ggml.h 77 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160
  1. #pragma once
  2. //
  3. // GGML Tensor Library
  4. //
  5. // This documentation is still a work in progress.
  6. // If you wish some specific topics to be covered, feel free to drop a comment:
  7. //
  8. // https://github.com/ggerganov/whisper.cpp/issues/40
  9. //
  10. // ## Overview
  11. //
  12. // This library implements:
  13. //
  14. // - a set of tensor operations
  15. // - automatic differentiation
  16. // - basic optimization algorithms
  17. //
  18. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  19. // but is not limited to, the following:
  20. //
  21. // - linear regression
  22. // - support vector machines
  23. // - neural networks
  24. //
  25. // The library allows the user to define a certain function using the available tensor operations. This function
  26. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  27. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  28. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  29. // using one of the available optimization algorithms.
  30. //
  31. // For example, here we define the function: f(x) = a*x^2 + b
  32. //
  33. // {
  34. // struct ggml_init_params params = {
  35. // .mem_size = 16*1024*1024,
  36. // .mem_buffer = NULL,
  37. // };
  38. //
  39. // // memory allocation happens here
  40. // struct ggml_context * ctx = ggml_init(params);
  41. //
  42. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  43. //
  44. // ggml_set_param(ctx, x); // x is an input variable
  45. //
  46. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  47. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  48. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  49. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  50. //
  51. // ...
  52. // }
  53. //
  54. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  55. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  56. //
  57. // {
  58. // ...
  59. //
  60. // struct ggml_cgraph * gf = ggml_new_graph(ctx);
  61. // ggml_build_forward_expand(gf, f);
  62. //
  63. // // set the input variable and parameter values
  64. // ggml_set_f32(x, 2.0f);
  65. // ggml_set_f32(a, 3.0f);
  66. // ggml_set_f32(b, 4.0f);
  67. //
  68. // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
  69. //
  70. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  71. //
  72. // ...
  73. // }
  74. //
  75. // The actual computation is performed in the ggml_graph_compute() function.
  76. //
  77. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  78. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  79. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  80. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  81. // actually needed.
  82. //
  83. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  84. // differentiation and optimization algorithms.
  85. //
  86. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  87. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  88. // the user can avoid the memory allocation overhead at runtime.
  89. //
  90. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  91. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  92. //
  93. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  94. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  95. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  96. // yet, but a few examples are demonstrated in the following operations:
  97. //
  98. // - ggml_permute()
  99. // - ggml_conv_1d_1s()
  100. // - ggml_conv_1d_2s()
  101. //
  102. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  103. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  104. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  105. // calculus class, or watch the following video:
  106. //
  107. // What is Automatic Differentiation?
  108. // https://www.youtube.com/watch?v=wG_nF1awSSY
  109. //
  110. //
  111. // ## Tensor data (struct ggml_tensor)
  112. //
  113. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  114. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  115. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  116. //
  117. // {
  118. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  119. //
  120. // assert(c->src[0] == a);
  121. // assert(c->src[1] == b);
  122. // }
  123. //
  124. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  125. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  126. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  127. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  128. // contiguous in memory.
  129. //
  130. // The data of the tensor is accessed via the "data" pointer. For example:
  131. //
  132. // {
  133. // const int nx = 2;
  134. // const int ny = 3;
  135. //
  136. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
  137. //
  138. // for (int y = 0; y < ny; y++) {
  139. // for (int x = 0; x < nx; x++) {
  140. // *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
  141. // }
  142. // }
  143. //
  144. // ...
  145. // }
  146. //
  147. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  148. //
  149. // ## The matrix multiplication operator (ggml_mul_mat)
  150. //
  151. // TODO
  152. //
  153. //
  154. // ## Multi-threading
  155. //
  156. // TODO
  157. //
  158. //
  159. // ## Overview of ggml.c
  160. //
  161. // TODO
  162. //
  163. //
  164. // ## SIMD optimizations
  165. //
  166. // TODO
  167. //
  168. //
  169. // ## Debugging ggml
  170. //
  171. // TODO
  172. //
  173. //
  174. #ifdef GGML_SHARED
  175. # if defined(_WIN32) && !defined(__MINGW32__)
  176. # ifdef GGML_BUILD
  177. # define GGML_API __declspec(dllexport)
  178. # else
  179. # define GGML_API __declspec(dllimport)
  180. # endif
  181. # else
  182. # define GGML_API __attribute__ ((visibility ("default")))
  183. # endif
  184. #else
  185. # define GGML_API
  186. #endif
  187. // TODO: support for clang
  188. #ifdef __GNUC__
  189. # define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  190. #elif defined(_MSC_VER)
  191. # define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  192. #else
  193. # define GGML_DEPRECATED(func, hint) func
  194. #endif
  195. #ifndef __GNUC__
  196. # define GGML_ATTRIBUTE_FORMAT(...)
  197. #elif defined(__MINGW32__)
  198. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  199. #else
  200. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  201. #endif
  202. #include <stdint.h>
  203. #include <stddef.h>
  204. #include <stdbool.h>
  205. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  206. #define GGML_FILE_VERSION 1
  207. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  208. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  209. #define GGML_MAX_DIMS 4
  210. #define GGML_MAX_PARAMS 1024
  211. #define GGML_MAX_CONTEXTS 64
  212. #define GGML_MAX_SRC 6
  213. #define GGML_MAX_NAME 64
  214. #define GGML_MAX_OP_PARAMS 64
  215. #define GGML_DEFAULT_N_THREADS 4
  216. #define GGML_DEFAULT_GRAPH_SIZE 2048
  217. #if UINTPTR_MAX == 0xFFFFFFFF
  218. #define GGML_MEM_ALIGN 4
  219. #else
  220. #define GGML_MEM_ALIGN 16
  221. #endif
  222. #define GGML_EXIT_SUCCESS 0
  223. #define GGML_EXIT_ABORTED 1
  224. #define GGUF_MAGIC "GGUF"
  225. #define GGUF_VERSION 3
  226. #define GGUF_DEFAULT_ALIGNMENT 32
  227. #define GGML_UNUSED(x) (void)(x)
  228. #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
  229. #define GGML_ASSERT(x) \
  230. do { \
  231. if (!(x)) { \
  232. fflush(stdout); \
  233. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  234. ggml_print_backtrace(); \
  235. abort(); \
  236. } \
  237. } while (0)
  238. #ifndef NDEBUG
  239. #define GGML_UNREACHABLE() GGML_ASSERT(!"statement should not be reached")
  240. #elif defined(__GNUC__)
  241. #define GGML_UNREACHABLE() __builtin_unreachable()
  242. #else
  243. #define GGML_UNREACHABLE() ((void) 0)
  244. #endif
  245. // used to copy the number of elements and stride in bytes of tensors into local variables.
  246. // main purpose is to reduce code duplication and improve readability.
  247. //
  248. // example:
  249. //
  250. // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  251. // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  252. //
  253. #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
  254. const type prefix##0 = (pointer)->array[0]; \
  255. GGML_UNUSED(prefix##0);
  256. #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
  257. GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
  258. const type prefix##1 = (pointer)->array[1]; \
  259. GGML_UNUSED(prefix##1);
  260. #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
  261. GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
  262. const type prefix##2 = (pointer)->array[2]; \
  263. GGML_UNUSED(prefix##2);
  264. #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
  265. GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
  266. const type prefix##3 = (pointer)->array[3]; \
  267. GGML_UNUSED(prefix##3);
  268. #ifdef __cplusplus
  269. extern "C" {
  270. #endif
  271. #if defined(__ARM_NEON) && defined(__CUDACC__)
  272. typedef half ggml_fp16_t;
  273. #elif defined(__ARM_NEON)
  274. typedef __fp16 ggml_fp16_t;
  275. #else
  276. typedef uint16_t ggml_fp16_t;
  277. #endif
  278. // convert FP16 <-> FP32
  279. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
  280. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
  281. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n);
  282. GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n);
  283. struct ggml_object;
  284. struct ggml_context;
  285. enum ggml_type {
  286. GGML_TYPE_F32 = 0,
  287. GGML_TYPE_F16 = 1,
  288. GGML_TYPE_Q4_0 = 2,
  289. GGML_TYPE_Q4_1 = 3,
  290. // GGML_TYPE_Q4_2 = 4, support has been removed
  291. // GGML_TYPE_Q4_3 (5) support has been removed
  292. GGML_TYPE_Q5_0 = 6,
  293. GGML_TYPE_Q5_1 = 7,
  294. GGML_TYPE_Q8_0 = 8,
  295. GGML_TYPE_Q8_1 = 9,
  296. // k-quantizations
  297. GGML_TYPE_Q2_K = 10,
  298. GGML_TYPE_Q3_K = 11,
  299. GGML_TYPE_Q4_K = 12,
  300. GGML_TYPE_Q5_K = 13,
  301. GGML_TYPE_Q6_K = 14,
  302. GGML_TYPE_Q8_K = 15,
  303. GGML_TYPE_I8,
  304. GGML_TYPE_I16,
  305. GGML_TYPE_I32,
  306. GGML_TYPE_COUNT,
  307. };
  308. enum ggml_backend_type {
  309. GGML_BACKEND_CPU = 0,
  310. GGML_BACKEND_GPU = 10,
  311. GGML_BACKEND_GPU_SPLIT = 20,
  312. };
  313. // model file types
  314. enum ggml_ftype {
  315. GGML_FTYPE_UNKNOWN = -1,
  316. GGML_FTYPE_ALL_F32 = 0,
  317. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  318. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  319. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  320. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  321. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  322. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  323. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  324. GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  325. GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
  326. GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
  327. GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
  328. GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
  329. };
  330. // available tensor operations:
  331. enum ggml_op {
  332. GGML_OP_NONE = 0,
  333. GGML_OP_DUP,
  334. GGML_OP_ADD,
  335. GGML_OP_ADD1,
  336. GGML_OP_ACC,
  337. GGML_OP_SUB,
  338. GGML_OP_MUL,
  339. GGML_OP_DIV,
  340. GGML_OP_SQR,
  341. GGML_OP_SQRT,
  342. GGML_OP_LOG,
  343. GGML_OP_SUM,
  344. GGML_OP_SUM_ROWS,
  345. GGML_OP_MEAN,
  346. GGML_OP_ARGMAX,
  347. GGML_OP_REPEAT,
  348. GGML_OP_REPEAT_BACK,
  349. GGML_OP_CONCAT,
  350. GGML_OP_SILU_BACK,
  351. GGML_OP_NORM, // normalize
  352. GGML_OP_RMS_NORM,
  353. GGML_OP_RMS_NORM_BACK,
  354. GGML_OP_GROUP_NORM,
  355. GGML_OP_MUL_MAT,
  356. GGML_OP_OUT_PROD,
  357. GGML_OP_SCALE,
  358. GGML_OP_SET,
  359. GGML_OP_CPY,
  360. GGML_OP_CONT,
  361. GGML_OP_RESHAPE,
  362. GGML_OP_VIEW,
  363. GGML_OP_PERMUTE,
  364. GGML_OP_TRANSPOSE,
  365. GGML_OP_GET_ROWS,
  366. GGML_OP_GET_ROWS_BACK,
  367. GGML_OP_DIAG,
  368. GGML_OP_DIAG_MASK_INF,
  369. GGML_OP_DIAG_MASK_ZERO,
  370. GGML_OP_SOFT_MAX,
  371. GGML_OP_SOFT_MAX_BACK,
  372. GGML_OP_ROPE,
  373. GGML_OP_ROPE_BACK,
  374. GGML_OP_ALIBI,
  375. GGML_OP_CLAMP,
  376. GGML_OP_CONV_TRANSPOSE_1D,
  377. GGML_OP_IM2COL,
  378. GGML_OP_CONV_TRANSPOSE_2D,
  379. GGML_OP_POOL_1D,
  380. GGML_OP_POOL_2D,
  381. GGML_OP_UPSCALE, // nearest interpolate
  382. GGML_OP_FLASH_ATTN,
  383. GGML_OP_FLASH_FF,
  384. GGML_OP_FLASH_ATTN_BACK,
  385. GGML_OP_WIN_PART,
  386. GGML_OP_WIN_UNPART,
  387. GGML_OP_GET_REL_POS,
  388. GGML_OP_ADD_REL_POS,
  389. GGML_OP_UNARY,
  390. GGML_OP_MAP_UNARY,
  391. GGML_OP_MAP_BINARY,
  392. GGML_OP_MAP_CUSTOM1_F32,
  393. GGML_OP_MAP_CUSTOM2_F32,
  394. GGML_OP_MAP_CUSTOM3_F32,
  395. GGML_OP_MAP_CUSTOM1,
  396. GGML_OP_MAP_CUSTOM2,
  397. GGML_OP_MAP_CUSTOM3,
  398. GGML_OP_CROSS_ENTROPY_LOSS,
  399. GGML_OP_CROSS_ENTROPY_LOSS_BACK,
  400. GGML_OP_COUNT,
  401. };
  402. enum ggml_unary_op {
  403. GGML_UNARY_OP_ABS,
  404. GGML_UNARY_OP_SGN,
  405. GGML_UNARY_OP_NEG,
  406. GGML_UNARY_OP_STEP,
  407. GGML_UNARY_OP_TANH,
  408. GGML_UNARY_OP_ELU,
  409. GGML_UNARY_OP_RELU,
  410. GGML_UNARY_OP_GELU,
  411. GGML_UNARY_OP_GELU_QUICK,
  412. GGML_UNARY_OP_SILU,
  413. GGML_UNARY_OP_LEAKY
  414. };
  415. enum ggml_object_type {
  416. GGML_OBJECT_TENSOR,
  417. GGML_OBJECT_GRAPH,
  418. GGML_OBJECT_WORK_BUFFER
  419. };
  420. enum ggml_log_level {
  421. GGML_LOG_LEVEL_ERROR = 2,
  422. GGML_LOG_LEVEL_WARN = 3,
  423. GGML_LOG_LEVEL_INFO = 4
  424. };
  425. // ggml object
  426. struct ggml_object {
  427. size_t offs;
  428. size_t size;
  429. struct ggml_object * next;
  430. enum ggml_object_type type;
  431. char padding[4];
  432. };
  433. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  434. // n-dimensional tensor
  435. struct ggml_tensor {
  436. enum ggml_type type;
  437. enum ggml_backend_type backend;
  438. struct ggml_backend_buffer * buffer;
  439. int n_dims;
  440. int64_t ne[GGML_MAX_DIMS]; // number of elements
  441. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  442. // nb[0] = ggml_type_size(type)
  443. // nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
  444. // nb[i] = nb[i-1] * ne[i-1]
  445. // compute data
  446. enum ggml_op op;
  447. // op params - allocated as int32_t for alignment
  448. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  449. bool is_param;
  450. struct ggml_tensor * grad;
  451. struct ggml_tensor * src[GGML_MAX_SRC];
  452. // performance
  453. int perf_runs;
  454. int64_t perf_cycles;
  455. int64_t perf_time_us;
  456. struct ggml_tensor * view_src;
  457. size_t view_offs;
  458. void * data;
  459. char name[GGML_MAX_NAME];
  460. void * extra; // extra things e.g. for ggml-cuda.cu
  461. char padding[12];
  462. };
  463. static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
  464. // the compute plan that needs to be prepared for ggml_graph_compute()
  465. // since https://github.com/ggerganov/ggml/issues/287
  466. struct ggml_cplan {
  467. size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
  468. uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
  469. int n_threads;
  470. // abort ggml_graph_compute when true
  471. bool (*abort_callback)(void * data);
  472. void * abort_callback_data;
  473. };
  474. enum ggml_cgraph_eval_order {
  475. GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
  476. GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
  477. GGML_CGRAPH_EVAL_ORDER_COUNT
  478. };
  479. struct ggml_hash_set {
  480. size_t size;
  481. struct ggml_tensor ** keys;
  482. };
  483. // computation graph
  484. struct ggml_cgraph {
  485. int size;
  486. int n_nodes;
  487. int n_leafs;
  488. struct ggml_tensor ** nodes;
  489. struct ggml_tensor ** grads;
  490. struct ggml_tensor ** leafs;
  491. struct ggml_hash_set visited_hash_table;
  492. enum ggml_cgraph_eval_order order;
  493. // performance
  494. int perf_runs;
  495. int64_t perf_cycles;
  496. int64_t perf_time_us;
  497. };
  498. // scratch buffer
  499. struct ggml_scratch {
  500. size_t offs;
  501. size_t size;
  502. void * data;
  503. };
  504. struct ggml_init_params {
  505. // memory pool
  506. size_t mem_size; // bytes
  507. void * mem_buffer; // if NULL, memory will be allocated internally
  508. bool no_alloc; // don't allocate memory for the tensor data
  509. };
  510. // compute types
  511. // NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
  512. // This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
  513. enum ggml_task_type {
  514. GGML_TASK_INIT = 0,
  515. GGML_TASK_COMPUTE,
  516. GGML_TASK_FINALIZE,
  517. };
  518. struct ggml_compute_params {
  519. enum ggml_task_type type;
  520. // ith = thread index, nth = number of threads
  521. int ith, nth;
  522. // work buffer for all threads
  523. size_t wsize;
  524. void * wdata;
  525. };
  526. // misc
  527. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  528. GGML_API int64_t ggml_time_ms(void);
  529. GGML_API int64_t ggml_time_us(void);
  530. GGML_API int64_t ggml_cycles(void);
  531. GGML_API int64_t ggml_cycles_per_ms(void);
  532. GGML_API void ggml_print_backtrace(void);
  533. GGML_API void ggml_numa_init(void); // call once for better performance on NUMA systems
  534. GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
  535. GGML_API void ggml_print_object (const struct ggml_object * obj);
  536. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  537. GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
  538. GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
  539. GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
  540. GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
  541. GGML_API size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split);
  542. GGML_API int ggml_blck_size (enum ggml_type type);
  543. GGML_API size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
  544. GGML_API float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
  545. GGML_API const char * ggml_type_name(enum ggml_type type);
  546. GGML_API const char * ggml_op_name (enum ggml_op op);
  547. GGML_API const char * ggml_op_symbol(enum ggml_op op);
  548. GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
  549. GGML_API bool ggml_is_quantized(enum ggml_type type);
  550. // TODO: temporary until model loading of ggml examples is refactored
  551. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  552. GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
  553. GGML_API bool ggml_is_contiguous(const struct ggml_tensor * tensor);
  554. GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
  555. GGML_API bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  556. // use this to compute the memory overhead of a tensor
  557. GGML_API size_t ggml_tensor_overhead(void);
  558. // main
  559. GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
  560. GGML_API void ggml_free(struct ggml_context * ctx);
  561. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  562. GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
  563. GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
  564. GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
  565. GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
  566. GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
  567. GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
  568. GGML_API struct ggml_tensor * ggml_new_tensor(
  569. struct ggml_context * ctx,
  570. enum ggml_type type,
  571. int n_dims,
  572. const int64_t *ne);
  573. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  574. struct ggml_context * ctx,
  575. enum ggml_type type,
  576. int64_t ne0);
  577. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  578. struct ggml_context * ctx,
  579. enum ggml_type type,
  580. int64_t ne0,
  581. int64_t ne1);
  582. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  583. struct ggml_context * ctx,
  584. enum ggml_type type,
  585. int64_t ne0,
  586. int64_t ne1,
  587. int64_t ne2);
  588. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  589. struct ggml_context * ctx,
  590. enum ggml_type type,
  591. int64_t ne0,
  592. int64_t ne1,
  593. int64_t ne2,
  594. int64_t ne3);
  595. GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
  596. GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
  597. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  598. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
  599. // Context tensor enumeration and lookup
  600. GGML_API struct ggml_tensor * ggml_get_first_tensor(struct ggml_context * ctx);
  601. GGML_API struct ggml_tensor * ggml_get_next_tensor (struct ggml_context * ctx, struct ggml_tensor * tensor);
  602. GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
  603. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  604. GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
  605. GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
  606. // Converts a flat index into coordinates
  607. GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
  608. GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
  609. GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
  610. GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
  611. GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
  612. GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
  613. GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
  614. GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
  615. GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
  616. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  617. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  618. GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
  619. GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
  620. GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
  621. GGML_ATTRIBUTE_FORMAT(2, 3)
  622. GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
  623. //
  624. // operations on tensors with backpropagation
  625. //
  626. GGML_API struct ggml_tensor * ggml_dup(
  627. struct ggml_context * ctx,
  628. struct ggml_tensor * a);
  629. // in-place, returns view(a)
  630. GGML_API struct ggml_tensor * ggml_dup_inplace(
  631. struct ggml_context * ctx,
  632. struct ggml_tensor * a);
  633. GGML_API struct ggml_tensor * ggml_add(
  634. struct ggml_context * ctx,
  635. struct ggml_tensor * a,
  636. struct ggml_tensor * b);
  637. GGML_API struct ggml_tensor * ggml_add_inplace(
  638. struct ggml_context * ctx,
  639. struct ggml_tensor * a,
  640. struct ggml_tensor * b);
  641. GGML_API struct ggml_tensor * ggml_add_cast(
  642. struct ggml_context * ctx,
  643. struct ggml_tensor * a,
  644. struct ggml_tensor * b,
  645. enum ggml_type type);
  646. GGML_API struct ggml_tensor * ggml_add1(
  647. struct ggml_context * ctx,
  648. struct ggml_tensor * a,
  649. struct ggml_tensor * b);
  650. GGML_API struct ggml_tensor * ggml_add1_inplace(
  651. struct ggml_context * ctx,
  652. struct ggml_tensor * a,
  653. struct ggml_tensor * b);
  654. GGML_API struct ggml_tensor * ggml_acc(
  655. struct ggml_context * ctx,
  656. struct ggml_tensor * a,
  657. struct ggml_tensor * b,
  658. size_t nb1,
  659. size_t nb2,
  660. size_t nb3,
  661. size_t offset);
  662. GGML_API struct ggml_tensor * ggml_acc_inplace(
  663. struct ggml_context * ctx,
  664. struct ggml_tensor * a,
  665. struct ggml_tensor * b,
  666. size_t nb1,
  667. size_t nb2,
  668. size_t nb3,
  669. size_t offset);
  670. GGML_API struct ggml_tensor * ggml_sub(
  671. struct ggml_context * ctx,
  672. struct ggml_tensor * a,
  673. struct ggml_tensor * b);
  674. GGML_API struct ggml_tensor * ggml_sub_inplace(
  675. struct ggml_context * ctx,
  676. struct ggml_tensor * a,
  677. struct ggml_tensor * b);
  678. GGML_API struct ggml_tensor * ggml_mul(
  679. struct ggml_context * ctx,
  680. struct ggml_tensor * a,
  681. struct ggml_tensor * b);
  682. GGML_API struct ggml_tensor * ggml_mul_inplace(
  683. struct ggml_context * ctx,
  684. struct ggml_tensor * a,
  685. struct ggml_tensor * b);
  686. GGML_API struct ggml_tensor * ggml_div(
  687. struct ggml_context * ctx,
  688. struct ggml_tensor * a,
  689. struct ggml_tensor * b);
  690. GGML_API struct ggml_tensor * ggml_div_inplace(
  691. struct ggml_context * ctx,
  692. struct ggml_tensor * a,
  693. struct ggml_tensor * b);
  694. GGML_API struct ggml_tensor * ggml_sqr(
  695. struct ggml_context * ctx,
  696. struct ggml_tensor * a);
  697. GGML_API struct ggml_tensor * ggml_sqr_inplace(
  698. struct ggml_context * ctx,
  699. struct ggml_tensor * a);
  700. GGML_API struct ggml_tensor * ggml_sqrt(
  701. struct ggml_context * ctx,
  702. struct ggml_tensor * a);
  703. GGML_API struct ggml_tensor * ggml_sqrt_inplace(
  704. struct ggml_context * ctx,
  705. struct ggml_tensor * a);
  706. GGML_API struct ggml_tensor * ggml_log(
  707. struct ggml_context * ctx,
  708. struct ggml_tensor * a);
  709. GGML_API struct ggml_tensor * ggml_log_inplace(
  710. struct ggml_context * ctx,
  711. struct ggml_tensor * a);
  712. // return scalar
  713. GGML_API struct ggml_tensor * ggml_sum(
  714. struct ggml_context * ctx,
  715. struct ggml_tensor * a);
  716. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  717. GGML_API struct ggml_tensor * ggml_sum_rows(
  718. struct ggml_context * ctx,
  719. struct ggml_tensor * a);
  720. // mean along rows
  721. GGML_API struct ggml_tensor * ggml_mean(
  722. struct ggml_context * ctx,
  723. struct ggml_tensor * a);
  724. // argmax along rows
  725. GGML_API struct ggml_tensor * ggml_argmax(
  726. struct ggml_context * ctx,
  727. struct ggml_tensor * a);
  728. // if a is the same shape as b, and a is not parameter, return a
  729. // otherwise, return a new tensor: repeat(a) to fit in b
  730. GGML_API struct ggml_tensor * ggml_repeat(
  731. struct ggml_context * ctx,
  732. struct ggml_tensor * a,
  733. struct ggml_tensor * b);
  734. // sums repetitions in a into shape of b
  735. GGML_API struct ggml_tensor * ggml_repeat_back(
  736. struct ggml_context * ctx,
  737. struct ggml_tensor * a,
  738. struct ggml_tensor * b);
  739. // concat a and b on dim 2
  740. // used in stable-diffusion
  741. GGML_API struct ggml_tensor * ggml_concat(
  742. struct ggml_context * ctx,
  743. struct ggml_tensor * a,
  744. struct ggml_tensor * b);
  745. GGML_API struct ggml_tensor * ggml_abs(
  746. struct ggml_context * ctx,
  747. struct ggml_tensor * a);
  748. GGML_API struct ggml_tensor * ggml_abs_inplace(
  749. struct ggml_context * ctx,
  750. struct ggml_tensor * a);
  751. GGML_API struct ggml_tensor * ggml_sgn(
  752. struct ggml_context * ctx,
  753. struct ggml_tensor * a);
  754. GGML_API struct ggml_tensor * ggml_sgn_inplace(
  755. struct ggml_context * ctx,
  756. struct ggml_tensor * a);
  757. GGML_API struct ggml_tensor * ggml_neg(
  758. struct ggml_context * ctx,
  759. struct ggml_tensor * a);
  760. GGML_API struct ggml_tensor * ggml_neg_inplace(
  761. struct ggml_context * ctx,
  762. struct ggml_tensor * a);
  763. GGML_API struct ggml_tensor * ggml_step(
  764. struct ggml_context * ctx,
  765. struct ggml_tensor * a);
  766. GGML_API struct ggml_tensor * ggml_step_inplace(
  767. struct ggml_context * ctx,
  768. struct ggml_tensor * a);
  769. GGML_API struct ggml_tensor * ggml_tanh(
  770. struct ggml_context * ctx,
  771. struct ggml_tensor * a);
  772. GGML_API struct ggml_tensor * ggml_tanh_inplace(
  773. struct ggml_context * ctx,
  774. struct ggml_tensor * a);
  775. GGML_API struct ggml_tensor * ggml_elu(
  776. struct ggml_context * ctx,
  777. struct ggml_tensor * a);
  778. GGML_API struct ggml_tensor * ggml_elu_inplace(
  779. struct ggml_context * ctx,
  780. struct ggml_tensor * a);
  781. GGML_API struct ggml_tensor * ggml_relu(
  782. struct ggml_context * ctx,
  783. struct ggml_tensor * a);
  784. GGML_API struct ggml_tensor * ggml_leaky(
  785. struct ggml_context * ctx,
  786. struct ggml_tensor * a);
  787. GGML_API struct ggml_tensor * ggml_relu_inplace(
  788. struct ggml_context * ctx,
  789. struct ggml_tensor * a);
  790. // TODO: double-check this computation is correct
  791. GGML_API struct ggml_tensor * ggml_gelu(
  792. struct ggml_context * ctx,
  793. struct ggml_tensor * a);
  794. GGML_API struct ggml_tensor * ggml_gelu_inplace(
  795. struct ggml_context * ctx,
  796. struct ggml_tensor * a);
  797. GGML_API struct ggml_tensor * ggml_gelu_quick(
  798. struct ggml_context * ctx,
  799. struct ggml_tensor * a);
  800. GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
  801. struct ggml_context * ctx,
  802. struct ggml_tensor * a);
  803. GGML_API struct ggml_tensor * ggml_silu(
  804. struct ggml_context * ctx,
  805. struct ggml_tensor * a);
  806. GGML_API struct ggml_tensor * ggml_silu_inplace(
  807. struct ggml_context * ctx,
  808. struct ggml_tensor * a);
  809. // a - x
  810. // b - dy
  811. GGML_API struct ggml_tensor * ggml_silu_back(
  812. struct ggml_context * ctx,
  813. struct ggml_tensor * a,
  814. struct ggml_tensor * b);
  815. // normalize along rows
  816. GGML_API struct ggml_tensor * ggml_norm(
  817. struct ggml_context * ctx,
  818. struct ggml_tensor * a,
  819. float eps);
  820. GGML_API struct ggml_tensor * ggml_norm_inplace(
  821. struct ggml_context * ctx,
  822. struct ggml_tensor * a,
  823. float eps);
  824. GGML_API struct ggml_tensor * ggml_rms_norm(
  825. struct ggml_context * ctx,
  826. struct ggml_tensor * a,
  827. float eps);
  828. GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
  829. struct ggml_context * ctx,
  830. struct ggml_tensor * a,
  831. float eps);
  832. // group normalize along ne0*ne1*n_groups
  833. // used in stable-diffusion
  834. // TODO: eps is hardcoded to 1e-6 for now
  835. GGML_API struct ggml_tensor * ggml_group_norm(
  836. struct ggml_context * ctx,
  837. struct ggml_tensor * a,
  838. int n_groups);
  839. GGML_API struct ggml_tensor * ggml_group_norm_inplace(
  840. struct ggml_context * ctx,
  841. struct ggml_tensor * a,
  842. int n_groups);
  843. // a - x
  844. // b - dy
  845. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  846. struct ggml_context * ctx,
  847. struct ggml_tensor * a,
  848. struct ggml_tensor * b,
  849. float eps);
  850. // A: k columns, n rows => [ne03, ne02, n, k]
  851. // B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
  852. // result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
  853. GGML_API struct ggml_tensor * ggml_mul_mat(
  854. struct ggml_context * ctx,
  855. struct ggml_tensor * a,
  856. struct ggml_tensor * b);
  857. // A: m columns, n rows,
  858. // B: p columns, n rows,
  859. // result is m columns, p rows
  860. GGML_API struct ggml_tensor * ggml_out_prod(
  861. struct ggml_context * ctx,
  862. struct ggml_tensor * a,
  863. struct ggml_tensor * b);
  864. //
  865. // operations on tensors without backpropagation
  866. //
  867. GGML_API struct ggml_tensor * ggml_scale(
  868. struct ggml_context * ctx,
  869. struct ggml_tensor * a,
  870. struct ggml_tensor * b);
  871. // in-place, returns view(a)
  872. GGML_API struct ggml_tensor * ggml_scale_inplace(
  873. struct ggml_context * ctx,
  874. struct ggml_tensor * a,
  875. struct ggml_tensor * b);
  876. // b -> view(a,offset,nb1,nb2,3), return modified a
  877. GGML_API struct ggml_tensor * ggml_set(
  878. struct ggml_context * ctx,
  879. struct ggml_tensor * a,
  880. struct ggml_tensor * b,
  881. size_t nb1,
  882. size_t nb2,
  883. size_t nb3,
  884. size_t offset);
  885. // b -> view(a,offset,nb1,nb2,3), return view(a)
  886. GGML_API struct ggml_tensor * ggml_set_inplace(
  887. struct ggml_context * ctx,
  888. struct ggml_tensor * a,
  889. struct ggml_tensor * b,
  890. size_t nb1,
  891. size_t nb2,
  892. size_t nb3,
  893. size_t offset);
  894. GGML_API struct ggml_tensor * ggml_set_1d(
  895. struct ggml_context * ctx,
  896. struct ggml_tensor * a,
  897. struct ggml_tensor * b,
  898. size_t offset);
  899. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  900. struct ggml_context * ctx,
  901. struct ggml_tensor * a,
  902. struct ggml_tensor * b,
  903. size_t offset);
  904. // b -> view(a,offset,nb1,nb2,3), return modified a
  905. GGML_API struct ggml_tensor * ggml_set_2d(
  906. struct ggml_context * ctx,
  907. struct ggml_tensor * a,
  908. struct ggml_tensor * b,
  909. size_t nb1,
  910. size_t offset);
  911. // b -> view(a,offset,nb1,nb2,3), return view(a)
  912. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  913. struct ggml_context * ctx,
  914. struct ggml_tensor * a,
  915. struct ggml_tensor * b,
  916. size_t nb1,
  917. size_t offset);
  918. // a -> b, return view(b)
  919. GGML_API struct ggml_tensor * ggml_cpy(
  920. struct ggml_context * ctx,
  921. struct ggml_tensor * a,
  922. struct ggml_tensor * b);
  923. // a -> b, in-place, return view(b)
  924. GGML_API struct ggml_tensor * ggml_cpy_inplace(
  925. struct ggml_context * ctx,
  926. struct ggml_tensor * a,
  927. struct ggml_tensor * b);
  928. // make contiguous
  929. GGML_API struct ggml_tensor * ggml_cont(
  930. struct ggml_context * ctx,
  931. struct ggml_tensor * a);
  932. // make contiguous, in-place
  933. GGML_API struct ggml_tensor * ggml_cont_inplace(
  934. struct ggml_context * ctx,
  935. struct ggml_tensor * a);
  936. // make contiguous, with new shape
  937. GGML_API struct ggml_tensor * ggml_cont_1d(
  938. struct ggml_context * ctx,
  939. struct ggml_tensor * a,
  940. int64_t ne0);
  941. GGML_API struct ggml_tensor * ggml_cont_2d(
  942. struct ggml_context * ctx,
  943. struct ggml_tensor * a,
  944. int64_t ne0,
  945. int64_t ne1);
  946. GGML_API struct ggml_tensor * ggml_cont_3d(
  947. struct ggml_context * ctx,
  948. struct ggml_tensor * a,
  949. int64_t ne0,
  950. int64_t ne1,
  951. int64_t ne2);
  952. GGML_API struct ggml_tensor * ggml_cont_4d(
  953. struct ggml_context * ctx,
  954. struct ggml_tensor * a,
  955. int64_t ne0,
  956. int64_t ne1,
  957. int64_t ne2,
  958. int64_t ne3);
  959. // return view(a), b specifies the new shape
  960. // TODO: when we start computing gradient, make a copy instead of view
  961. GGML_API struct ggml_tensor * ggml_reshape(
  962. struct ggml_context * ctx,
  963. struct ggml_tensor * a,
  964. struct ggml_tensor * b);
  965. // return view(a)
  966. // TODO: when we start computing gradient, make a copy instead of view
  967. GGML_API struct ggml_tensor * ggml_reshape_1d(
  968. struct ggml_context * ctx,
  969. struct ggml_tensor * a,
  970. int64_t ne0);
  971. GGML_API struct ggml_tensor * ggml_reshape_2d(
  972. struct ggml_context * ctx,
  973. struct ggml_tensor * a,
  974. int64_t ne0,
  975. int64_t ne1);
  976. // return view(a)
  977. // TODO: when we start computing gradient, make a copy instead of view
  978. GGML_API struct ggml_tensor * ggml_reshape_3d(
  979. struct ggml_context * ctx,
  980. struct ggml_tensor * a,
  981. int64_t ne0,
  982. int64_t ne1,
  983. int64_t ne2);
  984. GGML_API struct ggml_tensor * ggml_reshape_4d(
  985. struct ggml_context * ctx,
  986. struct ggml_tensor * a,
  987. int64_t ne0,
  988. int64_t ne1,
  989. int64_t ne2,
  990. int64_t ne3);
  991. // offset in bytes
  992. GGML_API struct ggml_tensor * ggml_view_1d(
  993. struct ggml_context * ctx,
  994. struct ggml_tensor * a,
  995. int64_t ne0,
  996. size_t offset);
  997. GGML_API struct ggml_tensor * ggml_view_2d(
  998. struct ggml_context * ctx,
  999. struct ggml_tensor * a,
  1000. int64_t ne0,
  1001. int64_t ne1,
  1002. size_t nb1, // row stride in bytes
  1003. size_t offset);
  1004. GGML_API struct ggml_tensor * ggml_view_3d(
  1005. struct ggml_context * ctx,
  1006. struct ggml_tensor * a,
  1007. int64_t ne0,
  1008. int64_t ne1,
  1009. int64_t ne2,
  1010. size_t nb1, // row stride in bytes
  1011. size_t nb2, // slice stride in bytes
  1012. size_t offset);
  1013. GGML_API struct ggml_tensor * ggml_view_4d(
  1014. struct ggml_context * ctx,
  1015. struct ggml_tensor * a,
  1016. int64_t ne0,
  1017. int64_t ne1,
  1018. int64_t ne2,
  1019. int64_t ne3,
  1020. size_t nb1, // row stride in bytes
  1021. size_t nb2, // slice stride in bytes
  1022. size_t nb3,
  1023. size_t offset);
  1024. GGML_API struct ggml_tensor * ggml_permute(
  1025. struct ggml_context * ctx,
  1026. struct ggml_tensor * a,
  1027. int axis0,
  1028. int axis1,
  1029. int axis2,
  1030. int axis3);
  1031. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  1032. GGML_API struct ggml_tensor * ggml_transpose(
  1033. struct ggml_context * ctx,
  1034. struct ggml_tensor * a);
  1035. GGML_API struct ggml_tensor * ggml_get_rows(
  1036. struct ggml_context * ctx,
  1037. struct ggml_tensor * a,
  1038. struct ggml_tensor * b);
  1039. GGML_API struct ggml_tensor * ggml_get_rows_back(
  1040. struct ggml_context * ctx,
  1041. struct ggml_tensor * a,
  1042. struct ggml_tensor * b,
  1043. struct ggml_tensor * c);
  1044. GGML_API struct ggml_tensor * ggml_diag(
  1045. struct ggml_context * ctx,
  1046. struct ggml_tensor * a);
  1047. // set elements above the diagonal to -INF
  1048. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  1049. struct ggml_context * ctx,
  1050. struct ggml_tensor * a,
  1051. int n_past);
  1052. // in-place, returns view(a)
  1053. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  1054. struct ggml_context * ctx,
  1055. struct ggml_tensor * a,
  1056. int n_past);
  1057. // set elements above the diagonal to 0
  1058. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  1059. struct ggml_context * ctx,
  1060. struct ggml_tensor * a,
  1061. int n_past);
  1062. // in-place, returns view(a)
  1063. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  1064. struct ggml_context * ctx,
  1065. struct ggml_tensor * a,
  1066. int n_past);
  1067. GGML_API struct ggml_tensor * ggml_soft_max(
  1068. struct ggml_context * ctx,
  1069. struct ggml_tensor * a);
  1070. // in-place, returns view(a)
  1071. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  1072. struct ggml_context * ctx,
  1073. struct ggml_tensor * a);
  1074. GGML_API struct ggml_tensor * ggml_soft_max_back(
  1075. struct ggml_context * ctx,
  1076. struct ggml_tensor * a,
  1077. struct ggml_tensor * b);
  1078. // in-place, returns view(a)
  1079. GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
  1080. struct ggml_context * ctx,
  1081. struct ggml_tensor * a,
  1082. struct ggml_tensor * b);
  1083. // rotary position embedding
  1084. // if mode & 1 == 1, skip n_past elements (DEPRECATED)
  1085. // if mode & 2 == 1, GPT-NeoX style
  1086. // if mode & 4 == 1, ChatGLM style
  1087. //
  1088. // b is an int32 vector with size a->ne[2], it contains the positions
  1089. GGML_API struct ggml_tensor * ggml_rope(
  1090. struct ggml_context * ctx,
  1091. struct ggml_tensor * a,
  1092. struct ggml_tensor * b,
  1093. int n_dims,
  1094. int mode,
  1095. int n_ctx);
  1096. // in-place, returns view(a)
  1097. GGML_API struct ggml_tensor * ggml_rope_inplace(
  1098. struct ggml_context * ctx,
  1099. struct ggml_tensor * a,
  1100. struct ggml_tensor * b,
  1101. int n_dims,
  1102. int mode,
  1103. int n_ctx);
  1104. // custom RoPE
  1105. GGML_API struct ggml_tensor * ggml_rope_custom(
  1106. struct ggml_context * ctx,
  1107. struct ggml_tensor * a,
  1108. struct ggml_tensor * b,
  1109. int n_dims,
  1110. int mode,
  1111. int n_ctx,
  1112. int n_orig_ctx,
  1113. float freq_base,
  1114. float freq_scale,
  1115. float ext_factor,
  1116. float attn_factor,
  1117. float beta_fast,
  1118. float beta_slow);
  1119. // in-place, returns view(a)
  1120. GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
  1121. struct ggml_context * ctx,
  1122. struct ggml_tensor * a,
  1123. struct ggml_tensor * b,
  1124. int n_dims,
  1125. int mode,
  1126. int n_ctx,
  1127. int n_orig_ctx,
  1128. float freq_base,
  1129. float freq_scale,
  1130. float ext_factor,
  1131. float attn_factor,
  1132. float beta_fast,
  1133. float beta_slow);
  1134. // compute correction dims for YaRN RoPE scaling
  1135. void ggml_rope_yarn_corr_dims(
  1136. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]);
  1137. // xPos RoPE, in-place, returns view(a)
  1138. GGML_API struct ggml_tensor * ggml_rope_xpos_inplace(
  1139. struct ggml_context * ctx,
  1140. struct ggml_tensor * a,
  1141. struct ggml_tensor * b,
  1142. int n_dims,
  1143. float base,
  1144. bool down);
  1145. // rotary position embedding backward, i.e compute dx from dy
  1146. // a - dy
  1147. GGML_API struct ggml_tensor * ggml_rope_back(
  1148. struct ggml_context * ctx,
  1149. struct ggml_tensor * a,
  1150. struct ggml_tensor * b,
  1151. int n_dims,
  1152. int mode,
  1153. int n_ctx,
  1154. int n_orig_ctx,
  1155. float freq_base,
  1156. float freq_scale,
  1157. float ext_factor,
  1158. float attn_factor,
  1159. float beta_fast,
  1160. float beta_slow,
  1161. float xpos_base,
  1162. bool xpos_down);
  1163. // alibi position embedding
  1164. // in-place, returns view(a)
  1165. GGML_API struct ggml_tensor * ggml_alibi(
  1166. struct ggml_context * ctx,
  1167. struct ggml_tensor * a,
  1168. int n_past,
  1169. int n_head,
  1170. float bias_max);
  1171. // clamp
  1172. // in-place, returns view(a)
  1173. GGML_API struct ggml_tensor * ggml_clamp(
  1174. struct ggml_context * ctx,
  1175. struct ggml_tensor * a,
  1176. float min,
  1177. float max);
  1178. GGML_API struct ggml_tensor * ggml_im2col(
  1179. struct ggml_context * ctx,
  1180. struct ggml_tensor * a,
  1181. struct ggml_tensor * b,
  1182. int s0,
  1183. int s1,
  1184. int p0,
  1185. int p1,
  1186. int d0,
  1187. int d1,
  1188. bool is_2D);
  1189. GGML_API struct ggml_tensor * ggml_conv_1d(
  1190. struct ggml_context * ctx,
  1191. struct ggml_tensor * a,
  1192. struct ggml_tensor * b,
  1193. int s0, // stride
  1194. int p0, // padding
  1195. int d0); // dilation
  1196. // conv_1d with padding = half
  1197. // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
  1198. GGML_API struct ggml_tensor* ggml_conv_1d_ph(
  1199. struct ggml_context * ctx,
  1200. struct ggml_tensor * a,
  1201. struct ggml_tensor * b,
  1202. int s,
  1203. int d);
  1204. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  1205. struct ggml_context * ctx,
  1206. struct ggml_tensor * a,
  1207. struct ggml_tensor * b,
  1208. int s0,
  1209. int p0,
  1210. int d0);
  1211. GGML_API struct ggml_tensor * ggml_conv_2d(
  1212. struct ggml_context * ctx,
  1213. struct ggml_tensor * a,
  1214. struct ggml_tensor * b,
  1215. int s0,
  1216. int s1,
  1217. int p0,
  1218. int p1,
  1219. int d0,
  1220. int d1);
  1221. // kernel size is a->ne[0] x a->ne[1]
  1222. // stride is equal to kernel size
  1223. // padding is zero
  1224. // example:
  1225. // a: 16 16 3 768
  1226. // b: 1024 1024 3 1
  1227. // res: 64 64 768 1
  1228. // used in sam
  1229. GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
  1230. struct ggml_context * ctx,
  1231. struct ggml_tensor * a,
  1232. struct ggml_tensor * b);
  1233. // kernel size is a->ne[0] x a->ne[1]
  1234. // stride is 1
  1235. // padding is half
  1236. // example:
  1237. // a: 3 3 256 256
  1238. // b: 64 64 256 1
  1239. // res: 64 64 256 1
  1240. // used in sam
  1241. GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
  1242. struct ggml_context * ctx,
  1243. struct ggml_tensor * a,
  1244. struct ggml_tensor * b);
  1245. GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
  1246. struct ggml_context * ctx,
  1247. struct ggml_tensor * a,
  1248. struct ggml_tensor * b,
  1249. int stride);
  1250. enum ggml_op_pool {
  1251. GGML_OP_POOL_MAX,
  1252. GGML_OP_POOL_AVG,
  1253. GGML_OP_POOL_COUNT,
  1254. };
  1255. GGML_API struct ggml_tensor * ggml_pool_1d(
  1256. struct ggml_context * ctx,
  1257. struct ggml_tensor * a,
  1258. enum ggml_op_pool op,
  1259. int k0, // kernel size
  1260. int s0, // stride
  1261. int p0); // padding
  1262. // the result will have 2*p0 padding for the first dimension
  1263. // and 2*p1 padding for the second dimension
  1264. GGML_API struct ggml_tensor * ggml_pool_2d(
  1265. struct ggml_context * ctx,
  1266. struct ggml_tensor * a,
  1267. enum ggml_op_pool op,
  1268. int k0,
  1269. int k1,
  1270. int s0,
  1271. int s1,
  1272. float p0,
  1273. float p1);
  1274. // nearest interpolate
  1275. // used in stable-diffusion
  1276. GGML_API struct ggml_tensor * ggml_upscale(
  1277. struct ggml_context * ctx,
  1278. struct ggml_tensor * a,
  1279. int scale_factor);
  1280. GGML_API struct ggml_tensor * ggml_flash_attn(
  1281. struct ggml_context * ctx,
  1282. struct ggml_tensor * q,
  1283. struct ggml_tensor * k,
  1284. struct ggml_tensor * v,
  1285. bool masked);
  1286. GGML_API struct ggml_tensor * ggml_flash_attn_back(
  1287. struct ggml_context * ctx,
  1288. struct ggml_tensor * q,
  1289. struct ggml_tensor * k,
  1290. struct ggml_tensor * v,
  1291. struct ggml_tensor * d,
  1292. bool masked);
  1293. GGML_API struct ggml_tensor * ggml_flash_ff(
  1294. struct ggml_context * ctx,
  1295. struct ggml_tensor * a,
  1296. struct ggml_tensor * b0,
  1297. struct ggml_tensor * b1,
  1298. struct ggml_tensor * c0,
  1299. struct ggml_tensor * c1);
  1300. // partition into non-overlapping windows with padding if needed
  1301. // example:
  1302. // a: 768 64 64 1
  1303. // w: 14
  1304. // res: 768 14 14 25
  1305. // used in sam
  1306. GGML_API struct ggml_tensor * ggml_win_part(
  1307. struct ggml_context * ctx,
  1308. struct ggml_tensor * a,
  1309. int w);
  1310. // reverse of ggml_win_part
  1311. // used in sam
  1312. GGML_API struct ggml_tensor * ggml_win_unpart(
  1313. struct ggml_context * ctx,
  1314. struct ggml_tensor * a,
  1315. int w0,
  1316. int h0,
  1317. int w);
  1318. GGML_API struct ggml_tensor * ggml_unary(
  1319. struct ggml_context * ctx,
  1320. struct ggml_tensor * a,
  1321. enum ggml_unary_op op);
  1322. GGML_API struct ggml_tensor * ggml_unary_inplace(
  1323. struct ggml_context * ctx,
  1324. struct ggml_tensor * a,
  1325. enum ggml_unary_op op);
  1326. // used in sam
  1327. GGML_API struct ggml_tensor * ggml_get_rel_pos(
  1328. struct ggml_context * ctx,
  1329. struct ggml_tensor * a,
  1330. int qh,
  1331. int kh);
  1332. // used in sam
  1333. GGML_API struct ggml_tensor * ggml_add_rel_pos(
  1334. struct ggml_context * ctx,
  1335. struct ggml_tensor * a,
  1336. struct ggml_tensor * pw,
  1337. struct ggml_tensor * ph);
  1338. GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
  1339. struct ggml_context * ctx,
  1340. struct ggml_tensor * a,
  1341. struct ggml_tensor * pw,
  1342. struct ggml_tensor * ph);
  1343. // custom operators
  1344. typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
  1345. typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
  1346. typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
  1347. typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1348. typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1349. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
  1350. struct ggml_context * ctx,
  1351. struct ggml_tensor * a,
  1352. ggml_unary_op_f32_t fun),
  1353. "use ggml_map_custom1 instead");
  1354. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
  1355. struct ggml_context * ctx,
  1356. struct ggml_tensor * a,
  1357. ggml_unary_op_f32_t fun),
  1358. "use ggml_map_custom1_inplace instead");
  1359. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
  1360. struct ggml_context * ctx,
  1361. struct ggml_tensor * a,
  1362. struct ggml_tensor * b,
  1363. ggml_binary_op_f32_t fun),
  1364. "use ggml_map_custom2 instead");
  1365. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
  1366. struct ggml_context * ctx,
  1367. struct ggml_tensor * a,
  1368. struct ggml_tensor * b,
  1369. ggml_binary_op_f32_t fun),
  1370. "use ggml_map_custom2_inplace instead");
  1371. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
  1372. struct ggml_context * ctx,
  1373. struct ggml_tensor * a,
  1374. ggml_custom1_op_f32_t fun),
  1375. "use ggml_map_custom1 instead");
  1376. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
  1377. struct ggml_context * ctx,
  1378. struct ggml_tensor * a,
  1379. ggml_custom1_op_f32_t fun),
  1380. "use ggml_map_custom1_inplace instead");
  1381. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
  1382. struct ggml_context * ctx,
  1383. struct ggml_tensor * a,
  1384. struct ggml_tensor * b,
  1385. ggml_custom2_op_f32_t fun),
  1386. "use ggml_map_custom2 instead");
  1387. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
  1388. struct ggml_context * ctx,
  1389. struct ggml_tensor * a,
  1390. struct ggml_tensor * b,
  1391. ggml_custom2_op_f32_t fun),
  1392. "use ggml_map_custom2_inplace instead");
  1393. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
  1394. struct ggml_context * ctx,
  1395. struct ggml_tensor * a,
  1396. struct ggml_tensor * b,
  1397. struct ggml_tensor * c,
  1398. ggml_custom3_op_f32_t fun),
  1399. "use ggml_map_custom3 instead");
  1400. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
  1401. struct ggml_context * ctx,
  1402. struct ggml_tensor * a,
  1403. struct ggml_tensor * b,
  1404. struct ggml_tensor * c,
  1405. ggml_custom3_op_f32_t fun),
  1406. "use ggml_map_custom3_inplace instead");
  1407. // custom operators v2
  1408. typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
  1409. typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
  1410. typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
  1411. #define GGML_N_TASKS_MAX -1
  1412. GGML_API struct ggml_tensor * ggml_map_custom1(
  1413. struct ggml_context * ctx,
  1414. struct ggml_tensor * a,
  1415. ggml_custom1_op_t fun,
  1416. int n_tasks,
  1417. void * userdata);
  1418. GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
  1419. struct ggml_context * ctx,
  1420. struct ggml_tensor * a,
  1421. ggml_custom1_op_t fun,
  1422. int n_tasks,
  1423. void * userdata);
  1424. GGML_API struct ggml_tensor * ggml_map_custom2(
  1425. struct ggml_context * ctx,
  1426. struct ggml_tensor * a,
  1427. struct ggml_tensor * b,
  1428. ggml_custom2_op_t fun,
  1429. int n_tasks,
  1430. void * userdata);
  1431. GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
  1432. struct ggml_context * ctx,
  1433. struct ggml_tensor * a,
  1434. struct ggml_tensor * b,
  1435. ggml_custom2_op_t fun,
  1436. int n_tasks,
  1437. void * userdata);
  1438. GGML_API struct ggml_tensor * ggml_map_custom3(
  1439. struct ggml_context * ctx,
  1440. struct ggml_tensor * a,
  1441. struct ggml_tensor * b,
  1442. struct ggml_tensor * c,
  1443. ggml_custom3_op_t fun,
  1444. int n_tasks,
  1445. void * userdata);
  1446. GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
  1447. struct ggml_context * ctx,
  1448. struct ggml_tensor * a,
  1449. struct ggml_tensor * b,
  1450. struct ggml_tensor * c,
  1451. ggml_custom3_op_t fun,
  1452. int n_tasks,
  1453. void * userdata);
  1454. // loss function
  1455. GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
  1456. struct ggml_context * ctx,
  1457. struct ggml_tensor * a,
  1458. struct ggml_tensor * b);
  1459. GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
  1460. struct ggml_context * ctx,
  1461. struct ggml_tensor * a,
  1462. struct ggml_tensor * b,
  1463. struct ggml_tensor * c);
  1464. //
  1465. // automatic differentiation
  1466. //
  1467. GGML_API void ggml_set_param(
  1468. struct ggml_context * ctx,
  1469. struct ggml_tensor * tensor);
  1470. GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  1471. GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
  1472. // graph allocation in a context
  1473. GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
  1474. GGML_API struct ggml_cgraph * ggml_new_graph_custom (struct ggml_context * ctx, size_t size, bool grads);
  1475. GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
  1476. GGML_API struct ggml_cgraph * ggml_graph_view (struct ggml_context * ctx, struct ggml_cgraph * cgraph, int i0, int i1);
  1477. GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
  1478. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // zero grads
  1479. GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
  1480. GGML_API size_t ggml_graph_overhead(void);
  1481. GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
  1482. // ggml_graph_plan() has to be called before ggml_graph_compute()
  1483. // when plan.work_size > 0, caller must allocate memory for plan.work_data
  1484. GGML_API struct ggml_cplan ggml_graph_plan (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
  1485. GGML_API int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
  1486. // same as ggml_graph_compute() but the work data is allocated as a part of the context
  1487. // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
  1488. GGML_API void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
  1489. GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
  1490. GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
  1491. GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
  1492. // print info and performance information for the graph
  1493. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  1494. // dump the graph into a file using the dot format
  1495. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  1496. // build gradient checkpointing backward graph gb for gf using provided checkpoints
  1497. // gb_tmp will contain original backward graph with rewritten backward process nodes,
  1498. // but without the second forward pass nodes.
  1499. GGML_API void ggml_build_backward_gradient_checkpointing(
  1500. struct ggml_context * ctx,
  1501. struct ggml_cgraph * gf,
  1502. struct ggml_cgraph * gb,
  1503. struct ggml_cgraph * gb_tmp,
  1504. struct ggml_tensor * * checkpoints,
  1505. int n_checkpoints);
  1506. //
  1507. // optimization
  1508. //
  1509. // optimization methods
  1510. enum ggml_opt_type {
  1511. GGML_OPT_ADAM,
  1512. GGML_OPT_LBFGS,
  1513. };
  1514. // linesearch methods
  1515. enum ggml_linesearch {
  1516. GGML_LINESEARCH_DEFAULT = 1,
  1517. GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
  1518. GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
  1519. GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
  1520. };
  1521. // optimization return values
  1522. enum ggml_opt_result {
  1523. GGML_OPT_OK = 0,
  1524. GGML_OPT_DID_NOT_CONVERGE,
  1525. GGML_OPT_NO_CONTEXT,
  1526. GGML_OPT_INVALID_WOLFE,
  1527. GGML_OPT_FAIL,
  1528. GGML_OPT_CANCEL,
  1529. GGML_LINESEARCH_FAIL = -128,
  1530. GGML_LINESEARCH_MINIMUM_STEP,
  1531. GGML_LINESEARCH_MAXIMUM_STEP,
  1532. GGML_LINESEARCH_MAXIMUM_ITERATIONS,
  1533. GGML_LINESEARCH_INVALID_PARAMETERS,
  1534. };
  1535. typedef void (*ggml_opt_callback)(void * data, int accum_step, float * sched, bool * cancel);
  1536. typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
  1537. // optimization parameters
  1538. //
  1539. // see ggml.c (ggml_opt_default_params) for default values
  1540. //
  1541. struct ggml_opt_params {
  1542. enum ggml_opt_type type;
  1543. size_t graph_size;
  1544. int n_threads;
  1545. // delta-based convergence test
  1546. //
  1547. // if past == 0 - disabled
  1548. // if past > 0:
  1549. // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
  1550. //
  1551. int past;
  1552. float delta;
  1553. // maximum number of iterations without improvement
  1554. //
  1555. // if 0 - disabled
  1556. // if > 0:
  1557. // assume convergence if no cost improvement in this number of iterations
  1558. //
  1559. int max_no_improvement;
  1560. bool print_forward_graph;
  1561. bool print_backward_graph;
  1562. int n_gradient_accumulation;
  1563. // ADAM parameters
  1564. struct {
  1565. int n_iter;
  1566. float sched; // schedule multiplier (fixed, decay or warmup)
  1567. float decay; // weight decay for AdamW, use 0.0f to disable
  1568. int decay_min_ndim; // minimum number of tensor dimension to apply weight decay
  1569. float alpha; // learning rate
  1570. float beta1;
  1571. float beta2;
  1572. float eps; // epsilon for numerical stability
  1573. float eps_f; // epsilon for convergence test
  1574. float eps_g; // epsilon for convergence test
  1575. float gclip; // gradient clipping
  1576. } adam;
  1577. // LBFGS parameters
  1578. struct {
  1579. int m; // number of corrections to approximate the inv. Hessian
  1580. int n_iter;
  1581. int max_linesearch;
  1582. float eps; // convergence tolerance
  1583. float ftol; // line search tolerance
  1584. float wolfe;
  1585. float min_step;
  1586. float max_step;
  1587. enum ggml_linesearch linesearch;
  1588. } lbfgs;
  1589. };
  1590. struct ggml_opt_context {
  1591. struct ggml_context * ctx;
  1592. struct ggml_opt_params params;
  1593. int iter;
  1594. int64_t nx; // number of parameter elements
  1595. bool just_initialized;
  1596. float loss_before;
  1597. float loss_after;
  1598. struct {
  1599. struct ggml_tensor * g; // current gradient
  1600. struct ggml_tensor * m; // first moment
  1601. struct ggml_tensor * v; // second moment
  1602. struct ggml_tensor * pf; // past function values
  1603. float fx_best;
  1604. float fx_prev;
  1605. int n_no_improvement;
  1606. } adam;
  1607. struct {
  1608. struct ggml_tensor * x; // current parameters
  1609. struct ggml_tensor * xp; // previous parameters
  1610. struct ggml_tensor * g; // current gradient
  1611. struct ggml_tensor * gp; // previous gradient
  1612. struct ggml_tensor * d; // search direction
  1613. struct ggml_tensor * pf; // past function values
  1614. struct ggml_tensor * lmal; // the L-BFGS memory alpha
  1615. struct ggml_tensor * lmys; // the L-BFGS memory ys
  1616. struct ggml_tensor * lms; // the L-BFGS memory s
  1617. struct ggml_tensor * lmy; // the L-BFGS memory y
  1618. float fx_best;
  1619. float step;
  1620. int j;
  1621. int k;
  1622. int end;
  1623. int n_no_improvement;
  1624. } lbfgs;
  1625. };
  1626. GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
  1627. // optimize the function defined by the tensor f
  1628. GGML_API enum ggml_opt_result ggml_opt(
  1629. struct ggml_context * ctx,
  1630. struct ggml_opt_params params,
  1631. struct ggml_tensor * f);
  1632. // initialize optimizer context
  1633. GGML_API void ggml_opt_init(
  1634. struct ggml_context * ctx,
  1635. struct ggml_opt_context * opt,
  1636. struct ggml_opt_params params,
  1637. int64_t nx);
  1638. // continue optimizing the function defined by the tensor f
  1639. GGML_API enum ggml_opt_result ggml_opt_resume(
  1640. struct ggml_context * ctx,
  1641. struct ggml_opt_context * opt,
  1642. struct ggml_tensor * f);
  1643. // continue optimizing the function defined by the tensor f
  1644. GGML_API enum ggml_opt_result ggml_opt_resume_g(
  1645. struct ggml_context * ctx,
  1646. struct ggml_opt_context * opt,
  1647. struct ggml_tensor * f,
  1648. struct ggml_cgraph * gf,
  1649. struct ggml_cgraph * gb,
  1650. ggml_opt_callback callback,
  1651. void * callback_data);
  1652. //
  1653. // quantization
  1654. //
  1655. // TODO: these would probably get removed in favor of the more general ggml_quantize_chunk
  1656. GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1657. GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
  1658. GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1659. GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
  1660. GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1661. GGML_API size_t ggml_quantize_q2_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1662. GGML_API size_t ggml_quantize_q3_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1663. GGML_API size_t ggml_quantize_q4_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1664. GGML_API size_t ggml_quantize_q5_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1665. GGML_API size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1666. GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
  1667. //
  1668. // gguf
  1669. //
  1670. enum gguf_type {
  1671. GGUF_TYPE_UINT8 = 0,
  1672. GGUF_TYPE_INT8 = 1,
  1673. GGUF_TYPE_UINT16 = 2,
  1674. GGUF_TYPE_INT16 = 3,
  1675. GGUF_TYPE_UINT32 = 4,
  1676. GGUF_TYPE_INT32 = 5,
  1677. GGUF_TYPE_FLOAT32 = 6,
  1678. GGUF_TYPE_BOOL = 7,
  1679. GGUF_TYPE_STRING = 8,
  1680. GGUF_TYPE_ARRAY = 9,
  1681. GGUF_TYPE_UINT64 = 10,
  1682. GGUF_TYPE_INT64 = 11,
  1683. GGUF_TYPE_FLOAT64 = 12,
  1684. GGUF_TYPE_COUNT, // marks the end of the enum
  1685. };
  1686. struct gguf_context;
  1687. struct gguf_init_params {
  1688. bool no_alloc;
  1689. // if not NULL, create a ggml_context and allocate the tensor data in it
  1690. struct ggml_context ** ctx;
  1691. };
  1692. GGML_API struct gguf_context * gguf_init_empty(void);
  1693. GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
  1694. //GGML_API struct gguf_context * gguf_init_from_buffer(..);
  1695. GGML_API void gguf_free(struct gguf_context * ctx);
  1696. GGML_API const char * gguf_type_name(enum gguf_type type);
  1697. GGML_API int gguf_get_version (const struct gguf_context * ctx);
  1698. GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
  1699. GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
  1700. GGML_API void * gguf_get_data (const struct gguf_context * ctx);
  1701. GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
  1702. GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
  1703. GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
  1704. GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
  1705. GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
  1706. // will abort if the wrong type is used for the key
  1707. GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id);
  1708. GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id);
  1709. GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
  1710. GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
  1711. GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
  1712. GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
  1713. GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
  1714. GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
  1715. GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
  1716. GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
  1717. GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
  1718. GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
  1719. GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
  1720. GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
  1721. GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
  1722. GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
  1723. GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
  1724. GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
  1725. GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
  1726. GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
  1727. // overrides existing values or adds a new one
  1728. GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
  1729. GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
  1730. GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
  1731. GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
  1732. GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
  1733. GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
  1734. GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
  1735. GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
  1736. GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
  1737. GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
  1738. GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
  1739. GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
  1740. GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
  1741. GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
  1742. // set or add KV pairs from another context
  1743. GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
  1744. // manage tensor info
  1745. GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
  1746. GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
  1747. GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
  1748. // writing gguf files can be done in 2 ways:
  1749. //
  1750. // - write the entire gguf_context to a binary file in a single pass:
  1751. //
  1752. // gguf_write_to_file(ctx, fname);
  1753. //
  1754. // - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
  1755. //
  1756. // FILE * f = fopen(fname, "wb");
  1757. // fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
  1758. // fwrite(f, ...);
  1759. // void * data = gguf_meta_get_meta_data(ctx);
  1760. // fseek(f, 0, SEEK_SET);
  1761. // fwrite(f, data, gguf_get_meta_size(ctx));
  1762. // free(data);
  1763. // fclose(f);
  1764. //
  1765. // write the entire context to a binary file
  1766. GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
  1767. // get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
  1768. GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
  1769. GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
  1770. //
  1771. // system info
  1772. //
  1773. GGML_API int ggml_cpu_has_avx (void);
  1774. GGML_API int ggml_cpu_has_avx2 (void);
  1775. GGML_API int ggml_cpu_has_avx512 (void);
  1776. GGML_API int ggml_cpu_has_avx512_vbmi(void);
  1777. GGML_API int ggml_cpu_has_avx512_vnni(void);
  1778. GGML_API int ggml_cpu_has_fma (void);
  1779. GGML_API int ggml_cpu_has_neon (void);
  1780. GGML_API int ggml_cpu_has_arm_fma (void);
  1781. GGML_API int ggml_cpu_has_metal (void);
  1782. GGML_API int ggml_cpu_has_f16c (void);
  1783. GGML_API int ggml_cpu_has_fp16_va (void);
  1784. GGML_API int ggml_cpu_has_wasm_simd (void);
  1785. GGML_API int ggml_cpu_has_blas (void);
  1786. GGML_API int ggml_cpu_has_cublas (void);
  1787. GGML_API int ggml_cpu_has_clblast (void);
  1788. GGML_API int ggml_cpu_has_gpublas (void);
  1789. GGML_API int ggml_cpu_has_sse3 (void);
  1790. GGML_API int ggml_cpu_has_ssse3 (void);
  1791. GGML_API int ggml_cpu_has_vsx (void);
  1792. //
  1793. // Internal types and functions exposed for tests and benchmarks
  1794. //
  1795. #ifdef __cplusplus
  1796. // restrict not standard in C++
  1797. #define GGML_RESTRICT
  1798. #else
  1799. #define GGML_RESTRICT restrict
  1800. #endif
  1801. typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
  1802. typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
  1803. typedef void (*ggml_vec_dot_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
  1804. typedef struct {
  1805. const char * type_name;
  1806. int blck_size;
  1807. size_t type_size;
  1808. bool is_quantized;
  1809. ggml_to_float_t to_float;
  1810. ggml_from_float_t from_float;
  1811. ggml_from_float_t from_float_reference;
  1812. ggml_vec_dot_t vec_dot;
  1813. enum ggml_type vec_dot_type;
  1814. } ggml_type_traits_t;
  1815. GGML_API ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);
  1816. #ifdef __cplusplus
  1817. }
  1818. #endif