tensor_mapping.py 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf
  13. "tok_embeddings", # llama-pth
  14. "embeddings.word_embeddings", # bert nomic-bert
  15. "language_model.embedding.word_embeddings", # persimmon
  16. "wte", # gpt2
  17. "transformer.embd.wte", # phi2
  18. "model.tok_embeddings", # internlm2
  19. "model.embedding", # mamba-qbert
  20. "backbone.embedding", # mamba
  21. "backbone.embeddings", # mamba-hf
  22. "transformer.in_out_embed", # Grok
  23. "shared", # t5
  24. ),
  25. # Token type embeddings
  26. MODEL_TENSOR.TOKEN_TYPES: (
  27. "embeddings.token_type_embeddings", # bert nomic-bert
  28. ),
  29. # Normalization of token embeddings
  30. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  31. "word_embeddings_layernorm", # bloom
  32. "embeddings.LayerNorm", # bert
  33. "emb_ln", # nomic-bert
  34. ),
  35. # Position embeddings
  36. MODEL_TENSOR.POS_EMBD: (
  37. "transformer.wpe", # gpt2
  38. "embeddings.position_embeddings", # bert
  39. "wpe", # gpt2
  40. ),
  41. # Output
  42. MODEL_TENSOR.OUTPUT: (
  43. "embed_out", # gptneox
  44. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx
  45. "output", # llama-pth bloom internlm2
  46. "word_embeddings_for_head", # persimmon
  47. "lm_head.linear", # phi2
  48. ),
  49. # Output norm
  50. MODEL_TENSOR.OUTPUT_NORM: (
  51. "gpt_neox.final_layer_norm", # gptneox
  52. "transformer.ln_f", # gpt2 gpt-j falcon
  53. "model.norm", # llama-hf baichuan internlm2
  54. "norm", # llama-pth
  55. "transformer.norm_f", # mpt dbrx
  56. "ln_f", # refact bloom qwen gpt2
  57. "language_model.encoder.final_layernorm", # persimmon
  58. "model.final_layernorm", # persimmon
  59. "lm_head.ln", # phi2
  60. "model.norm_f", # mamba-qbert
  61. "backbone.norm_f", # mamba
  62. "transformer.rms_norm", # Grok
  63. ),
  64. # Rope frequencies
  65. MODEL_TENSOR.ROPE_FREQS: (
  66. "rope.freqs", # llama-pth
  67. ),
  68. }
  69. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  70. # Attention norm
  71. MODEL_TENSOR.ATTN_NORM: (
  72. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  73. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen
  74. "transformer.blocks.{bid}.norm_1", # mpt
  75. "transformer.h.{bid}.input_layernorm", # falcon7b
  76. "h.{bid}.input_layernorm", # bloom
  77. "transformer.h.{bid}.ln_mlp", # falcon40b
  78. "model.layers.{bid}.input_layernorm", # llama-hf
  79. "layers.{bid}.attention_norm", # llama-pth
  80. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  81. "model.layers.{bid}.ln1", # yi
  82. "h.{bid}.ln_1", # gpt2
  83. "transformer.h.{bid}.ln", # phi2
  84. "model.layers.layers.{bid}.norm", # plamo
  85. "model.layers.{bid}.attention_norm", # internlm2
  86. "model.layers.{bid}.norm", # mamba-qbert
  87. "backbone.layers.{bid}.norm", # mamba
  88. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  89. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  90. ),
  91. # Attention norm 2
  92. MODEL_TENSOR.ATTN_NORM_2: (
  93. "transformer.h.{bid}.ln_attn", # falcon40b
  94. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  95. ),
  96. # Attention query-key-value
  97. MODEL_TENSOR.ATTN_QKV: (
  98. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  99. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen
  100. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  101. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  102. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  103. "h.{bid}.self_attention.query_key_value", # bloom
  104. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  105. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  106. "h.{bid}.attn.c_attn", # gpt2
  107. "transformer.h.{bid}.mixer.Wqkv", # phi2
  108. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  109. "model.layers.{bid}.self_attn.qkv_proj" # phi3
  110. ),
  111. # Attention query
  112. MODEL_TENSOR.ATTN_Q: (
  113. "model.layers.{bid}.self_attn.q_proj", # llama-hf
  114. "layers.{bid}.attention.wq", # llama-pth
  115. "encoder.layer.{bid}.attention.self.query", # bert
  116. "transformer.h.{bid}.attn.q_proj", # gpt-j
  117. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  118. "model.layers.{bid}.attention.wq", # internlm2
  119. "transformer.decoder_layer.{bid}.multi_head_attention.query" # Grok
  120. ),
  121. # Attention key
  122. MODEL_TENSOR.ATTN_K: (
  123. "model.layers.{bid}.self_attn.k_proj", # llama-hf
  124. "layers.{bid}.attention.wk", # llama-pth
  125. "encoder.layer.{bid}.attention.self.key", # bert
  126. "transformer.h.{bid}.attn.k_proj", # gpt-j
  127. "transformer.h.{bid}.attn.k", # refact
  128. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  129. "model.layers.{bid}.attention.wk", # internlm2
  130. "transformer.decoder_layer.{bid}.multi_head_attention.key" # Grok
  131. ),
  132. # Attention value
  133. MODEL_TENSOR.ATTN_V: (
  134. "model.layers.{bid}.self_attn.v_proj", # llama-hf
  135. "layers.{bid}.attention.wv", # llama-pth
  136. "encoder.layer.{bid}.attention.self.value", # bert
  137. "transformer.h.{bid}.attn.v_proj", # gpt-j
  138. "transformer.h.{bid}.attn.v", # refact
  139. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  140. "model.layers.{bid}.attention.wv", # internlm2
  141. "transformer.decoder_layer.{bid}.multi_head_attention.value" # Grok
  142. ),
  143. # Attention output
  144. MODEL_TENSOR.ATTN_OUT: (
  145. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  146. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen
  147. "transformer.blocks.{bid}.attn.out_proj", # mpt
  148. "transformer.h.{bid}.self_attention.dense", # falcon
  149. "h.{bid}.self_attention.dense", # bloom
  150. "model.layers.{bid}.self_attn.o_proj", # llama-hf
  151. "layers.{bid}.attention.wo", # llama-pth
  152. "encoder.layer.{bid}.attention.output.dense", # bert
  153. "transformer.h.{bid}.attn.out_proj", # gpt-j
  154. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  155. "model.layers.{bid}.self_attn.dense", # persimmon
  156. "h.{bid}.attn.c_proj", # gpt2
  157. "transformer.h.{bid}.mixer.out_proj", # phi2
  158. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  159. "model.layers.{bid}.attention.wo", # internlm2
  160. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  161. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  162. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  163. ),
  164. # Attention output norm
  165. MODEL_TENSOR.ATTN_OUT_NORM: (
  166. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  167. "encoder.layers.{bid}.norm1", # nomic-bert
  168. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  169. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  170. ),
  171. # Rotary embeddings
  172. MODEL_TENSOR.ATTN_ROT_EMBD: (
  173. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  174. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  175. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  176. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  177. ),
  178. # Feed-forward norm
  179. MODEL_TENSOR.FFN_NORM: (
  180. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  181. "transformer.h.{bid}.ln_2", # gpt2 refact qwen
  182. "h.{bid}.post_attention_layernorm", # bloom
  183. "transformer.blocks.{bid}.norm_2", # mpt
  184. "model.layers.{bid}.post_attention_layernorm", # llama-hf
  185. "layers.{bid}.ffn_norm", # llama-pth
  186. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  187. "model.layers.{bid}.ln2", # yi
  188. "h.{bid}.ln_2", # gpt2
  189. "model.layers.{bid}.ffn_norm", # internlm2
  190. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  191. ),
  192. MODEL_TENSOR.FFN_GATE_INP: (
  193. "layers.{bid}.feed_forward.gate", # mixtral
  194. "model.layers.{bid}.block_sparse_moe.gate", # mixtral
  195. "model.layers.{bid}.mlp.gate", # qwen2moe
  196. "transformer.decoder_layer.{bid}.router", # Grok
  197. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  198. ),
  199. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  200. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  201. ),
  202. # Feed-forward up
  203. MODEL_TENSOR.FFN_UP: (
  204. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  205. "transformer.h.{bid}.mlp.c_fc", # gpt2
  206. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  207. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  208. "h.{bid}.mlp.dense_h_to_4h", # bloom
  209. "model.layers.{bid}.mlp.up_proj", # llama-hf refact
  210. "layers.{bid}.feed_forward.w3", # llama-pth
  211. "encoder.layer.{bid}.intermediate.dense", # bert
  212. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  213. "transformer.h.{bid}.mlp.linear_3", # refact
  214. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  215. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  216. "transformer.h.{bid}.mlp.w1", # qwen
  217. "h.{bid}.mlp.c_fc", # gpt2
  218. "transformer.h.{bid}.mlp.fc1", # phi2
  219. "model.layers.{bid}.mlp.fc1", # phi2
  220. "model.layers.{bid}.mlp.gate_up_proj", # phi3
  221. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  222. "model.layers.{bid}.feed_forward.w3", # internlm2
  223. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  224. "model.layers.{bid}.mlp.c_fc", # starcoder2
  225. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2
  226. "model.layers.{bid}.residual_mlp.w3", # arctic
  227. ),
  228. MODEL_TENSOR.FFN_UP_EXP: (
  229. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  230. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  231. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  232. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe (merged)
  233. ),
  234. MODEL_TENSOR.FFN_UP_SHEXP: (
  235. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  236. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek2
  237. ),
  238. # AWQ-activation gate
  239. MODEL_TENSOR.FFN_ACT: (
  240. "transformer.blocks.{bid}.ffn.act", # mpt
  241. ),
  242. # Feed-forward gate
  243. MODEL_TENSOR.FFN_GATE: (
  244. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact
  245. "layers.{bid}.feed_forward.w1", # llama-pth
  246. "transformer.h.{bid}.mlp.w2", # qwen
  247. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  248. "model.layers.{bid}.feed_forward.w1", # internlm2
  249. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  250. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2
  251. "transformer.h.{bid}.mlp.linear_1", # refact
  252. "model.layers.{bid}.residual_mlp.w1", # arctic
  253. ),
  254. MODEL_TENSOR.FFN_GATE_EXP: (
  255. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  256. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  257. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  258. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe (merged)
  259. ),
  260. MODEL_TENSOR.FFN_GATE_SHEXP: (
  261. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  262. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek2
  263. ),
  264. # Feed-forward down
  265. MODEL_TENSOR.FFN_DOWN: (
  266. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  267. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen
  268. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  269. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  270. "h.{bid}.mlp.dense_4h_to_h", # bloom
  271. "model.layers.{bid}.mlp.down_proj", # llama-hf
  272. "layers.{bid}.feed_forward.w2", # llama-pth
  273. "encoder.layer.{bid}.output.dense", # bert
  274. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  275. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  276. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  277. "h.{bid}.mlp.c_proj", # gpt2
  278. "transformer.h.{bid}.mlp.fc2", # phi2
  279. "model.layers.{bid}.mlp.fc2", # phi2
  280. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  281. "model.layers.{bid}.feed_forward.w2", # internlm2
  282. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  283. "model.layers.{bid}.mlp.c_proj", # starcoder2
  284. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  285. "model.layers.{bid}.residual_mlp.w2", # arctic
  286. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  287. ),
  288. MODEL_TENSOR.FFN_DOWN_EXP: (
  289. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  290. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  291. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  292. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe (merged)
  293. ),
  294. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  295. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  296. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek2
  297. ),
  298. MODEL_TENSOR.ATTN_Q_NORM: (
  299. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  300. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  301. "model.layers.{bid}.self_attn.q_norm", # cohere
  302. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  303. "encoder.layer.{bid}.attention.self.layer_norm_q" # jina-bert-v2
  304. ),
  305. MODEL_TENSOR.ATTN_K_NORM: (
  306. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  307. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  308. "model.layers.{bid}.self_attn.k_norm", # cohere
  309. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  310. "encoder.layer.{bid}.attention.self.layer_norm_k" # jina-bert-v2
  311. ),
  312. MODEL_TENSOR.ROPE_FREQS: (
  313. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  314. ),
  315. MODEL_TENSOR.LAYER_OUT_NORM: (
  316. "encoder.layer.{bid}.output.LayerNorm", # bert
  317. "encoder.layers.{bid}.norm2", # nomic-bert
  318. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  319. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  320. "encoder.layer.{bid}.layer_norm_2" # jina-v2-code
  321. ),
  322. MODEL_TENSOR.SSM_IN: (
  323. "model.layers.{bid}.in_proj",
  324. "backbone.layers.{bid}.mixer.in_proj",
  325. ),
  326. MODEL_TENSOR.SSM_CONV1D: (
  327. "model.layers.{bid}.conv1d",
  328. "backbone.layers.{bid}.mixer.conv1d",
  329. ),
  330. MODEL_TENSOR.SSM_X: (
  331. "model.layers.{bid}.x_proj",
  332. "backbone.layers.{bid}.mixer.x_proj",
  333. ),
  334. MODEL_TENSOR.SSM_DT: (
  335. "model.layers.{bid}.dt_proj",
  336. "backbone.layers.{bid}.mixer.dt_proj",
  337. ),
  338. MODEL_TENSOR.SSM_A: (
  339. "model.layers.{bid}.A_log",
  340. "backbone.layers.{bid}.mixer.A_log",
  341. ),
  342. MODEL_TENSOR.SSM_D: (
  343. "model.layers.{bid}.D",
  344. "backbone.layers.{bid}.mixer.D",
  345. ),
  346. MODEL_TENSOR.SSM_OUT: (
  347. "model.layers.{bid}.out_proj",
  348. "backbone.layers.{bid}.mixer.out_proj",
  349. ),
  350. MODEL_TENSOR.ATTN_Q_A: (
  351. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  352. ),
  353. MODEL_TENSOR.ATTN_Q_B: (
  354. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  355. ),
  356. MODEL_TENSOR.ATTN_KV_A_MQA: (
  357. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  358. ),
  359. MODEL_TENSOR.ATTN_KV_B: (
  360. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  361. ),
  362. MODEL_TENSOR.ATTN_Q_A_NORM: (
  363. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  364. ),
  365. MODEL_TENSOR.ATTN_KV_A_NORM: (
  366. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  367. ),
  368. MODEL_TENSOR.ATTN_SUB_NORM: (
  369. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  370. ),
  371. MODEL_TENSOR.FFN_SUB_NORM: (
  372. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  373. ),
  374. MODEL_TENSOR.DEC_ATTN_NORM: (
  375. "decoder.block.{bid}.layer.0.layer_norm", # t5
  376. ),
  377. MODEL_TENSOR.DEC_ATTN_Q: (
  378. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  379. ),
  380. MODEL_TENSOR.DEC_ATTN_K: (
  381. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  382. ),
  383. MODEL_TENSOR.DEC_ATTN_V: (
  384. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  385. ),
  386. MODEL_TENSOR.DEC_ATTN_OUT: (
  387. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  388. ),
  389. MODEL_TENSOR.DEC_ATTN_REL_B: (
  390. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  391. ),
  392. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  393. "decoder.block.{bid}.layer.1.layer_norm", # t5
  394. ),
  395. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  396. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  397. ),
  398. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  399. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  400. ),
  401. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  402. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  403. ),
  404. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  405. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  406. ),
  407. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  408. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  409. ),
  410. MODEL_TENSOR.DEC_FFN_NORM: (
  411. "decoder.block.{bid}.layer.2.layer_norm", # t5
  412. ),
  413. MODEL_TENSOR.DEC_FFN_GATE: (
  414. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  415. ),
  416. MODEL_TENSOR.DEC_FFN_UP: (
  417. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  418. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  419. ),
  420. MODEL_TENSOR.DEC_FFN_DOWN: (
  421. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  422. ),
  423. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  424. "decoder.final_layer_norm", # t5
  425. ),
  426. MODEL_TENSOR.ENC_ATTN_NORM: (
  427. "encoder.block.{bid}.layer.0.layer_norm", # t5
  428. ),
  429. MODEL_TENSOR.ENC_ATTN_Q: (
  430. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  431. ),
  432. MODEL_TENSOR.ENC_ATTN_K: (
  433. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  434. ),
  435. MODEL_TENSOR.ENC_ATTN_V: (
  436. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  437. ),
  438. MODEL_TENSOR.ENC_ATTN_OUT: (
  439. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  440. ),
  441. MODEL_TENSOR.ENC_ATTN_REL_B: (
  442. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  443. ),
  444. MODEL_TENSOR.ENC_FFN_NORM: (
  445. "encoder.block.{bid}.layer.1.layer_norm", # t5
  446. ),
  447. MODEL_TENSOR.ENC_FFN_GATE: (
  448. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  449. ),
  450. MODEL_TENSOR.ENC_FFN_UP: (
  451. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  452. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  453. ),
  454. MODEL_TENSOR.ENC_FFN_DOWN: (
  455. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  456. ),
  457. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  458. "encoder.final_layer_norm", # t5
  459. ),
  460. }
  461. # architecture-specific block mappings
  462. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  463. MODEL_ARCH.ARCTIC: {
  464. MODEL_TENSOR.FFN_NORM: (
  465. "model.layers.{bid}.residual_layernorm",
  466. ),
  467. MODEL_TENSOR.FFN_NORM_EXP: (
  468. "model.layers.{bid}.post_attention_layernorm",
  469. ),
  470. },
  471. }
  472. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  473. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  474. self.mapping = {}
  475. for tensor, keys in self.mappings_cfg.items():
  476. if tensor not in MODEL_TENSORS[arch]:
  477. continue
  478. tensor_name = TENSOR_NAMES[tensor]
  479. self.mapping[tensor_name] = (tensor, tensor_name)
  480. for key in keys:
  481. self.mapping[key] = (tensor, tensor_name)
  482. if arch in self.arch_block_mappings_cfg:
  483. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  484. for bid in range(n_blocks):
  485. for tensor, keys in self.block_mappings_cfg.items():
  486. if tensor not in MODEL_TENSORS[arch]:
  487. continue
  488. # TODO: make this configurable
  489. n_experts = 160
  490. for xid in range(n_experts):
  491. tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid)
  492. self.mapping[tensor_name] = (tensor, tensor_name)
  493. for key in keys:
  494. key = key.format(bid = bid, xid = xid)
  495. self.mapping[key] = (tensor, tensor_name)
  496. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  497. result = self.mapping.get(key)
  498. if result is not None:
  499. return result
  500. for suffix in try_suffixes:
  501. if key.endswith(suffix):
  502. result = self.mapping.get(key[:-len(suffix)])
  503. if result is not None:
  504. return result[0], result[1] + suffix
  505. return None
  506. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  507. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  508. if result is None:
  509. return None
  510. return result[1]
  511. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  512. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  513. if result is None:
  514. return None
  515. return result[0]
  516. def __getitem__(self, key: str) -> str:
  517. try:
  518. return self.mapping[key][1]
  519. except KeyError:
  520. raise KeyError(key)
  521. def __contains__(self, key: str) -> bool:
  522. return key in self.mapping
  523. def __repr__(self) -> str:
  524. return repr(self.mapping)
  525. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  526. return TensorNameMap(arch, n_blocks)