"%p\" [ "
  14946. "style = filled; fillcolor = %s; shape = record; "
  14947. "label=\"",
  14948. (void *) node, color);
  14949. if (strlen(node->name) > 0) {
  14950. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14951. } else {
  14952. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14953. }
  14954. if (ggml_is_matrix(node)) {
  14955. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  14956. } else {
  14957. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  14958. }
  14959. if (node->grad) {
  14960. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  14961. } else {
  14962. fprintf(fp, "\"; ]\n");
  14963. }
  14964. }
  14965. for (int i = 0; i < gb->n_leafs; i++) {
  14966. struct ggml_tensor * node = gb->leafs[i];
  14967. snprintf(color, sizeof(color), "pink");
  14968. fprintf(fp, " \"%p\" [ "
  14969. "style = filled; fillcolor = %s; shape = record; "
  14970. "label=\"<x>",
  14971. (void *) node, color);
  14972. if (strlen(node->name) > 0) {
  14973. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14974. } else {
  14975. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14976. }
  14977. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14978. if (ggml_nelements(node) < 5) {
  14979. fprintf(fp, " | (");
  14980. for (int j = 0; j < ggml_nelements(node); j++) {
  14981. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14982. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14983. }
  14984. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14985. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14986. }
  14987. else {
  14988. fprintf(fp, "#");
  14989. }
  14990. if (j < ggml_nelements(node) - 1) {
  14991. fprintf(fp, ", ");
  14992. }
  14993. }
  14994. fprintf(fp, ")");
  14995. }
  14996. fprintf(fp, "\"; ]\n");
  14997. }
  14998. for (int i = 0; i < gb->n_nodes; i++) {
  14999. struct ggml_tensor * node = gb->nodes[i];
  15000. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15001. if (node->src[j]) {
  15002. char label[16];
  15003. snprintf(label, sizeof(label), "src %d", j);
  15004. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15005. }
  15006. }
  15007. }
  15008. for (int i = 0; i < gb->n_leafs; i++) {
  15009. struct ggml_tensor * node = gb->leafs[i];
  15010. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15011. if (node->src[j]) {
  15012. char label[16];
  15013. snprintf(label, sizeof(label), "src %d", j);
  15014. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15015. }
  15016. }
  15017. }
  15018. fprintf(fp, "}\n");
  15019. fclose(fp);
  15020. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15021. }
  15022. ////////////////////////////////////////////////////////////////////////////////
  15023. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15024. int i = 0;
  15025. for (int p = 0; p < np; ++p) {
  15026. const int64_t ne = ggml_nelements(ps[p]) ;
  15027. // TODO: add function to set tensor from array
  15028. for (int64_t j = 0; j < ne; ++j) {
  15029. ggml_set_f32_1d(ps[p], j, x[i++]);
  15030. }
  15031. }
  15032. }
  15033. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15034. int i = 0;
  15035. for (int p = 0; p < np; ++p) {
  15036. const int64_t ne = ggml_nelements(ps[p]) ;
  15037. // TODO: add function to get all elements at once
  15038. for (int64_t j = 0; j < ne; ++j) {
  15039. x[i++] = ggml_get_f32_1d(ps[p], j);
  15040. }
  15041. }
  15042. }
  15043. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15044. int64_t i = 0;
  15045. for (int p = 0; p < np; ++p) {
  15046. const int64_t ne = ggml_nelements(ps[p]) ;
  15047. // TODO: add function to get all elements at once
  15048. for (int64_t j = 0; j < ne; ++j) {
  15049. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15050. }
  15051. }
  15052. }
  15053. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  15054. int64_t i = 0;
  15055. for (int p = 0; p < np; ++p) {
  15056. const int64_t ne = ggml_nelements(ps[p]) ;
  15057. // TODO: add function to get all elements at once
  15058. for (int64_t j = 0; j < ne; ++j) {
  15059. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  15060. }
  15061. }
  15062. }
  15063. //
  15064. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  15065. //
  15066. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  15067. //
  15068. static enum ggml_opt_result ggml_opt_adam(
  15069. struct ggml_context * ctx,
  15070. struct ggml_opt_context * opt,
  15071. struct ggml_opt_params params,
  15072. struct ggml_tensor * f,
  15073. struct ggml_cgraph * gf,
  15074. struct ggml_cgraph * gb,
  15075. ggml_opt_callback callback,
  15076. void * callback_data) {
  15077. GGML_ASSERT(ggml_is_scalar(f));
  15078. // these will store the parameters we want to optimize
  15079. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15080. int np = 0;
  15081. int64_t nx = 0;
  15082. for (int i = 0; i < gf->n_nodes; ++i) {
  15083. if (gf->nodes[i]->is_param) {
  15084. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15085. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15086. ps[np++] = gf->nodes[i];
  15087. nx += ggml_nelements(gf->nodes[i]);
  15088. }
  15089. }
  15090. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15091. int iter = opt->iter;
  15092. ggml_opt_init(opt->ctx, opt, params, nx);
  15093. opt->iter = iter;
  15094. }
  15095. // constants
  15096. float sched = params.adam.sched;
  15097. const float alpha = params.adam.alpha;
  15098. const float decay = params.adam.decay * alpha;
  15099. const float beta1 = params.adam.beta1;
  15100. const float beta2 = params.adam.beta2;
  15101. const float eps = params.adam.eps;
  15102. const float gclip = params.adam.gclip;
  15103. const int decay_min_ndim = params.adam.decay_min_ndim;
  15104. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15105. const float accum_norm = 1.0f / (float) n_accum;
  15106. float * g = opt->adam.g->data; // gradients
  15107. float * m = opt->adam.m->data; // first moment
  15108. float * v = opt->adam.v->data; // second moment
  15109. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15110. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15111. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15112. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15113. bool cancel = false;
  15114. // compute the function value
  15115. float fx = 0;
  15116. ggml_set_zero(opt->adam.g);
  15117. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15118. if (callback) {
  15119. callback(callback_data, accum_step, &sched, &cancel);
  15120. if (cancel) {
  15121. return GGML_OPT_CANCEL;
  15122. }
  15123. }
  15124. // ggml_graph_reset (gf);
  15125. ggml_set_f32 (f->grad, 1.0f);
  15126. ggml_graph_compute(gb, &cplan);
  15127. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15128. fx += ggml_get_f32_1d(f, 0);
  15129. }
  15130. fx *= accum_norm;
  15131. opt->adam.fx_prev = fx;
  15132. opt->adam.fx_best = opt->adam.fx_prev;
  15133. if (pf) {
  15134. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15135. }
  15136. opt->loss_before = opt->adam.fx_prev;
  15137. opt->loss_after = opt->adam.fx_prev;
  15138. // initialize
  15139. if (opt->just_initialized) {
  15140. opt->adam.n_no_improvement = 0;
  15141. opt->just_initialized = false;
  15142. }
  15143. float * fx_best = &opt->adam.fx_best;
  15144. float * fx_prev = &opt->adam.fx_prev;
  15145. int * n_no_improvement = &opt->adam.n_no_improvement;
  15146. int iter0 = opt->iter;
  15147. // run the optimizer
  15148. for (int t = 0; t < params.adam.n_iter; ++t) {
  15149. opt->iter = iter0 + t + 1;
  15150. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15151. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15152. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15153. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15154. for (int i = 0; i < np; ++i) {
  15155. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15156. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15157. }
  15158. const int64_t t_start_wall = ggml_time_us();
  15159. const int64_t t_start_cpu = ggml_cycles();
  15160. UNUSED(t_start_wall);
  15161. UNUSED(t_start_cpu);
  15162. {
  15163. float gnorm = 1.0f;
  15164. if (gclip > 0.0f) {
  15165. // gradient clipping
  15166. ggml_float sum = 0.0;
  15167. for (int64_t i = 0; i < nx; ++i) {
  15168. sum += (ggml_float)(g[i]*g[i]);
  15169. }
  15170. ggml_float norm = sqrt(sum);
  15171. if (norm > (ggml_float) gclip) {
  15172. gnorm = (float) ((ggml_float) gclip / norm);
  15173. }
  15174. }
  15175. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  15176. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  15177. int64_t i = 0;
  15178. for (int p = 0; p < np; ++p) {
  15179. const int64_t ne = ggml_nelements(ps[p]);
  15180. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  15181. for (int64_t j = 0; j < ne; ++j) {
  15182. float x = ggml_get_f32_1d(ps[p], j);
  15183. float g_ = g[i]*gnorm;
  15184. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  15185. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  15186. float mh = m[i]*beta1h;
  15187. float vh = v[i]*beta2h;
  15188. vh = sqrtf(vh) + eps;
  15189. x = x*(1.0f - p_decay) - mh/vh;
  15190. ggml_set_f32_1d(ps[p], j, x);
  15191. ++i;
  15192. }
  15193. }
  15194. }
  15195. fx = 0;
  15196. ggml_set_zero(opt->adam.g);
  15197. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15198. if (callback) {
  15199. callback(callback_data, accum_step, &sched, &cancel);
  15200. if (cancel) {
  15201. return GGML_OPT_CANCEL;;
  15202. }
  15203. }
  15204. // ggml_graph_reset (gf);
  15205. ggml_set_f32 (f->grad, 1.0f);
  15206. ggml_graph_compute(gb, &cplan);
  15207. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15208. fx += ggml_get_f32_1d(f, 0);
  15209. }
  15210. fx *= accum_norm;
  15211. opt->loss_after = fx;
  15212. // check convergence
  15213. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15214. GGML_PRINT_DEBUG("converged\n");
  15215. return GGML_OPT_OK;
  15216. }
  15217. // delta-based convergence test
  15218. if (pf != NULL) {
  15219. // need at least params.past iterations to start checking for convergence
  15220. if (params.past <= iter0 + t) {
  15221. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15222. if (fabsf(rate) < params.delta) {
  15223. return GGML_OPT_OK;
  15224. }
  15225. }
  15226. pf[(iter0 + t)%params.past] = fx;
  15227. }
  15228. // check for improvement
  15229. if (params.max_no_improvement > 0) {
  15230. if (fx_best[0] > fx) {
  15231. fx_best[0] = fx;
  15232. n_no_improvement[0] = 0;
  15233. } else {
  15234. ++n_no_improvement[0];
  15235. if (n_no_improvement[0] >= params.max_no_improvement) {
  15236. return GGML_OPT_OK;
  15237. }
  15238. }
  15239. }
  15240. fx_prev[0] = fx;
  15241. {
  15242. const int64_t t_end_cpu = ggml_cycles();
  15243. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  15244. UNUSED(t_end_cpu);
  15245. const int64_t t_end_wall = ggml_time_us();
  15246. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  15247. UNUSED(t_end_wall);
  15248. }
  15249. }
  15250. return GGML_OPT_DID_NOT_CONVERGE;
  15251. }
  15252. //
  15253. // L-BFGS
  15254. //
  15255. // the L-BFGS implementation below is based on the following implementation:
  15256. //
  15257. // https://github.com/chokkan/liblbfgs
  15258. //
  15259. struct ggml_lbfgs_iteration_data {
  15260. float alpha;
  15261. float ys;
  15262. float * s;
  15263. float * y;
  15264. };
  15265. static enum ggml_opt_result linesearch_backtracking(
  15266. const struct ggml_opt_params * params,
  15267. int nx,
  15268. float * x,
  15269. float * fx,
  15270. float * g,
  15271. float * d,
  15272. float * step,
  15273. const float * xp,
  15274. struct ggml_tensor * f,
  15275. struct ggml_cgraph * gb,
  15276. struct ggml_cplan * cplan,
  15277. const int np,
  15278. struct ggml_tensor * ps[],
  15279. bool * cancel,
  15280. ggml_opt_callback callback,
  15281. void * callback_data) {
  15282. int count = 0;
  15283. float width = 0.0f;
  15284. float dg = 0.0f;
  15285. float finit = 0.0f;
  15286. float dginit = 0.0f;
  15287. float dgtest = 0.0f;
  15288. const float dec = 0.5f;
  15289. const float inc = 2.1f;
  15290. const int n_accum = MAX(1, params->n_gradient_accumulation);
  15291. const float accum_norm = 1.0f / (float) n_accum;
  15292. if (*step <= 0.f) {
  15293. return GGML_LINESEARCH_INVALID_PARAMETERS;
  15294. }
  15295. // compute the initial gradient in the search direction
  15296. ggml_vec_dot_f32(nx, &dginit, g, d);
  15297. // make sure that d points to a descent direction
  15298. if (0 < dginit) {
  15299. return GGML_LINESEARCH_FAIL;
  15300. }
  15301. // initialize local variables
  15302. finit = *fx;
  15303. dgtest = params->lbfgs.ftol*dginit;
  15304. while (true) {
  15305. ggml_vec_cpy_f32(nx, x, xp);
  15306. ggml_vec_mad_f32(nx, x, d, *step);
  15307. // evaluate the function and gradient values
  15308. {
  15309. ggml_opt_set_params(np, ps, x);
  15310. *fx = 0;
  15311. memset(g, 0, sizeof(float)*nx);
  15312. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15313. if (callback) {
  15314. // LBFG-S does not support learning rate -> ignore learning schedule
  15315. float sched = 0;
  15316. callback(callback_data, accum_step, &sched, cancel);
  15317. if (*cancel) {
  15318. return GGML_OPT_CANCEL;
  15319. }
  15320. }
  15321. // ggml_graph_reset (gf);
  15322. ggml_set_f32 (f->grad, 1.0f);
  15323. ggml_graph_compute(gb, cplan);
  15324. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15325. *fx += ggml_get_f32_1d(f, 0);
  15326. }
  15327. *fx *= accum_norm;
  15328. }
  15329. ++count;
  15330. if (*fx > finit + (*step)*dgtest) {
  15331. width = dec;
  15332. } else {
  15333. // Armijo condition is satisfied
  15334. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  15335. return count;
  15336. }
  15337. ggml_vec_dot_f32(nx, &dg, g, d);
  15338. // check the Wolfe condition
  15339. if (dg < params->lbfgs.wolfe * dginit) {
  15340. width = inc;
  15341. } else {
  15342. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  15343. // regular Wolfe conditions
  15344. return count;
  15345. }
  15346. if(dg > -params->lbfgs.wolfe*dginit) {
  15347. width = dec;
  15348. } else {
  15349. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  15350. return count;
  15351. }
  15352. }
  15353. }
  15354. if (*step < params->lbfgs.min_step) {
  15355. return GGML_LINESEARCH_MINIMUM_STEP;
  15356. }
  15357. if (*step > params->lbfgs.max_step) {
  15358. return GGML_LINESEARCH_MAXIMUM_STEP;
  15359. }
  15360. if (params->lbfgs.max_linesearch <= count) {
  15361. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  15362. }
  15363. (*step) *= width;
  15364. }
  15365. GGML_UNREACHABLE();
  15366. }
  15367. static enum ggml_opt_result ggml_opt_lbfgs(
  15368. struct ggml_context * ctx,
  15369. struct ggml_opt_context * opt,
  15370. struct ggml_opt_params params,
  15371. struct ggml_tensor * f,
  15372. struct ggml_cgraph * gf,
  15373. struct ggml_cgraph * gb,
  15374. ggml_opt_callback callback,
  15375. void * callback_data) {
  15376. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  15377. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  15378. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  15379. return GGML_OPT_INVALID_WOLFE;
  15380. }
  15381. }
  15382. const int m = params.lbfgs.m;
  15383. // these will store the parameters we want to optimize
  15384. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15385. int np = 0;
  15386. int nx = 0;
  15387. for (int i = 0; i < gf->n_nodes; ++i) {
  15388. if (gf->nodes[i]->is_param) {
  15389. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15390. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15391. ps[np++] = gf->nodes[i];
  15392. nx += ggml_nelements(gf->nodes[i]);
  15393. }
  15394. }
  15395. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15396. int iter = opt->iter;
  15397. ggml_opt_init(ctx, opt, params, nx);
  15398. opt->iter = iter;
  15399. }
  15400. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15401. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15402. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15403. float * x = opt->lbfgs.x->data; // current parameters
  15404. float * xp = opt->lbfgs.xp->data; // previous parameters
  15405. float * g = opt->lbfgs.g->data; // current gradient
  15406. float * gp = opt->lbfgs.gp->data; // previous gradient
  15407. float * d = opt->lbfgs.d->data; // search direction
  15408. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15409. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15410. const float accum_norm = 1.0f / (float) n_accum;
  15411. float fx = 0.0f; // cost function value
  15412. float xnorm = 0.0f; // ||x||
  15413. float gnorm = 0.0f; // ||g||
  15414. // initialize x from the graph nodes
  15415. ggml_opt_get_params(np, ps, x);
  15416. // the L-BFGS memory
  15417. float * lm_alpha = opt->lbfgs.lmal->data;
  15418. float * lm_ys = opt->lbfgs.lmys->data;
  15419. float * lm_s = opt->lbfgs.lms->data;
  15420. float * lm_y = opt->lbfgs.lmy->data;
  15421. bool cancel = false;
  15422. // evaluate the function value and its gradient
  15423. {
  15424. ggml_opt_set_params(np, ps, x);
  15425. fx = 0;
  15426. memset(g, 0, sizeof(float)*nx);
  15427. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15428. if (callback) {
  15429. // LBFG-S does not support learning rate -> ignore learning schedule
  15430. float sched = 0;
  15431. callback(callback_data, accum_step, &sched, &cancel);
  15432. if (cancel) {
  15433. return GGML_OPT_CANCEL;
  15434. }
  15435. }
  15436. // ggml_graph_reset (gf);
  15437. ggml_set_f32 (f->grad, 1.0f);
  15438. ggml_graph_compute(gb, &cplan);
  15439. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15440. fx += ggml_get_f32_1d(f, 0);
  15441. }
  15442. fx *= accum_norm;
  15443. opt->loss_before = fx;
  15444. opt->loss_after = fx;
  15445. }
  15446. // search direction = -gradient
  15447. ggml_vec_neg_f32(nx, d, g);
  15448. // ||x||, ||g||
  15449. ggml_vec_norm_f32(nx, &xnorm, x);
  15450. ggml_vec_norm_f32(nx, &gnorm, g);
  15451. if (xnorm < 1.0f) {
  15452. xnorm = 1.0f;
  15453. }
  15454. // already optimized
  15455. if (gnorm/xnorm <= params.lbfgs.eps) {
  15456. return GGML_OPT_OK;
  15457. }
  15458. if (opt->just_initialized) {
  15459. if (pf) {
  15460. pf[0] = fx;
  15461. }
  15462. opt->lbfgs.fx_best = fx;
  15463. // initial step
  15464. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15465. opt->lbfgs.j = 0;
  15466. opt->lbfgs.k = 1;
  15467. opt->lbfgs.end = 0;
  15468. opt->lbfgs.n_no_improvement = 0;
  15469. opt->just_initialized = false;
  15470. }
  15471. float * fx_best = &opt->lbfgs.fx_best;
  15472. float * step = &opt->lbfgs.step;
  15473. int * j = &opt->lbfgs.j;
  15474. int * k = &opt->lbfgs.k;
  15475. int * end = &opt->lbfgs.end;
  15476. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15477. int ls = 0;
  15478. int bound = 0;
  15479. float ys = 0.0f;
  15480. float yy = 0.0f;
  15481. float beta = 0.0f;
  15482. int it = 0;
  15483. while (true) {
  15484. // store the current position and gradient vectors
  15485. ggml_vec_cpy_f32(nx, xp, x);
  15486. ggml_vec_cpy_f32(nx, gp, g);
  15487. // TODO: instead of passing &cancel here, use the return code of the linesearch
  15488. // to determine if the optimization should be cancelled
  15489. // this is a simple change, but not doing this atm, since I don't have a nice
  15490. // way to test and don't want to break something with so many changes lined up
  15491. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  15492. if (cancel) {
  15493. return GGML_OPT_CANCEL;
  15494. }
  15495. if (ls < 0) {
  15496. // linesearch failed - go back to the previous point and return
  15497. ggml_vec_cpy_f32(nx, x, xp);
  15498. ggml_vec_cpy_f32(nx, g, gp);
  15499. return ls;
  15500. }
  15501. opt->loss_after = fx;
  15502. ggml_vec_norm_f32(nx, &xnorm, x);
  15503. ggml_vec_norm_f32(nx, &gnorm, g);
  15504. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15505. if (xnorm < 1.0f) {
  15506. xnorm = 1.0f;
  15507. }
  15508. if (gnorm/xnorm <= params.lbfgs.eps) {
  15509. // converged
  15510. return GGML_OPT_OK;
  15511. }
  15512. // delta-based convergence test
  15513. if (pf != NULL) {
  15514. // need at least params.past iterations to start checking for convergence
  15515. if (params.past <= k[0]) {
  15516. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15517. if (fabsf(rate) < params.delta) {
  15518. return GGML_OPT_OK;
  15519. }
  15520. }
  15521. pf[k[0]%params.past] = fx;
  15522. }
  15523. // check for improvement
  15524. if (params.max_no_improvement > 0) {
  15525. if (fx < fx_best[0]) {
  15526. fx_best[0] = fx;
  15527. n_no_improvement[0] = 0;
  15528. } else {
  15529. n_no_improvement[0]++;
  15530. if (n_no_improvement[0] >= params.max_no_improvement) {
  15531. return GGML_OPT_OK;
  15532. }
  15533. }
  15534. }
  15535. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15536. // reached the maximum number of iterations
  15537. return GGML_OPT_DID_NOT_CONVERGE;
  15538. }
  15539. // update vectors s and y:
  15540. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15541. // y_{k+1} = g_{k+1} - g_{k}.
  15542. //
  15543. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15544. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15545. // compute scalars ys and yy:
  15546. // ys = y^t \cdot s -> 1 / \rho.
  15547. // yy = y^t \cdot y.
  15548. //
  15549. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  15550. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  15551. lm_ys[end[0]] = ys;
  15552. // find new search direction
  15553. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15554. bound = (m <= k[0]) ? m : k[0];
  15555. k[0]++;
  15556. it++;
  15557. end[0] = (end[0] + 1)%m;
  15558. // initialize search direction with -g
  15559. ggml_vec_neg_f32(nx, d, g);
  15560. j[0] = end[0];
  15561. for (int i = 0; i < bound; ++i) {
  15562. j[0] = (j[0] + m - 1) % m;
  15563. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15564. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  15565. lm_alpha[j[0]] /= lm_ys[j[0]];
  15566. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15567. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15568. }
  15569. ggml_vec_scale_f32(nx, d, ys/yy);
  15570. for (int i = 0; i < bound; ++i) {
  15571. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15572. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  15573. beta /= lm_ys[j[0]];
  15574. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15575. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15576. j[0] = (j[0] + 1)%m;
  15577. }
  15578. step[0] = 1.0;
  15579. }
  15580. GGML_UNREACHABLE();
  15581. }
  15582. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15583. struct ggml_opt_params result;
  15584. switch (type) {
  15585. case GGML_OPT_ADAM:
  15586. {
  15587. result = (struct ggml_opt_params) {
  15588. .type = GGML_OPT_ADAM,
  15589. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15590. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  15591. .past = 0,
  15592. .delta = 1e-5f,
  15593. .max_no_improvement = 100,
  15594. .print_forward_graph = true,
  15595. .print_backward_graph = true,
  15596. .n_gradient_accumulation = 1,
  15597. .adam = {
  15598. .n_iter = 10000,
  15599. .sched = 1.000f,
  15600. .decay = 0.0f,
  15601. .decay_min_ndim = 2,
  15602. .alpha = 0.001f,
  15603. .beta1 = 0.9f,
  15604. .beta2 = 0.999f,
  15605. .eps = 1e-8f,
  15606. .eps_f = 1e-5f,
  15607. .eps_g = 1e-3f,
  15608. .gclip = 0.0f,
  15609. },
  15610. };
  15611. } break;
  15612. case GGML_OPT_LBFGS:
  15613. {
  15614. result = (struct ggml_opt_params) {
  15615. .type = GGML_OPT_LBFGS,
  15616. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15617. .n_threads = 1,
  15618. .past = 0,
  15619. .delta = 1e-5f,
  15620. .max_no_improvement = 0,
  15621. .print_forward_graph = true,
  15622. .print_backward_graph = true,
  15623. .n_gradient_accumulation = 1,
  15624. .lbfgs = {
  15625. .m = 6,
  15626. .n_iter = 100,
  15627. .max_linesearch = 20,
  15628. .eps = 1e-5f,
  15629. .ftol = 1e-4f,
  15630. .wolfe = 0.9f,
  15631. .min_step = 1e-20f,
  15632. .max_step = 1e+20f,
  15633. .linesearch = GGML_LINESEARCH_DEFAULT,
  15634. },
  15635. };
  15636. } break;
  15637. }
  15638. return result;
  15639. }
  15640. GGML_API void ggml_opt_init(
  15641. struct ggml_context * ctx,
  15642. struct ggml_opt_context * opt,
  15643. struct ggml_opt_params params,
  15644. int64_t nx) {
  15645. opt->ctx = ctx;
  15646. opt->params = params;
  15647. opt->iter = 0;
  15648. opt->nx = nx;
  15649. opt->just_initialized = true;
  15650. if (opt->ctx == NULL) {
  15651. struct ggml_init_params ctx_opt_params;
  15652. if (opt->params.type == GGML_OPT_ADAM) {
  15653. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  15654. if (opt->params.past > 0) {
  15655. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15656. }
  15657. } else if (opt->params.type == GGML_OPT_LBFGS) {
  15658. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  15659. if (opt->params.past > 0) {
  15660. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15661. }
  15662. }
  15663. ctx_opt_params.mem_buffer = NULL;
  15664. ctx_opt_params.no_alloc = false;
  15665. opt->ctx = ggml_init(ctx_opt_params);
  15666. }
  15667. switch (opt->params.type) {
  15668. case GGML_OPT_ADAM:
  15669. {
  15670. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15671. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15672. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15673. opt->adam.pf = params.past > 0
  15674. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15675. : NULL;
  15676. ggml_set_zero(opt->adam.m);
  15677. ggml_set_zero(opt->adam.v);
  15678. if (opt->adam.pf) {
  15679. ggml_set_zero(opt->adam.pf);
  15680. }
  15681. } break;
  15682. case GGML_OPT_LBFGS:
  15683. {
  15684. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15685. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15686. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15687. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15688. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15689. opt->lbfgs.pf = params.past > 0
  15690. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15691. : NULL;
  15692. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15693. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15694. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15695. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15696. ggml_set_zero(opt->lbfgs.x);
  15697. ggml_set_zero(opt->lbfgs.xp);
  15698. ggml_set_zero(opt->lbfgs.g);
  15699. ggml_set_zero(opt->lbfgs.gp);
  15700. ggml_set_zero(opt->lbfgs.d);
  15701. if (opt->lbfgs.pf) {
  15702. ggml_set_zero(opt->lbfgs.pf);
  15703. }
  15704. ggml_set_zero(opt->lbfgs.lmal);
  15705. ggml_set_zero(opt->lbfgs.lmys);
  15706. ggml_set_zero(opt->lbfgs.lms);
  15707. ggml_set_zero(opt->lbfgs.lmy);
  15708. } break;
  15709. }
  15710. }
  15711. enum ggml_opt_result ggml_opt(
  15712. struct ggml_context * ctx,
  15713. struct ggml_opt_params params,
  15714. struct ggml_tensor * f) {
  15715. bool free_ctx = false;
  15716. if (ctx == NULL) {
  15717. struct ggml_init_params params_ctx = {
  15718. .mem_size = 16*1024*1024,
  15719. .mem_buffer = NULL,
  15720. .no_alloc = false,
  15721. };
  15722. ctx = ggml_init(params_ctx);
  15723. if (ctx == NULL) {
  15724. return GGML_OPT_NO_CONTEXT;
  15725. }
  15726. free_ctx = true;
  15727. }
  15728. enum ggml_opt_result result = GGML_OPT_OK;
  15729. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15730. ggml_opt_init(ctx, opt, params, 0);
  15731. result = ggml_opt_resume(ctx, opt, f);
  15732. if (free_ctx) {
  15733. ggml_free(ctx);
  15734. }
  15735. return result;
  15736. }
  15737. enum ggml_opt_result ggml_opt_resume(
  15738. struct ggml_context * ctx,
  15739. struct ggml_opt_context * opt,
  15740. struct ggml_tensor * f) {
  15741. // build forward + backward compute graphs
  15742. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  15743. ggml_build_forward_expand(gf, f);
  15744. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  15745. ggml_build_backward_expand(ctx, gf, gb, true);
  15746. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15747. }
  15748. enum ggml_opt_result ggml_opt_resume_g(
  15749. struct ggml_context * ctx,
  15750. struct ggml_opt_context * opt,
  15751. struct ggml_tensor * f,
  15752. struct ggml_cgraph * gf,
  15753. struct ggml_cgraph * gb,
  15754. ggml_opt_callback callback,
  15755. void * callback_data) {
  15756. // build forward + backward compute graphs
  15757. enum ggml_opt_result result = GGML_OPT_OK;
  15758. switch (opt->params.type) {
  15759. case GGML_OPT_ADAM:
  15760. {
  15761. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15762. } break;
  15763. case GGML_OPT_LBFGS:
  15764. {
  15765. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15766. } break;
  15767. }
  15768. if (opt->params.print_forward_graph) {
  15769. ggml_graph_print (gf);
  15770. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15771. }
  15772. if (opt->params.print_backward_graph) {
  15773. ggml_graph_print (gb);
  15774. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15775. }
  15776. return result;
  15777. }
  15778. ////////////////////////////////////////////////////////////////////////////////
  15779. void ggml_quantize_init(enum ggml_type type) {
  15780. ggml_critical_section_start();
  15781. switch (type) {
  15782. case GGML_TYPE_IQ2_XXS: iq2xs_init_impl(256); break;
  15783. case GGML_TYPE_IQ2_XS: iq2xs_init_impl(512); break;
  15784. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  15785. default: // nothing
  15786. break;
  15787. }
  15788. ggml_critical_section_end();
  15789. }
  15790. void ggml_quantize_free(void) {
  15791. ggml_critical_section_start();
  15792. iq2xs_free_impl(256);
  15793. iq2xs_free_impl(512);
  15794. ggml_critical_section_end();
  15795. }
  15796. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15797. assert(k % QK4_0 == 0);
  15798. const int nb = k / QK4_0;
  15799. for (int b = 0; b < n; b += k) {
  15800. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15801. quantize_row_q4_0_reference(src + b, y, k);
  15802. for (int i = 0; i < nb; i++) {
  15803. for (int j = 0; j < QK4_0; j += 2) {
  15804. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15805. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15806. hist[vi0]++;
  15807. hist[vi1]++;
  15808. }
  15809. }
  15810. }
  15811. return (n/QK4_0*sizeof(block_q4_0));
  15812. }
  15813. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15814. assert(k % QK4_1 == 0);
  15815. const int nb = k / QK4_1;
  15816. for (int b = 0; b < n; b += k) {
  15817. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15818. quantize_row_q4_1_reference(src + b, y, k);
  15819. for (int i = 0; i < nb; i++) {
  15820. for (int j = 0; j < QK4_1; j += 2) {
  15821. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15822. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15823. hist[vi0]++;
  15824. hist[vi1]++;
  15825. }
  15826. }
  15827. }
  15828. return (n/QK4_1*sizeof(block_q4_1));
  15829. }
  15830. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15831. assert(k % QK5_0 == 0);
  15832. const int nb = k / QK5_0;
  15833. for (int b = 0; b < n; b += k) {
  15834. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15835. quantize_row_q5_0_reference(src + b, y, k);
  15836. for (int i = 0; i < nb; i++) {
  15837. uint32_t qh;
  15838. memcpy(&qh, &y[i].qh, sizeof(qh));
  15839. for (int j = 0; j < QK5_0; j += 2) {
  15840. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15841. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15842. // cast to 16 bins
  15843. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15844. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15845. hist[vi0]++;
  15846. hist[vi1]++;
  15847. }
  15848. }
  15849. }
  15850. return (n/QK5_0*sizeof(block_q5_0));
  15851. }
  15852. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15853. assert(k % QK5_1 == 0);
  15854. const int nb = k / QK5_1;
  15855. for (int b = 0; b < n; b += k) {
  15856. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15857. quantize_row_q5_1_reference(src + b, y, k);
  15858. for (int i = 0; i < nb; i++) {
  15859. uint32_t qh;
  15860. memcpy(&qh, &y[i].qh, sizeof(qh));
  15861. for (int j = 0; j < QK5_1; j += 2) {
  15862. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15863. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15864. // cast to 16 bins
  15865. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15866. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15867. hist[vi0]++;
  15868. hist[vi1]++;
  15869. }
  15870. }
  15871. }
  15872. return (n/QK5_1*sizeof(block_q5_1));
  15873. }
  15874. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15875. assert(k % QK8_0 == 0);
  15876. const int nb = k / QK8_0;
  15877. for (int b = 0; b < n; b += k) {
  15878. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15879. quantize_row_q8_0_reference(src + b, y, k);
  15880. for (int i = 0; i < nb; i++) {
  15881. for (int j = 0; j < QK8_0; ++j) {
  15882. const int8_t vi = y[i].qs[j];
  15883. hist[vi/16 + 8]++;
  15884. }
  15885. }
  15886. }
  15887. return (n/QK8_0*sizeof(block_q8_0));
  15888. }
  15889. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  15890. return
  15891. type == GGML_TYPE_IQ2_XXS ||
  15892. type == GGML_TYPE_IQ2_XS;
  15893. }
  15894. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start,
  15895. int nrows, int n_per_row, int64_t * hist, const float * imatrix) {
  15896. ggml_quantize_init(type); // this is noop if already initialized
  15897. size_t result = 0;
  15898. int n = nrows * n_per_row;
  15899. switch (type) {
  15900. case GGML_TYPE_Q4_0:
  15901. {
  15902. GGML_ASSERT(start % QK4_0 == 0);
  15903. GGML_ASSERT(start % n_per_row == 0);
  15904. size_t start_row = start / n_per_row;
  15905. size_t row_size = ggml_row_size(type, n_per_row);
  15906. result = quantize_q4_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15907. GGML_ASSERT(result == row_size * nrows);
  15908. } break;
  15909. case GGML_TYPE_Q4_1:
  15910. {
  15911. GGML_ASSERT(start % QK4_1 == 0);
  15912. GGML_ASSERT(start % n_per_row == 0);
  15913. size_t start_row = start / n_per_row;
  15914. size_t row_size = ggml_row_size(type, n_per_row);
  15915. result = quantize_q4_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15916. GGML_ASSERT(result == row_size * nrows);
  15917. } break;
  15918. case GGML_TYPE_Q5_0:
  15919. {
  15920. GGML_ASSERT(start % QK5_0 == 0);
  15921. GGML_ASSERT(start % n_per_row == 0);
  15922. size_t start_row = start / n_per_row;
  15923. size_t row_size = ggml_row_size(type, n_per_row);
  15924. result = quantize_q5_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15925. GGML_ASSERT(result == row_size * nrows);
  15926. } break;
  15927. case GGML_TYPE_Q5_1:
  15928. {
  15929. GGML_ASSERT(start % QK5_1 == 0);
  15930. GGML_ASSERT(start % n_per_row == 0);
  15931. size_t start_row = start / n_per_row;
  15932. size_t row_size = ggml_row_size(type, n_per_row);
  15933. result = quantize_q5_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15934. GGML_ASSERT(result == row_size * nrows);
  15935. } break;
  15936. case GGML_TYPE_Q8_0:
  15937. {
  15938. GGML_ASSERT(start % QK8_0 == 0);
  15939. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15940. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15941. } break;
  15942. case GGML_TYPE_Q2_K:
  15943. {
  15944. GGML_ASSERT(start % QK_K == 0);
  15945. GGML_ASSERT(start % n_per_row == 0);
  15946. size_t start_row = start / n_per_row;
  15947. size_t row_size = ggml_row_size(type, n_per_row);
  15948. result = quantize_q2_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15949. GGML_ASSERT(result == row_size * nrows);
  15950. } break;
  15951. case GGML_TYPE_Q3_K:
  15952. {
  15953. GGML_ASSERT(start % QK_K == 0);
  15954. GGML_ASSERT(start % n_per_row == 0);
  15955. size_t start_row = start / n_per_row;
  15956. size_t row_size = ggml_row_size(type, n_per_row);
  15957. result = quantize_q3_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15958. GGML_ASSERT(result == row_size * nrows);
  15959. } break;
  15960. case GGML_TYPE_Q4_K:
  15961. {
  15962. GGML_ASSERT(start % QK_K == 0);
  15963. GGML_ASSERT(start % n_per_row == 0);
  15964. size_t start_row = start / n_per_row;
  15965. size_t row_size = ggml_row_size(type, n_per_row);
  15966. result = quantize_q4_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15967. GGML_ASSERT(result == row_size * nrows);
  15968. } break;
  15969. case GGML_TYPE_Q5_K:
  15970. {
  15971. GGML_ASSERT(start % QK_K == 0);
  15972. GGML_ASSERT(start % n_per_row == 0);
  15973. size_t start_row = start / n_per_row;
  15974. size_t row_size = ggml_row_size(type, n_per_row);
  15975. result = quantize_q5_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15976. GGML_ASSERT(result == row_size * nrows);
  15977. } break;
  15978. case GGML_TYPE_Q6_K:
  15979. {
  15980. GGML_ASSERT(start % QK_K == 0);
  15981. GGML_ASSERT(start % n_per_row == 0);
  15982. size_t start_row = start / n_per_row;
  15983. size_t row_size = ggml_row_size(type, n_per_row);
  15984. result = quantize_q6_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15985. GGML_ASSERT(result == row_size * nrows);
  15986. } break;
  15987. case GGML_TYPE_IQ2_XXS:
  15988. {
  15989. GGML_ASSERT(start % QK_K == 0);
  15990. GGML_ASSERT(start % n_per_row == 0);
  15991. GGML_ASSERT(imatrix);
  15992. size_t start_row = start / n_per_row;
  15993. size_t row_size = ggml_row_size(type, n_per_row);
  15994. result = quantize_iq2_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15995. GGML_ASSERT(result == row_size * nrows);
  15996. } break;
  15997. case GGML_TYPE_IQ2_XS:
  15998. {
  15999. GGML_ASSERT(start % QK_K == 0);
  16000. GGML_ASSERT(start % n_per_row == 0);
  16001. GGML_ASSERT(imatrix);
  16002. size_t start_row = start / n_per_row;
  16003. size_t row_size = ggml_row_size(type, n_per_row);
  16004. result = quantize_iq2_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16005. GGML_ASSERT(result == row_size * nrows);
  16006. } break;
  16007. case GGML_TYPE_IQ3_XXS:
  16008. {
  16009. GGML_ASSERT(start % QK_K == 0);
  16010. GGML_ASSERT(start % n_per_row == 0);
  16011. size_t start_row = start / n_per_row;
  16012. size_t row_size = ggml_row_size(type, n_per_row);
  16013. result = quantize_iq3_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16014. GGML_ASSERT(result == row_size * nrows);
  16015. } break;
  16016. case GGML_TYPE_F16:
  16017. {
  16018. size_t elemsize = sizeof(ggml_fp16_t);
  16019. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16020. result = n * elemsize;
  16021. } break;
  16022. case GGML_TYPE_F32:
  16023. {
  16024. size_t elemsize = sizeof(float);
  16025. result = n * elemsize;
  16026. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16027. } break;
  16028. default:
  16029. assert(false);
  16030. }
  16031. return result;
  16032. }
  16033. ////////////////////////////////////////////////////////////////////////////////
  16034. struct gguf_str {
  16035. uint64_t n; // GGUFv2
  16036. char * data;
  16037. };
  16038. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16039. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16040. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16041. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16042. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16043. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16044. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16045. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16046. [GGUF_TYPE_BOOL] = sizeof(bool),
  16047. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16048. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16049. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16050. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16051. [GGUF_TYPE_ARRAY] = 0, // undefined
  16052. };
  16053. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16054. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16055. [GGUF_TYPE_UINT8] = "u8",
  16056. [GGUF_TYPE_INT8] = "i8",
  16057. [GGUF_TYPE_UINT16] = "u16",
  16058. [GGUF_TYPE_INT16] = "i16",
  16059. [GGUF_TYPE_UINT32] = "u32",
  16060. [GGUF_TYPE_INT32] = "i32",
  16061. [GGUF_TYPE_FLOAT32] = "f32",
  16062. [GGUF_TYPE_BOOL] = "bool",
  16063. [GGUF_TYPE_STRING] = "str",
  16064. [GGUF_TYPE_ARRAY] = "arr",
  16065. [GGUF_TYPE_UINT64] = "u64",
  16066. [GGUF_TYPE_INT64] = "i64",
  16067. [GGUF_TYPE_FLOAT64] = "f64",
  16068. };
  16069. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16070. union gguf_value {
  16071. uint8_t uint8;
  16072. int8_t int8;
  16073. uint16_t uint16;
  16074. int16_t int16;
  16075. uint32_t uint32;
  16076. int32_t int32;
  16077. float float32;
  16078. uint64_t uint64;
  16079. int64_t int64;
  16080. double float64;
  16081. bool bool_;
  16082. struct gguf_str str;
  16083. struct {
  16084. enum gguf_type type;
  16085. uint64_t n; // GGUFv2
  16086. void * data;
  16087. } arr;
  16088. };
  16089. struct gguf_kv {
  16090. struct gguf_str key;
  16091. enum gguf_type type;
  16092. union gguf_value value;
  16093. };
  16094. struct gguf_header {
  16095. char magic[4];
  16096. uint32_t version;
  16097. uint64_t n_tensors; // GGUFv2
  16098. uint64_t n_kv; // GGUFv2
  16099. };
  16100. struct gguf_tensor_info {
  16101. struct gguf_str name;
  16102. uint32_t n_dims;
  16103. uint64_t ne[GGML_MAX_DIMS];
  16104. enum ggml_type type;
  16105. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16106. // for writing API
  16107. const void * data;
  16108. size_t size;
  16109. };
  16110. struct gguf_context {
  16111. struct gguf_header header;
  16112. struct gguf_kv * kv;
  16113. struct gguf_tensor_info * infos;
  16114. size_t alignment;
  16115. size_t offset; // offset of `data` from beginning of file
  16116. size_t size; // size of `data` in bytes
  16117. //uint8_t * padding;
  16118. void * data;
  16119. };
  16120. static size_t gguf_type_size(enum gguf_type type) {
  16121. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  16122. return GGUF_TYPE_SIZE[type];
  16123. }
  16124. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  16125. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  16126. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  16127. for (uint32_t i = 0; i < info->n_dims; ++i) {
  16128. GGML_ASSERT(info->ne[i] > 0);
  16129. }
  16130. // prevent overflow for total number of elements
  16131. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  16132. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  16133. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  16134. }
  16135. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16136. const size_t n = fread(dst, 1, size, file);
  16137. *offset += n;
  16138. return n == size;
  16139. }
  16140. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  16141. p->n = 0;
  16142. p->data = NULL;
  16143. bool ok = true;
  16144. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  16145. // early exit if string length is invalid, prevents from integer overflow
  16146. if (p->n == SIZE_MAX) {
  16147. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  16148. return false;
  16149. }
  16150. p->data = GGML_CALLOC(p->n + 1, 1);
  16151. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16152. return ok;
  16153. }
  16154. struct gguf_context * gguf_init_empty(void) {
  16155. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16156. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  16157. ctx->header.version = GGUF_VERSION;
  16158. ctx->header.n_tensors = 0;
  16159. ctx->header.n_kv = 0;
  16160. ctx->kv = NULL;
  16161. ctx->infos = NULL;
  16162. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16163. ctx->offset = 0;
  16164. ctx->size = 0;
  16165. ctx->data = NULL;
  16166. return ctx;
  16167. }
  16168. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16169. FILE * file = fopen(fname, "rb");
  16170. if (!file) {
  16171. return NULL;
  16172. }
  16173. // offset from start of file
  16174. size_t offset = 0;
  16175. char magic[4];
  16176. // check the magic before making allocations
  16177. {
  16178. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16179. for (uint32_t i = 0; i < sizeof(magic); i++) {
  16180. if (magic[i] != GGUF_MAGIC[i]) {
  16181. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  16182. fclose(file);
  16183. return NULL;
  16184. }
  16185. }
  16186. }
  16187. bool ok = true;
  16188. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16189. // read the header
  16190. {
  16191. strncpy(ctx->header.magic, magic, 4);
  16192. ctx->kv = NULL;
  16193. ctx->infos = NULL;
  16194. ctx->data = NULL;
  16195. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16196. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16197. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16198. if (ctx->header.version == 1) {
  16199. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16200. fclose(file);
  16201. gguf_free(ctx);
  16202. return NULL;
  16203. }
  16204. // sanity-checks to prevent from integer/buffer overflows
  16205. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  16206. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  16207. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  16208. if (!ok) {
  16209. fprintf(stderr, "%s: failed to read header\n", __func__);
  16210. fclose(file);
  16211. gguf_free(ctx);
  16212. return NULL;
  16213. }
  16214. }
  16215. // read the kv pairs
  16216. {
  16217. ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  16218. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16219. struct gguf_kv * kv = &ctx->kv[i];
  16220. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16221. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16222. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16223. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16224. switch (kv->type) {
  16225. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16226. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16227. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16228. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16229. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16230. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16231. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16232. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16233. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16234. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16235. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16236. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16237. case GGUF_TYPE_ARRAY:
  16238. {
  16239. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16240. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16241. switch (kv->value.arr.type) {
  16242. case GGUF_TYPE_UINT8:
  16243. case GGUF_TYPE_INT8:
  16244. case GGUF_TYPE_UINT16:
  16245. case GGUF_TYPE_INT16:
  16246. case GGUF_TYPE_UINT32:
  16247. case GGUF_TYPE_INT32:
  16248. case GGUF_TYPE_FLOAT32:
  16249. case GGUF_TYPE_UINT64:
  16250. case GGUF_TYPE_INT64:
  16251. case GGUF_TYPE_FLOAT64:
  16252. case GGUF_TYPE_BOOL:
  16253. {
  16254. // prevent from integer overflow in the malloc below
  16255. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  16256. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16257. fclose(file);
  16258. gguf_free(ctx);
  16259. return NULL;
  16260. }
  16261. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  16262. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  16263. } break;
  16264. case GGUF_TYPE_STRING:
  16265. {
  16266. // prevent from integer overflow in the malloc below
  16267. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  16268. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16269. fclose(file);
  16270. gguf_free(ctx);
  16271. return NULL;
  16272. }
  16273. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
  16274. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16275. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16276. }
  16277. } break;
  16278. case GGUF_TYPE_ARRAY:
  16279. default: GGML_ASSERT(false && "invalid type"); break;
  16280. }
  16281. } break;
  16282. default: GGML_ASSERT(false && "invalid type");
  16283. }
  16284. if (!ok) {
  16285. break;
  16286. }
  16287. }
  16288. if (!ok) {
  16289. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16290. fclose(file);
  16291. gguf_free(ctx);
  16292. return NULL;
  16293. }
  16294. }
  16295. // read the tensor infos
  16296. {
  16297. ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16298. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16299. struct gguf_tensor_info * info = &ctx->infos[i];
  16300. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16301. info->ne[j] = 1;
  16302. }
  16303. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16304. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16305. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  16306. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16307. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16308. }
  16309. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16310. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16311. gguf_tensor_info_sanitize(info);
  16312. if (!ok) {
  16313. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16314. fclose(file);
  16315. gguf_free(ctx);
  16316. return NULL;
  16317. }
  16318. }
  16319. }
  16320. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16321. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16322. if (alignment_idx != -1) {
  16323. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  16324. }
  16325. // we require the data section to be aligned, so take into account any padding
  16326. {
  16327. const size_t offset_pad = offset % ctx->alignment;
  16328. if (offset_pad != 0) {
  16329. offset += ctx->alignment - offset_pad;
  16330. fseek(file, offset, SEEK_SET);
  16331. }
  16332. }
  16333. // store the current file offset - this is where the data section starts
  16334. ctx->offset = offset;
  16335. // compute the total size of the data section, taking into account the alignment
  16336. {
  16337. ctx->size = 0;
  16338. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16339. struct gguf_tensor_info * info = &ctx->infos[i];
  16340. const int64_t ne =
  16341. (int64_t) info->ne[0] *
  16342. (int64_t) info->ne[1] *
  16343. (int64_t) info->ne[2] *
  16344. (int64_t) info->ne[3];
  16345. if (ne % ggml_blck_size(info->type) != 0) {
  16346. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  16347. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  16348. fclose(file);
  16349. gguf_free(ctx);
  16350. return NULL;
  16351. }
  16352. const size_t size_cur = ggml_row_size(info->type, ne);
  16353. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  16354. }
  16355. }
  16356. // load the tensor data only if requested
  16357. if (params.ctx != NULL) {
  16358. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  16359. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  16360. // the ggml_tensor structs to the appropriate locations in the binary blob
  16361. // compute the exact size needed for the new ggml_context
  16362. const size_t mem_size =
  16363. params.no_alloc ?
  16364. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  16365. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  16366. struct ggml_init_params pdata = {
  16367. .mem_size = mem_size,
  16368. .mem_buffer = NULL,
  16369. .no_alloc = params.no_alloc,
  16370. };
  16371. *params.ctx = ggml_init(pdata);
  16372. struct ggml_context * ctx_data = *params.ctx;
  16373. struct ggml_tensor * data = NULL;
  16374. if (!params.no_alloc) {
  16375. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  16376. ok = ok && data != NULL;
  16377. // read the binary blob with the tensor data
  16378. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  16379. if (!ok) {
  16380. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  16381. fclose(file);
  16382. ggml_free(ctx_data);
  16383. gguf_free(ctx);
  16384. return NULL;
  16385. }
  16386. ctx->data = data->data;
  16387. }
  16388. ggml_set_no_alloc(ctx_data, true);
  16389. // create the tensors
  16390. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16391. const int64_t ne[GGML_MAX_DIMS] = {
  16392. ctx->infos[i].ne[0],
  16393. ctx->infos[i].ne[1],
  16394. ctx->infos[i].ne[2],
  16395. ctx->infos[i].ne[3],
  16396. };
  16397. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  16398. ok = ok && cur != NULL;
  16399. ggml_set_name(cur, ctx->infos[i].name.data);
  16400. if (!ok) {
  16401. break;
  16402. }
  16403. // point the data member to the appropriate location in the binary blob using the tensor infos
  16404. if (!params.no_alloc) {
  16405. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  16406. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  16407. }
  16408. }
  16409. if (!ok) {
  16410. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  16411. fclose(file);
  16412. ggml_free(ctx_data);
  16413. gguf_free(ctx);
  16414. return NULL;
  16415. }
  16416. ggml_set_no_alloc(ctx_data, params.no_alloc);
  16417. }
  16418. fclose(file);
  16419. return ctx;
  16420. }
  16421. void gguf_free(struct gguf_context * ctx) {
  16422. if (ctx == NULL) {
  16423. return;
  16424. }
  16425. if (ctx->kv) {
  16426. // free string memory - not great..
  16427. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16428. struct gguf_kv * kv = &ctx->kv[i];
  16429. if (kv->key.data) {
  16430. GGML_FREE(kv->key.data);
  16431. }
  16432. if (kv->type == GGUF_TYPE_STRING) {
  16433. if (kv->value.str.data) {
  16434. GGML_FREE(kv->value.str.data);
  16435. }
  16436. }
  16437. if (kv->type == GGUF_TYPE_ARRAY) {
  16438. if (kv->value.arr.data) {
  16439. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16440. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16441. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16442. if (str->data) {
  16443. GGML_FREE(str->data);
  16444. }
  16445. }
  16446. }
  16447. GGML_FREE(kv->value.arr.data);
  16448. }
  16449. }
  16450. }
  16451. GGML_FREE(ctx->kv);
  16452. }
  16453. if (ctx->infos) {
  16454. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16455. struct gguf_tensor_info * info = &ctx->infos[i];
  16456. if (info->name.data) {
  16457. GGML_FREE(info->name.data);
  16458. }
  16459. }
  16460. GGML_FREE(ctx->infos);
  16461. }
  16462. GGML_ALIGNED_FREE(ctx);
  16463. }
  16464. const char * gguf_type_name(enum gguf_type type) {
  16465. return GGUF_TYPE_NAME[type];
  16466. }
  16467. int gguf_get_version(const struct gguf_context * ctx) {
  16468. return ctx->header.version;
  16469. }
  16470. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  16471. return ctx->alignment;
  16472. }
  16473. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  16474. return ctx->offset;
  16475. }
  16476. void * gguf_get_data(const struct gguf_context * ctx) {
  16477. return ctx->data;
  16478. }
  16479. int gguf_get_n_kv(const struct gguf_context * ctx) {
  16480. return ctx->header.n_kv;
  16481. }
  16482. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  16483. // return -1 if key not found
  16484. int keyfound = -1;
  16485. const int n_kv = gguf_get_n_kv(ctx);
  16486. for (int i = 0; i < n_kv; ++i) {
  16487. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  16488. keyfound = i;
  16489. break;
  16490. }
  16491. }
  16492. return keyfound;
  16493. }
  16494. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  16495. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16496. return ctx->kv[key_id].key.data;
  16497. }
  16498. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  16499. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16500. return ctx->kv[key_id].type;
  16501. }
  16502. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  16503. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16504. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16505. return ctx->kv[key_id].value.arr.type;
  16506. }
  16507. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  16508. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16509. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16510. return ctx->kv[key_id].value.arr.data;
  16511. }
  16512. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  16513. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16514. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16515. struct gguf_kv * kv = &ctx->kv[key_id];
  16516. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  16517. return str->data;
  16518. }
  16519. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  16520. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16521. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16522. return ctx->kv[key_id].value.arr.n;
  16523. }
  16524. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  16525. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16526. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  16527. return ctx->kv[key_id].value.uint8;
  16528. }
  16529. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  16530. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16531. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  16532. return ctx->kv[key_id].value.int8;
  16533. }
  16534. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  16535. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16536. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  16537. return ctx->kv[key_id].value.uint16;
  16538. }
  16539. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  16540. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16541. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  16542. return ctx->kv[key_id].value.int16;
  16543. }
  16544. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  16545. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16546. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  16547. return ctx->kv[key_id].value.uint32;
  16548. }
  16549. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  16550. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16551. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  16552. return ctx->kv[key_id].value.int32;
  16553. }
  16554. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  16555. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16556. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  16557. return ctx->kv[key_id].value.float32;
  16558. }
  16559. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  16560. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16561. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  16562. return ctx->kv[key_id].value.uint64;
  16563. }
  16564. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  16565. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16566. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  16567. return ctx->kv[key_id].value.int64;
  16568. }
  16569. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  16570. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16571. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  16572. return ctx->kv[key_id].value.float64;
  16573. }
  16574. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  16575. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16576. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  16577. return ctx->kv[key_id].value.bool_;
  16578. }
  16579. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  16580. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16581. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  16582. return ctx->kv[key_id].value.str.data;
  16583. }
  16584. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  16585. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16586. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  16587. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  16588. return &ctx->kv[key_id].value;
  16589. }
  16590. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  16591. return ctx->header.n_tensors;
  16592. }
  16593. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  16594. // return -1 if tensor not found
  16595. int tensorfound = -1;
  16596. const int n_tensors = gguf_get_n_tensors(ctx);
  16597. for (int i = 0; i < n_tensors; ++i) {
  16598. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16599. tensorfound = i;
  16600. break;
  16601. }
  16602. }
  16603. return tensorfound;
  16604. }
  16605. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  16606. return ctx->infos[i].offset;
  16607. }
  16608. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  16609. return ctx->infos[i].name.data;
  16610. }
  16611. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  16612. return ctx->infos[i].type;
  16613. }
  16614. // returns the index
  16615. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16616. const int idx = gguf_find_key(ctx, key);
  16617. if (idx >= 0) {
  16618. return idx;
  16619. }
  16620. const int n_kv = gguf_get_n_kv(ctx);
  16621. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16622. ctx->kv[n_kv].key.n = strlen(key);
  16623. ctx->kv[n_kv].key.data = strdup(key);
  16624. ctx->header.n_kv++;
  16625. return n_kv;
  16626. }
  16627. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16628. const int idx = gguf_get_or_add_key(ctx, key);
  16629. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16630. ctx->kv[idx].value.uint8 = val;
  16631. }
  16632. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16633. const int idx = gguf_get_or_add_key(ctx, key);
  16634. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16635. ctx->kv[idx].value.int8 = val;
  16636. }
  16637. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16638. const int idx = gguf_get_or_add_key(ctx, key);
  16639. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16640. ctx->kv[idx].value.uint16 = val;
  16641. }
  16642. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16643. const int idx = gguf_get_or_add_key(ctx, key);
  16644. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16645. ctx->kv[idx].value.int16 = val;
  16646. }
  16647. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16648. const int idx = gguf_get_or_add_key(ctx, key);
  16649. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16650. ctx->kv[idx].value.uint32 = val;
  16651. }
  16652. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16653. const int idx = gguf_get_or_add_key(ctx, key);
  16654. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16655. ctx->kv[idx].value.int32 = val;
  16656. }
  16657. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16658. const int idx = gguf_get_or_add_key(ctx, key);
  16659. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16660. ctx->kv[idx].value.float32 = val;
  16661. }
  16662. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16663. const int idx = gguf_get_or_add_key(ctx, key);
  16664. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16665. ctx->kv[idx].value.uint64 = val;
  16666. }
  16667. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16668. const int idx = gguf_get_or_add_key(ctx, key);
  16669. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16670. ctx->kv[idx].value.int64 = val;
  16671. }
  16672. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16673. const int idx = gguf_get_or_add_key(ctx, key);
  16674. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16675. ctx->kv[idx].value.float64 = val;
  16676. }
  16677. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16678. const int idx = gguf_get_or_add_key(ctx, key);
  16679. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16680. ctx->kv[idx].value.bool_ = val;
  16681. }
  16682. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16683. const int idx = gguf_get_or_add_key(ctx, key);
  16684. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16685. ctx->kv[idx].value.str.n = strlen(val);
  16686. ctx->kv[idx].value.str.data = strdup(val);
  16687. }
  16688. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16689. const int idx = gguf_get_or_add_key(ctx, key);
  16690. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16691. ctx->kv[idx].value.arr.type = type;
  16692. ctx->kv[idx].value.arr.n = n;
  16693. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
  16694. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  16695. }
  16696. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16697. const int idx = gguf_get_or_add_key(ctx, key);
  16698. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16699. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16700. ctx->kv[idx].value.arr.n = n;
  16701. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
  16702. for (int i = 0; i < n; i++) {
  16703. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16704. str->n = strlen(data[i]);
  16705. str->data = strdup(data[i]);
  16706. }
  16707. }
  16708. // set or add KV pairs from another context
  16709. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16710. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16711. switch (src->kv[i].type) {
  16712. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16713. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16714. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16715. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16716. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16717. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16718. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16719. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16720. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16721. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16722. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16723. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16724. case GGUF_TYPE_ARRAY:
  16725. {
  16726. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16727. const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
  16728. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16729. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16730. }
  16731. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16732. GGML_FREE((void *)data);
  16733. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16734. GGML_ASSERT(false && "nested arrays not supported");
  16735. } else {
  16736. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16737. }
  16738. } break;
  16739. default: GGML_ASSERT(false && "invalid type"); break;
  16740. }
  16741. }
  16742. }
  16743. void gguf_add_tensor(
  16744. struct gguf_context * ctx,
  16745. const struct ggml_tensor * tensor) {
  16746. const int idx = ctx->header.n_tensors;
  16747. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16748. ctx->infos[idx].name.n = strlen(tensor->name);
  16749. ctx->infos[idx].name.data = strdup(tensor->name);
  16750. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16751. ctx->infos[idx].ne[i] = 1;
  16752. }
  16753. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  16754. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  16755. ctx->infos[idx].ne[i] = tensor->ne[i];
  16756. }
  16757. ctx->infos[idx].type = tensor->type;
  16758. ctx->infos[idx].offset = 0;
  16759. ctx->infos[idx].data = tensor->data;
  16760. ctx->infos[idx].size = ggml_nbytes(tensor);
  16761. if (ctx->header.n_tensors > 0) {
  16762. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16763. }
  16764. ctx->header.n_tensors++;
  16765. }
  16766. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16767. const int idx = gguf_find_tensor(ctx, name);
  16768. if (idx < 0) {
  16769. GGML_ASSERT(false && "tensor not found");
  16770. }
  16771. ctx->infos[idx].type = type;
  16772. }
  16773. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16774. const int idx = gguf_find_tensor(ctx, name);
  16775. if (idx < 0) {
  16776. GGML_ASSERT(false && "tensor not found");
  16777. }
  16778. ctx->infos[idx].data = data;
  16779. ctx->infos[idx].size = size;
  16780. // update offsets
  16781. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16782. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16783. }
  16784. }
  16785. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16786. // fwrite(&val->n, sizeof(val->n), 1, file);
  16787. // fwrite(val->data, sizeof(char), val->n, file);
  16788. //}
  16789. //
  16790. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16791. // fwrite(val, sizeof(char), size, file);
  16792. //}
  16793. struct gguf_buf {
  16794. void * data;
  16795. size_t size;
  16796. size_t offset;
  16797. };
  16798. static struct gguf_buf gguf_buf_init(size_t size) {
  16799. struct gguf_buf buf = {
  16800. /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
  16801. /*buf.size =*/ size,
  16802. /*buf.offset =*/ 0,
  16803. };
  16804. return buf;
  16805. }
  16806. static void gguf_buf_free(struct gguf_buf buf) {
  16807. if (buf.data) {
  16808. GGML_FREE(buf.data);
  16809. }
  16810. }
  16811. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16812. if (buf->offset + size > buf->size) {
  16813. buf->size = 1.5*(buf->offset + size);
  16814. if (buf->data) {
  16815. buf->data = realloc(buf->data, buf->size);
  16816. }
  16817. }
  16818. }
  16819. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16820. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16821. if (buf->data) {
  16822. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16823. }
  16824. buf->offset += sizeof(val->n);
  16825. if (buf->data) {
  16826. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16827. }
  16828. buf->offset += val->n;
  16829. }
  16830. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16831. gguf_buf_grow(buf, el_size);
  16832. if (buf->data) {
  16833. memcpy((char *) buf->data + buf->offset, val, el_size);
  16834. }
  16835. buf->offset += el_size;
  16836. }
  16837. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16838. // write header
  16839. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16840. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16841. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16842. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16843. // write key-value pairs
  16844. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16845. struct gguf_kv * kv = &ctx->kv[i];
  16846. gguf_bwrite_str(buf, &kv->key);
  16847. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16848. switch (kv->type) {
  16849. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16850. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16851. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16852. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16853. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16854. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16855. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16856. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16857. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16858. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16859. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16860. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16861. case GGUF_TYPE_ARRAY:
  16862. {
  16863. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16864. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16865. switch (kv->value.arr.type) {
  16866. case GGUF_TYPE_UINT8:
  16867. case GGUF_TYPE_INT8:
  16868. case GGUF_TYPE_UINT16:
  16869. case GGUF_TYPE_INT16:
  16870. case GGUF_TYPE_UINT32:
  16871. case GGUF_TYPE_INT32:
  16872. case GGUF_TYPE_FLOAT32:
  16873. case GGUF_TYPE_UINT64:
  16874. case GGUF_TYPE_INT64:
  16875. case GGUF_TYPE_FLOAT64:
  16876. case GGUF_TYPE_BOOL:
  16877. {
  16878. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  16879. } break;
  16880. case GGUF_TYPE_STRING:
  16881. {
  16882. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16883. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16884. }
  16885. } break;
  16886. case GGUF_TYPE_ARRAY:
  16887. default: GGML_ASSERT(false && "invalid type"); break;
  16888. }
  16889. } break;
  16890. default: GGML_ASSERT(false && "invalid type");
  16891. }
  16892. }
  16893. // write tensor infos
  16894. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16895. struct gguf_tensor_info * info = &ctx->infos[i];
  16896. gguf_bwrite_str(buf, &info->name);
  16897. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16898. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16899. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16900. }
  16901. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16902. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16903. }
  16904. // we require the data section to be aligned, so take into account any padding
  16905. {
  16906. const size_t offset = buf->offset;
  16907. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16908. if (offset_pad != offset) {
  16909. uint8_t pad = 0;
  16910. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16911. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16912. }
  16913. }
  16914. }
  16915. if (only_meta) {
  16916. return;
  16917. }
  16918. size_t offset = 0;
  16919. // write tensor data
  16920. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16921. struct gguf_tensor_info * info = &ctx->infos[i];
  16922. const size_t size = info->size;
  16923. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16924. gguf_bwrite_el(buf, info->data, size);
  16925. if (size_pad != size) {
  16926. uint8_t pad = 0;
  16927. for (size_t j = 0; j < size_pad - size; ++j) {
  16928. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16929. }
  16930. }
  16931. GGML_ASSERT(offset == info->offset);
  16932. offset += size_pad;
  16933. }
  16934. }
  16935. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  16936. FILE * file = fopen(fname, "wb");
  16937. if (!file) {
  16938. GGML_ASSERT(false && "failed to open file for writing");
  16939. }
  16940. struct gguf_buf buf = gguf_buf_init(16*1024);
  16941. gguf_write_to_buf(ctx, &buf, only_meta);
  16942. fwrite(buf.data, 1, buf.offset, file);
  16943. gguf_buf_free(buf);
  16944. fclose(file);
  16945. }
  16946. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  16947. // no allocs - only compute size
  16948. struct gguf_buf buf = gguf_buf_init(0);
  16949. gguf_write_to_buf(ctx, &buf, true);
  16950. return buf.offset;
  16951. }
  16952. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  16953. struct gguf_buf buf = gguf_buf_init(16*1024);
  16954. gguf_write_to_buf(ctx, &buf, true);
  16955. memcpy(data, buf.data, buf.offset);
  16956. gguf_buf_free(buf);
  16957. }
  16958. ////////////////////////////////////////////////////////////////////////////////
  16959. int ggml_cpu_has_avx(void) {
  16960. #if defined(__AVX__)
  16961. return 1;
  16962. #else
  16963. return 0;
  16964. #endif
  16965. }
  16966. int ggml_cpu_has_avx_vnni(void) {
  16967. #if defined(__AVXVNNI__)
  16968. return 1;
  16969. #else
  16970. return 0;
  16971. #endif
  16972. }
  16973. int ggml_cpu_has_avx2(void) {
  16974. #if defined(__AVX2__)
  16975. return 1;
  16976. #else
  16977. return 0;
  16978. #endif
  16979. }
  16980. int ggml_cpu_has_avx512(void) {
  16981. #if defined(__AVX512F__)
  16982. return 1;
  16983. #else
  16984. return 0;
  16985. #endif
  16986. }
  16987. int ggml_cpu_has_avx512_vbmi(void) {
  16988. #if defined(__AVX512VBMI__)
  16989. return 1;
  16990. #else
  16991. return 0;
  16992. #endif
  16993. }
  16994. int ggml_cpu_has_avx512_vnni(void) {
  16995. #if defined(__AVX512VNNI__)
  16996. return 1;
  16997. #else
  16998. return 0;
  16999. #endif
  17000. }
  17001. int ggml_cpu_has_fma(void) {
  17002. #if defined(__FMA__)
  17003. return 1;
  17004. #else
  17005. return 0;
  17006. #endif
  17007. }
  17008. int ggml_cpu_has_neon(void) {
  17009. #if defined(__ARM_NEON)
  17010. return 1;
  17011. #else
  17012. return 0;
  17013. #endif
  17014. }
  17015. int ggml_cpu_has_arm_fma(void) {
  17016. #if defined(__ARM_FEATURE_FMA)
  17017. return 1;
  17018. #else
  17019. return 0;
  17020. #endif
  17021. }
  17022. int ggml_cpu_has_metal(void) {
  17023. #if defined(GGML_USE_METAL)
  17024. return 1;
  17025. #else
  17026. return 0;
  17027. #endif
  17028. }
  17029. int ggml_cpu_has_f16c(void) {
  17030. #if defined(__F16C__)
  17031. return 1;
  17032. #else
  17033. return 0;
  17034. #endif
  17035. }
  17036. int ggml_cpu_has_fp16_va(void) {
  17037. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17038. return 1;
  17039. #else
  17040. return 0;
  17041. #endif
  17042. }
  17043. int ggml_cpu_has_wasm_simd(void) {
  17044. #if defined(__wasm_simd128__)
  17045. return 1;
  17046. #else
  17047. return 0;
  17048. #endif
  17049. }
  17050. int ggml_cpu_has_blas(void) {
  17051. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  17052. return 1;
  17053. #else
  17054. return 0;
  17055. #endif
  17056. }
  17057. int ggml_cpu_has_cublas(void) {
  17058. #if defined(GGML_USE_CUBLAS)
  17059. return 1;
  17060. #else
  17061. return 0;
  17062. #endif
  17063. }
  17064. int ggml_cpu_has_clblast(void) {
  17065. #if defined(GGML_USE_CLBLAST)
  17066. return 1;
  17067. #else
  17068. return 0;
  17069. #endif
  17070. }
  17071. int ggml_cpu_has_vulkan(void) {
  17072. #if defined(GGML_USE_VULKAN)
  17073. return 1;
  17074. #else
  17075. return 0;
  17076. #endif
  17077. }
  17078. int ggml_cpu_has_kompute(void) {
  17079. #if defined(GGML_USE_KOMPUTE)
  17080. return 1;
  17081. #else
  17082. return 0;
  17083. #endif
  17084. }
  17085. int ggml_cpu_has_sycl(void) {
  17086. #if defined(GGML_USE_SYCL)
  17087. return 1;
  17088. #else
  17089. return 0;
  17090. #endif
  17091. }
  17092. int ggml_cpu_has_gpublas(void) {
  17093. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  17094. ggml_cpu_has_sycl();
  17095. }
  17096. int ggml_cpu_has_sse3(void) {
  17097. #if defined(__SSE3__)
  17098. return 1;
  17099. #else
  17100. return 0;
  17101. #endif
  17102. }
  17103. int ggml_cpu_has_ssse3(void) {
  17104. #if defined(__SSSE3__)
  17105. return 1;
  17106. #else
  17107. return 0;
  17108. #endif
  17109. }
  17110. int ggml_cpu_has_vsx(void) {
  17111. #if defined(__POWER9_VECTOR__)
  17112. return 1;
  17113. #else
  17114. return 0;
  17115. #endif
  17116. }
  17117. ////////////////////////////////////////////////////////////////////////////////