convert-hf-to-gguf.py 136 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import logging
  5. import argparse
  6. import contextlib
  7. import json
  8. import os
  9. import re
  10. import sys
  11. from enum import IntEnum
  12. from pathlib import Path
  13. from hashlib import sha256
  14. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Sequence, TypeVar, cast
  15. import math
  16. import numpy as np
  17. import torch
  18. if TYPE_CHECKING:
  19. from torch import Tensor
  20. if 'NO_LOCAL_GGUF' not in os.environ:
  21. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  22. import gguf
  23. logger = logging.getLogger("hf-to-gguf")
  24. ###### MODEL DEFINITIONS ######
  25. class SentencePieceTokenTypes(IntEnum):
  26. NORMAL = 1
  27. UNKNOWN = 2
  28. CONTROL = 3
  29. USER_DEFINED = 4
  30. UNUSED = 5
  31. BYTE = 6
  32. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  33. class Model:
  34. _model_classes: dict[str, type[Model]] = {}
  35. dir_model: Path
  36. ftype: gguf.LlamaFileType
  37. is_big_endian: bool
  38. endianess: gguf.GGUFEndian
  39. use_temp_file: bool
  40. lazy: bool
  41. model_name: str | None
  42. part_names: list[str]
  43. is_safetensors: bool
  44. hparams: dict[str, Any]
  45. block_count: int
  46. tensor_map: gguf.TensorNameMap
  47. tensor_names: set[str] | None
  48. fname_out: Path
  49. gguf_writer: gguf.GGUFWriter
  50. # subclasses should define this!
  51. model_arch: gguf.MODEL_ARCH
  52. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool, use_temp_file: bool, eager: bool,
  53. model_name: str | None, split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False):
  54. if type(self) is Model:
  55. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  56. self.dir_model = dir_model
  57. self.ftype = ftype
  58. self.is_big_endian = is_big_endian
  59. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  60. self.use_temp_file = use_temp_file
  61. self.lazy = not eager
  62. self.model_name = model_name
  63. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  64. self.is_safetensors = len(self.part_names) > 0
  65. if not self.is_safetensors:
  66. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  67. self.hparams = Model.load_hparams(self.dir_model)
  68. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  69. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  70. self.tensor_names = None
  71. if self.ftype == gguf.LlamaFileType.GUESSED:
  72. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  73. _, first_tensor = next(self.get_tensors())
  74. if first_tensor.dtype == torch.float16:
  75. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  76. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  77. else:
  78. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  79. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  80. ftype_up: str = self.ftype.name.partition("_")[2].upper()
  81. ftype_lw: str = ftype_up.lower()
  82. # allow templating the file name with the output ftype, useful with the "auto" ftype
  83. self.fname_out = fname_out.parent / fname_out.name.format(ftype_lw, outtype=ftype_lw, ftype=ftype_lw, OUTTYPE=ftype_up, FTYPE=ftype_up)
  84. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  85. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  86. @classmethod
  87. def __init_subclass__(cls):
  88. # can't use an abstract property, because overriding it without type errors
  89. # would require using decorated functions instead of simply defining the property
  90. if "model_arch" not in cls.__dict__:
  91. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  92. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  93. key = next((k for k in keys if k in self.hparams), None)
  94. if key is not None:
  95. return self.hparams[key]
  96. if optional:
  97. return None
  98. raise KeyError(f"could not find any of: {keys}")
  99. def set_vocab(self):
  100. self._set_vocab_gpt2()
  101. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  102. tensor_names_from_parts: set[str] = set()
  103. if len(self.part_names) > 1:
  104. self.tensor_names = set()
  105. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  106. index_name += ".index.json"
  107. logger.info(f"gguf: loading model weight map from '{index_name}'")
  108. with open(self.dir_model / index_name, "r", encoding="utf-8") as f:
  109. index: dict[str, Any] = json.load(f)
  110. weight_map = index.get("weight_map")
  111. if weight_map is None or not isinstance(weight_map, dict):
  112. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  113. self.tensor_names.update(weight_map.keys())
  114. else:
  115. self.tensor_names = tensor_names_from_parts
  116. for part_name in self.part_names:
  117. logger.info(f"gguf: loading model part '{part_name}'")
  118. ctx: ContextManager[Any]
  119. if self.is_safetensors:
  120. from safetensors import safe_open
  121. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  122. else:
  123. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  124. with ctx as model_part:
  125. tensor_names_from_parts.update(model_part.keys())
  126. for name in model_part.keys():
  127. data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
  128. if self.lazy:
  129. data = LazyTorchTensor.from_eager(data)
  130. yield name, data
  131. # only verify tensor name presence; it doesn't matter if they are not in the right files
  132. if len(sym_diff := tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  133. raise ValueError(f"Mismatch between weight map and model parts for tensor names: {sym_diff}")
  134. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  135. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  136. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  137. name: str = gguf.TENSOR_NAMES[key]
  138. if "{bid}" in name:
  139. assert bid is not None
  140. name = name.format(bid=bid)
  141. return name + suffix
  142. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  143. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  144. return False
  145. key_name: str = gguf.TENSOR_NAMES[key]
  146. if "{bid}" in key_name:
  147. if bid is None:
  148. return False
  149. key_name = key_name.format(bid=bid)
  150. else:
  151. if bid is not None:
  152. return False
  153. return name == (key_name + suffix)
  154. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  155. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  156. if new_name is None:
  157. raise ValueError(f"Can not map tensor {name!r}")
  158. return new_name
  159. def set_gguf_parameters(self):
  160. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  161. self.gguf_writer.add_block_count(self.block_count)
  162. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  163. self.gguf_writer.add_context_length(n_ctx)
  164. logger.info(f"gguf: context length = {n_ctx}")
  165. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  166. self.gguf_writer.add_embedding_length(n_embd)
  167. logger.info(f"gguf: embedding length = {n_embd}")
  168. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  169. self.gguf_writer.add_feed_forward_length(n_ff)
  170. logger.info(f"gguf: feed forward length = {n_ff}")
  171. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  172. self.gguf_writer.add_head_count(n_head)
  173. logger.info(f"gguf: head count = {n_head}")
  174. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  175. self.gguf_writer.add_head_count_kv(n_head_kv)
  176. logger.info(f"gguf: key-value head count = {n_head_kv}")
  177. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  178. self.gguf_writer.add_rope_freq_base(rope_theta)
  179. logger.info(f"gguf: rope theta = {rope_theta}")
  180. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  181. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  182. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  183. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  184. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  185. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  186. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  187. self.gguf_writer.add_expert_count(n_experts)
  188. logger.info(f"gguf: expert count = {n_experts}")
  189. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  190. self.gguf_writer.add_expert_used_count(n_experts_used)
  191. logger.info(f"gguf: experts used count = {n_experts_used}")
  192. self.gguf_writer.add_file_type(self.ftype)
  193. logger.info(f"gguf: file type = {self.ftype}")
  194. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  195. del bid # unused
  196. return [(self.map_tensor_name(name), data_torch)]
  197. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  198. del name, new_name, bid, n_dims # unused
  199. return False
  200. def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  201. del name, new_name, bid, n_dims # unused
  202. return False
  203. def write_tensors(self):
  204. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  205. for name, data_torch in self.get_tensors():
  206. # we don't need these
  207. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  208. continue
  209. old_dtype = data_torch.dtype
  210. # convert any unsupported data types to float32
  211. if data_torch.dtype not in (torch.float16, torch.float32):
  212. data_torch = data_torch.to(torch.float32)
  213. # use the first number-like part of the tensor name as the block id
  214. bid = None
  215. for part in name.split("."):
  216. if part.isdecimal():
  217. bid = int(part)
  218. break
  219. for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
  220. data: np.ndarray = data # type hint
  221. n_dims = len(data.shape)
  222. data_dtype = data.dtype
  223. data_qtype: gguf.GGMLQuantizationType | None = None
  224. # when both are True, f32 should win
  225. extra_f32 = self.extra_f32_tensors(name, new_name, bid, n_dims)
  226. extra_f16 = self.extra_f16_tensors(name, new_name, bid, n_dims)
  227. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  228. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  229. extra_f32 = any(cond for cond in (
  230. extra_f32,
  231. n_dims == 1,
  232. new_name.endswith("_norm.weight"),
  233. ))
  234. # Some tensor types are always in float32
  235. extra_f32 = extra_f32 or any(self.match_model_tensor_name(new_name, key, bid) for key in (
  236. gguf.MODEL_TENSOR.FFN_GATE_INP,
  237. gguf.MODEL_TENSOR.POS_EMBD,
  238. gguf.MODEL_TENSOR.TOKEN_TYPES,
  239. ))
  240. # if f16 desired, convert any float32 2-dim weight tensors to float16
  241. extra_f16 = any(cond for cond in (
  242. extra_f16,
  243. (name.endswith(".weight") and n_dims >= 2),
  244. ))
  245. if self.ftype != gguf.LlamaFileType.ALL_F32 and extra_f16 and not extra_f32:
  246. if self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  247. data = gguf.quantize_bf16(data)
  248. assert data.dtype == np.int16
  249. data_qtype = gguf.GGMLQuantizationType.BF16
  250. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0 and gguf.can_quantize_to_q8_0(data):
  251. data = gguf.quantize_q8_0(data)
  252. assert data.dtype == np.uint8
  253. data_qtype = gguf.GGMLQuantizationType.Q8_0
  254. else: # default to float16 for quantized tensors
  255. if data_dtype != np.float16:
  256. data = data.astype(np.float16)
  257. data_qtype = gguf.GGMLQuantizationType.F16
  258. if data_qtype is None: # by default, convert to float32
  259. if data_dtype != np.float32:
  260. data = data.astype(np.float32)
  261. data_qtype = gguf.GGMLQuantizationType.F32
  262. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  263. # reverse shape to make it similar to the internal ggml dimension order
  264. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  265. # n_dims is implicit in the shape
  266. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  267. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  268. def write(self):
  269. self.write_tensors()
  270. self.gguf_writer.write_header_to_file(self.fname_out)
  271. self.gguf_writer.write_kv_data_to_file()
  272. self.gguf_writer.write_tensors_to_file(progress=True)
  273. self.gguf_writer.close()
  274. def write_vocab(self):
  275. if len(self.gguf_writer.tensors) != 1:
  276. raise ValueError('Splitting the vocabulary is not supported')
  277. self.gguf_writer.write_header_to_file(self.fname_out)
  278. self.gguf_writer.write_kv_data_to_file()
  279. self.gguf_writer.close()
  280. @staticmethod
  281. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  282. part_names: list[str] = []
  283. for filename in os.listdir(dir_model):
  284. if filename.startswith(prefix) and filename.endswith(suffix):
  285. part_names.append(filename)
  286. part_names.sort()
  287. return part_names
  288. @staticmethod
  289. def load_hparams(dir_model: Path):
  290. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  291. return json.load(f)
  292. @classmethod
  293. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  294. assert names
  295. def func(modelcls: AnyModel) -> AnyModel:
  296. for name in names:
  297. cls._model_classes[name] = modelcls
  298. return modelcls
  299. return func
  300. @classmethod
  301. def from_model_architecture(cls, arch: str) -> type[Model]:
  302. try:
  303. return cls._model_classes[arch]
  304. except KeyError:
  305. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  306. # used for GPT-2 BPE and WordPiece vocabs
  307. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  308. tokens: list[str] = []
  309. toktypes: list[int] = []
  310. from transformers import AutoTokenizer
  311. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  312. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  313. assert max(tokenizer.vocab.values()) < vocab_size
  314. tokpre = self.get_vocab_base_pre(tokenizer)
  315. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  316. added_vocab = tokenizer.get_added_vocab()
  317. for i in range(vocab_size):
  318. if i not in reverse_vocab:
  319. tokens.append(f"[PAD{i}]")
  320. toktypes.append(gguf.TokenType.USER_DEFINED)
  321. elif reverse_vocab[i] in added_vocab:
  322. tokens.append(reverse_vocab[i])
  323. if tokenizer.added_tokens_decoder[i].special:
  324. toktypes.append(gguf.TokenType.CONTROL)
  325. else:
  326. toktypes.append(gguf.TokenType.USER_DEFINED)
  327. else:
  328. tokens.append(reverse_vocab[i])
  329. toktypes.append(gguf.TokenType.NORMAL)
  330. return tokens, toktypes, tokpre
  331. # NOTE: this function is generated by convert-hf-to-gguf-update.py
  332. # do not modify it manually!
  333. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  334. # Marker: Start get_vocab_base_pre
  335. def get_vocab_base_pre(self, tokenizer) -> str:
  336. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  337. # is specific for the BPE pre-tokenizer used by the model
  338. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  339. # use in llama.cpp to implement the same pre-tokenizer
  340. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  341. chktok = tokenizer.encode(chktxt)
  342. chkhsh = sha256(str(chktok).encode()).hexdigest()
  343. logger.debug(f"chktok: {chktok}")
  344. logger.debug(f"chkhsh: {chkhsh}")
  345. res = None
  346. # NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script
  347. # or pull the latest version of the model from Huggingface
  348. # don't edit the hashes manually!
  349. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  350. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  351. res = "llama-bpe"
  352. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  353. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  354. res = "deepseek-llm"
  355. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  356. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  357. res = "deepseek-coder"
  358. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  359. # ref: https://huggingface.co/tiiuae/falcon-7b
  360. res = "falcon"
  361. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  362. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  363. res = "bert-bge"
  364. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  365. # ref: https://huggingface.co/mosaicml/mpt-7b
  366. res = "mpt"
  367. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  368. # ref: https://huggingface.co/bigcode/starcoder2-3b
  369. res = "starcoder"
  370. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  371. # ref: https://huggingface.co/openai-community/gpt2
  372. res = "gpt-2"
  373. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  374. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  375. res = "stablelm2"
  376. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  377. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  378. res = "refact"
  379. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  380. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  381. res = "command-r"
  382. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  383. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  384. res = "qwen2"
  385. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  386. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  387. res = "olmo"
  388. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  389. # ref: https://huggingface.co/databricks/dbrx-base
  390. res = "dbrx"
  391. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  392. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  393. res = "jina-v2-en"
  394. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  395. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  396. res = "jina-v2-es"
  397. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  398. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  399. res = "jina-v2-de"
  400. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  401. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  402. res = "smaug-bpe"
  403. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  404. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  405. res = "poro-chat"
  406. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  407. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  408. res = "jina-v2-code"
  409. if res is None:
  410. logger.warning("\n")
  411. logger.warning("**************************************************************************************")
  412. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  413. logger.warning("** There are 2 possible reasons for this:")
  414. logger.warning("** - the model has not been added to convert-hf-to-gguf-update.py yet")
  415. logger.warning("** - the pre-tokenization config has changed upstream")
  416. logger.warning("** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.")
  417. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  418. logger.warning("**")
  419. logger.warning(f"** chkhsh: {chkhsh}")
  420. logger.warning("**************************************************************************************")
  421. logger.warning("\n")
  422. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  423. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  424. logger.debug(f"chkhsh: {chkhsh}")
  425. return res
  426. # Marker: End get_vocab_base_pre
  427. def _set_vocab_gpt2(self) -> None:
  428. tokens, toktypes, tokpre = self.get_vocab_base()
  429. self.gguf_writer.add_tokenizer_model("gpt2")
  430. self.gguf_writer.add_tokenizer_pre(tokpre)
  431. self.gguf_writer.add_token_list(tokens)
  432. self.gguf_writer.add_token_types(toktypes)
  433. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  434. special_vocab.add_to_gguf(self.gguf_writer)
  435. def _set_vocab_qwen(self):
  436. dir_model = self.dir_model
  437. hparams = self.hparams
  438. tokens: list[str] = []
  439. toktypes: list[int] = []
  440. from transformers import AutoTokenizer
  441. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  442. vocab_size = hparams["vocab_size"]
  443. assert max(tokenizer.get_vocab().values()) < vocab_size
  444. tokpre = self.get_vocab_base_pre(tokenizer)
  445. merges = []
  446. vocab = {}
  447. mergeable_ranks = tokenizer.mergeable_ranks
  448. for token, rank in mergeable_ranks.items():
  449. vocab[QwenModel.token_bytes_to_string(token)] = rank
  450. if len(token) == 1:
  451. continue
  452. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  453. assert len(merged) == 2
  454. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  455. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  456. added_vocab = tokenizer.special_tokens
  457. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  458. for i in range(vocab_size):
  459. if i not in reverse_vocab:
  460. tokens.append(f"[PAD{i}]")
  461. toktypes.append(gguf.TokenType.USER_DEFINED)
  462. elif reverse_vocab[i] in added_vocab:
  463. tokens.append(reverse_vocab[i])
  464. toktypes.append(gguf.TokenType.CONTROL)
  465. else:
  466. tokens.append(reverse_vocab[i])
  467. toktypes.append(gguf.TokenType.NORMAL)
  468. self.gguf_writer.add_tokenizer_model("gpt2")
  469. self.gguf_writer.add_tokenizer_pre(tokpre)
  470. self.gguf_writer.add_token_list(tokens)
  471. self.gguf_writer.add_token_types(toktypes)
  472. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  473. special_vocab.merges = merges
  474. # only add special tokens when they were not already loaded from config.json
  475. if len(special_vocab.special_token_ids) == 0:
  476. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  477. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  478. # this one is usually not in config.json anyway
  479. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  480. special_vocab.add_to_gguf(self.gguf_writer)
  481. def _set_vocab_sentencepiece(self):
  482. from sentencepiece import SentencePieceProcessor
  483. tokenizer_path = self.dir_model / 'tokenizer.model'
  484. tokens: list[bytes] = []
  485. scores: list[float] = []
  486. toktypes: list[int] = []
  487. if not tokenizer_path.is_file():
  488. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  489. tokenizer = SentencePieceProcessor()
  490. tokenizer.LoadFromFile(str(tokenizer_path))
  491. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  492. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  493. scores: list[float] = [-10000.0] * vocab_size
  494. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  495. for token_id in range(tokenizer.vocab_size()):
  496. piece = tokenizer.IdToPiece(token_id)
  497. text = piece.encode("utf-8")
  498. score = tokenizer.GetScore(token_id)
  499. toktype = SentencePieceTokenTypes.NORMAL
  500. if tokenizer.IsUnknown(token_id):
  501. toktype = SentencePieceTokenTypes.UNKNOWN
  502. elif tokenizer.IsControl(token_id):
  503. toktype = SentencePieceTokenTypes.CONTROL
  504. elif tokenizer.IsUnused(token_id):
  505. toktype = SentencePieceTokenTypes.UNUSED
  506. elif tokenizer.IsByte(token_id):
  507. toktype = SentencePieceTokenTypes.BYTE
  508. tokens[token_id] = text
  509. scores[token_id] = score
  510. toktypes[token_id] = toktype
  511. added_tokens_file = self.dir_model / 'added_tokens.json'
  512. if added_tokens_file.is_file():
  513. with open(added_tokens_file, "r", encoding="utf-8") as f:
  514. added_tokens_json = json.load(f)
  515. for key in added_tokens_json:
  516. token_id = added_tokens_json[key]
  517. if (token_id >= vocab_size):
  518. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  519. continue
  520. tokens[token_id] = key.encode("utf-8")
  521. scores[token_id] = -1000.0
  522. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  523. if vocab_size > len(tokens):
  524. pad_count = vocab_size - len(tokens)
  525. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  526. for i in range(1, pad_count + 1):
  527. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  528. scores.append(-1000.0)
  529. toktypes.append(SentencePieceTokenTypes.UNUSED)
  530. self.gguf_writer.add_tokenizer_model("llama")
  531. self.gguf_writer.add_tokenizer_pre("default")
  532. self.gguf_writer.add_token_list(tokens)
  533. self.gguf_writer.add_token_scores(scores)
  534. self.gguf_writer.add_token_types(toktypes)
  535. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  536. special_vocab.add_to_gguf(self.gguf_writer)
  537. def _set_vocab_llama_hf(self):
  538. vocab = gguf.LlamaHfVocab(self.dir_model)
  539. tokens = []
  540. scores = []
  541. toktypes = []
  542. for text, score, toktype in vocab.all_tokens():
  543. tokens.append(text)
  544. scores.append(score)
  545. toktypes.append(toktype)
  546. assert len(tokens) == vocab.vocab_size
  547. self.gguf_writer.add_tokenizer_model("llama")
  548. self.gguf_writer.add_tokenizer_pre("default")
  549. self.gguf_writer.add_token_list(tokens)
  550. self.gguf_writer.add_token_scores(scores)
  551. self.gguf_writer.add_token_types(toktypes)
  552. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  553. special_vocab.add_to_gguf(self.gguf_writer)
  554. @Model.register("GPTNeoXForCausalLM")
  555. class GPTNeoXModel(Model):
  556. model_arch = gguf.MODEL_ARCH.GPTNEOX
  557. def set_gguf_parameters(self):
  558. block_count = self.hparams["num_hidden_layers"]
  559. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  560. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  561. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  562. self.gguf_writer.add_block_count(block_count)
  563. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  564. self.gguf_writer.add_rope_dimension_count(
  565. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  566. )
  567. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  568. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  569. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  570. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  571. del bid # unused
  572. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  573. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  574. tensors: list[tuple[str, Tensor]] = []
  575. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  576. # Map bloom-style qkv_linear to gpt-style qkv_linear
  577. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  578. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  579. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  580. data_torch = torch.cat(
  581. (
  582. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  583. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  584. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  585. ),
  586. dim=0,
  587. )
  588. logger.info("re-format attention.linear_qkv.weight")
  589. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  590. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  591. data_torch = torch.cat(
  592. (
  593. qkv_bias[:, 0, :].reshape((n_embed,)),
  594. qkv_bias[:, 1, :].reshape((n_embed,)),
  595. qkv_bias[:, 2, :].reshape((n_embed,)),
  596. ),
  597. dim=0,
  598. )
  599. logger.info("re-format attention.linear_qkv.bias")
  600. tensors.append((self.map_tensor_name(name), data_torch))
  601. return tensors
  602. @Model.register("BloomForCausalLM")
  603. class BloomModel(Model):
  604. model_arch = gguf.MODEL_ARCH.BLOOM
  605. def set_gguf_parameters(self):
  606. self.gguf_writer.add_name("Bloom")
  607. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  608. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  609. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  610. self.gguf_writer.add_embedding_length(n_embed)
  611. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  612. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  613. self.gguf_writer.add_head_count(n_head)
  614. self.gguf_writer.add_head_count_kv(n_head)
  615. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  616. self.gguf_writer.add_file_type(self.ftype)
  617. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  618. del bid # unused
  619. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  620. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  621. name = re.sub(r'transformer\.', '', name)
  622. tensors: list[tuple[str, Tensor]] = []
  623. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  624. # Map bloom-style qkv_linear to gpt-style qkv_linear
  625. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  626. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  627. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  628. data_torch = torch.cat(
  629. (
  630. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  631. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  632. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  633. ),
  634. dim=0,
  635. )
  636. logger.info("re-format attention.linear_qkv.weight")
  637. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  638. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  639. data_torch = torch.cat(
  640. (
  641. qkv_bias[:, 0, :].reshape((n_embed,)),
  642. qkv_bias[:, 1, :].reshape((n_embed,)),
  643. qkv_bias[:, 2, :].reshape((n_embed,)),
  644. ),
  645. dim=0,
  646. )
  647. logger.info("re-format attention.linear_qkv.bias")
  648. tensors.append((self.map_tensor_name(name), data_torch))
  649. if name == "word_embeddings.weight":
  650. assert self.tensor_names is not None
  651. # TODO: tie them at runtime, don't duplicate in the model file
  652. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  653. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  654. return tensors
  655. @Model.register("MPTForCausalLM")
  656. class MPTModel(Model):
  657. model_arch = gguf.MODEL_ARCH.MPT
  658. def set_vocab(self):
  659. try:
  660. self._set_vocab_gpt2()
  661. except Exception:
  662. # Fallback for SEA-LION model
  663. self._set_vocab_sentencepiece()
  664. self.gguf_writer.add_add_bos_token(False)
  665. self.gguf_writer.add_pad_token_id(3)
  666. self.gguf_writer.add_eos_token_id(1)
  667. self.gguf_writer.add_unk_token_id(0)
  668. def set_gguf_parameters(self):
  669. block_count = self.hparams["n_layers"]
  670. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  671. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  672. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  673. self.gguf_writer.add_block_count(block_count)
  674. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  675. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  676. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  677. self.gguf_writer.add_head_count_kv(kv_n_heads)
  678. self.gguf_writer.add_layer_norm_eps(1e-5)
  679. if self.hparams["attn_config"]["clip_qkv"] is not None:
  680. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  681. if self.hparams["attn_config"]["alibi"]:
  682. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  683. else:
  684. self.gguf_writer.add_max_alibi_bias(0.0)
  685. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  686. del bid # unused
  687. if "scales" in name:
  688. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  689. new_name = new_name.replace("scales", "act.scales")
  690. else:
  691. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  692. return [(new_name, data_torch)]
  693. @Model.register("OrionForCausalLM")
  694. class OrionModel(Model):
  695. model_arch = gguf.MODEL_ARCH.ORION
  696. def set_vocab(self):
  697. self._set_vocab_sentencepiece()
  698. def set_gguf_parameters(self):
  699. block_count = self.hparams["num_hidden_layers"]
  700. head_count = self.hparams["num_attention_heads"]
  701. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  702. hf_repo = self.hparams.get("_name_or_path", "")
  703. ctx_length = 0
  704. if "max_sequence_length" in self.hparams:
  705. ctx_length = self.hparams["max_sequence_length"]
  706. elif "max_position_embeddings" in self.hparams:
  707. ctx_length = self.hparams["max_position_embeddings"]
  708. elif "model_max_length" in self.hparams:
  709. ctx_length = self.hparams["model_max_length"]
  710. else:
  711. raise ValueError("gguf: can not find ctx length parameter.")
  712. self.gguf_writer.add_file_type(self.ftype)
  713. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  714. self.gguf_writer.add_source_hf_repo(hf_repo)
  715. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  716. self.gguf_writer.add_context_length(ctx_length)
  717. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  718. self.gguf_writer.add_block_count(block_count)
  719. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  720. self.gguf_writer.add_head_count(head_count)
  721. self.gguf_writer.add_head_count_kv(head_count_kv)
  722. # note: config provides rms norm but it is actually layer norm
  723. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  724. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  725. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  726. class BaichuanModel(Model):
  727. model_arch = gguf.MODEL_ARCH.BAICHUAN
  728. def set_vocab(self):
  729. self._set_vocab_sentencepiece()
  730. def set_gguf_parameters(self):
  731. block_count = self.hparams["num_hidden_layers"]
  732. head_count = self.hparams["num_attention_heads"]
  733. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  734. hf_repo = self.hparams.get("_name_or_path", "")
  735. ctx_length = 0
  736. if "max_sequence_length" in self.hparams:
  737. ctx_length = self.hparams["max_sequence_length"]
  738. elif "max_position_embeddings" in self.hparams:
  739. ctx_length = self.hparams["max_position_embeddings"]
  740. elif "model_max_length" in self.hparams:
  741. ctx_length = self.hparams["model_max_length"]
  742. else:
  743. raise ValueError("gguf: can not find ctx length parameter.")
  744. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  745. self.gguf_writer.add_source_hf_repo(hf_repo)
  746. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  747. self.gguf_writer.add_context_length(ctx_length)
  748. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  749. self.gguf_writer.add_block_count(block_count)
  750. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  751. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  752. self.gguf_writer.add_head_count(head_count)
  753. self.gguf_writer.add_head_count_kv(head_count_kv)
  754. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  755. self.gguf_writer.add_file_type(self.ftype)
  756. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  757. if self.hparams["rope_scaling"].get("type") == "linear":
  758. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  759. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  760. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  761. head_count = self.hparams["num_attention_heads"]
  762. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  763. tensors: list[tuple[str, Tensor]] = []
  764. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  765. logger.info(f"Unpacking and permuting layer {bid}")
  766. tensors = [
  767. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  768. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  769. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  770. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  771. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  772. self._reverse_hf_part(data_torch, 2)),
  773. ]
  774. else:
  775. tensors = [(self.map_tensor_name(name), data_torch)]
  776. return tensors
  777. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  778. if n_kv_head is not None and n_head != n_kv_head:
  779. n_head //= n_kv_head
  780. return (
  781. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  782. .swapaxes(1, 2)
  783. .reshape(weights.shape)
  784. )
  785. def _reverse_hf_permute_part(
  786. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  787. ) -> Tensor:
  788. r = weights.shape[0] // 3
  789. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  790. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  791. r = weights.shape[0] // 3
  792. return weights[r * n_part:r * n_part + r, ...]
  793. @Model.register("XverseForCausalLM")
  794. class XverseModel(Model):
  795. model_arch = gguf.MODEL_ARCH.XVERSE
  796. def set_vocab(self):
  797. assert (self.dir_model / "tokenizer.json").is_file()
  798. dir_model = self.dir_model
  799. hparams = self.hparams
  800. tokens: list[bytes] = []
  801. toktypes: list[int] = []
  802. from transformers import AutoTokenizer
  803. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  804. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  805. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  806. # because vocab_size is the count of items, and indexes start at 0.
  807. max_vocab_index = max(tokenizer.get_vocab().values())
  808. if max_vocab_index >= vocab_size:
  809. raise ValueError("Vocabulary size exceeds expected maximum size.")
  810. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  811. added_vocab = tokenizer.get_added_vocab()
  812. for token_id in range(vocab_size):
  813. token_text = reverse_vocab[token_id].encode('utf-8')
  814. # replace "\x00" to string with length > 0
  815. if token_text == b"\x00":
  816. toktype = gguf.TokenType.BYTE # special
  817. token_text = f"<{token_text}>".encode('utf-8')
  818. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  819. toktype = gguf.TokenType.BYTE # special
  820. elif reverse_vocab[token_id] in added_vocab:
  821. if tokenizer.added_tokens_decoder[token_id].special:
  822. toktype = gguf.TokenType.CONTROL
  823. else:
  824. toktype = gguf.TokenType.USER_DEFINED
  825. else:
  826. toktype = gguf.TokenType.NORMAL
  827. tokens.append(token_text)
  828. toktypes.append(toktype)
  829. self.gguf_writer.add_tokenizer_model("llama")
  830. self.gguf_writer.add_tokenizer_pre("default")
  831. self.gguf_writer.add_token_list(tokens)
  832. self.gguf_writer.add_token_types(toktypes)
  833. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  834. special_vocab.add_to_gguf(self.gguf_writer)
  835. def set_gguf_parameters(self):
  836. block_count = self.hparams["num_hidden_layers"]
  837. head_count = self.hparams["num_attention_heads"]
  838. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  839. hf_repo = self.hparams.get("_name_or_path", "")
  840. ctx_length = 0
  841. if "max_sequence_length" in self.hparams:
  842. ctx_length = self.hparams["max_sequence_length"]
  843. elif "max_position_embeddings" in self.hparams:
  844. ctx_length = self.hparams["max_position_embeddings"]
  845. elif "model_max_length" in self.hparams:
  846. ctx_length = self.hparams["model_max_length"]
  847. else:
  848. raise ValueError("gguf: can not find ctx length parameter.")
  849. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  850. self.gguf_writer.add_source_hf_repo(hf_repo)
  851. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  852. self.gguf_writer.add_context_length(ctx_length)
  853. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  854. self.gguf_writer.add_block_count(block_count)
  855. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  856. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  857. self.gguf_writer.add_head_count(head_count)
  858. self.gguf_writer.add_head_count_kv(head_count_kv)
  859. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  860. self.gguf_writer.add_file_type(self.ftype)
  861. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  862. if self.hparams["rope_scaling"].get("type") == "linear":
  863. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  864. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  865. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  866. del bid # unused
  867. head_count = self.hparams["num_attention_heads"]
  868. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  869. # HF models permute some of the tensors, so we need to undo that
  870. if name.endswith("q_proj.weight"):
  871. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  872. if name.endswith("k_proj.weight"):
  873. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  874. return [(self.map_tensor_name(name), data_torch)]
  875. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  876. if n_kv_head is not None and n_head != n_kv_head:
  877. n_head //= n_kv_head
  878. return (
  879. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  880. .swapaxes(1, 2)
  881. .reshape(weights.shape)
  882. )
  883. @Model.register("FalconForCausalLM", "RWForCausalLM")
  884. class FalconModel(Model):
  885. model_arch = gguf.MODEL_ARCH.FALCON
  886. def set_gguf_parameters(self):
  887. block_count = self.hparams.get("num_hidden_layers")
  888. if block_count is None:
  889. block_count = self.hparams["n_layer"] # old name
  890. n_head = self.hparams.get("num_attention_heads")
  891. if n_head is None:
  892. n_head = self.hparams["n_head"] # old name
  893. n_head_kv = self.hparams.get("num_kv_heads")
  894. if n_head_kv is None:
  895. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  896. self.gguf_writer.add_name("Falcon")
  897. self.gguf_writer.add_context_length(2048) # not in config.json
  898. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  899. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  900. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  901. self.gguf_writer.add_block_count(block_count)
  902. self.gguf_writer.add_head_count(n_head)
  903. self.gguf_writer.add_head_count_kv(n_head_kv)
  904. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  905. self.gguf_writer.add_file_type(self.ftype)
  906. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  907. del bid # unused
  908. # QKV tensor transform
  909. # The original query_key_value tensor contains n_head_kv "kv groups",
  910. # each consisting of n_head/n_head_kv query weights followed by one key
  911. # and one value weight (shared by all query heads in the kv group).
  912. # This layout makes it a big pain to work with in GGML.
  913. # So we rearrange them here,, so that we have n_head query weights
  914. # followed by n_head_kv key weights followed by n_head_kv value weights,
  915. # in contiguous fashion.
  916. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  917. if "query_key_value" in name:
  918. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  919. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  920. head_dim = self.hparams["hidden_size"] // n_head
  921. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  922. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  923. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  924. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  925. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  926. return [(self.map_tensor_name(name), data_torch)]
  927. @Model.register("GPTBigCodeForCausalLM")
  928. class StarCoderModel(Model):
  929. model_arch = gguf.MODEL_ARCH.STARCODER
  930. def set_gguf_parameters(self):
  931. block_count = self.hparams["n_layer"]
  932. self.gguf_writer.add_name("StarCoder")
  933. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  934. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  935. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  936. self.gguf_writer.add_block_count(block_count)
  937. self.gguf_writer.add_head_count(self.hparams["n_head"])
  938. self.gguf_writer.add_head_count_kv(1)
  939. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  940. self.gguf_writer.add_file_type(self.ftype)
  941. @Model.register("GPTRefactForCausalLM")
  942. class RefactModel(Model):
  943. model_arch = gguf.MODEL_ARCH.REFACT
  944. def set_vocab(self):
  945. super().set_vocab()
  946. # TODO: how to determine special FIM tokens automatically?
  947. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  948. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  949. special_vocab._set_special_token("prefix", 1)
  950. special_vocab._set_special_token("suffix", 3)
  951. special_vocab._set_special_token("middle", 2)
  952. special_vocab._set_special_token("fsep", 4) # is this correct?
  953. special_vocab.add_to_gguf(self.gguf_writer)
  954. def set_gguf_parameters(self):
  955. hidden_dim = self.hparams["n_embd"]
  956. inner_dim = 4 * hidden_dim
  957. hidden_dim = int(2 * inner_dim / 3)
  958. multiple_of = 256
  959. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  960. block_count = self.hparams["n_layer"]
  961. self.gguf_writer.add_name("Refact")
  962. # refact uses Alibi. So this is from config.json which might be used by training.
  963. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  964. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  965. self.gguf_writer.add_feed_forward_length(ff_dim)
  966. self.gguf_writer.add_block_count(block_count)
  967. self.gguf_writer.add_head_count(self.hparams["n_head"])
  968. self.gguf_writer.add_head_count_kv(1)
  969. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  970. self.gguf_writer.add_file_type(self.ftype)
  971. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  972. hidden_dim = self.hparams["n_embd"]
  973. inner_dim = 4 * hidden_dim
  974. hidden_dim = int(2 * inner_dim / 3)
  975. multiple_of = 256
  976. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  977. n_head = self.hparams["n_head"]
  978. n_head_kv = 1
  979. head_dim = self.hparams["n_embd"] // n_head
  980. tensors: list[tuple[str, Tensor]] = []
  981. if bid is not None:
  982. if name == f"transformer.h.{bid}.attn.kv.weight":
  983. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  984. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  985. elif name == f"transformer.h.{bid}.attn.q.weight":
  986. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  987. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  988. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  989. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  990. if len(tensors) == 0:
  991. tensors.append((self.map_tensor_name(name), data_torch))
  992. return tensors
  993. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  994. class StableLMModel(Model):
  995. model_arch = gguf.MODEL_ARCH.STABLELM
  996. def set_vocab(self):
  997. if (self.dir_model / "tokenizer.json").is_file():
  998. self._set_vocab_gpt2()
  999. else:
  1000. # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
  1001. self._set_vocab_qwen()
  1002. def set_gguf_parameters(self):
  1003. hparams = self.hparams
  1004. block_count = hparams["num_hidden_layers"]
  1005. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  1006. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1007. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1008. self.gguf_writer.add_block_count(block_count)
  1009. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1010. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1011. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1012. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1013. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1014. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1015. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1016. self.gguf_writer.add_file_type(self.ftype)
  1017. _q_norms: list[dict[str, Tensor]] | None = None
  1018. _k_norms: list[dict[str, Tensor]] | None = None
  1019. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1020. n_head = self.hparams["num_attention_heads"]
  1021. n_kv_head = self.hparams["num_key_value_heads"]
  1022. if name.find("q_layernorm.norms") != -1:
  1023. assert bid is not None
  1024. if self._q_norms is None:
  1025. self._q_norms = [{} for _ in range(self.block_count)]
  1026. self._q_norms[bid][name] = data_torch
  1027. if len(self._q_norms[bid]) >= n_head:
  1028. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1029. else:
  1030. return []
  1031. if name.find("k_layernorm.norms") != -1:
  1032. assert bid is not None
  1033. if self._k_norms is None:
  1034. self._k_norms = [{} for _ in range(self.block_count)]
  1035. self._k_norms[bid][name] = data_torch
  1036. if len(self._k_norms[bid]) >= n_kv_head:
  1037. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1038. else:
  1039. return []
  1040. return [(self.map_tensor_name(name), data_torch)]
  1041. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1042. datas: list[Tensor] = []
  1043. # extract the norms in order
  1044. for xid in range(n_head):
  1045. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1046. datas.append(norms[ename])
  1047. del norms[ename]
  1048. data_torch = torch.stack(datas, dim=0)
  1049. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1050. new_name = self.map_tensor_name(merged_name)
  1051. return [(new_name, data_torch)]
  1052. def write_tensors(self):
  1053. super().write_tensors()
  1054. if self._q_norms is not None or self._k_norms is not None:
  1055. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1056. norms = (
  1057. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1058. ) + (
  1059. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1060. )
  1061. if len(norms) > 0:
  1062. raise ValueError(f"Unprocessed norms: {norms}")
  1063. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1064. class LlamaModel(Model):
  1065. model_arch = gguf.MODEL_ARCH.LLAMA
  1066. def set_vocab(self):
  1067. try:
  1068. self. _set_vocab_sentencepiece()
  1069. except FileNotFoundError:
  1070. try:
  1071. self._set_vocab_llama_hf()
  1072. except (FileNotFoundError, TypeError):
  1073. # Llama 3
  1074. self._set_vocab_gpt2()
  1075. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1076. if self.hparams.get("vocab_size", 32000) == 32016:
  1077. special_vocab = gguf.SpecialVocab(
  1078. self.dir_model, load_merges=False,
  1079. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1080. )
  1081. special_vocab._set_special_token("prefix", 32007)
  1082. special_vocab._set_special_token("suffix", 32008)
  1083. special_vocab._set_special_token("middle", 32009)
  1084. special_vocab._set_special_token("eot", 32010)
  1085. special_vocab.add_to_gguf(self.gguf_writer)
  1086. def set_gguf_parameters(self):
  1087. super().set_gguf_parameters()
  1088. hparams = self.hparams
  1089. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1090. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  1091. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1092. if self.hparams["rope_scaling"].get("type") == "linear":
  1093. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1094. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1095. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1096. if tokenizer_config_file.is_file():
  1097. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1098. tokenizer_config_json = json.load(f)
  1099. if "add_prefix_space" in tokenizer_config_json:
  1100. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1101. # Apply to granite small models only
  1102. if self.hparams.get("vocab_size", 32000) == 49152:
  1103. self.gguf_writer.add_add_bos_token(False)
  1104. @staticmethod
  1105. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1106. if n_head_kv is not None and n_head != n_head_kv:
  1107. n_head = n_head_kv
  1108. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1109. .swapaxes(1, 2)
  1110. .reshape(weights.shape))
  1111. _experts: list[dict[str, Tensor]] | None = None
  1112. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1113. n_head = self.hparams["num_attention_heads"]
  1114. n_kv_head = self.hparams.get("num_key_value_heads")
  1115. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1116. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1117. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1118. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1119. # process the experts separately
  1120. if name.find("block_sparse_moe.experts") != -1:
  1121. n_experts = self.hparams["num_local_experts"]
  1122. assert bid is not None
  1123. if self._experts is None:
  1124. self._experts = [{} for _ in range(self.block_count)]
  1125. self._experts[bid][name] = data_torch
  1126. if len(self._experts[bid]) >= n_experts * 3:
  1127. tensors: list[tuple[str, Tensor]] = []
  1128. # merge the experts into a single 3d tensor
  1129. for wid in ["w1", "w2", "w3"]:
  1130. datas: list[Tensor] = []
  1131. for xid in range(n_experts):
  1132. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1133. datas.append(self._experts[bid][ename])
  1134. del self._experts[bid][ename]
  1135. data_torch = torch.stack(datas, dim=0)
  1136. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1137. new_name = self.map_tensor_name(merged_name)
  1138. tensors.append((new_name, data_torch))
  1139. return tensors
  1140. else:
  1141. return []
  1142. return [(self.map_tensor_name(name), data_torch)]
  1143. def write_tensors(self):
  1144. super().write_tensors()
  1145. if self._experts is not None:
  1146. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1147. experts = [k for d in self._experts for k in d.keys()]
  1148. if len(experts) > 0:
  1149. raise ValueError(f"Unprocessed experts: {experts}")
  1150. @Model.register("BitnetForCausalLM")
  1151. class BitnetModel(Model):
  1152. model_arch = gguf.MODEL_ARCH.BITNET
  1153. def set_vocab(self):
  1154. self._set_vocab_sentencepiece()
  1155. def set_gguf_parameters(self):
  1156. super().set_gguf_parameters()
  1157. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1158. self.gguf_writer.add_rope_scaling_factor(1.0)
  1159. def weight_quant(self, weight):
  1160. dtype = weight.dtype
  1161. weight = weight.float()
  1162. s = 1 / weight.abs().mean().clamp(min=1e-5)
  1163. weight = (weight * s).round().clamp(-1, 1) / s
  1164. scale = weight.abs().max().unsqueeze(0)
  1165. weight = torch.where(weight.abs().less(1e-6), 0, weight).type(dtype)
  1166. weight = torch.sign(weight).type(dtype)
  1167. return weight.type(dtype), scale.type(torch.float32)
  1168. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1169. new_name = self.map_tensor_name(name)
  1170. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1171. gguf.MODEL_TENSOR.ATTN_Q,
  1172. gguf.MODEL_TENSOR.ATTN_K,
  1173. gguf.MODEL_TENSOR.ATTN_V,
  1174. gguf.MODEL_TENSOR.ATTN_OUT,
  1175. gguf.MODEL_TENSOR.FFN_UP,
  1176. gguf.MODEL_TENSOR.FFN_DOWN,
  1177. gguf.MODEL_TENSOR.FFN_GATE,
  1178. ]):
  1179. # transform weight into 1/0/-1 (in fp32)
  1180. weight_torch, scale_torch = self.weight_quant(data_torch)
  1181. yield (new_name, weight_torch)
  1182. yield (new_name.removesuffix(".weight") + ".scale", scale_torch)
  1183. else:
  1184. yield (new_name, data_torch)
  1185. @Model.register("GrokForCausalLM")
  1186. class GrokModel(Model):
  1187. model_arch = gguf.MODEL_ARCH.GROK
  1188. def set_vocab(self):
  1189. self._set_vocab_sentencepiece()
  1190. def __init__(self, *args, **kwargs):
  1191. super().__init__(*args, **kwargs)
  1192. def set_gguf_parameters(self):
  1193. super().set_gguf_parameters()
  1194. self.gguf_writer.add_name("Grok")
  1195. _experts: list[dict[str, Tensor]] | None = None
  1196. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1197. # process the experts separately
  1198. if name.find(".moe.") != -1:
  1199. n_experts = self.hparams["num_local_experts"]
  1200. assert bid is not None
  1201. if self._experts is None:
  1202. self._experts = [{} for _ in range(self.block_count)]
  1203. self._experts[bid][name] = data_torch
  1204. if len(self._experts[bid]) >= n_experts * 3:
  1205. tensors: list[tuple[str, Tensor]] = []
  1206. # merge the experts into a single 3d tensor
  1207. for wid in ["linear", "linear_1", "linear_v"]:
  1208. datas: list[Tensor] = []
  1209. for xid in range(n_experts):
  1210. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1211. datas.append(self._experts[bid][ename])
  1212. del self._experts[bid][ename]
  1213. data_torch = torch.stack(datas, dim=0)
  1214. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1215. new_name = self.map_tensor_name(merged_name)
  1216. tensors.append((new_name, data_torch))
  1217. return tensors
  1218. else:
  1219. return []
  1220. return [(self.map_tensor_name(name), data_torch)]
  1221. @Model.register("DbrxForCausalLM")
  1222. class DbrxModel(Model):
  1223. model_arch = gguf.MODEL_ARCH.DBRX
  1224. def set_gguf_parameters(self):
  1225. ffn_config = self.hparams["ffn_config"]
  1226. attn_config = self.hparams["attn_config"]
  1227. self.gguf_writer.add_name(self.hparams["model_type"])
  1228. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1229. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1230. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1231. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1232. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1233. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1234. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1235. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1236. self.gguf_writer.add_file_type(self.ftype)
  1237. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1238. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1239. self.gguf_writer.add_layer_norm_eps(1e-5)
  1240. self.gguf_writer.add_file_type(self.ftype)
  1241. logger.info(f"gguf: file type = {self.ftype}")
  1242. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1243. del bid # unused
  1244. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1245. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1246. n_embd = self.hparams["d_model"]
  1247. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1248. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1249. # But llama.cpp moe graph works differently
  1250. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1251. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1252. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1253. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1254. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1255. experts = False
  1256. for exp_tensor_name in exp_tensor_names.keys():
  1257. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1258. experts = True
  1259. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1260. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1261. data_torch = data_torch.permute(*permute_tensor)
  1262. break
  1263. # map tensor names
  1264. # In MoE models the ffn tensors are typically most of the model weights,
  1265. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1266. # Every other model has the weight names ending in .weight,
  1267. # let's assume that is the convention which is not the case for dbrx:
  1268. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1269. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1270. return [(new_name, data_torch)]
  1271. def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  1272. del name, new_name, bid # unused
  1273. return n_dims > 1
  1274. @Model.register("MiniCPMForCausalLM")
  1275. class MiniCPMModel(Model):
  1276. model_arch = gguf.MODEL_ARCH.MINICPM
  1277. def set_gguf_parameters(self):
  1278. block_count = self.hparams["num_hidden_layers"]
  1279. self.gguf_writer.add_name("MiniCPM")
  1280. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1281. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1282. self.gguf_writer.add_block_count(block_count)
  1283. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1284. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1285. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1286. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1287. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1288. self.gguf_writer.add_file_type(self.ftype)
  1289. def set_vocab(self):
  1290. self._set_vocab_llama_hf()
  1291. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1292. if n_kv_head is not None and n_head != n_kv_head:
  1293. n_head //= n_kv_head
  1294. return (
  1295. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1296. .swapaxes(1, 2)
  1297. .reshape(weights.shape)
  1298. )
  1299. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1300. del bid # unused
  1301. n_head = self.hparams["num_attention_heads"]
  1302. n_kv_head = self.hparams.get("num_key_value_heads")
  1303. # HF models permute some of the tensors, so we need to undo that
  1304. if name.endswith(("q_proj.weight")):
  1305. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1306. if name.endswith(("k_proj.weight")):
  1307. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1308. return [(self.map_tensor_name(name), data_torch)]
  1309. @Model.register("QWenLMHeadModel")
  1310. class QwenModel(Model):
  1311. model_arch = gguf.MODEL_ARCH.QWEN
  1312. @staticmethod
  1313. def token_bytes_to_string(b):
  1314. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1315. byte_encoder = bytes_to_unicode()
  1316. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1317. @staticmethod
  1318. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1319. parts = [bytes([b]) for b in token]
  1320. while True:
  1321. min_idx = None
  1322. min_rank = None
  1323. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1324. rank = mergeable_ranks.get(pair[0] + pair[1])
  1325. if rank is not None and (min_rank is None or rank < min_rank):
  1326. min_idx = i
  1327. min_rank = rank
  1328. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1329. break
  1330. assert min_idx is not None
  1331. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1332. return parts
  1333. def set_vocab(self):
  1334. self._set_vocab_qwen()
  1335. def set_gguf_parameters(self):
  1336. self.gguf_writer.add_name("Qwen")
  1337. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1338. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1339. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1340. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1341. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1342. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1343. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1344. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1345. self.gguf_writer.add_file_type(self.ftype)
  1346. @Model.register("Qwen2ForCausalLM")
  1347. class Qwen2Model(Model):
  1348. model_arch = gguf.MODEL_ARCH.QWEN2
  1349. def set_vocab(self):
  1350. try:
  1351. self._set_vocab_sentencepiece()
  1352. except FileNotFoundError:
  1353. self._set_vocab_gpt2()
  1354. @Model.register("Qwen2MoeForCausalLM")
  1355. class Qwen2MoeModel(Model):
  1356. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1357. def set_gguf_parameters(self):
  1358. super().set_gguf_parameters()
  1359. if (n_experts := self.hparams.get("num_experts")) is not None:
  1360. self.gguf_writer.add_expert_count(n_experts)
  1361. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1362. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1363. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1364. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1365. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1366. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1367. _experts: list[dict[str, Tensor]] | None = None
  1368. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1369. # process the experts separately
  1370. if name.find("experts") != -1:
  1371. n_experts = self.hparams["num_experts"]
  1372. assert bid is not None
  1373. if self._experts is None:
  1374. self._experts = [{} for _ in range(self.block_count)]
  1375. self._experts[bid][name] = data_torch
  1376. if len(self._experts[bid]) >= n_experts * 3:
  1377. tensors: list[tuple[str, Tensor]] = []
  1378. # merge the experts into a single 3d tensor
  1379. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1380. datas: list[Tensor] = []
  1381. for xid in range(n_experts):
  1382. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1383. datas.append(self._experts[bid][ename])
  1384. del self._experts[bid][ename]
  1385. data_torch = torch.stack(datas, dim=0)
  1386. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1387. new_name = self.map_tensor_name(merged_name)
  1388. tensors.append((new_name, data_torch))
  1389. return tensors
  1390. else:
  1391. return []
  1392. return [(self.map_tensor_name(name), data_torch)]
  1393. def write_tensors(self):
  1394. super().write_tensors()
  1395. if self._experts is not None:
  1396. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1397. experts = [k for d in self._experts for k in d.keys()]
  1398. if len(experts) > 0:
  1399. raise ValueError(f"Unprocessed experts: {experts}")
  1400. @Model.register("GPT2LMHeadModel")
  1401. class GPT2Model(Model):
  1402. model_arch = gguf.MODEL_ARCH.GPT2
  1403. def set_gguf_parameters(self):
  1404. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  1405. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1406. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1407. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1408. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1409. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1410. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1411. self.gguf_writer.add_file_type(self.ftype)
  1412. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1413. del bid # unused
  1414. tensors: list[tuple[str, Tensor]] = []
  1415. # we don't need these
  1416. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1417. return tensors
  1418. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1419. data_torch = data_torch.transpose(1, 0)
  1420. new_name = self.map_tensor_name(name)
  1421. tensors.append((new_name, data_torch))
  1422. # note: GPT2 output is tied to (same as) wte in original model
  1423. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1424. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1425. return tensors
  1426. @Model.register("PhiForCausalLM")
  1427. class Phi2Model(Model):
  1428. model_arch = gguf.MODEL_ARCH.PHI2
  1429. def set_gguf_parameters(self):
  1430. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1431. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1432. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1433. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1434. self.gguf_writer.add_name("Phi2")
  1435. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1436. self.gguf_writer.add_embedding_length(n_embd)
  1437. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1438. self.gguf_writer.add_block_count(block_count)
  1439. self.gguf_writer.add_head_count(n_head)
  1440. self.gguf_writer.add_head_count_kv(n_head)
  1441. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1442. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1443. self.gguf_writer.add_file_type(self.ftype)
  1444. self.gguf_writer.add_add_bos_token(False)
  1445. @Model.register("Phi3ForCausalLM")
  1446. class Phi3MiniModel(Model):
  1447. model_arch = gguf.MODEL_ARCH.PHI3
  1448. def set_vocab(self):
  1449. from sentencepiece import SentencePieceProcessor
  1450. tokenizer_path = self.dir_model / 'tokenizer.model'
  1451. if not tokenizer_path.is_file():
  1452. raise ValueError(f'Error: Missing {tokenizer_path}')
  1453. tokenizer = SentencePieceProcessor()
  1454. tokenizer.LoadFromFile(str(tokenizer_path))
  1455. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1456. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1457. scores: list[float] = [-10000.0] * vocab_size
  1458. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  1459. for token_id in range(tokenizer.vocab_size()):
  1460. piece = tokenizer.IdToPiece(token_id)
  1461. text = piece.encode("utf-8")
  1462. score = tokenizer.GetScore(token_id)
  1463. toktype = SentencePieceTokenTypes.NORMAL
  1464. if tokenizer.IsUnknown(token_id):
  1465. toktype = SentencePieceTokenTypes.UNKNOWN
  1466. elif tokenizer.IsControl(token_id):
  1467. toktype = SentencePieceTokenTypes.CONTROL
  1468. elif tokenizer.IsUnused(token_id):
  1469. toktype = SentencePieceTokenTypes.UNUSED
  1470. elif tokenizer.IsByte(token_id):
  1471. toktype = SentencePieceTokenTypes.BYTE
  1472. tokens[token_id] = text
  1473. scores[token_id] = score
  1474. toktypes[token_id] = toktype
  1475. added_tokens_file = self.dir_model / 'added_tokens.json'
  1476. if added_tokens_file.is_file():
  1477. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1478. added_tokens_json = json.load(f)
  1479. for key in added_tokens_json:
  1480. token_id = added_tokens_json[key]
  1481. if (token_id >= vocab_size):
  1482. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1483. continue
  1484. tokens[token_id] = key.encode("utf-8")
  1485. scores[token_id] = -1000.0
  1486. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1487. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1488. if tokenizer_config_file.is_file():
  1489. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1490. tokenizer_config_json = json.load(f)
  1491. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1492. for token_id, foken_data in added_tokens_decoder.items():
  1493. token_id = int(token_id)
  1494. token = foken_data["content"].encode("utf-8")
  1495. if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
  1496. assert tokens[token_id] == token
  1497. tokens[token_id] = token
  1498. scores[token_id] = -1000.0
  1499. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1500. if foken_data.get("special"):
  1501. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1502. tokenizer_file = self.dir_model / 'tokenizer.json'
  1503. if tokenizer_file.is_file():
  1504. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1505. tokenizer_json = json.load(f)
  1506. added_tokens = tokenizer_json.get("added_tokens", [])
  1507. for foken_data in added_tokens:
  1508. token_id = int(foken_data["id"])
  1509. token = foken_data["content"].encode("utf-8")
  1510. if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
  1511. assert tokens[token_id] == token
  1512. tokens[token_id] = token
  1513. scores[token_id] = -1000.0
  1514. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1515. if foken_data.get("special"):
  1516. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1517. self.gguf_writer.add_tokenizer_model("llama")
  1518. self.gguf_writer.add_tokenizer_pre("default")
  1519. self.gguf_writer.add_token_list(tokens)
  1520. self.gguf_writer.add_token_scores(scores)
  1521. self.gguf_writer.add_token_types(toktypes)
  1522. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1523. special_vocab.add_to_gguf(self.gguf_writer)
  1524. def set_gguf_parameters(self):
  1525. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1526. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1527. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1528. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  1529. rms_eps = self.find_hparam(["rms_norm_eps"])
  1530. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1531. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1532. rope_dims = n_embd // n_head
  1533. self.gguf_writer.add_name("Phi3")
  1534. self.gguf_writer.add_context_length(max_pos_embds)
  1535. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  1536. self.gguf_writer.add_embedding_length(n_embd)
  1537. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  1538. self.gguf_writer.add_block_count(block_count)
  1539. self.gguf_writer.add_head_count(n_head)
  1540. self.gguf_writer.add_head_count_kv(n_head_kv)
  1541. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1542. self.gguf_writer.add_rope_dimension_count(rope_dims)
  1543. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  1544. self.gguf_writer.add_file_type(self.ftype)
  1545. # write rope scaling for long context (128k) model
  1546. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1547. if (rope_scaling is None):
  1548. return
  1549. scale = max_pos_embds / orig_max_pos_embds
  1550. rope_scaling_type = rope_scaling.get('type', '').lower()
  1551. if len(rope_scaling_type) == 0:
  1552. raise KeyError('Missing the required key rope_scaling.type')
  1553. if rope_scaling_type == 'su':
  1554. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  1555. elif rope_scaling_type == 'yarn':
  1556. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  1557. else:
  1558. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  1559. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  1560. long_factors = rope_scaling.get('long_factor', None)
  1561. short_factors = rope_scaling.get('short_factor', None)
  1562. if long_factors is None or short_factors is None:
  1563. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1564. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1565. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1566. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
  1567. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
  1568. @Model.register("PlamoForCausalLM")
  1569. class PlamoModel(Model):
  1570. model_arch = gguf.MODEL_ARCH.PLAMO
  1571. def set_vocab(self):
  1572. self._set_vocab_sentencepiece()
  1573. def set_gguf_parameters(self):
  1574. hparams = self.hparams
  1575. block_count = hparams["num_hidden_layers"]
  1576. self.gguf_writer.add_name("PLaMo")
  1577. self.gguf_writer.add_context_length(4096) # not in config.json
  1578. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1579. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1580. self.gguf_writer.add_block_count(block_count)
  1581. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1582. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1583. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1584. self.gguf_writer.add_file_type(self.ftype)
  1585. def shuffle_attn_q_weight(self, data_torch):
  1586. assert data_torch.size() == (5120, 5120)
  1587. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1588. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1589. data_torch = torch.reshape(data_torch, (5120, 5120))
  1590. return data_torch
  1591. def shuffle_attn_output_weight(self, data_torch):
  1592. assert data_torch.size() == (5120, 5120)
  1593. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1594. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1595. data_torch = torch.reshape(data_torch, (5120, 5120))
  1596. return data_torch
  1597. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1598. del bid # unused
  1599. new_name = self.map_tensor_name(name)
  1600. # shuffle for broadcasting of gqa in ggml_mul_mat
  1601. if new_name.endswith("attn_q.weight"):
  1602. data_torch = self.shuffle_attn_q_weight(data_torch)
  1603. elif new_name.endswith("attn_output.weight"):
  1604. data_torch = self.shuffle_attn_output_weight(data_torch)
  1605. return [(new_name, data_torch)]
  1606. @Model.register("CodeShellForCausalLM")
  1607. class CodeShellModel(Model):
  1608. model_arch = gguf.MODEL_ARCH.CODESHELL
  1609. def set_gguf_parameters(self):
  1610. block_count = self.hparams["n_layer"]
  1611. self.gguf_writer.add_name("CodeShell")
  1612. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1613. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1614. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1615. self.gguf_writer.add_block_count(block_count)
  1616. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1617. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1618. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1619. self.gguf_writer.add_file_type(self.ftype)
  1620. self.gguf_writer.add_rope_freq_base(10000.0)
  1621. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1622. self.gguf_writer.add_rope_scaling_factor(1.0)
  1623. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1624. del bid # unused
  1625. new_name = self.map_tensor_name(name)
  1626. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  1627. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1628. assert self.tensor_names is not None
  1629. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  1630. # copy tok_embd.weight to output.weight
  1631. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1632. return tensors
  1633. @Model.register("InternLM2ForCausalLM")
  1634. class InternLM2Model(Model):
  1635. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1636. def set_vocab(self):
  1637. # (TODO): Is there a better way?
  1638. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1639. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1640. # recognized as an empty string in C++.
  1641. from sentencepiece import SentencePieceProcessor
  1642. from sentencepiece import sentencepiece_model_pb2 as model
  1643. tokenizer_path = self.dir_model / 'tokenizer.model'
  1644. tokens: list[bytes] = []
  1645. scores: list[float] = []
  1646. toktypes: list[int] = []
  1647. if not tokenizer_path.is_file():
  1648. logger.error(f'Error: Missing {tokenizer_path}')
  1649. sys.exit(1)
  1650. sentencepiece_model = model.ModelProto()
  1651. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1652. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1653. tokenizer = SentencePieceProcessor()
  1654. tokenizer.LoadFromFile(str(tokenizer_path))
  1655. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1656. for token_id in range(vocab_size):
  1657. piece = tokenizer.IdToPiece(token_id)
  1658. text = piece.encode("utf-8")
  1659. score = tokenizer.GetScore(token_id)
  1660. if text == b"\x00":
  1661. # (TODO): fixme
  1662. # Hack here and replace the \x00 characters.
  1663. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  1664. text = "🐉".encode("utf-8")
  1665. toktype = SentencePieceTokenTypes.NORMAL
  1666. if tokenizer.IsUnknown(token_id):
  1667. toktype = SentencePieceTokenTypes.UNKNOWN
  1668. elif tokenizer.IsControl(token_id):
  1669. toktype = SentencePieceTokenTypes.CONTROL
  1670. elif tokenizer.IsUnused(token_id):
  1671. toktype = SentencePieceTokenTypes.UNUSED
  1672. elif tokenizer.IsByte(token_id):
  1673. toktype = SentencePieceTokenTypes.BYTE
  1674. tokens.append(text)
  1675. scores.append(score)
  1676. toktypes.append(toktype)
  1677. added_tokens_file = self.dir_model / 'added_tokens.json'
  1678. if added_tokens_file.is_file():
  1679. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1680. added_tokens_json = json.load(f)
  1681. for key in added_tokens_json:
  1682. tokens.append(key.encode("utf-8"))
  1683. scores.append(-1000.0)
  1684. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1685. self.gguf_writer.add_tokenizer_model("llama")
  1686. self.gguf_writer.add_tokenizer_pre("default")
  1687. self.gguf_writer.add_token_list(tokens)
  1688. self.gguf_writer.add_token_scores(scores)
  1689. self.gguf_writer.add_token_types(toktypes)
  1690. self.gguf_writer.add_add_space_prefix(add_prefix)
  1691. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1692. old_eos = special_vocab.special_token_ids["eos"]
  1693. if "chat" in os.path.basename(self.dir_model.absolute()):
  1694. # For the chat model, we replace the eos with '<|im_end|>'.
  1695. # TODO: this is a hack, should be fixed
  1696. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1697. special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
  1698. logger.warning(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
  1699. in chat mode so that the conversation can end normally.")
  1700. special_vocab.add_to_gguf(self.gguf_writer)
  1701. def _try_get_sft_eos(self, tokenizer):
  1702. unused_145_list = tokenizer.Encode('[UNUSED_TOKEN_145]')
  1703. im_end_list = tokenizer.Encode('<|im_end|>')
  1704. eos_token = None
  1705. assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
  1706. if len(unused_145_list) == 1:
  1707. eos_token = unused_145_list[0]
  1708. if len(im_end_list) == 1:
  1709. eos_token = im_end_list[0]
  1710. assert eos_token
  1711. return eos_token
  1712. def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
  1713. if n_head_kv is not None and n_head != n_head_kv:
  1714. n_head = n_head_kv
  1715. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1716. .swapaxes(1, 2)
  1717. .reshape(weights.shape))
  1718. def set_gguf_parameters(self):
  1719. self.gguf_writer.add_name("InternLM2")
  1720. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1721. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1722. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1723. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1724. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1725. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1726. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1727. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1728. self.gguf_writer.add_file_type(self.ftype)
  1729. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1730. num_heads = self.hparams["num_attention_heads"]
  1731. num_kv_heads = self.hparams["num_key_value_heads"]
  1732. hidden_size = self.hparams["hidden_size"]
  1733. q_per_kv = num_heads // num_kv_heads
  1734. head_dim = hidden_size // num_heads
  1735. num_groups = num_heads // q_per_kv
  1736. qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
  1737. if re.match(qkv_pattern, name):
  1738. bid = re.findall(qkv_pattern, name)[0]
  1739. qkv = data_torch
  1740. # qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
  1741. qkv = qkv.T.reshape((-1, num_groups, q_per_kv + 2, head_dim))
  1742. q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
  1743. # The model weights of q and k equire additional reshape.
  1744. # q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
  1745. q = self._hf_permute_qk(q.reshape((q.shape[0], -1)).T, num_heads, num_heads)
  1746. # k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
  1747. k = self._hf_permute_qk(k.reshape((k.shape[0], -1)).T, num_heads, num_kv_heads)
  1748. # v = rearrange(v, " o g n i -> o (g n i)").T
  1749. v = v.reshape((v.shape[0], -1)).T
  1750. return [
  1751. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  1752. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  1753. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  1754. ]
  1755. else:
  1756. return [(self.map_tensor_name(name), data_torch)]
  1757. @Model.register("BertModel", "CamembertModel")
  1758. class BertModel(Model):
  1759. model_arch = gguf.MODEL_ARCH.BERT
  1760. def __init__(self, *args, **kwargs):
  1761. super().__init__(*args, **kwargs)
  1762. self.vocab_size = None
  1763. def set_gguf_parameters(self):
  1764. super().set_gguf_parameters()
  1765. self.gguf_writer.add_causal_attention(False)
  1766. # get pooling path
  1767. pooling_path = None
  1768. module_path = self.dir_model / "modules.json"
  1769. if module_path.is_file():
  1770. with open(module_path, encoding="utf-8") as f:
  1771. modules = json.load(f)
  1772. for mod in modules:
  1773. if mod["type"] == "sentence_transformers.models.Pooling":
  1774. pooling_path = mod["path"]
  1775. break
  1776. # get pooling type
  1777. if pooling_path is not None:
  1778. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1779. pooling = json.load(f)
  1780. if pooling["pooling_mode_mean_tokens"]:
  1781. pooling_type = gguf.PoolingType.MEAN
  1782. elif pooling["pooling_mode_cls_token"]:
  1783. pooling_type = gguf.PoolingType.CLS
  1784. else:
  1785. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1786. self.gguf_writer.add_pooling_type(pooling_type)
  1787. def set_vocab(self):
  1788. tokens, toktypes, tokpre = self.get_vocab_base()
  1789. self.vocab_size = len(tokens)
  1790. # we need this to validate the size of the token_type embeddings
  1791. # though currently we are passing all zeros to the token_type embeddings
  1792. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  1793. # convert to phantom space vocab
  1794. def phantom(tok):
  1795. if tok.startswith("[") and tok.endswith("]"):
  1796. return tok
  1797. if tok.startswith("##"):
  1798. return tok[2:]
  1799. return "\u2581" + tok
  1800. tokens = list(map(phantom, tokens))
  1801. # add vocab to gguf
  1802. self.gguf_writer.add_tokenizer_model("bert")
  1803. self.gguf_writer.add_tokenizer_pre(tokpre)
  1804. self.gguf_writer.add_token_list(tokens)
  1805. self.gguf_writer.add_token_types(toktypes)
  1806. # handle special tokens
  1807. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1808. special_vocab.add_to_gguf(self.gguf_writer)
  1809. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1810. del bid # unused
  1811. # we are only using BERT for embeddings so we don't need the pooling layer
  1812. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  1813. return [] # we don't need these
  1814. return [(self.map_tensor_name(name), data_torch)]
  1815. @Model.register("NomicBertModel")
  1816. class NomicBertModel(BertModel):
  1817. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  1818. def __init__(self, *args, **kwargs):
  1819. super().__init__(*args, **kwargs)
  1820. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  1821. self.hparams["n_ctx"] = 2048
  1822. # SwigLU activation
  1823. assert self.hparams["activation_function"] == "swiglu"
  1824. # this doesn't do anything in the HF version
  1825. assert self.hparams["causal"] is False
  1826. # no bias tensors
  1827. assert self.hparams["qkv_proj_bias"] is False
  1828. assert self.hparams["mlp_fc1_bias"] is False
  1829. assert self.hparams["mlp_fc2_bias"] is False
  1830. # norm at end of layer
  1831. assert self.hparams["prenorm"] is False
  1832. # standard RoPE
  1833. assert self.hparams["rotary_emb_fraction"] == 1.0
  1834. assert self.hparams["rotary_emb_interleaved"] is False
  1835. assert self.hparams["rotary_emb_scale_base"] is None
  1836. def set_gguf_parameters(self):
  1837. super().set_gguf_parameters()
  1838. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1839. @Model.register("GemmaForCausalLM")
  1840. class GemmaModel(Model):
  1841. model_arch = gguf.MODEL_ARCH.GEMMA
  1842. def set_vocab(self):
  1843. self._set_vocab_sentencepiece()
  1844. # TODO: these special tokens should be exported only for the CodeGemma family
  1845. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1846. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  1847. special_vocab._set_special_token("prefix", 67)
  1848. special_vocab._set_special_token("suffix", 69)
  1849. special_vocab._set_special_token("middle", 68)
  1850. special_vocab._set_special_token("fsep", 70)
  1851. special_vocab._set_special_token("eot", 107)
  1852. special_vocab.add_to_gguf(self.gguf_writer)
  1853. def set_gguf_parameters(self):
  1854. hparams = self.hparams
  1855. block_count = hparams["num_hidden_layers"]
  1856. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  1857. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1858. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1859. self.gguf_writer.add_block_count(block_count)
  1860. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1861. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1862. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  1863. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1864. self.gguf_writer.add_key_length(hparams["head_dim"])
  1865. self.gguf_writer.add_value_length(hparams["head_dim"])
  1866. self.gguf_writer.add_file_type(self.ftype)
  1867. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1868. del bid # unused
  1869. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  1870. # To prevent errors, skip loading lm_head.weight.
  1871. if name == "lm_head.weight":
  1872. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  1873. return []
  1874. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  1875. if name.endswith("norm.weight"):
  1876. data_torch = data_torch + 1
  1877. return [(self.map_tensor_name(name), data_torch)]
  1878. @Model.register("Starcoder2ForCausalLM")
  1879. class StarCoder2Model(Model):
  1880. model_arch = gguf.MODEL_ARCH.STARCODER2
  1881. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  1882. class MambaModel(Model):
  1883. model_arch = gguf.MODEL_ARCH.MAMBA
  1884. def set_vocab(self):
  1885. vocab_size = self.hparams["vocab_size"]
  1886. # Round vocab size to next multiple of 8
  1887. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  1888. # pad using ceiling division
  1889. # ref: https://stackoverflow.com/a/17511341/22827863
  1890. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  1891. self.hparams["vocab_size"] = vocab_size
  1892. if (self.dir_model / "tokenizer.json").is_file():
  1893. self._set_vocab_gpt2()
  1894. elif (self.dir_model / "tokenizer.model").is_file():
  1895. self._set_vocab_sentencepiece()
  1896. else:
  1897. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  1898. tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
  1899. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1900. neox_reader = gguf.GGUFReader(tokenizer_path, "r")
  1901. field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1902. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8") if field else "gpt2")
  1903. field = neox_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1904. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else "mpt")
  1905. field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1906. assert field
  1907. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1908. field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1909. assert field
  1910. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1911. field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1912. assert field
  1913. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1914. field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
  1915. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0] if field else 1)
  1916. field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
  1917. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0] if field else 0)
  1918. field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
  1919. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0] if field else 0)
  1920. field = neox_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)
  1921. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0] if field else 0)
  1922. def set_gguf_parameters(self):
  1923. d_model = self.find_hparam(["hidden_size", "d_model"])
  1924. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  1925. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  1926. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  1927. # ceiling division
  1928. # ref: https://stackoverflow.com/a/17511341/22827863
  1929. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  1930. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  1931. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  1932. # Fail early for models which don't have a block expansion factor of 2
  1933. assert d_inner == 2 * d_model
  1934. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  1935. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  1936. self.gguf_writer.add_embedding_length(d_model)
  1937. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  1938. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  1939. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1940. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  1941. self.gguf_writer.add_ssm_inner_size(d_inner)
  1942. self.gguf_writer.add_ssm_state_size(d_state)
  1943. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  1944. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  1945. self.gguf_writer.add_file_type(self.ftype)
  1946. _tok_embd = None
  1947. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1948. del bid # unused
  1949. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  1950. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  1951. new_name = self.map_tensor_name(name)
  1952. if name.endswith(".A_log"):
  1953. logger.debug("A_log --> A ==> " + new_name)
  1954. data_torch = -torch.exp(data_torch)
  1955. # assuming token_embd.weight is seen before output.weight
  1956. if self._tok_embd is not None and new_name == output_name:
  1957. if torch.equal(self._tok_embd, data_torch):
  1958. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  1959. return []
  1960. elif new_name == tok_embd_name:
  1961. self._tok_embd = data_torch
  1962. return [(new_name, data_torch)]
  1963. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  1964. del n_dims # unused
  1965. return bid is not None and new_name in (
  1966. self.format_tensor_name(n, bid, ".weight" if name.endswith(".weight") else "") for n in [
  1967. gguf.MODEL_TENSOR.SSM_CONV1D,
  1968. gguf.MODEL_TENSOR.SSM_X,
  1969. gguf.MODEL_TENSOR.SSM_DT,
  1970. gguf.MODEL_TENSOR.SSM_A,
  1971. gguf.MODEL_TENSOR.SSM_D,
  1972. ]
  1973. )
  1974. @Model.register("CohereForCausalLM")
  1975. class CommandR2Model(Model):
  1976. model_arch = gguf.MODEL_ARCH.COMMAND_R
  1977. def __init__(self, *args, **kwargs):
  1978. super().__init__(*args, **kwargs)
  1979. # max_position_embeddings = 8192 in config.json but model was actually
  1980. # trained on 128k context length
  1981. # aya-23 models don't have model_max_length specified
  1982. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  1983. def set_gguf_parameters(self):
  1984. super().set_gguf_parameters()
  1985. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  1986. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  1987. @Model.register("OlmoForCausalLM")
  1988. @Model.register("OLMoForCausalLM")
  1989. class OlmoModel(Model):
  1990. model_arch = gguf.MODEL_ARCH.OLMO
  1991. def set_gguf_parameters(self):
  1992. super().set_gguf_parameters()
  1993. self.gguf_writer.add_layer_norm_eps(1e-5)
  1994. clip_qkv = self.hparams.get("clip_qkv")
  1995. if clip_qkv is not None:
  1996. self.gguf_writer.add_clamp_kqv(clip_qkv)
  1997. # Same as super class, but permuting q_proj, k_proj
  1998. # Copied from: LlamaModel
  1999. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2000. del bid # unused
  2001. n_head = self.hparams["num_attention_heads"]
  2002. n_kv_head = self.hparams.get("num_key_value_heads")
  2003. if name.endswith("q_proj.weight"):
  2004. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2005. if name.endswith("k_proj.weight"):
  2006. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2007. return [(self.map_tensor_name(name), data_torch)]
  2008. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  2009. class JinaBertV2Model(BertModel):
  2010. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  2011. def __init__(self, *args, **kwargs):
  2012. super().__init__(*args, **kwargs)
  2013. self.intermediate_size = self.hparams["intermediate_size"]
  2014. def get_tensors(self):
  2015. for name, data in super().get_tensors():
  2016. if 'gated_layer' in name:
  2017. d1 = data[:self.intermediate_size, :]
  2018. name1 = name.replace('gated_layers', 'gated_layers_w')
  2019. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  2020. d2 = data[self.intermediate_size:, :]
  2021. name2 = name.replace('gated_layers', 'gated_layers_v')
  2022. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  2023. yield name1, d1
  2024. yield name2, d2
  2025. continue
  2026. yield name, data
  2027. def set_vocab(self, *args, **kwargs):
  2028. tokenizer_class = 'BertTokenizer'
  2029. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  2030. tokenizer_class = json.load(f)['tokenizer_class']
  2031. if tokenizer_class == 'BertTokenizer':
  2032. super().set_vocab()
  2033. elif tokenizer_class == 'RobertaTokenizer':
  2034. self._set_vocab_gpt2()
  2035. self.gguf_writer.add_token_type_count(2)
  2036. else:
  2037. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  2038. self.gguf_writer.add_add_bos_token(True)
  2039. self.gguf_writer.add_add_eos_token(True)
  2040. @Model.register("ArcticForCausalLM")
  2041. class ArcticModel(Model):
  2042. model_arch = gguf.MODEL_ARCH.ARCTIC
  2043. def set_vocab(self):
  2044. # The reason for using a custom implementation here is that the
  2045. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  2046. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  2047. from sentencepiece import SentencePieceProcessor
  2048. tokenizer_path = self.dir_model / 'tokenizer.model'
  2049. if not tokenizer_path.is_file():
  2050. logger.error(f'Error: Missing {tokenizer_path}')
  2051. sys.exit(1)
  2052. # Read the whole vocabulary from the tokenizer.model file
  2053. tokenizer = SentencePieceProcessor()
  2054. tokenizer.LoadFromFile(str(tokenizer_path))
  2055. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2056. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2057. scores: list[float] = [-10000.0] * vocab_size
  2058. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  2059. for token_id in range(tokenizer.vocab_size()):
  2060. piece = tokenizer.IdToPiece(token_id)
  2061. text = piece.encode("utf-8")
  2062. score = tokenizer.GetScore(token_id)
  2063. toktype = SentencePieceTokenTypes.NORMAL
  2064. if tokenizer.IsUnknown(token_id):
  2065. toktype = SentencePieceTokenTypes.UNKNOWN
  2066. elif tokenizer.IsControl(token_id):
  2067. toktype = SentencePieceTokenTypes.CONTROL
  2068. elif tokenizer.IsUnused(token_id):
  2069. toktype = SentencePieceTokenTypes.UNUSED
  2070. elif tokenizer.IsByte(token_id):
  2071. toktype = SentencePieceTokenTypes.BYTE
  2072. tokens[token_id] = text
  2073. scores[token_id] = score
  2074. toktypes[token_id] = toktype
  2075. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  2076. # of information about added/redefined tokens and modify them accordingly.
  2077. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2078. if tokenizer_config_file.is_file():
  2079. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2080. tokenizer_config_json = json.load(f)
  2081. if "added_tokens_decoder" in tokenizer_config_json:
  2082. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  2083. for token_id, token_json in added_tokens_decoder.items():
  2084. token_id = int(token_id)
  2085. if (token_id >= vocab_size):
  2086. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2087. continue
  2088. token_content = token_json["content"]
  2089. token_type = SentencePieceTokenTypes.USER_DEFINED
  2090. token_score = -10000.0
  2091. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  2092. # Set the score to 0.0 as in the original tokenizer.model
  2093. if ("special" in token_json) and token_json["special"]:
  2094. if token_content == tokenizer_config_json["unk_token"]:
  2095. token_type = SentencePieceTokenTypes.UNKNOWN
  2096. else:
  2097. token_type = SentencePieceTokenTypes.CONTROL
  2098. token_score = 0.0
  2099. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  2100. tokens[token_id] = token_content.encode("utf-8")
  2101. toktypes[token_id] = token_type
  2102. scores[token_id] = token_score
  2103. self.gguf_writer.add_tokenizer_model("llama")
  2104. self.gguf_writer.add_tokenizer_pre("default")
  2105. self.gguf_writer.add_token_list(tokens)
  2106. self.gguf_writer.add_token_scores(scores)
  2107. self.gguf_writer.add_token_types(toktypes)
  2108. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2109. special_vocab.add_to_gguf(self.gguf_writer)
  2110. def set_gguf_parameters(self):
  2111. super().set_gguf_parameters()
  2112. hparams = self.hparams
  2113. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2114. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  2115. _experts: list[dict[str, Tensor]] | None = None
  2116. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2117. n_head = self.hparams["num_attention_heads"]
  2118. n_kv_head = self.hparams.get("num_key_value_heads")
  2119. if name.endswith("q_proj.weight"):
  2120. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2121. if name.endswith("k_proj.weight"):
  2122. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2123. # process the experts separately
  2124. if name.find("block_sparse_moe.experts") != -1:
  2125. n_experts = self.hparams["num_local_experts"]
  2126. assert bid is not None
  2127. if self._experts is None:
  2128. self._experts = [{} for _ in range(self.block_count)]
  2129. self._experts[bid][name] = data_torch
  2130. if len(self._experts[bid]) >= n_experts * 3:
  2131. tensors: list[tuple[str, Tensor]] = []
  2132. # merge the experts into a single 3d tensor
  2133. for wid in ["w1", "w2", "w3"]:
  2134. datas: list[Tensor] = []
  2135. for xid in range(n_experts):
  2136. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2137. datas.append(self._experts[bid][ename])
  2138. del self._experts[bid][ename]
  2139. data_torch = torch.stack(datas, dim=0)
  2140. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2141. new_name = self.map_tensor_name(merged_name)
  2142. tensors.append((new_name, data_torch))
  2143. return tensors
  2144. else:
  2145. return []
  2146. return [(self.map_tensor_name(name), data_torch)]
  2147. def write_tensors(self):
  2148. super().write_tensors()
  2149. if self._experts is not None:
  2150. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2151. experts = [k for d in self._experts for k in d.keys()]
  2152. if len(experts) > 0:
  2153. raise ValueError(f"Unprocessed experts: {experts}")
  2154. @Model.register("DeepseekV2ForCausalLM")
  2155. class DeepseekV2Model(Model):
  2156. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  2157. def set_vocab(self):
  2158. self._set_vocab_gpt2()
  2159. def set_gguf_parameters(self):
  2160. super().set_gguf_parameters()
  2161. hparams = self.hparams
  2162. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  2163. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2164. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2165. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2166. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2167. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2168. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  2169. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  2170. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  2171. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  2172. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  2173. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2174. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2175. if self.hparams["rope_scaling"].get("type") == "yarn":
  2176. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2177. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2178. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2179. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  2180. _experts: list[dict[str, Tensor]] | None = None
  2181. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2182. # process the experts separately
  2183. if name.find("mlp.experts") != -1:
  2184. n_experts = self.hparams["n_routed_experts"]
  2185. assert bid is not None
  2186. if self._experts is None:
  2187. self._experts = [{} for _ in range(self.block_count)]
  2188. self._experts[bid][name] = data_torch
  2189. if len(self._experts[bid]) >= n_experts * 3:
  2190. tensors: list[tuple[str, Tensor]] = []
  2191. # merge the experts into a single 3d tensor
  2192. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2193. datas: list[Tensor] = []
  2194. for xid in range(n_experts):
  2195. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2196. datas.append(self._experts[bid][ename])
  2197. del self._experts[bid][ename]
  2198. data_torch = torch.stack(datas, dim=0)
  2199. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2200. new_name = self.map_tensor_name(merged_name)
  2201. tensors.append((new_name, data_torch))
  2202. return tensors
  2203. else:
  2204. return []
  2205. return [(self.map_tensor_name(name), data_torch)]
  2206. def write_tensors(self):
  2207. super().write_tensors()
  2208. if self._experts is not None:
  2209. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2210. experts = [k for d in self._experts for k in d.keys()]
  2211. if len(experts) > 0:
  2212. raise ValueError(f"Unprocessed experts: {experts}")
  2213. @Model.register("T5ForConditionalGeneration")
  2214. @Model.register("T5WithLMHeadModel")
  2215. class T5Model(Model):
  2216. model_arch = gguf.MODEL_ARCH.T5
  2217. def set_vocab(self):
  2218. # to avoid TypeError: Descriptors cannot be created directly
  2219. # exception when importing sentencepiece_model_pb2
  2220. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2221. from sentencepiece import SentencePieceProcessor
  2222. from sentencepiece import sentencepiece_model_pb2 as model
  2223. tokenizer_path = self.dir_model / 'spiece.model'
  2224. if not tokenizer_path.is_file():
  2225. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2226. sentencepiece_model = model.ModelProto()
  2227. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2228. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2229. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2230. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2231. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2232. tokenizer = SentencePieceProcessor()
  2233. tokenizer.LoadFromFile(str(tokenizer_path))
  2234. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2235. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2236. scores: list[float] = [-10000.0] * vocab_size
  2237. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  2238. for token_id in range(tokenizer.vocab_size()):
  2239. piece = tokenizer.IdToPiece(token_id)
  2240. text = piece.encode("utf-8")
  2241. score = tokenizer.GetScore(token_id)
  2242. toktype = SentencePieceTokenTypes.NORMAL
  2243. if tokenizer.IsUnknown(token_id):
  2244. toktype = SentencePieceTokenTypes.UNKNOWN
  2245. elif tokenizer.IsControl(token_id):
  2246. toktype = SentencePieceTokenTypes.CONTROL
  2247. elif tokenizer.IsUnused(token_id):
  2248. toktype = SentencePieceTokenTypes.UNUSED
  2249. elif tokenizer.IsByte(token_id):
  2250. toktype = SentencePieceTokenTypes.BYTE
  2251. tokens[token_id] = text
  2252. scores[token_id] = score
  2253. toktypes[token_id] = toktype
  2254. added_tokens_file = self.dir_model / 'added_tokens.json'
  2255. if added_tokens_file.is_file():
  2256. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2257. added_tokens_json = json.load(f)
  2258. for key in added_tokens_json:
  2259. token_id = added_tokens_json[key]
  2260. if (token_id >= vocab_size):
  2261. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2262. continue
  2263. tokens[token_id] = key.encode("utf-8")
  2264. scores[token_id] = -1000.0
  2265. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2266. if vocab_size > len(tokens):
  2267. pad_count = vocab_size - len(tokens)
  2268. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2269. for i in range(1, pad_count + 1):
  2270. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2271. scores.append(-1000.0)
  2272. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2273. self.gguf_writer.add_tokenizer_model("t5")
  2274. self.gguf_writer.add_tokenizer_pre("default")
  2275. self.gguf_writer.add_token_list(tokens)
  2276. self.gguf_writer.add_token_scores(scores)
  2277. self.gguf_writer.add_token_types(toktypes)
  2278. self.gguf_writer.add_add_space_prefix(add_prefix)
  2279. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2280. if precompiled_charsmap:
  2281. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2282. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2283. special_vocab.add_to_gguf(self.gguf_writer)
  2284. self.gguf_writer.add_add_bos_token(False)
  2285. self.gguf_writer.add_add_eos_token(True)
  2286. def set_gguf_parameters(self):
  2287. self.gguf_writer.add_name("T5")
  2288. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2289. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2290. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2291. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2292. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2293. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2294. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2295. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2296. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2297. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2298. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  2299. self.gguf_writer.add_file_type(self.ftype)
  2300. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2301. del bid # unused
  2302. # Sometimes T5 and Flan-T5 based models contain "encoder.embed_tokens.weight" tensor or
  2303. # "decoder.embed_tokens.weight" tensors that are duplicates of "shared.weight" tensor
  2304. # To prevent errors caused by an unnecessary unmapped tensor, skip both of them and use only "shared.weight".
  2305. if name == "decoder.embed_tokens.weight" or name == "encoder.embed_tokens.weight":
  2306. logger.debug(f"Skipping tensor {name!r} in safetensors so that convert can end normally.")
  2307. return []
  2308. return [(self.map_tensor_name(name), data_torch)]
  2309. ###### CONVERSION LOGIC ######
  2310. # tree of lazy tensors
  2311. class LazyTorchTensor(gguf.LazyBase):
  2312. _tensor_type = torch.Tensor
  2313. # to keep the type-checker happy
  2314. dtype: torch.dtype
  2315. shape: torch.Size
  2316. # only used when converting a torch.Tensor to a np.ndarray
  2317. _dtype_map: dict[torch.dtype, type] = {
  2318. torch.float16: np.float16,
  2319. torch.float32: np.float32,
  2320. }
  2321. def numpy(self) -> gguf.LazyNumpyTensor:
  2322. dtype = self._dtype_map[self.dtype]
  2323. return gguf.LazyNumpyTensor(
  2324. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  2325. lazy=self._lazy,
  2326. args=(self,),
  2327. func=(lambda s: s[0].numpy())
  2328. )
  2329. @classmethod
  2330. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: torch.Size) -> Tensor:
  2331. return torch.empty(size=shape, dtype=dtype, device="meta")
  2332. @classmethod
  2333. def __torch_function__(cls, func, types, args=(), kwargs=None):
  2334. del types # unused
  2335. if kwargs is None:
  2336. kwargs = {}
  2337. if func is torch.Tensor.numpy:
  2338. return args[0].numpy()
  2339. return LazyTorchTensor._wrap_fn(func)(*args, **kwargs)
  2340. def parse_args() -> argparse.Namespace:
  2341. parser = argparse.ArgumentParser(
  2342. description="Convert a huggingface model to a GGML compatible file")
  2343. parser.add_argument(
  2344. "--vocab-only", action="store_true",
  2345. help="extract only the vocab",
  2346. )
  2347. parser.add_argument(
  2348. "--awq-path", type=Path, default=None,
  2349. help="Path to scale awq cache file",
  2350. )
  2351. parser.add_argument(
  2352. "--outfile", type=Path,
  2353. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  2354. )
  2355. parser.add_argument(
  2356. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
  2357. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  2358. )
  2359. parser.add_argument(
  2360. "--bigendian", action="store_true",
  2361. help="model is executed on big endian machine",
  2362. )
  2363. parser.add_argument(
  2364. "model", type=Path,
  2365. help="directory containing model file",
  2366. )
  2367. parser.add_argument(
  2368. "--use-temp-file", action="store_true",
  2369. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  2370. )
  2371. parser.add_argument(
  2372. "--no-lazy", action="store_true",
  2373. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  2374. )
  2375. parser.add_argument(
  2376. "--model-name", type=str, default=None,
  2377. help="name of the model",
  2378. )
  2379. parser.add_argument(
  2380. "--verbose", action="store_true",
  2381. help="increase output verbosity",
  2382. )
  2383. parser.add_argument(
  2384. "--split-max-tensors", type=int, default=0,
  2385. help="max tensors in each split",
  2386. )
  2387. parser.add_argument(
  2388. "--split-max-size", type=str, default="0",
  2389. help="max size per split N(M|G)",
  2390. )
  2391. parser.add_argument(
  2392. "--dry-run", action="store_true",
  2393. help="only print out a split plan and exit, without writing any new files",
  2394. )
  2395. parser.add_argument(
  2396. "--no-tensor-first-split", action="store_true",
  2397. help="do not add tensors to the first split (disabled by default)"
  2398. )
  2399. return parser.parse_args()
  2400. def split_str_to_n_bytes(split_str: str) -> int:
  2401. if split_str.endswith("K"):
  2402. n = int(split_str[:-1]) * 1000
  2403. elif split_str.endswith("M"):
  2404. n = int(split_str[:-1]) * 1000 * 1000
  2405. elif split_str.endswith("G"):
  2406. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  2407. elif split_str.isnumeric():
  2408. n = int(split_str)
  2409. else:
  2410. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  2411. if n < 0:
  2412. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  2413. return n
  2414. def main() -> None:
  2415. args = parse_args()
  2416. logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
  2417. dir_model = args.model
  2418. if args.awq_path:
  2419. sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
  2420. from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
  2421. tmp_model_path = args.model / "weighted_model"
  2422. dir_model = tmp_model_path
  2423. if tmp_model_path.is_dir():
  2424. logger.info(f"{tmp_model_path} exists as a weighted model.")
  2425. else:
  2426. tmp_model_path.mkdir(parents=True, exist_ok=True)
  2427. logger.info("Saving new weighted model ...")
  2428. add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
  2429. logger.info(f"Saved weighted model at {tmp_model_path}.")
  2430. if not dir_model.is_dir():
  2431. logger.error(f'Error: {args.model} is not a directory')
  2432. sys.exit(1)
  2433. ftype_map: dict[str, gguf.LlamaFileType] = {
  2434. "f32": gguf.LlamaFileType.ALL_F32,
  2435. "f16": gguf.LlamaFileType.MOSTLY_F16,
  2436. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  2437. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  2438. "auto": gguf.LlamaFileType.GUESSED,
  2439. }
  2440. if args.use_temp_file and (args.split_max_tensors > 0 or args.split_max_size != "0"):
  2441. logger.error("Error: Cannot use temp file when splitting")
  2442. sys.exit(1)
  2443. if args.outfile is not None:
  2444. fname_out = args.outfile
  2445. else:
  2446. # output in the same directory as the model by default
  2447. fname_out = dir_model / 'ggml-model-{ftype}.gguf'
  2448. logger.info(f"Loading model: {dir_model.name}")
  2449. hparams = Model.load_hparams(dir_model)
  2450. with torch.inference_mode():
  2451. try:
  2452. model_class = Model.from_model_architecture(hparams["architectures"][0])
  2453. except NotImplementedError:
  2454. logger.error(f"Model {hparams['architectures'][0]} is not supported")
  2455. sys.exit(1)
  2456. model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file,
  2457. args.no_lazy, args.model_name, split_max_tensors=args.split_max_tensors,
  2458. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  2459. small_first_shard=args.no_tensor_first_split)
  2460. logger.info("Set model parameters")
  2461. model_instance.set_gguf_parameters()
  2462. logger.info("Set model tokenizer")
  2463. model_instance.set_vocab()
  2464. model_instance.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  2465. if args.vocab_only:
  2466. logger.info("Exporting model vocab...")
  2467. model_instance.write_vocab()
  2468. logger.info("Model vocab successfully exported.")
  2469. else:
  2470. logger.info("Exporting model...")
  2471. model_instance.write()
  2472. logger.info("Model successfully exported.")
  2473. if __name__ == '__main__':
  2474. main()