ggml-blas.cpp 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363
  1. #include "ggml-blas.h"
  2. #include "ggml-backend-impl.h"
  3. #include <future>
  4. #include <vector>
  5. #if defined(GGML_USE_ACCELERATE)
  6. # include <Accelerate/Accelerate.h>
  7. #elif defined(GGML_BLAS_USE_MKL)
  8. # include <mkl.h>
  9. #else
  10. # include <cblas.h>
  11. # ifdef BLIS_ENABLE_CBLAS
  12. # include <blis.h>
  13. # endif
  14. #endif
  15. struct ggml_backend_blas_context {
  16. int n_threads = GGML_DEFAULT_N_THREADS;
  17. std::unique_ptr<char[]> work_data;
  18. size_t work_size = 0;
  19. #ifndef GGML_USE_OPENMP
  20. std::vector<std::future<void>> tasks;
  21. #endif
  22. };
  23. // helper function to determine if it is better to use BLAS or not
  24. // for large matrices, BLAS is faster
  25. static bool ggml_backend_blas_use_blas(const struct ggml_tensor * dst) {
  26. const struct ggml_tensor * src0 = dst->src[0];
  27. const struct ggml_tensor * src1 = dst->src[1];
  28. const int64_t ne10 = src1->ne[0];
  29. const int64_t ne0 = dst->ne[0];
  30. const int64_t ne1 = dst->ne[1];
  31. // TODO: find the optimal values for these
  32. if (ggml_is_contiguous(src0) &&
  33. ggml_is_contiguous(src1) &&
  34. src1->type == GGML_TYPE_F32 &&
  35. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  36. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  37. return true;
  38. }
  39. return false;
  40. }
  41. static void ggml_backend_blas_mul_mat(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
  42. const struct ggml_tensor * src0 = dst->src[0];
  43. const struct ggml_tensor * src1 = dst->src[1];
  44. GGML_TENSOR_BINARY_OP_LOCALS
  45. const enum ggml_type type = src0->type;
  46. GGML_ASSERT(ne0 == ne01);
  47. GGML_ASSERT(ne1 == ne11);
  48. GGML_ASSERT(ne2 == ne12);
  49. GGML_ASSERT(ne3 == ne13);
  50. // we don't support permuted src0 or src1
  51. GGML_ASSERT(nb00 == ggml_type_size(type));
  52. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  53. // dst cannot be transposed or permuted
  54. GGML_ASSERT(nb0 == sizeof(float));
  55. GGML_ASSERT(nb0 <= nb1);
  56. GGML_ASSERT(nb1 <= nb2);
  57. GGML_ASSERT(nb2 <= nb3);
  58. // broadcast factors
  59. const int64_t r2 = ne12/ne02;
  60. const int64_t r3 = ne13/ne03;
  61. const int64_t ne_plane = ne01*ne00;
  62. const size_t desired_wsize = type == GGML_TYPE_F32 ? 0 : ne03*ne02*ne_plane*sizeof(float);
  63. if (ctx->work_size < desired_wsize) {
  64. ctx->work_data.reset(new char[desired_wsize]);
  65. ctx->work_size = desired_wsize;
  66. }
  67. void * wdata = ctx->work_data.get();
  68. // convert src0 to float
  69. if (type != GGML_TYPE_F32) {
  70. ggml_type_traits_t type_traits = ggml_internal_get_type_traits(type);
  71. ggml_to_float_t const to_float = type_traits.to_float;
  72. for (int64_t i03 = 0; i03 < ne03; i03++) {
  73. for (int64_t i02 = 0; i02 < ne02; i02++) {
  74. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  75. float * const wplane = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
  76. const int min_cols_per_thread = 4096;
  77. const int min_rows_per_thread = std::max((int)(min_cols_per_thread/ne00), 1);
  78. const int n_threads = std::max(std::min(ctx->n_threads, (int)(ne01/min_rows_per_thread)), 1);
  79. #ifdef GGML_USE_OPENMP
  80. #pragma omp parallel for num_threads(n_threads)
  81. for (int64_t i01 = 0; i01 < ne01; i01++) {
  82. to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
  83. }
  84. #else
  85. for (int i = 1; i < n_threads; i++) {
  86. const int64_t start = i*ne01/n_threads;
  87. const int64_t end = (i + 1)*ne01/n_threads;
  88. if (start < end) {
  89. ctx->tasks.push_back(std::async(std::launch::async, [=]() {
  90. for (int64_t i01 = start; i01 < end; i01++) {
  91. to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
  92. }
  93. }));
  94. }
  95. }
  96. {
  97. // reuse the current thread for the first task
  98. const int64_t start = 0;
  99. const int64_t end = ne01/n_threads;
  100. for (int64_t i01 = start; i01 < end; i01++) {
  101. to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
  102. }
  103. }
  104. #endif
  105. }
  106. }
  107. #ifndef GGML_USE_OPENMP
  108. // wait for all tasks to finish
  109. for (auto & task : ctx->tasks) {
  110. task.get();
  111. }
  112. ctx->tasks.clear();
  113. #endif
  114. }
  115. #if defined(OPENBLAS_VERSION)
  116. openblas_set_num_threads(ctx->n_threads);
  117. #endif
  118. #if defined(BLIS_ENABLE_CBLAS)
  119. bli_thread_set_num_threads(ctx->n_threads);
  120. #endif
  121. for (int64_t i13 = 0; i13 < ne13; i13++) {
  122. for (int64_t i12 = 0; i12 < ne12; i12++) {
  123. const int64_t i03 = i13/r3;
  124. const int64_t i02 = i12/r2;
  125. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  126. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  127. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  128. if (type != GGML_TYPE_F32) {
  129. x = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
  130. }
  131. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  132. ne1, ne01, ne10,
  133. 1.0f, y, ne10,
  134. x, ne00,
  135. 0.0f, d, ne01);
  136. }
  137. }
  138. }
  139. static void ggml_backend_blas_out_prod(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
  140. const struct ggml_tensor * src0 = dst->src[0];
  141. const struct ggml_tensor * src1 = dst->src[1];
  142. GGML_TENSOR_BINARY_OP_LOCALS
  143. GGML_ASSERT(ne0 == ne00);
  144. GGML_ASSERT(ne1 == ne10);
  145. GGML_ASSERT(ne2 == ne02);
  146. GGML_ASSERT(ne02 == ne12);
  147. GGML_ASSERT(ne3 == ne13);
  148. GGML_ASSERT(ne03 == ne13);
  149. // we don't support permuted src0 or src1
  150. GGML_ASSERT(nb00 == sizeof(float));
  151. // dst cannot be transposed or permuted
  152. GGML_ASSERT(nb0 == sizeof(float));
  153. // GGML_ASSERT(nb0 <= nb1);
  154. // GGML_ASSERT(nb1 <= nb2);
  155. // GGML_ASSERT(nb2 <= nb3);
  156. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  157. // src0: (k,n)
  158. // src1: (k,m)
  159. // dst: (m,n)
  160. //
  161. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  162. // Also expressed as (major,minor)
  163. // a: (m,k): so src1 transposed
  164. // b: (k,n): so src0
  165. // c: (m,n)
  166. //
  167. // However, if ggml_is_transposed(src1) is true, then
  168. // src1->data already contains a transposed version, so sgemm mustn't
  169. // transpose it further.
  170. int n = src0->ne[0];
  171. int k = src0->ne[1];
  172. int m = src1->ne[0];
  173. CBLAS_TRANSPOSE transposeA;
  174. int lda;
  175. if (!ggml_is_transposed(src1)) {
  176. transposeA = CblasTrans;
  177. lda = m;
  178. } else {
  179. transposeA = CblasNoTrans;
  180. lda = k;
  181. }
  182. float * a = (float *) ((char *) src1->data);
  183. float * b = (float *) ((char *) src0->data);
  184. float * c = (float *) ((char *) dst->data);
  185. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  186. GGML_UNUSED(ctx);
  187. }
  188. // backend interface
  189. GGML_CALL static const char * ggml_backend_blas_name(ggml_backend_t backend) {
  190. return "BLAS";
  191. GGML_UNUSED(backend);
  192. }
  193. GGML_CALL static void ggml_backend_blas_free(ggml_backend_t backend) {
  194. ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
  195. delete ctx;
  196. delete backend;
  197. }
  198. GGML_CALL static ggml_backend_buffer_type_t ggml_backend_blas_get_default_buffer_type(ggml_backend_t backend) {
  199. return ggml_backend_cpu_buffer_type();
  200. GGML_UNUSED(backend);
  201. }
  202. GGML_CALL static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  203. ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
  204. for (int i = 0; i < cgraph->n_nodes; i++) {
  205. struct ggml_tensor * node = cgraph->nodes[i];
  206. switch (node->op) {
  207. case GGML_OP_MUL_MAT:
  208. ggml_backend_blas_mul_mat(ctx, node);
  209. break;
  210. case GGML_OP_OUT_PROD:
  211. ggml_backend_blas_out_prod(ctx, node);
  212. break;
  213. case GGML_OP_NONE:
  214. case GGML_OP_RESHAPE:
  215. case GGML_OP_VIEW:
  216. case GGML_OP_PERMUTE:
  217. case GGML_OP_TRANSPOSE:
  218. break;
  219. default:
  220. fprintf(stderr, "%s: unsupported op %s\n", __func__, ggml_op_desc(node));
  221. GGML_ASSERT(false);
  222. }
  223. }
  224. return GGML_STATUS_SUCCESS;
  225. GGML_UNUSED(backend);
  226. }
  227. GGML_CALL static bool ggml_backend_blas_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  228. const struct ggml_tensor * src0 = op->src[0];
  229. const struct ggml_tensor * src1 = op->src[1];
  230. return (op->op == GGML_OP_MUL_MAT && ggml_backend_blas_use_blas(op)) ||
  231. (op->op == GGML_OP_OUT_PROD && op->src[0]->type == GGML_TYPE_F32 &&
  232. op->src[1]->type == GGML_TYPE_F32 &&
  233. ggml_is_matrix(src0) &&
  234. ggml_is_matrix(src1) &&
  235. ggml_is_contiguous(src0) &&
  236. (ggml_is_contiguous(src1) || ggml_is_transposed(src1)));
  237. GGML_UNUSED(backend);
  238. }
  239. GGML_CALL static bool ggml_backend_blas_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
  240. return ggml_backend_buft_is_host(buft);
  241. GGML_UNUSED(backend);
  242. }
  243. static struct ggml_backend_i blas_backend_i = {
  244. /* .get_name = */ ggml_backend_blas_name,
  245. /* .free = */ ggml_backend_blas_free,
  246. /* .get_default_buffer_type = */ ggml_backend_blas_get_default_buffer_type,
  247. /* .set_tensor_async = */ NULL,
  248. /* .get_tensor_async = */ NULL,
  249. /* .cpy_tensor_async = */ NULL,
  250. /* .synchronize = */ NULL,
  251. /* .graph_plan_create = */ NULL,
  252. /* .graph_plan_free = */ NULL,
  253. /* .graph_plan_update = */ NULL,
  254. /* .graph_plan_compute = */ NULL,
  255. /* .graph_compute = */ ggml_backend_blas_graph_compute,
  256. /* .supports_op = */ ggml_backend_blas_supports_op,
  257. /* .supports_buft = */ ggml_backend_blas_supports_buft,
  258. /* .offload_op = */ NULL,
  259. /* .event_new = */ NULL,
  260. /* .event_free = */ NULL,
  261. /* .event_record = */ NULL,
  262. /* .event_wait = */ NULL,
  263. /* .event_synchronize = */ NULL,
  264. };
  265. static ggml_guid_t ggml_backend_blas_guid(void) {
  266. static ggml_guid guid = { 0x12, 0xa8, 0xae, 0xf4, 0xc0, 0x1e, 0x61, 0x97, 0x8f, 0xeb, 0x33, 0x04, 0xa1, 0x33, 0x51, 0x2d };
  267. return &guid;
  268. }
  269. ggml_backend_t ggml_backend_blas_init(void) {
  270. ggml_backend_blas_context * ctx = new ggml_backend_blas_context;
  271. ggml_backend_t backend = new ggml_backend {
  272. /* .guid = */ ggml_backend_blas_guid(),
  273. /* .interface = */ blas_backend_i,
  274. /* .context = */ ctx,
  275. };
  276. #if !defined(NDEBUG) && defined(OPENBLAS_VERSION) && defined(GGML_USE_OPENMP)
  277. if (openblas_get_parallel() != OPENBLAS_OPENMP) {
  278. fprintf(stderr, "%s: warning: ggml is using OpenMP, but OpenBLAS was compiled without OpenMP support\n", __func__);
  279. }
  280. #endif
  281. #if !defined(NDEBUG) && defined(BLIS_ENABLE_CBLAS) && defined(GGML_USE_OPENMP) && !defined(BLIS_ENABLE_OPENMP)
  282. fprintf(stderr, "%s: warning: ggml is using OpenMP, but BLIS was compiled without OpenMP support\n", __func__);
  283. #endif
  284. return backend;
  285. }
  286. GGML_CALL bool ggml_backend_is_blas(ggml_backend_t backend) {
  287. return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_blas_guid());
  288. }
  289. void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads) {
  290. GGML_ASSERT(ggml_backend_is_blas(backend_blas));
  291. ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend_blas->context;
  292. ctx->n_threads = n_threads;
  293. }