tensor_mapping.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf
  13. "tok_embeddings", # llama-pth
  14. "embeddings.word_embeddings", # bert
  15. "language_model.embedding.word_embeddings", # persimmon
  16. "wte", # gpt2
  17. "transformer.embd.wte", # phi2
  18. "model.tok_embeddings", # internlm2
  19. ),
  20. # Token type embeddings
  21. MODEL_TENSOR.TOKEN_TYPES: (
  22. "embeddings.token_type_embeddings", # bert
  23. ),
  24. # Normalization of token embeddings
  25. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  26. "word_embeddings_layernorm", # bloom
  27. ),
  28. # Position embeddings
  29. MODEL_TENSOR.POS_EMBD: (
  30. "transformer.wpe", # gpt2
  31. "embeddings.position_embeddings", # bert
  32. "wpe", # gpt2
  33. ),
  34. # Output
  35. MODEL_TENSOR.OUTPUT: (
  36. "embed_out", # gptneox
  37. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen
  38. "output", # llama-pth bloom internlm2
  39. "word_embeddings_for_head", # persimmon
  40. "lm_head.linear", # phi2
  41. ),
  42. # Output norm
  43. MODEL_TENSOR.OUTPUT_NORM: (
  44. "gpt_neox.final_layer_norm", # gptneox
  45. "transformer.ln_f", # gpt2 gpt-j falcon
  46. "model.norm", # llama-hf baichuan internlm2
  47. "norm", # llama-pth
  48. "embeddings.LayerNorm", # bert
  49. "transformer.norm_f", # mpt
  50. "ln_f", # refact bloom qwen gpt2
  51. "language_model.encoder.final_layernorm", # persimmon
  52. "model.final_layernorm", # persimmon
  53. "lm_head.ln", # phi2
  54. ),
  55. # Rope frequencies
  56. MODEL_TENSOR.ROPE_FREQS: (
  57. "rope.freqs", # llama-pth
  58. ),
  59. }
  60. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  61. # Attention norm
  62. MODEL_TENSOR.ATTN_NORM: (
  63. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  64. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen
  65. "transformer.blocks.{bid}.norm_1", # mpt
  66. "transformer.h.{bid}.input_layernorm", # falcon7b
  67. "h.{bid}.input_layernorm", # bloom
  68. "transformer.h.{bid}.ln_mlp", # falcon40b
  69. "model.layers.{bid}.input_layernorm", # llama-hf
  70. "layers.{bid}.attention_norm", # llama-pth
  71. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  72. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  73. "model.layers.{bid}.ln1", # yi
  74. "h.{bid}.ln_1", # gpt2
  75. "transformer.h.{bid}.ln", # phi2
  76. "model.layers.layers.{bid}.norm", # plamo
  77. "model.layers.{bid}.attention_norm", # internlm2
  78. ),
  79. # Attention norm 2
  80. MODEL_TENSOR.ATTN_NORM_2: (
  81. "transformer.h.{bid}.ln_attn", # falcon40b
  82. ),
  83. # Attention query-key-value
  84. MODEL_TENSOR.ATTN_QKV: (
  85. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  86. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen
  87. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  88. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  89. "h.{bid}.self_attention.query_key_value", # bloom
  90. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  91. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  92. "h.{bid}.attn.c_attn", # gpt2
  93. "transformer.h.{bid}.mixer.Wqkv", # phi2
  94. ),
  95. # Attention query
  96. MODEL_TENSOR.ATTN_Q: (
  97. "model.layers.{bid}.self_attn.q_proj", # llama-hf
  98. "layers.{bid}.attention.wq", # llama-pth
  99. "encoder.layer.{bid}.attention.self.query", # bert
  100. "transformer.h.{bid}.attn.q_proj", # gpt-j
  101. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  102. "model.layers.{bid}.attention.wq" # internlm2
  103. ),
  104. # Attention key
  105. MODEL_TENSOR.ATTN_K: (
  106. "model.layers.{bid}.self_attn.k_proj", # llama-hf
  107. "layers.{bid}.attention.wk", # llama-pth
  108. "encoder.layer.{bid}.attention.self.key", # bert
  109. "transformer.h.{bid}.attn.k_proj", # gpt-j
  110. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  111. "model.layers.{bid}.attention.wk" # internlm2
  112. ),
  113. # Attention value
  114. MODEL_TENSOR.ATTN_V: (
  115. "model.layers.{bid}.self_attn.v_proj", # llama-hf
  116. "layers.{bid}.attention.wv", # llama-pth
  117. "encoder.layer.{bid}.attention.self.value", # bert
  118. "transformer.h.{bid}.attn.v_proj", # gpt-j
  119. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  120. "model.layers.{bid}.attention.wv" # internlm2
  121. ),
  122. # Attention output
  123. MODEL_TENSOR.ATTN_OUT: (
  124. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  125. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen
  126. "transformer.blocks.{bid}.attn.out_proj", # mpt
  127. "transformer.h.{bid}.self_attention.dense", # falcon
  128. "h.{bid}.self_attention.dense", # bloom
  129. "model.layers.{bid}.self_attn.o_proj", # llama-hf
  130. "layers.{bid}.attention.wo", # llama-pth
  131. "encoder.layer.{bid}.attention.output.dense", # bert
  132. "transformer.h.{bid}.attn.out_proj", # gpt-j
  133. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  134. "model.layers.{bid}.self_attn.dense", # persimmon
  135. "h.{bid}.attn.c_proj", # gpt2
  136. "transformer.h.{bid}.mixer.out_proj", # phi2
  137. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  138. "model.layers.{bid}.attention.wo", # internlm2
  139. ),
  140. # Rotary embeddings
  141. MODEL_TENSOR.ATTN_ROT_EMBD: (
  142. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  143. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  144. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  145. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  146. ),
  147. # Feed-forward norm
  148. MODEL_TENSOR.FFN_NORM: (
  149. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  150. "transformer.h.{bid}.ln_2", # gpt2 refact qwen
  151. "h.{bid}.post_attention_layernorm", # bloom
  152. "transformer.blocks.{bid}.norm_2", # mpt
  153. "model.layers.{bid}.post_attention_layernorm", # llama-hf
  154. "layers.{bid}.ffn_norm", # llama-pth
  155. "encoder.layer.{bid}.output.LayerNorm", # bert
  156. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  157. "model.layers.{bid}.ln2", # yi
  158. "h.{bid}.ln_2", # gpt2
  159. "model.layers.{bid}.ffn_norm", # internlm2
  160. ),
  161. MODEL_TENSOR.FFN_GATE_INP: (
  162. "layers.{bid}.feed_forward.gate", # mixtral
  163. "model.layers.{bid}.block_sparse_moe.gate", # mixtral
  164. ),
  165. # Feed-forward up
  166. MODEL_TENSOR.FFN_UP: (
  167. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  168. "transformer.h.{bid}.mlp.c_fc", # gpt2
  169. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  170. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  171. "h.{bid}.mlp.dense_h_to_4h", # bloom
  172. "model.layers.{bid}.mlp.up_proj", # llama-hf refact
  173. "layers.{bid}.feed_forward.w3", # llama-pth
  174. "encoder.layer.{bid}.intermediate.dense", # bert
  175. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  176. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  177. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  178. "transformer.h.{bid}.mlp.w1", # qwen
  179. "h.{bid}.mlp.c_fc", # gpt2
  180. "transformer.h.{bid}.mlp.fc1", # phi2
  181. "model.layers.{bid}.mlp.fc1", # phi2
  182. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  183. "model.layers.{bid}.feed_forward.w3", # internlm2
  184. ),
  185. MODEL_TENSOR.FFN_UP_EXP: (
  186. "layers.{bid}.feed_forward.experts.{xid}.w3", # mixtral
  187. "model.layers.{bid}.block_sparse_moe.experts.{xid}.w3", # mixtral
  188. ),
  189. # AWQ-activation gate
  190. MODEL_TENSOR.FFN_ACT: (
  191. "transformer.blocks.{bid}.ffn.act", # mpt
  192. ),
  193. # Feed-forward gate
  194. MODEL_TENSOR.FFN_GATE: (
  195. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact
  196. "layers.{bid}.feed_forward.w1", # llama-pth
  197. "transformer.h.{bid}.mlp.w2", # qwen
  198. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  199. "model.layers.{bid}.feed_forward.w1", # internlm2
  200. ),
  201. MODEL_TENSOR.FFN_GATE_EXP: (
  202. "layers.{bid}.feed_forward.experts.{xid}.w1", # mixtral
  203. "model.layers.{bid}.block_sparse_moe.experts.{xid}.w1", # mixtral
  204. ),
  205. # Feed-forward down
  206. MODEL_TENSOR.FFN_DOWN: (
  207. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  208. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen
  209. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  210. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  211. "h.{bid}.mlp.dense_4h_to_h", # bloom
  212. "model.layers.{bid}.mlp.down_proj", # llama-hf
  213. "layers.{bid}.feed_forward.w2", # llama-pth
  214. "encoder.layer.{bid}.output.dense", # bert
  215. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  216. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  217. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  218. "h.{bid}.mlp.c_proj", # gpt2
  219. "transformer.h.{bid}.mlp.fc2", # phi2
  220. "model.layers.{bid}.mlp.fc2", # phi2
  221. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  222. "model.layers.{bid}.feed_forward.w2", # internlm2
  223. ),
  224. MODEL_TENSOR.FFN_DOWN_EXP: (
  225. "layers.{bid}.feed_forward.experts.{xid}.w2", # mixtral
  226. "model.layers.{bid}.block_sparse_moe.experts.{xid}.w2", # mixtral
  227. ),
  228. MODEL_TENSOR.ATTN_Q_NORM: (
  229. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  230. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  231. ),
  232. MODEL_TENSOR.ATTN_K_NORM: (
  233. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  234. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  235. ),
  236. MODEL_TENSOR.ROPE_FREQS: (
  237. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  238. ),
  239. }
  240. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  241. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  242. self.mapping = {}
  243. for tensor, keys in self.mappings_cfg.items():
  244. if tensor not in MODEL_TENSORS[arch]:
  245. continue
  246. tensor_name = TENSOR_NAMES[tensor]
  247. self.mapping[tensor_name] = (tensor, tensor_name)
  248. for key in keys:
  249. self.mapping[key] = (tensor, tensor_name)
  250. for bid in range(n_blocks):
  251. for tensor, keys in self.block_mappings_cfg.items():
  252. if tensor not in MODEL_TENSORS[arch]:
  253. continue
  254. # TODO: make this configurable
  255. n_experts = 8
  256. for xid in range(n_experts):
  257. tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid)
  258. self.mapping[tensor_name] = (tensor, tensor_name)
  259. for key in keys:
  260. key = key.format(bid = bid, xid = xid)
  261. self.mapping[key] = (tensor, tensor_name)
  262. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  263. result = self.mapping.get(key)
  264. if result is not None:
  265. return result
  266. for suffix in try_suffixes:
  267. if key.endswith(suffix):
  268. result = self.mapping.get(key[:-len(suffix)])
  269. if result is not None:
  270. return result[0], result[1] + suffix
  271. return None
  272. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  273. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  274. if result is None:
  275. return None
  276. return result[1]
  277. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  278. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  279. if result is None:
  280. return None
  281. return result[0]
  282. def __getitem__(self, key: str) -> str:
  283. try:
  284. return self.mapping[key][1]
  285. except KeyError:
  286. raise KeyError(key)
  287. def __contains__(self, key: str) -> bool:
  288. return key in self.mapping
  289. def __repr__(self) -> str:
  290. return repr(self.mapping)
  291. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  292. return TensorNameMap(arch, n_blocks)