llama.h 52 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155
  1. #ifndef LLAMA_H
  2. #define LLAMA_H
  3. #include "ggml.h"
  4. #include "ggml-backend.h"
  5. #include <stddef.h>
  6. #include <stdint.h>
  7. #include <stdio.h>
  8. #include <stdbool.h>
  9. #ifdef LLAMA_SHARED
  10. # if defined(_WIN32) && !defined(__MINGW32__)
  11. # ifdef LLAMA_BUILD
  12. # define LLAMA_API __declspec(dllexport)
  13. # else
  14. # define LLAMA_API __declspec(dllimport)
  15. # endif
  16. # else
  17. # define LLAMA_API __attribute__ ((visibility ("default")))
  18. # endif
  19. #else
  20. # define LLAMA_API
  21. #endif
  22. #ifdef __GNUC__
  23. # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  24. #elif defined(_MSC_VER)
  25. # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  26. #else
  27. # define DEPRECATED(func, hint) func
  28. #endif
  29. #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
  30. #define LLAMA_MAX_RNG_STATE (64*1024)
  31. #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
  32. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  33. #define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'
  34. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  35. #define LLAMA_SESSION_VERSION 6
  36. #define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ
  37. #define LLAMA_STATE_SEQ_VERSION 1
  38. #ifdef __cplusplus
  39. extern "C" {
  40. #endif
  41. //
  42. // C interface
  43. //
  44. // TODO: show sample usage
  45. //
  46. struct llama_model;
  47. struct llama_context;
  48. typedef int32_t llama_pos;
  49. typedef int32_t llama_token;
  50. typedef int32_t llama_seq_id;
  51. enum llama_vocab_type {
  52. LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
  53. LLAMA_VOCAB_TYPE_SPM = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback
  54. LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE
  55. LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece
  56. LLAMA_VOCAB_TYPE_UGM = 4, // T5 tokenizer based on Unigram
  57. };
  58. // pre-tokenization types
  59. enum llama_vocab_pre_type {
  60. LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0,
  61. LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1,
  62. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2,
  63. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3,
  64. LLAMA_VOCAB_PRE_TYPE_FALCON = 4,
  65. LLAMA_VOCAB_PRE_TYPE_MPT = 5,
  66. LLAMA_VOCAB_PRE_TYPE_STARCODER = 6,
  67. LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
  68. LLAMA_VOCAB_PRE_TYPE_REFACT = 8,
  69. LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9,
  70. LLAMA_VOCAB_PRE_TYPE_STABLELM2 = 10,
  71. LLAMA_VOCAB_PRE_TYPE_QWEN2 = 11,
  72. LLAMA_VOCAB_PRE_TYPE_OLMO = 12,
  73. LLAMA_VOCAB_PRE_TYPE_DBRX = 13,
  74. LLAMA_VOCAB_PRE_TYPE_SMAUG = 14,
  75. LLAMA_VOCAB_PRE_TYPE_PORO = 15,
  76. };
  77. // note: these values should be synchronized with ggml_rope
  78. // TODO: maybe move this enum to ggml.h (ggml_rope_type)
  79. enum llama_rope_type {
  80. LLAMA_ROPE_TYPE_NONE = -1,
  81. LLAMA_ROPE_TYPE_NORM = 0,
  82. LLAMA_ROPE_TYPE_NEOX = 2,
  83. LLAMA_ROPE_TYPE_GLM = 4,
  84. };
  85. enum llama_token_type { //TODO: remove, required until per token attributes are available from GGUF file
  86. LLAMA_TOKEN_TYPE_UNDEFINED = 0,
  87. LLAMA_TOKEN_TYPE_NORMAL = 1,
  88. LLAMA_TOKEN_TYPE_UNKNOWN = 2,
  89. LLAMA_TOKEN_TYPE_CONTROL = 3,
  90. LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
  91. LLAMA_TOKEN_TYPE_UNUSED = 5,
  92. LLAMA_TOKEN_TYPE_BYTE = 6,
  93. };
  94. enum llama_token_attr {
  95. LLAMA_TOKEN_ATTR_UNDEFINED = 0,
  96. LLAMA_TOKEN_ATTR_UNKNOWN = 1 << 0,
  97. LLAMA_TOKEN_ATTR_UNUSED = 1 << 1,
  98. LLAMA_TOKEN_ATTR_NORMAL = 1 << 2,
  99. LLAMA_TOKEN_ATTR_CONTROL = 1 << 3, // SPECIAL?
  100. LLAMA_TOKEN_ATTR_USER_DEFINED = 1 << 4,
  101. LLAMA_TOKEN_ATTR_BYTE = 1 << 5,
  102. LLAMA_TOKEN_ATTR_NORMALIZED = 1 << 6,
  103. LLAMA_TOKEN_ATTR_LSTRIP = 1 << 7,
  104. LLAMA_TOKEN_ATTR_RSTRIP = 1 << 8,
  105. LLAMA_TOKEN_ATTR_SINGLE_WORD = 1 << 9,
  106. };
  107. // model file types
  108. enum llama_ftype {
  109. LLAMA_FTYPE_ALL_F32 = 0,
  110. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  111. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  112. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  113. LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  114. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  115. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  116. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  117. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  118. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  119. LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  120. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
  121. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
  122. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
  123. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
  124. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
  125. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
  126. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
  127. LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
  128. LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
  129. LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
  130. LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
  131. LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors
  132. LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
  133. LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
  134. LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
  135. LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors
  136. LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors
  137. LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
  138. LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
  139. LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
  140. LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
  141. LLAMA_FTYPE_MOSTLY_BF16 = 32, // except 1d tensors
  142. LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
  143. };
  144. enum llama_rope_scaling_type {
  145. LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
  146. LLAMA_ROPE_SCALING_TYPE_NONE = 0,
  147. LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
  148. LLAMA_ROPE_SCALING_TYPE_YARN = 2,
  149. LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN,
  150. };
  151. enum llama_pooling_type {
  152. LLAMA_POOLING_TYPE_UNSPECIFIED = -1,
  153. LLAMA_POOLING_TYPE_NONE = 0,
  154. LLAMA_POOLING_TYPE_MEAN = 1,
  155. LLAMA_POOLING_TYPE_CLS = 2,
  156. LLAMA_POOLING_TYPE_LAST = 3,
  157. };
  158. enum llama_split_mode {
  159. LLAMA_SPLIT_MODE_NONE = 0, // single GPU
  160. LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
  161. LLAMA_SPLIT_MODE_ROW = 2, // split rows across GPUs
  162. };
  163. typedef struct llama_token_data {
  164. llama_token id; // token id
  165. float logit; // log-odds of the token
  166. float p; // probability of the token
  167. } llama_token_data;
  168. typedef struct llama_token_data_array {
  169. llama_token_data * data;
  170. size_t size;
  171. bool sorted;
  172. } llama_token_data_array;
  173. typedef bool (*llama_progress_callback)(float progress, void * user_data);
  174. // Input data for llama_decode
  175. // A llama_batch object can contain input about one or many sequences
  176. // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
  177. //
  178. // - token : the token ids of the input (used when embd is NULL)
  179. // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
  180. // - pos : the positions of the respective token in the sequence
  181. // - seq_id : the sequence to which the respective token belongs
  182. // - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
  183. //
  184. typedef struct llama_batch {
  185. int32_t n_tokens;
  186. llama_token * token;
  187. float * embd;
  188. llama_pos * pos;
  189. int32_t * n_seq_id;
  190. llama_seq_id ** seq_id;
  191. int8_t * logits; // TODO: rename this to "output"
  192. // NOTE: helpers for smooth API transition - can be deprecated in the future
  193. // for future-proof code, use the above fields instead and ignore everything below
  194. //
  195. // pos[i] = all_pos_0 + i*all_pos_1
  196. //
  197. llama_pos all_pos_0; // used if pos == NULL
  198. llama_pos all_pos_1; // used if pos == NULL
  199. llama_seq_id all_seq_id; // used if seq_id == NULL
  200. } llama_batch;
  201. enum llama_model_kv_override_type {
  202. LLAMA_KV_OVERRIDE_TYPE_INT,
  203. LLAMA_KV_OVERRIDE_TYPE_FLOAT,
  204. LLAMA_KV_OVERRIDE_TYPE_BOOL,
  205. LLAMA_KV_OVERRIDE_TYPE_STR,
  206. };
  207. struct llama_model_kv_override {
  208. enum llama_model_kv_override_type tag;
  209. char key[128];
  210. union {
  211. int64_t val_i64;
  212. double val_f64;
  213. bool val_bool;
  214. char val_str[128];
  215. };
  216. };
  217. struct llama_model_params {
  218. int32_t n_gpu_layers; // number of layers to store in VRAM
  219. enum llama_split_mode split_mode; // how to split the model across multiple GPUs
  220. // main_gpu interpretation depends on split_mode:
  221. // LLAMA_SPLIT_NONE: the GPU that is used for the entire model
  222. // LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results
  223. // LLAMA_SPLIT_LAYER: ignored
  224. int32_t main_gpu;
  225. // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
  226. const float * tensor_split;
  227. // comma separated list of RPC servers to use for offloading
  228. const char * rpc_servers;
  229. // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
  230. // If the provided progress_callback returns true, model loading continues.
  231. // If it returns false, model loading is immediately aborted.
  232. llama_progress_callback progress_callback;
  233. // context pointer passed to the progress callback
  234. void * progress_callback_user_data;
  235. // override key-value pairs of the model meta data
  236. const struct llama_model_kv_override * kv_overrides;
  237. // Keep the booleans together to avoid misalignment during copy-by-value.
  238. bool vocab_only; // only load the vocabulary, no weights
  239. bool use_mmap; // use mmap if possible
  240. bool use_mlock; // force system to keep model in RAM
  241. bool check_tensors; // validate model tensor data
  242. };
  243. // NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations
  244. // https://github.com/ggerganov/llama.cpp/pull/7544
  245. struct llama_context_params {
  246. uint32_t seed; // RNG seed, -1 for random
  247. uint32_t n_ctx; // text context, 0 = from model
  248. uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode
  249. uint32_t n_ubatch; // physical maximum batch size
  250. uint32_t n_seq_max; // max number of sequences (i.e. distinct states for recurrent models)
  251. uint32_t n_threads; // number of threads to use for generation
  252. uint32_t n_threads_batch; // number of threads to use for batch processing
  253. enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
  254. enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
  255. // ref: https://github.com/ggerganov/llama.cpp/pull/2054
  256. float rope_freq_base; // RoPE base frequency, 0 = from model
  257. float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
  258. float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
  259. float yarn_attn_factor; // YaRN magnitude scaling factor
  260. float yarn_beta_fast; // YaRN low correction dim
  261. float yarn_beta_slow; // YaRN high correction dim
  262. uint32_t yarn_orig_ctx; // YaRN original context size
  263. float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default)
  264. ggml_backend_sched_eval_callback cb_eval;
  265. void * cb_eval_user_data;
  266. enum ggml_type type_k; // data type for K cache [EXPERIMENTAL]
  267. enum ggml_type type_v; // data type for V cache [EXPERIMENTAL]
  268. // Keep the booleans together to avoid misalignment during copy-by-value.
  269. bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
  270. bool embeddings; // if true, extract embeddings (together with logits)
  271. bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
  272. bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
  273. // Abort callback
  274. // if it returns true, execution of llama_decode() will be aborted
  275. // currently works only with CPU execution
  276. ggml_abort_callback abort_callback;
  277. void * abort_callback_data;
  278. };
  279. // model quantization parameters
  280. typedef struct llama_model_quantize_params {
  281. int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
  282. enum llama_ftype ftype; // quantize to this llama_ftype
  283. enum ggml_type output_tensor_type; // output tensor type
  284. enum ggml_type token_embedding_type; // itoken embeddings tensor type
  285. bool allow_requantize; // allow quantizing non-f32/f16 tensors
  286. bool quantize_output_tensor; // quantize output.weight
  287. bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
  288. bool pure; // quantize all tensors to the default type
  289. bool keep_split; // quantize to the same number of shards
  290. void * imatrix; // pointer to importance matrix data
  291. void * kv_overrides; // pointer to vector containing overrides
  292. } llama_model_quantize_params;
  293. // grammar types
  294. struct llama_grammar;
  295. // grammar element type
  296. enum llama_gretype {
  297. // end of rule definition
  298. LLAMA_GRETYPE_END = 0,
  299. // start of alternate definition for rule
  300. LLAMA_GRETYPE_ALT = 1,
  301. // non-terminal element: reference to rule
  302. LLAMA_GRETYPE_RULE_REF = 2,
  303. // terminal element: character (code point)
  304. LLAMA_GRETYPE_CHAR = 3,
  305. // inverse char(s) ([^a], [^a-b] [^abc])
  306. LLAMA_GRETYPE_CHAR_NOT = 4,
  307. // modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
  308. // be an inclusive range ([a-z])
  309. LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
  310. // modifies a preceding LLAMA_GRETYPE_CHAR or
  311. // LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
  312. LLAMA_GRETYPE_CHAR_ALT = 6,
  313. // any character (.)
  314. LLAMA_GRETYPE_CHAR_ANY = 7,
  315. };
  316. typedef struct llama_grammar_element {
  317. enum llama_gretype type;
  318. uint32_t value; // Unicode code point or rule ID
  319. } llama_grammar_element;
  320. // performance timing information
  321. struct llama_timings {
  322. double t_start_ms;
  323. double t_end_ms;
  324. double t_load_ms;
  325. double t_sample_ms;
  326. double t_p_eval_ms;
  327. double t_eval_ms;
  328. int32_t n_sample;
  329. int32_t n_p_eval;
  330. int32_t n_eval;
  331. };
  332. // used in chat template
  333. typedef struct llama_chat_message {
  334. const char * role;
  335. const char * content;
  336. } llama_chat_message;
  337. // Helpers for getting default parameters
  338. LLAMA_API struct llama_model_params llama_model_default_params(void);
  339. LLAMA_API struct llama_context_params llama_context_default_params(void);
  340. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
  341. // Initialize the llama + ggml backend
  342. // If numa is true, use NUMA optimizations
  343. // Call once at the start of the program
  344. LLAMA_API void llama_backend_init(void);
  345. //optional:
  346. LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
  347. // Call once at the end of the program - currently only used for MPI
  348. LLAMA_API void llama_backend_free(void);
  349. LLAMA_API struct llama_model * llama_load_model_from_file(
  350. const char * path_model,
  351. struct llama_model_params params);
  352. LLAMA_API void llama_free_model(struct llama_model * model);
  353. LLAMA_API struct llama_context * llama_new_context_with_model(
  354. struct llama_model * model,
  355. struct llama_context_params params);
  356. // Frees all allocated memory
  357. LLAMA_API void llama_free(struct llama_context * ctx);
  358. LLAMA_API int64_t llama_time_us(void);
  359. LLAMA_API size_t llama_max_devices(void);
  360. LLAMA_API bool llama_supports_mmap (void);
  361. LLAMA_API bool llama_supports_mlock (void);
  362. LLAMA_API bool llama_supports_gpu_offload(void);
  363. LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
  364. LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
  365. LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
  366. LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
  367. LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
  368. LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
  369. LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
  370. LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
  371. LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
  372. LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
  373. LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
  374. LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
  375. // Get the model's RoPE frequency scaling factor
  376. LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
  377. // Functions to access the model's GGUF metadata scalar values
  378. // - The functions return the length of the string on success, or -1 on failure
  379. // - The output string is always null-terminated and cleared on failure
  380. // - GGUF array values are not supported by these functions
  381. // Get metadata value as a string by key name
  382. LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
  383. // Get the number of metadata key/value pairs
  384. LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
  385. // Get metadata key name by index
  386. LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  387. // Get metadata value as a string by index
  388. LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  389. // Get a string describing the model type
  390. LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
  391. // Returns the total size of all the tensors in the model in bytes
  392. LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
  393. // Returns the total number of parameters in the model
  394. LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
  395. // Get a llama model tensor
  396. LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
  397. // Returns 0 on success
  398. LLAMA_API uint32_t llama_model_quantize(
  399. const char * fname_inp,
  400. const char * fname_out,
  401. const llama_model_quantize_params * params);
  402. // Apply a LoRA adapter to a loaded model
  403. // path_base_model is the path to a higher quality model to use as a base for
  404. // the layers modified by the adapter. Can be NULL to use the current loaded model.
  405. // The model needs to be reloaded before applying a new adapter, otherwise the adapter
  406. // will be applied on top of the previous one
  407. // Returns 0 on success
  408. LLAMA_API int32_t llama_model_apply_lora_from_file(
  409. const struct llama_model * model,
  410. const char * path_lora,
  411. float scale,
  412. const char * path_base_model,
  413. int32_t n_threads);
  414. // Apply a loaded control vector to a llama_context, or if data is NULL, clear
  415. // the currently loaded vector.
  416. // n_embd should be the size of a single layer's control, and data should point
  417. // to an n_embd x n_layers buffer starting from layer 1.
  418. // il_start and il_end are the layer range the vector should apply to (both inclusive)
  419. // See llama_control_vector_load in common to load a control vector.
  420. LLAMA_API int32_t llama_control_vector_apply(
  421. struct llama_context * lctx,
  422. const float * data,
  423. size_t len,
  424. int32_t n_embd,
  425. int32_t il_start,
  426. int32_t il_end);
  427. //
  428. // KV cache
  429. //
  430. // Information associated with an individual cell in the KV cache view.
  431. struct llama_kv_cache_view_cell {
  432. // The position for this cell. Takes KV cache shifts into account.
  433. // May be negative if the cell is not populated.
  434. llama_pos pos;
  435. };
  436. // An updateable view of the KV cache.
  437. struct llama_kv_cache_view {
  438. // Number of KV cache cells. This will be the same as the context size.
  439. int32_t n_cells;
  440. // Maximum number of sequences that can exist in a cell. It's not an error
  441. // if there are more sequences in a cell than this value, however they will
  442. // not be visible in the view cells_sequences.
  443. int32_t n_seq_max;
  444. // Number of tokens in the cache. For example, if there are two populated
  445. // cells, the first with 1 sequence id in it and the second with 2 sequence
  446. // ids then you'll have 3 tokens.
  447. int32_t token_count;
  448. // Number of populated cache cells.
  449. int32_t used_cells;
  450. // Maximum contiguous empty slots in the cache.
  451. int32_t max_contiguous;
  452. // Index to the start of the max_contiguous slot range. Can be negative
  453. // when cache is full.
  454. int32_t max_contiguous_idx;
  455. // Information for an individual cell.
  456. struct llama_kv_cache_view_cell * cells;
  457. // The sequences for each cell. There will be n_seq_max items per cell.
  458. llama_seq_id * cells_sequences;
  459. };
  460. // Create an empty KV cache view. (use only for debugging purposes)
  461. LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max);
  462. // Free a KV cache view. (use only for debugging purposes)
  463. LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
  464. // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
  465. LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
  466. // Returns the number of tokens in the KV cache (slow, use only for debug)
  467. // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
  468. LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
  469. // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
  470. LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
  471. // Clear the KV cache - both cell info is erased and KV data is zeroed
  472. LLAMA_API void llama_kv_cache_clear(
  473. struct llama_context * ctx);
  474. // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
  475. // Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
  476. // seq_id < 0 : match any sequence
  477. // p0 < 0 : [0, p1]
  478. // p1 < 0 : [p0, inf)
  479. LLAMA_API bool llama_kv_cache_seq_rm(
  480. struct llama_context * ctx,
  481. llama_seq_id seq_id,
  482. llama_pos p0,
  483. llama_pos p1);
  484. // Copy all tokens that belong to the specified sequence to another sequence
  485. // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
  486. // p0 < 0 : [0, p1]
  487. // p1 < 0 : [p0, inf)
  488. LLAMA_API void llama_kv_cache_seq_cp(
  489. struct llama_context * ctx,
  490. llama_seq_id seq_id_src,
  491. llama_seq_id seq_id_dst,
  492. llama_pos p0,
  493. llama_pos p1);
  494. // Removes all tokens that do not belong to the specified sequence
  495. LLAMA_API void llama_kv_cache_seq_keep(
  496. struct llama_context * ctx,
  497. llama_seq_id seq_id);
  498. // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
  499. // If the KV cache is RoPEd, the KV data is updated accordingly:
  500. // - lazily on next llama_decode()
  501. // - explicitly with llama_kv_cache_update()
  502. // p0 < 0 : [0, p1]
  503. // p1 < 0 : [p0, inf)
  504. LLAMA_API void llama_kv_cache_seq_add(
  505. struct llama_context * ctx,
  506. llama_seq_id seq_id,
  507. llama_pos p0,
  508. llama_pos p1,
  509. llama_pos delta);
  510. // Integer division of the positions by factor of `d > 1`
  511. // If the KV cache is RoPEd, the KV data is updated accordingly:
  512. // - lazily on next llama_decode()
  513. // - explicitly with llama_kv_cache_update()
  514. // p0 < 0 : [0, p1]
  515. // p1 < 0 : [p0, inf)
  516. LLAMA_API void llama_kv_cache_seq_div(
  517. struct llama_context * ctx,
  518. llama_seq_id seq_id,
  519. llama_pos p0,
  520. llama_pos p1,
  521. int d);
  522. // Returns the largest position present in the KV cache for the specified sequence
  523. LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
  524. struct llama_context * ctx,
  525. llama_seq_id seq_id);
  526. // Defragment the KV cache
  527. // This will be applied:
  528. // - lazily on next llama_decode()
  529. // - explicitly with llama_kv_cache_update()
  530. LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
  531. // Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
  532. LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
  533. //
  534. // State / sessions
  535. //
  536. // Returns the maximum size in bytes of the state (rng, logits, embedding
  537. // and kv_cache) - will often be smaller after compacting tokens
  538. LLAMA_API size_t llama_state_get_size(const struct llama_context * ctx);
  539. LLAMA_API DEPRECATED(size_t llama_get_state_size(const struct llama_context * ctx),
  540. "use llama_state_get_size instead");
  541. // Copies the state to the specified destination address.
  542. // Destination needs to have allocated enough memory.
  543. // Returns the number of bytes copied
  544. LLAMA_API size_t llama_state_get_data(
  545. struct llama_context * ctx,
  546. uint8_t * dst);
  547. LLAMA_API DEPRECATED(size_t llama_copy_state_data(
  548. struct llama_context * ctx,
  549. uint8_t * dst),
  550. "use llama_state_get_data instead");
  551. // Set the state reading from the specified address
  552. // Returns the number of bytes read
  553. LLAMA_API size_t llama_state_set_data(
  554. struct llama_context * ctx,
  555. const uint8_t * src);
  556. LLAMA_API DEPRECATED(size_t llama_set_state_data(
  557. struct llama_context * ctx,
  558. const uint8_t * src),
  559. "use llama_state_set_data instead");
  560. // Save/load session file
  561. LLAMA_API bool llama_state_load_file(
  562. struct llama_context * ctx,
  563. const char * path_session,
  564. llama_token * tokens_out,
  565. size_t n_token_capacity,
  566. size_t * n_token_count_out);
  567. LLAMA_API DEPRECATED(bool llama_load_session_file(
  568. struct llama_context * ctx,
  569. const char * path_session,
  570. llama_token * tokens_out,
  571. size_t n_token_capacity,
  572. size_t * n_token_count_out),
  573. "use llama_state_load_file instead");
  574. LLAMA_API bool llama_state_save_file(
  575. struct llama_context * ctx,
  576. const char * path_session,
  577. const llama_token * tokens,
  578. size_t n_token_count);
  579. LLAMA_API DEPRECATED(bool llama_save_session_file(
  580. struct llama_context * ctx,
  581. const char * path_session,
  582. const llama_token * tokens,
  583. size_t n_token_count),
  584. "use llama_state_save_file instead");
  585. // Get the exact size needed to copy the KV cache of a single sequence
  586. LLAMA_API size_t llama_state_seq_get_size(
  587. struct llama_context * ctx,
  588. llama_seq_id seq_id);
  589. // Copy the KV cache of a single sequence into the specified buffer
  590. LLAMA_API size_t llama_state_seq_get_data(
  591. struct llama_context * ctx,
  592. uint8_t * dst,
  593. llama_seq_id seq_id);
  594. // Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence
  595. // Returns:
  596. // - Positive: Ok
  597. // - Zero: Failed to load
  598. LLAMA_API size_t llama_state_seq_set_data(
  599. struct llama_context * ctx,
  600. const uint8_t * src,
  601. llama_seq_id dest_seq_id);
  602. LLAMA_API size_t llama_state_seq_save_file(
  603. struct llama_context * ctx,
  604. const char * filepath,
  605. llama_seq_id seq_id,
  606. const llama_token * tokens,
  607. size_t n_token_count);
  608. LLAMA_API size_t llama_state_seq_load_file(
  609. struct llama_context * ctx,
  610. const char * filepath,
  611. llama_seq_id dest_seq_id,
  612. llama_token * tokens_out,
  613. size_t n_token_capacity,
  614. size_t * n_token_count_out);
  615. //
  616. // Decoding
  617. //
  618. // Return batch for single sequence of tokens starting at pos_0
  619. //
  620. // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
  621. //
  622. LLAMA_API struct llama_batch llama_batch_get_one(
  623. llama_token * tokens,
  624. int32_t n_tokens,
  625. llama_pos pos_0,
  626. llama_seq_id seq_id);
  627. // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
  628. // Each token can be assigned up to n_seq_max sequence ids
  629. // The batch has to be freed with llama_batch_free()
  630. // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
  631. // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
  632. // The rest of the llama_batch members are allocated with size n_tokens
  633. // All members are left uninitialized
  634. LLAMA_API struct llama_batch llama_batch_init(
  635. int32_t n_tokens,
  636. int32_t embd,
  637. int32_t n_seq_max);
  638. // Frees a batch of tokens allocated with llama_batch_init()
  639. LLAMA_API void llama_batch_free(struct llama_batch batch);
  640. // Positive return values does not mean a fatal error, but rather a warning.
  641. // 0 - success
  642. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  643. // < 0 - error
  644. LLAMA_API int32_t llama_decode(
  645. struct llama_context * ctx,
  646. struct llama_batch batch);
  647. // Set the number of threads used for decoding
  648. // n_threads is the number of threads used for generation (single token)
  649. // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
  650. LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
  651. // Get the number of threads used for generation of a single token.
  652. LLAMA_API uint32_t llama_n_threads(struct llama_context * ctx);
  653. // Get the number of threads used for prompt and batch processing (multiple token).
  654. LLAMA_API uint32_t llama_n_threads_batch(struct llama_context * ctx);
  655. // Set whether the model is in embeddings mode or not
  656. // If true, embeddings will be returned but logits will not
  657. LLAMA_API void llama_set_embeddings(struct llama_context * ctx, bool embeddings);
  658. // Set whether to use causal attention or not
  659. // If set to true, the model will only attend to the past tokens
  660. LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
  661. // Set abort callback
  662. LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
  663. // Wait until all computations are finished
  664. // This is automatically done when using one of the functions below to obtain the computation results
  665. // and is not necessary to call it explicitly in most cases
  666. LLAMA_API void llama_synchronize(struct llama_context * ctx);
  667. // Token logits obtained from the last call to llama_decode()
  668. // The logits for which llama_batch.logits[i] != 0 are stored contiguously
  669. // in the order they have appeared in the batch.
  670. // Rows: number of tokens for which llama_batch.logits[i] != 0
  671. // Cols: n_vocab
  672. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  673. // Logits for the ith token. For positive indices, Equivalent to:
  674. // llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab
  675. // Negative indicies can be used to access logits in reverse order, -1 is the last logit.
  676. // returns NULL for invalid ids.
  677. LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
  678. // Get all output token embeddings.
  679. // when pooling_type == LLAMA_POOLING_TYPE_NONE or when using a generative model,
  680. // the embeddings for which llama_batch.logits[i] != 0 are stored contiguously
  681. // in the order they have appeared in the batch.
  682. // shape: [n_outputs*n_embd]
  683. // Otherwise, returns NULL.
  684. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  685. // Get the embeddings for the ith token. For positive indices, Equivalent to:
  686. // llama_get_embeddings(ctx) + ctx->output_ids[i]*n_embd
  687. // Negative indicies can be used to access embeddings in reverse order, -1 is the last embedding.
  688. // shape: [n_embd] (1-dimensional)
  689. // returns NULL for invalid ids.
  690. LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
  691. // Get the embeddings for a sequence id
  692. // Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
  693. // shape: [n_embd] (1-dimensional)
  694. LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
  695. //
  696. // Vocab
  697. //
  698. LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
  699. LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
  700. LLAMA_API enum llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token);
  701. // Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
  702. LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);
  703. // Identify if Token Id is a control token or a render-able token
  704. LLAMA_API bool llama_token_is_control(const struct llama_model * model, llama_token token);
  705. // Special tokens
  706. LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
  707. LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
  708. LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification
  709. LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator
  710. LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
  711. LLAMA_API llama_token llama_token_pad(const struct llama_model * model); // padding
  712. // Returns -1 if unknown, 1 for true or 0 for false.
  713. LLAMA_API int32_t llama_add_bos_token(const struct llama_model * model);
  714. // Returns -1 if unknown, 1 for true or 0 for false.
  715. LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model);
  716. // Codellama infill tokens
  717. LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
  718. LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
  719. LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
  720. LLAMA_API llama_token llama_token_eot (const struct llama_model * model); // End of infill middle
  721. //
  722. // Tokenization
  723. //
  724. /// @details Convert the provided text into tokens.
  725. /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
  726. /// @return Returns the number of tokens on success, no more than n_tokens_max
  727. /// @return Returns a negative number on failure - the number of tokens that would have been returned
  728. /// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
  729. /// as plaintext. Does not insert a leading space.
  730. LLAMA_API int32_t llama_tokenize(
  731. const struct llama_model * model,
  732. const char * text,
  733. int32_t text_len,
  734. llama_token * tokens,
  735. int32_t n_tokens_max,
  736. bool add_special,
  737. bool parse_special);
  738. // Token Id -> Piece.
  739. // Uses the vocabulary in the provided context.
  740. // Does not write null terminator to the buffer.
  741. // User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
  742. // @param special If true, special tokens are rendered in the output.
  743. LLAMA_API int32_t llama_token_to_piece(
  744. const struct llama_model * model,
  745. llama_token token,
  746. char * buf,
  747. int32_t length,
  748. bool special);
  749. /// Apply chat template. Inspired by hf apply_chat_template() on python.
  750. /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
  751. /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
  752. /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead.
  753. /// @param chat Pointer to a list of multiple llama_chat_message
  754. /// @param n_msg Number of llama_chat_message in this chat
  755. /// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
  756. /// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
  757. /// @param length The size of the allocated buffer
  758. /// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
  759. LLAMA_API int32_t llama_chat_apply_template(
  760. const struct llama_model * model,
  761. const char * tmpl,
  762. const struct llama_chat_message * chat,
  763. size_t n_msg,
  764. bool add_ass,
  765. char * buf,
  766. int32_t length);
  767. //
  768. // Grammar
  769. //
  770. /// Initialize a llama_grammar.
  771. ///
  772. /// @param rules The rule elements of the grammar to initialize.
  773. /// @param n_rules The number of rules.
  774. /// @param start_rule_index The index of the root rule (the starting point of the grammar).
  775. /// @return The initialized llama_grammar or nullptr if initialization failed.
  776. LLAMA_API struct llama_grammar * llama_grammar_init(
  777. const llama_grammar_element ** rules,
  778. size_t n_rules,
  779. size_t start_rule_index);
  780. LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
  781. LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
  782. //
  783. // Sampling functions
  784. //
  785. // Sets the current rng seed.
  786. LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
  787. /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
  788. /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
  789. LLAMA_API void llama_sample_repetition_penalties(
  790. struct llama_context * ctx,
  791. llama_token_data_array * candidates,
  792. const llama_token * last_tokens,
  793. size_t penalty_last_n,
  794. float penalty_repeat,
  795. float penalty_freq,
  796. float penalty_present);
  797. /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
  798. /// @param logits Logits extracted from the original generation context.
  799. /// @param logits_guidance Logits extracted from a separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
  800. /// @param scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
  801. LLAMA_API void llama_sample_apply_guidance(
  802. struct llama_context * ctx,
  803. float * logits,
  804. float * logits_guidance,
  805. float scale);
  806. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  807. LLAMA_API void llama_sample_softmax(
  808. struct llama_context * ctx,
  809. llama_token_data_array * candidates);
  810. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  811. LLAMA_API void llama_sample_top_k(
  812. struct llama_context * ctx,
  813. llama_token_data_array * candidates,
  814. int32_t k,
  815. size_t min_keep);
  816. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  817. LLAMA_API void llama_sample_top_p(
  818. struct llama_context * ctx,
  819. llama_token_data_array * candidates,
  820. float p,
  821. size_t min_keep);
  822. /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
  823. LLAMA_API void llama_sample_min_p(
  824. struct llama_context * ctx,
  825. llama_token_data_array * candidates,
  826. float p,
  827. size_t min_keep);
  828. /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
  829. LLAMA_API void llama_sample_tail_free(
  830. struct llama_context * ctx,
  831. llama_token_data_array * candidates,
  832. float z,
  833. size_t min_keep);
  834. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  835. LLAMA_API void llama_sample_typical(
  836. struct llama_context * ctx,
  837. llama_token_data_array * candidates,
  838. float p,
  839. size_t min_keep);
  840. /// @details Dynamic temperature implementation described in the paper https://arxiv.org/abs/2309.02772.
  841. LLAMA_API void llama_sample_entropy(
  842. struct llama_context * ctx,
  843. llama_token_data_array * candidates_p,
  844. float min_temp,
  845. float max_temp,
  846. float exponent_val);
  847. LLAMA_API void llama_sample_temp(
  848. struct llama_context * ctx,
  849. llama_token_data_array * candidates,
  850. float temp);
  851. /// @details Apply constraints from grammar
  852. LLAMA_API void llama_sample_grammar(
  853. struct llama_context * ctx,
  854. llama_token_data_array * candidates,
  855. const struct llama_grammar * grammar);
  856. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  857. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  858. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  859. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  860. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  861. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  862. LLAMA_API llama_token llama_sample_token_mirostat(
  863. struct llama_context * ctx,
  864. llama_token_data_array * candidates,
  865. float tau,
  866. float eta,
  867. int32_t m,
  868. float * mu);
  869. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  870. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  871. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  872. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  873. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  874. LLAMA_API llama_token llama_sample_token_mirostat_v2(
  875. struct llama_context * ctx,
  876. llama_token_data_array * candidates,
  877. float tau,
  878. float eta,
  879. float * mu);
  880. /// @details Selects the token with the highest probability.
  881. /// Does not compute the token probabilities. Use llama_sample_softmax() instead.
  882. LLAMA_API llama_token llama_sample_token_greedy(
  883. struct llama_context * ctx,
  884. llama_token_data_array * candidates);
  885. /// @details Randomly selects a token from the candidates based on their probabilities using the RNG of ctx.
  886. LLAMA_API llama_token llama_sample_token(
  887. struct llama_context * ctx,
  888. llama_token_data_array * candidates);
  889. /// @details Accepts the sampled token into the grammar
  890. LLAMA_API void llama_grammar_accept_token(
  891. struct llama_context * ctx,
  892. struct llama_grammar * grammar,
  893. llama_token token);
  894. //
  895. // Model split
  896. //
  897. /// @details Build a split GGUF final path for this chunk.
  898. /// llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
  899. // Returns the split_path length.
  900. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
  901. /// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
  902. /// llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
  903. // Returns the split_prefix length.
  904. LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
  905. // Performance information
  906. LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
  907. LLAMA_API void llama_print_timings(struct llama_context * ctx);
  908. LLAMA_API void llama_reset_timings(struct llama_context * ctx);
  909. // Print system information
  910. LLAMA_API const char * llama_print_system_info(void);
  911. // Set callback for all future logging events.
  912. // If this is not called, or NULL is supplied, everything is output on stderr.
  913. LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
  914. LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
  915. #ifdef __cplusplus
  916. }
  917. #endif
  918. // Internal API to be implemented by llama.cpp and used by tests/benchmarks only
  919. #ifdef LLAMA_API_INTERNAL
  920. #include <random>
  921. #include <string>
  922. #include <vector>
  923. struct ggml_tensor;
  924. struct llama_partial_utf8 {
  925. uint32_t value; // bit value so far (unshifted)
  926. int n_remain; // num bytes remaining; -1 indicates invalid sequence
  927. };
  928. struct llama_grammar {
  929. const std::vector<std::vector<llama_grammar_element>> rules;
  930. std::vector<std::vector<const llama_grammar_element *>> stacks;
  931. // buffer for partially generated UTF-8 sequence from accepted tokens
  932. llama_partial_utf8 partial_utf8;
  933. };
  934. struct llama_grammar_candidate {
  935. size_t index;
  936. const uint32_t * code_points;
  937. llama_partial_utf8 partial_utf8;
  938. };
  939. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  940. struct llama_context * ctx
  941. );
  942. void llama_grammar_accept(
  943. const std::vector<std::vector<llama_grammar_element>> & rules,
  944. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  945. const uint32_t chr,
  946. std::vector<std::vector<const llama_grammar_element *>> & new_stacks);
  947. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  948. const std::string & src,
  949. llama_partial_utf8 partial_start);
  950. // Randomly selects a token from the candidates based on their probabilities using given std::mt19937.
  951. // This is a temporary workaround in order to fix race conditions when sampling with multiple sequences.
  952. llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng);
  953. #endif // LLAMA_API_INTERNAL
  954. #endif // LLAMA_H