ggml.c 641 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. #if defined(_MSC_VER)
  27. // disable "possible loss of data" to avoid hundreds of casts
  28. // we should just be careful :)
  29. #pragma warning(disable: 4244 4267)
  30. // disable POSIX deprecation warnings
  31. // these functions are never going away, anyway
  32. #pragma warning(disable: 4996)
  33. #endif
  34. #if defined(_WIN32)
  35. #include <windows.h>
  36. typedef volatile LONG atomic_int;
  37. typedef atomic_int atomic_bool;
  38. static void atomic_store(atomic_int * ptr, LONG val) {
  39. InterlockedExchange(ptr, val);
  40. }
  41. static LONG atomic_load(atomic_int * ptr) {
  42. return InterlockedCompareExchange(ptr, 0, 0);
  43. }
  44. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  45. return InterlockedExchangeAdd(ptr, inc);
  46. }
  47. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  48. return atomic_fetch_add(ptr, -(dec));
  49. }
  50. typedef HANDLE pthread_t;
  51. typedef DWORD thread_ret_t;
  52. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  53. (void) unused;
  54. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  55. if (handle == NULL)
  56. {
  57. return EAGAIN;
  58. }
  59. *out = handle;
  60. return 0;
  61. }
  62. static int pthread_join(pthread_t thread, void * unused) {
  63. (void) unused;
  64. int ret = (int) WaitForSingleObject(thread, INFINITE);
  65. CloseHandle(thread);
  66. return ret;
  67. }
  68. static int sched_yield (void) {
  69. Sleep (0);
  70. return 0;
  71. }
  72. #else
  73. #include <pthread.h>
  74. #include <stdatomic.h>
  75. typedef void * thread_ret_t;
  76. #include <sys/types.h>
  77. #include <sys/stat.h>
  78. #include <unistd.h>
  79. #endif
  80. #ifdef GGML_USE_CPU_HBM
  81. #include <hbwmalloc.h>
  82. #endif
  83. #if defined(__APPLE__)
  84. #include <TargetConditionals.h>
  85. #endif
  86. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  87. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  88. #include <sys/wait.h>
  89. void ggml_print_backtrace(void) {
  90. /*
  91. #include <execinfo.h>
  92. #include <dlfcn.h>
  93. void * trace[100];
  94. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  95. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  96. */
  97. // backtrack_symbols does not show line numbers, use gdb instead
  98. char attach[32];
  99. snprintf(attach, sizeof(attach), "attach %d", getpid());
  100. int pid = fork();
  101. if (pid == 0) {
  102. execlp("gdb", "gdb", "--batch",
  103. "-ex", "set style enabled on",
  104. "-ex", attach,
  105. "-ex", "bt -frame-info source-and-location",
  106. "-ex", "detach",
  107. "-ex", "quit",
  108. (char *) NULL);
  109. } else {
  110. waitpid(pid, NULL, 0);
  111. }
  112. }
  113. #else
  114. void ggml_print_backtrace(void) {
  115. // platform not supported
  116. }
  117. #endif
  118. /*#define GGML_PERF*/
  119. #define GGML_DEBUG 0
  120. #define GGML_GELU_FP16
  121. #define GGML_GELU_QUICK_FP16
  122. #define GGML_SILU_FP16
  123. // #define GGML_CROSS_ENTROPY_EXP_FP16
  124. // #define GGML_FLASH_ATTN_EXP_FP16
  125. #define GGML_SOFT_MAX_UNROLL 4
  126. #define GGML_VEC_DOT_UNROLL 2
  127. #define GGML_VEC_MAD_UNROLL 32
  128. //
  129. // logging
  130. //
  131. #if (GGML_DEBUG >= 1)
  132. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  133. #else
  134. #define GGML_PRINT_DEBUG(...)
  135. #endif
  136. #if (GGML_DEBUG >= 5)
  137. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  138. #else
  139. #define GGML_PRINT_DEBUG_5(...)
  140. #endif
  141. #if (GGML_DEBUG >= 10)
  142. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG_10(...)
  145. #endif
  146. #define GGML_PRINT(...) printf(__VA_ARGS__)
  147. //
  148. // end of logging block
  149. //
  150. #ifdef GGML_USE_ACCELERATE
  151. // uncomment to use vDSP for soft max computation
  152. // note: not sure if it is actually faster
  153. //#define GGML_SOFT_MAX_ACCELERATE
  154. #endif
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  157. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  158. #else
  159. inline static void * ggml_aligned_malloc(size_t size) {
  160. if (size == 0) {
  161. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  162. return NULL;
  163. }
  164. void * aligned_memory = NULL;
  165. #ifdef GGML_USE_CPU_HBM
  166. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  167. #elif GGML_USE_METAL
  168. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  169. #else
  170. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  171. #endif
  172. if (result != 0) {
  173. // Handle allocation failure
  174. const char *error_desc = "unknown allocation error";
  175. switch (result) {
  176. case EINVAL:
  177. error_desc = "invalid alignment value";
  178. break;
  179. case ENOMEM:
  180. error_desc = "insufficient memory";
  181. break;
  182. }
  183. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  184. return NULL;
  185. }
  186. return aligned_memory;
  187. }
  188. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  189. #ifdef GGML_USE_CPU_HBM
  190. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  191. #else
  192. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  193. #endif
  194. #endif
  195. #define UNUSED GGML_UNUSED
  196. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  197. #if defined(GGML_USE_ACCELERATE)
  198. #include <Accelerate/Accelerate.h>
  199. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  200. #include "ggml-opencl.h"
  201. #endif
  202. #elif defined(GGML_USE_OPENBLAS)
  203. #if defined(GGML_BLAS_USE_MKL)
  204. #include <mkl.h>
  205. #else
  206. #include <cblas.h>
  207. #endif
  208. #elif defined(GGML_USE_CUBLAS)
  209. #include "ggml-cuda.h"
  210. #elif defined(GGML_USE_CLBLAST)
  211. #include "ggml-opencl.h"
  212. #endif
  213. // floating point type used to accumulate sums
  214. typedef double ggml_float;
  215. #undef MIN
  216. #undef MAX
  217. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  218. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  219. //
  220. // global data
  221. //
  222. // precomputed gelu table for f16 (128 KB)
  223. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  224. // precomputed quick gelu table for f16 (128 KB)
  225. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  226. // precomputed silu table for f16 (128 KB)
  227. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  228. // precomputed exp table for f16 (128 KB)
  229. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  230. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  231. float ggml_table_f32_f16[1 << 16];
  232. // note: do not use these inside ggml.c
  233. // these are meant to be used via the ggml.h API
  234. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  235. return (float) GGML_FP16_TO_FP32(x);
  236. }
  237. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  238. return GGML_FP32_TO_FP16(x);
  239. }
  240. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  241. for (int i = 0; i < n; i++) {
  242. y[i] = GGML_FP16_TO_FP32(x[i]);
  243. }
  244. }
  245. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  246. int i = 0;
  247. #if defined(__F16C__)
  248. for (; i + 7 < n; i += 8) {
  249. __m256 x_vec = _mm256_loadu_ps(x + i);
  250. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  251. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  252. }
  253. for(; i + 3 < n; i += 4) {
  254. __m128 x_vec = _mm_loadu_ps(x + i);
  255. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  256. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  257. }
  258. #endif
  259. for (; i < n; i++) {
  260. y[i] = GGML_FP32_TO_FP16(x[i]);
  261. }
  262. }
  263. //
  264. // timing
  265. //
  266. #if defined(_MSC_VER) || defined(__MINGW32__)
  267. static int64_t timer_freq, timer_start;
  268. void ggml_time_init(void) {
  269. LARGE_INTEGER t;
  270. QueryPerformanceFrequency(&t);
  271. timer_freq = t.QuadPart;
  272. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  273. // and the uptime is high enough.
  274. // We subtract the program start time to reduce the likelihood of that happening.
  275. QueryPerformanceCounter(&t);
  276. timer_start = t.QuadPart;
  277. }
  278. int64_t ggml_time_ms(void) {
  279. LARGE_INTEGER t;
  280. QueryPerformanceCounter(&t);
  281. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  282. }
  283. int64_t ggml_time_us(void) {
  284. LARGE_INTEGER t;
  285. QueryPerformanceCounter(&t);
  286. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  287. }
  288. #else
  289. void ggml_time_init(void) {}
  290. int64_t ggml_time_ms(void) {
  291. struct timespec ts;
  292. clock_gettime(CLOCK_MONOTONIC, &ts);
  293. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  294. }
  295. int64_t ggml_time_us(void) {
  296. struct timespec ts;
  297. clock_gettime(CLOCK_MONOTONIC, &ts);
  298. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  299. }
  300. #endif
  301. int64_t ggml_cycles(void) {
  302. return clock();
  303. }
  304. int64_t ggml_cycles_per_ms(void) {
  305. return CLOCKS_PER_SEC/1000;
  306. }
  307. #ifdef GGML_PERF
  308. #define ggml_perf_time_ms() ggml_time_ms()
  309. #define ggml_perf_time_us() ggml_time_us()
  310. #define ggml_perf_cycles() ggml_cycles()
  311. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  312. #else
  313. #define ggml_perf_time_ms() 0
  314. #define ggml_perf_time_us() 0
  315. #define ggml_perf_cycles() 0
  316. #define ggml_perf_cycles_per_ms() 0
  317. #endif
  318. //
  319. // cache line
  320. //
  321. #if defined(__cpp_lib_hardware_interference_size)
  322. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  323. #else
  324. #if defined(__POWER9_VECTOR__)
  325. #define CACHE_LINE_SIZE 128
  326. #else
  327. #define CACHE_LINE_SIZE 64
  328. #endif
  329. #endif
  330. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  331. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  332. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  333. ggml_collect_imatrix_t g_imatrix_collect = NULL;
  334. void ggml_set_imatrix_collection(ggml_collect_imatrix_t imatrix_collect) {
  335. g_imatrix_collect = imatrix_collect;
  336. }
  337. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  338. [GGML_TYPE_I8] = {
  339. .type_name = "i8",
  340. .blck_size = 1,
  341. .type_size = sizeof(int8_t),
  342. .is_quantized = false,
  343. },
  344. [GGML_TYPE_I16] = {
  345. .type_name = "i16",
  346. .blck_size = 1,
  347. .type_size = sizeof(int16_t),
  348. .is_quantized = false,
  349. },
  350. [GGML_TYPE_I32] = {
  351. .type_name = "i32",
  352. .blck_size = 1,
  353. .type_size = sizeof(int32_t),
  354. .is_quantized = false,
  355. },
  356. [GGML_TYPE_F32] = {
  357. .type_name = "f32",
  358. .blck_size = 1,
  359. .type_size = sizeof(float),
  360. .is_quantized = false,
  361. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  362. .vec_dot_type = GGML_TYPE_F32,
  363. },
  364. [GGML_TYPE_F16] = {
  365. .type_name = "f16",
  366. .blck_size = 1,
  367. .type_size = sizeof(ggml_fp16_t),
  368. .is_quantized = false,
  369. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  370. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  371. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  372. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  373. .vec_dot_type = GGML_TYPE_F16,
  374. },
  375. [GGML_TYPE_Q4_0] = {
  376. .type_name = "q4_0",
  377. .blck_size = QK4_0,
  378. .type_size = sizeof(block_q4_0),
  379. .is_quantized = true,
  380. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  381. .from_float = quantize_row_q4_0,
  382. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  383. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  384. .vec_dot_type = GGML_TYPE_Q8_0,
  385. },
  386. [GGML_TYPE_Q4_1] = {
  387. .type_name = "q4_1",
  388. .blck_size = QK4_1,
  389. .type_size = sizeof(block_q4_1),
  390. .is_quantized = true,
  391. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  392. .from_float = quantize_row_q4_1,
  393. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  394. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  395. .vec_dot_type = GGML_TYPE_Q8_1,
  396. },
  397. [4] = { // GGML_TYPE_Q4_2
  398. .type_name = "DEPRECATED",
  399. .blck_size = 0,
  400. .type_size = 0,
  401. .is_quantized = false,
  402. .to_float = NULL,
  403. .from_float = NULL,
  404. .from_float_reference = NULL,
  405. .vec_dot = NULL,
  406. .vec_dot_type = GGML_TYPE_COUNT,
  407. },
  408. [5] = { // GGML_TYPE_Q4_3
  409. .type_name = "DEPRECATED",
  410. .blck_size = 0,
  411. .type_size = 0,
  412. .is_quantized = false,
  413. .to_float = NULL,
  414. .from_float = NULL,
  415. .from_float_reference = NULL,
  416. .vec_dot = NULL,
  417. .vec_dot_type = GGML_TYPE_COUNT,
  418. },
  419. [GGML_TYPE_Q5_0] = {
  420. .type_name = "q5_0",
  421. .blck_size = QK5_0,
  422. .type_size = sizeof(block_q5_0),
  423. .is_quantized = true,
  424. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  425. .from_float = quantize_row_q5_0,
  426. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  427. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  428. .vec_dot_type = GGML_TYPE_Q8_0,
  429. },
  430. [GGML_TYPE_Q5_1] = {
  431. .type_name = "q5_1",
  432. .blck_size = QK5_1,
  433. .type_size = sizeof(block_q5_1),
  434. .is_quantized = true,
  435. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  436. .from_float = quantize_row_q5_1,
  437. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  438. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  439. .vec_dot_type = GGML_TYPE_Q8_1,
  440. },
  441. [GGML_TYPE_Q8_0] = {
  442. .type_name = "q8_0",
  443. .blck_size = QK8_0,
  444. .type_size = sizeof(block_q8_0),
  445. .is_quantized = true,
  446. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  447. .from_float = quantize_row_q8_0,
  448. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  449. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  450. .vec_dot_type = GGML_TYPE_Q8_0,
  451. },
  452. [GGML_TYPE_Q8_1] = {
  453. .type_name = "q8_1",
  454. .blck_size = QK8_1,
  455. .type_size = sizeof(block_q8_1),
  456. .is_quantized = true,
  457. .from_float = quantize_row_q8_1,
  458. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  459. .vec_dot_type = GGML_TYPE_Q8_1,
  460. },
  461. [GGML_TYPE_Q2_K] = {
  462. .type_name = "q2_K",
  463. .blck_size = QK_K,
  464. .type_size = sizeof(block_q2_K),
  465. .is_quantized = true,
  466. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  467. .from_float = quantize_row_q2_K,
  468. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  469. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  470. .vec_dot_type = GGML_TYPE_Q8_K,
  471. },
  472. [GGML_TYPE_Q3_K] = {
  473. .type_name = "q3_K",
  474. .blck_size = QK_K,
  475. .type_size = sizeof(block_q3_K),
  476. .is_quantized = true,
  477. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  478. .from_float = quantize_row_q3_K,
  479. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  480. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  481. .vec_dot_type = GGML_TYPE_Q8_K,
  482. },
  483. [GGML_TYPE_Q4_K] = {
  484. .type_name = "q4_K",
  485. .blck_size = QK_K,
  486. .type_size = sizeof(block_q4_K),
  487. .is_quantized = true,
  488. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  489. .from_float = quantize_row_q4_K,
  490. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  491. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  492. .vec_dot_type = GGML_TYPE_Q8_K,
  493. },
  494. [GGML_TYPE_Q5_K] = {
  495. .type_name = "q5_K",
  496. .blck_size = QK_K,
  497. .type_size = sizeof(block_q5_K),
  498. .is_quantized = true,
  499. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  500. .from_float = quantize_row_q5_K,
  501. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  502. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  503. .vec_dot_type = GGML_TYPE_Q8_K,
  504. },
  505. [GGML_TYPE_Q6_K] = {
  506. .type_name = "q6_K",
  507. .blck_size = QK_K,
  508. .type_size = sizeof(block_q6_K),
  509. .is_quantized = true,
  510. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  511. .from_float = quantize_row_q6_K,
  512. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  513. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  514. .vec_dot_type = GGML_TYPE_Q8_K,
  515. },
  516. [GGML_TYPE_IQ2_XXS] = {
  517. .type_name = "iq2_xxs",
  518. .blck_size = QK_K,
  519. .type_size = sizeof(block_iq2_xxs),
  520. .is_quantized = true,
  521. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  522. .from_float = quantize_row_iq2_xxs,
  523. .from_float_reference = (ggml_from_float_t) quantize_row_iq2_xxs_reference,
  524. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  525. .vec_dot_type = GGML_TYPE_Q8_K,
  526. },
  527. [GGML_TYPE_IQ2_XS] = {
  528. .type_name = "iq2_xs",
  529. .blck_size = QK_K,
  530. .type_size = sizeof(block_iq2_xs),
  531. .is_quantized = true,
  532. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  533. .from_float = quantize_row_iq2_xs,
  534. .from_float_reference = (ggml_from_float_t) quantize_row_iq2_xs_reference,
  535. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  536. .vec_dot_type = GGML_TYPE_Q8_K,
  537. },
  538. [GGML_TYPE_Q8_K] = {
  539. .type_name = "q8_K",
  540. .blck_size = QK_K,
  541. .type_size = sizeof(block_q8_K),
  542. .is_quantized = true,
  543. .from_float = quantize_row_q8_K,
  544. }
  545. };
  546. // For internal test use
  547. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  548. GGML_ASSERT(type < GGML_TYPE_COUNT);
  549. return type_traits[type];
  550. }
  551. //
  552. // simd mappings
  553. //
  554. #if defined(__ARM_NEON)
  555. #if !defined(__aarch64__)
  556. // 64-bit compatibility
  557. inline static float vaddvq_f32(float32x4_t v) {
  558. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  559. }
  560. #endif
  561. #endif
  562. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  563. // we then implement the fundamental computation operations below using only these macros
  564. // adding support for new architectures requires to define the corresponding SIMD macros
  565. //
  566. // GGML_F32_STEP / GGML_F16_STEP
  567. // number of elements to process in a single step
  568. //
  569. // GGML_F32_EPR / GGML_F16_EPR
  570. // number of elements to fit in a single register
  571. //
  572. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  573. #define GGML_SIMD
  574. // F32 NEON
  575. #define GGML_F32_STEP 16
  576. #define GGML_F32_EPR 4
  577. #define GGML_F32x4 float32x4_t
  578. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  579. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  580. #define GGML_F32x4_LOAD vld1q_f32
  581. #define GGML_F32x4_STORE vst1q_f32
  582. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  583. #define GGML_F32x4_ADD vaddq_f32
  584. #define GGML_F32x4_MUL vmulq_f32
  585. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  586. #define GGML_F32x4_REDUCE(res, x) \
  587. { \
  588. int offset = GGML_F32_ARR >> 1; \
  589. for (int i = 0; i < offset; ++i) { \
  590. x[i] = vaddq_f32(x[i], x[offset+i]); \
  591. } \
  592. offset >>= 1; \
  593. for (int i = 0; i < offset; ++i) { \
  594. x[i] = vaddq_f32(x[i], x[offset+i]); \
  595. } \
  596. offset >>= 1; \
  597. for (int i = 0; i < offset; ++i) { \
  598. x[i] = vaddq_f32(x[i], x[offset+i]); \
  599. } \
  600. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  601. }
  602. #define GGML_F32_VEC GGML_F32x4
  603. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  604. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  605. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  606. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  607. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  608. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  609. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  610. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  611. // F16 NEON
  612. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  613. #define GGML_F16_STEP 32
  614. #define GGML_F16_EPR 8
  615. #define GGML_F16x8 float16x8_t
  616. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  617. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  618. #define GGML_F16x8_LOAD vld1q_f16
  619. #define GGML_F16x8_STORE vst1q_f16
  620. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  621. #define GGML_F16x8_ADD vaddq_f16
  622. #define GGML_F16x8_MUL vmulq_f16
  623. #define GGML_F16x8_REDUCE(res, x) \
  624. do { \
  625. int offset = GGML_F16_ARR >> 1; \
  626. for (int i = 0; i < offset; ++i) { \
  627. x[i] = vaddq_f16(x[i], x[offset+i]); \
  628. } \
  629. offset >>= 1; \
  630. for (int i = 0; i < offset; ++i) { \
  631. x[i] = vaddq_f16(x[i], x[offset+i]); \
  632. } \
  633. offset >>= 1; \
  634. for (int i = 0; i < offset; ++i) { \
  635. x[i] = vaddq_f16(x[i], x[offset+i]); \
  636. } \
  637. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  638. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  639. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  640. } while (0)
  641. #define GGML_F16_VEC GGML_F16x8
  642. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  643. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  644. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  645. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  646. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  647. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  648. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  649. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  650. #else
  651. // if FP16 vector arithmetic is not supported, we use FP32 instead
  652. // and take advantage of the vcvt_ functions to convert to/from FP16
  653. #define GGML_F16_STEP 16
  654. #define GGML_F16_EPR 4
  655. #define GGML_F32Cx4 float32x4_t
  656. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  657. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  658. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  659. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  660. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  661. #define GGML_F32Cx4_ADD vaddq_f32
  662. #define GGML_F32Cx4_MUL vmulq_f32
  663. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  664. #define GGML_F16_VEC GGML_F32Cx4
  665. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  666. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  667. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  668. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  669. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  670. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  671. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  672. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  673. #endif
  674. #elif defined(__AVX__)
  675. #define GGML_SIMD
  676. // F32 AVX
  677. #define GGML_F32_STEP 32
  678. #define GGML_F32_EPR 8
  679. #define GGML_F32x8 __m256
  680. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  681. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  682. #define GGML_F32x8_LOAD _mm256_loadu_ps
  683. #define GGML_F32x8_STORE _mm256_storeu_ps
  684. #if defined(__FMA__)
  685. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  686. #else
  687. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  688. #endif
  689. #define GGML_F32x8_ADD _mm256_add_ps
  690. #define GGML_F32x8_MUL _mm256_mul_ps
  691. #define GGML_F32x8_REDUCE(res, x) \
  692. do { \
  693. int offset = GGML_F32_ARR >> 1; \
  694. for (int i = 0; i < offset; ++i) { \
  695. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  696. } \
  697. offset >>= 1; \
  698. for (int i = 0; i < offset; ++i) { \
  699. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  700. } \
  701. offset >>= 1; \
  702. for (int i = 0; i < offset; ++i) { \
  703. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  704. } \
  705. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  706. _mm256_extractf128_ps(x[0], 1)); \
  707. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  708. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  709. } while (0)
  710. // TODO: is this optimal ?
  711. #define GGML_F32_VEC GGML_F32x8
  712. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  713. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  714. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  715. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  716. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  717. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  718. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  719. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  720. // F16 AVX
  721. #define GGML_F16_STEP 32
  722. #define GGML_F16_EPR 8
  723. // F16 arithmetic is not supported by AVX, so we use F32 instead
  724. #define GGML_F32Cx8 __m256
  725. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  726. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  727. #if defined(__F16C__)
  728. // the _mm256_cvt intrinsics require F16C
  729. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  730. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  731. #else
  732. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  733. float tmp[8];
  734. for (int i = 0; i < 8; i++) {
  735. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  736. }
  737. return _mm256_loadu_ps(tmp);
  738. }
  739. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  740. float arr[8];
  741. _mm256_storeu_ps(arr, y);
  742. for (int i = 0; i < 8; i++)
  743. x[i] = GGML_FP32_TO_FP16(arr[i]);
  744. }
  745. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  746. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  747. #endif
  748. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  749. #define GGML_F32Cx8_ADD _mm256_add_ps
  750. #define GGML_F32Cx8_MUL _mm256_mul_ps
  751. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  752. #define GGML_F16_VEC GGML_F32Cx8
  753. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  754. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  755. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  756. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  757. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  758. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  759. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  760. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  761. #elif defined(__POWER9_VECTOR__)
  762. #define GGML_SIMD
  763. // F32 POWER9
  764. #define GGML_F32_STEP 32
  765. #define GGML_F32_EPR 4
  766. #define GGML_F32x4 vector float
  767. #define GGML_F32x4_ZERO 0.0f
  768. #define GGML_F32x4_SET1 vec_splats
  769. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  770. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  771. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  772. #define GGML_F32x4_ADD vec_add
  773. #define GGML_F32x4_MUL vec_mul
  774. #define GGML_F32x4_REDUCE(res, x) \
  775. { \
  776. int offset = GGML_F32_ARR >> 1; \
  777. for (int i = 0; i < offset; ++i) { \
  778. x[i] = vec_add(x[i], x[offset+i]); \
  779. } \
  780. offset >>= 1; \
  781. for (int i = 0; i < offset; ++i) { \
  782. x[i] = vec_add(x[i], x[offset+i]); \
  783. } \
  784. offset >>= 1; \
  785. for (int i = 0; i < offset; ++i) { \
  786. x[i] = vec_add(x[i], x[offset+i]); \
  787. } \
  788. res = vec_extract(x[0], 0) + \
  789. vec_extract(x[0], 1) + \
  790. vec_extract(x[0], 2) + \
  791. vec_extract(x[0], 3); \
  792. }
  793. #define GGML_F32_VEC GGML_F32x4
  794. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  795. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  796. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  797. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  798. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  799. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  800. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  801. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  802. // F16 POWER9
  803. #define GGML_F16_STEP GGML_F32_STEP
  804. #define GGML_F16_EPR GGML_F32_EPR
  805. #define GGML_F16_VEC GGML_F32x4
  806. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  807. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  808. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  809. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  810. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  811. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  812. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  813. vec_extract_fp32_from_shortl(vec_xl(0, p))
  814. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  815. #define GGML_F16_VEC_STORE(p, r, i) \
  816. if (i & 0x1) \
  817. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  818. r[i - GGML_ENDIAN_BYTE(0)]), \
  819. 0, p - GGML_F16_EPR)
  820. #elif defined(__wasm_simd128__)
  821. #define GGML_SIMD
  822. // F32 WASM
  823. #define GGML_F32_STEP 16
  824. #define GGML_F32_EPR 4
  825. #define GGML_F32x4 v128_t
  826. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  827. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  828. #define GGML_F32x4_LOAD wasm_v128_load
  829. #define GGML_F32x4_STORE wasm_v128_store
  830. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  831. #define GGML_F32x4_ADD wasm_f32x4_add
  832. #define GGML_F32x4_MUL wasm_f32x4_mul
  833. #define GGML_F32x4_REDUCE(res, x) \
  834. { \
  835. int offset = GGML_F32_ARR >> 1; \
  836. for (int i = 0; i < offset; ++i) { \
  837. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  838. } \
  839. offset >>= 1; \
  840. for (int i = 0; i < offset; ++i) { \
  841. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  842. } \
  843. offset >>= 1; \
  844. for (int i = 0; i < offset; ++i) { \
  845. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  846. } \
  847. res = wasm_f32x4_extract_lane(x[0], 0) + \
  848. wasm_f32x4_extract_lane(x[0], 1) + \
  849. wasm_f32x4_extract_lane(x[0], 2) + \
  850. wasm_f32x4_extract_lane(x[0], 3); \
  851. }
  852. #define GGML_F32_VEC GGML_F32x4
  853. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  854. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  855. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  856. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  857. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  858. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  859. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  860. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  861. // F16 WASM
  862. #define GGML_F16_STEP 16
  863. #define GGML_F16_EPR 4
  864. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  865. float tmp[4];
  866. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  867. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  868. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  869. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  870. return wasm_v128_load(tmp);
  871. }
  872. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  873. float tmp[4];
  874. wasm_v128_store(tmp, x);
  875. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  876. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  877. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  878. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  879. }
  880. #define GGML_F16x4 v128_t
  881. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  882. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  883. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  884. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  885. #define GGML_F16x4_FMA GGML_F32x4_FMA
  886. #define GGML_F16x4_ADD wasm_f32x4_add
  887. #define GGML_F16x4_MUL wasm_f32x4_mul
  888. #define GGML_F16x4_REDUCE(res, x) \
  889. { \
  890. int offset = GGML_F16_ARR >> 1; \
  891. for (int i = 0; i < offset; ++i) { \
  892. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  893. } \
  894. offset >>= 1; \
  895. for (int i = 0; i < offset; ++i) { \
  896. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  897. } \
  898. offset >>= 1; \
  899. for (int i = 0; i < offset; ++i) { \
  900. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  901. } \
  902. res = wasm_f32x4_extract_lane(x[0], 0) + \
  903. wasm_f32x4_extract_lane(x[0], 1) + \
  904. wasm_f32x4_extract_lane(x[0], 2) + \
  905. wasm_f32x4_extract_lane(x[0], 3); \
  906. }
  907. #define GGML_F16_VEC GGML_F16x4
  908. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  909. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  910. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  911. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  912. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  913. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  914. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  915. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  916. #elif defined(__SSE3__)
  917. #define GGML_SIMD
  918. // F32 SSE
  919. #define GGML_F32_STEP 32
  920. #define GGML_F32_EPR 4
  921. #define GGML_F32x4 __m128
  922. #define GGML_F32x4_ZERO _mm_setzero_ps()
  923. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  924. #define GGML_F32x4_LOAD _mm_loadu_ps
  925. #define GGML_F32x4_STORE _mm_storeu_ps
  926. #if defined(__FMA__)
  927. // TODO: Does this work?
  928. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  929. #else
  930. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  931. #endif
  932. #define GGML_F32x4_ADD _mm_add_ps
  933. #define GGML_F32x4_MUL _mm_mul_ps
  934. #define GGML_F32x4_REDUCE(res, x) \
  935. { \
  936. int offset = GGML_F32_ARR >> 1; \
  937. for (int i = 0; i < offset; ++i) { \
  938. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  939. } \
  940. offset >>= 1; \
  941. for (int i = 0; i < offset; ++i) { \
  942. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  943. } \
  944. offset >>= 1; \
  945. for (int i = 0; i < offset; ++i) { \
  946. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  947. } \
  948. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  949. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  950. }
  951. // TODO: is this optimal ?
  952. #define GGML_F32_VEC GGML_F32x4
  953. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  954. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  955. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  956. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  957. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  958. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  959. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  960. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  961. // F16 SSE
  962. #define GGML_F16_STEP 32
  963. #define GGML_F16_EPR 4
  964. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  965. float tmp[4];
  966. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  967. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  968. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  969. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  970. return _mm_loadu_ps(tmp);
  971. }
  972. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  973. float arr[4];
  974. _mm_storeu_ps(arr, y);
  975. x[0] = GGML_FP32_TO_FP16(arr[0]);
  976. x[1] = GGML_FP32_TO_FP16(arr[1]);
  977. x[2] = GGML_FP32_TO_FP16(arr[2]);
  978. x[3] = GGML_FP32_TO_FP16(arr[3]);
  979. }
  980. #define GGML_F32Cx4 __m128
  981. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  982. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  983. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  984. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  985. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  986. #define GGML_F32Cx4_ADD _mm_add_ps
  987. #define GGML_F32Cx4_MUL _mm_mul_ps
  988. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  989. #define GGML_F16_VEC GGML_F32Cx4
  990. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  991. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  992. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  993. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  994. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  995. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  996. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  997. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  998. #endif
  999. // GGML_F32_ARR / GGML_F16_ARR
  1000. // number of registers to use per step
  1001. #ifdef GGML_SIMD
  1002. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1003. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1004. #endif
  1005. //
  1006. // fundamental operations
  1007. //
  1008. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1009. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1010. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1011. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1012. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1013. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1014. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1015. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1016. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1017. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1018. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1019. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1020. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1021. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1022. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1023. #ifdef GGML_SIMD
  1024. float sumf = 0.0f;
  1025. const int np = (n & ~(GGML_F32_STEP - 1));
  1026. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1027. GGML_F32_VEC ax[GGML_F32_ARR];
  1028. GGML_F32_VEC ay[GGML_F32_ARR];
  1029. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1030. for (int j = 0; j < GGML_F32_ARR; j++) {
  1031. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1032. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1033. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1034. }
  1035. }
  1036. // reduce sum0..sum3 to sum0
  1037. GGML_F32_VEC_REDUCE(sumf, sum);
  1038. // leftovers
  1039. for (int i = np; i < n; ++i) {
  1040. sumf += x[i]*y[i];
  1041. }
  1042. #else
  1043. // scalar
  1044. ggml_float sumf = 0.0;
  1045. for (int i = 0; i < n; ++i) {
  1046. sumf += (ggml_float)(x[i]*y[i]);
  1047. }
  1048. #endif
  1049. *s = sumf;
  1050. }
  1051. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1052. ggml_float sumf = 0.0;
  1053. #if defined(GGML_SIMD)
  1054. const int np = (n & ~(GGML_F16_STEP - 1));
  1055. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1056. GGML_F16_VEC ax[GGML_F16_ARR];
  1057. GGML_F16_VEC ay[GGML_F16_ARR];
  1058. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1059. for (int j = 0; j < GGML_F16_ARR; j++) {
  1060. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1061. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1062. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1063. }
  1064. }
  1065. // reduce sum0..sum3 to sum0
  1066. GGML_F16_VEC_REDUCE(sumf, sum);
  1067. // leftovers
  1068. for (int i = np; i < n; ++i) {
  1069. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1070. }
  1071. #else
  1072. for (int i = 0; i < n; ++i) {
  1073. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1074. }
  1075. #endif
  1076. *s = sumf;
  1077. }
  1078. // compute GGML_VEC_DOT_UNROLL dot products at once
  1079. // xs - x row stride in bytes
  1080. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1081. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1082. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1083. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1084. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1085. }
  1086. #if defined(GGML_SIMD)
  1087. const int np = (n & ~(GGML_F16_STEP - 1));
  1088. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1089. GGML_F16_VEC ax[GGML_F16_ARR];
  1090. GGML_F16_VEC ay[GGML_F16_ARR];
  1091. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1092. for (int j = 0; j < GGML_F16_ARR; j++) {
  1093. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1094. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1095. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1096. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1097. }
  1098. }
  1099. }
  1100. // reduce sum0..sum3 to sum0
  1101. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1102. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1103. }
  1104. // leftovers
  1105. for (int i = np; i < n; ++i) {
  1106. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1107. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1108. }
  1109. }
  1110. #else
  1111. for (int i = 0; i < n; ++i) {
  1112. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1113. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1114. }
  1115. }
  1116. #endif
  1117. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1118. s[i] = sumf[i];
  1119. }
  1120. }
  1121. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1122. #if defined(GGML_SIMD)
  1123. const int np = (n & ~(GGML_F32_STEP - 1));
  1124. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1125. GGML_F32_VEC ax[GGML_F32_ARR];
  1126. GGML_F32_VEC ay[GGML_F32_ARR];
  1127. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1128. for (int j = 0; j < GGML_F32_ARR; j++) {
  1129. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1130. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1131. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1132. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1133. }
  1134. }
  1135. // leftovers
  1136. for (int i = np; i < n; ++i) {
  1137. y[i] += x[i]*v;
  1138. }
  1139. #else
  1140. // scalar
  1141. for (int i = 0; i < n; ++i) {
  1142. y[i] += x[i]*v;
  1143. }
  1144. #endif
  1145. }
  1146. // xs and vs are byte strides of x and v
  1147. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1148. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1149. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1150. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1151. x[i] = (const float *) ((const char *) xv + i*xs);
  1152. v[i] = (const float *) ((const char *) vv + i*vs);
  1153. }
  1154. #if defined(GGML_SIMD)
  1155. const int np = (n & ~(GGML_F32_STEP - 1));
  1156. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1157. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1158. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1159. }
  1160. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1161. GGML_F32_VEC ay[GGML_F32_ARR];
  1162. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1163. for (int j = 0; j < GGML_F32_ARR; j++) {
  1164. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1165. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1166. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1167. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1168. }
  1169. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1170. }
  1171. }
  1172. // leftovers
  1173. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1174. for (int i = np; i < n; ++i) {
  1175. y[i] += x[k][i]*v[k][0];
  1176. }
  1177. }
  1178. #else
  1179. // scalar
  1180. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1181. for (int i = 0; i < n; ++i) {
  1182. y[i] += x[k][i]*v[k][0];
  1183. }
  1184. }
  1185. #endif
  1186. }
  1187. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1188. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1189. #if defined(GGML_USE_ACCELERATE)
  1190. vDSP_vsmul(y, 1, &v, y, 1, n);
  1191. #elif defined(GGML_SIMD)
  1192. const int np = (n & ~(GGML_F32_STEP - 1));
  1193. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1194. GGML_F32_VEC ay[GGML_F32_ARR];
  1195. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1196. for (int j = 0; j < GGML_F32_ARR; j++) {
  1197. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1198. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1199. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1200. }
  1201. }
  1202. // leftovers
  1203. for (int i = np; i < n; ++i) {
  1204. y[i] *= v;
  1205. }
  1206. #else
  1207. // scalar
  1208. for (int i = 0; i < n; ++i) {
  1209. y[i] *= v;
  1210. }
  1211. #endif
  1212. }
  1213. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1214. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1215. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1216. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1217. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1218. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1219. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1220. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1221. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1222. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1223. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1224. static const float GELU_COEF_A = 0.044715f;
  1225. static const float GELU_QUICK_COEF = -1.702f;
  1226. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1227. inline static float ggml_gelu_f32(float x) {
  1228. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1229. }
  1230. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1231. const uint16_t * i16 = (const uint16_t *) x;
  1232. for (int i = 0; i < n; ++i) {
  1233. y[i] = ggml_table_gelu_f16[i16[i]];
  1234. }
  1235. }
  1236. #ifdef GGML_GELU_FP16
  1237. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1238. uint16_t t;
  1239. for (int i = 0; i < n; ++i) {
  1240. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1241. memcpy(&t, &fp16, sizeof(uint16_t));
  1242. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1243. }
  1244. }
  1245. #else
  1246. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1247. for (int i = 0; i < n; ++i) {
  1248. y[i] = ggml_gelu_f32(x[i]);
  1249. }
  1250. }
  1251. #endif
  1252. inline static float ggml_gelu_quick_f32(float x) {
  1253. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1254. }
  1255. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1256. // const uint16_t * i16 = (const uint16_t *) x;
  1257. // for (int i = 0; i < n; ++i) {
  1258. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1259. // }
  1260. //}
  1261. #ifdef GGML_GELU_QUICK_FP16
  1262. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1263. uint16_t t;
  1264. for (int i = 0; i < n; ++i) {
  1265. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1266. memcpy(&t, &fp16, sizeof(uint16_t));
  1267. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1268. }
  1269. }
  1270. #else
  1271. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1272. for (int i = 0; i < n; ++i) {
  1273. y[i] = ggml_gelu_quick_f32(x[i]);
  1274. }
  1275. }
  1276. #endif
  1277. // Sigmoid Linear Unit (SiLU) function
  1278. inline static float ggml_silu_f32(float x) {
  1279. return x/(1.0f + expf(-x));
  1280. }
  1281. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1282. // const uint16_t * i16 = (const uint16_t *) x;
  1283. // for (int i = 0; i < n; ++i) {
  1284. // y[i] = ggml_table_silu_f16[i16[i]];
  1285. // }
  1286. //}
  1287. #ifdef GGML_SILU_FP16
  1288. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1289. uint16_t t;
  1290. for (int i = 0; i < n; ++i) {
  1291. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1292. memcpy(&t, &fp16, sizeof(uint16_t));
  1293. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1294. }
  1295. }
  1296. #else
  1297. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1298. for (int i = 0; i < n; ++i) {
  1299. y[i] = ggml_silu_f32(x[i]);
  1300. }
  1301. }
  1302. #endif
  1303. inline static float ggml_silu_backward_f32(float x, float dy) {
  1304. const float s = 1.0f/(1.0f + expf(-x));
  1305. return dy*s*(1.0f + x*(1.0f - s));
  1306. }
  1307. #ifdef GGML_SILU_FP16
  1308. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1309. for (int i = 0; i < n; ++i) {
  1310. // we did not use x[i] to compute forward silu but its f16 equivalent
  1311. // take derivative at f16 of x[i]:
  1312. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1313. float usedx = GGML_FP16_TO_FP32(fp16);
  1314. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1315. }
  1316. }
  1317. #else
  1318. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1319. for (int i = 0; i < n; ++i) {
  1320. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1321. }
  1322. }
  1323. #endif
  1324. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1325. #ifndef GGML_USE_ACCELERATE
  1326. ggml_float sum = 0.0;
  1327. for (int i = 0; i < n; ++i) {
  1328. sum += (ggml_float)x[i];
  1329. }
  1330. *s = sum;
  1331. #else
  1332. vDSP_sve(x, 1, s, n);
  1333. #endif
  1334. }
  1335. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1336. ggml_float sum = 0.0;
  1337. for (int i = 0; i < n; ++i) {
  1338. sum += (ggml_float)x[i];
  1339. }
  1340. *s = sum;
  1341. }
  1342. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1343. float sum = 0.0f;
  1344. for (int i = 0; i < n; ++i) {
  1345. sum += GGML_FP16_TO_FP32(x[i]);
  1346. }
  1347. *s = sum;
  1348. }
  1349. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1350. #ifndef GGML_USE_ACCELERATE
  1351. float max = -INFINITY;
  1352. for (int i = 0; i < n; ++i) {
  1353. max = MAX(max, x[i]);
  1354. }
  1355. *s = max;
  1356. #else
  1357. vDSP_maxv(x, 1, s, n);
  1358. #endif
  1359. }
  1360. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1361. ggml_vec_norm_f32(n, s, x);
  1362. *s = 1.f/(*s);
  1363. }
  1364. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1365. float max = -INFINITY;
  1366. int idx = 0;
  1367. for (int i = 0; i < n; ++i) {
  1368. max = MAX(max, x[i]);
  1369. if (max == x[i]) { idx = i; }
  1370. }
  1371. *s = idx;
  1372. }
  1373. //
  1374. // data types
  1375. //
  1376. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1377. "NONE",
  1378. "DUP",
  1379. "ADD",
  1380. "ADD1",
  1381. "ACC",
  1382. "SUB",
  1383. "MUL",
  1384. "DIV",
  1385. "SQR",
  1386. "SQRT",
  1387. "LOG",
  1388. "SUM",
  1389. "SUM_ROWS",
  1390. "MEAN",
  1391. "ARGMAX",
  1392. "REPEAT",
  1393. "REPEAT_BACK",
  1394. "CONCAT",
  1395. "SILU_BACK",
  1396. "NORM",
  1397. "RMS_NORM",
  1398. "RMS_NORM_BACK",
  1399. "GROUP_NORM",
  1400. "MUL_MAT",
  1401. "MUL_MAT_ID",
  1402. "OUT_PROD",
  1403. "SCALE",
  1404. "SET",
  1405. "CPY",
  1406. "CONT",
  1407. "RESHAPE",
  1408. "VIEW",
  1409. "PERMUTE",
  1410. "TRANSPOSE",
  1411. "GET_ROWS",
  1412. "GET_ROWS_BACK",
  1413. "DIAG",
  1414. "DIAG_MASK_INF",
  1415. "DIAG_MASK_ZERO",
  1416. "SOFT_MAX",
  1417. "SOFT_MAX_BACK",
  1418. "ROPE",
  1419. "ROPE_BACK",
  1420. "ALIBI",
  1421. "CLAMP",
  1422. "CONV_TRANSPOSE_1D",
  1423. "IM2COL",
  1424. "CONV_TRANSPOSE_2D",
  1425. "POOL_1D",
  1426. "POOL_2D",
  1427. "UPSCALE",
  1428. "PAD",
  1429. "ARGSORT",
  1430. "LEAKY_RELU",
  1431. "FLASH_ATTN",
  1432. "FLASH_FF",
  1433. "FLASH_ATTN_BACK",
  1434. "WIN_PART",
  1435. "WIN_UNPART",
  1436. "GET_REL_POS",
  1437. "ADD_REL_POS",
  1438. "UNARY",
  1439. "MAP_UNARY",
  1440. "MAP_BINARY",
  1441. "MAP_CUSTOM1_F32",
  1442. "MAP_CUSTOM2_F32",
  1443. "MAP_CUSTOM3_F32",
  1444. "MAP_CUSTOM1",
  1445. "MAP_CUSTOM2",
  1446. "MAP_CUSTOM3",
  1447. "CROSS_ENTROPY_LOSS",
  1448. "CROSS_ENTROPY_LOSS_BACK",
  1449. };
  1450. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1451. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1452. "none",
  1453. "x",
  1454. "x+y",
  1455. "x+y",
  1456. "view(x,nb,offset)+=y->x",
  1457. "x-y",
  1458. "x*y",
  1459. "x/y",
  1460. "x^2",
  1461. "√x",
  1462. "log(x)",
  1463. "Σx",
  1464. "Σx_k",
  1465. "Σx/n",
  1466. "argmax(x)",
  1467. "repeat(x)",
  1468. "repeat_back(x)",
  1469. "concat(x, y)",
  1470. "silu_back(x)",
  1471. "norm(x)",
  1472. "rms_norm(x)",
  1473. "rms_norm_back(x)",
  1474. "group_norm(x)",
  1475. "X*Y",
  1476. "X[i]*Y",
  1477. "X*Y",
  1478. "x*v",
  1479. "y-\\>view(x)",
  1480. "x-\\>y",
  1481. "cont(x)",
  1482. "reshape(x)",
  1483. "view(x)",
  1484. "permute(x)",
  1485. "transpose(x)",
  1486. "get_rows(x)",
  1487. "get_rows_back(x)",
  1488. "diag(x)",
  1489. "diag_mask_inf(x)",
  1490. "diag_mask_zero(x)",
  1491. "soft_max(x)",
  1492. "soft_max_back(x)",
  1493. "rope(x)",
  1494. "rope_back(x)",
  1495. "alibi(x)",
  1496. "clamp(x)",
  1497. "conv_transpose_1d(x)",
  1498. "im2col(x)",
  1499. "conv_transpose_2d(x)",
  1500. "pool_1d(x)",
  1501. "pool_2d(x)",
  1502. "upscale(x)",
  1503. "pad(x)",
  1504. "argsort(x)",
  1505. "leaky_relu(x)",
  1506. "flash_attn(x)",
  1507. "flash_ff(x)",
  1508. "flash_attn_back(x)",
  1509. "win_part(x)",
  1510. "win_unpart(x)",
  1511. "get_rel_pos(x)",
  1512. "add_rel_pos(x)",
  1513. "unary(x)",
  1514. "f(x)",
  1515. "f(x,y)",
  1516. "custom_f32(x)",
  1517. "custom_f32(x,y)",
  1518. "custom_f32(x,y,z)",
  1519. "custom(x)",
  1520. "custom(x,y)",
  1521. "custom(x,y,z)",
  1522. "cross_entropy_loss(x,y)",
  1523. "cross_entropy_loss_back(x,y)",
  1524. };
  1525. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1526. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1527. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1528. "ABS",
  1529. "SGN",
  1530. "NEG",
  1531. "STEP",
  1532. "TANH",
  1533. "ELU",
  1534. "RELU",
  1535. "GELU",
  1536. "GELU_QUICK",
  1537. "SILU",
  1538. };
  1539. static_assert(GGML_UNARY_OP_COUNT == 10, "GGML_UNARY_OP_COUNT != 10");
  1540. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1541. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1542. // WARN:
  1543. // Mis-configuration can lead to problem that's hard to reason about:
  1544. // * At best it crash or talks nosense.
  1545. // * At worst it talks slightly difference but hard to perceive.
  1546. //
  1547. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1548. // Take care about compile options (e.g., GGML_USE_xxx).
  1549. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1550. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1551. static void ggml_setup_op_has_task_pass(void) {
  1552. { // INIT
  1553. bool * p = GGML_OP_HAS_INIT;
  1554. p[GGML_OP_ACC ] = true;
  1555. p[GGML_OP_MUL_MAT ] = true;
  1556. p[GGML_OP_MUL_MAT_ID ] = true;
  1557. p[GGML_OP_OUT_PROD ] = true;
  1558. p[GGML_OP_SET ] = true;
  1559. p[GGML_OP_GET_ROWS_BACK ] = true;
  1560. p[GGML_OP_DIAG_MASK_INF ] = true;
  1561. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1562. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1563. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1564. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1565. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1566. p[GGML_OP_ADD_REL_POS ] = true;
  1567. }
  1568. { // FINALIZE
  1569. bool * p = GGML_OP_HAS_FINALIZE;
  1570. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1571. }
  1572. }
  1573. //
  1574. // ggml context
  1575. //
  1576. struct ggml_context {
  1577. size_t mem_size;
  1578. void * mem_buffer;
  1579. bool mem_buffer_owned;
  1580. bool no_alloc;
  1581. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1582. int n_objects;
  1583. struct ggml_object * objects_begin;
  1584. struct ggml_object * objects_end;
  1585. struct ggml_scratch scratch;
  1586. struct ggml_scratch scratch_save;
  1587. };
  1588. struct ggml_context_container {
  1589. bool used;
  1590. struct ggml_context context;
  1591. };
  1592. //
  1593. // NUMA support
  1594. //
  1595. #define GGML_NUMA_MAX_NODES 8
  1596. #define GGML_NUMA_MAX_CPUS 512
  1597. struct ggml_numa_node {
  1598. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1599. uint32_t n_cpus;
  1600. };
  1601. struct ggml_numa_nodes {
  1602. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1603. uint32_t n_nodes;
  1604. uint32_t total_cpus; // hardware threads on system
  1605. };
  1606. //
  1607. // ggml state
  1608. //
  1609. struct ggml_state {
  1610. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1611. struct ggml_numa_nodes numa;
  1612. };
  1613. // global state
  1614. static struct ggml_state g_state;
  1615. static atomic_int g_state_barrier = 0;
  1616. // barrier via spin lock
  1617. inline static void ggml_critical_section_start(void) {
  1618. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1619. while (processing > 0) {
  1620. // wait for other threads to finish
  1621. atomic_fetch_sub(&g_state_barrier, 1);
  1622. sched_yield(); // TODO: reconsider this
  1623. processing = atomic_fetch_add(&g_state_barrier, 1);
  1624. }
  1625. }
  1626. // TODO: make this somehow automatically executed
  1627. // some sort of "sentry" mechanism
  1628. inline static void ggml_critical_section_end(void) {
  1629. atomic_fetch_sub(&g_state_barrier, 1);
  1630. }
  1631. void ggml_numa_init(void) {
  1632. if (g_state.numa.n_nodes > 0) {
  1633. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1634. return;
  1635. }
  1636. #ifdef __linux__
  1637. struct stat st;
  1638. char path[256];
  1639. int rv;
  1640. // enumerate nodes
  1641. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1642. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1643. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1644. if (stat(path, &st) != 0) { break; }
  1645. ++g_state.numa.n_nodes;
  1646. }
  1647. // enumerate CPUs
  1648. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1649. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1650. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1651. if (stat(path, &st) != 0) { break; }
  1652. ++g_state.numa.total_cpus;
  1653. }
  1654. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1655. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  1656. g_state.numa.n_nodes = 0;
  1657. return;
  1658. }
  1659. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1660. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1661. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1662. node->n_cpus = 0;
  1663. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1664. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1665. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1666. if (stat(path, &st) == 0) {
  1667. node->cpus[node->n_cpus++] = c;
  1668. GGML_PRINT_DEBUG(" %u", c);
  1669. }
  1670. }
  1671. GGML_PRINT_DEBUG("\n");
  1672. }
  1673. if (ggml_is_numa()) {
  1674. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1675. if (fptr != NULL) {
  1676. char buf[42];
  1677. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1678. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1679. }
  1680. fclose(fptr);
  1681. }
  1682. }
  1683. #else
  1684. // TODO
  1685. #endif
  1686. }
  1687. bool ggml_is_numa(void) {
  1688. return g_state.numa.n_nodes > 1;
  1689. }
  1690. ////////////////////////////////////////////////////////////////////////////////
  1691. void ggml_print_object(const struct ggml_object * obj) {
  1692. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1693. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1694. }
  1695. void ggml_print_objects(const struct ggml_context * ctx) {
  1696. struct ggml_object * obj = ctx->objects_begin;
  1697. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1698. while (obj != NULL) {
  1699. ggml_print_object(obj);
  1700. obj = obj->next;
  1701. }
  1702. GGML_PRINT("%s: --- end ---\n", __func__);
  1703. }
  1704. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1705. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1706. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1707. }
  1708. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1709. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1710. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1711. }
  1712. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1713. size_t nbytes;
  1714. size_t blck_size = ggml_blck_size(tensor->type);
  1715. if (blck_size == 1) {
  1716. nbytes = ggml_type_size(tensor->type);
  1717. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1718. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1719. }
  1720. }
  1721. else {
  1722. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1723. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1724. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1725. }
  1726. }
  1727. return nbytes;
  1728. }
  1729. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1730. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1731. }
  1732. int ggml_blck_size(enum ggml_type type) {
  1733. return type_traits[type].blck_size;
  1734. }
  1735. size_t ggml_type_size(enum ggml_type type) {
  1736. return type_traits[type].type_size;
  1737. }
  1738. size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  1739. assert(ne % ggml_blck_size(type) == 0);
  1740. return ggml_type_size(type)*ne/ggml_blck_size(type);
  1741. }
  1742. double ggml_type_sizef(enum ggml_type type) {
  1743. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  1744. }
  1745. const char * ggml_type_name(enum ggml_type type) {
  1746. return type_traits[type].type_name;
  1747. }
  1748. bool ggml_is_quantized(enum ggml_type type) {
  1749. return type_traits[type].is_quantized;
  1750. }
  1751. const char * ggml_op_name(enum ggml_op op) {
  1752. return GGML_OP_NAME[op];
  1753. }
  1754. const char * ggml_op_symbol(enum ggml_op op) {
  1755. return GGML_OP_SYMBOL[op];
  1756. }
  1757. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1758. return GGML_UNARY_OP_NAME[op];
  1759. }
  1760. const char * ggml_op_desc(const struct ggml_tensor * t) {
  1761. if (t->op == GGML_OP_UNARY) {
  1762. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1763. return ggml_unary_op_name(uop);
  1764. }
  1765. else {
  1766. return ggml_op_name(t->op);
  1767. }
  1768. }
  1769. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1770. return ggml_type_size(tensor->type);
  1771. }
  1772. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1773. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1774. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1775. }
  1776. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1777. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1778. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1779. }
  1780. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1781. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1782. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1783. }
  1784. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  1785. return tensor->ne[3] == 1;
  1786. }
  1787. int ggml_n_dims(const struct ggml_tensor * tensor) {
  1788. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  1789. if (tensor->ne[i] > 1) {
  1790. return i + 1;
  1791. }
  1792. }
  1793. return 1;
  1794. }
  1795. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1796. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1797. return (t0->ne[0] == t1->ne[0]) &&
  1798. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1799. (t1->ne[3]%t0->ne[3] == 0);
  1800. }
  1801. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1802. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1803. return (t0->ne[1] == t1->ne[1]) &&
  1804. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1805. (t1->ne[3]%t0->ne[3] == 0);
  1806. }
  1807. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1808. enum ggml_type wtype = GGML_TYPE_COUNT;
  1809. switch (ftype) {
  1810. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1811. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1812. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1813. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1814. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1815. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1816. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1817. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1818. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1819. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1820. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1821. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1822. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  1823. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  1824. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1825. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1826. }
  1827. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1828. return wtype;
  1829. }
  1830. size_t ggml_tensor_overhead(void) {
  1831. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1832. }
  1833. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1834. return tensor->nb[0] > tensor->nb[1];
  1835. }
  1836. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1837. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1838. return
  1839. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1840. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1841. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1842. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1843. }
  1844. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  1845. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1846. return
  1847. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1848. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1849. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1850. }
  1851. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  1852. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1853. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  1854. }
  1855. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1856. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1857. return
  1858. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1859. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1860. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1861. }
  1862. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1863. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1864. return
  1865. (t0->ne[0] == t1->ne[0] ) &&
  1866. (t0->ne[1] == t1->ne[1] ) &&
  1867. (t0->ne[2] == t1->ne[2] ) &&
  1868. (t0->ne[3] == t1->ne[3] );
  1869. }
  1870. // check if t1 can be represented as a repeatition of t0
  1871. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1872. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1873. return
  1874. (t1->ne[0]%t0->ne[0] == 0) &&
  1875. (t1->ne[1]%t0->ne[1] == 0) &&
  1876. (t1->ne[2]%t0->ne[2] == 0) &&
  1877. (t1->ne[3]%t0->ne[3] == 0);
  1878. }
  1879. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1880. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1881. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  1882. }
  1883. static inline int ggml_up32(int n) {
  1884. return (n + 31) & ~31;
  1885. }
  1886. //static inline int ggml_up64(int n) {
  1887. // return (n + 63) & ~63;
  1888. //}
  1889. static inline int ggml_up(int n, int m) {
  1890. // assert m is a power of 2
  1891. GGML_ASSERT((m & (m - 1)) == 0);
  1892. return (n + m - 1) & ~(m - 1);
  1893. }
  1894. // assert that pointer is aligned to GGML_MEM_ALIGN
  1895. #define ggml_assert_aligned(ptr) \
  1896. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  1897. ////////////////////////////////////////////////////////////////////////////////
  1898. struct ggml_context * ggml_init(struct ggml_init_params params) {
  1899. // make this function thread safe
  1900. ggml_critical_section_start();
  1901. static bool is_first_call = true;
  1902. if (is_first_call) {
  1903. // initialize time system (required on Windows)
  1904. ggml_time_init();
  1905. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  1906. {
  1907. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1908. ggml_fp16_t ii;
  1909. for (int i = 0; i < (1 << 16); ++i) {
  1910. uint16_t ui = i;
  1911. memcpy(&ii, &ui, sizeof(ii));
  1912. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  1913. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  1914. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  1915. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  1916. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  1917. }
  1918. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1919. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1920. }
  1921. // initialize g_state
  1922. {
  1923. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1924. g_state = (struct ggml_state) {
  1925. /*.contexts =*/ { { 0 } },
  1926. /*.numa =*/ {
  1927. .n_nodes = 0,
  1928. .total_cpus = 0,
  1929. },
  1930. };
  1931. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  1932. g_state.contexts[i].used = false;
  1933. }
  1934. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1935. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1936. }
  1937. #if defined(GGML_USE_CUBLAS)
  1938. ggml_init_cublas();
  1939. #elif defined(GGML_USE_CLBLAST)
  1940. ggml_cl_init();
  1941. #endif
  1942. ggml_setup_op_has_task_pass();
  1943. is_first_call = false;
  1944. }
  1945. // find non-used context in g_state
  1946. struct ggml_context * ctx = NULL;
  1947. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1948. if (!g_state.contexts[i].used) {
  1949. g_state.contexts[i].used = true;
  1950. ctx = &g_state.contexts[i].context;
  1951. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  1952. break;
  1953. }
  1954. }
  1955. if (ctx == NULL) {
  1956. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  1957. ggml_critical_section_end();
  1958. return NULL;
  1959. }
  1960. // allow to call ggml_init with 0 size
  1961. if (params.mem_size == 0) {
  1962. params.mem_size = GGML_MEM_ALIGN;
  1963. }
  1964. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  1965. *ctx = (struct ggml_context) {
  1966. /*.mem_size =*/ mem_size,
  1967. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  1968. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  1969. /*.no_alloc =*/ params.no_alloc,
  1970. /*.no_alloc_save =*/ params.no_alloc,
  1971. /*.n_objects =*/ 0,
  1972. /*.objects_begin =*/ NULL,
  1973. /*.objects_end =*/ NULL,
  1974. /*.scratch =*/ { 0, 0, NULL, },
  1975. /*.scratch_save =*/ { 0, 0, NULL, },
  1976. };
  1977. GGML_ASSERT(ctx->mem_buffer != NULL);
  1978. ggml_assert_aligned(ctx->mem_buffer);
  1979. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  1980. ggml_critical_section_end();
  1981. return ctx;
  1982. }
  1983. void ggml_free(struct ggml_context * ctx) {
  1984. // make this function thread safe
  1985. ggml_critical_section_start();
  1986. bool found = false;
  1987. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1988. if (&g_state.contexts[i].context == ctx) {
  1989. g_state.contexts[i].used = false;
  1990. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  1991. __func__, i, ggml_used_mem(ctx));
  1992. if (ctx->mem_buffer_owned) {
  1993. GGML_ALIGNED_FREE(ctx->mem_buffer);
  1994. }
  1995. found = true;
  1996. break;
  1997. }
  1998. }
  1999. if (!found) {
  2000. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2001. }
  2002. ggml_critical_section_end();
  2003. }
  2004. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2005. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2006. }
  2007. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2008. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2009. ctx->scratch = scratch;
  2010. return result;
  2011. }
  2012. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2013. return ctx->no_alloc;
  2014. }
  2015. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2016. ctx->no_alloc = no_alloc;
  2017. }
  2018. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2019. return ctx->mem_buffer;
  2020. }
  2021. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2022. return ctx->mem_size;
  2023. }
  2024. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2025. size_t max_size = 0;
  2026. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2027. max_size = MAX(max_size, ggml_nbytes(tensor));
  2028. }
  2029. return max_size;
  2030. }
  2031. // IMPORTANT:
  2032. // when creating "opt" tensors, always save and load the scratch buffer
  2033. // this is an error prone process, but it is necessary to support inplace
  2034. // operators when using scratch buffers
  2035. // TODO: implement a better way
  2036. static void ggml_scratch_save(struct ggml_context * ctx) {
  2037. // this is needed to allow opt tensors to store their data
  2038. // TODO: again, need to find a better way
  2039. ctx->no_alloc_save = ctx->no_alloc;
  2040. ctx->no_alloc = false;
  2041. ctx->scratch_save = ctx->scratch;
  2042. ctx->scratch.data = NULL;
  2043. }
  2044. static void ggml_scratch_load(struct ggml_context * ctx) {
  2045. ctx->no_alloc = ctx->no_alloc_save;
  2046. ctx->scratch = ctx->scratch_save;
  2047. }
  2048. ////////////////////////////////////////////////////////////////////////////////
  2049. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2050. // always insert objects at the end of the context's memory pool
  2051. struct ggml_object * obj_cur = ctx->objects_end;
  2052. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2053. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2054. const size_t cur_end = cur_offs + cur_size;
  2055. // align to GGML_MEM_ALIGN
  2056. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2057. char * const mem_buffer = ctx->mem_buffer;
  2058. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2059. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2060. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2061. __func__, cur_end + size_needed, ctx->mem_size);
  2062. assert(false);
  2063. return NULL;
  2064. }
  2065. *obj_new = (struct ggml_object) {
  2066. .offs = cur_end + GGML_OBJECT_SIZE,
  2067. .size = size_needed,
  2068. .next = NULL,
  2069. .type = type,
  2070. };
  2071. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2072. if (obj_cur != NULL) {
  2073. obj_cur->next = obj_new;
  2074. } else {
  2075. // this is the first object in this context
  2076. ctx->objects_begin = obj_new;
  2077. }
  2078. ctx->objects_end = obj_new;
  2079. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2080. return obj_new;
  2081. }
  2082. static struct ggml_tensor * ggml_new_tensor_impl(
  2083. struct ggml_context * ctx,
  2084. enum ggml_type type,
  2085. int n_dims,
  2086. const int64_t * ne,
  2087. struct ggml_tensor * view_src,
  2088. size_t view_offs) {
  2089. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2090. // find the base tensor and absolute offset
  2091. if (view_src != NULL && view_src->view_src != NULL) {
  2092. view_offs += view_src->view_offs;
  2093. view_src = view_src->view_src;
  2094. }
  2095. size_t data_size = ggml_row_size(type, ne[0]);
  2096. for (int i = 1; i < n_dims; i++) {
  2097. data_size *= ne[i];
  2098. }
  2099. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2100. void * data = view_src != NULL ? view_src->data : NULL;
  2101. if (data != NULL) {
  2102. data = (char *) data + view_offs;
  2103. }
  2104. size_t obj_alloc_size = 0;
  2105. if (view_src == NULL && !ctx->no_alloc) {
  2106. if (ctx->scratch.data != NULL) {
  2107. // allocate tensor data in the scratch buffer
  2108. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2109. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2110. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2111. assert(false);
  2112. return NULL;
  2113. }
  2114. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2115. ctx->scratch.offs += data_size;
  2116. } else {
  2117. // allocate tensor data in the context's memory pool
  2118. obj_alloc_size = data_size;
  2119. }
  2120. }
  2121. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2122. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2123. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2124. *result = (struct ggml_tensor) {
  2125. /*.type =*/ type,
  2126. /*.backend =*/ GGML_BACKEND_CPU,
  2127. /*.buffer =*/ NULL,
  2128. /*.ne =*/ { 1, 1, 1, 1 },
  2129. /*.nb =*/ { 0, 0, 0, 0 },
  2130. /*.op =*/ GGML_OP_NONE,
  2131. /*.op_params =*/ { 0 },
  2132. /*.is_param =*/ false,
  2133. /*.grad =*/ NULL,
  2134. /*.src =*/ { NULL },
  2135. /*.perf_runs =*/ 0,
  2136. /*.perf_cycles =*/ 0,
  2137. /*.perf_time_us =*/ 0,
  2138. /*.view_src =*/ view_src,
  2139. /*.view_offs =*/ view_offs,
  2140. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2141. /*.name =*/ { 0 },
  2142. /*.extra =*/ NULL,
  2143. /*.padding =*/ { 0 },
  2144. };
  2145. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2146. //ggml_assert_aligned(result->data);
  2147. for (int i = 0; i < n_dims; i++) {
  2148. result->ne[i] = ne[i];
  2149. }
  2150. result->nb[0] = ggml_type_size(type);
  2151. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2152. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2153. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2154. }
  2155. ctx->n_objects++;
  2156. return result;
  2157. }
  2158. struct ggml_tensor * ggml_new_tensor(
  2159. struct ggml_context * ctx,
  2160. enum ggml_type type,
  2161. int n_dims,
  2162. const int64_t * ne) {
  2163. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2164. }
  2165. struct ggml_tensor * ggml_new_tensor_1d(
  2166. struct ggml_context * ctx,
  2167. enum ggml_type type,
  2168. int64_t ne0) {
  2169. return ggml_new_tensor(ctx, type, 1, &ne0);
  2170. }
  2171. struct ggml_tensor * ggml_new_tensor_2d(
  2172. struct ggml_context * ctx,
  2173. enum ggml_type type,
  2174. int64_t ne0,
  2175. int64_t ne1) {
  2176. const int64_t ne[2] = { ne0, ne1 };
  2177. return ggml_new_tensor(ctx, type, 2, ne);
  2178. }
  2179. struct ggml_tensor * ggml_new_tensor_3d(
  2180. struct ggml_context * ctx,
  2181. enum ggml_type type,
  2182. int64_t ne0,
  2183. int64_t ne1,
  2184. int64_t ne2) {
  2185. const int64_t ne[3] = { ne0, ne1, ne2 };
  2186. return ggml_new_tensor(ctx, type, 3, ne);
  2187. }
  2188. struct ggml_tensor * ggml_new_tensor_4d(
  2189. struct ggml_context * ctx,
  2190. enum ggml_type type,
  2191. int64_t ne0,
  2192. int64_t ne1,
  2193. int64_t ne2,
  2194. int64_t ne3) {
  2195. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2196. return ggml_new_tensor(ctx, type, 4, ne);
  2197. }
  2198. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2199. ggml_scratch_save(ctx);
  2200. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2201. ggml_scratch_load(ctx);
  2202. ggml_set_i32(result, value);
  2203. return result;
  2204. }
  2205. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2206. ggml_scratch_save(ctx);
  2207. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2208. ggml_scratch_load(ctx);
  2209. ggml_set_f32(result, value);
  2210. return result;
  2211. }
  2212. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2213. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2214. }
  2215. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2216. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2217. assert(params_size <= GGML_MAX_OP_PARAMS);
  2218. memcpy(tensor->op_params, params, params_size);
  2219. }
  2220. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2221. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2222. return ((const int32_t *)(tensor->op_params))[i];
  2223. }
  2224. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2225. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2226. ((int32_t *)(tensor->op_params))[i] = value;
  2227. }
  2228. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2229. memset(tensor->data, 0, ggml_nbytes(tensor));
  2230. return tensor;
  2231. }
  2232. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2233. const int n = ggml_nrows(tensor);
  2234. const int nc = tensor->ne[0];
  2235. const size_t n1 = tensor->nb[1];
  2236. char * const data = tensor->data;
  2237. switch (tensor->type) {
  2238. case GGML_TYPE_I8:
  2239. {
  2240. assert(tensor->nb[0] == sizeof(int8_t));
  2241. for (int i = 0; i < n; i++) {
  2242. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2243. }
  2244. } break;
  2245. case GGML_TYPE_I16:
  2246. {
  2247. assert(tensor->nb[0] == sizeof(int16_t));
  2248. for (int i = 0; i < n; i++) {
  2249. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2250. }
  2251. } break;
  2252. case GGML_TYPE_I32:
  2253. {
  2254. assert(tensor->nb[0] == sizeof(int32_t));
  2255. for (int i = 0; i < n; i++) {
  2256. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2257. }
  2258. } break;
  2259. case GGML_TYPE_F16:
  2260. {
  2261. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2262. for (int i = 0; i < n; i++) {
  2263. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2264. }
  2265. } break;
  2266. case GGML_TYPE_F32:
  2267. {
  2268. assert(tensor->nb[0] == sizeof(float));
  2269. for (int i = 0; i < n; i++) {
  2270. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2271. }
  2272. } break;
  2273. default:
  2274. {
  2275. GGML_ASSERT(false);
  2276. } break;
  2277. }
  2278. return tensor;
  2279. }
  2280. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2281. const int n = ggml_nrows(tensor);
  2282. const int nc = tensor->ne[0];
  2283. const size_t n1 = tensor->nb[1];
  2284. char * const data = tensor->data;
  2285. switch (tensor->type) {
  2286. case GGML_TYPE_I8:
  2287. {
  2288. assert(tensor->nb[0] == sizeof(int8_t));
  2289. for (int i = 0; i < n; i++) {
  2290. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2291. }
  2292. } break;
  2293. case GGML_TYPE_I16:
  2294. {
  2295. assert(tensor->nb[0] == sizeof(int16_t));
  2296. for (int i = 0; i < n; i++) {
  2297. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2298. }
  2299. } break;
  2300. case GGML_TYPE_I32:
  2301. {
  2302. assert(tensor->nb[0] == sizeof(int32_t));
  2303. for (int i = 0; i < n; i++) {
  2304. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2305. }
  2306. } break;
  2307. case GGML_TYPE_F16:
  2308. {
  2309. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2310. for (int i = 0; i < n; i++) {
  2311. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2312. }
  2313. } break;
  2314. case GGML_TYPE_F32:
  2315. {
  2316. assert(tensor->nb[0] == sizeof(float));
  2317. for (int i = 0; i < n; i++) {
  2318. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2319. }
  2320. } break;
  2321. default:
  2322. {
  2323. GGML_ASSERT(false);
  2324. } break;
  2325. }
  2326. return tensor;
  2327. }
  2328. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2329. const int64_t ne2 = tensor->ne[2];
  2330. const int64_t ne1 = tensor->ne[1];
  2331. const int64_t ne0 = tensor->ne[0];
  2332. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2333. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2334. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2335. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2336. if (i0) {
  2337. * i0 = i0_;
  2338. }
  2339. if (i1) {
  2340. * i1 = i1_;
  2341. }
  2342. if (i2) {
  2343. * i2 = i2_;
  2344. }
  2345. if (i3) {
  2346. * i3 = i3_;
  2347. }
  2348. }
  2349. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2350. if (!ggml_is_contiguous(tensor)) {
  2351. int64_t id[4] = { 0, 0, 0, 0 };
  2352. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2353. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2354. }
  2355. switch (tensor->type) {
  2356. case GGML_TYPE_I8:
  2357. {
  2358. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2359. return ((int8_t *)(tensor->data))[i];
  2360. }
  2361. case GGML_TYPE_I16:
  2362. {
  2363. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2364. return ((int16_t *)(tensor->data))[i];
  2365. }
  2366. case GGML_TYPE_I32:
  2367. {
  2368. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2369. return ((int32_t *)(tensor->data))[i];
  2370. }
  2371. case GGML_TYPE_F16:
  2372. {
  2373. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2374. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2375. }
  2376. case GGML_TYPE_F32:
  2377. {
  2378. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2379. return ((float *)(tensor->data))[i];
  2380. }
  2381. default:
  2382. {
  2383. GGML_ASSERT(false);
  2384. }
  2385. }
  2386. return 0.0f;
  2387. }
  2388. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2389. if (!ggml_is_contiguous(tensor)) {
  2390. int64_t id[4] = { 0, 0, 0, 0 };
  2391. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2392. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2393. return;
  2394. }
  2395. switch (tensor->type) {
  2396. case GGML_TYPE_I8:
  2397. {
  2398. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2399. ((int8_t *)(tensor->data))[i] = value;
  2400. } break;
  2401. case GGML_TYPE_I16:
  2402. {
  2403. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2404. ((int16_t *)(tensor->data))[i] = value;
  2405. } break;
  2406. case GGML_TYPE_I32:
  2407. {
  2408. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2409. ((int32_t *)(tensor->data))[i] = value;
  2410. } break;
  2411. case GGML_TYPE_F16:
  2412. {
  2413. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2414. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2415. } break;
  2416. case GGML_TYPE_F32:
  2417. {
  2418. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2419. ((float *)(tensor->data))[i] = value;
  2420. } break;
  2421. default:
  2422. {
  2423. GGML_ASSERT(false);
  2424. } break;
  2425. }
  2426. }
  2427. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2428. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2429. switch (tensor->type) {
  2430. case GGML_TYPE_I8:
  2431. return ((int8_t *) data)[0];
  2432. case GGML_TYPE_I16:
  2433. return ((int16_t *) data)[0];
  2434. case GGML_TYPE_I32:
  2435. return ((int32_t *) data)[0];
  2436. case GGML_TYPE_F16:
  2437. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2438. case GGML_TYPE_F32:
  2439. return ((float *) data)[0];
  2440. default:
  2441. GGML_ASSERT(false);
  2442. }
  2443. return 0.0f;
  2444. }
  2445. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2446. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2447. switch (tensor->type) {
  2448. case GGML_TYPE_I8:
  2449. {
  2450. ((int8_t *)(data))[0] = value;
  2451. } break;
  2452. case GGML_TYPE_I16:
  2453. {
  2454. ((int16_t *)(data))[0] = value;
  2455. } break;
  2456. case GGML_TYPE_I32:
  2457. {
  2458. ((int32_t *)(data))[0] = value;
  2459. } break;
  2460. case GGML_TYPE_F16:
  2461. {
  2462. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2463. } break;
  2464. case GGML_TYPE_F32:
  2465. {
  2466. ((float *)(data))[0] = value;
  2467. } break;
  2468. default:
  2469. {
  2470. GGML_ASSERT(false);
  2471. } break;
  2472. }
  2473. }
  2474. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2475. if (!ggml_is_contiguous(tensor)) {
  2476. int64_t id[4] = { 0, 0, 0, 0 };
  2477. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2478. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2479. }
  2480. switch (tensor->type) {
  2481. case GGML_TYPE_I8:
  2482. {
  2483. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2484. return ((int8_t *)(tensor->data))[i];
  2485. }
  2486. case GGML_TYPE_I16:
  2487. {
  2488. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2489. return ((int16_t *)(tensor->data))[i];
  2490. }
  2491. case GGML_TYPE_I32:
  2492. {
  2493. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2494. return ((int32_t *)(tensor->data))[i];
  2495. }
  2496. case GGML_TYPE_F16:
  2497. {
  2498. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2499. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2500. }
  2501. case GGML_TYPE_F32:
  2502. {
  2503. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2504. return ((float *)(tensor->data))[i];
  2505. }
  2506. default:
  2507. {
  2508. GGML_ASSERT(false);
  2509. }
  2510. }
  2511. return 0.0f;
  2512. }
  2513. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2514. if (!ggml_is_contiguous(tensor)) {
  2515. int64_t id[4] = { 0, 0, 0, 0 };
  2516. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2517. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2518. return;
  2519. }
  2520. switch (tensor->type) {
  2521. case GGML_TYPE_I8:
  2522. {
  2523. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2524. ((int8_t *)(tensor->data))[i] = value;
  2525. } break;
  2526. case GGML_TYPE_I16:
  2527. {
  2528. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2529. ((int16_t *)(tensor->data))[i] = value;
  2530. } break;
  2531. case GGML_TYPE_I32:
  2532. {
  2533. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2534. ((int32_t *)(tensor->data))[i] = value;
  2535. } break;
  2536. case GGML_TYPE_F16:
  2537. {
  2538. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2539. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2540. } break;
  2541. case GGML_TYPE_F32:
  2542. {
  2543. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2544. ((float *)(tensor->data))[i] = value;
  2545. } break;
  2546. default:
  2547. {
  2548. GGML_ASSERT(false);
  2549. } break;
  2550. }
  2551. }
  2552. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2553. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2554. switch (tensor->type) {
  2555. case GGML_TYPE_I8:
  2556. return ((int8_t *) data)[0];
  2557. case GGML_TYPE_I16:
  2558. return ((int16_t *) data)[0];
  2559. case GGML_TYPE_I32:
  2560. return ((int32_t *) data)[0];
  2561. case GGML_TYPE_F16:
  2562. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2563. case GGML_TYPE_F32:
  2564. return ((float *) data)[0];
  2565. default:
  2566. GGML_ASSERT(false);
  2567. }
  2568. return 0.0f;
  2569. }
  2570. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2571. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2572. switch (tensor->type) {
  2573. case GGML_TYPE_I8:
  2574. {
  2575. ((int8_t *)(data))[0] = value;
  2576. } break;
  2577. case GGML_TYPE_I16:
  2578. {
  2579. ((int16_t *)(data))[0] = value;
  2580. } break;
  2581. case GGML_TYPE_I32:
  2582. {
  2583. ((int32_t *)(data))[0] = value;
  2584. } break;
  2585. case GGML_TYPE_F16:
  2586. {
  2587. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2588. } break;
  2589. case GGML_TYPE_F32:
  2590. {
  2591. ((float *)(data))[0] = value;
  2592. } break;
  2593. default:
  2594. {
  2595. GGML_ASSERT(false);
  2596. } break;
  2597. }
  2598. }
  2599. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2600. return tensor->data;
  2601. }
  2602. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2603. assert(tensor->type == GGML_TYPE_F32);
  2604. return (float *)(tensor->data);
  2605. }
  2606. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2607. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2608. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2609. }
  2610. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2611. return tensor->name;
  2612. }
  2613. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2614. strncpy(tensor->name, name, sizeof(tensor->name));
  2615. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2616. return tensor;
  2617. }
  2618. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2619. va_list args;
  2620. va_start(args, fmt);
  2621. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2622. va_end(args);
  2623. return tensor;
  2624. }
  2625. struct ggml_tensor * ggml_view_tensor(
  2626. struct ggml_context * ctx,
  2627. struct ggml_tensor * src) {
  2628. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2629. ggml_format_name(result, "%s (view)", src->name);
  2630. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2631. result->nb[i] = src->nb[i];
  2632. }
  2633. return result;
  2634. }
  2635. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2636. struct ggml_object * obj = ctx->objects_begin;
  2637. char * const mem_buffer = ctx->mem_buffer;
  2638. while (obj != NULL) {
  2639. if (obj->type == GGML_OBJECT_TENSOR) {
  2640. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2641. }
  2642. obj = obj->next;
  2643. }
  2644. return NULL;
  2645. }
  2646. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2647. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2648. obj = obj->next;
  2649. char * const mem_buffer = ctx->mem_buffer;
  2650. while (obj != NULL) {
  2651. if (obj->type == GGML_OBJECT_TENSOR) {
  2652. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2653. }
  2654. obj = obj->next;
  2655. }
  2656. return NULL;
  2657. }
  2658. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2659. struct ggml_object * obj = ctx->objects_begin;
  2660. char * const mem_buffer = ctx->mem_buffer;
  2661. while (obj != NULL) {
  2662. if (obj->type == GGML_OBJECT_TENSOR) {
  2663. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2664. if (strcmp(cur->name, name) == 0) {
  2665. return cur;
  2666. }
  2667. }
  2668. obj = obj->next;
  2669. }
  2670. return NULL;
  2671. }
  2672. ////////////////////////////////////////////////////////////////////////////////
  2673. // ggml_dup
  2674. static struct ggml_tensor * ggml_dup_impl(
  2675. struct ggml_context * ctx,
  2676. struct ggml_tensor * a,
  2677. bool inplace) {
  2678. bool is_node = false;
  2679. if (!inplace && (a->grad)) {
  2680. is_node = true;
  2681. }
  2682. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2683. result->op = GGML_OP_DUP;
  2684. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2685. result->src[0] = a;
  2686. return result;
  2687. }
  2688. struct ggml_tensor * ggml_dup(
  2689. struct ggml_context * ctx,
  2690. struct ggml_tensor * a) {
  2691. return ggml_dup_impl(ctx, a, false);
  2692. }
  2693. struct ggml_tensor * ggml_dup_inplace(
  2694. struct ggml_context * ctx,
  2695. struct ggml_tensor * a) {
  2696. return ggml_dup_impl(ctx, a, true);
  2697. }
  2698. // ggml_add
  2699. static struct ggml_tensor * ggml_add_impl(
  2700. struct ggml_context * ctx,
  2701. struct ggml_tensor * a,
  2702. struct ggml_tensor * b,
  2703. bool inplace) {
  2704. GGML_ASSERT(ggml_can_repeat(b, a));
  2705. bool is_node = false;
  2706. if (!inplace && (a->grad || b->grad)) {
  2707. // TODO: support backward pass for broadcasting
  2708. GGML_ASSERT(ggml_are_same_shape(a, b));
  2709. is_node = true;
  2710. }
  2711. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2712. result->op = GGML_OP_ADD;
  2713. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2714. result->src[0] = a;
  2715. result->src[1] = b;
  2716. return result;
  2717. }
  2718. struct ggml_tensor * ggml_add(
  2719. struct ggml_context * ctx,
  2720. struct ggml_tensor * a,
  2721. struct ggml_tensor * b) {
  2722. return ggml_add_impl(ctx, a, b, false);
  2723. }
  2724. struct ggml_tensor * ggml_add_inplace(
  2725. struct ggml_context * ctx,
  2726. struct ggml_tensor * a,
  2727. struct ggml_tensor * b) {
  2728. return ggml_add_impl(ctx, a, b, true);
  2729. }
  2730. // ggml_add_cast
  2731. static struct ggml_tensor * ggml_add_cast_impl(
  2732. struct ggml_context * ctx,
  2733. struct ggml_tensor * a,
  2734. struct ggml_tensor * b,
  2735. enum ggml_type type) {
  2736. // TODO: support less-strict constraint
  2737. // GGML_ASSERT(ggml_can_repeat(b, a));
  2738. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2739. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2740. bool is_node = false;
  2741. if (a->grad || b->grad) {
  2742. // TODO: support backward pass for broadcasting
  2743. GGML_ASSERT(ggml_are_same_shape(a, b));
  2744. is_node = true;
  2745. }
  2746. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  2747. result->op = GGML_OP_ADD;
  2748. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  2749. result->src[0] = a;
  2750. result->src[1] = b;
  2751. return result;
  2752. }
  2753. struct ggml_tensor * ggml_add_cast(
  2754. struct ggml_context * ctx,
  2755. struct ggml_tensor * a,
  2756. struct ggml_tensor * b,
  2757. enum ggml_type type) {
  2758. return ggml_add_cast_impl(ctx, a, b, type);
  2759. }
  2760. // ggml_add1
  2761. static struct ggml_tensor * ggml_add1_impl(
  2762. struct ggml_context * ctx,
  2763. struct ggml_tensor * a,
  2764. struct ggml_tensor * b,
  2765. bool inplace) {
  2766. GGML_ASSERT(ggml_is_scalar(b));
  2767. GGML_ASSERT(ggml_is_padded_1d(a));
  2768. bool is_node = false;
  2769. if (a->grad || b->grad) {
  2770. is_node = true;
  2771. }
  2772. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2773. result->op = GGML_OP_ADD1;
  2774. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2775. result->src[0] = a;
  2776. result->src[1] = b;
  2777. return result;
  2778. }
  2779. struct ggml_tensor * ggml_add1(
  2780. struct ggml_context * ctx,
  2781. struct ggml_tensor * a,
  2782. struct ggml_tensor * b) {
  2783. return ggml_add1_impl(ctx, a, b, false);
  2784. }
  2785. struct ggml_tensor * ggml_add1_inplace(
  2786. struct ggml_context * ctx,
  2787. struct ggml_tensor * a,
  2788. struct ggml_tensor * b) {
  2789. return ggml_add1_impl(ctx, a, b, true);
  2790. }
  2791. // ggml_acc
  2792. static struct ggml_tensor * ggml_acc_impl(
  2793. struct ggml_context * ctx,
  2794. struct ggml_tensor * a,
  2795. struct ggml_tensor * b,
  2796. size_t nb1,
  2797. size_t nb2,
  2798. size_t nb3,
  2799. size_t offset,
  2800. bool inplace) {
  2801. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2802. GGML_ASSERT(ggml_is_contiguous(a));
  2803. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2804. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2805. bool is_node = false;
  2806. if (!inplace && (a->grad || b->grad)) {
  2807. is_node = true;
  2808. }
  2809. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2810. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2811. ggml_set_op_params(result, params, sizeof(params));
  2812. result->op = GGML_OP_ACC;
  2813. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2814. result->src[0] = a;
  2815. result->src[1] = b;
  2816. return result;
  2817. }
  2818. struct ggml_tensor * ggml_acc(
  2819. struct ggml_context * ctx,
  2820. struct ggml_tensor * a,
  2821. struct ggml_tensor * b,
  2822. size_t nb1,
  2823. size_t nb2,
  2824. size_t nb3,
  2825. size_t offset) {
  2826. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  2827. }
  2828. struct ggml_tensor * ggml_acc_inplace(
  2829. struct ggml_context * ctx,
  2830. struct ggml_tensor * a,
  2831. struct ggml_tensor * b,
  2832. size_t nb1,
  2833. size_t nb2,
  2834. size_t nb3,
  2835. size_t offset) {
  2836. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  2837. }
  2838. // ggml_sub
  2839. static struct ggml_tensor * ggml_sub_impl(
  2840. struct ggml_context * ctx,
  2841. struct ggml_tensor * a,
  2842. struct ggml_tensor * b,
  2843. bool inplace) {
  2844. GGML_ASSERT(ggml_are_same_shape(a, b));
  2845. bool is_node = false;
  2846. if (!inplace && (a->grad || b->grad)) {
  2847. is_node = true;
  2848. }
  2849. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2850. result->op = GGML_OP_SUB;
  2851. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2852. result->src[0] = a;
  2853. result->src[1] = b;
  2854. return result;
  2855. }
  2856. struct ggml_tensor * ggml_sub(
  2857. struct ggml_context * ctx,
  2858. struct ggml_tensor * a,
  2859. struct ggml_tensor * b) {
  2860. return ggml_sub_impl(ctx, a, b, false);
  2861. }
  2862. struct ggml_tensor * ggml_sub_inplace(
  2863. struct ggml_context * ctx,
  2864. struct ggml_tensor * a,
  2865. struct ggml_tensor * b) {
  2866. return ggml_sub_impl(ctx, a, b, true);
  2867. }
  2868. // ggml_mul
  2869. static struct ggml_tensor * ggml_mul_impl(
  2870. struct ggml_context * ctx,
  2871. struct ggml_tensor * a,
  2872. struct ggml_tensor * b,
  2873. bool inplace) {
  2874. GGML_ASSERT(ggml_can_repeat(b, a));
  2875. bool is_node = false;
  2876. if (!inplace && (a->grad || b->grad)) {
  2877. // TODO: support backward pass for broadcasting
  2878. GGML_ASSERT(ggml_are_same_shape(a, b));
  2879. is_node = true;
  2880. }
  2881. if (inplace) {
  2882. GGML_ASSERT(!is_node);
  2883. }
  2884. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2885. result->op = GGML_OP_MUL;
  2886. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2887. result->src[0] = a;
  2888. result->src[1] = b;
  2889. return result;
  2890. }
  2891. struct ggml_tensor * ggml_mul(
  2892. struct ggml_context * ctx,
  2893. struct ggml_tensor * a,
  2894. struct ggml_tensor * b) {
  2895. return ggml_mul_impl(ctx, a, b, false);
  2896. }
  2897. struct ggml_tensor * ggml_mul_inplace(
  2898. struct ggml_context * ctx,
  2899. struct ggml_tensor * a,
  2900. struct ggml_tensor * b) {
  2901. return ggml_mul_impl(ctx, a, b, true);
  2902. }
  2903. // ggml_div
  2904. static struct ggml_tensor * ggml_div_impl(
  2905. struct ggml_context * ctx,
  2906. struct ggml_tensor * a,
  2907. struct ggml_tensor * b,
  2908. bool inplace) {
  2909. GGML_ASSERT(ggml_can_repeat(b, a));
  2910. bool is_node = false;
  2911. if (!inplace && (a->grad || b->grad)) {
  2912. is_node = true;
  2913. }
  2914. if (inplace) {
  2915. GGML_ASSERT(!is_node);
  2916. }
  2917. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2918. result->op = GGML_OP_DIV;
  2919. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2920. result->src[0] = a;
  2921. result->src[1] = b;
  2922. return result;
  2923. }
  2924. struct ggml_tensor * ggml_div(
  2925. struct ggml_context * ctx,
  2926. struct ggml_tensor * a,
  2927. struct ggml_tensor * b) {
  2928. return ggml_div_impl(ctx, a, b, false);
  2929. }
  2930. struct ggml_tensor * ggml_div_inplace(
  2931. struct ggml_context * ctx,
  2932. struct ggml_tensor * a,
  2933. struct ggml_tensor * b) {
  2934. return ggml_div_impl(ctx, a, b, true);
  2935. }
  2936. // ggml_sqr
  2937. static struct ggml_tensor * ggml_sqr_impl(
  2938. struct ggml_context * ctx,
  2939. struct ggml_tensor * a,
  2940. bool inplace) {
  2941. bool is_node = false;
  2942. if (!inplace && (a->grad)) {
  2943. is_node = true;
  2944. }
  2945. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2946. result->op = GGML_OP_SQR;
  2947. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2948. result->src[0] = a;
  2949. return result;
  2950. }
  2951. struct ggml_tensor * ggml_sqr(
  2952. struct ggml_context * ctx,
  2953. struct ggml_tensor * a) {
  2954. return ggml_sqr_impl(ctx, a, false);
  2955. }
  2956. struct ggml_tensor * ggml_sqr_inplace(
  2957. struct ggml_context * ctx,
  2958. struct ggml_tensor * a) {
  2959. return ggml_sqr_impl(ctx, a, true);
  2960. }
  2961. // ggml_sqrt
  2962. static struct ggml_tensor * ggml_sqrt_impl(
  2963. struct ggml_context * ctx,
  2964. struct ggml_tensor * a,
  2965. bool inplace) {
  2966. bool is_node = false;
  2967. if (!inplace && (a->grad)) {
  2968. is_node = true;
  2969. }
  2970. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2971. result->op = GGML_OP_SQRT;
  2972. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2973. result->src[0] = a;
  2974. return result;
  2975. }
  2976. struct ggml_tensor * ggml_sqrt(
  2977. struct ggml_context * ctx,
  2978. struct ggml_tensor * a) {
  2979. return ggml_sqrt_impl(ctx, a, false);
  2980. }
  2981. struct ggml_tensor * ggml_sqrt_inplace(
  2982. struct ggml_context * ctx,
  2983. struct ggml_tensor * a) {
  2984. return ggml_sqrt_impl(ctx, a, true);
  2985. }
  2986. // ggml_log
  2987. static struct ggml_tensor * ggml_log_impl(
  2988. struct ggml_context * ctx,
  2989. struct ggml_tensor * a,
  2990. bool inplace) {
  2991. bool is_node = false;
  2992. if (!inplace && (a->grad)) {
  2993. is_node = true;
  2994. }
  2995. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2996. result->op = GGML_OP_LOG;
  2997. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2998. result->src[0] = a;
  2999. return result;
  3000. }
  3001. struct ggml_tensor * ggml_log(
  3002. struct ggml_context * ctx,
  3003. struct ggml_tensor * a) {
  3004. return ggml_log_impl(ctx, a, false);
  3005. }
  3006. struct ggml_tensor * ggml_log_inplace(
  3007. struct ggml_context * ctx,
  3008. struct ggml_tensor * a) {
  3009. return ggml_log_impl(ctx, a, true);
  3010. }
  3011. // ggml_sum
  3012. struct ggml_tensor * ggml_sum(
  3013. struct ggml_context * ctx,
  3014. struct ggml_tensor * a) {
  3015. bool is_node = false;
  3016. if (a->grad) {
  3017. is_node = true;
  3018. }
  3019. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3020. result->op = GGML_OP_SUM;
  3021. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3022. result->src[0] = a;
  3023. return result;
  3024. }
  3025. // ggml_sum_rows
  3026. struct ggml_tensor * ggml_sum_rows(
  3027. struct ggml_context * ctx,
  3028. struct ggml_tensor * a) {
  3029. bool is_node = false;
  3030. if (a->grad) {
  3031. is_node = true;
  3032. }
  3033. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3034. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3035. ne[i] = a->ne[i];
  3036. }
  3037. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3038. result->op = GGML_OP_SUM_ROWS;
  3039. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3040. result->src[0] = a;
  3041. return result;
  3042. }
  3043. // ggml_mean
  3044. struct ggml_tensor * ggml_mean(
  3045. struct ggml_context * ctx,
  3046. struct ggml_tensor * a) {
  3047. bool is_node = false;
  3048. if (a->grad) {
  3049. GGML_ASSERT(false); // TODO: implement
  3050. is_node = true;
  3051. }
  3052. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3053. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3054. result->op = GGML_OP_MEAN;
  3055. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3056. result->src[0] = a;
  3057. return result;
  3058. }
  3059. // ggml_argmax
  3060. struct ggml_tensor * ggml_argmax(
  3061. struct ggml_context * ctx,
  3062. struct ggml_tensor * a) {
  3063. GGML_ASSERT(ggml_is_matrix(a));
  3064. bool is_node = false;
  3065. if (a->grad) {
  3066. GGML_ASSERT(false);
  3067. is_node = true;
  3068. }
  3069. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3070. result->op = GGML_OP_ARGMAX;
  3071. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3072. result->src[0] = a;
  3073. return result;
  3074. }
  3075. // ggml_repeat
  3076. struct ggml_tensor * ggml_repeat(
  3077. struct ggml_context * ctx,
  3078. struct ggml_tensor * a,
  3079. struct ggml_tensor * b) {
  3080. GGML_ASSERT(ggml_can_repeat(a, b));
  3081. bool is_node = false;
  3082. if (a->grad) {
  3083. is_node = true;
  3084. }
  3085. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3086. result->op = GGML_OP_REPEAT;
  3087. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3088. result->src[0] = a;
  3089. return result;
  3090. }
  3091. // ggml_repeat_back
  3092. struct ggml_tensor * ggml_repeat_back(
  3093. struct ggml_context * ctx,
  3094. struct ggml_tensor * a,
  3095. struct ggml_tensor * b) {
  3096. GGML_ASSERT(ggml_can_repeat(b, a));
  3097. bool is_node = false;
  3098. if (a->grad) {
  3099. is_node = true;
  3100. }
  3101. if (ggml_are_same_shape(a, b) && !is_node) {
  3102. return a;
  3103. }
  3104. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3105. result->op = GGML_OP_REPEAT_BACK;
  3106. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3107. result->src[0] = a;
  3108. return result;
  3109. }
  3110. // ggml_concat
  3111. struct ggml_tensor * ggml_concat(
  3112. struct ggml_context* ctx,
  3113. struct ggml_tensor* a,
  3114. struct ggml_tensor* b) {
  3115. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3116. bool is_node = false;
  3117. if (a->grad || b->grad) {
  3118. is_node = true;
  3119. }
  3120. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3121. result->op = GGML_OP_CONCAT;
  3122. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3123. result->src[0] = a;
  3124. result->src[1] = b;
  3125. return result;
  3126. }
  3127. // ggml_abs
  3128. struct ggml_tensor * ggml_abs(
  3129. struct ggml_context * ctx,
  3130. struct ggml_tensor * a) {
  3131. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3132. }
  3133. struct ggml_tensor * ggml_abs_inplace(
  3134. struct ggml_context * ctx,
  3135. struct ggml_tensor * a) {
  3136. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3137. }
  3138. // ggml_sgn
  3139. struct ggml_tensor * ggml_sgn(
  3140. struct ggml_context * ctx,
  3141. struct ggml_tensor * a) {
  3142. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3143. }
  3144. struct ggml_tensor * ggml_sgn_inplace(
  3145. struct ggml_context * ctx,
  3146. struct ggml_tensor * a) {
  3147. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3148. }
  3149. // ggml_neg
  3150. struct ggml_tensor * ggml_neg(
  3151. struct ggml_context * ctx,
  3152. struct ggml_tensor * a) {
  3153. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3154. }
  3155. struct ggml_tensor * ggml_neg_inplace(
  3156. struct ggml_context * ctx,
  3157. struct ggml_tensor * a) {
  3158. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3159. }
  3160. // ggml_step
  3161. struct ggml_tensor * ggml_step(
  3162. struct ggml_context * ctx,
  3163. struct ggml_tensor * a) {
  3164. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3165. }
  3166. struct ggml_tensor * ggml_step_inplace(
  3167. struct ggml_context * ctx,
  3168. struct ggml_tensor * a) {
  3169. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3170. }
  3171. // ggml_tanh
  3172. struct ggml_tensor * ggml_tanh(
  3173. struct ggml_context * ctx,
  3174. struct ggml_tensor * a) {
  3175. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3176. }
  3177. struct ggml_tensor * ggml_tanh_inplace(
  3178. struct ggml_context * ctx,
  3179. struct ggml_tensor * a) {
  3180. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3181. }
  3182. // ggml_elu
  3183. struct ggml_tensor * ggml_elu(
  3184. struct ggml_context * ctx,
  3185. struct ggml_tensor * a) {
  3186. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3187. }
  3188. struct ggml_tensor * ggml_elu_inplace(
  3189. struct ggml_context * ctx,
  3190. struct ggml_tensor * a) {
  3191. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3192. }
  3193. // ggml_relu
  3194. struct ggml_tensor * ggml_relu(
  3195. struct ggml_context * ctx,
  3196. struct ggml_tensor * a) {
  3197. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3198. }
  3199. struct ggml_tensor * ggml_relu_inplace(
  3200. struct ggml_context * ctx,
  3201. struct ggml_tensor * a) {
  3202. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3203. }
  3204. // ggml_leaky_relu
  3205. struct ggml_tensor * ggml_leaky_relu(
  3206. struct ggml_context * ctx,
  3207. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3208. bool is_node = false;
  3209. if (!inplace && (a->grad)) {
  3210. is_node = true;
  3211. }
  3212. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3213. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3214. result->op = GGML_OP_LEAKY_RELU;
  3215. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3216. result->src[0] = a;
  3217. return result;
  3218. }
  3219. // ggml_gelu
  3220. struct ggml_tensor * ggml_gelu(
  3221. struct ggml_context * ctx,
  3222. struct ggml_tensor * a) {
  3223. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3224. }
  3225. struct ggml_tensor * ggml_gelu_inplace(
  3226. struct ggml_context * ctx,
  3227. struct ggml_tensor * a) {
  3228. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3229. }
  3230. // ggml_gelu_quick
  3231. struct ggml_tensor * ggml_gelu_quick(
  3232. struct ggml_context * ctx,
  3233. struct ggml_tensor * a) {
  3234. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3235. }
  3236. struct ggml_tensor * ggml_gelu_quick_inplace(
  3237. struct ggml_context * ctx,
  3238. struct ggml_tensor * a) {
  3239. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3240. }
  3241. // ggml_silu
  3242. struct ggml_tensor * ggml_silu(
  3243. struct ggml_context * ctx,
  3244. struct ggml_tensor * a) {
  3245. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3246. }
  3247. struct ggml_tensor * ggml_silu_inplace(
  3248. struct ggml_context * ctx,
  3249. struct ggml_tensor * a) {
  3250. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3251. }
  3252. // ggml_silu_back
  3253. struct ggml_tensor * ggml_silu_back(
  3254. struct ggml_context * ctx,
  3255. struct ggml_tensor * a,
  3256. struct ggml_tensor * b) {
  3257. bool is_node = false;
  3258. if (a->grad || b->grad) {
  3259. // TODO: implement backward
  3260. is_node = true;
  3261. }
  3262. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3263. result->op = GGML_OP_SILU_BACK;
  3264. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3265. result->src[0] = a;
  3266. result->src[1] = b;
  3267. return result;
  3268. }
  3269. // ggml_norm
  3270. static struct ggml_tensor * ggml_norm_impl(
  3271. struct ggml_context * ctx,
  3272. struct ggml_tensor * a,
  3273. float eps,
  3274. bool inplace) {
  3275. bool is_node = false;
  3276. if (!inplace && (a->grad)) {
  3277. GGML_ASSERT(false); // TODO: implement backward
  3278. is_node = true;
  3279. }
  3280. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3281. ggml_set_op_params(result, &eps, sizeof(eps));
  3282. result->op = GGML_OP_NORM;
  3283. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3284. result->src[0] = a;
  3285. return result;
  3286. }
  3287. struct ggml_tensor * ggml_norm(
  3288. struct ggml_context * ctx,
  3289. struct ggml_tensor * a,
  3290. float eps) {
  3291. return ggml_norm_impl(ctx, a, eps, false);
  3292. }
  3293. struct ggml_tensor * ggml_norm_inplace(
  3294. struct ggml_context * ctx,
  3295. struct ggml_tensor * a,
  3296. float eps) {
  3297. return ggml_norm_impl(ctx, a, eps, true);
  3298. }
  3299. // ggml_rms_norm
  3300. static struct ggml_tensor * ggml_rms_norm_impl(
  3301. struct ggml_context * ctx,
  3302. struct ggml_tensor * a,
  3303. float eps,
  3304. bool inplace) {
  3305. bool is_node = false;
  3306. if (!inplace && (a->grad)) {
  3307. is_node = true;
  3308. }
  3309. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3310. ggml_set_op_params(result, &eps, sizeof(eps));
  3311. result->op = GGML_OP_RMS_NORM;
  3312. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3313. result->src[0] = a;
  3314. return result;
  3315. }
  3316. struct ggml_tensor * ggml_rms_norm(
  3317. struct ggml_context * ctx,
  3318. struct ggml_tensor * a,
  3319. float eps) {
  3320. return ggml_rms_norm_impl(ctx, a, eps, false);
  3321. }
  3322. struct ggml_tensor * ggml_rms_norm_inplace(
  3323. struct ggml_context * ctx,
  3324. struct ggml_tensor * a,
  3325. float eps) {
  3326. return ggml_rms_norm_impl(ctx, a, eps, true);
  3327. }
  3328. // ggml_rms_norm_back
  3329. struct ggml_tensor * ggml_rms_norm_back(
  3330. struct ggml_context * ctx,
  3331. struct ggml_tensor * a,
  3332. struct ggml_tensor * b,
  3333. float eps) {
  3334. bool is_node = false;
  3335. if (a->grad) {
  3336. // TODO: implement backward
  3337. is_node = true;
  3338. }
  3339. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3340. ggml_set_op_params(result, &eps, sizeof(eps));
  3341. result->op = GGML_OP_RMS_NORM_BACK;
  3342. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3343. result->src[0] = a;
  3344. result->src[1] = b;
  3345. return result;
  3346. }
  3347. // ggml_group_norm
  3348. static struct ggml_tensor * ggml_group_norm_impl(
  3349. struct ggml_context * ctx,
  3350. struct ggml_tensor * a,
  3351. int n_groups,
  3352. bool inplace) {
  3353. bool is_node = false;
  3354. if (!inplace && (a->grad)) {
  3355. GGML_ASSERT(false); // TODO: implement backward
  3356. is_node = true;
  3357. }
  3358. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3359. result->op_params[0] = n_groups;
  3360. result->op = GGML_OP_GROUP_NORM;
  3361. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3362. result->src[0] = a;
  3363. return result;
  3364. }
  3365. struct ggml_tensor * ggml_group_norm(
  3366. struct ggml_context * ctx,
  3367. struct ggml_tensor * a,
  3368. int n_groups) {
  3369. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3370. }
  3371. struct ggml_tensor * ggml_group_norm_inplace(
  3372. struct ggml_context * ctx,
  3373. struct ggml_tensor * a,
  3374. int n_groups) {
  3375. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3376. }
  3377. // ggml_mul_mat
  3378. struct ggml_tensor * ggml_mul_mat(
  3379. struct ggml_context * ctx,
  3380. struct ggml_tensor * a,
  3381. struct ggml_tensor * b) {
  3382. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3383. GGML_ASSERT(!ggml_is_transposed(a));
  3384. bool is_node = false;
  3385. if (a->grad || b->grad) {
  3386. is_node = true;
  3387. }
  3388. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3389. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3390. result->op = GGML_OP_MUL_MAT;
  3391. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3392. result->src[0] = a;
  3393. result->src[1] = b;
  3394. return result;
  3395. }
  3396. void ggml_mul_mat_set_prec(
  3397. struct ggml_tensor * a,
  3398. enum ggml_prec prec) {
  3399. const int32_t prec_i32 = (int32_t) prec;
  3400. ggml_set_op_params_i32(a, 0, prec_i32);
  3401. }
  3402. // ggml_mul_mat_id
  3403. struct ggml_tensor * ggml_mul_mat_id(
  3404. struct ggml_context * ctx,
  3405. struct ggml_tensor * const as[],
  3406. int n_as,
  3407. struct ggml_tensor * ids,
  3408. int id,
  3409. struct ggml_tensor * b) {
  3410. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3411. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3412. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3413. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3414. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3415. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3416. bool is_node = false;
  3417. if (as[0]->grad || b->grad) {
  3418. is_node = true;
  3419. }
  3420. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3421. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3422. ggml_set_op_params_i32(result, 0, id);
  3423. ggml_set_op_params_i32(result, 1, n_as);
  3424. result->op = GGML_OP_MUL_MAT_ID;
  3425. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3426. result->src[0] = ids;
  3427. result->src[1] = b;
  3428. for (int i = 0; i < n_as; i++) {
  3429. struct ggml_tensor * a = as[i];
  3430. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3431. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3432. GGML_ASSERT(!ggml_is_transposed(a));
  3433. result->src[i + 2] = a;
  3434. }
  3435. return result;
  3436. }
  3437. // ggml_out_prod
  3438. struct ggml_tensor * ggml_out_prod(
  3439. struct ggml_context * ctx,
  3440. struct ggml_tensor * a,
  3441. struct ggml_tensor * b) {
  3442. GGML_ASSERT(ggml_can_out_prod(a, b));
  3443. GGML_ASSERT(!ggml_is_transposed(a));
  3444. bool is_node = false;
  3445. if (a->grad || b->grad) {
  3446. is_node = true;
  3447. }
  3448. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3449. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3450. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3451. result->op = GGML_OP_OUT_PROD;
  3452. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3453. result->src[0] = a;
  3454. result->src[1] = b;
  3455. return result;
  3456. }
  3457. // ggml_scale
  3458. static struct ggml_tensor * ggml_scale_impl(
  3459. struct ggml_context * ctx,
  3460. struct ggml_tensor * a,
  3461. float s,
  3462. bool inplace) {
  3463. GGML_ASSERT(ggml_is_padded_1d(a));
  3464. bool is_node = false;
  3465. if (a->grad) {
  3466. is_node = true;
  3467. }
  3468. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3469. ggml_set_op_params(result, &s, sizeof(s));
  3470. result->op = GGML_OP_SCALE;
  3471. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3472. result->src[0] = a;
  3473. return result;
  3474. }
  3475. struct ggml_tensor * ggml_scale(
  3476. struct ggml_context * ctx,
  3477. struct ggml_tensor * a,
  3478. float s) {
  3479. return ggml_scale_impl(ctx, a, s, false);
  3480. }
  3481. struct ggml_tensor * ggml_scale_inplace(
  3482. struct ggml_context * ctx,
  3483. struct ggml_tensor * a,
  3484. float s) {
  3485. return ggml_scale_impl(ctx, a, s, true);
  3486. }
  3487. // ggml_set
  3488. static struct ggml_tensor * ggml_set_impl(
  3489. struct ggml_context * ctx,
  3490. struct ggml_tensor * a,
  3491. struct ggml_tensor * b,
  3492. size_t nb1,
  3493. size_t nb2,
  3494. size_t nb3,
  3495. size_t offset,
  3496. bool inplace) {
  3497. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3498. bool is_node = false;
  3499. if (a->grad || b->grad) {
  3500. is_node = true;
  3501. }
  3502. // make a view of the destination
  3503. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3504. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3505. ggml_set_op_params(result, params, sizeof(params));
  3506. result->op = GGML_OP_SET;
  3507. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3508. result->src[0] = a;
  3509. result->src[1] = b;
  3510. return result;
  3511. }
  3512. struct ggml_tensor * ggml_set(
  3513. struct ggml_context * ctx,
  3514. struct ggml_tensor * a,
  3515. struct ggml_tensor * b,
  3516. size_t nb1,
  3517. size_t nb2,
  3518. size_t nb3,
  3519. size_t offset) {
  3520. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3521. }
  3522. struct ggml_tensor * ggml_set_inplace(
  3523. struct ggml_context * ctx,
  3524. struct ggml_tensor * a,
  3525. struct ggml_tensor * b,
  3526. size_t nb1,
  3527. size_t nb2,
  3528. size_t nb3,
  3529. size_t offset) {
  3530. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3531. }
  3532. struct ggml_tensor * ggml_set_1d(
  3533. struct ggml_context * ctx,
  3534. struct ggml_tensor * a,
  3535. struct ggml_tensor * b,
  3536. size_t offset) {
  3537. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3538. }
  3539. struct ggml_tensor * ggml_set_1d_inplace(
  3540. struct ggml_context * ctx,
  3541. struct ggml_tensor * a,
  3542. struct ggml_tensor * b,
  3543. size_t offset) {
  3544. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3545. }
  3546. struct ggml_tensor * ggml_set_2d(
  3547. struct ggml_context * ctx,
  3548. struct ggml_tensor * a,
  3549. struct ggml_tensor * b,
  3550. size_t nb1,
  3551. size_t offset) {
  3552. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3553. }
  3554. struct ggml_tensor * ggml_set_2d_inplace(
  3555. struct ggml_context * ctx,
  3556. struct ggml_tensor * a,
  3557. struct ggml_tensor * b,
  3558. size_t nb1,
  3559. size_t offset) {
  3560. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3561. }
  3562. // ggml_cpy
  3563. static struct ggml_tensor * ggml_cpy_impl(
  3564. struct ggml_context * ctx,
  3565. struct ggml_tensor * a,
  3566. struct ggml_tensor * b) {
  3567. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3568. bool is_node = false;
  3569. if (a->grad || b->grad) {
  3570. // inplace is false and either one have a grad
  3571. is_node = true;
  3572. }
  3573. // make a view of the destination
  3574. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3575. if (strlen(b->name) > 0) {
  3576. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3577. } else {
  3578. ggml_format_name(result, "%s (copy)", a->name);
  3579. }
  3580. result->op = GGML_OP_CPY;
  3581. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3582. result->src[0] = a;
  3583. result->src[1] = b;
  3584. return result;
  3585. }
  3586. struct ggml_tensor * ggml_cpy(
  3587. struct ggml_context * ctx,
  3588. struct ggml_tensor * a,
  3589. struct ggml_tensor * b) {
  3590. return ggml_cpy_impl(ctx, a, b);
  3591. }
  3592. // ggml_cont
  3593. static struct ggml_tensor * ggml_cont_impl(
  3594. struct ggml_context * ctx,
  3595. struct ggml_tensor * a) {
  3596. bool is_node = false;
  3597. if (a->grad) {
  3598. is_node = true;
  3599. }
  3600. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3601. ggml_format_name(result, "%s (cont)", a->name);
  3602. result->op = GGML_OP_CONT;
  3603. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3604. result->src[0] = a;
  3605. return result;
  3606. }
  3607. struct ggml_tensor * ggml_cont(
  3608. struct ggml_context * ctx,
  3609. struct ggml_tensor * a) {
  3610. return ggml_cont_impl(ctx, a);
  3611. }
  3612. // make contiguous, with new shape
  3613. GGML_API struct ggml_tensor * ggml_cont_1d(
  3614. struct ggml_context * ctx,
  3615. struct ggml_tensor * a,
  3616. int64_t ne0) {
  3617. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3618. }
  3619. GGML_API struct ggml_tensor * ggml_cont_2d(
  3620. struct ggml_context * ctx,
  3621. struct ggml_tensor * a,
  3622. int64_t ne0,
  3623. int64_t ne1) {
  3624. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3625. }
  3626. GGML_API struct ggml_tensor * ggml_cont_3d(
  3627. struct ggml_context * ctx,
  3628. struct ggml_tensor * a,
  3629. int64_t ne0,
  3630. int64_t ne1,
  3631. int64_t ne2) {
  3632. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3633. }
  3634. struct ggml_tensor * ggml_cont_4d(
  3635. struct ggml_context * ctx,
  3636. struct ggml_tensor * a,
  3637. int64_t ne0,
  3638. int64_t ne1,
  3639. int64_t ne2,
  3640. int64_t ne3) {
  3641. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3642. bool is_node = false;
  3643. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3644. ggml_format_name(result, "%s (cont)", a->name);
  3645. result->op = GGML_OP_CONT;
  3646. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3647. result->src[0] = a;
  3648. return result;
  3649. }
  3650. // ggml_reshape
  3651. struct ggml_tensor * ggml_reshape(
  3652. struct ggml_context * ctx,
  3653. struct ggml_tensor * a,
  3654. struct ggml_tensor * b) {
  3655. GGML_ASSERT(ggml_is_contiguous(a));
  3656. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3657. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3658. bool is_node = false;
  3659. if (a->grad) {
  3660. is_node = true;
  3661. }
  3662. if (b->grad) {
  3663. // gradient propagation is not supported
  3664. //GGML_ASSERT(false);
  3665. }
  3666. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  3667. ggml_format_name(result, "%s (reshaped)", a->name);
  3668. result->op = GGML_OP_RESHAPE;
  3669. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3670. result->src[0] = a;
  3671. return result;
  3672. }
  3673. struct ggml_tensor * ggml_reshape_1d(
  3674. struct ggml_context * ctx,
  3675. struct ggml_tensor * a,
  3676. int64_t ne0) {
  3677. GGML_ASSERT(ggml_is_contiguous(a));
  3678. GGML_ASSERT(ggml_nelements(a) == ne0);
  3679. bool is_node = false;
  3680. if (a->grad) {
  3681. is_node = true;
  3682. }
  3683. const int64_t ne[1] = { ne0 };
  3684. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3685. ggml_format_name(result, "%s (reshaped)", a->name);
  3686. result->op = GGML_OP_RESHAPE;
  3687. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3688. result->src[0] = a;
  3689. return result;
  3690. }
  3691. struct ggml_tensor * ggml_reshape_2d(
  3692. struct ggml_context * ctx,
  3693. struct ggml_tensor * a,
  3694. int64_t ne0,
  3695. int64_t ne1) {
  3696. GGML_ASSERT(ggml_is_contiguous(a));
  3697. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3698. bool is_node = false;
  3699. if (a->grad) {
  3700. is_node = true;
  3701. }
  3702. const int64_t ne[2] = { ne0, ne1 };
  3703. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3704. ggml_format_name(result, "%s (reshaped)", a->name);
  3705. result->op = GGML_OP_RESHAPE;
  3706. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3707. result->src[0] = a;
  3708. return result;
  3709. }
  3710. struct ggml_tensor * ggml_reshape_3d(
  3711. struct ggml_context * ctx,
  3712. struct ggml_tensor * a,
  3713. int64_t ne0,
  3714. int64_t ne1,
  3715. int64_t ne2) {
  3716. GGML_ASSERT(ggml_is_contiguous(a));
  3717. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3718. bool is_node = false;
  3719. if (a->grad) {
  3720. is_node = true;
  3721. }
  3722. const int64_t ne[3] = { ne0, ne1, ne2 };
  3723. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3724. ggml_format_name(result, "%s (reshaped)", a->name);
  3725. result->op = GGML_OP_RESHAPE;
  3726. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3727. result->src[0] = a;
  3728. return result;
  3729. }
  3730. struct ggml_tensor * ggml_reshape_4d(
  3731. struct ggml_context * ctx,
  3732. struct ggml_tensor * a,
  3733. int64_t ne0,
  3734. int64_t ne1,
  3735. int64_t ne2,
  3736. int64_t ne3) {
  3737. GGML_ASSERT(ggml_is_contiguous(a));
  3738. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3739. bool is_node = false;
  3740. if (a->grad) {
  3741. is_node = true;
  3742. }
  3743. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3744. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3745. ggml_format_name(result, "%s (reshaped)", a->name);
  3746. result->op = GGML_OP_RESHAPE;
  3747. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3748. result->src[0] = a;
  3749. return result;
  3750. }
  3751. static struct ggml_tensor * ggml_view_impl(
  3752. struct ggml_context * ctx,
  3753. struct ggml_tensor * a,
  3754. int n_dims,
  3755. const int64_t * ne,
  3756. size_t offset) {
  3757. bool is_node = false;
  3758. if (a->grad) {
  3759. is_node = true;
  3760. }
  3761. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3762. ggml_format_name(result, "%s (view)", a->name);
  3763. ggml_set_op_params(result, &offset, sizeof(offset));
  3764. result->op = GGML_OP_VIEW;
  3765. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3766. result->src[0] = a;
  3767. return result;
  3768. }
  3769. // ggml_view_1d
  3770. struct ggml_tensor * ggml_view_1d(
  3771. struct ggml_context * ctx,
  3772. struct ggml_tensor * a,
  3773. int64_t ne0,
  3774. size_t offset) {
  3775. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3776. return result;
  3777. }
  3778. // ggml_view_2d
  3779. struct ggml_tensor * ggml_view_2d(
  3780. struct ggml_context * ctx,
  3781. struct ggml_tensor * a,
  3782. int64_t ne0,
  3783. int64_t ne1,
  3784. size_t nb1,
  3785. size_t offset) {
  3786. const int64_t ne[2] = { ne0, ne1 };
  3787. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3788. result->nb[1] = nb1;
  3789. result->nb[2] = result->nb[1]*ne1;
  3790. result->nb[3] = result->nb[2];
  3791. return result;
  3792. }
  3793. // ggml_view_3d
  3794. struct ggml_tensor * ggml_view_3d(
  3795. struct ggml_context * ctx,
  3796. struct ggml_tensor * a,
  3797. int64_t ne0,
  3798. int64_t ne1,
  3799. int64_t ne2,
  3800. size_t nb1,
  3801. size_t nb2,
  3802. size_t offset) {
  3803. const int64_t ne[3] = { ne0, ne1, ne2 };
  3804. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  3805. result->nb[1] = nb1;
  3806. result->nb[2] = nb2;
  3807. result->nb[3] = result->nb[2]*ne2;
  3808. return result;
  3809. }
  3810. // ggml_view_4d
  3811. struct ggml_tensor * ggml_view_4d(
  3812. struct ggml_context * ctx,
  3813. struct ggml_tensor * a,
  3814. int64_t ne0,
  3815. int64_t ne1,
  3816. int64_t ne2,
  3817. int64_t ne3,
  3818. size_t nb1,
  3819. size_t nb2,
  3820. size_t nb3,
  3821. size_t offset) {
  3822. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3823. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  3824. result->nb[1] = nb1;
  3825. result->nb[2] = nb2;
  3826. result->nb[3] = nb3;
  3827. return result;
  3828. }
  3829. // ggml_permute
  3830. struct ggml_tensor * ggml_permute(
  3831. struct ggml_context * ctx,
  3832. struct ggml_tensor * a,
  3833. int axis0,
  3834. int axis1,
  3835. int axis2,
  3836. int axis3) {
  3837. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3838. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3839. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3840. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3841. GGML_ASSERT(axis0 != axis1);
  3842. GGML_ASSERT(axis0 != axis2);
  3843. GGML_ASSERT(axis0 != axis3);
  3844. GGML_ASSERT(axis1 != axis2);
  3845. GGML_ASSERT(axis1 != axis3);
  3846. GGML_ASSERT(axis2 != axis3);
  3847. bool is_node = false;
  3848. if (a->grad) {
  3849. is_node = true;
  3850. }
  3851. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3852. ggml_format_name(result, "%s (permuted)", a->name);
  3853. int ne[GGML_MAX_DIMS];
  3854. int nb[GGML_MAX_DIMS];
  3855. ne[axis0] = a->ne[0];
  3856. ne[axis1] = a->ne[1];
  3857. ne[axis2] = a->ne[2];
  3858. ne[axis3] = a->ne[3];
  3859. nb[axis0] = a->nb[0];
  3860. nb[axis1] = a->nb[1];
  3861. nb[axis2] = a->nb[2];
  3862. nb[axis3] = a->nb[3];
  3863. result->ne[0] = ne[0];
  3864. result->ne[1] = ne[1];
  3865. result->ne[2] = ne[2];
  3866. result->ne[3] = ne[3];
  3867. result->nb[0] = nb[0];
  3868. result->nb[1] = nb[1];
  3869. result->nb[2] = nb[2];
  3870. result->nb[3] = nb[3];
  3871. result->op = GGML_OP_PERMUTE;
  3872. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3873. result->src[0] = a;
  3874. int32_t params[] = { axis0, axis1, axis2, axis3 };
  3875. ggml_set_op_params(result, params, sizeof(params));
  3876. return result;
  3877. }
  3878. // ggml_transpose
  3879. struct ggml_tensor * ggml_transpose(
  3880. struct ggml_context * ctx,
  3881. struct ggml_tensor * a) {
  3882. bool is_node = false;
  3883. if (a->grad) {
  3884. is_node = true;
  3885. }
  3886. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3887. ggml_format_name(result, "%s (transposed)", a->name);
  3888. result->ne[0] = a->ne[1];
  3889. result->ne[1] = a->ne[0];
  3890. result->nb[0] = a->nb[1];
  3891. result->nb[1] = a->nb[0];
  3892. result->op = GGML_OP_TRANSPOSE;
  3893. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3894. result->src[0] = a;
  3895. return result;
  3896. }
  3897. // ggml_get_rows
  3898. struct ggml_tensor * ggml_get_rows(
  3899. struct ggml_context * ctx,
  3900. struct ggml_tensor * a,
  3901. struct ggml_tensor * b) {
  3902. GGML_ASSERT(a->ne[2] == b->ne[1]);
  3903. GGML_ASSERT(b->ne[3] == 1);
  3904. GGML_ASSERT(b->type == GGML_TYPE_I32);
  3905. bool is_node = false;
  3906. if (a->grad || b->grad) {
  3907. is_node = true;
  3908. }
  3909. // TODO: implement non F32 return
  3910. enum ggml_type type = GGML_TYPE_F32;
  3911. if (a->type == GGML_TYPE_I32) {
  3912. type = a->type;
  3913. }
  3914. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  3915. result->op = GGML_OP_GET_ROWS;
  3916. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3917. result->src[0] = a;
  3918. result->src[1] = b;
  3919. return result;
  3920. }
  3921. // ggml_get_rows_back
  3922. struct ggml_tensor * ggml_get_rows_back(
  3923. struct ggml_context * ctx,
  3924. struct ggml_tensor * a,
  3925. struct ggml_tensor * b,
  3926. struct ggml_tensor * c) {
  3927. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3928. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  3929. bool is_node = false;
  3930. if (a->grad || b->grad) {
  3931. is_node = true;
  3932. }
  3933. // TODO: implement non F32 return
  3934. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3935. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  3936. result->op = GGML_OP_GET_ROWS_BACK;
  3937. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3938. result->src[0] = a;
  3939. result->src[1] = b;
  3940. return result;
  3941. }
  3942. // ggml_diag
  3943. struct ggml_tensor * ggml_diag(
  3944. struct ggml_context * ctx,
  3945. struct ggml_tensor * a) {
  3946. GGML_ASSERT(a->ne[1] == 1);
  3947. bool is_node = false;
  3948. if (a->grad) {
  3949. is_node = true;
  3950. }
  3951. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  3952. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  3953. result->op = GGML_OP_DIAG;
  3954. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3955. result->src[0] = a;
  3956. return result;
  3957. }
  3958. // ggml_diag_mask_inf
  3959. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  3960. struct ggml_context * ctx,
  3961. struct ggml_tensor * a,
  3962. int n_past,
  3963. bool inplace) {
  3964. bool is_node = false;
  3965. if (a->grad) {
  3966. is_node = true;
  3967. }
  3968. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3969. int32_t params[] = { n_past };
  3970. ggml_set_op_params(result, params, sizeof(params));
  3971. result->op = GGML_OP_DIAG_MASK_INF;
  3972. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3973. result->src[0] = a;
  3974. return result;
  3975. }
  3976. struct ggml_tensor * ggml_diag_mask_inf(
  3977. struct ggml_context * ctx,
  3978. struct ggml_tensor * a,
  3979. int n_past) {
  3980. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  3981. }
  3982. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  3983. struct ggml_context * ctx,
  3984. struct ggml_tensor * a,
  3985. int n_past) {
  3986. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  3987. }
  3988. // ggml_diag_mask_zero
  3989. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  3990. struct ggml_context * ctx,
  3991. struct ggml_tensor * a,
  3992. int n_past,
  3993. bool inplace) {
  3994. bool is_node = false;
  3995. if (a->grad) {
  3996. is_node = true;
  3997. }
  3998. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3999. int32_t params[] = { n_past };
  4000. ggml_set_op_params(result, params, sizeof(params));
  4001. result->op = GGML_OP_DIAG_MASK_ZERO;
  4002. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4003. result->src[0] = a;
  4004. return result;
  4005. }
  4006. struct ggml_tensor * ggml_diag_mask_zero(
  4007. struct ggml_context * ctx,
  4008. struct ggml_tensor * a,
  4009. int n_past) {
  4010. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4011. }
  4012. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4013. struct ggml_context * ctx,
  4014. struct ggml_tensor * a,
  4015. int n_past) {
  4016. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4017. }
  4018. // ggml_soft_max
  4019. static struct ggml_tensor * ggml_soft_max_impl(
  4020. struct ggml_context * ctx,
  4021. struct ggml_tensor * a,
  4022. struct ggml_tensor * mask,
  4023. float scale,
  4024. bool inplace) {
  4025. GGML_ASSERT(ggml_is_contiguous(a));
  4026. if (mask) {
  4027. GGML_ASSERT(ggml_is_contiguous(mask));
  4028. GGML_ASSERT(mask->ne[2] == 1);
  4029. GGML_ASSERT(mask->ne[3] == 1);
  4030. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4031. }
  4032. bool is_node = false;
  4033. if (a->grad) {
  4034. is_node = true;
  4035. }
  4036. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4037. float params[] = { scale };
  4038. ggml_set_op_params(result, params, sizeof(params));
  4039. result->op = GGML_OP_SOFT_MAX;
  4040. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4041. result->src[0] = a;
  4042. result->src[1] = mask;
  4043. return result;
  4044. }
  4045. struct ggml_tensor * ggml_soft_max(
  4046. struct ggml_context * ctx,
  4047. struct ggml_tensor * a) {
  4048. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, false);
  4049. }
  4050. struct ggml_tensor * ggml_soft_max_inplace(
  4051. struct ggml_context * ctx,
  4052. struct ggml_tensor * a) {
  4053. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, true);
  4054. }
  4055. struct ggml_tensor * ggml_soft_max_ext(
  4056. struct ggml_context * ctx,
  4057. struct ggml_tensor * a,
  4058. struct ggml_tensor * mask,
  4059. float scale) {
  4060. return ggml_soft_max_impl(ctx, a, mask, scale, false);
  4061. }
  4062. // ggml_soft_max_back
  4063. static struct ggml_tensor * ggml_soft_max_back_impl(
  4064. struct ggml_context * ctx,
  4065. struct ggml_tensor * a,
  4066. struct ggml_tensor * b,
  4067. bool inplace) {
  4068. bool is_node = false;
  4069. if (a->grad || b->grad) {
  4070. is_node = true; // TODO : implement backward pass
  4071. }
  4072. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4073. result->op = GGML_OP_SOFT_MAX_BACK;
  4074. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4075. result->src[0] = a;
  4076. result->src[1] = b;
  4077. return result;
  4078. }
  4079. struct ggml_tensor * ggml_soft_max_back(
  4080. struct ggml_context * ctx,
  4081. struct ggml_tensor * a,
  4082. struct ggml_tensor * b) {
  4083. return ggml_soft_max_back_impl(ctx, a, b, false);
  4084. }
  4085. struct ggml_tensor * ggml_soft_max_back_inplace(
  4086. struct ggml_context * ctx,
  4087. struct ggml_tensor * a,
  4088. struct ggml_tensor * b) {
  4089. return ggml_soft_max_back_impl(ctx, a, b, true);
  4090. }
  4091. // ggml_rope
  4092. static struct ggml_tensor * ggml_rope_impl(
  4093. struct ggml_context * ctx,
  4094. struct ggml_tensor * a,
  4095. struct ggml_tensor * b,
  4096. int n_dims,
  4097. int mode,
  4098. int n_ctx,
  4099. int n_orig_ctx,
  4100. float freq_base,
  4101. float freq_scale,
  4102. float ext_factor,
  4103. float attn_factor,
  4104. float beta_fast,
  4105. float beta_slow,
  4106. float xpos_base,
  4107. bool xpos_down,
  4108. bool inplace) {
  4109. GGML_ASSERT(ggml_is_vector(b));
  4110. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4111. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4112. bool is_node = false;
  4113. if (a->grad) {
  4114. is_node = true;
  4115. }
  4116. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4117. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4118. memcpy(params + 5, &freq_base, sizeof(float));
  4119. memcpy(params + 6, &freq_scale, sizeof(float));
  4120. memcpy(params + 7, &ext_factor, sizeof(float));
  4121. memcpy(params + 8, &attn_factor, sizeof(float));
  4122. memcpy(params + 9, &beta_fast, sizeof(float));
  4123. memcpy(params + 10, &beta_slow, sizeof(float));
  4124. memcpy(params + 11, &xpos_base, sizeof(float));
  4125. memcpy(params + 12, &xpos_down, sizeof(bool));
  4126. ggml_set_op_params(result, params, sizeof(params));
  4127. result->op = GGML_OP_ROPE;
  4128. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4129. result->src[0] = a;
  4130. result->src[1] = b;
  4131. return result;
  4132. }
  4133. struct ggml_tensor * ggml_rope(
  4134. struct ggml_context * ctx,
  4135. struct ggml_tensor * a,
  4136. struct ggml_tensor * b,
  4137. int n_dims,
  4138. int mode,
  4139. int n_ctx) {
  4140. return ggml_rope_impl(
  4141. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4142. );
  4143. }
  4144. struct ggml_tensor * ggml_rope_inplace(
  4145. struct ggml_context * ctx,
  4146. struct ggml_tensor * a,
  4147. struct ggml_tensor * b,
  4148. int n_dims,
  4149. int mode,
  4150. int n_ctx) {
  4151. return ggml_rope_impl(
  4152. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4153. );
  4154. }
  4155. struct ggml_tensor * ggml_rope_custom(
  4156. struct ggml_context * ctx,
  4157. struct ggml_tensor * a,
  4158. struct ggml_tensor * b,
  4159. int n_dims,
  4160. int mode,
  4161. int n_ctx,
  4162. int n_orig_ctx,
  4163. float freq_base,
  4164. float freq_scale,
  4165. float ext_factor,
  4166. float attn_factor,
  4167. float beta_fast,
  4168. float beta_slow) {
  4169. return ggml_rope_impl(
  4170. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4171. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4172. );
  4173. }
  4174. struct ggml_tensor * ggml_rope_custom_inplace(
  4175. struct ggml_context * ctx,
  4176. struct ggml_tensor * a,
  4177. struct ggml_tensor * b,
  4178. int n_dims,
  4179. int mode,
  4180. int n_ctx,
  4181. int n_orig_ctx,
  4182. float freq_base,
  4183. float freq_scale,
  4184. float ext_factor,
  4185. float attn_factor,
  4186. float beta_fast,
  4187. float beta_slow) {
  4188. return ggml_rope_impl(
  4189. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4190. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4191. );
  4192. }
  4193. struct ggml_tensor * ggml_rope_xpos_inplace(
  4194. struct ggml_context * ctx,
  4195. struct ggml_tensor * a,
  4196. struct ggml_tensor * b,
  4197. int n_dims,
  4198. float base,
  4199. bool down) {
  4200. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4201. }
  4202. // ggml_rope_back
  4203. struct ggml_tensor * ggml_rope_back(
  4204. struct ggml_context * ctx,
  4205. struct ggml_tensor * a,
  4206. struct ggml_tensor * b,
  4207. int n_dims,
  4208. int mode,
  4209. int n_ctx,
  4210. int n_orig_ctx,
  4211. float freq_base,
  4212. float freq_scale,
  4213. float ext_factor,
  4214. float attn_factor,
  4215. float beta_fast,
  4216. float beta_slow,
  4217. float xpos_base,
  4218. bool xpos_down) {
  4219. GGML_ASSERT(ggml_is_vector(b));
  4220. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4221. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4222. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4223. bool is_node = false;
  4224. if (a->grad) {
  4225. is_node = false; // TODO: implement backward
  4226. }
  4227. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4228. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4229. memcpy(params + 5, &freq_base, sizeof(float));
  4230. memcpy(params + 6, &freq_scale, sizeof(float));
  4231. memcpy(params + 7, &ext_factor, sizeof(float));
  4232. memcpy(params + 8, &attn_factor, sizeof(float));
  4233. memcpy(params + 9, &beta_fast, sizeof(float));
  4234. memcpy(params + 10, &beta_slow, sizeof(float));
  4235. memcpy(params + 11, &xpos_base, sizeof(float));
  4236. memcpy(params + 12, &xpos_down, sizeof(bool));
  4237. ggml_set_op_params(result, params, sizeof(params));
  4238. result->op = GGML_OP_ROPE_BACK;
  4239. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4240. result->src[0] = a;
  4241. result->src[1] = b;
  4242. return result;
  4243. }
  4244. // ggml_alibi
  4245. struct ggml_tensor * ggml_alibi(
  4246. struct ggml_context * ctx,
  4247. struct ggml_tensor * a,
  4248. int n_past,
  4249. int n_head,
  4250. float bias_max) {
  4251. GGML_ASSERT(n_past >= 0);
  4252. bool is_node = false;
  4253. if (a->grad) {
  4254. GGML_ASSERT(false); // TODO: implement backward
  4255. is_node = true;
  4256. }
  4257. // TODO: when implement backward, fix this:
  4258. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4259. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4260. int32_t op_params[3] = { n_past, n_head };
  4261. memcpy(op_params + 2, &bias_max, sizeof(float));
  4262. ggml_set_op_params(result, op_params, sizeof(op_params));
  4263. result->op = GGML_OP_ALIBI;
  4264. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4265. result->src[0] = a;
  4266. return result;
  4267. }
  4268. // ggml_clamp
  4269. struct ggml_tensor * ggml_clamp(
  4270. struct ggml_context * ctx,
  4271. struct ggml_tensor * a,
  4272. float min,
  4273. float max) {
  4274. bool is_node = false;
  4275. if (a->grad) {
  4276. GGML_ASSERT(false); // TODO: implement backward
  4277. is_node = true;
  4278. }
  4279. // TODO: when implement backward, fix this:
  4280. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4281. float params[] = { min, max };
  4282. ggml_set_op_params(result, params, sizeof(params));
  4283. result->op = GGML_OP_CLAMP;
  4284. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4285. result->src[0] = a;
  4286. return result;
  4287. }
  4288. // ggml_conv_1d
  4289. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4290. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4291. }
  4292. GGML_API struct ggml_tensor * ggml_conv_1d(
  4293. struct ggml_context * ctx,
  4294. struct ggml_tensor * a,
  4295. struct ggml_tensor * b,
  4296. int s0,
  4297. int p0,
  4298. int d0) {
  4299. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false); // [N, OL, IC * K]
  4300. struct ggml_tensor * result =
  4301. ggml_mul_mat(ctx,
  4302. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4303. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4304. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4305. return result;
  4306. }
  4307. // ggml_conv_1d_ph
  4308. struct ggml_tensor* ggml_conv_1d_ph(
  4309. struct ggml_context * ctx,
  4310. struct ggml_tensor * a,
  4311. struct ggml_tensor * b,
  4312. int s,
  4313. int d) {
  4314. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4315. }
  4316. // ggml_conv_transpose_1d
  4317. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4318. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4319. }
  4320. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4321. struct ggml_context * ctx,
  4322. struct ggml_tensor * a,
  4323. struct ggml_tensor * b,
  4324. int s0,
  4325. int p0,
  4326. int d0) {
  4327. GGML_ASSERT(ggml_is_matrix(b));
  4328. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4329. GGML_ASSERT(a->ne[3] == 1);
  4330. GGML_ASSERT(p0 == 0);
  4331. GGML_ASSERT(d0 == 1);
  4332. bool is_node = false;
  4333. if (a->grad || b->grad) {
  4334. GGML_ASSERT(false); // TODO: implement backward
  4335. is_node = true;
  4336. }
  4337. const int64_t ne[4] = {
  4338. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4339. a->ne[1], b->ne[2], 1,
  4340. };
  4341. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4342. int32_t params[] = { s0, p0, d0 };
  4343. ggml_set_op_params(result, params, sizeof(params));
  4344. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4345. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4346. result->src[0] = a;
  4347. result->src[1] = b;
  4348. return result;
  4349. }
  4350. // ggml_conv_2d
  4351. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4352. // a: [OC,IC, KH, KW]
  4353. // b: [N, IC, IH, IW]
  4354. // result: [N, OH, OW, IC*KH*KW]
  4355. struct ggml_tensor * ggml_im2col(
  4356. struct ggml_context * ctx,
  4357. struct ggml_tensor * a,
  4358. struct ggml_tensor * b,
  4359. int s0,
  4360. int s1,
  4361. int p0,
  4362. int p1,
  4363. int d0,
  4364. int d1,
  4365. bool is_2D) {
  4366. if(is_2D) {
  4367. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4368. } else {
  4369. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4370. }
  4371. bool is_node = false;
  4372. if (a->grad || b->grad) {
  4373. GGML_ASSERT(false); // TODO: implement backward
  4374. is_node = true;
  4375. }
  4376. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4377. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4378. const int64_t ne[4] = {
  4379. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4380. OW,
  4381. is_2D ? OH : b->ne[2],
  4382. is_2D ? b->ne[3] : 1,
  4383. };
  4384. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
  4385. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4386. ggml_set_op_params(result, params, sizeof(params));
  4387. result->op = GGML_OP_IM2COL;
  4388. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4389. result->src[0] = a;
  4390. result->src[1] = b;
  4391. return result;
  4392. }
  4393. // a: [OC,IC, KH, KW]
  4394. // b: [N, IC, IH, IW]
  4395. // result: [N, OC, OH, OW]
  4396. struct ggml_tensor * ggml_conv_2d(
  4397. struct ggml_context * ctx,
  4398. struct ggml_tensor * a,
  4399. struct ggml_tensor * b,
  4400. int s0,
  4401. int s1,
  4402. int p0,
  4403. int p1,
  4404. int d0,
  4405. int d1) {
  4406. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true); // [N, OH, OW, IC * KH * KW]
  4407. struct ggml_tensor * result =
  4408. ggml_mul_mat(ctx,
  4409. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4410. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4411. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], a->ne[3], im2col->ne[3]); // [N, OC, OH, OW]
  4412. return result;
  4413. }
  4414. // ggml_conv_2d_sk_p0
  4415. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4416. struct ggml_context * ctx,
  4417. struct ggml_tensor * a,
  4418. struct ggml_tensor * b) {
  4419. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4420. }
  4421. // ggml_conv_2d_s1_ph
  4422. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4423. struct ggml_context * ctx,
  4424. struct ggml_tensor * a,
  4425. struct ggml_tensor * b) {
  4426. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4427. }
  4428. // ggml_conv_transpose_2d_p0
  4429. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4430. return (ins - 1) * s - 2 * p + ks;
  4431. }
  4432. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4433. struct ggml_context * ctx,
  4434. struct ggml_tensor * a,
  4435. struct ggml_tensor * b,
  4436. int stride) {
  4437. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4438. bool is_node = false;
  4439. if (a->grad || b->grad) {
  4440. GGML_ASSERT(false); // TODO: implement backward
  4441. is_node = true;
  4442. }
  4443. const int64_t ne[4] = {
  4444. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4445. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4446. a->ne[2], b->ne[3],
  4447. };
  4448. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4449. ggml_set_op_params_i32(result, 0, stride);
  4450. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4451. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4452. result->src[0] = a;
  4453. result->src[1] = b;
  4454. return result;
  4455. }
  4456. // ggml_pool_*
  4457. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4458. return (ins + 2 * p - ks) / s + 1;
  4459. }
  4460. // ggml_pool_1d
  4461. struct ggml_tensor * ggml_pool_1d(
  4462. struct ggml_context * ctx,
  4463. struct ggml_tensor * a,
  4464. enum ggml_op_pool op,
  4465. int k0,
  4466. int s0,
  4467. int p0) {
  4468. bool is_node = false;
  4469. if (a->grad) {
  4470. GGML_ASSERT(false); // TODO: implement backward
  4471. is_node = true;
  4472. }
  4473. const int64_t ne[2] = {
  4474. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4475. a->ne[1],
  4476. };
  4477. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4478. int32_t params[] = { op, k0, s0, p0 };
  4479. ggml_set_op_params(result, params, sizeof(params));
  4480. result->op = GGML_OP_POOL_1D;
  4481. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4482. result->src[0] = a;
  4483. return result;
  4484. }
  4485. // ggml_pool_2d
  4486. struct ggml_tensor * ggml_pool_2d(
  4487. struct ggml_context * ctx,
  4488. struct ggml_tensor * a,
  4489. enum ggml_op_pool op,
  4490. int k0,
  4491. int k1,
  4492. int s0,
  4493. int s1,
  4494. float p0,
  4495. float p1) {
  4496. bool is_node = false;
  4497. if (a->grad) {
  4498. GGML_ASSERT(false); // TODO: implement backward
  4499. is_node = true;
  4500. }
  4501. const int64_t ne[3] = {
  4502. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4503. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4504. a->ne[2],
  4505. };
  4506. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4507. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4508. ggml_set_op_params(result, params, sizeof(params));
  4509. result->op = GGML_OP_POOL_2D;
  4510. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4511. result->src[0] = a;
  4512. return result;
  4513. }
  4514. // ggml_upscale
  4515. static struct ggml_tensor * ggml_upscale_impl(
  4516. struct ggml_context * ctx,
  4517. struct ggml_tensor * a,
  4518. int scale_factor) {
  4519. bool is_node = false;
  4520. if (a->grad) {
  4521. GGML_ASSERT(false); // TODO: implement backward
  4522. is_node = true;
  4523. }
  4524. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4525. a->ne[0] * scale_factor,
  4526. a->ne[1] * scale_factor,
  4527. a->ne[2], a->ne[3]);
  4528. result->op = GGML_OP_UPSCALE;
  4529. result->op_params[0] = scale_factor;
  4530. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4531. result->src[0] = a;
  4532. return result;
  4533. }
  4534. struct ggml_tensor * ggml_pad(
  4535. struct ggml_context * ctx,
  4536. struct ggml_tensor * a,
  4537. int p0, int p1, int p2, int p3) {
  4538. bool is_node = false;
  4539. if (a->grad) {
  4540. GGML_ASSERT(false); // TODO: implement backward
  4541. is_node = true;
  4542. }
  4543. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4544. a->ne[0] + p0,
  4545. a->ne[1] + p1,
  4546. a->ne[2] + p2,
  4547. a->ne[3] + p3);
  4548. result->op = GGML_OP_PAD;
  4549. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4550. result->src[0] = a;
  4551. return result;
  4552. }
  4553. struct ggml_tensor * ggml_upscale(
  4554. struct ggml_context * ctx,
  4555. struct ggml_tensor * a,
  4556. int scale_factor) {
  4557. return ggml_upscale_impl(ctx, a, scale_factor);
  4558. }
  4559. // ggml_argsort
  4560. struct ggml_tensor * ggml_argsort(
  4561. struct ggml_context * ctx,
  4562. struct ggml_tensor * a,
  4563. enum ggml_sort_order order) {
  4564. bool is_node = false;
  4565. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4566. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4567. result->op = GGML_OP_ARGSORT;
  4568. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4569. result->src[0] = a;
  4570. return result;
  4571. }
  4572. // ggml_top_k
  4573. struct ggml_tensor * ggml_top_k(
  4574. struct ggml_context * ctx,
  4575. struct ggml_tensor * a,
  4576. int k) {
  4577. GGML_ASSERT(a->ne[0] >= k);
  4578. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_DESC);
  4579. result = ggml_view_4d(ctx, result,
  4580. k, result->ne[1], result->ne[2], result->ne[3],
  4581. result->nb[1], result->nb[2], result->nb[3],
  4582. 0);
  4583. return result;
  4584. }
  4585. // ggml_flash_attn
  4586. struct ggml_tensor * ggml_flash_attn(
  4587. struct ggml_context * ctx,
  4588. struct ggml_tensor * q,
  4589. struct ggml_tensor * k,
  4590. struct ggml_tensor * v,
  4591. bool masked) {
  4592. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4593. // TODO: check if vT can be multiplied by (k*qT)
  4594. bool is_node = false;
  4595. if (q->grad || k->grad || v->grad) {
  4596. is_node = true;
  4597. }
  4598. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4599. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  4600. int32_t t = masked ? 1 : 0;
  4601. ggml_set_op_params(result, &t, sizeof(t));
  4602. result->op = GGML_OP_FLASH_ATTN;
  4603. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4604. result->src[0] = q;
  4605. result->src[1] = k;
  4606. result->src[2] = v;
  4607. return result;
  4608. }
  4609. // ggml_flash_ff
  4610. struct ggml_tensor * ggml_flash_ff(
  4611. struct ggml_context * ctx,
  4612. struct ggml_tensor * a,
  4613. struct ggml_tensor * b0,
  4614. struct ggml_tensor * b1,
  4615. struct ggml_tensor * c0,
  4616. struct ggml_tensor * c1) {
  4617. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4618. // TODO: more checks
  4619. bool is_node = false;
  4620. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4621. is_node = true;
  4622. }
  4623. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4624. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  4625. result->op = GGML_OP_FLASH_FF;
  4626. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4627. result->src[0] = a;
  4628. result->src[1] = b0;
  4629. result->src[2] = b1;
  4630. result->src[3] = c0;
  4631. result->src[4] = c1;
  4632. return result;
  4633. }
  4634. // ggml_flash_attn_back
  4635. struct ggml_tensor * ggml_flash_attn_back(
  4636. struct ggml_context * ctx,
  4637. struct ggml_tensor * q,
  4638. struct ggml_tensor * k,
  4639. struct ggml_tensor * v,
  4640. struct ggml_tensor * d,
  4641. bool masked) {
  4642. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4643. // TODO: check if vT can be multiplied by (k*qT)
  4644. // d shape [D,N,ne2,ne3]
  4645. // q shape [D,N,ne2,ne3]
  4646. // k shape [D,M,kvne2,ne3]
  4647. // v shape [M,D,kvne2,ne3]
  4648. const int64_t D = q->ne[0];
  4649. const int64_t N = q->ne[1];
  4650. const int64_t M = k->ne[1];
  4651. const int64_t ne2 = q->ne[2];
  4652. const int64_t ne3 = q->ne[3];
  4653. const int64_t kvne2 = k->ne[2];
  4654. GGML_ASSERT(k->ne[0] == D);
  4655. GGML_ASSERT(v->ne[0] == M);
  4656. GGML_ASSERT(v->ne[1] == D);
  4657. GGML_ASSERT(d->ne[0] == D);
  4658. GGML_ASSERT(d->ne[1] == N);
  4659. GGML_ASSERT(k->ne[2] == kvne2);
  4660. GGML_ASSERT(k->ne[3] == ne3);
  4661. GGML_ASSERT(v->ne[2] == kvne2);
  4662. GGML_ASSERT(v->ne[3] == ne3);
  4663. GGML_ASSERT(d->ne[2] == ne2);
  4664. GGML_ASSERT(d->ne[3] == ne3);
  4665. GGML_ASSERT(ne2 % kvne2 == 0);
  4666. bool is_node = false;
  4667. if (q->grad || k->grad || v->grad) {
  4668. // when using this operation (in backwards pass) these grads are set.
  4669. // we don't want to create (big) grad of our result, so is_node is false.
  4670. is_node = false;
  4671. }
  4672. // store gradients of q, k and v as continuous tensors concatenated in result.
  4673. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4674. const int64_t elem_q = ggml_nelements(q);
  4675. const int64_t elem_k = ggml_nelements(k);
  4676. const int64_t elem_v = ggml_nelements(v);
  4677. enum ggml_type result_type = GGML_TYPE_F32;
  4678. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4679. const size_t tsize = ggml_type_size(result_type);
  4680. const size_t offs_q = 0;
  4681. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4682. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4683. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4684. const size_t nelements = (end + tsize - 1)/tsize;
  4685. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4686. int32_t masked_i = masked ? 1 : 0;
  4687. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4688. result->op = GGML_OP_FLASH_ATTN_BACK;
  4689. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4690. result->src[0] = q;
  4691. result->src[1] = k;
  4692. result->src[2] = v;
  4693. result->src[3] = d;
  4694. return result;
  4695. }
  4696. // ggml_win_part
  4697. struct ggml_tensor * ggml_win_part(
  4698. struct ggml_context * ctx,
  4699. struct ggml_tensor * a,
  4700. int w) {
  4701. GGML_ASSERT(a->ne[3] == 1);
  4702. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4703. bool is_node = false;
  4704. if (a->grad) {
  4705. GGML_ASSERT(false); // TODO: implement backward
  4706. is_node = true;
  4707. }
  4708. // padding
  4709. const int px = (w - a->ne[1]%w)%w;
  4710. const int py = (w - a->ne[2]%w)%w;
  4711. const int npx = (px + a->ne[1])/w;
  4712. const int npy = (py + a->ne[2])/w;
  4713. const int np = npx*npy;
  4714. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4715. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4716. int32_t params[] = { npx, npy, w };
  4717. ggml_set_op_params(result, params, sizeof(params));
  4718. result->op = GGML_OP_WIN_PART;
  4719. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4720. result->src[0] = a;
  4721. return result;
  4722. }
  4723. // ggml_win_unpart
  4724. struct ggml_tensor * ggml_win_unpart(
  4725. struct ggml_context * ctx,
  4726. struct ggml_tensor * a,
  4727. int w0,
  4728. int h0,
  4729. int w) {
  4730. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4731. bool is_node = false;
  4732. if (a->grad) {
  4733. GGML_ASSERT(false); // TODO: implement backward
  4734. is_node = true;
  4735. }
  4736. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4737. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4738. int32_t params[] = { w };
  4739. ggml_set_op_params(result, params, sizeof(params));
  4740. result->op = GGML_OP_WIN_UNPART;
  4741. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4742. result->src[0] = a;
  4743. return result;
  4744. }
  4745. // ggml_get_rel_pos
  4746. struct ggml_tensor * ggml_get_rel_pos(
  4747. struct ggml_context * ctx,
  4748. struct ggml_tensor * a,
  4749. int qh,
  4750. int kh) {
  4751. GGML_ASSERT(qh == kh);
  4752. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4753. bool is_node = false;
  4754. if (a->grad) {
  4755. GGML_ASSERT(false); // TODO: implement backward
  4756. is_node = true;
  4757. }
  4758. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4759. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4760. result->op = GGML_OP_GET_REL_POS;
  4761. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4762. result->src[0] = a;
  4763. return result;
  4764. }
  4765. // ggml_add_rel_pos
  4766. static struct ggml_tensor * ggml_add_rel_pos_impl(
  4767. struct ggml_context * ctx,
  4768. struct ggml_tensor * a,
  4769. struct ggml_tensor * pw,
  4770. struct ggml_tensor * ph,
  4771. bool inplace) {
  4772. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  4773. GGML_ASSERT(ggml_is_contiguous(a));
  4774. GGML_ASSERT(ggml_is_contiguous(pw));
  4775. GGML_ASSERT(ggml_is_contiguous(ph));
  4776. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  4777. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  4778. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  4779. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  4780. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  4781. bool is_node = false;
  4782. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  4783. is_node = true;
  4784. }
  4785. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4786. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  4787. result->op = GGML_OP_ADD_REL_POS;
  4788. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4789. result->src[0] = a;
  4790. result->src[1] = pw;
  4791. result->src[2] = ph;
  4792. return result;
  4793. }
  4794. struct ggml_tensor * ggml_add_rel_pos(
  4795. struct ggml_context * ctx,
  4796. struct ggml_tensor * a,
  4797. struct ggml_tensor * pw,
  4798. struct ggml_tensor * ph) {
  4799. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  4800. }
  4801. struct ggml_tensor * ggml_add_rel_pos_inplace(
  4802. struct ggml_context * ctx,
  4803. struct ggml_tensor * a,
  4804. struct ggml_tensor * pw,
  4805. struct ggml_tensor * ph) {
  4806. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  4807. }
  4808. // gmml_unary
  4809. static struct ggml_tensor * ggml_unary_impl(
  4810. struct ggml_context * ctx,
  4811. struct ggml_tensor * a,
  4812. enum ggml_unary_op op,
  4813. bool inplace) {
  4814. bool is_node = false;
  4815. if (!inplace && (a->grad)) {
  4816. is_node = true;
  4817. }
  4818. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4819. ggml_set_op_params_i32(result, 0, (int32_t) op);
  4820. result->op = GGML_OP_UNARY;
  4821. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4822. result->src[0] = a;
  4823. return result;
  4824. }
  4825. struct ggml_tensor * ggml_unary(
  4826. struct ggml_context * ctx,
  4827. struct ggml_tensor * a,
  4828. enum ggml_unary_op op) {
  4829. return ggml_unary_impl(ctx, a, op, false);
  4830. }
  4831. struct ggml_tensor * ggml_unary_inplace(
  4832. struct ggml_context * ctx,
  4833. struct ggml_tensor * a,
  4834. enum ggml_unary_op op) {
  4835. return ggml_unary_impl(ctx, a, op, true);
  4836. }
  4837. // ggml_map_unary
  4838. static struct ggml_tensor * ggml_map_unary_impl_f32(
  4839. struct ggml_context * ctx,
  4840. struct ggml_tensor * a,
  4841. const ggml_unary_op_f32_t fun,
  4842. bool inplace) {
  4843. bool is_node = false;
  4844. if (!inplace && a->grad) {
  4845. is_node = true;
  4846. }
  4847. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4848. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4849. result->op = GGML_OP_MAP_UNARY;
  4850. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4851. result->src[0] = a;
  4852. return result;
  4853. }
  4854. struct ggml_tensor * ggml_map_unary_f32(
  4855. struct ggml_context * ctx,
  4856. struct ggml_tensor * a,
  4857. const ggml_unary_op_f32_t fun) {
  4858. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4859. }
  4860. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4861. struct ggml_context * ctx,
  4862. struct ggml_tensor * a,
  4863. const ggml_unary_op_f32_t fun) {
  4864. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4865. }
  4866. // ggml_map_binary
  4867. static struct ggml_tensor * ggml_map_binary_impl_f32(
  4868. struct ggml_context * ctx,
  4869. struct ggml_tensor * a,
  4870. struct ggml_tensor * b,
  4871. const ggml_binary_op_f32_t fun,
  4872. bool inplace) {
  4873. GGML_ASSERT(ggml_are_same_shape(a, b));
  4874. bool is_node = false;
  4875. if (!inplace && (a->grad || b->grad)) {
  4876. is_node = true;
  4877. }
  4878. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4879. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4880. result->op = GGML_OP_MAP_BINARY;
  4881. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4882. result->src[0] = a;
  4883. result->src[1] = b;
  4884. return result;
  4885. }
  4886. struct ggml_tensor * ggml_map_binary_f32(
  4887. struct ggml_context * ctx,
  4888. struct ggml_tensor * a,
  4889. struct ggml_tensor * b,
  4890. const ggml_binary_op_f32_t fun) {
  4891. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4892. }
  4893. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4894. struct ggml_context * ctx,
  4895. struct ggml_tensor * a,
  4896. struct ggml_tensor * b,
  4897. const ggml_binary_op_f32_t fun) {
  4898. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4899. }
  4900. // ggml_map_custom1_f32
  4901. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  4902. struct ggml_context * ctx,
  4903. struct ggml_tensor * a,
  4904. const ggml_custom1_op_f32_t fun,
  4905. bool inplace) {
  4906. bool is_node = false;
  4907. if (!inplace && a->grad) {
  4908. is_node = true;
  4909. }
  4910. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4911. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4912. result->op = GGML_OP_MAP_CUSTOM1_F32;
  4913. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4914. result->src[0] = a;
  4915. return result;
  4916. }
  4917. struct ggml_tensor * ggml_map_custom1_f32(
  4918. struct ggml_context * ctx,
  4919. struct ggml_tensor * a,
  4920. const ggml_custom1_op_f32_t fun) {
  4921. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  4922. }
  4923. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  4924. struct ggml_context * ctx,
  4925. struct ggml_tensor * a,
  4926. const ggml_custom1_op_f32_t fun) {
  4927. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  4928. }
  4929. // ggml_map_custom2_f32
  4930. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  4931. struct ggml_context * ctx,
  4932. struct ggml_tensor * a,
  4933. struct ggml_tensor * b,
  4934. const ggml_custom2_op_f32_t fun,
  4935. bool inplace) {
  4936. bool is_node = false;
  4937. if (!inplace && (a->grad || b->grad)) {
  4938. is_node = true;
  4939. }
  4940. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4941. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4942. result->op = GGML_OP_MAP_CUSTOM2_F32;
  4943. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4944. result->src[0] = a;
  4945. result->src[1] = b;
  4946. return result;
  4947. }
  4948. struct ggml_tensor * ggml_map_custom2_f32(
  4949. struct ggml_context * ctx,
  4950. struct ggml_tensor * a,
  4951. struct ggml_tensor * b,
  4952. const ggml_custom2_op_f32_t fun) {
  4953. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  4954. }
  4955. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  4956. struct ggml_context * ctx,
  4957. struct ggml_tensor * a,
  4958. struct ggml_tensor * b,
  4959. const ggml_custom2_op_f32_t fun) {
  4960. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  4961. }
  4962. // ggml_map_custom3_f32
  4963. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  4964. struct ggml_context * ctx,
  4965. struct ggml_tensor * a,
  4966. struct ggml_tensor * b,
  4967. struct ggml_tensor * c,
  4968. const ggml_custom3_op_f32_t fun,
  4969. bool inplace) {
  4970. bool is_node = false;
  4971. if (!inplace && (a->grad || b->grad || c->grad)) {
  4972. is_node = true;
  4973. }
  4974. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4975. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4976. result->op = GGML_OP_MAP_CUSTOM3_F32;
  4977. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4978. result->src[0] = a;
  4979. result->src[1] = b;
  4980. result->src[2] = c;
  4981. return result;
  4982. }
  4983. struct ggml_tensor * ggml_map_custom3_f32(
  4984. struct ggml_context * ctx,
  4985. struct ggml_tensor * a,
  4986. struct ggml_tensor * b,
  4987. struct ggml_tensor * c,
  4988. const ggml_custom3_op_f32_t fun) {
  4989. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  4990. }
  4991. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  4992. struct ggml_context * ctx,
  4993. struct ggml_tensor * a,
  4994. struct ggml_tensor * b,
  4995. struct ggml_tensor * c,
  4996. const ggml_custom3_op_f32_t fun) {
  4997. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  4998. }
  4999. // ggml_map_custom1
  5000. struct ggml_map_custom1_op_params {
  5001. ggml_custom1_op_t fun;
  5002. int n_tasks;
  5003. void * userdata;
  5004. };
  5005. static struct ggml_tensor * ggml_map_custom1_impl(
  5006. struct ggml_context * ctx,
  5007. struct ggml_tensor * a,
  5008. const ggml_custom1_op_t fun,
  5009. int n_tasks,
  5010. void * userdata,
  5011. bool inplace) {
  5012. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5013. bool is_node = false;
  5014. if (!inplace && a->grad) {
  5015. is_node = true;
  5016. }
  5017. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5018. struct ggml_map_custom1_op_params params = {
  5019. /*.fun =*/ fun,
  5020. /*.n_tasks =*/ n_tasks,
  5021. /*.userdata =*/ userdata
  5022. };
  5023. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5024. result->op = GGML_OP_MAP_CUSTOM1;
  5025. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5026. result->src[0] = a;
  5027. return result;
  5028. }
  5029. struct ggml_tensor * ggml_map_custom1(
  5030. struct ggml_context * ctx,
  5031. struct ggml_tensor * a,
  5032. const ggml_custom1_op_t fun,
  5033. int n_tasks,
  5034. void * userdata) {
  5035. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5036. }
  5037. struct ggml_tensor * ggml_map_custom1_inplace(
  5038. struct ggml_context * ctx,
  5039. struct ggml_tensor * a,
  5040. const ggml_custom1_op_t fun,
  5041. int n_tasks,
  5042. void * userdata) {
  5043. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5044. }
  5045. // ggml_map_custom2
  5046. struct ggml_map_custom2_op_params {
  5047. ggml_custom2_op_t fun;
  5048. int n_tasks;
  5049. void * userdata;
  5050. };
  5051. static struct ggml_tensor * ggml_map_custom2_impl(
  5052. struct ggml_context * ctx,
  5053. struct ggml_tensor * a,
  5054. struct ggml_tensor * b,
  5055. const ggml_custom2_op_t fun,
  5056. int n_tasks,
  5057. void * userdata,
  5058. bool inplace) {
  5059. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5060. bool is_node = false;
  5061. if (!inplace && (a->grad || b->grad)) {
  5062. is_node = true;
  5063. }
  5064. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5065. struct ggml_map_custom2_op_params params = {
  5066. /*.fun =*/ fun,
  5067. /*.n_tasks =*/ n_tasks,
  5068. /*.userdata =*/ userdata
  5069. };
  5070. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5071. result->op = GGML_OP_MAP_CUSTOM2;
  5072. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5073. result->src[0] = a;
  5074. result->src[1] = b;
  5075. return result;
  5076. }
  5077. struct ggml_tensor * ggml_map_custom2(
  5078. struct ggml_context * ctx,
  5079. struct ggml_tensor * a,
  5080. struct ggml_tensor * b,
  5081. const ggml_custom2_op_t fun,
  5082. int n_tasks,
  5083. void * userdata) {
  5084. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5085. }
  5086. struct ggml_tensor * ggml_map_custom2_inplace(
  5087. struct ggml_context * ctx,
  5088. struct ggml_tensor * a,
  5089. struct ggml_tensor * b,
  5090. const ggml_custom2_op_t fun,
  5091. int n_tasks,
  5092. void * userdata) {
  5093. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5094. }
  5095. // ggml_map_custom3
  5096. struct ggml_map_custom3_op_params {
  5097. ggml_custom3_op_t fun;
  5098. int n_tasks;
  5099. void * userdata;
  5100. };
  5101. static struct ggml_tensor * ggml_map_custom3_impl(
  5102. struct ggml_context * ctx,
  5103. struct ggml_tensor * a,
  5104. struct ggml_tensor * b,
  5105. struct ggml_tensor * c,
  5106. const ggml_custom3_op_t fun,
  5107. int n_tasks,
  5108. void * userdata,
  5109. bool inplace) {
  5110. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5111. bool is_node = false;
  5112. if (!inplace && (a->grad || b->grad || c->grad)) {
  5113. is_node = true;
  5114. }
  5115. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5116. struct ggml_map_custom3_op_params params = {
  5117. /*.fun =*/ fun,
  5118. /*.n_tasks =*/ n_tasks,
  5119. /*.userdata =*/ userdata
  5120. };
  5121. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5122. result->op = GGML_OP_MAP_CUSTOM3;
  5123. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5124. result->src[0] = a;
  5125. result->src[1] = b;
  5126. result->src[2] = c;
  5127. return result;
  5128. }
  5129. struct ggml_tensor * ggml_map_custom3(
  5130. struct ggml_context * ctx,
  5131. struct ggml_tensor * a,
  5132. struct ggml_tensor * b,
  5133. struct ggml_tensor * c,
  5134. const ggml_custom3_op_t fun,
  5135. int n_tasks,
  5136. void * userdata) {
  5137. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5138. }
  5139. struct ggml_tensor * ggml_map_custom3_inplace(
  5140. struct ggml_context * ctx,
  5141. struct ggml_tensor * a,
  5142. struct ggml_tensor * b,
  5143. struct ggml_tensor * c,
  5144. const ggml_custom3_op_t fun,
  5145. int n_tasks,
  5146. void * userdata) {
  5147. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5148. }
  5149. // ggml_cross_entropy_loss
  5150. struct ggml_tensor * ggml_cross_entropy_loss(
  5151. struct ggml_context * ctx,
  5152. struct ggml_tensor * a,
  5153. struct ggml_tensor * b) {
  5154. GGML_ASSERT(ggml_are_same_shape(a, b));
  5155. bool is_node = false;
  5156. if (a->grad || b->grad) {
  5157. is_node = true;
  5158. }
  5159. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5160. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5161. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5162. result->src[0] = a;
  5163. result->src[1] = b;
  5164. return result;
  5165. }
  5166. // ggml_cross_entropy_loss_back
  5167. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5168. struct ggml_context * ctx,
  5169. struct ggml_tensor * a,
  5170. struct ggml_tensor * b,
  5171. struct ggml_tensor * c) {
  5172. GGML_ASSERT(ggml_are_same_shape(a, b));
  5173. GGML_ASSERT(ggml_is_scalar(c));
  5174. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5175. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5176. result->grad = NULL;
  5177. result->src[0] = a;
  5178. result->src[1] = b;
  5179. result->src[2] = c;
  5180. return result;
  5181. }
  5182. ////////////////////////////////////////////////////////////////////////////////
  5183. void ggml_set_param(
  5184. struct ggml_context * ctx,
  5185. struct ggml_tensor * tensor) {
  5186. tensor->is_param = true;
  5187. GGML_ASSERT(tensor->grad == NULL);
  5188. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5189. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5190. }
  5191. // ggml_compute_forward_dup
  5192. static void ggml_compute_forward_dup_same_cont(
  5193. const struct ggml_compute_params * params,
  5194. const struct ggml_tensor * src0,
  5195. struct ggml_tensor * dst) {
  5196. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5197. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5198. GGML_ASSERT(src0->type == dst->type);
  5199. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5200. return;
  5201. }
  5202. const size_t nb00 = src0->nb[0];
  5203. const size_t nb0 = dst->nb[0];
  5204. const int ith = params->ith; // thread index
  5205. const int nth = params->nth; // number of threads
  5206. // parallelize by elements
  5207. const int ne = ggml_nelements(dst);
  5208. const int dr = (ne + nth - 1) / nth;
  5209. const int ie0 = dr * ith;
  5210. const int ie1 = MIN(ie0 + dr, ne);
  5211. if (ie0 < ie1) {
  5212. memcpy(
  5213. ((char *) dst->data + ie0*nb0),
  5214. ((char *) src0->data + ie0*nb00),
  5215. (ie1 - ie0) * ggml_type_size(src0->type));
  5216. }
  5217. }
  5218. static void ggml_compute_forward_dup_f16(
  5219. const struct ggml_compute_params * params,
  5220. const struct ggml_tensor * src0,
  5221. struct ggml_tensor * dst) {
  5222. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5223. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5224. return;
  5225. }
  5226. GGML_TENSOR_UNARY_OP_LOCALS
  5227. const int ith = params->ith; // thread index
  5228. const int nth = params->nth; // number of threads
  5229. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5230. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5231. return;
  5232. }
  5233. // parallelize by rows
  5234. const int nr = ne01;
  5235. // number of rows per thread
  5236. const int dr = (nr + nth - 1) / nth;
  5237. // row range for this thread
  5238. const int ir0 = dr * ith;
  5239. const int ir1 = MIN(ir0 + dr, nr);
  5240. if (src0->type == dst->type &&
  5241. ne00 == ne0 &&
  5242. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5243. // copy by rows
  5244. const size_t rs = ne00*nb00;
  5245. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5246. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5247. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5248. memcpy(
  5249. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5250. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5251. rs);
  5252. }
  5253. }
  5254. }
  5255. return;
  5256. }
  5257. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5258. if (ggml_is_contiguous(dst)) {
  5259. if (nb00 == sizeof(ggml_fp16_t)) {
  5260. if (dst->type == GGML_TYPE_F16) {
  5261. size_t id = 0;
  5262. const size_t rs = ne00 * nb00;
  5263. char * dst_ptr = (char *) dst->data;
  5264. for (int i03 = 0; i03 < ne03; i03++) {
  5265. for (int i02 = 0; i02 < ne02; i02++) {
  5266. id += rs * ir0;
  5267. for (int i01 = ir0; i01 < ir1; i01++) {
  5268. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5269. memcpy(dst_ptr + id, src0_ptr, rs);
  5270. id += rs;
  5271. }
  5272. id += rs * (ne01 - ir1);
  5273. }
  5274. }
  5275. } else if (dst->type == GGML_TYPE_F32) {
  5276. size_t id = 0;
  5277. float * dst_ptr = (float *) dst->data;
  5278. for (int i03 = 0; i03 < ne03; i03++) {
  5279. for (int i02 = 0; i02 < ne02; i02++) {
  5280. id += ne00 * ir0;
  5281. for (int i01 = ir0; i01 < ir1; i01++) {
  5282. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5283. for (int i00 = 0; i00 < ne00; i00++) {
  5284. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5285. id++;
  5286. }
  5287. }
  5288. id += ne00 * (ne01 - ir1);
  5289. }
  5290. }
  5291. } else if (type_traits[dst->type].from_float) {
  5292. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5293. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5294. size_t id = 0;
  5295. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5296. char * dst_ptr = (char *) dst->data;
  5297. for (int i03 = 0; i03 < ne03; i03++) {
  5298. for (int i02 = 0; i02 < ne02; i02++) {
  5299. id += rs * ir0;
  5300. for (int i01 = ir0; i01 < ir1; i01++) {
  5301. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5302. for (int i00 = 0; i00 < ne00; i00++) {
  5303. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5304. }
  5305. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5306. id += rs;
  5307. }
  5308. id += rs * (ne01 - ir1);
  5309. }
  5310. }
  5311. } else {
  5312. GGML_ASSERT(false); // TODO: implement
  5313. }
  5314. } else {
  5315. //printf("%s: this is not optimal - fix me\n", __func__);
  5316. if (dst->type == GGML_TYPE_F32) {
  5317. size_t id = 0;
  5318. float * dst_ptr = (float *) dst->data;
  5319. for (int i03 = 0; i03 < ne03; i03++) {
  5320. for (int i02 = 0; i02 < ne02; i02++) {
  5321. id += ne00 * ir0;
  5322. for (int i01 = ir0; i01 < ir1; i01++) {
  5323. for (int i00 = 0; i00 < ne00; i00++) {
  5324. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5325. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5326. id++;
  5327. }
  5328. }
  5329. id += ne00 * (ne01 - ir1);
  5330. }
  5331. }
  5332. } else if (dst->type == GGML_TYPE_F16) {
  5333. size_t id = 0;
  5334. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5335. for (int i03 = 0; i03 < ne03; i03++) {
  5336. for (int i02 = 0; i02 < ne02; i02++) {
  5337. id += ne00 * ir0;
  5338. for (int i01 = ir0; i01 < ir1; i01++) {
  5339. for (int i00 = 0; i00 < ne00; i00++) {
  5340. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5341. dst_ptr[id] = *src0_ptr;
  5342. id++;
  5343. }
  5344. }
  5345. id += ne00 * (ne01 - ir1);
  5346. }
  5347. }
  5348. } else {
  5349. GGML_ASSERT(false); // TODO: implement
  5350. }
  5351. }
  5352. return;
  5353. }
  5354. // dst counters
  5355. int64_t i10 = 0;
  5356. int64_t i11 = 0;
  5357. int64_t i12 = 0;
  5358. int64_t i13 = 0;
  5359. if (dst->type == GGML_TYPE_F16) {
  5360. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5361. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5362. i10 += ne00 * ir0;
  5363. while (i10 >= ne0) {
  5364. i10 -= ne0;
  5365. if (++i11 == ne1) {
  5366. i11 = 0;
  5367. if (++i12 == ne2) {
  5368. i12 = 0;
  5369. if (++i13 == ne3) {
  5370. i13 = 0;
  5371. }
  5372. }
  5373. }
  5374. }
  5375. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5376. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5377. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5378. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5379. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5380. if (++i10 == ne00) {
  5381. i10 = 0;
  5382. if (++i11 == ne01) {
  5383. i11 = 0;
  5384. if (++i12 == ne02) {
  5385. i12 = 0;
  5386. if (++i13 == ne03) {
  5387. i13 = 0;
  5388. }
  5389. }
  5390. }
  5391. }
  5392. }
  5393. }
  5394. i10 += ne00 * (ne01 - ir1);
  5395. while (i10 >= ne0) {
  5396. i10 -= ne0;
  5397. if (++i11 == ne1) {
  5398. i11 = 0;
  5399. if (++i12 == ne2) {
  5400. i12 = 0;
  5401. if (++i13 == ne3) {
  5402. i13 = 0;
  5403. }
  5404. }
  5405. }
  5406. }
  5407. }
  5408. }
  5409. } else if (dst->type == GGML_TYPE_F32) {
  5410. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5411. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5412. i10 += ne00 * ir0;
  5413. while (i10 >= ne0) {
  5414. i10 -= ne0;
  5415. if (++i11 == ne1) {
  5416. i11 = 0;
  5417. if (++i12 == ne2) {
  5418. i12 = 0;
  5419. if (++i13 == ne3) {
  5420. i13 = 0;
  5421. }
  5422. }
  5423. }
  5424. }
  5425. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5426. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5427. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5428. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5429. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5430. if (++i10 == ne0) {
  5431. i10 = 0;
  5432. if (++i11 == ne1) {
  5433. i11 = 0;
  5434. if (++i12 == ne2) {
  5435. i12 = 0;
  5436. if (++i13 == ne3) {
  5437. i13 = 0;
  5438. }
  5439. }
  5440. }
  5441. }
  5442. }
  5443. }
  5444. i10 += ne00 * (ne01 - ir1);
  5445. while (i10 >= ne0) {
  5446. i10 -= ne0;
  5447. if (++i11 == ne1) {
  5448. i11 = 0;
  5449. if (++i12 == ne2) {
  5450. i12 = 0;
  5451. if (++i13 == ne3) {
  5452. i13 = 0;
  5453. }
  5454. }
  5455. }
  5456. }
  5457. }
  5458. }
  5459. } else {
  5460. GGML_ASSERT(false); // TODO: implement
  5461. }
  5462. }
  5463. static void ggml_compute_forward_dup_f32(
  5464. const struct ggml_compute_params * params,
  5465. const struct ggml_tensor * src0,
  5466. struct ggml_tensor * dst) {
  5467. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5468. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5469. return;
  5470. }
  5471. GGML_TENSOR_UNARY_OP_LOCALS
  5472. const int ith = params->ith; // thread index
  5473. const int nth = params->nth; // number of threads
  5474. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5475. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5476. return;
  5477. }
  5478. // parallelize by rows
  5479. const int nr = ne01;
  5480. // number of rows per thread
  5481. const int dr = (nr + nth - 1) / nth;
  5482. // row range for this thread
  5483. const int ir0 = dr * ith;
  5484. const int ir1 = MIN(ir0 + dr, nr);
  5485. if (src0->type == dst->type &&
  5486. ne00 == ne0 &&
  5487. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5488. // copy by rows
  5489. const size_t rs = ne00*nb00;
  5490. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5491. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5492. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5493. memcpy(
  5494. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5495. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5496. rs);
  5497. }
  5498. }
  5499. }
  5500. return;
  5501. }
  5502. if (ggml_is_contiguous(dst)) {
  5503. // TODO: simplify
  5504. if (nb00 == sizeof(float)) {
  5505. if (dst->type == GGML_TYPE_F32) {
  5506. size_t id = 0;
  5507. const size_t rs = ne00 * nb00;
  5508. char * dst_ptr = (char *) dst->data;
  5509. for (int i03 = 0; i03 < ne03; i03++) {
  5510. for (int i02 = 0; i02 < ne02; i02++) {
  5511. id += rs * ir0;
  5512. for (int i01 = ir0; i01 < ir1; i01++) {
  5513. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5514. memcpy(dst_ptr + id, src0_ptr, rs);
  5515. id += rs;
  5516. }
  5517. id += rs * (ne01 - ir1);
  5518. }
  5519. }
  5520. } else if (type_traits[dst->type].from_float) {
  5521. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5522. size_t id = 0;
  5523. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5524. char * dst_ptr = (char *) dst->data;
  5525. for (int i03 = 0; i03 < ne03; i03++) {
  5526. for (int i02 = 0; i02 < ne02; i02++) {
  5527. id += rs * ir0;
  5528. for (int i01 = ir0; i01 < ir1; i01++) {
  5529. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5530. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5531. id += rs;
  5532. }
  5533. id += rs * (ne01 - ir1);
  5534. }
  5535. }
  5536. } else {
  5537. GGML_ASSERT(false); // TODO: implement
  5538. }
  5539. } else {
  5540. //printf("%s: this is not optimal - fix me\n", __func__);
  5541. if (dst->type == GGML_TYPE_F32) {
  5542. size_t id = 0;
  5543. float * dst_ptr = (float *) dst->data;
  5544. for (int i03 = 0; i03 < ne03; i03++) {
  5545. for (int i02 = 0; i02 < ne02; i02++) {
  5546. id += ne00 * ir0;
  5547. for (int i01 = ir0; i01 < ir1; i01++) {
  5548. for (int i00 = 0; i00 < ne00; i00++) {
  5549. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5550. dst_ptr[id] = *src0_ptr;
  5551. id++;
  5552. }
  5553. }
  5554. id += ne00 * (ne01 - ir1);
  5555. }
  5556. }
  5557. } else if (dst->type == GGML_TYPE_F16) {
  5558. size_t id = 0;
  5559. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5560. for (int i03 = 0; i03 < ne03; i03++) {
  5561. for (int i02 = 0; i02 < ne02; i02++) {
  5562. id += ne00 * ir0;
  5563. for (int i01 = ir0; i01 < ir1; i01++) {
  5564. for (int i00 = 0; i00 < ne00; i00++) {
  5565. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5566. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5567. id++;
  5568. }
  5569. }
  5570. id += ne00 * (ne01 - ir1);
  5571. }
  5572. }
  5573. } else {
  5574. GGML_ASSERT(false); // TODO: implement
  5575. }
  5576. }
  5577. return;
  5578. }
  5579. // dst counters
  5580. int64_t i10 = 0;
  5581. int64_t i11 = 0;
  5582. int64_t i12 = 0;
  5583. int64_t i13 = 0;
  5584. if (dst->type == GGML_TYPE_F32) {
  5585. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5586. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5587. i10 += ne00 * ir0;
  5588. while (i10 >= ne0) {
  5589. i10 -= ne0;
  5590. if (++i11 == ne1) {
  5591. i11 = 0;
  5592. if (++i12 == ne2) {
  5593. i12 = 0;
  5594. if (++i13 == ne3) {
  5595. i13 = 0;
  5596. }
  5597. }
  5598. }
  5599. }
  5600. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5601. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5602. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5603. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5604. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5605. if (++i10 == ne0) {
  5606. i10 = 0;
  5607. if (++i11 == ne1) {
  5608. i11 = 0;
  5609. if (++i12 == ne2) {
  5610. i12 = 0;
  5611. if (++i13 == ne3) {
  5612. i13 = 0;
  5613. }
  5614. }
  5615. }
  5616. }
  5617. }
  5618. }
  5619. i10 += ne00 * (ne01 - ir1);
  5620. while (i10 >= ne0) {
  5621. i10 -= ne0;
  5622. if (++i11 == ne1) {
  5623. i11 = 0;
  5624. if (++i12 == ne2) {
  5625. i12 = 0;
  5626. if (++i13 == ne3) {
  5627. i13 = 0;
  5628. }
  5629. }
  5630. }
  5631. }
  5632. }
  5633. }
  5634. } else if (dst->type == GGML_TYPE_F16) {
  5635. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5636. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5637. i10 += ne00 * ir0;
  5638. while (i10 >= ne0) {
  5639. i10 -= ne0;
  5640. if (++i11 == ne1) {
  5641. i11 = 0;
  5642. if (++i12 == ne2) {
  5643. i12 = 0;
  5644. if (++i13 == ne3) {
  5645. i13 = 0;
  5646. }
  5647. }
  5648. }
  5649. }
  5650. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5651. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5652. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5653. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5654. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5655. if (++i10 == ne0) {
  5656. i10 = 0;
  5657. if (++i11 == ne1) {
  5658. i11 = 0;
  5659. if (++i12 == ne2) {
  5660. i12 = 0;
  5661. if (++i13 == ne3) {
  5662. i13 = 0;
  5663. }
  5664. }
  5665. }
  5666. }
  5667. }
  5668. }
  5669. i10 += ne00 * (ne01 - ir1);
  5670. while (i10 >= ne0) {
  5671. i10 -= ne0;
  5672. if (++i11 == ne1) {
  5673. i11 = 0;
  5674. if (++i12 == ne2) {
  5675. i12 = 0;
  5676. if (++i13 == ne3) {
  5677. i13 = 0;
  5678. }
  5679. }
  5680. }
  5681. }
  5682. }
  5683. }
  5684. } else {
  5685. GGML_ASSERT(false); // TODO: implement
  5686. }
  5687. }
  5688. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  5689. static void ggml_compute_forward_dup_bytes(
  5690. const struct ggml_compute_params * params,
  5691. const struct ggml_tensor * src0,
  5692. struct ggml_tensor * dst) {
  5693. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5694. GGML_ASSERT(src0->type == dst->type);
  5695. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5696. return;
  5697. }
  5698. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  5699. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5700. return;
  5701. }
  5702. GGML_TENSOR_UNARY_OP_LOCALS;
  5703. const size_t type_size = ggml_type_size(src0->type);
  5704. const int ith = params->ith; // thread index
  5705. const int nth = params->nth; // number of threads
  5706. // parallelize by rows
  5707. const int nr = ne01;
  5708. // number of rows per thread
  5709. const int dr = (nr + nth - 1) / nth;
  5710. // row range for this thread
  5711. const int ir0 = dr * ith;
  5712. const int ir1 = MIN(ir0 + dr, nr);
  5713. if (src0->type == dst->type &&
  5714. ne00 == ne0 &&
  5715. nb00 == type_size && nb0 == type_size) {
  5716. // copy by rows
  5717. const size_t rs = ne00 * type_size;
  5718. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5719. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5720. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5721. memcpy(
  5722. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5723. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5724. rs);
  5725. }
  5726. }
  5727. }
  5728. return;
  5729. }
  5730. if (ggml_is_contiguous(dst)) {
  5731. size_t id = 0;
  5732. char * dst_ptr = (char *) dst->data;
  5733. const size_t rs = ne00 * type_size;
  5734. if (nb00 == type_size) {
  5735. // src0 is contigous on first dimension, copy by rows
  5736. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5737. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5738. id += rs * ir0;
  5739. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5740. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5741. memcpy(dst_ptr + id, src0_ptr, rs);
  5742. id += rs;
  5743. }
  5744. id += rs * (ne01 - ir1);
  5745. }
  5746. }
  5747. } else {
  5748. //printf("%s: this is not optimal - fix me\n", __func__);
  5749. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5750. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5751. id += rs * ir0;
  5752. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5753. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5754. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  5755. memcpy(dst_ptr + id, src0_ptr, type_size);
  5756. id += type_size;
  5757. }
  5758. }
  5759. id += rs * (ne01 - ir1);
  5760. }
  5761. }
  5762. }
  5763. return;
  5764. }
  5765. // dst counters
  5766. int64_t i10 = 0;
  5767. int64_t i11 = 0;
  5768. int64_t i12 = 0;
  5769. int64_t i13 = 0;
  5770. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5771. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5772. i10 += ne00 * ir0;
  5773. while (i10 >= ne0) {
  5774. i10 -= ne0;
  5775. if (++i11 == ne1) {
  5776. i11 = 0;
  5777. if (++i12 == ne2) {
  5778. i12 = 0;
  5779. if (++i13 == ne3) {
  5780. i13 = 0;
  5781. }
  5782. }
  5783. }
  5784. }
  5785. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5786. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5787. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5788. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5789. memcpy(dst_ptr, src0_ptr, type_size);
  5790. if (++i10 == ne0) {
  5791. i10 = 0;
  5792. if (++i11 == ne1) {
  5793. i11 = 0;
  5794. if (++i12 == ne2) {
  5795. i12 = 0;
  5796. if (++i13 == ne3) {
  5797. i13 = 0;
  5798. }
  5799. }
  5800. }
  5801. }
  5802. }
  5803. }
  5804. i10 += ne00 * (ne01 - ir1);
  5805. while (i10 >= ne0) {
  5806. i10 -= ne0;
  5807. if (++i11 == ne1) {
  5808. i11 = 0;
  5809. if (++i12 == ne2) {
  5810. i12 = 0;
  5811. if (++i13 == ne3) {
  5812. i13 = 0;
  5813. }
  5814. }
  5815. }
  5816. }
  5817. }
  5818. }
  5819. }
  5820. static void ggml_compute_forward_dup(
  5821. const struct ggml_compute_params * params,
  5822. const struct ggml_tensor * src0,
  5823. struct ggml_tensor * dst) {
  5824. if (src0->type == dst->type) {
  5825. ggml_compute_forward_dup_bytes(params, src0, dst);
  5826. return;
  5827. }
  5828. switch (src0->type) {
  5829. case GGML_TYPE_F16:
  5830. {
  5831. ggml_compute_forward_dup_f16(params, src0, dst);
  5832. } break;
  5833. case GGML_TYPE_F32:
  5834. {
  5835. ggml_compute_forward_dup_f32(params, src0, dst);
  5836. } break;
  5837. default:
  5838. {
  5839. GGML_ASSERT(false);
  5840. } break;
  5841. }
  5842. }
  5843. // ggml_compute_forward_add
  5844. static void ggml_compute_forward_add_f32(
  5845. const struct ggml_compute_params * params,
  5846. const struct ggml_tensor * src0,
  5847. const struct ggml_tensor * src1,
  5848. struct ggml_tensor * dst) {
  5849. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  5850. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5851. return;
  5852. }
  5853. const int ith = params->ith;
  5854. const int nth = params->nth;
  5855. const int nr = ggml_nrows(src0);
  5856. GGML_TENSOR_BINARY_OP_LOCALS
  5857. GGML_ASSERT( nb0 == sizeof(float));
  5858. GGML_ASSERT(nb00 == sizeof(float));
  5859. // rows per thread
  5860. const int dr = (nr + nth - 1)/nth;
  5861. // row range for this thread
  5862. const int ir0 = dr*ith;
  5863. const int ir1 = MIN(ir0 + dr, nr);
  5864. if (nb10 == sizeof(float)) {
  5865. for (int ir = ir0; ir < ir1; ++ir) {
  5866. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5867. const int64_t i03 = ir/(ne02*ne01);
  5868. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5869. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5870. const int64_t i13 = i03 % ne13;
  5871. const int64_t i12 = i02 % ne12;
  5872. const int64_t i11 = i01 % ne11;
  5873. const int64_t nr0 = ne00 / ne10;
  5874. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5875. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5876. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  5877. for (int64_t r = 0; r < nr0; ++r) {
  5878. #ifdef GGML_USE_ACCELERATE
  5879. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  5880. #else
  5881. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  5882. #endif
  5883. }
  5884. }
  5885. } else {
  5886. // src1 is not contiguous
  5887. for (int ir = ir0; ir < ir1; ++ir) {
  5888. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5889. const int64_t i03 = ir/(ne02*ne01);
  5890. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5891. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5892. const int64_t i13 = i03 % ne13;
  5893. const int64_t i12 = i02 % ne12;
  5894. const int64_t i11 = i01 % ne11;
  5895. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5896. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5897. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  5898. const int64_t i10 = i0 % ne10;
  5899. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  5900. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5901. }
  5902. }
  5903. }
  5904. }
  5905. static void ggml_compute_forward_add_f16_f32(
  5906. const struct ggml_compute_params * params,
  5907. const struct ggml_tensor * src0,
  5908. const struct ggml_tensor * src1,
  5909. struct ggml_tensor * dst) {
  5910. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5911. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5912. return;
  5913. }
  5914. const int ith = params->ith;
  5915. const int nth = params->nth;
  5916. const int nr = ggml_nrows(src0);
  5917. GGML_TENSOR_BINARY_OP_LOCALS
  5918. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5919. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5920. if (dst->type == GGML_TYPE_F32) {
  5921. GGML_ASSERT( nb0 == sizeof(float));
  5922. }
  5923. else {
  5924. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5925. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5926. }
  5927. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5928. // rows per thread
  5929. const int dr = (nr + nth - 1)/nth;
  5930. // row range for this thread
  5931. const int ir0 = dr*ith;
  5932. const int ir1 = MIN(ir0 + dr, nr);
  5933. if (nb10 == sizeof(float)) {
  5934. if (dst->type == GGML_TYPE_F16) {
  5935. for (int ir = ir0; ir < ir1; ++ir) {
  5936. // src0, src1 and dst are same shape => same indices
  5937. const int i3 = ir/(ne2*ne1);
  5938. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5939. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5940. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5941. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5942. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5943. for (int i = 0; i < ne0; i++) {
  5944. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5945. }
  5946. }
  5947. } else {
  5948. for (int ir = ir0; ir < ir1; ++ir) {
  5949. // src0, src1 and dst are same shape => same indices
  5950. const int i3 = ir/(ne2*ne1);
  5951. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5952. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5953. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5954. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5955. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5956. for (int i = 0; i < ne0; i++) {
  5957. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  5958. }
  5959. }
  5960. }
  5961. }
  5962. else {
  5963. // src1 is not contiguous
  5964. GGML_ASSERT(false);
  5965. }
  5966. }
  5967. static void ggml_compute_forward_add_f16_f16(
  5968. const struct ggml_compute_params * params,
  5969. const struct ggml_tensor * src0,
  5970. const struct ggml_tensor * src1,
  5971. struct ggml_tensor * dst) {
  5972. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5973. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5974. return;
  5975. }
  5976. const int ith = params->ith;
  5977. const int nth = params->nth;
  5978. const int nr = ggml_nrows(src0);
  5979. GGML_TENSOR_BINARY_OP_LOCALS
  5980. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5981. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5982. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5983. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5984. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5985. // rows per thread
  5986. const int dr = (nr + nth - 1)/nth;
  5987. // row range for this thread
  5988. const int ir0 = dr*ith;
  5989. const int ir1 = MIN(ir0 + dr, nr);
  5990. if (nb10 == sizeof(ggml_fp16_t)) {
  5991. for (int ir = ir0; ir < ir1; ++ir) {
  5992. // src0, src1 and dst are same shape => same indices
  5993. const int i3 = ir/(ne2*ne1);
  5994. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5995. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5996. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5997. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5998. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5999. for (int i = 0; i < ne0; i++) {
  6000. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6001. }
  6002. }
  6003. }
  6004. else {
  6005. // src1 is not contiguous
  6006. GGML_ASSERT(false);
  6007. }
  6008. }
  6009. static void ggml_compute_forward_add_q_f32(
  6010. const struct ggml_compute_params * params,
  6011. const struct ggml_tensor * src0,
  6012. const struct ggml_tensor * src1,
  6013. struct ggml_tensor * dst) {
  6014. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6015. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6016. return;
  6017. }
  6018. const int nr = ggml_nrows(src0);
  6019. GGML_TENSOR_BINARY_OP_LOCALS
  6020. const int ith = params->ith;
  6021. const int nth = params->nth;
  6022. const enum ggml_type type = src0->type;
  6023. const enum ggml_type dtype = dst->type;
  6024. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6025. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6026. // we don't support permuted src0 or src1
  6027. GGML_ASSERT(nb00 == ggml_type_size(type));
  6028. GGML_ASSERT(nb10 == sizeof(float));
  6029. // dst cannot be transposed or permuted
  6030. GGML_ASSERT(nb0 <= nb1);
  6031. GGML_ASSERT(nb1 <= nb2);
  6032. GGML_ASSERT(nb2 <= nb3);
  6033. GGML_ASSERT(ggml_is_quantized(src0->type));
  6034. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6035. // rows per thread
  6036. const int dr = (nr + nth - 1)/nth;
  6037. // row range for this thread
  6038. const int ir0 = dr*ith;
  6039. const int ir1 = MIN(ir0 + dr, nr);
  6040. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6041. for (int ir = ir0; ir < ir1; ++ir) {
  6042. // src0 indices
  6043. const int i03 = ir/(ne02*ne01);
  6044. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6045. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6046. // src1 and dst are same shape as src0 => same indices
  6047. const int i13 = i03;
  6048. const int i12 = i02;
  6049. const int i11 = i01;
  6050. const int i3 = i03;
  6051. const int i2 = i02;
  6052. const int i1 = i01;
  6053. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6054. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6055. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6056. assert(ne00 % 32 == 0);
  6057. // unquantize row from src0 to temp buffer
  6058. dequantize_row_q(src0_row, wdata, ne00);
  6059. // add src1
  6060. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6061. // quantize row to dst
  6062. if (quantize_row_q != NULL) {
  6063. quantize_row_q(wdata, dst_row, ne00);
  6064. } else {
  6065. memcpy(dst_row, wdata, ne0*nb0);
  6066. }
  6067. }
  6068. }
  6069. static void ggml_compute_forward_add(
  6070. const struct ggml_compute_params * params,
  6071. const struct ggml_tensor * src0,
  6072. const struct ggml_tensor * src1,
  6073. struct ggml_tensor * dst) {
  6074. switch (src0->type) {
  6075. case GGML_TYPE_F32:
  6076. {
  6077. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6078. } break;
  6079. case GGML_TYPE_F16:
  6080. {
  6081. if (src1->type == GGML_TYPE_F16) {
  6082. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6083. }
  6084. else if (src1->type == GGML_TYPE_F32) {
  6085. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6086. }
  6087. else {
  6088. GGML_ASSERT(false);
  6089. }
  6090. } break;
  6091. case GGML_TYPE_Q4_0:
  6092. case GGML_TYPE_Q4_1:
  6093. case GGML_TYPE_Q5_0:
  6094. case GGML_TYPE_Q5_1:
  6095. case GGML_TYPE_Q8_0:
  6096. case GGML_TYPE_Q2_K:
  6097. case GGML_TYPE_Q3_K:
  6098. case GGML_TYPE_Q4_K:
  6099. case GGML_TYPE_Q5_K:
  6100. case GGML_TYPE_Q6_K:
  6101. case GGML_TYPE_IQ2_XXS:
  6102. case GGML_TYPE_IQ2_XS:
  6103. {
  6104. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6105. } break;
  6106. default:
  6107. {
  6108. GGML_ASSERT(false);
  6109. } break;
  6110. }
  6111. }
  6112. // ggml_compute_forward_add1
  6113. static void ggml_compute_forward_add1_f32(
  6114. const struct ggml_compute_params * params,
  6115. const struct ggml_tensor * src0,
  6116. const struct ggml_tensor * src1,
  6117. struct ggml_tensor * dst) {
  6118. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6119. GGML_ASSERT(ggml_is_scalar(src1));
  6120. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6121. return;
  6122. }
  6123. const int ith = params->ith;
  6124. const int nth = params->nth;
  6125. const int nr = ggml_nrows(src0);
  6126. GGML_TENSOR_UNARY_OP_LOCALS
  6127. GGML_ASSERT( nb0 == sizeof(float));
  6128. GGML_ASSERT(nb00 == sizeof(float));
  6129. // rows per thread
  6130. const int dr = (nr + nth - 1)/nth;
  6131. // row range for this thread
  6132. const int ir0 = dr*ith;
  6133. const int ir1 = MIN(ir0 + dr, nr);
  6134. for (int ir = ir0; ir < ir1; ++ir) {
  6135. // src0 and dst are same shape => same indices
  6136. const int i3 = ir/(ne2*ne1);
  6137. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6138. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6139. #ifdef GGML_USE_ACCELERATE
  6140. UNUSED(ggml_vec_add1_f32);
  6141. vDSP_vadd(
  6142. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6143. (float *) ((char *) src1->data), 0,
  6144. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6145. ne0);
  6146. #else
  6147. ggml_vec_add1_f32(ne0,
  6148. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6149. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6150. *(float *) src1->data);
  6151. #endif
  6152. }
  6153. }
  6154. static void ggml_compute_forward_add1_f16_f32(
  6155. const struct ggml_compute_params * params,
  6156. const struct ggml_tensor * src0,
  6157. const struct ggml_tensor * src1,
  6158. struct ggml_tensor * dst) {
  6159. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6160. GGML_ASSERT(ggml_is_scalar(src1));
  6161. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6162. return;
  6163. }
  6164. // scalar to add
  6165. const float v = *(float *) src1->data;
  6166. const int ith = params->ith;
  6167. const int nth = params->nth;
  6168. const int nr = ggml_nrows(src0);
  6169. GGML_TENSOR_UNARY_OP_LOCALS
  6170. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6171. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6172. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6173. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6174. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6175. // rows per thread
  6176. const int dr = (nr + nth - 1)/nth;
  6177. // row range for this thread
  6178. const int ir0 = dr*ith;
  6179. const int ir1 = MIN(ir0 + dr, nr);
  6180. for (int ir = ir0; ir < ir1; ++ir) {
  6181. // src0 and dst are same shape => same indices
  6182. const int i3 = ir/(ne2*ne1);
  6183. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6184. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6185. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6186. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6187. for (int i = 0; i < ne0; i++) {
  6188. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6189. }
  6190. }
  6191. }
  6192. static void ggml_compute_forward_add1_f16_f16(
  6193. const struct ggml_compute_params * params,
  6194. const struct ggml_tensor * src0,
  6195. const struct ggml_tensor * src1,
  6196. struct ggml_tensor * dst) {
  6197. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6198. GGML_ASSERT(ggml_is_scalar(src1));
  6199. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6200. return;
  6201. }
  6202. // scalar to add
  6203. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6204. const int ith = params->ith;
  6205. const int nth = params->nth;
  6206. const int nr = ggml_nrows(src0);
  6207. GGML_TENSOR_UNARY_OP_LOCALS
  6208. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6209. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6210. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6211. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6212. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6213. // rows per thread
  6214. const int dr = (nr + nth - 1)/nth;
  6215. // row range for this thread
  6216. const int ir0 = dr*ith;
  6217. const int ir1 = MIN(ir0 + dr, nr);
  6218. for (int ir = ir0; ir < ir1; ++ir) {
  6219. // src0 and dst are same shape => same indices
  6220. const int i3 = ir/(ne2*ne1);
  6221. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6222. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6223. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6224. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6225. for (int i = 0; i < ne0; i++) {
  6226. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6227. }
  6228. }
  6229. }
  6230. static void ggml_compute_forward_add1_q_f32(
  6231. const struct ggml_compute_params * params,
  6232. const struct ggml_tensor * src0,
  6233. const struct ggml_tensor * src1,
  6234. struct ggml_tensor * dst) {
  6235. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6236. GGML_ASSERT(ggml_is_scalar(src1));
  6237. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6238. return;
  6239. }
  6240. // scalar to add
  6241. const float v = *(float *) src1->data;
  6242. const int ith = params->ith;
  6243. const int nth = params->nth;
  6244. const int nr = ggml_nrows(src0);
  6245. GGML_TENSOR_UNARY_OP_LOCALS
  6246. const enum ggml_type type = src0->type;
  6247. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6248. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6249. // we don't support permuted src0
  6250. GGML_ASSERT(nb00 == ggml_type_size(type));
  6251. // dst cannot be transposed or permuted
  6252. GGML_ASSERT(nb0 <= nb1);
  6253. GGML_ASSERT(nb1 <= nb2);
  6254. GGML_ASSERT(nb2 <= nb3);
  6255. GGML_ASSERT(ggml_is_quantized(src0->type));
  6256. GGML_ASSERT(dst->type == src0->type);
  6257. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6258. // rows per thread
  6259. const int dr = (nr + nth - 1)/nth;
  6260. // row range for this thread
  6261. const int ir0 = dr*ith;
  6262. const int ir1 = MIN(ir0 + dr, nr);
  6263. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6264. for (int ir = ir0; ir < ir1; ++ir) {
  6265. // src0 and dst are same shape => same indices
  6266. const int i3 = ir/(ne2*ne1);
  6267. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6268. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6269. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6270. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6271. assert(ne0 % 32 == 0);
  6272. // unquantize row from src0 to temp buffer
  6273. dequantize_row_q(src0_row, wdata, ne0);
  6274. // add src1
  6275. ggml_vec_acc1_f32(ne0, wdata, v);
  6276. // quantize row to dst
  6277. quantize_row_q(wdata, dst_row, ne0);
  6278. }
  6279. }
  6280. static void ggml_compute_forward_add1(
  6281. const struct ggml_compute_params * params,
  6282. const struct ggml_tensor * src0,
  6283. const struct ggml_tensor * src1,
  6284. struct ggml_tensor * dst) {
  6285. switch (src0->type) {
  6286. case GGML_TYPE_F32:
  6287. {
  6288. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6289. } break;
  6290. case GGML_TYPE_F16:
  6291. {
  6292. if (src1->type == GGML_TYPE_F16) {
  6293. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6294. }
  6295. else if (src1->type == GGML_TYPE_F32) {
  6296. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6297. }
  6298. else {
  6299. GGML_ASSERT(false);
  6300. }
  6301. } break;
  6302. case GGML_TYPE_Q4_0:
  6303. case GGML_TYPE_Q4_1:
  6304. case GGML_TYPE_Q5_0:
  6305. case GGML_TYPE_Q5_1:
  6306. case GGML_TYPE_Q8_0:
  6307. case GGML_TYPE_Q8_1:
  6308. case GGML_TYPE_Q2_K:
  6309. case GGML_TYPE_Q3_K:
  6310. case GGML_TYPE_Q4_K:
  6311. case GGML_TYPE_Q5_K:
  6312. case GGML_TYPE_Q6_K:
  6313. case GGML_TYPE_IQ2_XXS:
  6314. case GGML_TYPE_IQ2_XS:
  6315. {
  6316. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6317. } break;
  6318. default:
  6319. {
  6320. GGML_ASSERT(false);
  6321. } break;
  6322. }
  6323. }
  6324. // ggml_compute_forward_acc
  6325. static void ggml_compute_forward_acc_f32(
  6326. const struct ggml_compute_params * params,
  6327. const struct ggml_tensor * src0,
  6328. const struct ggml_tensor * src1,
  6329. struct ggml_tensor * dst) {
  6330. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6331. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6332. // view src0 and dst with these strides and data offset inbytes during acc
  6333. // nb0 is implicitly element_size because src0 and dst are contiguous
  6334. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6335. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6336. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6337. size_t offset = ((int32_t *) dst->op_params)[3];
  6338. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6339. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6340. // memcpy needs to be synchronized across threads to avoid race conditions.
  6341. // => do it in INIT phase
  6342. memcpy(
  6343. ((char *) dst->data),
  6344. ((char *) src0->data),
  6345. ggml_nbytes(dst));
  6346. }
  6347. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6348. return;
  6349. }
  6350. const int ith = params->ith;
  6351. const int nth = params->nth;
  6352. const int nr = ggml_nrows(src1);
  6353. const int nc = src1->ne[0];
  6354. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6355. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6356. // src0 and dst as viewed during acc
  6357. const size_t nb0 = ggml_element_size(src0);
  6358. const size_t nb00 = nb0;
  6359. const size_t nb01 = nb1;
  6360. const size_t nb02 = nb2;
  6361. const size_t nb03 = nb3;
  6362. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6363. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6364. GGML_ASSERT(nb10 == sizeof(float));
  6365. // rows per thread
  6366. const int dr = (nr + nth - 1)/nth;
  6367. // row range for this thread
  6368. const int ir0 = dr*ith;
  6369. const int ir1 = MIN(ir0 + dr, nr);
  6370. for (int ir = ir0; ir < ir1; ++ir) {
  6371. // src0 and dst are viewed with shape of src1 and offset
  6372. // => same indices
  6373. const int i3 = ir/(ne12*ne11);
  6374. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6375. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6376. #ifdef GGML_USE_ACCELERATE
  6377. vDSP_vadd(
  6378. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6379. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6380. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6381. #else
  6382. ggml_vec_add_f32(nc,
  6383. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6384. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6385. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6386. #endif
  6387. }
  6388. }
  6389. static void ggml_compute_forward_acc(
  6390. const struct ggml_compute_params * params,
  6391. const struct ggml_tensor * src0,
  6392. const struct ggml_tensor * src1,
  6393. struct ggml_tensor * dst) {
  6394. switch (src0->type) {
  6395. case GGML_TYPE_F32:
  6396. {
  6397. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  6398. } break;
  6399. case GGML_TYPE_F16:
  6400. case GGML_TYPE_Q4_0:
  6401. case GGML_TYPE_Q4_1:
  6402. case GGML_TYPE_Q5_0:
  6403. case GGML_TYPE_Q5_1:
  6404. case GGML_TYPE_Q8_0:
  6405. case GGML_TYPE_Q8_1:
  6406. case GGML_TYPE_Q2_K:
  6407. case GGML_TYPE_Q3_K:
  6408. case GGML_TYPE_Q4_K:
  6409. case GGML_TYPE_Q5_K:
  6410. case GGML_TYPE_Q6_K:
  6411. case GGML_TYPE_IQ2_XXS:
  6412. case GGML_TYPE_IQ2_XS:
  6413. default:
  6414. {
  6415. GGML_ASSERT(false);
  6416. } break;
  6417. }
  6418. }
  6419. // ggml_compute_forward_sub
  6420. static void ggml_compute_forward_sub_f32(
  6421. const struct ggml_compute_params * params,
  6422. const struct ggml_tensor * src0,
  6423. const struct ggml_tensor * src1,
  6424. struct ggml_tensor * dst) {
  6425. assert(params->ith == 0);
  6426. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6427. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6428. return;
  6429. }
  6430. const int nr = ggml_nrows(src0);
  6431. GGML_TENSOR_BINARY_OP_LOCALS
  6432. GGML_ASSERT( nb0 == sizeof(float));
  6433. GGML_ASSERT(nb00 == sizeof(float));
  6434. if (nb10 == sizeof(float)) {
  6435. for (int ir = 0; ir < nr; ++ir) {
  6436. // src0, src1 and dst are same shape => same indices
  6437. const int i3 = ir/(ne2*ne1);
  6438. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6439. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6440. #ifdef GGML_USE_ACCELERATE
  6441. vDSP_vsub(
  6442. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6443. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6444. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6445. ne0);
  6446. #else
  6447. ggml_vec_sub_f32(ne0,
  6448. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6449. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6450. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6451. #endif
  6452. // }
  6453. // }
  6454. }
  6455. } else {
  6456. // src1 is not contiguous
  6457. for (int ir = 0; ir < nr; ++ir) {
  6458. // src0, src1 and dst are same shape => same indices
  6459. const int i3 = ir/(ne2*ne1);
  6460. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6461. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6462. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6463. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6464. for (int i0 = 0; i0 < ne0; i0++) {
  6465. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6466. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6467. }
  6468. }
  6469. }
  6470. }
  6471. static void ggml_compute_forward_sub(
  6472. const struct ggml_compute_params * params,
  6473. const struct ggml_tensor * src0,
  6474. const struct ggml_tensor * src1,
  6475. struct ggml_tensor * dst) {
  6476. switch (src0->type) {
  6477. case GGML_TYPE_F32:
  6478. {
  6479. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6480. } break;
  6481. default:
  6482. {
  6483. GGML_ASSERT(false);
  6484. } break;
  6485. }
  6486. }
  6487. // ggml_compute_forward_mul
  6488. static void ggml_compute_forward_mul_f32(
  6489. const struct ggml_compute_params * params,
  6490. const struct ggml_tensor * src0,
  6491. const struct ggml_tensor * src1,
  6492. struct ggml_tensor * dst) {
  6493. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6494. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6495. return;
  6496. }
  6497. const int ith = params->ith;
  6498. const int nth = params->nth;
  6499. #ifdef GGML_USE_CLBLAST
  6500. if (src1->backend == GGML_BACKEND_GPU) {
  6501. // TODO: OpenCL kernel support full broadcast
  6502. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6503. if (ith == 0) {
  6504. ggml_cl_mul(src0, src1, dst);
  6505. }
  6506. return;
  6507. }
  6508. #endif
  6509. const int64_t nr = ggml_nrows(src0);
  6510. GGML_TENSOR_BINARY_OP_LOCALS
  6511. GGML_ASSERT( nb0 == sizeof(float));
  6512. GGML_ASSERT(nb00 == sizeof(float));
  6513. if (nb10 == sizeof(float)) {
  6514. for (int64_t ir = ith; ir < nr; ir += nth) {
  6515. // src0 and dst are same shape => same indices
  6516. const int64_t i03 = ir/(ne02*ne01);
  6517. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6518. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6519. const int64_t i13 = i03 % ne13;
  6520. const int64_t i12 = i02 % ne12;
  6521. const int64_t i11 = i01 % ne11;
  6522. const int64_t nr0 = ne00 / ne10;
  6523. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6524. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6525. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6526. for (int64_t r = 0 ; r < nr0; ++r) {
  6527. #ifdef GGML_USE_ACCELERATE
  6528. UNUSED(ggml_vec_mul_f32);
  6529. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6530. #else
  6531. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6532. #endif
  6533. }
  6534. }
  6535. } else {
  6536. // src1 is not contiguous
  6537. for (int64_t ir = ith; ir < nr; ir += nth) {
  6538. // src0 and dst are same shape => same indices
  6539. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6540. const int64_t i03 = ir/(ne02*ne01);
  6541. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6542. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6543. const int64_t i13 = i03 % ne13;
  6544. const int64_t i12 = i02 % ne12;
  6545. const int64_t i11 = i01 % ne11;
  6546. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6547. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6548. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6549. const int64_t i10 = i0 % ne10;
  6550. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6551. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6552. }
  6553. }
  6554. }
  6555. }
  6556. static void ggml_compute_forward_mul(
  6557. const struct ggml_compute_params * params,
  6558. const struct ggml_tensor * src0,
  6559. const struct ggml_tensor * src1,
  6560. struct ggml_tensor * dst) {
  6561. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6562. switch (src0->type) {
  6563. case GGML_TYPE_F32:
  6564. {
  6565. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6566. } break;
  6567. default:
  6568. {
  6569. GGML_ASSERT(false);
  6570. } break;
  6571. }
  6572. }
  6573. // ggml_compute_forward_div
  6574. static void ggml_compute_forward_div_f32(
  6575. const struct ggml_compute_params * params,
  6576. const struct ggml_tensor * src0,
  6577. const struct ggml_tensor * src1,
  6578. struct ggml_tensor * dst) {
  6579. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6580. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6581. return;
  6582. }
  6583. const int ith = params->ith;
  6584. const int nth = params->nth;
  6585. const int64_t nr = ggml_nrows(src0);
  6586. GGML_TENSOR_BINARY_OP_LOCALS
  6587. GGML_ASSERT( nb0 == sizeof(float));
  6588. GGML_ASSERT(nb00 == sizeof(float));
  6589. if (nb10 == sizeof(float)) {
  6590. for (int64_t ir = ith; ir < nr; ir += nth) {
  6591. // src0 and dst are same shape => same indices
  6592. const int64_t i03 = ir/(ne02*ne01);
  6593. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6594. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6595. const int64_t i13 = i03 % ne13;
  6596. const int64_t i12 = i02 % ne12;
  6597. const int64_t i11 = i01 % ne11;
  6598. const int64_t nr0 = ne00 / ne10;
  6599. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6600. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6601. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6602. for (int64_t r = 0; r < nr0; ++r) {
  6603. #ifdef GGML_USE_ACCELERATE
  6604. UNUSED(ggml_vec_div_f32);
  6605. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  6606. #else
  6607. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6608. #endif
  6609. }
  6610. }
  6611. } else {
  6612. // src1 is not contiguous
  6613. for (int64_t ir = ith; ir < nr; ir += nth) {
  6614. // src0 and dst are same shape => same indices
  6615. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6616. const int64_t i03 = ir/(ne02*ne01);
  6617. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6618. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6619. const int64_t i13 = i03 % ne13;
  6620. const int64_t i12 = i02 % ne12;
  6621. const int64_t i11 = i01 % ne11;
  6622. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6623. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6624. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6625. const int64_t i10 = i0 % ne10;
  6626. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6627. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6628. }
  6629. }
  6630. }
  6631. }
  6632. static void ggml_compute_forward_div(
  6633. const struct ggml_compute_params * params,
  6634. const struct ggml_tensor * src0,
  6635. const struct ggml_tensor * src1,
  6636. struct ggml_tensor * dst) {
  6637. switch (src0->type) {
  6638. case GGML_TYPE_F32:
  6639. {
  6640. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6641. } break;
  6642. default:
  6643. {
  6644. GGML_ASSERT(false);
  6645. } break;
  6646. }
  6647. }
  6648. // ggml_compute_forward_sqr
  6649. static void ggml_compute_forward_sqr_f32(
  6650. const struct ggml_compute_params * params,
  6651. const struct ggml_tensor * src0,
  6652. struct ggml_tensor * dst) {
  6653. assert(params->ith == 0);
  6654. assert(ggml_are_same_shape(src0, dst));
  6655. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6656. return;
  6657. }
  6658. const int n = ggml_nrows(src0);
  6659. const int nc = src0->ne[0];
  6660. assert( dst->nb[0] == sizeof(float));
  6661. assert(src0->nb[0] == sizeof(float));
  6662. for (int i = 0; i < n; i++) {
  6663. ggml_vec_sqr_f32(nc,
  6664. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6665. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6666. }
  6667. }
  6668. static void ggml_compute_forward_sqr(
  6669. const struct ggml_compute_params * params,
  6670. const struct ggml_tensor * src0,
  6671. struct ggml_tensor * dst) {
  6672. switch (src0->type) {
  6673. case GGML_TYPE_F32:
  6674. {
  6675. ggml_compute_forward_sqr_f32(params, src0, dst);
  6676. } break;
  6677. default:
  6678. {
  6679. GGML_ASSERT(false);
  6680. } break;
  6681. }
  6682. }
  6683. // ggml_compute_forward_sqrt
  6684. static void ggml_compute_forward_sqrt_f32(
  6685. const struct ggml_compute_params * params,
  6686. const struct ggml_tensor * src0,
  6687. struct ggml_tensor * dst) {
  6688. assert(params->ith == 0);
  6689. assert(ggml_are_same_shape(src0, dst));
  6690. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6691. return;
  6692. }
  6693. const int n = ggml_nrows(src0);
  6694. const int nc = src0->ne[0];
  6695. assert( dst->nb[0] == sizeof(float));
  6696. assert(src0->nb[0] == sizeof(float));
  6697. for (int i = 0; i < n; i++) {
  6698. ggml_vec_sqrt_f32(nc,
  6699. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6700. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6701. }
  6702. }
  6703. static void ggml_compute_forward_sqrt(
  6704. const struct ggml_compute_params * params,
  6705. const struct ggml_tensor * src0,
  6706. struct ggml_tensor * dst) {
  6707. switch (src0->type) {
  6708. case GGML_TYPE_F32:
  6709. {
  6710. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6711. } break;
  6712. default:
  6713. {
  6714. GGML_ASSERT(false);
  6715. } break;
  6716. }
  6717. }
  6718. // ggml_compute_forward_log
  6719. static void ggml_compute_forward_log_f32(
  6720. const struct ggml_compute_params * params,
  6721. const struct ggml_tensor * src0,
  6722. struct ggml_tensor * dst) {
  6723. GGML_ASSERT(params->ith == 0);
  6724. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6725. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6726. return;
  6727. }
  6728. const int n = ggml_nrows(src0);
  6729. const int nc = src0->ne[0];
  6730. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6731. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6732. for (int i = 0; i < n; i++) {
  6733. ggml_vec_log_f32(nc,
  6734. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6735. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6736. }
  6737. }
  6738. static void ggml_compute_forward_log(
  6739. const struct ggml_compute_params * params,
  6740. const struct ggml_tensor * src0,
  6741. struct ggml_tensor * dst) {
  6742. switch (src0->type) {
  6743. case GGML_TYPE_F32:
  6744. {
  6745. ggml_compute_forward_log_f32(params, src0, dst);
  6746. } break;
  6747. default:
  6748. {
  6749. GGML_ASSERT(false);
  6750. } break;
  6751. }
  6752. }
  6753. // ggml_compute_forward_sum
  6754. static void ggml_compute_forward_sum_f32(
  6755. const struct ggml_compute_params * params,
  6756. const struct ggml_tensor * src0,
  6757. struct ggml_tensor * dst) {
  6758. assert(params->ith == 0);
  6759. assert(ggml_is_scalar(dst));
  6760. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6761. return;
  6762. }
  6763. assert(ggml_is_scalar(dst));
  6764. assert(src0->nb[0] == sizeof(float));
  6765. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6766. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6767. ggml_float sum = 0;
  6768. ggml_float row_sum = 0;
  6769. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6770. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6771. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6772. ggml_vec_sum_f32_ggf(ne00,
  6773. &row_sum,
  6774. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6775. sum += row_sum;
  6776. }
  6777. }
  6778. }
  6779. ((float *) dst->data)[0] = sum;
  6780. }
  6781. static void ggml_compute_forward_sum_f16(
  6782. const struct ggml_compute_params * params,
  6783. const struct ggml_tensor * src0,
  6784. struct ggml_tensor * dst) {
  6785. assert(params->ith == 0);
  6786. assert(ggml_is_scalar(dst));
  6787. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6788. return;
  6789. }
  6790. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6791. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6792. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6793. float sum = 0;
  6794. float row_sum = 0;
  6795. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6796. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6797. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6798. ggml_vec_sum_f16_ggf(ne00,
  6799. &row_sum,
  6800. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  6801. sum += row_sum;
  6802. }
  6803. }
  6804. }
  6805. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  6806. }
  6807. static void ggml_compute_forward_sum(
  6808. const struct ggml_compute_params * params,
  6809. const struct ggml_tensor * src0,
  6810. struct ggml_tensor * dst) {
  6811. switch (src0->type) {
  6812. case GGML_TYPE_F32:
  6813. {
  6814. ggml_compute_forward_sum_f32(params, src0, dst);
  6815. } break;
  6816. case GGML_TYPE_F16:
  6817. {
  6818. ggml_compute_forward_sum_f16(params, src0, dst);
  6819. } break;
  6820. default:
  6821. {
  6822. GGML_ASSERT(false);
  6823. } break;
  6824. }
  6825. }
  6826. // ggml_compute_forward_sum_rows
  6827. static void ggml_compute_forward_sum_rows_f32(
  6828. const struct ggml_compute_params * params,
  6829. const struct ggml_tensor * src0,
  6830. struct ggml_tensor * dst) {
  6831. GGML_ASSERT(params->ith == 0);
  6832. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6833. return;
  6834. }
  6835. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6836. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6837. GGML_TENSOR_UNARY_OP_LOCALS
  6838. GGML_ASSERT(ne0 == 1);
  6839. GGML_ASSERT(ne1 == ne01);
  6840. GGML_ASSERT(ne2 == ne02);
  6841. GGML_ASSERT(ne3 == ne03);
  6842. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6843. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6844. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6845. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6846. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6847. float row_sum = 0;
  6848. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6849. dst_row[0] = row_sum;
  6850. }
  6851. }
  6852. }
  6853. }
  6854. static void ggml_compute_forward_sum_rows(
  6855. const struct ggml_compute_params * params,
  6856. const struct ggml_tensor * src0,
  6857. struct ggml_tensor * dst) {
  6858. switch (src0->type) {
  6859. case GGML_TYPE_F32:
  6860. {
  6861. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6862. } break;
  6863. default:
  6864. {
  6865. GGML_ASSERT(false);
  6866. } break;
  6867. }
  6868. }
  6869. // ggml_compute_forward_mean
  6870. static void ggml_compute_forward_mean_f32(
  6871. const struct ggml_compute_params * params,
  6872. const struct ggml_tensor * src0,
  6873. struct ggml_tensor * dst) {
  6874. assert(params->ith == 0);
  6875. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6876. return;
  6877. }
  6878. assert(src0->nb[0] == sizeof(float));
  6879. GGML_TENSOR_UNARY_OP_LOCALS
  6880. assert(ne0 == 1);
  6881. assert(ne1 == ne01);
  6882. assert(ne2 == ne02);
  6883. assert(ne3 == ne03);
  6884. UNUSED(ne0);
  6885. UNUSED(ne1);
  6886. UNUSED(ne2);
  6887. UNUSED(ne3);
  6888. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6889. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6890. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6891. ggml_vec_sum_f32(ne00,
  6892. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6893. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6894. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6895. }
  6896. }
  6897. }
  6898. }
  6899. static void ggml_compute_forward_mean(
  6900. const struct ggml_compute_params * params,
  6901. const struct ggml_tensor * src0,
  6902. struct ggml_tensor * dst) {
  6903. switch (src0->type) {
  6904. case GGML_TYPE_F32:
  6905. {
  6906. ggml_compute_forward_mean_f32(params, src0, dst);
  6907. } break;
  6908. default:
  6909. {
  6910. GGML_ASSERT(false);
  6911. } break;
  6912. }
  6913. }
  6914. // ggml_compute_forward_argmax
  6915. static void ggml_compute_forward_argmax_f32(
  6916. const struct ggml_compute_params * params,
  6917. const struct ggml_tensor * src0,
  6918. struct ggml_tensor * dst) {
  6919. assert(params->ith == 0);
  6920. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6921. return;
  6922. }
  6923. assert(src0->nb[0] == sizeof(float));
  6924. assert(dst->nb[0] == sizeof(float));
  6925. const int64_t ne00 = src0->ne[0];
  6926. const int64_t ne01 = src0->ne[1];
  6927. const size_t nb01 = src0->nb[1];
  6928. const size_t nb0 = dst->nb[0];
  6929. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6930. float * src = (float *) ((char *) src0->data + i1*nb01);
  6931. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  6932. int v = 0;
  6933. ggml_vec_argmax_f32(ne00, &v, src);
  6934. dst_[0] = v;
  6935. }
  6936. }
  6937. static void ggml_compute_forward_argmax(
  6938. const struct ggml_compute_params * params,
  6939. const struct ggml_tensor * src0,
  6940. struct ggml_tensor * dst) {
  6941. switch (src0->type) {
  6942. case GGML_TYPE_F32:
  6943. {
  6944. ggml_compute_forward_argmax_f32(params, src0, dst);
  6945. } break;
  6946. default:
  6947. {
  6948. GGML_ASSERT(false);
  6949. } break;
  6950. }
  6951. }
  6952. // ggml_compute_forward_repeat
  6953. static void ggml_compute_forward_repeat_f32(
  6954. const struct ggml_compute_params * params,
  6955. const struct ggml_tensor * src0,
  6956. struct ggml_tensor * dst) {
  6957. GGML_ASSERT(params->ith == 0);
  6958. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6959. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6960. return;
  6961. }
  6962. GGML_TENSOR_UNARY_OP_LOCALS
  6963. // guaranteed to be an integer due to the check in ggml_can_repeat
  6964. const int nr0 = (int)(ne0/ne00);
  6965. const int nr1 = (int)(ne1/ne01);
  6966. const int nr2 = (int)(ne2/ne02);
  6967. const int nr3 = (int)(ne3/ne03);
  6968. // TODO: support for transposed / permuted tensors
  6969. GGML_ASSERT(nb0 == sizeof(float));
  6970. GGML_ASSERT(nb00 == sizeof(float));
  6971. // TODO: maybe this is not optimal?
  6972. for (int i3 = 0; i3 < nr3; i3++) {
  6973. for (int k3 = 0; k3 < ne03; k3++) {
  6974. for (int i2 = 0; i2 < nr2; i2++) {
  6975. for (int k2 = 0; k2 < ne02; k2++) {
  6976. for (int i1 = 0; i1 < nr1; i1++) {
  6977. for (int k1 = 0; k1 < ne01; k1++) {
  6978. for (int i0 = 0; i0 < nr0; i0++) {
  6979. ggml_vec_cpy_f32(ne00,
  6980. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  6981. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  6982. }
  6983. }
  6984. }
  6985. }
  6986. }
  6987. }
  6988. }
  6989. }
  6990. static void ggml_compute_forward_repeat_f16(
  6991. const struct ggml_compute_params * params,
  6992. const struct ggml_tensor * src0,
  6993. struct ggml_tensor * dst) {
  6994. GGML_ASSERT(params->ith == 0);
  6995. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6996. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6997. return;
  6998. }
  6999. GGML_TENSOR_UNARY_OP_LOCALS
  7000. // guaranteed to be an integer due to the check in ggml_can_repeat
  7001. const int nr0 = (int)(ne0/ne00);
  7002. const int nr1 = (int)(ne1/ne01);
  7003. const int nr2 = (int)(ne2/ne02);
  7004. const int nr3 = (int)(ne3/ne03);
  7005. // TODO: support for transposed / permuted tensors
  7006. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7007. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7008. // TODO: maybe this is not optimal?
  7009. for (int i3 = 0; i3 < nr3; i3++) {
  7010. for (int k3 = 0; k3 < ne03; k3++) {
  7011. for (int i2 = 0; i2 < nr2; i2++) {
  7012. for (int k2 = 0; k2 < ne02; k2++) {
  7013. for (int i1 = 0; i1 < nr1; i1++) {
  7014. for (int k1 = 0; k1 < ne01; k1++) {
  7015. for (int i0 = 0; i0 < nr0; i0++) {
  7016. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7017. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7018. // ggml_vec_cpy_f16(ne00, y, x)
  7019. for (int i = 0; i < ne00; ++i) {
  7020. y[i] = x[i];
  7021. }
  7022. }
  7023. }
  7024. }
  7025. }
  7026. }
  7027. }
  7028. }
  7029. }
  7030. static void ggml_compute_forward_repeat(
  7031. const struct ggml_compute_params * params,
  7032. const struct ggml_tensor * src0,
  7033. struct ggml_tensor * dst) {
  7034. switch (src0->type) {
  7035. case GGML_TYPE_F16:
  7036. case GGML_TYPE_I16:
  7037. {
  7038. ggml_compute_forward_repeat_f16(params, src0, dst);
  7039. } break;
  7040. case GGML_TYPE_F32:
  7041. case GGML_TYPE_I32:
  7042. {
  7043. ggml_compute_forward_repeat_f32(params, src0, dst);
  7044. } break;
  7045. default:
  7046. {
  7047. GGML_ASSERT(false);
  7048. } break;
  7049. }
  7050. }
  7051. // ggml_compute_forward_repeat_back
  7052. static void ggml_compute_forward_repeat_back_f32(
  7053. const struct ggml_compute_params * params,
  7054. const struct ggml_tensor * src0,
  7055. struct ggml_tensor * dst) {
  7056. GGML_ASSERT(params->ith == 0);
  7057. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7058. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7059. return;
  7060. }
  7061. GGML_TENSOR_UNARY_OP_LOCALS
  7062. // guaranteed to be an integer due to the check in ggml_can_repeat
  7063. const int nr0 = (int)(ne00/ne0);
  7064. const int nr1 = (int)(ne01/ne1);
  7065. const int nr2 = (int)(ne02/ne2);
  7066. const int nr3 = (int)(ne03/ne3);
  7067. // TODO: support for transposed / permuted tensors
  7068. GGML_ASSERT(nb0 == sizeof(float));
  7069. GGML_ASSERT(nb00 == sizeof(float));
  7070. if (ggml_is_contiguous(dst)) {
  7071. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7072. } else {
  7073. for (int k3 = 0; k3 < ne3; k3++) {
  7074. for (int k2 = 0; k2 < ne2; k2++) {
  7075. for (int k1 = 0; k1 < ne1; k1++) {
  7076. ggml_vec_set_f32(ne0,
  7077. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7078. 0);
  7079. }
  7080. }
  7081. }
  7082. }
  7083. // TODO: maybe this is not optimal?
  7084. for (int i3 = 0; i3 < nr3; i3++) {
  7085. for (int k3 = 0; k3 < ne3; k3++) {
  7086. for (int i2 = 0; i2 < nr2; i2++) {
  7087. for (int k2 = 0; k2 < ne2; k2++) {
  7088. for (int i1 = 0; i1 < nr1; i1++) {
  7089. for (int k1 = 0; k1 < ne1; k1++) {
  7090. for (int i0 = 0; i0 < nr0; i0++) {
  7091. ggml_vec_acc_f32(ne0,
  7092. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7093. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7094. }
  7095. }
  7096. }
  7097. }
  7098. }
  7099. }
  7100. }
  7101. }
  7102. static void ggml_compute_forward_repeat_back(
  7103. const struct ggml_compute_params * params,
  7104. const struct ggml_tensor * src0,
  7105. struct ggml_tensor * dst) {
  7106. switch (src0->type) {
  7107. case GGML_TYPE_F32:
  7108. {
  7109. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7110. } break;
  7111. default:
  7112. {
  7113. GGML_ASSERT(false);
  7114. } break;
  7115. }
  7116. }
  7117. // ggml_compute_forward_concat
  7118. static void ggml_compute_forward_concat_f32(
  7119. const struct ggml_compute_params * params,
  7120. const struct ggml_tensor * src0,
  7121. const struct ggml_tensor * src1,
  7122. struct ggml_tensor * dst) {
  7123. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7124. return;
  7125. }
  7126. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7127. const int ith = params->ith;
  7128. const int nth = params->nth;
  7129. GGML_TENSOR_BINARY_OP_LOCALS
  7130. // TODO: support for transposed / permuted tensors
  7131. GGML_ASSERT(nb0 == sizeof(float));
  7132. GGML_ASSERT(nb00 == sizeof(float));
  7133. GGML_ASSERT(nb10 == sizeof(float));
  7134. for (int i3 = 0; i3 < ne3; i3++) {
  7135. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7136. if (i2 < ne02) { // src0
  7137. for (int i1 = 0; i1 < ne1; i1++) {
  7138. for (int i0 = 0; i0 < ne0; i0++) {
  7139. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7140. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7141. *y = *x;
  7142. }
  7143. }
  7144. } // src1
  7145. else {
  7146. for (int i1 = 0; i1 < ne1; i1++) {
  7147. for (int i0 = 0; i0 < ne0; i0++) {
  7148. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7149. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7150. *y = *x;
  7151. }
  7152. }
  7153. }
  7154. }
  7155. }
  7156. }
  7157. static void ggml_compute_forward_concat(
  7158. const struct ggml_compute_params* params,
  7159. const struct ggml_tensor* src0,
  7160. const struct ggml_tensor* src1,
  7161. struct ggml_tensor* dst) {
  7162. switch (src0->type) {
  7163. case GGML_TYPE_F32:
  7164. case GGML_TYPE_I32:
  7165. {
  7166. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  7167. } break;
  7168. default:
  7169. {
  7170. GGML_ASSERT(false);
  7171. } break;
  7172. }
  7173. }
  7174. // ggml_compute_forward_abs
  7175. static void ggml_compute_forward_abs_f32(
  7176. const struct ggml_compute_params * params,
  7177. const struct ggml_tensor * src0,
  7178. struct ggml_tensor * dst) {
  7179. assert(params->ith == 0);
  7180. assert(ggml_are_same_shape(src0, dst));
  7181. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7182. return;
  7183. }
  7184. const int n = ggml_nrows(src0);
  7185. const int nc = src0->ne[0];
  7186. assert(dst->nb[0] == sizeof(float));
  7187. assert(src0->nb[0] == sizeof(float));
  7188. for (int i = 0; i < n; i++) {
  7189. ggml_vec_abs_f32(nc,
  7190. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7191. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7192. }
  7193. }
  7194. static void ggml_compute_forward_abs(
  7195. const struct ggml_compute_params * params,
  7196. const struct ggml_tensor * src0,
  7197. struct ggml_tensor * dst) {
  7198. switch (src0->type) {
  7199. case GGML_TYPE_F32:
  7200. {
  7201. ggml_compute_forward_abs_f32(params, src0, dst);
  7202. } break;
  7203. default:
  7204. {
  7205. GGML_ASSERT(false);
  7206. } break;
  7207. }
  7208. }
  7209. // ggml_compute_forward_sgn
  7210. static void ggml_compute_forward_sgn_f32(
  7211. const struct ggml_compute_params * params,
  7212. const struct ggml_tensor * src0,
  7213. struct ggml_tensor * dst) {
  7214. assert(params->ith == 0);
  7215. assert(ggml_are_same_shape(src0, dst));
  7216. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7217. return;
  7218. }
  7219. const int n = ggml_nrows(src0);
  7220. const int nc = src0->ne[0];
  7221. assert(dst->nb[0] == sizeof(float));
  7222. assert(src0->nb[0] == sizeof(float));
  7223. for (int i = 0; i < n; i++) {
  7224. ggml_vec_sgn_f32(nc,
  7225. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7226. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7227. }
  7228. }
  7229. static void ggml_compute_forward_sgn(
  7230. const struct ggml_compute_params * params,
  7231. const struct ggml_tensor * src0,
  7232. struct ggml_tensor * dst) {
  7233. switch (src0->type) {
  7234. case GGML_TYPE_F32:
  7235. {
  7236. ggml_compute_forward_sgn_f32(params, src0, dst);
  7237. } break;
  7238. default:
  7239. {
  7240. GGML_ASSERT(false);
  7241. } break;
  7242. }
  7243. }
  7244. // ggml_compute_forward_neg
  7245. static void ggml_compute_forward_neg_f32(
  7246. const struct ggml_compute_params * params,
  7247. const struct ggml_tensor * src0,
  7248. struct ggml_tensor * dst) {
  7249. assert(params->ith == 0);
  7250. assert(ggml_are_same_shape(src0, dst));
  7251. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7252. return;
  7253. }
  7254. const int n = ggml_nrows(src0);
  7255. const int nc = src0->ne[0];
  7256. assert(dst->nb[0] == sizeof(float));
  7257. assert(src0->nb[0] == sizeof(float));
  7258. for (int i = 0; i < n; i++) {
  7259. ggml_vec_neg_f32(nc,
  7260. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7261. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7262. }
  7263. }
  7264. static void ggml_compute_forward_neg(
  7265. const struct ggml_compute_params * params,
  7266. const struct ggml_tensor * src0,
  7267. struct ggml_tensor * dst) {
  7268. switch (src0->type) {
  7269. case GGML_TYPE_F32:
  7270. {
  7271. ggml_compute_forward_neg_f32(params, src0, dst);
  7272. } break;
  7273. default:
  7274. {
  7275. GGML_ASSERT(false);
  7276. } break;
  7277. }
  7278. }
  7279. // ggml_compute_forward_step
  7280. static void ggml_compute_forward_step_f32(
  7281. const struct ggml_compute_params * params,
  7282. const struct ggml_tensor * src0,
  7283. struct ggml_tensor * dst) {
  7284. assert(params->ith == 0);
  7285. assert(ggml_are_same_shape(src0, dst));
  7286. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7287. return;
  7288. }
  7289. const int n = ggml_nrows(src0);
  7290. const int nc = src0->ne[0];
  7291. assert(dst->nb[0] == sizeof(float));
  7292. assert(src0->nb[0] == sizeof(float));
  7293. for (int i = 0; i < n; i++) {
  7294. ggml_vec_step_f32(nc,
  7295. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7296. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7297. }
  7298. }
  7299. static void ggml_compute_forward_step(
  7300. const struct ggml_compute_params * params,
  7301. const struct ggml_tensor * src0,
  7302. struct ggml_tensor * dst) {
  7303. switch (src0->type) {
  7304. case GGML_TYPE_F32:
  7305. {
  7306. ggml_compute_forward_step_f32(params, src0, dst);
  7307. } break;
  7308. default:
  7309. {
  7310. GGML_ASSERT(false);
  7311. } break;
  7312. }
  7313. }
  7314. // ggml_compute_forward_tanh
  7315. static void ggml_compute_forward_tanh_f32(
  7316. const struct ggml_compute_params * params,
  7317. const struct ggml_tensor * src0,
  7318. struct ggml_tensor * dst) {
  7319. assert(params->ith == 0);
  7320. assert(ggml_are_same_shape(src0, dst));
  7321. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7322. return;
  7323. }
  7324. const int n = ggml_nrows(src0);
  7325. const int nc = src0->ne[0];
  7326. assert(dst->nb[0] == sizeof(float));
  7327. assert(src0->nb[0] == sizeof(float));
  7328. for (int i = 0; i < n; i++) {
  7329. ggml_vec_tanh_f32(nc,
  7330. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7331. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7332. }
  7333. }
  7334. static void ggml_compute_forward_tanh(
  7335. const struct ggml_compute_params * params,
  7336. const struct ggml_tensor * src0,
  7337. struct ggml_tensor * dst) {
  7338. switch (src0->type) {
  7339. case GGML_TYPE_F32:
  7340. {
  7341. ggml_compute_forward_tanh_f32(params, src0, dst);
  7342. } break;
  7343. default:
  7344. {
  7345. GGML_ASSERT(false);
  7346. } break;
  7347. }
  7348. }
  7349. // ggml_compute_forward_elu
  7350. static void ggml_compute_forward_elu_f32(
  7351. const struct ggml_compute_params * params,
  7352. const struct ggml_tensor * src0,
  7353. struct ggml_tensor * dst) {
  7354. assert(params->ith == 0);
  7355. assert(ggml_are_same_shape(src0, dst));
  7356. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7357. return;
  7358. }
  7359. const int n = ggml_nrows(src0);
  7360. const int nc = src0->ne[0];
  7361. assert(dst->nb[0] == sizeof(float));
  7362. assert(src0->nb[0] == sizeof(float));
  7363. for (int i = 0; i < n; i++) {
  7364. ggml_vec_elu_f32(nc,
  7365. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7366. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7367. }
  7368. }
  7369. static void ggml_compute_forward_elu(
  7370. const struct ggml_compute_params * params,
  7371. const struct ggml_tensor * src0,
  7372. struct ggml_tensor * dst) {
  7373. switch (src0->type) {
  7374. case GGML_TYPE_F32:
  7375. {
  7376. ggml_compute_forward_elu_f32(params, src0, dst);
  7377. } break;
  7378. default:
  7379. {
  7380. GGML_ASSERT(false);
  7381. } break;
  7382. }
  7383. }
  7384. // ggml_compute_forward_relu
  7385. static void ggml_compute_forward_relu_f32(
  7386. const struct ggml_compute_params * params,
  7387. const struct ggml_tensor * src0,
  7388. struct ggml_tensor * dst) {
  7389. assert(params->ith == 0);
  7390. assert(ggml_are_same_shape(src0, dst));
  7391. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7392. return;
  7393. }
  7394. const int n = ggml_nrows(src0);
  7395. const int nc = src0->ne[0];
  7396. assert(dst->nb[0] == sizeof(float));
  7397. assert(src0->nb[0] == sizeof(float));
  7398. for (int i = 0; i < n; i++) {
  7399. ggml_vec_relu_f32(nc,
  7400. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7401. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7402. }
  7403. }
  7404. static void ggml_compute_forward_relu(
  7405. const struct ggml_compute_params * params,
  7406. const struct ggml_tensor * src0,
  7407. struct ggml_tensor * dst) {
  7408. switch (src0->type) {
  7409. case GGML_TYPE_F32:
  7410. {
  7411. ggml_compute_forward_relu_f32(params, src0, dst);
  7412. } break;
  7413. default:
  7414. {
  7415. GGML_ASSERT(false);
  7416. } break;
  7417. }
  7418. }
  7419. // ggml_compute_forward_gelu
  7420. static void ggml_compute_forward_gelu_f32(
  7421. const struct ggml_compute_params * params,
  7422. const struct ggml_tensor * src0,
  7423. struct ggml_tensor * dst) {
  7424. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7425. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7426. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7427. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7428. return;
  7429. }
  7430. const int ith = params->ith;
  7431. const int nth = params->nth;
  7432. const int nc = src0->ne[0];
  7433. const int nr = ggml_nrows(src0);
  7434. // rows per thread
  7435. const int dr = (nr + nth - 1)/nth;
  7436. // row range for this thread
  7437. const int ir0 = dr*ith;
  7438. const int ir1 = MIN(ir0 + dr, nr);
  7439. for (int i1 = ir0; i1 < ir1; i1++) {
  7440. ggml_vec_gelu_f32(nc,
  7441. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7442. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7443. #ifndef NDEBUG
  7444. for (int k = 0; k < nc; k++) {
  7445. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7446. UNUSED(x);
  7447. assert(!isnan(x));
  7448. assert(!isinf(x));
  7449. }
  7450. #endif
  7451. }
  7452. }
  7453. static void ggml_compute_forward_gelu(
  7454. const struct ggml_compute_params * params,
  7455. const struct ggml_tensor * src0,
  7456. struct ggml_tensor * dst) {
  7457. switch (src0->type) {
  7458. case GGML_TYPE_F32:
  7459. {
  7460. ggml_compute_forward_gelu_f32(params, src0, dst);
  7461. } break;
  7462. default:
  7463. {
  7464. GGML_ASSERT(false);
  7465. } break;
  7466. }
  7467. }
  7468. // ggml_compute_forward_gelu_quick
  7469. static void ggml_compute_forward_gelu_quick_f32(
  7470. const struct ggml_compute_params * params,
  7471. const struct ggml_tensor * src0,
  7472. struct ggml_tensor * dst) {
  7473. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7474. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7475. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7476. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7477. return;
  7478. }
  7479. const int ith = params->ith;
  7480. const int nth = params->nth;
  7481. const int nc = src0->ne[0];
  7482. const int nr = ggml_nrows(src0);
  7483. // rows per thread
  7484. const int dr = (nr + nth - 1)/nth;
  7485. // row range for this thread
  7486. const int ir0 = dr*ith;
  7487. const int ir1 = MIN(ir0 + dr, nr);
  7488. for (int i1 = ir0; i1 < ir1; i1++) {
  7489. ggml_vec_gelu_quick_f32(nc,
  7490. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7491. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7492. #ifndef NDEBUG
  7493. for (int k = 0; k < nc; k++) {
  7494. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7495. UNUSED(x);
  7496. assert(!isnan(x));
  7497. assert(!isinf(x));
  7498. }
  7499. #endif
  7500. }
  7501. }
  7502. static void ggml_compute_forward_gelu_quick(
  7503. const struct ggml_compute_params * params,
  7504. const struct ggml_tensor * src0,
  7505. struct ggml_tensor * dst) {
  7506. switch (src0->type) {
  7507. case GGML_TYPE_F32:
  7508. {
  7509. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7510. } break;
  7511. default:
  7512. {
  7513. GGML_ASSERT(false);
  7514. } break;
  7515. }
  7516. }
  7517. // ggml_compute_forward_silu
  7518. static void ggml_compute_forward_silu_f32(
  7519. const struct ggml_compute_params * params,
  7520. const struct ggml_tensor * src0,
  7521. struct ggml_tensor * dst) {
  7522. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7523. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7524. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7525. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7526. return;
  7527. }
  7528. const int ith = params->ith;
  7529. const int nth = params->nth;
  7530. const int nc = src0->ne[0];
  7531. const int nr = ggml_nrows(src0);
  7532. // rows per thread
  7533. const int dr = (nr + nth - 1)/nth;
  7534. // row range for this thread
  7535. const int ir0 = dr*ith;
  7536. const int ir1 = MIN(ir0 + dr, nr);
  7537. for (int i1 = ir0; i1 < ir1; i1++) {
  7538. ggml_vec_silu_f32(nc,
  7539. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7540. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7541. #ifndef NDEBUG
  7542. for (int k = 0; k < nc; k++) {
  7543. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7544. UNUSED(x);
  7545. assert(!isnan(x));
  7546. assert(!isinf(x));
  7547. }
  7548. #endif
  7549. }
  7550. }
  7551. static void ggml_compute_forward_silu(
  7552. const struct ggml_compute_params * params,
  7553. const struct ggml_tensor * src0,
  7554. struct ggml_tensor * dst) {
  7555. switch (src0->type) {
  7556. case GGML_TYPE_F32:
  7557. {
  7558. ggml_compute_forward_silu_f32(params, src0, dst);
  7559. } break;
  7560. default:
  7561. {
  7562. GGML_ASSERT(false);
  7563. } break;
  7564. }
  7565. }
  7566. // ggml_compute_forward_leaky_relu
  7567. static void ggml_compute_forward_leaky_relu_f32(
  7568. const struct ggml_compute_params * params,
  7569. const struct ggml_tensor * src0,
  7570. struct ggml_tensor * dst) {
  7571. assert(params->ith == 0);
  7572. assert(ggml_are_same_shape(src0, dst));
  7573. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7574. return;
  7575. }
  7576. const int n = ggml_nrows(src0);
  7577. const int nc = src0->ne[0];
  7578. float negative_slope;
  7579. memcpy(&negative_slope, dst->op_params, sizeof(float));
  7580. assert(dst->nb[0] == sizeof(float));
  7581. assert(src0->nb[0] == sizeof(float));
  7582. for (int i = 0; i < n; i++) {
  7583. ggml_vec_leaky_relu_f32(nc,
  7584. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7585. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  7586. }
  7587. }
  7588. static void ggml_compute_forward_leaky_relu(
  7589. const struct ggml_compute_params * params,
  7590. const struct ggml_tensor * src0,
  7591. struct ggml_tensor * dst) {
  7592. switch (src0->type) {
  7593. case GGML_TYPE_F32:
  7594. {
  7595. ggml_compute_forward_leaky_relu_f32(params, src0, dst);
  7596. } break;
  7597. default:
  7598. {
  7599. GGML_ASSERT(false);
  7600. } break;
  7601. }
  7602. }
  7603. // ggml_compute_forward_silu_back
  7604. static void ggml_compute_forward_silu_back_f32(
  7605. const struct ggml_compute_params * params,
  7606. const struct ggml_tensor * src0,
  7607. const struct ggml_tensor * grad,
  7608. struct ggml_tensor * dst) {
  7609. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7610. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7611. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7612. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7613. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7614. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7615. return;
  7616. }
  7617. const int ith = params->ith;
  7618. const int nth = params->nth;
  7619. const int nc = src0->ne[0];
  7620. const int nr = ggml_nrows(src0);
  7621. // rows per thread
  7622. const int dr = (nr + nth - 1)/nth;
  7623. // row range for this thread
  7624. const int ir0 = dr*ith;
  7625. const int ir1 = MIN(ir0 + dr, nr);
  7626. for (int i1 = ir0; i1 < ir1; i1++) {
  7627. ggml_vec_silu_backward_f32(nc,
  7628. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7629. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7630. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7631. #ifndef NDEBUG
  7632. for (int k = 0; k < nc; k++) {
  7633. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7634. UNUSED(x);
  7635. assert(!isnan(x));
  7636. assert(!isinf(x));
  7637. }
  7638. #endif
  7639. }
  7640. }
  7641. static void ggml_compute_forward_silu_back(
  7642. const struct ggml_compute_params * params,
  7643. const struct ggml_tensor * src0,
  7644. const struct ggml_tensor * grad,
  7645. struct ggml_tensor * dst) {
  7646. switch (src0->type) {
  7647. case GGML_TYPE_F32:
  7648. {
  7649. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7650. } break;
  7651. default:
  7652. {
  7653. GGML_ASSERT(false);
  7654. } break;
  7655. }
  7656. }
  7657. // ggml_compute_forward_norm
  7658. static void ggml_compute_forward_norm_f32(
  7659. const struct ggml_compute_params * params,
  7660. const struct ggml_tensor * src0,
  7661. struct ggml_tensor * dst) {
  7662. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7663. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7664. return;
  7665. }
  7666. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7667. const int ith = params->ith;
  7668. const int nth = params->nth;
  7669. GGML_TENSOR_UNARY_OP_LOCALS
  7670. float eps;
  7671. memcpy(&eps, dst->op_params, sizeof(float));
  7672. GGML_ASSERT(eps > 0.0f);
  7673. // TODO: optimize
  7674. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7675. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7676. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7677. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7678. ggml_float sum = 0.0;
  7679. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7680. sum += (ggml_float)x[i00];
  7681. }
  7682. float mean = sum/ne00;
  7683. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7684. ggml_float sum2 = 0.0;
  7685. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7686. float v = x[i00] - mean;
  7687. y[i00] = v;
  7688. sum2 += (ggml_float)(v*v);
  7689. }
  7690. float variance = sum2/ne00;
  7691. const float scale = 1.0f/sqrtf(variance + eps);
  7692. ggml_vec_scale_f32(ne00, y, scale);
  7693. }
  7694. }
  7695. }
  7696. }
  7697. static void ggml_compute_forward_norm(
  7698. const struct ggml_compute_params * params,
  7699. const struct ggml_tensor * src0,
  7700. struct ggml_tensor * dst) {
  7701. switch (src0->type) {
  7702. case GGML_TYPE_F32:
  7703. {
  7704. ggml_compute_forward_norm_f32(params, src0, dst);
  7705. } break;
  7706. default:
  7707. {
  7708. GGML_ASSERT(false);
  7709. } break;
  7710. }
  7711. }
  7712. // ggml_compute_forward_group_rms_norm
  7713. static void ggml_compute_forward_rms_norm_f32(
  7714. const struct ggml_compute_params * params,
  7715. const struct ggml_tensor * src0,
  7716. struct ggml_tensor * dst) {
  7717. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7718. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7719. return;
  7720. }
  7721. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7722. const int ith = params->ith;
  7723. const int nth = params->nth;
  7724. GGML_TENSOR_UNARY_OP_LOCALS
  7725. float eps;
  7726. memcpy(&eps, dst->op_params, sizeof(float));
  7727. GGML_ASSERT(eps > 0.0f);
  7728. // TODO: optimize
  7729. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7730. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7731. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7732. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7733. ggml_float sum = 0.0;
  7734. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7735. sum += (ggml_float)(x[i00] * x[i00]);
  7736. }
  7737. const float mean = sum/ne00;
  7738. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7739. memcpy(y, x, ne00 * sizeof(float));
  7740. // for (int i00 = 0; i00 < ne00; i00++) {
  7741. // y[i00] = x[i00];
  7742. // }
  7743. const float scale = 1.0f/sqrtf(mean + eps);
  7744. ggml_vec_scale_f32(ne00, y, scale);
  7745. }
  7746. }
  7747. }
  7748. }
  7749. static void ggml_compute_forward_rms_norm(
  7750. const struct ggml_compute_params * params,
  7751. const struct ggml_tensor * src0,
  7752. struct ggml_tensor * dst) {
  7753. switch (src0->type) {
  7754. case GGML_TYPE_F32:
  7755. {
  7756. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7757. } break;
  7758. default:
  7759. {
  7760. GGML_ASSERT(false);
  7761. } break;
  7762. }
  7763. }
  7764. static void ggml_compute_forward_rms_norm_back_f32(
  7765. const struct ggml_compute_params * params,
  7766. const struct ggml_tensor * src0,
  7767. const struct ggml_tensor * src1,
  7768. struct ggml_tensor * dst) {
  7769. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7770. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7771. return;
  7772. }
  7773. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7774. const int ith = params->ith;
  7775. const int nth = params->nth;
  7776. GGML_TENSOR_BINARY_OP_LOCALS
  7777. float eps;
  7778. memcpy(&eps, dst->op_params, sizeof(float));
  7779. // TODO: optimize
  7780. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7781. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7782. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7783. // src1 is same shape as src0 => same indices
  7784. const int64_t i11 = i01;
  7785. const int64_t i12 = i02;
  7786. const int64_t i13 = i03;
  7787. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7788. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7789. ggml_float sum_xx = 0.0;
  7790. ggml_float sum_xdz = 0.0;
  7791. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7792. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7793. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7794. }
  7795. //const float mean = (float)(sum_xx)/ne00;
  7796. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7797. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7798. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7799. // we could cache rms from forward pass to improve performance.
  7800. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7801. //const float rms = sqrtf(mean_eps);
  7802. const float rrms = 1.0f / sqrtf(mean_eps);
  7803. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7804. {
  7805. // z = rms_norm(x)
  7806. //
  7807. // rms_norm(src0) =
  7808. // scale(
  7809. // src0,
  7810. // div(
  7811. // 1,
  7812. // sqrt(
  7813. // add(
  7814. // scale(
  7815. // sum(
  7816. // sqr(
  7817. // src0)),
  7818. // (1.0/N)),
  7819. // eps))));
  7820. // postorder:
  7821. // ## op args grad
  7822. // 00 param src0 grad[#00]
  7823. // 01 const 1
  7824. // 02 sqr (#00) grad[#02]
  7825. // 03 sum (#02) grad[#03]
  7826. // 04 const 1/N
  7827. // 05 scale (#03, #04) grad[#05]
  7828. // 06 const eps
  7829. // 07 add (#05, #06) grad[#07]
  7830. // 08 sqrt (#07) grad[#08]
  7831. // 09 div (#01,#08) grad[#09]
  7832. // 10 scale (#00,#09) grad[#10]
  7833. //
  7834. // backward pass, given grad[#10]
  7835. // #10: scale
  7836. // grad[#00] += scale(grad[#10],#09)
  7837. // grad[#09] += sum(mul(grad[#10],#00))
  7838. // #09: div
  7839. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7840. // #08: sqrt
  7841. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7842. // #07: add
  7843. // grad[#05] += grad[#07]
  7844. // #05: scale
  7845. // grad[#03] += scale(grad[#05],#04)
  7846. // #03: sum
  7847. // grad[#02] += repeat(grad[#03], #02)
  7848. // #02:
  7849. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7850. //
  7851. // substitute and simplify:
  7852. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7853. // grad[#02] = repeat(grad[#03], #02)
  7854. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7855. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7856. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7857. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7858. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7859. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7860. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7861. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7862. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7863. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7864. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7865. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7866. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7867. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7868. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7869. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7870. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7871. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7872. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7873. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7874. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7875. // a = b*c + d*e
  7876. // a = b*c*f/f + d*e*f/f
  7877. // a = (b*c*f + d*e*f)*(1/f)
  7878. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7879. // a = (b + d*e/c)*c
  7880. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7881. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7882. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7883. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7884. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7885. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7886. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7887. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7888. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7889. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7890. }
  7891. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7892. // post-order:
  7893. // dx := x
  7894. // dx := scale(dx,-mean_xdz/mean_eps)
  7895. // dx := add(dx, dz)
  7896. // dx := scale(dx, rrms)
  7897. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7898. ggml_vec_cpy_f32 (ne00, dx, x);
  7899. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7900. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7901. ggml_vec_acc_f32 (ne00, dx, dz);
  7902. ggml_vec_scale_f32(ne00, dx, rrms);
  7903. }
  7904. }
  7905. }
  7906. }
  7907. static void ggml_compute_forward_rms_norm_back(
  7908. const struct ggml_compute_params * params,
  7909. const struct ggml_tensor * src0,
  7910. const struct ggml_tensor * src1,
  7911. struct ggml_tensor * dst) {
  7912. switch (src0->type) {
  7913. case GGML_TYPE_F32:
  7914. {
  7915. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7916. } break;
  7917. default:
  7918. {
  7919. GGML_ASSERT(false);
  7920. } break;
  7921. }
  7922. }
  7923. // ggml_compute_forward_group_norm
  7924. static void ggml_compute_forward_group_norm_f32(
  7925. const struct ggml_compute_params * params,
  7926. const struct ggml_tensor * src0,
  7927. struct ggml_tensor * dst) {
  7928. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7929. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7930. return;
  7931. }
  7932. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7933. const int ith = params->ith;
  7934. const int nth = params->nth;
  7935. GGML_TENSOR_UNARY_OP_LOCALS
  7936. const float eps = 1e-6f; // TODO: make this a parameter
  7937. // TODO: optimize
  7938. int n_channels = src0->ne[2];
  7939. int n_groups = dst->op_params[0];
  7940. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  7941. for (int i = ith; i < n_groups; i+=nth) {
  7942. int start = i * n_channels_per_group;
  7943. int end = start + n_channels_per_group;
  7944. if (end > n_channels) {
  7945. end = n_channels;
  7946. }
  7947. int step = end - start;
  7948. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7949. ggml_float sum = 0.0;
  7950. for (int64_t i02 = start; i02 < end; i02++) {
  7951. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7952. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7953. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7954. sum += (ggml_float)x[i00];
  7955. }
  7956. }
  7957. }
  7958. float mean = sum / (ne00 * ne01 * step);
  7959. ggml_float sum2 = 0.0;
  7960. for (int64_t i02 = start; i02 < end; i02++) {
  7961. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7962. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7963. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7964. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7965. float v = x[i00] - mean;
  7966. y[i00] = v;
  7967. sum2 += (ggml_float)(v * v);
  7968. }
  7969. }
  7970. }
  7971. float variance = sum2 / (ne00 * ne01 * step);
  7972. const float scale = 1.0f / sqrtf(variance + eps);
  7973. for (int64_t i02 = start; i02 < end; i02++) {
  7974. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7975. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7976. ggml_vec_scale_f32(ne00, y, scale);
  7977. }
  7978. }
  7979. }
  7980. }
  7981. }
  7982. static void ggml_compute_forward_group_norm(
  7983. const struct ggml_compute_params * params,
  7984. const struct ggml_tensor * src0,
  7985. struct ggml_tensor * dst) {
  7986. switch (src0->type) {
  7987. case GGML_TYPE_F32:
  7988. {
  7989. ggml_compute_forward_group_norm_f32(params, src0, dst);
  7990. } break;
  7991. default:
  7992. {
  7993. GGML_ASSERT(false);
  7994. } break;
  7995. }
  7996. }
  7997. // ggml_compute_forward_mul_mat
  7998. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7999. // helper function to determine if it is better to use BLAS or not
  8000. // for large matrices, BLAS is faster
  8001. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8002. const struct ggml_tensor * src0 = dst->src[0];
  8003. const struct ggml_tensor * src1 = dst->src[1];
  8004. //const int64_t ne00 = src0->ne[0];
  8005. //const int64_t ne01 = src0->ne[1];
  8006. const int64_t ne10 = src1->ne[0];
  8007. const int64_t ne0 = dst->ne[0];
  8008. const int64_t ne1 = dst->ne[1];
  8009. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8010. // all the experts for each batch element and the processing would become incredibly slow
  8011. // TODO: find the optimal values for these
  8012. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8013. ggml_is_contiguous(src0) &&
  8014. ggml_is_contiguous(src1) &&
  8015. //src0->type == GGML_TYPE_F32 &&
  8016. src1->type == GGML_TYPE_F32 &&
  8017. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8018. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8019. return true;
  8020. }
  8021. return false;
  8022. }
  8023. #endif
  8024. static void ggml_compute_forward_mul_mat(
  8025. const struct ggml_compute_params * params,
  8026. const struct ggml_tensor * src0,
  8027. const struct ggml_tensor * src1,
  8028. struct ggml_tensor * dst) {
  8029. int64_t t0 = ggml_perf_time_us();
  8030. UNUSED(t0);
  8031. GGML_TENSOR_BINARY_OP_LOCALS
  8032. const int ith = params->ith;
  8033. const int nth = params->nth;
  8034. if (ith == 1 && g_imatrix_collect) {
  8035. g_imatrix_collect(src0, src1);
  8036. }
  8037. const enum ggml_type type = src0->type;
  8038. const bool src1_cont = ggml_is_contiguous(src1);
  8039. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8040. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8041. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8042. GGML_ASSERT(ne0 == ne01);
  8043. GGML_ASSERT(ne1 == ne11);
  8044. GGML_ASSERT(ne2 == ne12);
  8045. GGML_ASSERT(ne3 == ne13);
  8046. // we don't support permuted src0 or src1
  8047. GGML_ASSERT(nb00 == ggml_type_size(type));
  8048. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8049. // dst cannot be transposed or permuted
  8050. GGML_ASSERT(nb0 == sizeof(float));
  8051. GGML_ASSERT(nb0 <= nb1);
  8052. GGML_ASSERT(nb1 <= nb2);
  8053. GGML_ASSERT(nb2 <= nb3);
  8054. // broadcast factors
  8055. const int64_t r2 = ne12/ne02;
  8056. const int64_t r3 = ne13/ne03;
  8057. // nb01 >= nb00 - src0 is not transposed
  8058. // compute by src0 rows
  8059. #if defined(GGML_USE_CLBLAST)
  8060. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8061. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8062. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8063. }
  8064. return;
  8065. }
  8066. #endif
  8067. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8068. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8069. if (params->ith != 0) {
  8070. return;
  8071. }
  8072. if (params->type == GGML_TASK_INIT) {
  8073. return;
  8074. }
  8075. if (params->type == GGML_TASK_FINALIZE) {
  8076. return;
  8077. }
  8078. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8079. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8080. // broadcast src0 into src1 across 2nd,3rd dimension
  8081. const int64_t i03 = i13/r3;
  8082. const int64_t i02 = i12/r2;
  8083. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8084. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8085. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8086. if (type != GGML_TYPE_F32) {
  8087. float * const wdata = params->wdata;
  8088. ggml_to_float_t const to_float = type_traits[type].to_float;
  8089. size_t id = 0;
  8090. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8091. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  8092. id += ne00;
  8093. }
  8094. assert(id*sizeof(float) <= params->wsize);
  8095. x = wdata;
  8096. }
  8097. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8098. ne1, ne01, ne10,
  8099. 1.0f, y, ne10,
  8100. x, ne00,
  8101. 0.0f, d, ne01);
  8102. }
  8103. }
  8104. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8105. return;
  8106. }
  8107. #endif
  8108. if (params->type == GGML_TASK_INIT) {
  8109. if (src1->type != vec_dot_type) {
  8110. char * wdata = params->wdata;
  8111. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8112. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8113. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8114. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8115. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8116. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8117. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8118. wdata += row_size;
  8119. }
  8120. }
  8121. }
  8122. }
  8123. return;
  8124. }
  8125. if (params->type == GGML_TASK_FINALIZE) {
  8126. return;
  8127. }
  8128. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8129. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8130. const int64_t nr0 = ne01; // src0 rows
  8131. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8132. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8133. // distribute the thread work across the inner or outer loop based on which one is larger
  8134. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8135. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8136. const int64_t ith0 = ith % nth0;
  8137. const int64_t ith1 = ith / nth0;
  8138. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8139. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8140. const int64_t ir010 = dr0*ith0;
  8141. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8142. const int64_t ir110 = dr1*ith1;
  8143. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8144. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8145. // threads with no work simply yield (not sure if it helps)
  8146. if (ir010 >= ir011 || ir110 >= ir111) {
  8147. sched_yield();
  8148. return;
  8149. }
  8150. assert(ne12 % ne02 == 0);
  8151. assert(ne13 % ne03 == 0);
  8152. // block-tiling attempt
  8153. const int64_t blck_0 = 16;
  8154. const int64_t blck_1 = 16;
  8155. // attempt to reduce false-sharing (does not seem to make a difference)
  8156. float tmp[16];
  8157. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8158. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8159. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8160. const int64_t i13 = (ir1/(ne12*ne1));
  8161. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8162. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8163. // broadcast src0 into src1
  8164. const int64_t i03 = i13/r3;
  8165. const int64_t i02 = i12/r2;
  8166. const int64_t i1 = i11;
  8167. const int64_t i2 = i12;
  8168. const int64_t i3 = i13;
  8169. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8170. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8171. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8172. // the original src1 data pointer, so we should index using the indices directly
  8173. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8174. const char * src1_col = (const char *) wdata +
  8175. (src1_cont || src1->type != vec_dot_type
  8176. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8177. : (i11*nb11 + i12*nb12 + i13*nb13));
  8178. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8179. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8180. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8181. //}
  8182. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8183. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8184. }
  8185. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8186. }
  8187. }
  8188. }
  8189. }
  8190. // ggml_compute_forward_mul_mat_id
  8191. static void ggml_compute_forward_mul_mat_id(
  8192. const struct ggml_compute_params * params,
  8193. const struct ggml_tensor * ids,
  8194. const struct ggml_tensor * src1,
  8195. struct ggml_tensor * dst) {
  8196. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8197. GGML_TENSOR_BINARY_OP_LOCALS
  8198. const int ith = params->ith;
  8199. const int nth = params->nth;
  8200. const enum ggml_type type = src0->type;
  8201. const bool src1_cont = ggml_is_contiguous(src1);
  8202. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8203. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8204. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8205. GGML_ASSERT(ne0 == ne01);
  8206. GGML_ASSERT(ne1 == ne11);
  8207. GGML_ASSERT(ne2 == ne12);
  8208. GGML_ASSERT(ne3 == ne13);
  8209. // we don't support permuted src0 or src1
  8210. GGML_ASSERT(nb00 == ggml_type_size(type));
  8211. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8212. // dst cannot be transposed or permuted
  8213. GGML_ASSERT(nb0 == sizeof(float));
  8214. GGML_ASSERT(nb0 <= nb1);
  8215. GGML_ASSERT(nb1 <= nb2);
  8216. GGML_ASSERT(nb2 <= nb3);
  8217. // broadcast factors
  8218. const int64_t r2 = ne12/ne02;
  8219. const int64_t r3 = ne13/ne03;
  8220. // row groups
  8221. const int id = ggml_get_op_params_i32(dst, 0);
  8222. const int n_as = ggml_get_op_params_i32(dst, 1);
  8223. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8224. (char *) params->wdata :
  8225. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8226. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8227. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8228. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8229. if (params->type == GGML_TASK_INIT) {
  8230. char * wdata = params->wdata;
  8231. if (src1->type != vec_dot_type) {
  8232. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8233. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8234. assert(src1->type == GGML_TYPE_F32);
  8235. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8236. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8237. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8238. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8239. wdata += row_size;
  8240. }
  8241. }
  8242. }
  8243. }
  8244. // initialize matrix_row_counts
  8245. GGML_ASSERT(wdata == wdata_src1_end);
  8246. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8247. // group rows by src0 matrix
  8248. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8249. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8250. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8251. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8252. matrix_row_counts[row_id] += 1;
  8253. }
  8254. return;
  8255. }
  8256. if (params->type == GGML_TASK_FINALIZE) {
  8257. return;
  8258. }
  8259. // compute each matrix multiplication in sequence
  8260. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8261. const int64_t cne1 = matrix_row_counts[cur_a];
  8262. if (cne1 == 0) {
  8263. continue;
  8264. }
  8265. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8266. if (ith == 1 && g_imatrix_collect) {
  8267. g_imatrix_collect(src0_cur, src1);
  8268. }
  8269. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8270. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8271. const int64_t nr0 = ne01; // src0 rows
  8272. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8273. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8274. // distribute the thread work across the inner or outer loop based on which one is larger
  8275. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8276. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8277. const int64_t ith0 = ith % nth0;
  8278. const int64_t ith1 = ith / nth0;
  8279. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8280. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8281. const int64_t ir010 = dr0*ith0;
  8282. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8283. const int64_t ir110 = dr1*ith1;
  8284. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8285. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8286. // threads with no work simply yield (not sure if it helps)
  8287. if (ir010 >= ir011 || ir110 >= ir111) {
  8288. sched_yield();
  8289. continue;
  8290. }
  8291. assert(ne12 % ne02 == 0);
  8292. assert(ne13 % ne03 == 0);
  8293. // block-tiling attempt
  8294. const int64_t blck_0 = 16;
  8295. const int64_t blck_1 = 16;
  8296. // attempt to reduce false-sharing (does not seem to make a difference)
  8297. float tmp[16];
  8298. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8299. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8300. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8301. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8302. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8303. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8304. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8305. // broadcast src0 into src1
  8306. const int64_t i03 = i13/r3;
  8307. const int64_t i02 = i12/r2;
  8308. const int64_t i1 = i11;
  8309. const int64_t i2 = i12;
  8310. const int64_t i3 = i13;
  8311. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8312. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8313. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8314. // the original src1 data pointer, so we should index using the indices directly
  8315. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8316. const char * src1_col = (const char *) wdata +
  8317. (src1_cont || src1->type != vec_dot_type
  8318. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8319. : (i11*nb11 + i12*nb12 + i13*nb13));
  8320. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8321. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8322. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8323. //}
  8324. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8325. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8326. }
  8327. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8328. }
  8329. }
  8330. }
  8331. }
  8332. #undef MMID_MATRIX_ROW
  8333. }
  8334. // ggml_compute_forward_out_prod
  8335. static void ggml_compute_forward_out_prod_f32(
  8336. const struct ggml_compute_params * params,
  8337. const struct ggml_tensor * src0,
  8338. const struct ggml_tensor * src1,
  8339. struct ggml_tensor * dst) {
  8340. // int64_t t0 = ggml_perf_time_us();
  8341. // UNUSED(t0);
  8342. GGML_TENSOR_BINARY_OP_LOCALS
  8343. const int ith = params->ith;
  8344. const int nth = params->nth;
  8345. GGML_ASSERT(ne0 == ne00);
  8346. GGML_ASSERT(ne1 == ne10);
  8347. GGML_ASSERT(ne2 == ne02);
  8348. GGML_ASSERT(ne02 == ne12);
  8349. GGML_ASSERT(ne3 == ne13);
  8350. GGML_ASSERT(ne03 == ne13);
  8351. // we don't support permuted src0 or src1
  8352. GGML_ASSERT(nb00 == sizeof(float));
  8353. // dst cannot be transposed or permuted
  8354. GGML_ASSERT(nb0 == sizeof(float));
  8355. // GGML_ASSERT(nb0 <= nb1);
  8356. // GGML_ASSERT(nb1 <= nb2);
  8357. // GGML_ASSERT(nb2 <= nb3);
  8358. // nb01 >= nb00 - src0 is not transposed
  8359. // compute by src0 rows
  8360. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8361. // TODO: #if defined(GGML_USE_CLBLAST)
  8362. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8363. bool use_blas = ggml_is_matrix(src0) &&
  8364. ggml_is_matrix(src1) &&
  8365. ggml_is_contiguous(src0) &&
  8366. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8367. #endif
  8368. if (params->type == GGML_TASK_INIT) {
  8369. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8370. if (use_blas) {
  8371. return;
  8372. }
  8373. #endif
  8374. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8375. return;
  8376. }
  8377. if (params->type == GGML_TASK_FINALIZE) {
  8378. return;
  8379. }
  8380. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8381. if (use_blas) {
  8382. if (params->ith != 0) { // All threads other than the first do no work.
  8383. return;
  8384. }
  8385. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8386. // src0: (k,n)
  8387. // src1: (k,m)
  8388. // dst: (m,n)
  8389. //
  8390. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8391. // Also expressed as (major,minor)
  8392. // a: (m,k): so src1 transposed
  8393. // b: (k,n): so src0
  8394. // c: (m,n)
  8395. //
  8396. // However, if ggml_is_transposed(src1) is true, then
  8397. // src1->data already contains a transposed version, so sgemm mustn't
  8398. // transpose it further.
  8399. int n = src0->ne[0];
  8400. int k = src0->ne[1];
  8401. int m = src1->ne[0];
  8402. int transposeA, lda;
  8403. if (!ggml_is_transposed(src1)) {
  8404. transposeA = CblasTrans;
  8405. lda = m;
  8406. } else {
  8407. transposeA = CblasNoTrans;
  8408. lda = k;
  8409. }
  8410. float * a = (float *) ((char *) src1->data);
  8411. float * b = (float *) ((char *) src0->data);
  8412. float * c = (float *) ((char *) dst->data);
  8413. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8414. return;
  8415. }
  8416. #endif
  8417. // dst[:,:,:,:] = 0
  8418. // for i2,i3:
  8419. // for i1:
  8420. // for i01:
  8421. // for i0:
  8422. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8423. // parallelize by last three dimensions
  8424. // total rows in dst
  8425. const int64_t nr = ne1*ne2*ne3;
  8426. // rows per thread
  8427. const int64_t dr = (nr + nth - 1)/nth;
  8428. // row range for this thread
  8429. const int64_t ir0 = dr*ith;
  8430. const int64_t ir1 = MIN(ir0 + dr, nr);
  8431. // block-tiling attempt
  8432. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8433. const int64_t blck_1 = 16;
  8434. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8435. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8436. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8437. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8438. for (int64_t ir = bir; ir < bir1; ++ir) {
  8439. // dst indices
  8440. const int64_t i3 = ir/(ne2*ne1);
  8441. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8442. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8443. const int64_t i02 = i2;
  8444. const int64_t i03 = i3;
  8445. //const int64_t i10 = i1;
  8446. const int64_t i12 = i2;
  8447. const int64_t i13 = i3;
  8448. #if GGML_VEC_MAD_UNROLL > 2
  8449. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8450. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8451. const int64_t i11 = i01;
  8452. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8453. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8454. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8455. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8456. }
  8457. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8458. const int64_t i11 = i01;
  8459. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8460. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8461. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8462. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8463. }
  8464. #else
  8465. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8466. const int64_t i11 = i01;
  8467. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8468. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8469. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8470. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8471. }
  8472. #endif
  8473. }
  8474. }
  8475. }
  8476. //int64_t t1 = ggml_perf_time_us();
  8477. //static int64_t acc = 0;
  8478. //acc += t1 - t0;
  8479. //if (t1 - t0 > 10) {
  8480. // printf("\n");
  8481. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8482. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8483. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8484. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8485. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8486. //}
  8487. }
  8488. static void ggml_compute_forward_out_prod_q_f32(
  8489. const struct ggml_compute_params * params,
  8490. const struct ggml_tensor * src0,
  8491. const struct ggml_tensor * src1,
  8492. struct ggml_tensor * dst) {
  8493. // int64_t t0 = ggml_perf_time_us();
  8494. // UNUSED(t0);
  8495. GGML_TENSOR_BINARY_OP_LOCALS;
  8496. const int ith = params->ith;
  8497. const int nth = params->nth;
  8498. const enum ggml_type type = src0->type;
  8499. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8500. GGML_ASSERT(ne02 == ne12);
  8501. GGML_ASSERT(ne03 == ne13);
  8502. GGML_ASSERT(ne2 == ne12);
  8503. GGML_ASSERT(ne3 == ne13);
  8504. // we don't support permuted src0 dim0
  8505. GGML_ASSERT(nb00 == ggml_type_size(type));
  8506. // dst dim0 cannot be transposed or permuted
  8507. GGML_ASSERT(nb0 == sizeof(float));
  8508. // GGML_ASSERT(nb0 <= nb1);
  8509. // GGML_ASSERT(nb1 <= nb2);
  8510. // GGML_ASSERT(nb2 <= nb3);
  8511. GGML_ASSERT(ne0 == ne00);
  8512. GGML_ASSERT(ne1 == ne10);
  8513. GGML_ASSERT(ne2 == ne02);
  8514. GGML_ASSERT(ne3 == ne03);
  8515. // nb01 >= nb00 - src0 is not transposed
  8516. // compute by src0 rows
  8517. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8518. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8519. if (params->type == GGML_TASK_INIT) {
  8520. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8521. return;
  8522. }
  8523. if (params->type == GGML_TASK_FINALIZE) {
  8524. return;
  8525. }
  8526. // parallelize by last three dimensions
  8527. // total rows in dst
  8528. const int64_t nr = ne1*ne2*ne3;
  8529. // rows per thread
  8530. const int64_t dr = (nr + nth - 1)/nth;
  8531. // row range for this thread
  8532. const int64_t ir0 = dr*ith;
  8533. const int64_t ir1 = MIN(ir0 + dr, nr);
  8534. // dst[:,:,:,:] = 0
  8535. // for i2,i3:
  8536. // for i1:
  8537. // for i01:
  8538. // for i0:
  8539. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8540. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8541. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8542. // dst indices
  8543. const int64_t i3 = ir/(ne2*ne1);
  8544. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8545. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8546. const int64_t i02 = i2;
  8547. const int64_t i03 = i3;
  8548. //const int64_t i10 = i1;
  8549. const int64_t i12 = i2;
  8550. const int64_t i13 = i3;
  8551. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8552. const int64_t i11 = i01;
  8553. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8554. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8555. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8556. dequantize_row_q(s0, wdata, ne0);
  8557. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8558. }
  8559. }
  8560. //int64_t t1 = ggml_perf_time_us();
  8561. //static int64_t acc = 0;
  8562. //acc += t1 - t0;
  8563. //if (t1 - t0 > 10) {
  8564. // printf("\n");
  8565. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8566. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8567. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8568. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8569. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8570. //}
  8571. }
  8572. static void ggml_compute_forward_out_prod(
  8573. const struct ggml_compute_params * params,
  8574. const struct ggml_tensor * src0,
  8575. const struct ggml_tensor * src1,
  8576. struct ggml_tensor * dst) {
  8577. switch (src0->type) {
  8578. case GGML_TYPE_Q4_0:
  8579. case GGML_TYPE_Q4_1:
  8580. case GGML_TYPE_Q5_0:
  8581. case GGML_TYPE_Q5_1:
  8582. case GGML_TYPE_Q8_0:
  8583. case GGML_TYPE_Q2_K:
  8584. case GGML_TYPE_Q3_K:
  8585. case GGML_TYPE_Q4_K:
  8586. case GGML_TYPE_Q5_K:
  8587. case GGML_TYPE_Q6_K:
  8588. case GGML_TYPE_IQ2_XXS:
  8589. case GGML_TYPE_IQ2_XS:
  8590. {
  8591. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8592. } break;
  8593. case GGML_TYPE_F16:
  8594. {
  8595. GGML_ASSERT(false); // todo
  8596. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8597. } break;
  8598. case GGML_TYPE_F32:
  8599. {
  8600. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8601. } break;
  8602. default:
  8603. {
  8604. GGML_ASSERT(false);
  8605. } break;
  8606. }
  8607. }
  8608. // ggml_compute_forward_scale
  8609. static void ggml_compute_forward_scale_f32(
  8610. const struct ggml_compute_params * params,
  8611. const struct ggml_tensor * src0,
  8612. struct ggml_tensor * dst) {
  8613. GGML_ASSERT(ggml_is_contiguous(src0));
  8614. GGML_ASSERT(ggml_is_contiguous(dst));
  8615. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8616. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8617. return;
  8618. }
  8619. // scale factor
  8620. float v;
  8621. memcpy(&v, dst->op_params, sizeof(float));
  8622. const int ith = params->ith;
  8623. const int nth = params->nth;
  8624. const int nc = src0->ne[0];
  8625. const int nr = ggml_nrows(src0);
  8626. // rows per thread
  8627. const int dr = (nr + nth - 1)/nth;
  8628. // row range for this thread
  8629. const int ir0 = dr*ith;
  8630. const int ir1 = MIN(ir0 + dr, nr);
  8631. const size_t nb01 = src0->nb[1];
  8632. const size_t nb1 = dst->nb[1];
  8633. for (int i1 = ir0; i1 < ir1; i1++) {
  8634. if (dst->data != src0->data) {
  8635. // src0 is same shape as dst => same indices
  8636. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8637. }
  8638. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8639. }
  8640. }
  8641. static void ggml_compute_forward_scale(
  8642. const struct ggml_compute_params * params,
  8643. const struct ggml_tensor * src0,
  8644. struct ggml_tensor * dst) {
  8645. switch (src0->type) {
  8646. case GGML_TYPE_F32:
  8647. {
  8648. ggml_compute_forward_scale_f32(params, src0, dst);
  8649. } break;
  8650. default:
  8651. {
  8652. GGML_ASSERT(false);
  8653. } break;
  8654. }
  8655. }
  8656. // ggml_compute_forward_set
  8657. static void ggml_compute_forward_set_f32(
  8658. const struct ggml_compute_params * params,
  8659. const struct ggml_tensor * src0,
  8660. const struct ggml_tensor * src1,
  8661. struct ggml_tensor * dst) {
  8662. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8663. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8664. // view src0 and dst with these strides and data offset inbytes during set
  8665. // nb0 is implicitly element_size because src0 and dst are contiguous
  8666. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8667. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8668. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8669. size_t offset = ((int32_t *) dst->op_params)[3];
  8670. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8671. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8672. // memcpy needs to be synchronized across threads to avoid race conditions.
  8673. // => do it in INIT phase
  8674. memcpy(
  8675. ((char *) dst->data),
  8676. ((char *) src0->data),
  8677. ggml_nbytes(dst));
  8678. }
  8679. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8680. return;
  8681. }
  8682. const int ith = params->ith;
  8683. const int nth = params->nth;
  8684. const int nr = ggml_nrows(src1);
  8685. const int nc = src1->ne[0];
  8686. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8687. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8688. // src0 and dst as viewed during set
  8689. const size_t nb0 = ggml_element_size(src0);
  8690. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8691. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8692. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8693. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8694. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8695. GGML_ASSERT(nb10 == sizeof(float));
  8696. // rows per thread
  8697. const int dr = (nr + nth - 1)/nth;
  8698. // row range for this thread
  8699. const int ir0 = dr*ith;
  8700. const int ir1 = MIN(ir0 + dr, nr);
  8701. for (int ir = ir0; ir < ir1; ++ir) {
  8702. // src0 and dst are viewed with shape of src1 and offset
  8703. // => same indices
  8704. const int i3 = ir/(ne12*ne11);
  8705. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8706. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8707. ggml_vec_cpy_f32(nc,
  8708. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8709. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8710. }
  8711. }
  8712. static void ggml_compute_forward_set(
  8713. const struct ggml_compute_params * params,
  8714. const struct ggml_tensor * src0,
  8715. const struct ggml_tensor * src1,
  8716. struct ggml_tensor * dst) {
  8717. switch (src0->type) {
  8718. case GGML_TYPE_F32:
  8719. {
  8720. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8721. } break;
  8722. case GGML_TYPE_F16:
  8723. case GGML_TYPE_Q4_0:
  8724. case GGML_TYPE_Q4_1:
  8725. case GGML_TYPE_Q5_0:
  8726. case GGML_TYPE_Q5_1:
  8727. case GGML_TYPE_Q8_0:
  8728. case GGML_TYPE_Q8_1:
  8729. case GGML_TYPE_Q2_K:
  8730. case GGML_TYPE_Q3_K:
  8731. case GGML_TYPE_Q4_K:
  8732. case GGML_TYPE_Q5_K:
  8733. case GGML_TYPE_Q6_K:
  8734. case GGML_TYPE_IQ2_XXS:
  8735. case GGML_TYPE_IQ2_XS:
  8736. default:
  8737. {
  8738. GGML_ASSERT(false);
  8739. } break;
  8740. }
  8741. }
  8742. // ggml_compute_forward_cpy
  8743. static void ggml_compute_forward_cpy(
  8744. const struct ggml_compute_params * params,
  8745. const struct ggml_tensor * src0,
  8746. struct ggml_tensor * dst) {
  8747. ggml_compute_forward_dup(params, src0, dst);
  8748. }
  8749. // ggml_compute_forward_cont
  8750. static void ggml_compute_forward_cont(
  8751. const struct ggml_compute_params * params,
  8752. const struct ggml_tensor * src0,
  8753. struct ggml_tensor * dst) {
  8754. ggml_compute_forward_dup(params, src0, dst);
  8755. }
  8756. // ggml_compute_forward_reshape
  8757. static void ggml_compute_forward_reshape(
  8758. const struct ggml_compute_params * params,
  8759. const struct ggml_tensor * src0,
  8760. struct ggml_tensor * dst) {
  8761. // NOP
  8762. UNUSED(params);
  8763. UNUSED(src0);
  8764. UNUSED(dst);
  8765. }
  8766. // ggml_compute_forward_view
  8767. static void ggml_compute_forward_view(
  8768. const struct ggml_compute_params * params,
  8769. const struct ggml_tensor * src0) {
  8770. // NOP
  8771. UNUSED(params);
  8772. UNUSED(src0);
  8773. }
  8774. // ggml_compute_forward_permute
  8775. static void ggml_compute_forward_permute(
  8776. const struct ggml_compute_params * params,
  8777. const struct ggml_tensor * src0) {
  8778. // NOP
  8779. UNUSED(params);
  8780. UNUSED(src0);
  8781. }
  8782. // ggml_compute_forward_transpose
  8783. static void ggml_compute_forward_transpose(
  8784. const struct ggml_compute_params * params,
  8785. const struct ggml_tensor * src0) {
  8786. // NOP
  8787. UNUSED(params);
  8788. UNUSED(src0);
  8789. }
  8790. // ggml_compute_forward_get_rows
  8791. static void ggml_compute_forward_get_rows_q(
  8792. const struct ggml_compute_params * params,
  8793. const struct ggml_tensor * src0,
  8794. const struct ggml_tensor * src1,
  8795. struct ggml_tensor * dst) {
  8796. assert(params->ith == 0);
  8797. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8798. return;
  8799. }
  8800. GGML_TENSOR_BINARY_OP_LOCALS
  8801. const int64_t nc = ne00;
  8802. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8803. const enum ggml_type type = src0->type;
  8804. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8805. assert(ne0 == nc);
  8806. assert(ne02 == ne11);
  8807. assert(nb00 == ggml_type_size(type));
  8808. assert(ggml_nrows(dst) == nr);
  8809. // TODO: multi-thread
  8810. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8811. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8812. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8813. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8814. dequantize_row_q(
  8815. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  8816. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  8817. }
  8818. }
  8819. }
  8820. }
  8821. static void ggml_compute_forward_get_rows_f16(
  8822. const struct ggml_compute_params * params,
  8823. const struct ggml_tensor * src0,
  8824. const struct ggml_tensor * src1,
  8825. struct ggml_tensor * dst) {
  8826. assert(params->ith == 0);
  8827. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8828. return;
  8829. }
  8830. GGML_TENSOR_BINARY_OP_LOCALS
  8831. const int64_t nc = ne00;
  8832. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8833. assert(ne0 == nc);
  8834. assert(ne02 == ne11);
  8835. assert(nb00 == sizeof(ggml_fp16_t));
  8836. assert(ggml_nrows(dst) == nr);
  8837. // TODO: multi-thread
  8838. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8839. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8840. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8841. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8842. ggml_fp16_to_fp32_row(
  8843. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  8844. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  8845. }
  8846. }
  8847. }
  8848. }
  8849. static void ggml_compute_forward_get_rows_f32(
  8850. const struct ggml_compute_params * params,
  8851. const struct ggml_tensor * src0,
  8852. const struct ggml_tensor * src1,
  8853. struct ggml_tensor * dst) {
  8854. assert(params->ith == 0);
  8855. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8856. return;
  8857. }
  8858. GGML_TENSOR_BINARY_OP_LOCALS
  8859. const int64_t nc = ne00;
  8860. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8861. assert(ne0 == nc);
  8862. assert(ne02 == ne11);
  8863. assert(nb00 == sizeof(float));
  8864. assert(ggml_nrows(dst) == nr);
  8865. // TODO: multi-thread
  8866. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8867. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8868. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8869. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8870. ggml_vec_cpy_f32(nc,
  8871. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  8872. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  8873. }
  8874. }
  8875. }
  8876. }
  8877. static void ggml_compute_forward_get_rows(
  8878. const struct ggml_compute_params * params,
  8879. const struct ggml_tensor * src0,
  8880. const struct ggml_tensor * src1,
  8881. struct ggml_tensor * dst) {
  8882. switch (src0->type) {
  8883. case GGML_TYPE_Q4_0:
  8884. case GGML_TYPE_Q4_1:
  8885. case GGML_TYPE_Q5_0:
  8886. case GGML_TYPE_Q5_1:
  8887. case GGML_TYPE_Q8_0:
  8888. case GGML_TYPE_Q8_1:
  8889. case GGML_TYPE_Q2_K:
  8890. case GGML_TYPE_Q3_K:
  8891. case GGML_TYPE_Q4_K:
  8892. case GGML_TYPE_Q5_K:
  8893. case GGML_TYPE_Q6_K:
  8894. case GGML_TYPE_IQ2_XXS:
  8895. case GGML_TYPE_IQ2_XS:
  8896. {
  8897. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8898. } break;
  8899. case GGML_TYPE_F16:
  8900. {
  8901. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8902. } break;
  8903. case GGML_TYPE_F32:
  8904. case GGML_TYPE_I32:
  8905. {
  8906. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8907. } break;
  8908. default:
  8909. {
  8910. GGML_ASSERT(false);
  8911. } break;
  8912. }
  8913. //static bool first = true;
  8914. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8915. //if (first) {
  8916. // first = false;
  8917. //} else {
  8918. // for (int k = 0; k < dst->ne[1]; ++k) {
  8919. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8920. // for (int i = 0; i < 16; ++i) {
  8921. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8922. // }
  8923. // printf("\n");
  8924. // }
  8925. // printf("\n");
  8926. // }
  8927. // printf("\n");
  8928. // exit(0);
  8929. //}
  8930. }
  8931. // ggml_compute_forward_get_rows_back
  8932. static void ggml_compute_forward_get_rows_back_f32_f16(
  8933. const struct ggml_compute_params * params,
  8934. const struct ggml_tensor * src0,
  8935. const struct ggml_tensor * src1,
  8936. struct ggml_tensor * dst) {
  8937. GGML_ASSERT(params->ith == 0);
  8938. GGML_ASSERT(ggml_is_contiguous(dst));
  8939. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8940. if (params->type == GGML_TASK_INIT) {
  8941. memset(dst->data, 0, ggml_nbytes(dst));
  8942. }
  8943. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8944. return;
  8945. }
  8946. const int nc = src0->ne[0];
  8947. const int nr = ggml_nelements(src1);
  8948. GGML_ASSERT( dst->ne[0] == nc);
  8949. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8950. for (int i = 0; i < nr; ++i) {
  8951. const int r = ((int32_t *) src1->data)[i];
  8952. for (int j = 0; j < nc; ++j) {
  8953. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8954. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8955. }
  8956. }
  8957. }
  8958. static void ggml_compute_forward_get_rows_back_f32(
  8959. const struct ggml_compute_params * params,
  8960. const struct ggml_tensor * src0,
  8961. const struct ggml_tensor * src1,
  8962. struct ggml_tensor * dst) {
  8963. GGML_ASSERT(params->ith == 0);
  8964. GGML_ASSERT(ggml_is_contiguous(dst));
  8965. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8966. if (params->type == GGML_TASK_INIT) {
  8967. memset(dst->data, 0, ggml_nbytes(dst));
  8968. }
  8969. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8970. return;
  8971. }
  8972. const int nc = src0->ne[0];
  8973. const int nr = ggml_nelements(src1);
  8974. GGML_ASSERT( dst->ne[0] == nc);
  8975. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8976. for (int i = 0; i < nr; ++i) {
  8977. const int r = ((int32_t *) src1->data)[i];
  8978. ggml_vec_add_f32(nc,
  8979. (float *) ((char *) dst->data + r*dst->nb[1]),
  8980. (float *) ((char *) dst->data + r*dst->nb[1]),
  8981. (float *) ((char *) src0->data + i*src0->nb[1]));
  8982. }
  8983. }
  8984. static void ggml_compute_forward_get_rows_back(
  8985. const struct ggml_compute_params * params,
  8986. const struct ggml_tensor * src0,
  8987. const struct ggml_tensor * src1,
  8988. struct ggml_tensor * dst) {
  8989. switch (src0->type) {
  8990. case GGML_TYPE_F16:
  8991. {
  8992. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  8993. } break;
  8994. case GGML_TYPE_F32:
  8995. {
  8996. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  8997. } break;
  8998. default:
  8999. {
  9000. GGML_ASSERT(false);
  9001. } break;
  9002. }
  9003. //static bool first = true;
  9004. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9005. //if (first) {
  9006. // first = false;
  9007. //} else {
  9008. // for (int k = 0; k < dst->ne[1]; ++k) {
  9009. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9010. // for (int i = 0; i < 16; ++i) {
  9011. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9012. // }
  9013. // printf("\n");
  9014. // }
  9015. // printf("\n");
  9016. // }
  9017. // printf("\n");
  9018. // exit(0);
  9019. //}
  9020. }
  9021. // ggml_compute_forward_diag
  9022. static void ggml_compute_forward_diag_f32(
  9023. const struct ggml_compute_params * params,
  9024. const struct ggml_tensor * src0,
  9025. struct ggml_tensor * dst) {
  9026. GGML_ASSERT(params->ith == 0);
  9027. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9028. return;
  9029. }
  9030. // TODO: handle transposed/permuted matrices
  9031. GGML_TENSOR_UNARY_OP_LOCALS
  9032. GGML_ASSERT(ne00 == ne0);
  9033. GGML_ASSERT(ne00 == ne1);
  9034. GGML_ASSERT(ne01 == 1);
  9035. GGML_ASSERT(ne02 == ne2);
  9036. GGML_ASSERT(ne03 == ne3);
  9037. GGML_ASSERT(nb00 == sizeof(float));
  9038. GGML_ASSERT(nb0 == sizeof(float));
  9039. for (int i3 = 0; i3 < ne3; i3++) {
  9040. for (int i2 = 0; i2 < ne2; i2++) {
  9041. for (int i1 = 0; i1 < ne1; i1++) {
  9042. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9043. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9044. for (int i0 = 0; i0 < i1; i0++) {
  9045. d[i0] = 0;
  9046. }
  9047. d[i1] = s[i1];
  9048. for (int i0 = i1+1; i0 < ne0; i0++) {
  9049. d[i0] = 0;
  9050. }
  9051. }
  9052. }
  9053. }
  9054. }
  9055. static void ggml_compute_forward_diag(
  9056. const struct ggml_compute_params * params,
  9057. const struct ggml_tensor * src0,
  9058. struct ggml_tensor * dst) {
  9059. switch (src0->type) {
  9060. case GGML_TYPE_F32:
  9061. {
  9062. ggml_compute_forward_diag_f32(params, src0, dst);
  9063. } break;
  9064. default:
  9065. {
  9066. GGML_ASSERT(false);
  9067. } break;
  9068. }
  9069. }
  9070. // ggml_compute_forward_diag_mask_inf
  9071. static void ggml_compute_forward_diag_mask_f32(
  9072. const struct ggml_compute_params * params,
  9073. const struct ggml_tensor * src0,
  9074. struct ggml_tensor * dst,
  9075. const float value) {
  9076. const int ith = params->ith;
  9077. const int nth = params->nth;
  9078. const int n_past = ((int32_t *) dst->op_params)[0];
  9079. const bool inplace = src0->data == dst->data;
  9080. GGML_ASSERT(n_past >= 0);
  9081. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9082. // memcpy needs to be synchronized across threads to avoid race conditions.
  9083. // => do it in INIT phase
  9084. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9085. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9086. memcpy(
  9087. ((char *) dst->data),
  9088. ((char *) src0->data),
  9089. ggml_nbytes(dst));
  9090. }
  9091. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9092. return;
  9093. }
  9094. // TODO: handle transposed/permuted matrices
  9095. const int n = ggml_nrows(src0);
  9096. const int nc = src0->ne[0];
  9097. const int nr = src0->ne[1];
  9098. const int nz = n/nr;
  9099. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9100. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9101. for (int k = 0; k < nz; k++) {
  9102. for (int j = ith; j < nr; j += nth) {
  9103. for (int i = n_past; i < nc; i++) {
  9104. if (i > n_past + j) {
  9105. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9106. }
  9107. }
  9108. }
  9109. }
  9110. }
  9111. static void ggml_compute_forward_diag_mask_inf(
  9112. const struct ggml_compute_params * params,
  9113. const struct ggml_tensor * src0,
  9114. struct ggml_tensor * dst) {
  9115. switch (src0->type) {
  9116. case GGML_TYPE_F32:
  9117. {
  9118. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9119. } break;
  9120. default:
  9121. {
  9122. GGML_ASSERT(false);
  9123. } break;
  9124. }
  9125. }
  9126. static void ggml_compute_forward_diag_mask_zero(
  9127. const struct ggml_compute_params * params,
  9128. const struct ggml_tensor * src0,
  9129. struct ggml_tensor * dst) {
  9130. switch (src0->type) {
  9131. case GGML_TYPE_F32:
  9132. {
  9133. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9134. } break;
  9135. default:
  9136. {
  9137. GGML_ASSERT(false);
  9138. } break;
  9139. }
  9140. }
  9141. // ggml_compute_forward_soft_max
  9142. static void ggml_compute_forward_soft_max_f32(
  9143. const struct ggml_compute_params * params,
  9144. const struct ggml_tensor * src0,
  9145. const struct ggml_tensor * src1,
  9146. struct ggml_tensor * dst) {
  9147. assert(ggml_is_contiguous(dst));
  9148. assert(ggml_are_same_shape(src0, dst));
  9149. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9150. return;
  9151. }
  9152. float scale = 1.0f;
  9153. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9154. // TODO: handle transposed/permuted matrices
  9155. const int ith = params->ith;
  9156. const int nth = params->nth;
  9157. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9158. const int nc = src0->ne[0];
  9159. const int nr = ggml_nrows(src0);
  9160. // rows per thread
  9161. const int dr = (nr + nth - 1)/nth;
  9162. // row range for this thread
  9163. const int ir0 = dr*ith;
  9164. const int ir1 = MIN(ir0 + dr, nr);
  9165. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9166. for (int i1 = ir0; i1 < ir1; i1++) {
  9167. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9168. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9169. // broadcast the mask across rows
  9170. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9171. ggml_vec_cpy_f32 (nc, wp, sp);
  9172. ggml_vec_scale_f32(nc, wp, scale);
  9173. if (mp) {
  9174. ggml_vec_acc_f32(nc, wp, mp);
  9175. }
  9176. #ifndef NDEBUG
  9177. for (int i = 0; i < nc; ++i) {
  9178. //printf("p[%d] = %f\n", i, p[i]);
  9179. assert(!isnan(wp[i]));
  9180. }
  9181. #endif
  9182. float max = -INFINITY;
  9183. ggml_vec_max_f32(nc, &max, wp);
  9184. ggml_float sum = 0.0;
  9185. uint16_t scvt;
  9186. for (int i = 0; i < nc; i++) {
  9187. if (wp[i] == -INFINITY) {
  9188. dp[i] = 0.0f;
  9189. } else {
  9190. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9191. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9192. memcpy(&scvt, &s, sizeof(scvt));
  9193. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9194. sum += (ggml_float)val;
  9195. dp[i] = val;
  9196. }
  9197. }
  9198. assert(sum > 0.0);
  9199. sum = 1.0/sum;
  9200. ggml_vec_scale_f32(nc, dp, sum);
  9201. #ifndef NDEBUG
  9202. for (int i = 0; i < nc; ++i) {
  9203. assert(!isnan(dp[i]));
  9204. assert(!isinf(dp[i]));
  9205. }
  9206. #endif
  9207. }
  9208. }
  9209. static void ggml_compute_forward_soft_max(
  9210. const struct ggml_compute_params * params,
  9211. const struct ggml_tensor * src0,
  9212. const struct ggml_tensor * src1,
  9213. struct ggml_tensor * dst) {
  9214. switch (src0->type) {
  9215. case GGML_TYPE_F32:
  9216. {
  9217. ggml_compute_forward_soft_max_f32(params, src0, src1, dst);
  9218. } break;
  9219. default:
  9220. {
  9221. GGML_ASSERT(false);
  9222. } break;
  9223. }
  9224. }
  9225. // ggml_compute_forward_soft_max_back
  9226. static void ggml_compute_forward_soft_max_back_f32(
  9227. const struct ggml_compute_params * params,
  9228. const struct ggml_tensor * src0,
  9229. const struct ggml_tensor * src1,
  9230. struct ggml_tensor * dst) {
  9231. GGML_ASSERT(ggml_is_contiguous(src0));
  9232. GGML_ASSERT(ggml_is_contiguous(src1));
  9233. GGML_ASSERT(ggml_is_contiguous(dst));
  9234. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9235. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9236. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9237. return;
  9238. }
  9239. // TODO: handle transposed/permuted matrices
  9240. const int ith = params->ith;
  9241. const int nth = params->nth;
  9242. const int nc = src0->ne[0];
  9243. const int nr = ggml_nrows(src0);
  9244. // rows per thread
  9245. const int dr = (nr + nth - 1)/nth;
  9246. // row range for this thread
  9247. const int ir0 = dr*ith;
  9248. const int ir1 = MIN(ir0 + dr, nr);
  9249. for (int i1 = ir0; i1 < ir1; i1++) {
  9250. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9251. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9252. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9253. #ifndef NDEBUG
  9254. for (int i = 0; i < nc; ++i) {
  9255. //printf("p[%d] = %f\n", i, p[i]);
  9256. assert(!isnan(dy[i]));
  9257. assert(!isnan(y[i]));
  9258. }
  9259. #endif
  9260. // Jii = yi - yi*yi
  9261. // Jij = -yi*yj
  9262. // J = diag(y)-y.T*y
  9263. // dx = J * dy
  9264. // dxk = sum_i(Jki * dyi)
  9265. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9266. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9267. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9268. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9269. // dxk = -yk * dot(y, dy) + yk*dyk
  9270. // dxk = yk * (- dot(y, dy) + dyk)
  9271. // dxk = yk * (dyk - dot(y, dy))
  9272. //
  9273. // post-order:
  9274. // dot_y_dy := dot(y, dy)
  9275. // dx := dy
  9276. // dx := dx - dot_y_dy
  9277. // dx := dx * y
  9278. // linear runtime, no additional memory
  9279. float dot_y_dy = 0;
  9280. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9281. ggml_vec_cpy_f32 (nc, dx, dy);
  9282. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9283. ggml_vec_mul_f32 (nc, dx, dx, y);
  9284. #ifndef NDEBUG
  9285. for (int i = 0; i < nc; ++i) {
  9286. assert(!isnan(dx[i]));
  9287. assert(!isinf(dx[i]));
  9288. }
  9289. #endif
  9290. }
  9291. }
  9292. static void ggml_compute_forward_soft_max_back(
  9293. const struct ggml_compute_params * params,
  9294. const struct ggml_tensor * src0,
  9295. const struct ggml_tensor * src1,
  9296. struct ggml_tensor * dst) {
  9297. switch (src0->type) {
  9298. case GGML_TYPE_F32:
  9299. {
  9300. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9301. } break;
  9302. default:
  9303. {
  9304. GGML_ASSERT(false);
  9305. } break;
  9306. }
  9307. }
  9308. // ggml_compute_forward_alibi
  9309. static void ggml_compute_forward_alibi_f32(
  9310. const struct ggml_compute_params * params,
  9311. const struct ggml_tensor * src0,
  9312. struct ggml_tensor * dst) {
  9313. assert(params->ith == 0);
  9314. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9315. return;
  9316. }
  9317. //const int n_past = ((int32_t *) dst->op_params)[0];
  9318. const int n_head = ((int32_t *) dst->op_params)[1];
  9319. float max_bias;
  9320. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9321. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9322. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  9323. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  9324. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9325. const int64_t n = ggml_nrows(src0);
  9326. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9327. const size_t nb0 = src0->nb[0];
  9328. const size_t nb1 = src0->nb[1];
  9329. const size_t nb2 = src0->nb[2];
  9330. //const int nb3 = src0->nb[3];
  9331. GGML_ASSERT(nb0 == sizeof(float));
  9332. GGML_ASSERT(n_head == ne2);
  9333. // add alibi to src0 (KQ_scaled)
  9334. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9335. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9336. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9337. for (int64_t i = 0; i < ne0; i++) {
  9338. for (int64_t j = 0; j < ne1; j++) {
  9339. for (int64_t k = 0; k < ne2_ne3; k++) {
  9340. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9341. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9342. // TODO: k*nb2 or k*nb3
  9343. float m_k;
  9344. if (k < n_heads_log2_floor) {
  9345. m_k = powf(m0, k + 1);
  9346. } else {
  9347. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9348. }
  9349. pdst[0] = i * m_k + src[0];
  9350. }
  9351. }
  9352. }
  9353. }
  9354. static void ggml_compute_forward_alibi_f16(
  9355. const struct ggml_compute_params * params,
  9356. const struct ggml_tensor * src0,
  9357. struct ggml_tensor * dst) {
  9358. assert(params->ith == 0);
  9359. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9360. return;
  9361. }
  9362. //const int n_past = ((int32_t *) dst->op_params)[0];
  9363. const int n_head = ((int32_t *) dst->op_params)[1];
  9364. float max_bias;
  9365. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9366. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9367. const int ne1 = src0->ne[1]; // seq_len_without_past
  9368. const int ne2 = src0->ne[2]; // n_head -> this is k
  9369. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9370. const int n = ggml_nrows(src0);
  9371. const int ne2_ne3 = n/ne1; // ne2*ne3
  9372. const int nb0 = src0->nb[0];
  9373. const int nb1 = src0->nb[1];
  9374. const int nb2 = src0->nb[2];
  9375. //const int nb3 = src0->nb[3];
  9376. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9377. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9378. GGML_ASSERT(n_head == ne2);
  9379. // add alibi to src0 (KQ_scaled)
  9380. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9381. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9382. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9383. for (int i = 0; i < ne0; i++) {
  9384. for (int j = 0; j < ne1; j++) {
  9385. for (int k = 0; k < ne2_ne3; k++) {
  9386. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9387. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9388. // TODO: k*nb2 or k*nb3
  9389. float m_k;
  9390. if (k < n_heads_log2_floor) {
  9391. m_k = powf(m0, k + 1);
  9392. } else {
  9393. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9394. }
  9395. // we return F32
  9396. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9397. }
  9398. }
  9399. }
  9400. }
  9401. static void ggml_compute_forward_alibi(
  9402. const struct ggml_compute_params * params,
  9403. const struct ggml_tensor * src0,
  9404. struct ggml_tensor * dst) {
  9405. switch (src0->type) {
  9406. case GGML_TYPE_F16:
  9407. {
  9408. ggml_compute_forward_alibi_f16(params, src0, dst);
  9409. } break;
  9410. case GGML_TYPE_F32:
  9411. {
  9412. ggml_compute_forward_alibi_f32(params, src0, dst);
  9413. } break;
  9414. case GGML_TYPE_Q4_0:
  9415. case GGML_TYPE_Q4_1:
  9416. case GGML_TYPE_Q5_0:
  9417. case GGML_TYPE_Q5_1:
  9418. case GGML_TYPE_Q8_0:
  9419. case GGML_TYPE_Q8_1:
  9420. case GGML_TYPE_Q2_K:
  9421. case GGML_TYPE_Q3_K:
  9422. case GGML_TYPE_Q4_K:
  9423. case GGML_TYPE_Q5_K:
  9424. case GGML_TYPE_Q6_K:
  9425. case GGML_TYPE_IQ2_XXS:
  9426. case GGML_TYPE_IQ2_XS:
  9427. case GGML_TYPE_Q8_K:
  9428. case GGML_TYPE_I8:
  9429. case GGML_TYPE_I16:
  9430. case GGML_TYPE_I32:
  9431. case GGML_TYPE_COUNT:
  9432. {
  9433. GGML_ASSERT(false);
  9434. } break;
  9435. }
  9436. }
  9437. // ggml_compute_forward_clamp
  9438. static void ggml_compute_forward_clamp_f32(
  9439. const struct ggml_compute_params * params,
  9440. const struct ggml_tensor * src0,
  9441. struct ggml_tensor * dst) {
  9442. assert(params->ith == 0);
  9443. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9444. return;
  9445. }
  9446. float min;
  9447. float max;
  9448. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9449. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9450. const int ith = params->ith;
  9451. const int nth = params->nth;
  9452. const int n = ggml_nrows(src0);
  9453. const int nc = src0->ne[0];
  9454. const size_t nb00 = src0->nb[0];
  9455. const size_t nb01 = src0->nb[1];
  9456. const size_t nb0 = dst->nb[0];
  9457. const size_t nb1 = dst->nb[1];
  9458. GGML_ASSERT( nb0 == sizeof(float));
  9459. GGML_ASSERT(nb00 == sizeof(float));
  9460. for (int j = ith; j < n; j += nth) {
  9461. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9462. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9463. for (int i = 0; i < nc; i++) {
  9464. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9465. }
  9466. }
  9467. }
  9468. static void ggml_compute_forward_clamp(
  9469. const struct ggml_compute_params * params,
  9470. const struct ggml_tensor * src0,
  9471. struct ggml_tensor * dst) {
  9472. switch (src0->type) {
  9473. case GGML_TYPE_F32:
  9474. {
  9475. ggml_compute_forward_clamp_f32(params, src0, dst);
  9476. } break;
  9477. case GGML_TYPE_F16:
  9478. case GGML_TYPE_Q4_0:
  9479. case GGML_TYPE_Q4_1:
  9480. case GGML_TYPE_Q5_0:
  9481. case GGML_TYPE_Q5_1:
  9482. case GGML_TYPE_Q8_0:
  9483. case GGML_TYPE_Q8_1:
  9484. case GGML_TYPE_Q2_K:
  9485. case GGML_TYPE_Q3_K:
  9486. case GGML_TYPE_Q4_K:
  9487. case GGML_TYPE_Q5_K:
  9488. case GGML_TYPE_Q6_K:
  9489. case GGML_TYPE_IQ2_XXS:
  9490. case GGML_TYPE_IQ2_XS:
  9491. case GGML_TYPE_Q8_K:
  9492. case GGML_TYPE_I8:
  9493. case GGML_TYPE_I16:
  9494. case GGML_TYPE_I32:
  9495. case GGML_TYPE_COUNT:
  9496. {
  9497. GGML_ASSERT(false);
  9498. } break;
  9499. }
  9500. }
  9501. // ggml_compute_forward_rope
  9502. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  9503. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  9504. return 1 - MIN(1, MAX(0, y));
  9505. }
  9506. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  9507. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  9508. static void rope_yarn(
  9509. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  9510. float * cos_theta, float * sin_theta
  9511. ) {
  9512. // Get n-d rotational scaling corrected for extrapolation
  9513. float theta_interp = freq_scale * theta_extrap;
  9514. float theta = theta_interp;
  9515. if (ext_factor != 0.0f) {
  9516. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  9517. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9518. // Get n-d magnitude scaling corrected for interpolation
  9519. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9520. }
  9521. *cos_theta = cosf(theta) * mscale;
  9522. *sin_theta = sinf(theta) * mscale;
  9523. }
  9524. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9525. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9526. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9527. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9528. }
  9529. void ggml_rope_yarn_corr_dims(
  9530. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9531. ) {
  9532. // start and end correction dims
  9533. dims[0] = MAX(0, floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base)));
  9534. dims[1] = MIN(n_dims - 1, ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base)));
  9535. }
  9536. static void ggml_compute_forward_rope_f32(
  9537. const struct ggml_compute_params * params,
  9538. const struct ggml_tensor * src0,
  9539. const struct ggml_tensor * src1,
  9540. struct ggml_tensor * dst,
  9541. const bool forward) {
  9542. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9543. return;
  9544. }
  9545. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9546. // these two only relevant for xPos RoPE:
  9547. float xpos_base;
  9548. bool xpos_down;
  9549. //const int n_past = ((int32_t *) dst->op_params)[0];
  9550. const int n_dims = ((int32_t *) dst->op_params)[1];
  9551. const int mode = ((int32_t *) dst->op_params)[2];
  9552. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9553. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9554. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9555. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9556. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9557. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9558. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9559. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9560. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  9561. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  9562. GGML_TENSOR_UNARY_OP_LOCALS
  9563. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9564. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9565. GGML_ASSERT(nb00 == sizeof(float));
  9566. const int ith = params->ith;
  9567. const int nth = params->nth;
  9568. const int nr = ggml_nrows(dst);
  9569. GGML_ASSERT(n_dims <= ne0);
  9570. GGML_ASSERT(n_dims % 2 == 0);
  9571. // rows per thread
  9572. const int dr = (nr + nth - 1)/nth;
  9573. // row range for this thread
  9574. const int ir0 = dr*ith;
  9575. const int ir1 = MIN(ir0 + dr, nr);
  9576. // row index used to determine which thread to use
  9577. int ir = 0;
  9578. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9579. const float inv_ndims = -1.f/n_dims;
  9580. float corr_dims[2];
  9581. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9582. const bool is_neox = mode & 2;
  9583. const bool is_glm = mode & 4;
  9584. // backward process uses inverse rotation by cos and sin.
  9585. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9586. // this essentially just switches the sign of sin.
  9587. const float sin_sign = forward ? 1.0f : -1.0f;
  9588. const int32_t * pos = (const int32_t *) src1->data;
  9589. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9590. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9591. const int64_t p = pos[i2];
  9592. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9593. if (ir++ < ir0) continue;
  9594. if (ir > ir1) break;
  9595. float theta_base = (float)p;
  9596. if (is_glm) {
  9597. theta_base = MIN(p, n_ctx - 2);
  9598. float block_theta = MAX(p - (n_ctx - 2), 0);
  9599. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9600. const float cos_theta = cosf(theta_base);
  9601. const float sin_theta = sinf(theta_base) * sin_sign;
  9602. const float cos_block_theta = cosf(block_theta);
  9603. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9604. theta_base *= theta_scale;
  9605. block_theta *= theta_scale;
  9606. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9607. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9608. const float x0 = src[0];
  9609. const float x1 = src[n_dims/2];
  9610. const float x2 = src[n_dims];
  9611. const float x3 = src[n_dims/2*3];
  9612. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9613. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9614. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9615. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9616. }
  9617. } else if (!is_neox) {
  9618. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9619. float cos_theta, sin_theta;
  9620. rope_yarn(
  9621. theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta
  9622. );
  9623. sin_theta *= sin_sign;
  9624. // zeta scaling for xPos only:
  9625. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9626. if (xpos_down) zeta = 1.0f / zeta;
  9627. theta_base *= theta_scale;
  9628. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9629. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9630. const float x0 = src[0];
  9631. const float x1 = src[1];
  9632. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  9633. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  9634. }
  9635. } else {
  9636. // TODO: this might be wrong for ne0 != n_dims - need double check
  9637. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  9638. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  9639. theta_base *= freq_scale;
  9640. for (int64_t ic = 0; ic < ne0; ic += 2) {
  9641. if (ic < n_dims) {
  9642. const int64_t ib = 0;
  9643. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9644. float cur_rot = inv_ndims * ic - ib;
  9645. float cos_theta, sin_theta;
  9646. rope_yarn(
  9647. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9648. &cos_theta, &sin_theta
  9649. );
  9650. sin_theta *= sin_sign;
  9651. theta_base *= theta_scale;
  9652. const int64_t i0 = ib*n_dims + ic/2;
  9653. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9654. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9655. const float x0 = src[0];
  9656. const float x1 = src[n_dims/2];
  9657. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9658. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9659. } else {
  9660. const int64_t i0 = ic;
  9661. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9662. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9663. dst_data[0] = src[0];
  9664. dst_data[1] = src[1];
  9665. }
  9666. }
  9667. }
  9668. }
  9669. }
  9670. }
  9671. }
  9672. static void ggml_compute_forward_rope_f16(
  9673. const struct ggml_compute_params * params,
  9674. const struct ggml_tensor * src0,
  9675. const struct ggml_tensor * src1,
  9676. struct ggml_tensor * dst,
  9677. const bool forward) {
  9678. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9679. return;
  9680. }
  9681. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9682. //const int n_past = ((int32_t *) dst->op_params)[0];
  9683. const int n_dims = ((int32_t *) dst->op_params)[1];
  9684. const int mode = ((int32_t *) dst->op_params)[2];
  9685. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9686. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9687. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9688. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9689. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9690. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9691. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9692. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9693. GGML_TENSOR_UNARY_OP_LOCALS
  9694. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9695. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9696. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9697. const int ith = params->ith;
  9698. const int nth = params->nth;
  9699. const int nr = ggml_nrows(dst);
  9700. GGML_ASSERT(n_dims <= ne0);
  9701. GGML_ASSERT(n_dims % 2 == 0);
  9702. // rows per thread
  9703. const int dr = (nr + nth - 1)/nth;
  9704. // row range for this thread
  9705. const int ir0 = dr*ith;
  9706. const int ir1 = MIN(ir0 + dr, nr);
  9707. // row index used to determine which thread to use
  9708. int ir = 0;
  9709. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9710. const float inv_ndims = -1.f/n_dims;
  9711. float corr_dims[2];
  9712. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9713. const bool is_neox = mode & 2;
  9714. const bool is_glm = mode & 4;
  9715. // backward process uses inverse rotation by cos and sin.
  9716. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9717. // this essentially just switches the sign of sin.
  9718. const float sin_sign = forward ? 1.0f : -1.0f;
  9719. const int32_t * pos = (const int32_t *) src1->data;
  9720. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9721. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9722. const int64_t p = pos[i2];
  9723. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9724. if (ir++ < ir0) continue;
  9725. if (ir > ir1) break;
  9726. float theta_base = (float)p;
  9727. if (is_glm) {
  9728. theta_base = MIN(p, n_ctx - 2);
  9729. float block_theta = MAX(p - (n_ctx - 2), 0);
  9730. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9731. const float cos_theta = cosf(theta_base);
  9732. const float sin_theta = sinf(theta_base) * sin_sign;
  9733. const float cos_block_theta = cosf(block_theta);
  9734. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9735. theta_base *= theta_scale;
  9736. block_theta *= theta_scale;
  9737. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9738. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9739. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9740. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9741. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9742. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9743. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9744. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9745. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9746. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9747. }
  9748. } else if (!is_neox) {
  9749. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9750. float cos_theta, sin_theta;
  9751. rope_yarn(
  9752. theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta
  9753. );
  9754. sin_theta *= sin_sign;
  9755. theta_base *= theta_scale;
  9756. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9757. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9758. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9759. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9760. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9761. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9762. }
  9763. } else {
  9764. // TODO: this might be wrong for ne0 != n_dims - need double check
  9765. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  9766. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  9767. theta_base *= freq_scale;
  9768. for (int64_t ic = 0; ic < ne0; ic += 2) {
  9769. if (ic < n_dims) {
  9770. const int64_t ib = 0;
  9771. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9772. float cur_rot = inv_ndims * ic - ib;
  9773. float cos_theta, sin_theta;
  9774. rope_yarn(
  9775. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9776. &cos_theta, &sin_theta
  9777. );
  9778. sin_theta *= sin_sign;
  9779. theta_base *= theta_scale;
  9780. const int64_t i0 = ib*n_dims + ic/2;
  9781. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9782. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9783. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9784. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9785. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9786. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9787. } else {
  9788. const int64_t i0 = ic;
  9789. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9790. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9791. dst_data[0] = src[0];
  9792. dst_data[1] = src[1];
  9793. }
  9794. }
  9795. }
  9796. }
  9797. }
  9798. }
  9799. }
  9800. static void ggml_compute_forward_rope(
  9801. const struct ggml_compute_params * params,
  9802. const struct ggml_tensor * src0,
  9803. const struct ggml_tensor * src1,
  9804. struct ggml_tensor * dst) {
  9805. switch (src0->type) {
  9806. case GGML_TYPE_F16:
  9807. {
  9808. ggml_compute_forward_rope_f16(params, src0, src1, dst, true);
  9809. } break;
  9810. case GGML_TYPE_F32:
  9811. {
  9812. ggml_compute_forward_rope_f32(params, src0, src1, dst, true);
  9813. } break;
  9814. default:
  9815. {
  9816. GGML_ASSERT(false);
  9817. } break;
  9818. }
  9819. }
  9820. // ggml_compute_forward_rope_back
  9821. static void ggml_compute_forward_rope_back(
  9822. const struct ggml_compute_params * params,
  9823. const struct ggml_tensor * src0,
  9824. const struct ggml_tensor * src1,
  9825. struct ggml_tensor * dst) {
  9826. switch (src0->type) {
  9827. case GGML_TYPE_F16:
  9828. {
  9829. ggml_compute_forward_rope_f16(params, src0, src1, dst, false);
  9830. } break;
  9831. case GGML_TYPE_F32:
  9832. {
  9833. ggml_compute_forward_rope_f32(params, src0, src1, dst, false);
  9834. } break;
  9835. default:
  9836. {
  9837. GGML_ASSERT(false);
  9838. } break;
  9839. }
  9840. }
  9841. // ggml_compute_forward_conv_transpose_1d
  9842. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  9843. const struct ggml_compute_params * params,
  9844. const struct ggml_tensor * src0,
  9845. const struct ggml_tensor * src1,
  9846. struct ggml_tensor * dst) {
  9847. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9848. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9849. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9850. int64_t t0 = ggml_perf_time_us();
  9851. UNUSED(t0);
  9852. GGML_TENSOR_BINARY_OP_LOCALS
  9853. const int ith = params->ith;
  9854. const int nth = params->nth;
  9855. const int nk = ne00*ne01*ne02;
  9856. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9857. GGML_ASSERT(nb10 == sizeof(float));
  9858. if (params->type == GGML_TASK_INIT) {
  9859. memset(params->wdata, 0, params->wsize);
  9860. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9861. {
  9862. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9863. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9864. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9865. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9866. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  9867. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9868. dst_data[i00*ne02 + i02] = src[i00];
  9869. }
  9870. }
  9871. }
  9872. }
  9873. // permute source data (src1) from (L x Cin) to (Cin x L)
  9874. {
  9875. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  9876. ggml_fp16_t * dst_data = wdata;
  9877. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9878. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9879. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9880. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9881. }
  9882. }
  9883. }
  9884. // need to zero dst since we are accumulating into it
  9885. memset(dst->data, 0, ggml_nbytes(dst));
  9886. return;
  9887. }
  9888. if (params->type == GGML_TASK_FINALIZE) {
  9889. return;
  9890. }
  9891. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9892. // total rows in dst
  9893. const int nr = ne1;
  9894. // rows per thread
  9895. const int dr = (nr + nth - 1)/nth;
  9896. // row range for this thread
  9897. const int ir0 = dr*ith;
  9898. const int ir1 = MIN(ir0 + dr, nr);
  9899. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9900. ggml_fp16_t * const wdata_src = wdata + nk;
  9901. for (int i1 = ir0; i1 < ir1; i1++) {
  9902. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9903. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  9904. for (int i10 = 0; i10 < ne10; i10++) {
  9905. const int i1n = i10*ne11;
  9906. for (int i00 = 0; i00 < ne00; i00++) {
  9907. float v = 0;
  9908. ggml_vec_dot_f16(ne02, &v,
  9909. (ggml_fp16_t *) wdata_src + i1n,
  9910. (ggml_fp16_t *) wdata_kernel + i00*ne02);
  9911. dst_data[i10*s0 + i00] += v;
  9912. }
  9913. }
  9914. }
  9915. }
  9916. static void ggml_compute_forward_conv_transpose_1d_f32(
  9917. const struct ggml_compute_params * params,
  9918. const struct ggml_tensor * src0,
  9919. const struct ggml_tensor * src1,
  9920. struct ggml_tensor * dst) {
  9921. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9922. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9923. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9924. int64_t t0 = ggml_perf_time_us();
  9925. UNUSED(t0);
  9926. GGML_TENSOR_BINARY_OP_LOCALS
  9927. const int ith = params->ith;
  9928. const int nth = params->nth;
  9929. const int nk = ne00*ne01*ne02;
  9930. GGML_ASSERT(nb00 == sizeof(float));
  9931. GGML_ASSERT(nb10 == sizeof(float));
  9932. if (params->type == GGML_TASK_INIT) {
  9933. memset(params->wdata, 0, params->wsize);
  9934. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9935. {
  9936. float * const wdata = (float *) params->wdata + 0;
  9937. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9938. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9939. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9940. float * dst_data = wdata + i01*ne00*ne02;
  9941. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9942. dst_data[i00*ne02 + i02] = src[i00];
  9943. }
  9944. }
  9945. }
  9946. }
  9947. // prepare source data (src1)
  9948. {
  9949. float * const wdata = (float *) params->wdata + nk;
  9950. float * dst_data = wdata;
  9951. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9952. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9953. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9954. dst_data[i10*ne11 + i11] = src[i10];
  9955. }
  9956. }
  9957. }
  9958. // need to zero dst since we are accumulating into it
  9959. memset(dst->data, 0, ggml_nbytes(dst));
  9960. return;
  9961. }
  9962. if (params->type == GGML_TASK_FINALIZE) {
  9963. return;
  9964. }
  9965. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9966. // total rows in dst
  9967. const int nr = ne1;
  9968. // rows per thread
  9969. const int dr = (nr + nth - 1)/nth;
  9970. // row range for this thread
  9971. const int ir0 = dr*ith;
  9972. const int ir1 = MIN(ir0 + dr, nr);
  9973. float * const wdata = (float *) params->wdata + 0;
  9974. float * const wdata_src = wdata + nk;
  9975. for (int i1 = ir0; i1 < ir1; i1++) {
  9976. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9977. float * wdata_kernel = wdata + i1*ne02*ne00;
  9978. for (int i10 = 0; i10 < ne10; i10++) {
  9979. const int i1n = i10*ne11;
  9980. for (int i00 = 0; i00 < ne00; i00++) {
  9981. float v = 0;
  9982. ggml_vec_dot_f32(ne02, &v,
  9983. wdata_src + i1n,
  9984. wdata_kernel + i00*ne02);
  9985. dst_data[i10*s0 + i00] += v;
  9986. }
  9987. }
  9988. }
  9989. }
  9990. static void ggml_compute_forward_conv_transpose_1d(
  9991. const struct ggml_compute_params * params,
  9992. const struct ggml_tensor * src0,
  9993. const struct ggml_tensor * src1,
  9994. struct ggml_tensor * dst) {
  9995. switch (src0->type) {
  9996. case GGML_TYPE_F16:
  9997. {
  9998. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  9999. } break;
  10000. case GGML_TYPE_F32:
  10001. {
  10002. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  10003. } break;
  10004. default:
  10005. {
  10006. GGML_ASSERT(false);
  10007. } break;
  10008. }
  10009. }
  10010. // src0: kernel [OC, IC, KH, KW]
  10011. // src1: image [N, IC, IH, IW]
  10012. // dst: result [N, OH, OW, IC*KH*KW]
  10013. static void ggml_compute_forward_im2col_f16(
  10014. const struct ggml_compute_params * params,
  10015. const struct ggml_tensor * src0,
  10016. const struct ggml_tensor * src1,
  10017. struct ggml_tensor * dst) {
  10018. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10019. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10020. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10021. int64_t t0 = ggml_perf_time_us();
  10022. UNUSED(t0);
  10023. GGML_TENSOR_BINARY_OP_LOCALS;
  10024. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10025. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10026. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10027. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10028. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10029. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10030. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10031. const int ith = params->ith;
  10032. const int nth = params->nth;
  10033. const int64_t N = is_2D ? ne13 : ne12;
  10034. const int64_t IC = is_2D ? ne12 : ne11;
  10035. const int64_t IH = is_2D ? ne11 : 1;
  10036. const int64_t IW = ne10;
  10037. const int64_t KH = is_2D ? ne01 : 1;
  10038. const int64_t KW = ne00;
  10039. const int64_t OH = is_2D ? ne2 : 1;
  10040. const int64_t OW = ne1;
  10041. int ofs0 = is_2D ? nb13 : nb12;
  10042. int ofs1 = is_2D ? nb12 : nb11;
  10043. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10044. GGML_ASSERT(nb10 == sizeof(float));
  10045. if (params->type == GGML_TASK_INIT) {
  10046. return;
  10047. }
  10048. if (params->type == GGML_TASK_FINALIZE) {
  10049. return;
  10050. }
  10051. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10052. {
  10053. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10054. for (int64_t in = 0; in < N; in++) {
  10055. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10056. for (int64_t iow = 0; iow < OW; iow++) {
  10057. for (int64_t iic = ith; iic < IC; iic += nth) {
  10058. // micro kernel
  10059. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10060. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10061. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10062. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10063. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10064. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10065. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10066. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10067. } else {
  10068. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10069. }
  10070. }
  10071. }
  10072. }
  10073. }
  10074. }
  10075. }
  10076. }
  10077. }
  10078. static void ggml_compute_forward_im2col(
  10079. const struct ggml_compute_params * params,
  10080. const struct ggml_tensor * src0,
  10081. const struct ggml_tensor * src1,
  10082. struct ggml_tensor * dst) {
  10083. switch (src0->type) {
  10084. case GGML_TYPE_F16:
  10085. {
  10086. ggml_compute_forward_im2col_f16(params, src0, src1, dst);
  10087. } break;
  10088. case GGML_TYPE_F32:
  10089. {
  10090. GGML_ASSERT(false);
  10091. } break;
  10092. default:
  10093. {
  10094. GGML_ASSERT(false);
  10095. } break;
  10096. }
  10097. }
  10098. // ggml_compute_forward_conv_transpose_2d
  10099. static void ggml_compute_forward_conv_transpose_2d(
  10100. const struct ggml_compute_params * params,
  10101. const struct ggml_tensor * src0,
  10102. const struct ggml_tensor * src1,
  10103. struct ggml_tensor * dst) {
  10104. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10105. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10106. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10107. int64_t t0 = ggml_perf_time_us();
  10108. UNUSED(t0);
  10109. GGML_TENSOR_BINARY_OP_LOCALS
  10110. const int ith = params->ith;
  10111. const int nth = params->nth;
  10112. const int nk = ne00*ne01*ne02*ne03;
  10113. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10114. GGML_ASSERT(nb10 == sizeof(float));
  10115. if (params->type == GGML_TASK_INIT) {
  10116. memset(params->wdata, 0, params->wsize);
  10117. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10118. {
  10119. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10120. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10121. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10122. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10123. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10124. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10125. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10126. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10127. }
  10128. }
  10129. }
  10130. }
  10131. }
  10132. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10133. {
  10134. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10135. for (int i12 = 0; i12 < ne12; i12++) {
  10136. for (int i11 = 0; i11 < ne11; i11++) {
  10137. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10138. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10139. for (int i10 = 0; i10 < ne10; i10++) {
  10140. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10141. }
  10142. }
  10143. }
  10144. }
  10145. memset(dst->data, 0, ggml_nbytes(dst));
  10146. return;
  10147. }
  10148. if (params->type == GGML_TASK_FINALIZE) {
  10149. return;
  10150. }
  10151. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10152. // total patches in dst
  10153. const int np = ne2;
  10154. // patches per thread
  10155. const int dp = (np + nth - 1)/nth;
  10156. // patch range for this thread
  10157. const int ip0 = dp*ith;
  10158. const int ip1 = MIN(ip0 + dp, np);
  10159. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10160. ggml_fp16_t * const wdata_src = wdata + nk;
  10161. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10162. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10163. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10164. for (int i11 = 0; i11 < ne11; i11++) {
  10165. for (int i10 = 0; i10 < ne10; i10++) {
  10166. const int i1n = i11*ne10*ne12 + i10*ne12;
  10167. for (int i01 = 0; i01 < ne01; i01++) {
  10168. for (int i00 = 0; i00 < ne00; i00++) {
  10169. float v = 0;
  10170. ggml_vec_dot_f16(ne03, &v,
  10171. wdata_src + i1n,
  10172. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  10173. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10174. }
  10175. }
  10176. }
  10177. }
  10178. }
  10179. }
  10180. // ggml_compute_forward_pool_1d_sk_p0
  10181. static void ggml_compute_forward_pool_1d_sk_p0(
  10182. const struct ggml_compute_params * params,
  10183. const enum ggml_op_pool op,
  10184. const struct ggml_tensor * src,
  10185. const int k,
  10186. struct ggml_tensor * dst) {
  10187. assert(src->type == GGML_TYPE_F32);
  10188. assert(params->ith == 0);
  10189. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10190. return;
  10191. }
  10192. const char * cdata = (const char *)src->data;
  10193. const char * const data_end = cdata + ggml_nbytes(src);
  10194. float * drow = (float *)dst->data;
  10195. const int64_t rs = dst->ne[0];
  10196. while (cdata < data_end) {
  10197. const float * const srow = (const float *)cdata;
  10198. int j = 0;
  10199. for (int64_t i = 0; i < rs; ++i) {
  10200. switch (op) {
  10201. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10202. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10203. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10204. }
  10205. for (int ki = 0; ki < k; ++ki) {
  10206. switch (op) {
  10207. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10208. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10209. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10210. }
  10211. ++j;
  10212. }
  10213. switch (op) {
  10214. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10215. case GGML_OP_POOL_MAX: break;
  10216. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10217. }
  10218. }
  10219. cdata += src->nb[1];
  10220. drow += rs;
  10221. }
  10222. }
  10223. // ggml_compute_forward_pool_1d
  10224. static void ggml_compute_forward_pool_1d(
  10225. const struct ggml_compute_params * params,
  10226. const struct ggml_tensor * src0,
  10227. struct ggml_tensor * dst) {
  10228. const int32_t * opts = (const int32_t *)dst->op_params;
  10229. enum ggml_op_pool op = opts[0];
  10230. const int k0 = opts[1];
  10231. const int s0 = opts[2];
  10232. const int p0 = opts[3];
  10233. GGML_ASSERT(p0 == 0); // padding not supported
  10234. GGML_ASSERT(k0 == s0); // only s = k supported
  10235. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10236. }
  10237. // ggml_compute_forward_pool_2d
  10238. static void ggml_compute_forward_pool_2d(
  10239. const struct ggml_compute_params * params,
  10240. const struct ggml_tensor * src,
  10241. struct ggml_tensor * dst) {
  10242. assert(src->type == GGML_TYPE_F32);
  10243. assert(params->ith == 0);
  10244. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10245. return;
  10246. }
  10247. const int32_t * opts = (const int32_t *)dst->op_params;
  10248. enum ggml_op_pool op = opts[0];
  10249. const int k0 = opts[1];
  10250. const int k1 = opts[2];
  10251. const int s0 = opts[3];
  10252. const int s1 = opts[4];
  10253. const int p0 = opts[5];
  10254. const int p1 = opts[6];
  10255. const char * cdata = (const char*)src->data;
  10256. const char * const data_end = cdata + ggml_nbytes(src);
  10257. const int64_t px = dst->ne[0];
  10258. const int64_t py = dst->ne[1];
  10259. const int64_t pa = px * py;
  10260. float * dplane = (float *)dst->data;
  10261. const int ka = k0 * k1;
  10262. const int offset0 = -p0;
  10263. const int offset1 = -p1;
  10264. while (cdata < data_end) {
  10265. for (int oy = 0; oy < py; ++oy) {
  10266. float * const drow = dplane + oy * px;
  10267. for (int ox = 0; ox < px; ++ox) {
  10268. float * const out = drow + ox;
  10269. switch (op) {
  10270. case GGML_OP_POOL_AVG: *out = 0; break;
  10271. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10272. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10273. }
  10274. const int ix = offset0 + ox * s0;
  10275. const int iy = offset1 + oy * s1;
  10276. for (int ky = 0; ky < k1; ++ky) {
  10277. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  10278. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10279. for (int kx = 0; kx < k0; ++kx) {
  10280. int j = ix + kx;
  10281. if (j < 0 || j >= src->ne[0]) continue;
  10282. switch (op) {
  10283. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10284. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10285. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10286. }
  10287. }
  10288. }
  10289. switch (op) {
  10290. case GGML_OP_POOL_AVG: *out /= ka; break;
  10291. case GGML_OP_POOL_MAX: break;
  10292. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10293. }
  10294. }
  10295. }
  10296. cdata += src->nb[2];
  10297. dplane += pa;
  10298. }
  10299. }
  10300. // ggml_compute_forward_upscale
  10301. static void ggml_compute_forward_upscale_f32(
  10302. const struct ggml_compute_params * params,
  10303. const struct ggml_tensor * src0,
  10304. struct ggml_tensor * dst) {
  10305. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10306. return;
  10307. }
  10308. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10309. const int ith = params->ith;
  10310. const int nth = params->nth;
  10311. GGML_TENSOR_UNARY_OP_LOCALS
  10312. const int scale_factor = dst->op_params[0];
  10313. // TODO: optimize
  10314. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10315. const int64_t i03 = i3;
  10316. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  10317. const int64_t i02 = i2;
  10318. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10319. const int64_t i01 = i1 / scale_factor;
  10320. for (int64_t i0 = 0; i0 < ne0; i0++) {
  10321. const int64_t i00 = i0 / scale_factor;
  10322. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  10323. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  10324. *y = *x;
  10325. }
  10326. }
  10327. }
  10328. }
  10329. }
  10330. static void ggml_compute_forward_upscale(
  10331. const struct ggml_compute_params * params,
  10332. const struct ggml_tensor * src0,
  10333. struct ggml_tensor * dst) {
  10334. switch (src0->type) {
  10335. case GGML_TYPE_F32:
  10336. {
  10337. ggml_compute_forward_upscale_f32(params, src0, dst);
  10338. } break;
  10339. default:
  10340. {
  10341. GGML_ASSERT(false);
  10342. } break;
  10343. }
  10344. }
  10345. // ggml_compute_forward_pad
  10346. static void ggml_compute_forward_pad_f32(
  10347. const struct ggml_compute_params * params,
  10348. const struct ggml_tensor * src0,
  10349. struct ggml_tensor * dst) {
  10350. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10351. return;
  10352. }
  10353. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10354. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10355. const int ith = params->ith;
  10356. const int nth = params->nth;
  10357. GGML_TENSOR_UNARY_OP_LOCALS
  10358. float * dst_ptr = (float *) dst->data;
  10359. // TODO: optimize
  10360. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10361. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  10362. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10363. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  10364. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  10365. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10366. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  10367. dst_ptr[dst_idx] = *src_ptr;
  10368. } else {
  10369. dst_ptr[dst_idx] = 0;
  10370. }
  10371. }
  10372. }
  10373. }
  10374. }
  10375. }
  10376. static void ggml_compute_forward_pad(
  10377. const struct ggml_compute_params * params,
  10378. const struct ggml_tensor * src0,
  10379. struct ggml_tensor * dst) {
  10380. switch (src0->type) {
  10381. case GGML_TYPE_F32:
  10382. {
  10383. ggml_compute_forward_pad_f32(params, src0, dst);
  10384. } break;
  10385. default:
  10386. {
  10387. GGML_ASSERT(false);
  10388. } break;
  10389. }
  10390. }
  10391. // ggml_compute_forward_argsort
  10392. static void ggml_compute_forward_argsort_f32(
  10393. const struct ggml_compute_params * params,
  10394. const struct ggml_tensor * src0,
  10395. struct ggml_tensor * dst) {
  10396. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10397. return;
  10398. }
  10399. GGML_TENSOR_UNARY_OP_LOCALS
  10400. GGML_ASSERT(nb0 == sizeof(float));
  10401. const int ith = params->ith;
  10402. const int nth = params->nth;
  10403. const int64_t nr = ggml_nrows(src0);
  10404. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  10405. for (int64_t i = ith; i < nr; i += nth) {
  10406. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  10407. const float * src_data = (float *)((char *) src0->data + i*nb01);
  10408. for (int64_t j = 0; j < ne0; j++) {
  10409. dst_data[j] = j;
  10410. }
  10411. // C doesn't have a functional sort, so we do a bubble sort instead
  10412. for (int64_t j = 0; j < ne0; j++) {
  10413. for (int64_t k = j + 1; k < ne0; k++) {
  10414. if ((order == GGML_SORT_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  10415. (order == GGML_SORT_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  10416. int32_t tmp = dst_data[j];
  10417. dst_data[j] = dst_data[k];
  10418. dst_data[k] = tmp;
  10419. }
  10420. }
  10421. }
  10422. }
  10423. }
  10424. static void ggml_compute_forward_argsort(
  10425. const struct ggml_compute_params * params,
  10426. const struct ggml_tensor * src0,
  10427. struct ggml_tensor * dst) {
  10428. switch (src0->type) {
  10429. case GGML_TYPE_F32:
  10430. {
  10431. ggml_compute_forward_argsort_f32(params, src0, dst);
  10432. } break;
  10433. default:
  10434. {
  10435. GGML_ASSERT(false);
  10436. } break;
  10437. }
  10438. }
  10439. // ggml_compute_forward_flash_attn
  10440. static void ggml_compute_forward_flash_attn_f32(
  10441. const struct ggml_compute_params * params,
  10442. const struct ggml_tensor * q,
  10443. const struct ggml_tensor * k,
  10444. const struct ggml_tensor * v,
  10445. const bool masked,
  10446. struct ggml_tensor * dst) {
  10447. int64_t t0 = ggml_perf_time_us();
  10448. UNUSED(t0);
  10449. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10450. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10451. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10452. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10453. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10454. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10455. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10456. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10457. const int ith = params->ith;
  10458. const int nth = params->nth;
  10459. const int64_t D = neq0;
  10460. const int64_t N = neq1;
  10461. const int64_t P = nek1 - N;
  10462. const int64_t M = P + N;
  10463. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10464. GGML_ASSERT(ne0 == D);
  10465. GGML_ASSERT(ne1 == N);
  10466. GGML_ASSERT(P >= 0);
  10467. GGML_ASSERT(nbq0 == sizeof(float));
  10468. GGML_ASSERT(nbk0 == sizeof(float));
  10469. GGML_ASSERT(nbv0 == sizeof(float));
  10470. GGML_ASSERT(neq0 == D);
  10471. GGML_ASSERT(nek0 == D);
  10472. GGML_ASSERT(nev1 == D);
  10473. GGML_ASSERT(neq1 == N);
  10474. GGML_ASSERT(nek1 == N + P);
  10475. GGML_ASSERT(nev1 == D);
  10476. // dst cannot be transposed or permuted
  10477. GGML_ASSERT(nb0 == sizeof(float));
  10478. GGML_ASSERT(nb0 <= nb1);
  10479. GGML_ASSERT(nb1 <= nb2);
  10480. GGML_ASSERT(nb2 <= nb3);
  10481. if (params->type == GGML_TASK_INIT) {
  10482. return;
  10483. }
  10484. if (params->type == GGML_TASK_FINALIZE) {
  10485. return;
  10486. }
  10487. // parallelize by q rows using ggml_vec_dot_f32
  10488. // total rows in q
  10489. const int nr = neq1*neq2*neq3;
  10490. // rows per thread
  10491. const int dr = (nr + nth - 1)/nth;
  10492. // row range for this thread
  10493. const int ir0 = dr*ith;
  10494. const int ir1 = MIN(ir0 + dr, nr);
  10495. const float scale = 1.0f/sqrtf(D);
  10496. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10497. for (int ir = ir0; ir < ir1; ++ir) {
  10498. // q indices
  10499. const int iq3 = ir/(neq2*neq1);
  10500. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10501. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10502. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10503. for (int i = M; i < Mup; ++i) {
  10504. S[i] = -INFINITY;
  10505. }
  10506. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10507. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10508. // k indices
  10509. const int ik3 = iq3;
  10510. const int ik2 = iq2 % nek2;
  10511. const int ik1 = ic;
  10512. // S indices
  10513. const int i1 = ik1;
  10514. ggml_vec_dot_f32(neq0,
  10515. S + i1,
  10516. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10517. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10518. }
  10519. // scale
  10520. ggml_vec_scale_f32(masked_begin, S, scale);
  10521. for (int64_t i = masked_begin; i < M; i++) {
  10522. S[i] = -INFINITY;
  10523. }
  10524. // softmax
  10525. // exclude known -INF S[..] values from max and loop
  10526. // dont forget to set their SW values to zero
  10527. {
  10528. float max = -INFINITY;
  10529. ggml_vec_max_f32(masked_begin, &max, S);
  10530. ggml_float sum = 0.0;
  10531. {
  10532. #ifdef GGML_SOFT_MAX_ACCELERATE
  10533. max = -max;
  10534. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10535. vvexpf(S, S, &Mup);
  10536. ggml_vec_sum_f32(Mup, &sum, S);
  10537. #else
  10538. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10539. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10540. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10541. if (i >= masked_begin) {
  10542. break;
  10543. }
  10544. float * SS = S + i;
  10545. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10546. if (i + j >= masked_begin) {
  10547. break;
  10548. } else if (SS[j] == -INFINITY) {
  10549. SS[j] = 0.0f;
  10550. } else {
  10551. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10552. const float val = expf(SS[j] - max);
  10553. #else
  10554. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10555. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10556. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10557. #endif
  10558. sump[j] += (ggml_float)val;
  10559. SS[j] = val;
  10560. }
  10561. }
  10562. }
  10563. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10564. sum += sump[i];
  10565. }
  10566. #endif
  10567. }
  10568. assert(sum > 0.0);
  10569. sum = 1.0/sum;
  10570. ggml_vec_scale_f32(masked_begin, S, sum);
  10571. #ifndef NDEBUG
  10572. for (int i = 0; i < masked_begin; ++i) {
  10573. assert(!isnan(S[i]));
  10574. assert(!isinf(S[i]));
  10575. }
  10576. #endif
  10577. }
  10578. for (int64_t ic = 0; ic < nev1; ++ic) {
  10579. // dst indices
  10580. const int i1 = iq1;
  10581. const int i2 = iq2;
  10582. const int i3 = iq3;
  10583. // v indices
  10584. const int iv2 = iq2 % nev2;
  10585. const int iv3 = iq3;
  10586. ggml_vec_dot_f32(masked_begin,
  10587. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10588. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10589. S);
  10590. }
  10591. }
  10592. }
  10593. static void ggml_compute_forward_flash_attn_f16(
  10594. const struct ggml_compute_params * params,
  10595. const struct ggml_tensor * q,
  10596. const struct ggml_tensor * k,
  10597. const struct ggml_tensor * v,
  10598. const bool masked,
  10599. struct ggml_tensor * dst) {
  10600. int64_t t0 = ggml_perf_time_us();
  10601. UNUSED(t0);
  10602. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10603. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10604. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10605. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10606. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10607. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10608. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10609. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10610. const int ith = params->ith;
  10611. const int nth = params->nth;
  10612. const int64_t D = neq0;
  10613. const int64_t N = neq1;
  10614. const int64_t P = nek1 - N;
  10615. const int64_t M = P + N;
  10616. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10617. GGML_ASSERT(ne0 == D);
  10618. GGML_ASSERT(ne1 == N);
  10619. GGML_ASSERT(P >= 0);
  10620. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10621. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10622. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10623. GGML_ASSERT(neq0 == D);
  10624. GGML_ASSERT(nek0 == D);
  10625. GGML_ASSERT(nev1 == D);
  10626. GGML_ASSERT(neq1 == N);
  10627. GGML_ASSERT(nek1 == N + P);
  10628. GGML_ASSERT(nev1 == D);
  10629. // dst cannot be transposed or permuted
  10630. GGML_ASSERT(nb0 == sizeof(float));
  10631. GGML_ASSERT(nb0 <= nb1);
  10632. GGML_ASSERT(nb1 <= nb2);
  10633. GGML_ASSERT(nb2 <= nb3);
  10634. if (params->type == GGML_TASK_INIT) {
  10635. return;
  10636. }
  10637. if (params->type == GGML_TASK_FINALIZE) {
  10638. return;
  10639. }
  10640. // parallelize by q rows using ggml_vec_dot_f32
  10641. // total rows in q
  10642. const int nr = neq1*neq2*neq3;
  10643. // rows per thread
  10644. const int dr = (nr + nth - 1)/nth;
  10645. // row range for this thread
  10646. const int ir0 = dr*ith;
  10647. const int ir1 = MIN(ir0 + dr, nr);
  10648. const float scale = 1.0f/sqrtf(D);
  10649. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10650. for (int ir = ir0; ir < ir1; ++ir) {
  10651. // q indices
  10652. const int iq3 = ir/(neq2*neq1);
  10653. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10654. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10655. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10656. for (int i = M; i < Mup; ++i) {
  10657. S[i] = -INFINITY;
  10658. }
  10659. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10660. for (int64_t ic = 0; ic < nek1; ++ic) {
  10661. // k indices
  10662. const int ik3 = iq3;
  10663. const int ik2 = iq2 % nek2;
  10664. const int ik1 = ic;
  10665. // S indices
  10666. const int i1 = ik1;
  10667. ggml_vec_dot_f16(neq0,
  10668. S + i1,
  10669. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10670. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10671. }
  10672. } else {
  10673. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10674. // k indices
  10675. const int ik3 = iq3;
  10676. const int ik2 = iq2 % nek2;
  10677. const int ik1 = ic;
  10678. // S indices
  10679. const int i1 = ik1;
  10680. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10681. S + i1,
  10682. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10683. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10684. }
  10685. }
  10686. // scale
  10687. ggml_vec_scale_f32(nek1, S, scale);
  10688. if (masked) {
  10689. for (int64_t i = P; i < M; i++) {
  10690. if (i > P + iq1) {
  10691. S[i] = -INFINITY;
  10692. }
  10693. }
  10694. }
  10695. // softmax
  10696. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  10697. // dont forget to set their S values to zero
  10698. {
  10699. float max = -INFINITY;
  10700. ggml_vec_max_f32(M, &max, S);
  10701. ggml_float sum = 0.0;
  10702. {
  10703. #ifdef GGML_SOFT_MAX_ACCELERATE
  10704. max = -max;
  10705. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10706. vvexpf(S, S, &Mup);
  10707. ggml_vec_sum_f32(Mup, &sum, S);
  10708. #else
  10709. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10710. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10711. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10712. float * SS = S + i;
  10713. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10714. if (SS[j] == -INFINITY) {
  10715. SS[j] = 0.0f;
  10716. } else {
  10717. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10718. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10719. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10720. sump[j] += (ggml_float)val;
  10721. SS[j] = val;
  10722. }
  10723. }
  10724. }
  10725. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10726. sum += sump[i];
  10727. }
  10728. #endif
  10729. }
  10730. assert(sum > 0.0);
  10731. sum = 1.0/sum;
  10732. ggml_vec_scale_f32(M, S, sum);
  10733. #ifndef NDEBUG
  10734. for (int i = 0; i < M; ++i) {
  10735. assert(!isnan(S[i]));
  10736. assert(!isinf(S[i]));
  10737. }
  10738. #endif
  10739. }
  10740. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10741. for (int64_t i = 0; i < M; i++) {
  10742. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10743. }
  10744. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  10745. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10746. for (int64_t ic = 0; ic < nev1; ++ic) {
  10747. // dst indices
  10748. const int i1 = iq1;
  10749. const int i2 = iq2;
  10750. const int i3 = iq3;
  10751. // v indices
  10752. const int iv2 = iq2 % nev2;
  10753. const int iv3 = iq3;
  10754. ggml_vec_dot_f16(nev0,
  10755. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10756. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10757. S16);
  10758. }
  10759. } else {
  10760. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10761. // dst indices
  10762. const int i1 = iq1;
  10763. const int i2 = iq2;
  10764. const int i3 = iq3;
  10765. // v indices
  10766. const int iv2 = iq2 % nev2;
  10767. const int iv3 = iq3;
  10768. ggml_vec_dot_f16_unroll(nev0, nbv1,
  10769. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10770. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10771. S16);
  10772. }
  10773. }
  10774. }
  10775. }
  10776. static void ggml_compute_forward_flash_attn(
  10777. const struct ggml_compute_params * params,
  10778. const struct ggml_tensor * q,
  10779. const struct ggml_tensor * k,
  10780. const struct ggml_tensor * v,
  10781. const bool masked,
  10782. struct ggml_tensor * dst) {
  10783. switch (q->type) {
  10784. case GGML_TYPE_F16:
  10785. {
  10786. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10787. } break;
  10788. case GGML_TYPE_F32:
  10789. {
  10790. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10791. } break;
  10792. default:
  10793. {
  10794. GGML_ASSERT(false);
  10795. } break;
  10796. }
  10797. }
  10798. // ggml_compute_forward_flash_ff
  10799. static void ggml_compute_forward_flash_ff_f16(
  10800. const struct ggml_compute_params * params,
  10801. const struct ggml_tensor * a, // F16
  10802. const struct ggml_tensor * b0, // F16 fc_w
  10803. const struct ggml_tensor * b1, // F32 fc_b
  10804. const struct ggml_tensor * c0, // F16 proj_w
  10805. const struct ggml_tensor * c1, // F32 proj_b
  10806. struct ggml_tensor * dst) {
  10807. int64_t t0 = ggml_perf_time_us();
  10808. UNUSED(t0);
  10809. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  10810. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  10811. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  10812. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  10813. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  10814. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  10815. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  10816. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  10817. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  10818. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  10819. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10820. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10821. const int ith = params->ith;
  10822. const int nth = params->nth;
  10823. const int64_t D = nea0;
  10824. //const int64_t N = nea1;
  10825. const int64_t M = neb01;
  10826. GGML_ASSERT(ne0 == nea0);
  10827. GGML_ASSERT(ne1 == nea1);
  10828. GGML_ASSERT(ne2 == nea2);
  10829. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10830. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10831. GGML_ASSERT(nbb10 == sizeof(float));
  10832. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10833. GGML_ASSERT(nbc10 == sizeof(float));
  10834. GGML_ASSERT(neb00 == D);
  10835. GGML_ASSERT(neb01 == M);
  10836. GGML_ASSERT(neb10 == M);
  10837. GGML_ASSERT(neb11 == 1);
  10838. GGML_ASSERT(nec00 == M);
  10839. GGML_ASSERT(nec01 == D);
  10840. GGML_ASSERT(nec10 == D);
  10841. GGML_ASSERT(nec11 == 1);
  10842. // dst cannot be transposed or permuted
  10843. GGML_ASSERT(nb0 == sizeof(float));
  10844. GGML_ASSERT(nb0 <= nb1);
  10845. GGML_ASSERT(nb1 <= nb2);
  10846. GGML_ASSERT(nb2 <= nb3);
  10847. if (params->type == GGML_TASK_INIT) {
  10848. return;
  10849. }
  10850. if (params->type == GGML_TASK_FINALIZE) {
  10851. return;
  10852. }
  10853. // parallelize by a rows using ggml_vec_dot_f32
  10854. // total rows in a
  10855. const int nr = nea1*nea2*nea3;
  10856. // rows per thread
  10857. const int dr = (nr + nth - 1)/nth;
  10858. // row range for this thread
  10859. const int ir0 = dr*ith;
  10860. const int ir1 = MIN(ir0 + dr, nr);
  10861. for (int ir = ir0; ir < ir1; ++ir) {
  10862. // a indices
  10863. const int ia3 = ir/(nea2*nea1);
  10864. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10865. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10866. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10867. for (int64_t ic = 0; ic < neb01; ++ic) {
  10868. // b0 indices
  10869. const int ib03 = ia3;
  10870. const int ib02 = ia2;
  10871. const int ib01 = ic;
  10872. // S indices
  10873. const int i1 = ib01;
  10874. ggml_vec_dot_f16(nea0,
  10875. S + i1,
  10876. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10877. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10878. }
  10879. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10880. //ggml_vec_gelu_f32(neb01, S, S);
  10881. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10882. for (int64_t i = 0; i < M; i++) {
  10883. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10884. }
  10885. ggml_vec_gelu_f16(neb01, S16, S16);
  10886. {
  10887. // dst indices
  10888. const int i1 = ia1;
  10889. const int i2 = ia2;
  10890. const int i3 = ia3;
  10891. for (int64_t ic = 0; ic < nec01; ++ic) {
  10892. ggml_vec_dot_f16(neb01,
  10893. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10894. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10895. S16);
  10896. }
  10897. ggml_vec_add_f32(nec01,
  10898. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10899. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10900. (float *) c1->data);
  10901. }
  10902. }
  10903. }
  10904. static void ggml_compute_forward_flash_ff(
  10905. const struct ggml_compute_params * params,
  10906. const struct ggml_tensor * a,
  10907. const struct ggml_tensor * b0,
  10908. const struct ggml_tensor * b1,
  10909. const struct ggml_tensor * c0,
  10910. const struct ggml_tensor * c1,
  10911. struct ggml_tensor * dst) {
  10912. switch (b0->type) {
  10913. case GGML_TYPE_F16:
  10914. {
  10915. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10916. } break;
  10917. case GGML_TYPE_F32:
  10918. {
  10919. GGML_ASSERT(false); // TODO
  10920. } break;
  10921. default:
  10922. {
  10923. GGML_ASSERT(false);
  10924. } break;
  10925. }
  10926. }
  10927. // ggml_compute_forward_flash_attn_back
  10928. static void ggml_compute_forward_flash_attn_back_f32(
  10929. const struct ggml_compute_params * params,
  10930. const struct ggml_tensor * q,
  10931. const struct ggml_tensor * k,
  10932. const struct ggml_tensor * v,
  10933. const struct ggml_tensor * d,
  10934. const bool masked,
  10935. struct ggml_tensor * dst) {
  10936. int64_t t0 = ggml_perf_time_us();
  10937. UNUSED(t0);
  10938. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10939. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10940. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10941. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10942. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10943. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10944. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  10945. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  10946. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10947. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10948. const int ith = params->ith;
  10949. const int nth = params->nth;
  10950. const int64_t D = neq0;
  10951. const int64_t N = neq1;
  10952. const int64_t P = nek1 - N;
  10953. const int64_t M = P + N;
  10954. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10955. const int mxDM = MAX(D, Mup);
  10956. // GGML_ASSERT(ne0 == D);
  10957. // GGML_ASSERT(ne1 == N);
  10958. GGML_ASSERT(P >= 0);
  10959. GGML_ASSERT(nbq0 == sizeof(float));
  10960. GGML_ASSERT(nbk0 == sizeof(float));
  10961. GGML_ASSERT(nbv0 == sizeof(float));
  10962. GGML_ASSERT(neq0 == D);
  10963. GGML_ASSERT(nek0 == D);
  10964. GGML_ASSERT(nev1 == D);
  10965. GGML_ASSERT(ned0 == D);
  10966. GGML_ASSERT(neq1 == N);
  10967. GGML_ASSERT(nek1 == N + P);
  10968. GGML_ASSERT(nev1 == D);
  10969. GGML_ASSERT(ned1 == N);
  10970. // dst cannot be transposed or permuted
  10971. GGML_ASSERT(nb0 == sizeof(float));
  10972. GGML_ASSERT(nb0 <= nb1);
  10973. GGML_ASSERT(nb1 <= nb2);
  10974. GGML_ASSERT(nb2 <= nb3);
  10975. if (params->type == GGML_TASK_INIT) {
  10976. if (ith == 0) {
  10977. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  10978. }
  10979. return;
  10980. }
  10981. if (params->type == GGML_TASK_FINALIZE) {
  10982. return;
  10983. }
  10984. const int64_t elem_q = ggml_nelements(q);
  10985. const int64_t elem_k = ggml_nelements(k);
  10986. enum ggml_type result_type = dst->type;
  10987. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  10988. const size_t tsize = ggml_type_size(result_type);
  10989. const size_t offs_q = 0;
  10990. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  10991. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  10992. void * grad_q = (char *) dst->data;
  10993. void * grad_k = (char *) dst->data + offs_k;
  10994. void * grad_v = (char *) dst->data + offs_v;
  10995. const size_t nbgq1 = nb0*neq0;
  10996. const size_t nbgq2 = nb0*neq0*neq1;
  10997. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  10998. const size_t nbgk1 = nb0*nek0;
  10999. const size_t nbgk2 = nb0*nek0*nek1;
  11000. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11001. const size_t nbgv1 = nb0*nev0;
  11002. const size_t nbgv2 = nb0*nev0*nev1;
  11003. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11004. // parallelize by k rows using ggml_vec_dot_f32
  11005. // total rows in k
  11006. const int nr = nek2*nek3;
  11007. // rows per thread
  11008. const int dr = (nr + nth - 1)/nth;
  11009. // row range for this thread
  11010. const int ir0 = dr*ith;
  11011. const int ir1 = MIN(ir0 + dr, nr);
  11012. const float scale = 1.0f/sqrtf(D);
  11013. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11014. // how often k2 (and v2) is repeated in q2
  11015. int nrep = neq2/nek2;
  11016. for (int ir = ir0; ir < ir1; ++ir) {
  11017. // q indices
  11018. const int ik3 = ir/(nek2);
  11019. const int ik2 = ir - ik3*nek2;
  11020. const int iq3 = ik3;
  11021. const int id3 = ik3;
  11022. const int iv3 = ik3;
  11023. const int iv2 = ik2;
  11024. for (int irep = 0; irep < nrep; ++irep) {
  11025. const int iq2 = ik2 + irep*nek2;
  11026. const int id2 = iq2;
  11027. // (ik2 + irep*nek2) % nek2 == ik2
  11028. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11029. const int id1 = iq1;
  11030. // not sure about CACHE_LINE_SIZE_F32..
  11031. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11032. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11033. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11034. for (int i = M; i < Mup; ++i) {
  11035. S[i] = -INFINITY;
  11036. }
  11037. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11038. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11039. // k indices
  11040. const int ik1 = ic;
  11041. // S indices
  11042. const int i1 = ik1;
  11043. ggml_vec_dot_f32(neq0,
  11044. S + i1,
  11045. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11046. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11047. }
  11048. // scale
  11049. ggml_vec_scale_f32(masked_begin, S, scale);
  11050. for (int64_t i = masked_begin; i < M; i++) {
  11051. S[i] = -INFINITY;
  11052. }
  11053. // softmax
  11054. // exclude known -INF S[..] values from max and loop
  11055. // dont forget to set their SM values to zero
  11056. {
  11057. float max = -INFINITY;
  11058. ggml_vec_max_f32(masked_begin, &max, S);
  11059. ggml_float sum = 0.0;
  11060. {
  11061. #ifdef GGML_SOFT_MAX_ACCELERATE
  11062. max = -max;
  11063. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11064. vvexpf(SM, SM, &Mup);
  11065. ggml_vec_sum_f32(Mup, &sum, SM);
  11066. #else
  11067. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11068. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11069. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11070. if (i >= masked_begin) {
  11071. break;
  11072. }
  11073. float * SR = S + i;
  11074. float * SW = SM + i;
  11075. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11076. if (i + j >= masked_begin) {
  11077. break;
  11078. } else if (SR[j] == -INFINITY) {
  11079. SW[j] = 0.0f;
  11080. } else {
  11081. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11082. const float val = expf(SR[j] - max);
  11083. #else
  11084. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11085. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11086. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11087. #endif
  11088. sump[j] += (ggml_float)val;
  11089. SW[j] = val;
  11090. }
  11091. }
  11092. }
  11093. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11094. sum += sump[i];
  11095. }
  11096. #endif
  11097. }
  11098. assert(sum > 0.0);
  11099. sum = 1.0/sum;
  11100. ggml_vec_scale_f32(masked_begin, SM, sum);
  11101. }
  11102. // step-by-step explanation
  11103. {
  11104. // forward-process shape grads from backward process
  11105. // parallel_for ik2,ik3:
  11106. // for irep:
  11107. // iq2 = ik2 + irep*nek2
  11108. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11109. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11110. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11111. // for iq1:
  11112. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11113. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11114. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11115. // S0 = -Inf [D,1,1,1]
  11116. // ~S1[i] = dot(kcur[:D,i], qcur)
  11117. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11118. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11119. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11120. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11121. // ~S5[i] = dot(vcur[:,i], S4)
  11122. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11123. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11124. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11125. // dst backward-/ grad[dst] = d
  11126. //
  11127. // output gradients with their dependencies:
  11128. //
  11129. // grad[kcur] = grad[S1].T @ qcur
  11130. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11131. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11132. // grad[S4] = grad[S5] @ vcur
  11133. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11134. // grad[qcur] = grad[S1] @ kcur
  11135. // grad[vcur] = grad[S5].T @ S4
  11136. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11137. //
  11138. // in post-order:
  11139. //
  11140. // S1 = qcur @ kcur.T
  11141. // S2 = S1 * scale
  11142. // S3 = diag_mask_inf(S2, P)
  11143. // S4 = softmax(S3)
  11144. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11145. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11146. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11147. // grad[qcur] = grad[S1] @ kcur
  11148. // grad[kcur] = grad[S1].T @ qcur
  11149. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11150. //
  11151. // using less variables (SM=S4):
  11152. //
  11153. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11154. // SM = softmax(S)
  11155. // S = d[:D,iq1,iq2,iq3] @ vcur
  11156. // dot_SM_gradSM = dot(SM, S)
  11157. // S = SM * (S - dot(SM, S))
  11158. // S = diag_mask_zero(S, P) * scale
  11159. //
  11160. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11161. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11162. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11163. }
  11164. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11165. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11166. // for ic:
  11167. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11168. // exclude known future zero S[..] values from operation
  11169. ggml_vec_set_f32(masked_begin, S, 0);
  11170. for (int64_t ic = 0; ic < D; ++ic) {
  11171. ggml_vec_mad_f32(masked_begin,
  11172. S,
  11173. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11174. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11175. }
  11176. // S = SM * (S - dot(SM, S))
  11177. float dot_SM_gradSM = 0;
  11178. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S);
  11179. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11180. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11181. // S = diag_mask_zero(S, P) * scale
  11182. // already done by above ggml_vec_set_f32
  11183. // exclude known zero S[..] values from operation
  11184. ggml_vec_scale_f32(masked_begin, S, scale);
  11185. // S shape [M,1]
  11186. // SM shape [M,1]
  11187. // kcur shape [D,M]
  11188. // qcur shape [D,1]
  11189. // vcur shape [M,D]
  11190. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11191. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11192. // for ic:
  11193. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11194. // exclude known zero S[..] values from loop
  11195. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11196. ggml_vec_mad_f32(D,
  11197. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11198. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11199. S[ic]);
  11200. }
  11201. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11202. // for ic:
  11203. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11204. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11205. // exclude known zero S[..] values from loop
  11206. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11207. ggml_vec_mad_f32(D,
  11208. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11209. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11210. S[ic]);
  11211. }
  11212. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11213. // for ic:
  11214. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11215. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11216. // exclude known zero SM[..] values from mad
  11217. for (int64_t ic = 0; ic < D; ++ic) {
  11218. ggml_vec_mad_f32(masked_begin,
  11219. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11220. SM,
  11221. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11222. }
  11223. }
  11224. }
  11225. }
  11226. }
  11227. static void ggml_compute_forward_flash_attn_back(
  11228. const struct ggml_compute_params * params,
  11229. const struct ggml_tensor * q,
  11230. const struct ggml_tensor * k,
  11231. const struct ggml_tensor * v,
  11232. const struct ggml_tensor * d,
  11233. const bool masked,
  11234. struct ggml_tensor * dst) {
  11235. switch (q->type) {
  11236. case GGML_TYPE_F32:
  11237. {
  11238. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11239. } break;
  11240. default:
  11241. {
  11242. GGML_ASSERT(false);
  11243. } break;
  11244. }
  11245. }
  11246. // ggml_compute_forward_win_part
  11247. static void ggml_compute_forward_win_part_f32(
  11248. const struct ggml_compute_params * params,
  11249. const struct ggml_tensor * src0,
  11250. struct ggml_tensor * dst) {
  11251. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11252. return;
  11253. }
  11254. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11255. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11256. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11257. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11258. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11259. assert(ne00 == ne0);
  11260. assert(ne3 == nep0*nep1);
  11261. // TODO: optimize / multi-thread
  11262. for (int py = 0; py < nep1; ++py) {
  11263. for (int px = 0; px < nep0; ++px) {
  11264. const int64_t i3 = py*nep0 + px;
  11265. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11266. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11267. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11268. const int64_t i02 = py*w + i2;
  11269. const int64_t i01 = px*w + i1;
  11270. const int64_t i00 = i0;
  11271. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11272. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11273. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11274. ((float *) dst->data)[i] = 0.0f;
  11275. } else {
  11276. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11277. }
  11278. }
  11279. }
  11280. }
  11281. }
  11282. }
  11283. }
  11284. static void ggml_compute_forward_win_part(
  11285. const struct ggml_compute_params * params,
  11286. const struct ggml_tensor * src0,
  11287. struct ggml_tensor * dst) {
  11288. switch (src0->type) {
  11289. case GGML_TYPE_F32:
  11290. {
  11291. ggml_compute_forward_win_part_f32(params, src0, dst);
  11292. } break;
  11293. default:
  11294. {
  11295. GGML_ASSERT(false);
  11296. } break;
  11297. }
  11298. }
  11299. // ggml_compute_forward_win_unpart
  11300. static void ggml_compute_forward_win_unpart_f32(
  11301. const struct ggml_compute_params * params,
  11302. const struct ggml_tensor * src0,
  11303. struct ggml_tensor * dst) {
  11304. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11305. return;
  11306. }
  11307. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11308. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11309. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11310. // padding
  11311. const int px = (w - ne1%w)%w;
  11312. //const int py = (w - ne2%w)%w;
  11313. const int npx = (px + ne1)/w;
  11314. //const int npy = (py + ne2)/w;
  11315. assert(ne0 == ne00);
  11316. // TODO: optimize / multi-thread
  11317. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11318. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11319. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11320. const int ip2 = i2/w;
  11321. const int ip1 = i1/w;
  11322. const int64_t i02 = i2%w;
  11323. const int64_t i01 = i1%w;
  11324. const int64_t i00 = i0;
  11325. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11326. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11327. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11328. }
  11329. }
  11330. }
  11331. }
  11332. static void ggml_compute_forward_win_unpart(
  11333. const struct ggml_compute_params * params,
  11334. const struct ggml_tensor * src0,
  11335. struct ggml_tensor * dst) {
  11336. switch (src0->type) {
  11337. case GGML_TYPE_F32:
  11338. {
  11339. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11340. } break;
  11341. default:
  11342. {
  11343. GGML_ASSERT(false);
  11344. } break;
  11345. }
  11346. }
  11347. //gmml_compute_forward_unary
  11348. static void ggml_compute_forward_unary(
  11349. const struct ggml_compute_params * params,
  11350. const struct ggml_tensor * src0,
  11351. struct ggml_tensor * dst) {
  11352. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11353. switch (op) {
  11354. case GGML_UNARY_OP_ABS:
  11355. {
  11356. ggml_compute_forward_abs(params, src0, dst);
  11357. } break;
  11358. case GGML_UNARY_OP_SGN:
  11359. {
  11360. ggml_compute_forward_sgn(params, src0, dst);
  11361. } break;
  11362. case GGML_UNARY_OP_NEG:
  11363. {
  11364. ggml_compute_forward_neg(params, src0, dst);
  11365. } break;
  11366. case GGML_UNARY_OP_STEP:
  11367. {
  11368. ggml_compute_forward_step(params, src0, dst);
  11369. } break;
  11370. case GGML_UNARY_OP_TANH:
  11371. {
  11372. ggml_compute_forward_tanh(params, src0, dst);
  11373. } break;
  11374. case GGML_UNARY_OP_ELU:
  11375. {
  11376. ggml_compute_forward_elu(params, src0, dst);
  11377. } break;
  11378. case GGML_UNARY_OP_RELU:
  11379. {
  11380. ggml_compute_forward_relu(params, src0, dst);
  11381. } break;
  11382. case GGML_UNARY_OP_GELU:
  11383. {
  11384. ggml_compute_forward_gelu(params, src0, dst);
  11385. } break;
  11386. case GGML_UNARY_OP_GELU_QUICK:
  11387. {
  11388. ggml_compute_forward_gelu_quick(params, src0, dst);
  11389. } break;
  11390. case GGML_UNARY_OP_SILU:
  11391. {
  11392. ggml_compute_forward_silu(params, src0, dst);
  11393. } break;
  11394. default:
  11395. {
  11396. GGML_ASSERT(false);
  11397. } break;
  11398. }
  11399. }
  11400. // ggml_compute_forward_get_rel_pos
  11401. static void ggml_compute_forward_get_rel_pos_f16(
  11402. const struct ggml_compute_params * params,
  11403. const struct ggml_tensor * src0,
  11404. struct ggml_tensor * dst) {
  11405. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11406. return;
  11407. }
  11408. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11409. GGML_TENSOR_UNARY_OP_LOCALS
  11410. const int64_t w = ne1;
  11411. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11412. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11413. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11414. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11415. const int64_t pos = (w - i1 - 1) + i2;
  11416. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11417. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11418. }
  11419. }
  11420. }
  11421. }
  11422. static void ggml_compute_forward_get_rel_pos(
  11423. const struct ggml_compute_params * params,
  11424. const struct ggml_tensor * src0,
  11425. struct ggml_tensor * dst) {
  11426. switch (src0->type) {
  11427. case GGML_TYPE_F16:
  11428. {
  11429. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  11430. } break;
  11431. default:
  11432. {
  11433. GGML_ASSERT(false);
  11434. } break;
  11435. }
  11436. }
  11437. // ggml_compute_forward_add_rel_pos
  11438. static void ggml_compute_forward_add_rel_pos_f32(
  11439. const struct ggml_compute_params * params,
  11440. const struct ggml_tensor * src0,
  11441. const struct ggml_tensor * src1,
  11442. const struct ggml_tensor * src2,
  11443. struct ggml_tensor * dst) {
  11444. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11445. if (!inplace && params->type == GGML_TASK_INIT) {
  11446. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11447. return;
  11448. }
  11449. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11450. return;
  11451. }
  11452. int64_t t0 = ggml_perf_time_us();
  11453. UNUSED(t0);
  11454. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11455. float * src1_data = (float *) src1->data;
  11456. float * src2_data = (float *) src2->data;
  11457. float * dst_data = (float *) dst->data;
  11458. const int64_t ne10 = src1->ne[0];
  11459. const int64_t ne11 = src1->ne[1];
  11460. const int64_t ne12 = src1->ne[2];
  11461. const int64_t ne13 = src1->ne[3];
  11462. const int ith = params->ith;
  11463. const int nth = params->nth;
  11464. // total patches in dst
  11465. const int np = ne13;
  11466. // patches per thread
  11467. const int dp = (np + nth - 1)/nth;
  11468. // patch range for this thread
  11469. const int ip0 = dp*ith;
  11470. const int ip1 = MIN(ip0 + dp, np);
  11471. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  11472. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  11473. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  11474. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  11475. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  11476. const int64_t jp0 = jp1 + i10;
  11477. const float src1_e = src1_data[jp0];
  11478. const float src2_e = src2_data[jp0];
  11479. const int64_t jdh = jp0 * ne10;
  11480. const int64_t jdw = jdh - (ne10 - 1) * i10;
  11481. for (int64_t j = 0; j < ne10; ++j) {
  11482. dst_data[jdh + j ] += src2_e;
  11483. dst_data[jdw + j*ne10] += src1_e;
  11484. }
  11485. }
  11486. }
  11487. }
  11488. }
  11489. }
  11490. static void ggml_compute_forward_add_rel_pos(
  11491. const struct ggml_compute_params * params,
  11492. const struct ggml_tensor * src0,
  11493. const struct ggml_tensor * src1,
  11494. const struct ggml_tensor * src2,
  11495. struct ggml_tensor * dst) {
  11496. switch (src0->type) {
  11497. case GGML_TYPE_F32:
  11498. {
  11499. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  11500. } break;
  11501. default:
  11502. {
  11503. GGML_ASSERT(false);
  11504. } break;
  11505. }
  11506. }
  11507. // ggml_compute_forward_map_unary
  11508. static void ggml_compute_forward_map_unary_f32(
  11509. const struct ggml_compute_params * params,
  11510. const struct ggml_tensor * src0,
  11511. struct ggml_tensor * dst,
  11512. const ggml_unary_op_f32_t fun) {
  11513. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11514. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11515. return;
  11516. }
  11517. const int n = ggml_nrows(src0);
  11518. const int nc = src0->ne[0];
  11519. assert( dst->nb[0] == sizeof(float));
  11520. assert(src0->nb[0] == sizeof(float));
  11521. for (int i = 0; i < n; i++) {
  11522. fun(nc,
  11523. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11524. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11525. }
  11526. }
  11527. static void ggml_compute_forward_map_unary(
  11528. const struct ggml_compute_params * params,
  11529. const struct ggml_tensor * src0,
  11530. struct ggml_tensor * dst,
  11531. const ggml_unary_op_f32_t fun) {
  11532. switch (src0->type) {
  11533. case GGML_TYPE_F32:
  11534. {
  11535. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11536. } break;
  11537. default:
  11538. {
  11539. GGML_ASSERT(false);
  11540. } break;
  11541. }
  11542. }
  11543. // ggml_compute_forward_map_binary
  11544. static void ggml_compute_forward_map_binary_f32(
  11545. const struct ggml_compute_params * params,
  11546. const struct ggml_tensor * src0,
  11547. const struct ggml_tensor * src1,
  11548. struct ggml_tensor * dst,
  11549. const ggml_binary_op_f32_t fun) {
  11550. assert(params->ith == 0);
  11551. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11552. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11553. return;
  11554. }
  11555. const int n = ggml_nrows(src0);
  11556. const int nc = src0->ne[0];
  11557. assert( dst->nb[0] == sizeof(float));
  11558. assert(src0->nb[0] == sizeof(float));
  11559. assert(src1->nb[0] == sizeof(float));
  11560. for (int i = 0; i < n; i++) {
  11561. fun(nc,
  11562. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11563. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11564. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11565. }
  11566. }
  11567. static void ggml_compute_forward_map_binary(
  11568. const struct ggml_compute_params * params,
  11569. const struct ggml_tensor * src0,
  11570. const struct ggml_tensor * src1,
  11571. struct ggml_tensor * dst,
  11572. const ggml_binary_op_f32_t fun) {
  11573. switch (src0->type) {
  11574. case GGML_TYPE_F32:
  11575. {
  11576. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11577. } break;
  11578. default:
  11579. {
  11580. GGML_ASSERT(false);
  11581. } break;
  11582. }
  11583. }
  11584. // ggml_compute_forward_map_custom1
  11585. static void ggml_compute_forward_map_custom1_f32(
  11586. const struct ggml_compute_params * params,
  11587. const struct ggml_tensor * a,
  11588. struct ggml_tensor * dst,
  11589. const ggml_custom1_op_f32_t fun) {
  11590. assert(params->ith == 0);
  11591. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11592. return;
  11593. }
  11594. fun(dst, a);
  11595. }
  11596. // ggml_compute_forward_map_custom2
  11597. static void ggml_compute_forward_map_custom2_f32(
  11598. const struct ggml_compute_params * params,
  11599. const struct ggml_tensor * a,
  11600. const struct ggml_tensor * b,
  11601. struct ggml_tensor * dst,
  11602. const ggml_custom2_op_f32_t fun) {
  11603. assert(params->ith == 0);
  11604. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11605. return;
  11606. }
  11607. fun(dst, a, b);
  11608. }
  11609. // ggml_compute_forward_map_custom3
  11610. static void ggml_compute_forward_map_custom3_f32(
  11611. const struct ggml_compute_params * params,
  11612. const struct ggml_tensor * a,
  11613. const struct ggml_tensor * b,
  11614. const struct ggml_tensor * c,
  11615. struct ggml_tensor * dst,
  11616. const ggml_custom3_op_f32_t fun) {
  11617. assert(params->ith == 0);
  11618. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11619. return;
  11620. }
  11621. fun(dst, a, b, c);
  11622. }
  11623. // ggml_compute_forward_map_custom1
  11624. static void ggml_compute_forward_map_custom1(
  11625. const struct ggml_compute_params * params,
  11626. const struct ggml_tensor * a,
  11627. struct ggml_tensor * dst) {
  11628. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11629. return;
  11630. }
  11631. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  11632. p->fun(dst, a, params->ith, params->nth, p->userdata);
  11633. }
  11634. // ggml_compute_forward_map_custom2
  11635. static void ggml_compute_forward_map_custom2(
  11636. const struct ggml_compute_params * params,
  11637. const struct ggml_tensor * a,
  11638. const struct ggml_tensor * b,
  11639. struct ggml_tensor * dst) {
  11640. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11641. return;
  11642. }
  11643. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  11644. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  11645. }
  11646. // ggml_compute_forward_map_custom3
  11647. static void ggml_compute_forward_map_custom3(
  11648. const struct ggml_compute_params * params,
  11649. const struct ggml_tensor * a,
  11650. const struct ggml_tensor * b,
  11651. const struct ggml_tensor * c,
  11652. struct ggml_tensor * dst) {
  11653. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11654. return;
  11655. }
  11656. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  11657. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  11658. }
  11659. // ggml_compute_forward_cross_entropy_loss
  11660. static void ggml_compute_forward_cross_entropy_loss_f32(
  11661. const struct ggml_compute_params * params,
  11662. const struct ggml_tensor * src0,
  11663. const struct ggml_tensor * src1,
  11664. struct ggml_tensor * dst) {
  11665. GGML_ASSERT(ggml_is_contiguous(src0));
  11666. GGML_ASSERT(ggml_is_contiguous(src1));
  11667. GGML_ASSERT(ggml_is_scalar(dst));
  11668. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11669. const int ith = params->ith;
  11670. const int nth = params->nth;
  11671. float * sums = (float *) params->wdata;
  11672. // TODO: handle transposed/permuted matrices
  11673. const int nc = src0->ne[0];
  11674. const int nr = ggml_nrows(src0);
  11675. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  11676. if (params->type == GGML_TASK_INIT) {
  11677. if (ith == 0) {
  11678. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11679. }
  11680. return;
  11681. }
  11682. if (params->type == GGML_TASK_FINALIZE) {
  11683. if (ith == 0) {
  11684. float * dp = (float *) dst->data;
  11685. ggml_vec_sum_f32(nth, dp, sums);
  11686. dp[0] *= -1.0f / (float) nr;
  11687. }
  11688. return;
  11689. }
  11690. const double eps = 1e-9;
  11691. // rows per thread
  11692. const int dr = (nr + nth - 1)/nth;
  11693. // row range for this thread
  11694. const int ir0 = dr*ith;
  11695. const int ir1 = MIN(ir0 + dr, nr);
  11696. for (int i1 = ir0; i1 < ir1; i1++) {
  11697. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11698. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11699. float * st = ((float *) params->wdata) + nth + ith*nc;
  11700. #ifndef NDEBUG
  11701. for (int i = 0; i < nc; ++i) {
  11702. //printf("p[%d] = %f\n", i, p[i]);
  11703. assert(!isnan(s0[i]));
  11704. assert(!isnan(s1[i]));
  11705. }
  11706. #endif
  11707. // soft_max
  11708. ggml_float sum = 0.0;
  11709. {
  11710. float max = -INFINITY;
  11711. ggml_vec_max_f32(nc, &max, s0);
  11712. uint16_t scvt; UNUSED(scvt);
  11713. for (int i = 0; i < nc; i++) {
  11714. if (s0[i] == -INFINITY) {
  11715. st[i] = 0.0f;
  11716. } else {
  11717. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11718. const float s = s0[i] - max;
  11719. const float val = expf(s);
  11720. #else
  11721. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11722. memcpy(&scvt, &s, sizeof(scvt));
  11723. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11724. #endif
  11725. sum += (ggml_float)val;
  11726. st[i] = val;
  11727. }
  11728. }
  11729. assert(sum > 0.0);
  11730. // sum = 1.0/sum;
  11731. }
  11732. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11733. sum = (1.0 - eps) / sum;
  11734. ggml_vec_scale_f32(nc, st, sum);
  11735. ggml_vec_add1_f32(nc, st, st, eps);
  11736. ggml_vec_log_f32(nc, st, st);
  11737. ggml_vec_mul_f32(nc, st, st, s1);
  11738. float st_sum = 0;
  11739. ggml_vec_sum_f32(nc, &st_sum, st);
  11740. sums[ith] += st_sum;
  11741. #ifndef NDEBUG
  11742. for (int i = 0; i < nc; ++i) {
  11743. assert(!isnan(st[i]));
  11744. assert(!isinf(st[i]));
  11745. }
  11746. #endif
  11747. }
  11748. }
  11749. static void ggml_compute_forward_cross_entropy_loss(
  11750. const struct ggml_compute_params * params,
  11751. const struct ggml_tensor * src0,
  11752. const struct ggml_tensor * src1,
  11753. struct ggml_tensor * dst) {
  11754. switch (src0->type) {
  11755. case GGML_TYPE_F32:
  11756. {
  11757. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11758. } break;
  11759. default:
  11760. {
  11761. GGML_ASSERT(false);
  11762. } break;
  11763. }
  11764. }
  11765. // ggml_compute_forward_cross_entropy_loss_back
  11766. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11767. const struct ggml_compute_params * params,
  11768. const struct ggml_tensor * src0,
  11769. const struct ggml_tensor * src1,
  11770. const struct ggml_tensor * opt0,
  11771. struct ggml_tensor * dst) {
  11772. GGML_ASSERT(ggml_is_contiguous(dst));
  11773. GGML_ASSERT(ggml_is_contiguous(src0));
  11774. GGML_ASSERT(ggml_is_contiguous(src1));
  11775. GGML_ASSERT(ggml_is_contiguous(opt0));
  11776. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11777. const int64_t ith = params->ith;
  11778. const int64_t nth = params->nth;
  11779. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11780. return;
  11781. }
  11782. const double eps = 1e-9;
  11783. // TODO: handle transposed/permuted matrices
  11784. const int64_t nc = src0->ne[0];
  11785. const int64_t nr = ggml_nrows(src0);
  11786. // rows per thread
  11787. const int64_t dr = (nr + nth - 1)/nth;
  11788. // row range for this thread
  11789. const int64_t ir0 = dr*ith;
  11790. const int64_t ir1 = MIN(ir0 + dr, nr);
  11791. float * d = (float *) opt0->data;
  11792. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11793. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11794. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11795. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11796. #ifndef NDEBUG
  11797. for (int i = 0; i < nc; ++i) {
  11798. //printf("p[%d] = %f\n", i, p[i]);
  11799. assert(!isnan(s0[i]));
  11800. assert(!isnan(s1[i]));
  11801. }
  11802. #endif
  11803. // soft_max
  11804. ggml_float sum = 0.0;
  11805. {
  11806. float max = -INFINITY;
  11807. ggml_vec_max_f32(nc, &max, s0);
  11808. uint16_t scvt; UNUSED(scvt);
  11809. for (int i = 0; i < nc; i++) {
  11810. if (s0[i] == -INFINITY) {
  11811. ds0[i] = 0.0f;
  11812. } else {
  11813. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11814. const float s = s0[i] - max;
  11815. const float val = expf(s);
  11816. #else
  11817. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11818. memcpy(&scvt, &s, sizeof(scvt));
  11819. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11820. #endif
  11821. sum += (ggml_float)val;
  11822. ds0[i] = val;
  11823. }
  11824. }
  11825. assert(sum > 0.0);
  11826. sum = (1.0 - eps)/sum;
  11827. }
  11828. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  11829. ggml_vec_scale_f32(nc, ds0, sum);
  11830. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  11831. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  11832. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  11833. #ifndef NDEBUG
  11834. for (int i = 0; i < nc; ++i) {
  11835. assert(!isnan(ds0[i]));
  11836. assert(!isinf(ds0[i]));
  11837. }
  11838. #endif
  11839. }
  11840. }
  11841. static void ggml_compute_forward_cross_entropy_loss_back(
  11842. const struct ggml_compute_params * params,
  11843. const struct ggml_tensor * src0,
  11844. const struct ggml_tensor * src1,
  11845. const struct ggml_tensor * opt0,
  11846. struct ggml_tensor * dst) {
  11847. switch (src0->type) {
  11848. case GGML_TYPE_F32:
  11849. {
  11850. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11851. } break;
  11852. default:
  11853. {
  11854. GGML_ASSERT(false);
  11855. } break;
  11856. }
  11857. }
  11858. /////////////////////////////////
  11859. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11860. GGML_ASSERT(params);
  11861. if (tensor->op == GGML_OP_NONE) {
  11862. return;
  11863. }
  11864. #ifdef GGML_USE_CUBLAS
  11865. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11866. if (skip_cpu) {
  11867. return;
  11868. }
  11869. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  11870. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  11871. #endif // GGML_USE_CUBLAS
  11872. switch (tensor->op) {
  11873. case GGML_OP_DUP:
  11874. {
  11875. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  11876. } break;
  11877. case GGML_OP_ADD:
  11878. {
  11879. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  11880. } break;
  11881. case GGML_OP_ADD1:
  11882. {
  11883. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  11884. } break;
  11885. case GGML_OP_ACC:
  11886. {
  11887. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  11888. } break;
  11889. case GGML_OP_SUB:
  11890. {
  11891. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  11892. } break;
  11893. case GGML_OP_MUL:
  11894. {
  11895. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  11896. } break;
  11897. case GGML_OP_DIV:
  11898. {
  11899. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  11900. } break;
  11901. case GGML_OP_SQR:
  11902. {
  11903. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  11904. } break;
  11905. case GGML_OP_SQRT:
  11906. {
  11907. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  11908. } break;
  11909. case GGML_OP_LOG:
  11910. {
  11911. ggml_compute_forward_log(params, tensor->src[0], tensor);
  11912. } break;
  11913. case GGML_OP_SUM:
  11914. {
  11915. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  11916. } break;
  11917. case GGML_OP_SUM_ROWS:
  11918. {
  11919. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  11920. } break;
  11921. case GGML_OP_MEAN:
  11922. {
  11923. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  11924. } break;
  11925. case GGML_OP_ARGMAX:
  11926. {
  11927. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  11928. } break;
  11929. case GGML_OP_REPEAT:
  11930. {
  11931. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  11932. } break;
  11933. case GGML_OP_REPEAT_BACK:
  11934. {
  11935. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  11936. } break;
  11937. case GGML_OP_CONCAT:
  11938. {
  11939. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  11940. } break;
  11941. case GGML_OP_SILU_BACK:
  11942. {
  11943. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  11944. } break;
  11945. case GGML_OP_NORM:
  11946. {
  11947. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  11948. } break;
  11949. case GGML_OP_RMS_NORM:
  11950. {
  11951. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  11952. } break;
  11953. case GGML_OP_RMS_NORM_BACK:
  11954. {
  11955. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  11956. } break;
  11957. case GGML_OP_GROUP_NORM:
  11958. {
  11959. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  11960. } break;
  11961. case GGML_OP_MUL_MAT:
  11962. {
  11963. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  11964. } break;
  11965. case GGML_OP_MUL_MAT_ID:
  11966. {
  11967. ggml_compute_forward_mul_mat_id(params, tensor->src[0], tensor->src[1], tensor);
  11968. } break;
  11969. case GGML_OP_OUT_PROD:
  11970. {
  11971. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  11972. } break;
  11973. case GGML_OP_SCALE:
  11974. {
  11975. ggml_compute_forward_scale(params, tensor->src[0], tensor);
  11976. } break;
  11977. case GGML_OP_SET:
  11978. {
  11979. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  11980. } break;
  11981. case GGML_OP_CPY:
  11982. {
  11983. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  11984. } break;
  11985. case GGML_OP_CONT:
  11986. {
  11987. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  11988. } break;
  11989. case GGML_OP_RESHAPE:
  11990. {
  11991. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  11992. } break;
  11993. case GGML_OP_VIEW:
  11994. {
  11995. ggml_compute_forward_view(params, tensor->src[0]);
  11996. } break;
  11997. case GGML_OP_PERMUTE:
  11998. {
  11999. ggml_compute_forward_permute(params, tensor->src[0]);
  12000. } break;
  12001. case GGML_OP_TRANSPOSE:
  12002. {
  12003. ggml_compute_forward_transpose(params, tensor->src[0]);
  12004. } break;
  12005. case GGML_OP_GET_ROWS:
  12006. {
  12007. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12008. } break;
  12009. case GGML_OP_GET_ROWS_BACK:
  12010. {
  12011. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  12012. } break;
  12013. case GGML_OP_DIAG:
  12014. {
  12015. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12016. } break;
  12017. case GGML_OP_DIAG_MASK_INF:
  12018. {
  12019. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12020. } break;
  12021. case GGML_OP_DIAG_MASK_ZERO:
  12022. {
  12023. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12024. } break;
  12025. case GGML_OP_SOFT_MAX:
  12026. {
  12027. ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor);
  12028. } break;
  12029. case GGML_OP_SOFT_MAX_BACK:
  12030. {
  12031. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12032. } break;
  12033. case GGML_OP_ROPE:
  12034. {
  12035. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  12036. } break;
  12037. case GGML_OP_ROPE_BACK:
  12038. {
  12039. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  12040. } break;
  12041. case GGML_OP_ALIBI:
  12042. {
  12043. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12044. } break;
  12045. case GGML_OP_CLAMP:
  12046. {
  12047. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12048. } break;
  12049. case GGML_OP_CONV_TRANSPOSE_1D:
  12050. {
  12051. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  12052. } break;
  12053. case GGML_OP_IM2COL:
  12054. {
  12055. ggml_compute_forward_im2col(params, tensor->src[0], tensor->src[1], tensor);
  12056. } break;
  12057. case GGML_OP_CONV_TRANSPOSE_2D:
  12058. {
  12059. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  12060. } break;
  12061. case GGML_OP_POOL_1D:
  12062. {
  12063. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12064. } break;
  12065. case GGML_OP_POOL_2D:
  12066. {
  12067. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12068. } break;
  12069. case GGML_OP_UPSCALE:
  12070. {
  12071. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  12072. } break;
  12073. case GGML_OP_PAD:
  12074. {
  12075. ggml_compute_forward_pad(params, tensor->src[0], tensor);
  12076. } break;
  12077. case GGML_OP_ARGSORT:
  12078. {
  12079. ggml_compute_forward_argsort(params, tensor->src[0], tensor);
  12080. } break;
  12081. case GGML_OP_LEAKY_RELU:
  12082. {
  12083. ggml_compute_forward_leaky_relu(params, tensor->src[0], tensor);
  12084. } break;
  12085. case GGML_OP_FLASH_ATTN:
  12086. {
  12087. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12088. GGML_ASSERT(t == 0 || t == 1);
  12089. const bool masked = t != 0;
  12090. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12091. } break;
  12092. case GGML_OP_FLASH_FF:
  12093. {
  12094. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12095. } break;
  12096. case GGML_OP_FLASH_ATTN_BACK:
  12097. {
  12098. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12099. GGML_ASSERT(t == 0 || t == 1);
  12100. bool masked = t != 0;
  12101. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12102. } break;
  12103. case GGML_OP_WIN_PART:
  12104. {
  12105. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12106. } break;
  12107. case GGML_OP_WIN_UNPART:
  12108. {
  12109. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12110. } break;
  12111. case GGML_OP_UNARY:
  12112. {
  12113. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12114. } break;
  12115. case GGML_OP_GET_REL_POS:
  12116. {
  12117. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12118. } break;
  12119. case GGML_OP_ADD_REL_POS:
  12120. {
  12121. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12122. } break;
  12123. case GGML_OP_MAP_UNARY:
  12124. {
  12125. ggml_unary_op_f32_t fun;
  12126. memcpy(&fun, tensor->op_params, sizeof(fun));
  12127. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12128. }
  12129. break;
  12130. case GGML_OP_MAP_BINARY:
  12131. {
  12132. ggml_binary_op_f32_t fun;
  12133. memcpy(&fun, tensor->op_params, sizeof(fun));
  12134. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12135. }
  12136. break;
  12137. case GGML_OP_MAP_CUSTOM1_F32:
  12138. {
  12139. ggml_custom1_op_f32_t fun;
  12140. memcpy(&fun, tensor->op_params, sizeof(fun));
  12141. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12142. }
  12143. break;
  12144. case GGML_OP_MAP_CUSTOM2_F32:
  12145. {
  12146. ggml_custom2_op_f32_t fun;
  12147. memcpy(&fun, tensor->op_params, sizeof(fun));
  12148. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12149. }
  12150. break;
  12151. case GGML_OP_MAP_CUSTOM3_F32:
  12152. {
  12153. ggml_custom3_op_f32_t fun;
  12154. memcpy(&fun, tensor->op_params, sizeof(fun));
  12155. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12156. }
  12157. break;
  12158. case GGML_OP_MAP_CUSTOM1:
  12159. {
  12160. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12161. }
  12162. break;
  12163. case GGML_OP_MAP_CUSTOM2:
  12164. {
  12165. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12166. }
  12167. break;
  12168. case GGML_OP_MAP_CUSTOM3:
  12169. {
  12170. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12171. }
  12172. break;
  12173. case GGML_OP_CROSS_ENTROPY_LOSS:
  12174. {
  12175. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12176. }
  12177. break;
  12178. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12179. {
  12180. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12181. }
  12182. break;
  12183. case GGML_OP_NONE:
  12184. {
  12185. // nop
  12186. } break;
  12187. case GGML_OP_COUNT:
  12188. {
  12189. GGML_ASSERT(false);
  12190. } break;
  12191. }
  12192. }
  12193. ////////////////////////////////////////////////////////////////////////////////
  12194. static size_t ggml_hash_size(size_t min_sz) {
  12195. // next primes after powers of two
  12196. static const size_t primes[] = {
  12197. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  12198. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  12199. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  12200. 16777259, 33554467, 67108879, 134217757, 268435459,
  12201. 536870923, 1073741827, 2147483659
  12202. };
  12203. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  12204. // find the smallest prime that is larger or equal to min_sz
  12205. size_t l = 0;
  12206. size_t r = n_primes;
  12207. while (l < r) {
  12208. size_t m = (l + r)/2;
  12209. if (primes[m] < min_sz) {
  12210. l = m + 1;
  12211. } else {
  12212. r = m;
  12213. }
  12214. }
  12215. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  12216. return sz;
  12217. }
  12218. static size_t ggml_hash(const void * p) {
  12219. return (size_t)p;
  12220. }
  12221. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12222. size_t h = ggml_hash(key) % hash_set.size;
  12223. // linear probing
  12224. size_t i = h;
  12225. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  12226. i = (i + 1) % hash_set.size;
  12227. if (i == h) {
  12228. // visited all hash table entries -> not found
  12229. return GGML_HASHTABLE_FULL;
  12230. }
  12231. }
  12232. return i;
  12233. }
  12234. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12235. size_t i = ggml_hash_find(hash_set, key);
  12236. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  12237. }
  12238. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12239. size_t i = ggml_hash_find(hash_set, key);
  12240. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12241. if (hash_set.keys[i] == key) {
  12242. return GGML_HASHTABLE_ALREADY_EXISTS;
  12243. }
  12244. // insert
  12245. GGML_ASSERT(hash_set.keys[i] == NULL);
  12246. hash_set.keys[i] = key;
  12247. return i;
  12248. }
  12249. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12250. size_t i = ggml_hash_find(hash_set, key);
  12251. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12252. hash_set.keys[i] = key;
  12253. return i;
  12254. }
  12255. static struct ggml_hash_set ggml_hash_set_new(size_t size) {
  12256. size = ggml_hash_size(size);
  12257. struct ggml_hash_set result;
  12258. result.size = size;
  12259. result.keys = malloc(sizeof(struct ggml_tensor *) * size);
  12260. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  12261. return result;
  12262. }
  12263. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  12264. free(hash_set.keys);
  12265. }
  12266. struct hash_map {
  12267. struct ggml_hash_set set;
  12268. struct ggml_tensor ** vals;
  12269. };
  12270. static struct hash_map * ggml_new_hash_map(size_t size) {
  12271. struct hash_map * result = malloc(sizeof(struct hash_map));
  12272. result->set = ggml_hash_set_new(size);
  12273. result->vals = malloc(sizeof(struct ggml_tensor *) * result->set.size);
  12274. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  12275. return result;
  12276. }
  12277. static void ggml_hash_map_free(struct hash_map * map) {
  12278. ggml_hash_set_free(map->set);
  12279. free(map->vals);
  12280. free(map);
  12281. }
  12282. // gradient checkpointing
  12283. static struct ggml_tensor * ggml_recompute_graph_node(
  12284. struct ggml_context * ctx,
  12285. struct ggml_cgraph * graph,
  12286. struct hash_map * replacements,
  12287. struct ggml_tensor * node) {
  12288. if (node == NULL) {
  12289. return NULL;
  12290. }
  12291. if (node->is_param) {
  12292. return node;
  12293. }
  12294. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  12295. return node;
  12296. }
  12297. int count_children = 0;
  12298. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12299. if (node->src[k]) {
  12300. ++count_children;
  12301. }
  12302. }
  12303. if (count_children == 0) {
  12304. return node;
  12305. }
  12306. size_t i = ggml_hash_find(replacements->set, node);
  12307. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  12308. if (replacements->set.keys[i] == node) {
  12309. return replacements->vals[i];
  12310. }
  12311. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  12312. // insert clone into replacements
  12313. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  12314. replacements->set.keys[i] = node;
  12315. replacements->vals[i] = clone;
  12316. clone->op = node->op;
  12317. clone->grad = node->grad;
  12318. clone->is_param = node->is_param;
  12319. clone->extra = node->extra;
  12320. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12321. clone->nb[k] = node->nb[k];
  12322. }
  12323. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12324. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12325. }
  12326. if (node->view_src != NULL) {
  12327. clone->data = (node->view_src->data == NULL)
  12328. ? NULL // view_src not yet allocated
  12329. : (char *) node->view_src->data // view_src already allocated
  12330. + node->view_offs;
  12331. clone->view_src = node->view_src;
  12332. clone->view_offs = node->view_offs;
  12333. }
  12334. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12335. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12336. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12337. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12338. return clone;
  12339. }
  12340. void ggml_build_backward_gradient_checkpointing(
  12341. struct ggml_context * ctx,
  12342. struct ggml_cgraph * gf,
  12343. struct ggml_cgraph * gb,
  12344. struct ggml_cgraph * gb_tmp,
  12345. struct ggml_tensor * * checkpoints,
  12346. int n_checkpoints) {
  12347. ggml_graph_cpy(gf, gb_tmp);
  12348. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12349. if (n_checkpoints <= 0) {
  12350. ggml_graph_cpy(gb_tmp, gb);
  12351. return;
  12352. }
  12353. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  12354. // insert checkpoints in replacements
  12355. for (int i = 0; i < n_checkpoints; ++i) {
  12356. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  12357. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  12358. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  12359. replacements->set.keys[k] = checkpoints[i];
  12360. replacements->vals[k] = checkpoints[i];
  12361. }
  12362. ggml_graph_cpy(gf, gb);
  12363. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12364. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12365. // by recomputing them from checkpoints
  12366. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12367. struct ggml_tensor * node = gb_tmp->nodes[i];
  12368. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12369. // insert new tensors recomputing src, reusing already made replacements,
  12370. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12371. // recurse for input tensors,
  12372. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  12373. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12374. }
  12375. // insert rewritten backward node with replacements made into resulting backward graph gb
  12376. ggml_build_forward_expand(gb, node);
  12377. }
  12378. ggml_hash_map_free(replacements);
  12379. }
  12380. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12381. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12382. if (ggml_hash_contains(zero_table, a)) {
  12383. return b;
  12384. } else {
  12385. return ggml_add_impl(ctx, a, b, false);
  12386. }
  12387. }
  12388. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  12389. if (ggml_hash_contains(zero_table, a)) {
  12390. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  12391. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12392. } else {
  12393. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12394. }
  12395. }
  12396. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12397. if (ggml_hash_contains(zero_table, a)) {
  12398. return ggml_repeat(ctx, b, a);
  12399. } else {
  12400. return ggml_add1_impl(ctx, a, b, false);
  12401. }
  12402. }
  12403. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12404. if (ggml_hash_contains(zero_table, a)) {
  12405. return ggml_neg(ctx, b);
  12406. } else {
  12407. return ggml_sub_impl(ctx, a, b, false);
  12408. }
  12409. }
  12410. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  12411. struct ggml_tensor * src0 = tensor->src[0];
  12412. struct ggml_tensor * src1 = tensor->src[1];
  12413. switch (tensor->op) {
  12414. case GGML_OP_DUP:
  12415. {
  12416. if (src0->grad) {
  12417. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12418. }
  12419. } break;
  12420. case GGML_OP_ADD:
  12421. {
  12422. if (src0->grad) {
  12423. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12424. }
  12425. if (src1->grad) {
  12426. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12427. }
  12428. } break;
  12429. case GGML_OP_ADD1:
  12430. {
  12431. if (src0->grad) {
  12432. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12433. }
  12434. if (src1->grad) {
  12435. src1->grad = ggml_add_or_set(ctx,
  12436. src1->grad,
  12437. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12438. zero_table);
  12439. }
  12440. } break;
  12441. case GGML_OP_ACC:
  12442. {
  12443. if (src0->grad) {
  12444. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12445. }
  12446. if (src1->grad) {
  12447. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12448. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12449. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12450. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12451. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12452. tensor->grad,
  12453. src1->grad->ne[0],
  12454. src1->grad->ne[1],
  12455. src1->grad->ne[2],
  12456. src1->grad->ne[3],
  12457. nb1, nb2, nb3, offset);
  12458. src1->grad =
  12459. ggml_add_or_set(ctx,
  12460. src1->grad,
  12461. ggml_reshape(ctx,
  12462. ggml_cont(ctx, tensor_grad_view),
  12463. src1->grad),
  12464. zero_table);
  12465. }
  12466. } break;
  12467. case GGML_OP_SUB:
  12468. {
  12469. if (src0->grad) {
  12470. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12471. }
  12472. if (src1->grad) {
  12473. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12474. }
  12475. } break;
  12476. case GGML_OP_MUL:
  12477. {
  12478. if (src0->grad) {
  12479. src0->grad =
  12480. ggml_add_or_set(ctx,
  12481. src0->grad,
  12482. ggml_mul(ctx, src1, tensor->grad),
  12483. zero_table);
  12484. }
  12485. if (src1->grad) {
  12486. src1->grad =
  12487. ggml_add_or_set(ctx,
  12488. src1->grad,
  12489. ggml_mul(ctx, src0, tensor->grad),
  12490. zero_table);
  12491. }
  12492. } break;
  12493. case GGML_OP_DIV:
  12494. {
  12495. if (src0->grad) {
  12496. src0->grad =
  12497. ggml_add_or_set(ctx,
  12498. src0->grad,
  12499. ggml_div(ctx, tensor->grad, src1),
  12500. zero_table);
  12501. }
  12502. if (src1->grad) {
  12503. src1->grad =
  12504. ggml_sub_or_set(ctx,
  12505. src1->grad,
  12506. ggml_mul(ctx,
  12507. tensor->grad,
  12508. ggml_div(ctx, tensor, src1)),
  12509. zero_table);
  12510. }
  12511. } break;
  12512. case GGML_OP_SQR:
  12513. {
  12514. if (src0->grad) {
  12515. src0->grad =
  12516. ggml_add_or_set(ctx,
  12517. src0->grad,
  12518. ggml_scale(ctx,
  12519. ggml_mul(ctx, src0, tensor->grad),
  12520. 2.0f),
  12521. zero_table);
  12522. }
  12523. } break;
  12524. case GGML_OP_SQRT:
  12525. {
  12526. if (src0->grad) {
  12527. src0->grad =
  12528. ggml_add_or_set(ctx,
  12529. src0->grad,
  12530. ggml_scale(ctx,
  12531. ggml_div(ctx,
  12532. tensor->grad,
  12533. tensor),
  12534. 0.5f),
  12535. zero_table);
  12536. }
  12537. } break;
  12538. case GGML_OP_LOG:
  12539. {
  12540. if (src0->grad) {
  12541. src0->grad =
  12542. ggml_add_or_set(ctx,
  12543. src0->grad,
  12544. ggml_div(ctx,
  12545. tensor->grad,
  12546. src0),
  12547. zero_table);
  12548. }
  12549. } break;
  12550. case GGML_OP_SUM:
  12551. {
  12552. if (src0->grad) {
  12553. src0->grad =
  12554. ggml_add1_or_set(ctx,
  12555. src0->grad,
  12556. tensor->grad,
  12557. zero_table);
  12558. }
  12559. } break;
  12560. case GGML_OP_SUM_ROWS:
  12561. {
  12562. if (src0->grad) {
  12563. src0->grad =
  12564. ggml_add_or_set(ctx,
  12565. src0->grad,
  12566. ggml_repeat(ctx,
  12567. tensor->grad,
  12568. src0->grad),
  12569. zero_table);
  12570. }
  12571. } break;
  12572. case GGML_OP_MEAN:
  12573. case GGML_OP_ARGMAX:
  12574. {
  12575. GGML_ASSERT(false); // TODO: implement
  12576. } break;
  12577. case GGML_OP_REPEAT:
  12578. {
  12579. // necessary for llama
  12580. if (src0->grad) {
  12581. src0->grad = ggml_add_or_set(ctx,
  12582. src0->grad,
  12583. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12584. zero_table);
  12585. }
  12586. } break;
  12587. case GGML_OP_REPEAT_BACK:
  12588. {
  12589. if (src0->grad) {
  12590. // TODO: test this
  12591. src0->grad = ggml_add_or_set(ctx,
  12592. src0->grad,
  12593. ggml_repeat(ctx, tensor->grad, src0->grad),
  12594. zero_table);
  12595. }
  12596. } break;
  12597. case GGML_OP_CONCAT:
  12598. {
  12599. GGML_ASSERT(false); // TODO: implement
  12600. } break;
  12601. case GGML_OP_SILU_BACK:
  12602. {
  12603. GGML_ASSERT(false); // TODO: not implemented
  12604. } break;
  12605. case GGML_OP_NORM:
  12606. {
  12607. GGML_ASSERT(false); // TODO: not implemented
  12608. } break;
  12609. case GGML_OP_RMS_NORM:
  12610. {
  12611. // necessary for llama
  12612. if (src0->grad) {
  12613. float eps;
  12614. memcpy(&eps, tensor->op_params, sizeof(float));
  12615. src0->grad = ggml_add_or_set(ctx,
  12616. src0->grad,
  12617. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  12618. zero_table);
  12619. }
  12620. } break;
  12621. case GGML_OP_RMS_NORM_BACK:
  12622. {
  12623. GGML_ASSERT(false); // TODO: not implemented
  12624. } break;
  12625. case GGML_OP_GROUP_NORM:
  12626. {
  12627. GGML_ASSERT(false); // TODO: not implemented
  12628. } break;
  12629. case GGML_OP_MUL_MAT:
  12630. {
  12631. // https://cs231n.github.io/optimization-2/#staged
  12632. // # forward pass
  12633. // s0 = np.random.randn(5, 10)
  12634. // s1 = np.random.randn(10, 3)
  12635. // t = s0.dot(s1)
  12636. // # now suppose we had the gradient on t from above in the circuit
  12637. // dt = np.random.randn(*t.shape) # same shape as t
  12638. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12639. // ds1 = t.T.dot(dt)
  12640. // tensor.shape [m,p,qq,rr]
  12641. // src0.shape [n,m,q1,r1]
  12642. // src1.shape [n,p,qq,rr]
  12643. // necessary for llama
  12644. if (src0->grad) {
  12645. struct ggml_tensor * s1_tg =
  12646. ggml_out_prod(ctx, // [n,m,qq,rr]
  12647. src1, // [n,p,qq,rr]
  12648. tensor->grad); // [m,p,qq,rr]
  12649. const int64_t qq = s1_tg->ne[2];
  12650. const int64_t rr = s1_tg->ne[3];
  12651. const int64_t q1 = src0->ne[2];
  12652. const int64_t r1 = src0->ne[3];
  12653. const bool ne2_broadcasted = qq > q1;
  12654. const bool ne3_broadcasted = rr > r1;
  12655. if (ne2_broadcasted || ne3_broadcasted) {
  12656. // sum broadcast repetitions of s1_tg into shape of src0
  12657. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  12658. }
  12659. src0->grad =
  12660. ggml_add_or_set(ctx,
  12661. src0->grad, // [n,m,q1,r1]
  12662. s1_tg, // [n,m,q1,r1]
  12663. zero_table);
  12664. }
  12665. if (src1->grad) {
  12666. src1->grad =
  12667. ggml_add_or_set(ctx,
  12668. src1->grad, // [n,p,qq,rr]
  12669. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  12670. // ggml_cont(ctx, // [m,n,q1,r1]
  12671. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  12672. // tensor->grad), // [m,p,qq,rr]
  12673. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12674. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12675. // // and then use ggml_out_prod
  12676. ggml_out_prod(ctx, // [n,p,qq,rr]
  12677. src0, // [n,m,q1,r1]
  12678. ggml_transpose(ctx, // [p,m,qq,rr]
  12679. tensor->grad)), // [m,p,qq,rr]
  12680. zero_table);
  12681. }
  12682. } break;
  12683. case GGML_OP_MUL_MAT_ID:
  12684. {
  12685. GGML_ASSERT(false); // TODO: not implemented
  12686. } break;
  12687. case GGML_OP_OUT_PROD:
  12688. {
  12689. GGML_ASSERT(false); // TODO: not implemented
  12690. } break;
  12691. case GGML_OP_SCALE:
  12692. {
  12693. // necessary for llama
  12694. if (src0->grad) {
  12695. float s;
  12696. memcpy(&s, tensor->op_params, sizeof(float));
  12697. src0->grad =
  12698. ggml_add_or_set(ctx,
  12699. src0->grad,
  12700. ggml_scale_impl(ctx, tensor->grad, s, false),
  12701. zero_table);
  12702. }
  12703. } break;
  12704. case GGML_OP_SET:
  12705. {
  12706. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12707. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12708. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12709. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12710. struct ggml_tensor * tensor_grad_view = NULL;
  12711. if (src0->grad || src1->grad) {
  12712. GGML_ASSERT(src0->type == tensor->type);
  12713. GGML_ASSERT(tensor->grad->type == tensor->type);
  12714. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12715. tensor_grad_view = ggml_view_4d(ctx,
  12716. tensor->grad,
  12717. src1->grad->ne[0],
  12718. src1->grad->ne[1],
  12719. src1->grad->ne[2],
  12720. src1->grad->ne[3],
  12721. nb1, nb2, nb3, offset);
  12722. }
  12723. if (src0->grad) {
  12724. src0->grad = ggml_add_or_set(ctx,
  12725. src0->grad,
  12726. ggml_acc_impl(ctx,
  12727. tensor->grad,
  12728. ggml_neg(ctx, tensor_grad_view),
  12729. nb1, nb2, nb3, offset, false),
  12730. zero_table);
  12731. }
  12732. if (src1->grad) {
  12733. src1->grad =
  12734. ggml_add_or_set(ctx,
  12735. src1->grad,
  12736. ggml_reshape(ctx,
  12737. ggml_cont(ctx, tensor_grad_view),
  12738. src1->grad),
  12739. zero_table);
  12740. }
  12741. } break;
  12742. case GGML_OP_CPY:
  12743. {
  12744. // necessary for llama
  12745. // cpy overwrites value of src1 by src0 and returns view(src1)
  12746. // the overwriting is mathematically equivalent to:
  12747. // tensor = src0 * 1 + src1 * 0
  12748. if (src0->grad) {
  12749. // dsrc0 = dtensor * 1
  12750. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12751. }
  12752. if (src1->grad) {
  12753. // dsrc1 = dtensor * 0 -> noop
  12754. }
  12755. } break;
  12756. case GGML_OP_CONT:
  12757. {
  12758. // same as cpy
  12759. if (src0->grad) {
  12760. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12761. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12762. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12763. }
  12764. } break;
  12765. case GGML_OP_RESHAPE:
  12766. {
  12767. // necessary for llama
  12768. if (src0->grad) {
  12769. src0->grad =
  12770. ggml_add_or_set(ctx, src0->grad,
  12771. ggml_reshape(ctx,
  12772. ggml_is_contiguous(tensor->grad)
  12773. ? tensor->grad
  12774. : ggml_cont(ctx, tensor->grad),
  12775. src0->grad),
  12776. zero_table);
  12777. }
  12778. } break;
  12779. case GGML_OP_VIEW:
  12780. {
  12781. // necessary for llama
  12782. if (src0->grad) {
  12783. size_t offset;
  12784. memcpy(&offset, tensor->op_params, sizeof(offset));
  12785. size_t nb1 = tensor->nb[1];
  12786. size_t nb2 = tensor->nb[2];
  12787. size_t nb3 = tensor->nb[3];
  12788. if (src0->type != src0->grad->type) {
  12789. // gradient is typically F32, but src0 could be other type
  12790. size_t ng = ggml_element_size(src0->grad);
  12791. size_t n0 = ggml_element_size(src0);
  12792. GGML_ASSERT(offset % n0 == 0);
  12793. GGML_ASSERT(nb1 % n0 == 0);
  12794. GGML_ASSERT(nb2 % n0 == 0);
  12795. GGML_ASSERT(nb3 % n0 == 0);
  12796. offset = (offset / n0) * ng;
  12797. nb1 = (nb1 / n0) * ng;
  12798. nb2 = (nb2 / n0) * ng;
  12799. nb3 = (nb3 / n0) * ng;
  12800. }
  12801. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  12802. }
  12803. } break;
  12804. case GGML_OP_PERMUTE:
  12805. {
  12806. // necessary for llama
  12807. if (src0->grad) {
  12808. int32_t * axes = (int32_t *) tensor->op_params;
  12809. int axis0 = axes[0] & 0x3;
  12810. int axis1 = axes[1] & 0x3;
  12811. int axis2 = axes[2] & 0x3;
  12812. int axis3 = axes[3] & 0x3;
  12813. int axes_backward[4] = {0,0,0,0};
  12814. axes_backward[axis0] = 0;
  12815. axes_backward[axis1] = 1;
  12816. axes_backward[axis2] = 2;
  12817. axes_backward[axis3] = 3;
  12818. src0->grad =
  12819. ggml_add_or_set(ctx, src0->grad,
  12820. ggml_permute(ctx,
  12821. tensor->grad,
  12822. axes_backward[0],
  12823. axes_backward[1],
  12824. axes_backward[2],
  12825. axes_backward[3]),
  12826. zero_table);
  12827. }
  12828. } break;
  12829. case GGML_OP_TRANSPOSE:
  12830. {
  12831. // necessary for llama
  12832. if (src0->grad) {
  12833. src0->grad =
  12834. ggml_add_or_set(ctx, src0->grad,
  12835. ggml_transpose(ctx, tensor->grad),
  12836. zero_table);
  12837. }
  12838. } break;
  12839. case GGML_OP_GET_ROWS:
  12840. {
  12841. // necessary for llama (only for tokenizer)
  12842. if (src0->grad) {
  12843. src0->grad =
  12844. ggml_add_or_set(ctx, src0->grad,
  12845. // last ggml_get_rows_back argument src0->grad is only
  12846. // necessary to setup correct output shape
  12847. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12848. zero_table);
  12849. }
  12850. if (src1->grad) {
  12851. // noop
  12852. }
  12853. } break;
  12854. case GGML_OP_GET_ROWS_BACK:
  12855. {
  12856. GGML_ASSERT(false); // TODO: not implemented
  12857. } break;
  12858. case GGML_OP_DIAG:
  12859. {
  12860. GGML_ASSERT(false); // TODO: not implemented
  12861. } break;
  12862. case GGML_OP_DIAG_MASK_INF:
  12863. {
  12864. // necessary for llama
  12865. if (src0->grad) {
  12866. const int n_past = ((int32_t *) tensor->op_params)[0];
  12867. src0->grad =
  12868. ggml_add_or_set(ctx, src0->grad,
  12869. /* ggml_diag_mask_inf_impl() shouldn't be here */
  12870. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  12871. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12872. zero_table);
  12873. }
  12874. } break;
  12875. case GGML_OP_DIAG_MASK_ZERO:
  12876. {
  12877. // necessary for llama
  12878. if (src0->grad) {
  12879. const int n_past = ((int32_t *) tensor->op_params)[0];
  12880. src0->grad =
  12881. ggml_add_or_set(ctx, src0->grad,
  12882. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12883. zero_table);
  12884. }
  12885. } break;
  12886. case GGML_OP_SOFT_MAX:
  12887. {
  12888. // necessary for llama
  12889. if (src0->grad) {
  12890. src0->grad =
  12891. ggml_add_or_set(ctx, src0->grad,
  12892. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12893. zero_table);
  12894. }
  12895. } break;
  12896. case GGML_OP_SOFT_MAX_BACK:
  12897. {
  12898. GGML_ASSERT(false); // TODO: not implemented
  12899. } break;
  12900. case GGML_OP_ROPE:
  12901. {
  12902. // necessary for llama
  12903. if (src0->grad) {
  12904. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12905. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12906. const int mode = ((int32_t *) tensor->op_params)[2];
  12907. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12908. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12909. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12910. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12911. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12912. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12913. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12914. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12915. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12916. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12917. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12918. src0->grad = ggml_add_or_set(ctx,
  12919. src0->grad,
  12920. ggml_rope_back(ctx,
  12921. tensor->grad,
  12922. src1,
  12923. n_dims,
  12924. mode,
  12925. n_ctx,
  12926. n_orig_ctx,
  12927. freq_base,
  12928. freq_scale,
  12929. ext_factor,
  12930. attn_factor,
  12931. beta_fast,
  12932. beta_slow,
  12933. xpos_base,
  12934. xpos_down),
  12935. zero_table);
  12936. }
  12937. } break;
  12938. case GGML_OP_ROPE_BACK:
  12939. {
  12940. if (src0->grad) {
  12941. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12942. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12943. const int mode = ((int32_t *) tensor->op_params)[2];
  12944. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12945. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12946. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12947. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12948. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12949. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12950. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12951. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12952. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12953. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12954. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12955. src0->grad = ggml_add_or_set(ctx,
  12956. src0->grad,
  12957. ggml_rope_impl(ctx,
  12958. tensor->grad,
  12959. src1,
  12960. n_dims,
  12961. mode,
  12962. n_ctx,
  12963. n_orig_ctx,
  12964. freq_base,
  12965. freq_scale,
  12966. ext_factor,
  12967. attn_factor,
  12968. beta_fast,
  12969. beta_slow,
  12970. xpos_base,
  12971. xpos_down,
  12972. false),
  12973. zero_table);
  12974. }
  12975. } break;
  12976. case GGML_OP_ALIBI:
  12977. {
  12978. GGML_ASSERT(false); // TODO: not implemented
  12979. } break;
  12980. case GGML_OP_CLAMP:
  12981. {
  12982. GGML_ASSERT(false); // TODO: not implemented
  12983. } break;
  12984. case GGML_OP_CONV_TRANSPOSE_1D:
  12985. {
  12986. GGML_ASSERT(false); // TODO: not implemented
  12987. } break;
  12988. case GGML_OP_IM2COL:
  12989. {
  12990. GGML_ASSERT(false); // TODO: not implemented
  12991. } break;
  12992. case GGML_OP_CONV_TRANSPOSE_2D:
  12993. {
  12994. GGML_ASSERT(false); // TODO: not implemented
  12995. } break;
  12996. case GGML_OP_POOL_1D:
  12997. {
  12998. GGML_ASSERT(false); // TODO: not implemented
  12999. } break;
  13000. case GGML_OP_POOL_2D:
  13001. {
  13002. GGML_ASSERT(false); // TODO: not implemented
  13003. } break;
  13004. case GGML_OP_UPSCALE:
  13005. {
  13006. GGML_ASSERT(false); // TODO: not implemented
  13007. } break;
  13008. case GGML_OP_PAD:
  13009. {
  13010. GGML_ASSERT(false); // TODO: not implemented
  13011. } break;
  13012. case GGML_OP_ARGSORT:
  13013. {
  13014. GGML_ASSERT(false); // TODO: not implemented
  13015. } break;
  13016. case GGML_OP_LEAKY_RELU:
  13017. {
  13018. GGML_ASSERT(false); // TODO: not implemented
  13019. } break;
  13020. case GGML_OP_FLASH_ATTN:
  13021. {
  13022. struct ggml_tensor * flash_grad = NULL;
  13023. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13024. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13025. GGML_ASSERT(t == 0 || t == 1);
  13026. bool masked = t != 0;
  13027. flash_grad =
  13028. ggml_flash_attn_back(ctx,
  13029. src0,
  13030. src1,
  13031. tensor->src[2],
  13032. tensor->grad,
  13033. masked);
  13034. }
  13035. struct ggml_tensor * src2 = tensor->src[2];
  13036. const int64_t elem_q = ggml_nelements(src0);
  13037. const int64_t elem_k = ggml_nelements(src1);
  13038. const int64_t elem_v = ggml_nelements(src2);
  13039. enum ggml_type result_type = flash_grad->type;
  13040. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13041. const size_t tsize = ggml_type_size(result_type);
  13042. const size_t offs_q = 0;
  13043. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13044. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13045. if (src0->grad) {
  13046. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  13047. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  13048. src0->grad = ggml_add_or_set(ctx,
  13049. src0->grad,
  13050. grad_q,
  13051. zero_table);
  13052. }
  13053. if (src1->grad) {
  13054. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  13055. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  13056. src1->grad = ggml_add_or_set(ctx,
  13057. src1->grad,
  13058. grad_k,
  13059. zero_table);
  13060. }
  13061. if (src2->grad) {
  13062. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  13063. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  13064. src2->grad = ggml_add_or_set(ctx,
  13065. src2->grad,
  13066. grad_v,
  13067. zero_table);
  13068. }
  13069. } break;
  13070. case GGML_OP_FLASH_FF:
  13071. {
  13072. GGML_ASSERT(false); // not supported
  13073. } break;
  13074. case GGML_OP_FLASH_ATTN_BACK:
  13075. {
  13076. GGML_ASSERT(false); // not supported
  13077. } break;
  13078. case GGML_OP_WIN_PART:
  13079. case GGML_OP_WIN_UNPART:
  13080. case GGML_OP_UNARY:
  13081. {
  13082. switch (ggml_get_unary_op(tensor)) {
  13083. case GGML_UNARY_OP_ABS:
  13084. {
  13085. if (src0->grad) {
  13086. src0->grad =
  13087. ggml_add_or_set(ctx,
  13088. src0->grad,
  13089. ggml_mul(ctx,
  13090. ggml_sgn(ctx, src0),
  13091. tensor->grad),
  13092. zero_table);
  13093. }
  13094. } break;
  13095. case GGML_UNARY_OP_SGN:
  13096. {
  13097. if (src0->grad) {
  13098. // noop
  13099. }
  13100. } break;
  13101. case GGML_UNARY_OP_NEG:
  13102. {
  13103. if (src0->grad) {
  13104. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13105. }
  13106. } break;
  13107. case GGML_UNARY_OP_STEP:
  13108. {
  13109. if (src0->grad) {
  13110. // noop
  13111. }
  13112. } break;
  13113. case GGML_UNARY_OP_TANH:
  13114. {
  13115. GGML_ASSERT(false); // TODO: not implemented
  13116. } break;
  13117. case GGML_UNARY_OP_ELU:
  13118. {
  13119. GGML_ASSERT(false); // TODO: not implemented
  13120. } break;
  13121. case GGML_UNARY_OP_RELU:
  13122. {
  13123. if (src0->grad) {
  13124. src0->grad = ggml_add_or_set(ctx,
  13125. src0->grad,
  13126. ggml_mul(ctx,
  13127. ggml_step(ctx, src0),
  13128. tensor->grad),
  13129. zero_table);
  13130. }
  13131. } break;
  13132. case GGML_UNARY_OP_GELU:
  13133. {
  13134. GGML_ASSERT(false); // TODO: not implemented
  13135. } break;
  13136. case GGML_UNARY_OP_GELU_QUICK:
  13137. {
  13138. GGML_ASSERT(false); // TODO: not implemented
  13139. } break;
  13140. case GGML_UNARY_OP_SILU:
  13141. {
  13142. // necessary for llama
  13143. if (src0->grad) {
  13144. src0->grad = ggml_add_or_set(ctx,
  13145. src0->grad,
  13146. ggml_silu_back(ctx, src0, tensor->grad),
  13147. zero_table);
  13148. }
  13149. } break;
  13150. default:
  13151. GGML_ASSERT(false);
  13152. }
  13153. } break;
  13154. case GGML_OP_GET_REL_POS:
  13155. case GGML_OP_ADD_REL_POS:
  13156. case GGML_OP_MAP_UNARY:
  13157. case GGML_OP_MAP_BINARY:
  13158. case GGML_OP_MAP_CUSTOM1_F32:
  13159. case GGML_OP_MAP_CUSTOM2_F32:
  13160. case GGML_OP_MAP_CUSTOM3_F32:
  13161. case GGML_OP_MAP_CUSTOM1:
  13162. case GGML_OP_MAP_CUSTOM2:
  13163. case GGML_OP_MAP_CUSTOM3:
  13164. {
  13165. GGML_ASSERT(false); // not supported
  13166. } break;
  13167. case GGML_OP_CROSS_ENTROPY_LOSS:
  13168. {
  13169. if (src0->grad) {
  13170. src0->grad = ggml_add_or_set(ctx,
  13171. src0->grad,
  13172. ggml_cross_entropy_loss_back(ctx,
  13173. src0,
  13174. src1,
  13175. tensor->grad),
  13176. zero_table);
  13177. }
  13178. } break;
  13179. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13180. {
  13181. GGML_ASSERT(false); // not supported
  13182. } break;
  13183. case GGML_OP_NONE:
  13184. {
  13185. // nop
  13186. } break;
  13187. case GGML_OP_COUNT:
  13188. {
  13189. GGML_ASSERT(false);
  13190. } break;
  13191. }
  13192. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13193. if (tensor->src[i] && tensor->src[i]->grad) {
  13194. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13195. }
  13196. }
  13197. }
  13198. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13199. if (node->grad == NULL) {
  13200. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13201. // it can also happen during forward pass, if the user performs computations with constants
  13202. if (node->op != GGML_OP_NONE) {
  13203. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13204. }
  13205. }
  13206. // check if already visited
  13207. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  13208. return;
  13209. }
  13210. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13211. const int k =
  13212. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13213. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13214. /* unknown order, just fall back to using i*/ i;
  13215. if (node->src[k]) {
  13216. ggml_visit_parents(cgraph, node->src[k]);
  13217. }
  13218. }
  13219. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13220. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13221. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  13222. if (strlen(node->name) == 0) {
  13223. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13224. }
  13225. cgraph->leafs[cgraph->n_leafs] = node;
  13226. cgraph->n_leafs++;
  13227. } else {
  13228. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  13229. if (strlen(node->name) == 0) {
  13230. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13231. }
  13232. cgraph->nodes[cgraph->n_nodes] = node;
  13233. if (cgraph->grads) {
  13234. cgraph->grads[cgraph->n_nodes] = node->grad;
  13235. }
  13236. cgraph->n_nodes++;
  13237. }
  13238. }
  13239. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13240. if (!expand) {
  13241. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  13242. ggml_graph_clear(cgraph);
  13243. }
  13244. const int n0 = cgraph->n_nodes;
  13245. UNUSED(n0);
  13246. ggml_visit_parents(cgraph, tensor);
  13247. const int n_new = cgraph->n_nodes - n0;
  13248. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13249. if (n_new > 0) {
  13250. // the last added node should always be starting point
  13251. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13252. }
  13253. }
  13254. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13255. ggml_build_forward_impl(cgraph, tensor, true);
  13256. }
  13257. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13258. GGML_ASSERT(gf->n_nodes > 0);
  13259. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13260. if (keep) {
  13261. for (int i = 0; i < gf->n_nodes; i++) {
  13262. struct ggml_tensor * node = gf->nodes[i];
  13263. if (node->grad) {
  13264. node->grad = ggml_dup_tensor(ctx, node);
  13265. gf->grads[i] = node->grad;
  13266. }
  13267. }
  13268. }
  13269. // remember original gradients which start with zero values
  13270. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  13271. for (int i = 0; i < gf->n_nodes; i++) {
  13272. if (gf->grads[i]) {
  13273. ggml_hash_insert(zero_table, gf->grads[i]);
  13274. }
  13275. }
  13276. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13277. struct ggml_tensor * node = gf->nodes[i];
  13278. // inplace operations to add gradients are not created by ggml_compute_backward
  13279. // use allocator to automatically make inplace operations
  13280. if (node->grad) {
  13281. ggml_compute_backward(ctx, node, zero_table);
  13282. }
  13283. }
  13284. for (int i = 0; i < gf->n_nodes; i++) {
  13285. struct ggml_tensor * node = gf->nodes[i];
  13286. if (node->is_param) {
  13287. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13288. ggml_build_forward_expand(gb, node->grad);
  13289. }
  13290. }
  13291. ggml_hash_set_free(zero_table);
  13292. }
  13293. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  13294. size_t nbytes = sizeof(struct ggml_cgraph);
  13295. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  13296. if (grads) {
  13297. nbytes += size * sizeof(struct ggml_tensor *); // grads
  13298. }
  13299. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  13300. return nbytes;
  13301. }
  13302. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  13303. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  13304. }
  13305. size_t ggml_graph_overhead(void) {
  13306. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  13307. }
  13308. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  13309. const size_t obj_size = ggml_graph_nbytes(size, grads);
  13310. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
  13311. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13312. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  13313. size_t hash_size = ggml_hash_size(size * 2);
  13314. struct ggml_tensor ** nodes_ptr = data_start;
  13315. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  13316. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  13317. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  13318. // check that we allocated the correct amount of memory
  13319. assert(obj_size == (size_t) (
  13320. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  13321. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  13322. *cgraph = (struct ggml_cgraph) {
  13323. /*.size =*/ size,
  13324. /*.n_nodes =*/ 0,
  13325. /*.n_leafs =*/ 0,
  13326. /*.nodes =*/ nodes_ptr,
  13327. /*.grads =*/ grads_ptr,
  13328. /*.leafs =*/ leafs_ptr,
  13329. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  13330. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13331. /*.perf_runs =*/ 0,
  13332. /*.perf_cycles =*/ 0,
  13333. /*.perf_time_us =*/ 0,
  13334. };
  13335. return cgraph;
  13336. }
  13337. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13338. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  13339. }
  13340. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  13341. struct ggml_cgraph cgraph = {
  13342. /*.size =*/ 0,
  13343. /*.n_nodes =*/ i1 - i0,
  13344. /*.n_leafs =*/ 0,
  13345. /*.nodes =*/ cgraph0->nodes + i0,
  13346. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  13347. /*.leafs =*/ NULL,
  13348. /*.hash_table =*/ { 0, NULL },
  13349. /*.order =*/ cgraph0->order,
  13350. /*.perf_runs =*/ 0,
  13351. /*.perf_cycles =*/ 0,
  13352. /*.perf_time_us =*/ 0,
  13353. };
  13354. return cgraph;
  13355. }
  13356. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  13357. GGML_ASSERT(dst->size >= src->n_leafs);
  13358. GGML_ASSERT(dst->size >= src->n_nodes);
  13359. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  13360. dst->n_leafs = src->n_leafs;
  13361. dst->n_nodes = src->n_nodes;
  13362. dst->order = src->order;
  13363. for (int i = 0; i < src->n_leafs; ++i) {
  13364. dst->leafs[i] = src->leafs[i];
  13365. }
  13366. for (int i = 0; i < src->n_nodes; ++i) {
  13367. dst->nodes[i] = src->nodes[i];
  13368. }
  13369. if (src->grads) {
  13370. GGML_ASSERT(dst->grads != NULL);
  13371. for (int i = 0; i < src->n_nodes; ++i) {
  13372. dst->grads[i] = src->grads[i];
  13373. }
  13374. }
  13375. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  13376. if (src->visited_hash_table.keys[i]) {
  13377. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  13378. }
  13379. }
  13380. }
  13381. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13382. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  13383. ggml_graph_cpy(cgraph, result);
  13384. return result;
  13385. }
  13386. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13387. GGML_ASSERT(cgraph->grads != NULL);
  13388. for (int i = 0; i < cgraph->n_nodes; i++) {
  13389. struct ggml_tensor * grad = cgraph->grads[i];
  13390. if (grad) {
  13391. ggml_set_zero(grad);
  13392. }
  13393. }
  13394. }
  13395. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  13396. cgraph->n_leafs = 0;
  13397. cgraph->n_nodes = 0;
  13398. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  13399. }
  13400. //
  13401. // thread data
  13402. //
  13403. // synchronization is done via busy loops
  13404. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13405. //
  13406. #ifdef __APPLE__
  13407. //#include <os/lock.h>
  13408. //
  13409. //typedef os_unfair_lock ggml_lock_t;
  13410. //
  13411. //#define ggml_lock_init(x) UNUSED(x)
  13412. //#define ggml_lock_destroy(x) UNUSED(x)
  13413. //#define ggml_lock_lock os_unfair_lock_lock
  13414. //#define ggml_lock_unlock os_unfair_lock_unlock
  13415. //
  13416. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13417. typedef int ggml_lock_t;
  13418. #define ggml_lock_init(x) UNUSED(x)
  13419. #define ggml_lock_destroy(x) UNUSED(x)
  13420. #define ggml_lock_lock(x) UNUSED(x)
  13421. #define ggml_lock_unlock(x) UNUSED(x)
  13422. #define GGML_LOCK_INITIALIZER 0
  13423. typedef pthread_t ggml_thread_t;
  13424. #define ggml_thread_create pthread_create
  13425. #define ggml_thread_join pthread_join
  13426. #else
  13427. //typedef pthread_spinlock_t ggml_lock_t;
  13428. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13429. //#define ggml_lock_destroy pthread_spin_destroy
  13430. //#define ggml_lock_lock pthread_spin_lock
  13431. //#define ggml_lock_unlock pthread_spin_unlock
  13432. typedef int ggml_lock_t;
  13433. #define ggml_lock_init(x) UNUSED(x)
  13434. #define ggml_lock_destroy(x) UNUSED(x)
  13435. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13436. #define ggml_lock_lock(x) _mm_pause()
  13437. #else
  13438. #define ggml_lock_lock(x) UNUSED(x)
  13439. #endif
  13440. #define ggml_lock_unlock(x) UNUSED(x)
  13441. #define GGML_LOCK_INITIALIZER 0
  13442. typedef pthread_t ggml_thread_t;
  13443. #define ggml_thread_create pthread_create
  13444. #define ggml_thread_join pthread_join
  13445. #endif
  13446. // Android's libc implementation "bionic" does not support setting affinity
  13447. #if defined(__linux__) && !defined(__BIONIC__)
  13448. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13449. if (!ggml_is_numa()) {
  13450. return;
  13451. }
  13452. // run thread on node_num thread_n / (threads per node)
  13453. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13454. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13455. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13456. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13457. CPU_ZERO_S(setsize, cpus);
  13458. for (size_t i = 0; i < node->n_cpus; ++i) {
  13459. CPU_SET_S(node->cpus[i], setsize, cpus);
  13460. }
  13461. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13462. if (rv) {
  13463. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13464. strerror(rv));
  13465. }
  13466. CPU_FREE(cpus);
  13467. }
  13468. static void clear_numa_thread_affinity(void) {
  13469. if (!ggml_is_numa()) {
  13470. return;
  13471. }
  13472. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13473. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13474. CPU_ZERO_S(setsize, cpus);
  13475. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13476. CPU_SET_S(i, setsize, cpus);
  13477. }
  13478. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13479. if (rv) {
  13480. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13481. strerror(rv));
  13482. }
  13483. CPU_FREE(cpus);
  13484. }
  13485. #else
  13486. // TODO: Windows etc.
  13487. // (the linux implementation may also work on BSD, someone should test)
  13488. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13489. static void clear_numa_thread_affinity(void) {}
  13490. #endif
  13491. struct ggml_compute_state_shared {
  13492. const struct ggml_cgraph * cgraph;
  13493. const struct ggml_cplan * cplan;
  13494. int64_t perf_node_start_cycles;
  13495. int64_t perf_node_start_time_us;
  13496. const int n_threads;
  13497. // synchronization primitives
  13498. atomic_int n_active; // num active threads
  13499. atomic_int node_n; // active graph node
  13500. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13501. void * abort_callback_data;
  13502. };
  13503. struct ggml_compute_state {
  13504. ggml_thread_t thrd;
  13505. int ith;
  13506. struct ggml_compute_state_shared * shared;
  13507. };
  13508. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13509. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13510. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13511. node->perf_runs++;
  13512. node->perf_cycles += cycles_cur;
  13513. node->perf_time_us += time_us_cur;
  13514. }
  13515. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  13516. int n_tasks = 0;
  13517. switch (node->op) {
  13518. case GGML_OP_CPY:
  13519. case GGML_OP_DUP:
  13520. case GGML_OP_ADD:
  13521. case GGML_OP_ADD1:
  13522. case GGML_OP_ACC:
  13523. {
  13524. n_tasks = n_threads;
  13525. } break;
  13526. case GGML_OP_SUB:
  13527. case GGML_OP_SQR:
  13528. case GGML_OP_SQRT:
  13529. case GGML_OP_LOG:
  13530. case GGML_OP_SUM:
  13531. case GGML_OP_SUM_ROWS:
  13532. case GGML_OP_MEAN:
  13533. case GGML_OP_ARGMAX:
  13534. case GGML_OP_REPEAT:
  13535. case GGML_OP_REPEAT_BACK:
  13536. case GGML_OP_LEAKY_RELU:
  13537. {
  13538. n_tasks = 1;
  13539. } break;
  13540. case GGML_OP_UNARY:
  13541. switch (ggml_get_unary_op(node)) {
  13542. case GGML_UNARY_OP_ABS:
  13543. case GGML_UNARY_OP_SGN:
  13544. case GGML_UNARY_OP_NEG:
  13545. case GGML_UNARY_OP_STEP:
  13546. case GGML_UNARY_OP_TANH:
  13547. case GGML_UNARY_OP_ELU:
  13548. case GGML_UNARY_OP_RELU:
  13549. {
  13550. n_tasks = 1;
  13551. } break;
  13552. case GGML_UNARY_OP_GELU:
  13553. case GGML_UNARY_OP_GELU_QUICK:
  13554. case GGML_UNARY_OP_SILU:
  13555. {
  13556. n_tasks = n_threads;
  13557. } break;
  13558. default:
  13559. GGML_ASSERT(false);
  13560. }
  13561. break;
  13562. case GGML_OP_SILU_BACK:
  13563. case GGML_OP_MUL:
  13564. case GGML_OP_DIV:
  13565. case GGML_OP_NORM:
  13566. case GGML_OP_RMS_NORM:
  13567. case GGML_OP_RMS_NORM_BACK:
  13568. case GGML_OP_GROUP_NORM:
  13569. case GGML_OP_CONCAT:
  13570. {
  13571. n_tasks = n_threads;
  13572. } break;
  13573. case GGML_OP_MUL_MAT:
  13574. {
  13575. n_tasks = n_threads;
  13576. // TODO: use different scheduling for different matrix sizes
  13577. //const int nr0 = ggml_nrows(node->src[0]);
  13578. //const int nr1 = ggml_nrows(node->src[1]);
  13579. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13580. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13581. } break;
  13582. case GGML_OP_MUL_MAT_ID:
  13583. {
  13584. n_tasks = n_threads;
  13585. } break;
  13586. case GGML_OP_OUT_PROD:
  13587. {
  13588. n_tasks = n_threads;
  13589. } break;
  13590. case GGML_OP_SCALE:
  13591. case GGML_OP_SET:
  13592. case GGML_OP_CONT:
  13593. case GGML_OP_RESHAPE:
  13594. case GGML_OP_VIEW:
  13595. case GGML_OP_PERMUTE:
  13596. case GGML_OP_TRANSPOSE:
  13597. case GGML_OP_GET_ROWS:
  13598. case GGML_OP_GET_ROWS_BACK:
  13599. case GGML_OP_DIAG:
  13600. {
  13601. n_tasks = 1;
  13602. } break;
  13603. case GGML_OP_DIAG_MASK_ZERO:
  13604. case GGML_OP_DIAG_MASK_INF:
  13605. case GGML_OP_SOFT_MAX_BACK:
  13606. case GGML_OP_ROPE:
  13607. case GGML_OP_ROPE_BACK:
  13608. case GGML_OP_ADD_REL_POS:
  13609. {
  13610. n_tasks = n_threads;
  13611. } break;
  13612. case GGML_OP_ALIBI:
  13613. {
  13614. n_tasks = 1; //TODO
  13615. } break;
  13616. case GGML_OP_CLAMP:
  13617. {
  13618. n_tasks = 1; //TODO
  13619. } break;
  13620. case GGML_OP_SOFT_MAX:
  13621. {
  13622. n_tasks = MIN(MIN(4, n_threads), ggml_nrows(node->src[0]));
  13623. } break;
  13624. case GGML_OP_CONV_TRANSPOSE_1D:
  13625. {
  13626. n_tasks = n_threads;
  13627. } break;
  13628. case GGML_OP_IM2COL:
  13629. {
  13630. n_tasks = n_threads;
  13631. } break;
  13632. case GGML_OP_CONV_TRANSPOSE_2D:
  13633. {
  13634. n_tasks = n_threads;
  13635. } break;
  13636. case GGML_OP_POOL_1D:
  13637. case GGML_OP_POOL_2D:
  13638. {
  13639. n_tasks = 1;
  13640. } break;
  13641. case GGML_OP_UPSCALE:
  13642. {
  13643. n_tasks = n_threads;
  13644. } break;
  13645. case GGML_OP_PAD:
  13646. {
  13647. n_tasks = n_threads;
  13648. } break;
  13649. case GGML_OP_ARGSORT:
  13650. {
  13651. n_tasks = n_threads;
  13652. } break;
  13653. case GGML_OP_FLASH_ATTN:
  13654. {
  13655. n_tasks = n_threads;
  13656. } break;
  13657. case GGML_OP_FLASH_FF:
  13658. {
  13659. n_tasks = n_threads;
  13660. } break;
  13661. case GGML_OP_FLASH_ATTN_BACK:
  13662. {
  13663. n_tasks = n_threads;
  13664. } break;
  13665. case GGML_OP_WIN_PART:
  13666. case GGML_OP_WIN_UNPART:
  13667. case GGML_OP_GET_REL_POS:
  13668. case GGML_OP_MAP_UNARY:
  13669. case GGML_OP_MAP_BINARY:
  13670. case GGML_OP_MAP_CUSTOM1_F32:
  13671. case GGML_OP_MAP_CUSTOM2_F32:
  13672. case GGML_OP_MAP_CUSTOM3_F32:
  13673. {
  13674. n_tasks = 1;
  13675. } break;
  13676. case GGML_OP_MAP_CUSTOM1:
  13677. {
  13678. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  13679. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13680. n_tasks = n_threads;
  13681. } else {
  13682. n_tasks = MIN(p->n_tasks, n_threads);
  13683. }
  13684. } break;
  13685. case GGML_OP_MAP_CUSTOM2:
  13686. {
  13687. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  13688. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13689. n_tasks = n_threads;
  13690. } else {
  13691. n_tasks = MIN(p->n_tasks, n_threads);
  13692. }
  13693. } break;
  13694. case GGML_OP_MAP_CUSTOM3:
  13695. {
  13696. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  13697. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13698. n_tasks = n_threads;
  13699. } else {
  13700. n_tasks = MIN(p->n_tasks, n_threads);
  13701. }
  13702. } break;
  13703. case GGML_OP_CROSS_ENTROPY_LOSS:
  13704. {
  13705. n_tasks = n_threads;
  13706. } break;
  13707. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13708. {
  13709. n_tasks = n_threads;
  13710. } break;
  13711. case GGML_OP_NONE:
  13712. {
  13713. n_tasks = 1;
  13714. } break;
  13715. case GGML_OP_COUNT:
  13716. {
  13717. GGML_ASSERT(false);
  13718. } break;
  13719. default:
  13720. {
  13721. fprintf(stderr, "%s: op not implemented: ", __func__);
  13722. if (node->op < GGML_OP_COUNT) {
  13723. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  13724. } else {
  13725. fprintf(stderr, "%d\n", node->op);
  13726. }
  13727. GGML_ASSERT(false);
  13728. } break;
  13729. }
  13730. assert(n_tasks > 0);
  13731. return n_tasks;
  13732. }
  13733. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13734. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13735. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13736. const struct ggml_cplan * cplan = state->shared->cplan;
  13737. const int n_threads = state->shared->n_threads;
  13738. set_numa_thread_affinity(state->ith, n_threads);
  13739. int node_n = -1;
  13740. while (true) {
  13741. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13742. state->shared->node_n += 1;
  13743. return (thread_ret_t) GGML_EXIT_ABORTED;
  13744. }
  13745. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13746. // all other threads are finished and spinning
  13747. // do finalize and init here so we don't have synchronize again
  13748. struct ggml_compute_params params = {
  13749. /*.type =*/ GGML_TASK_FINALIZE,
  13750. /*.ith =*/ 0,
  13751. /*.nth =*/ 0,
  13752. /*.wsize =*/ cplan->work_size,
  13753. /*.wdata =*/ cplan->work_data,
  13754. };
  13755. if (node_n != -1) {
  13756. /* FINALIZE */
  13757. struct ggml_tensor * node = cgraph->nodes[node_n];
  13758. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13759. params.nth = ggml_get_n_tasks(node, n_threads);
  13760. ggml_compute_forward(&params, node);
  13761. }
  13762. ggml_graph_compute_perf_stats_node(node, state->shared);
  13763. }
  13764. // distribute new work or execute it direct if 1T
  13765. while (++node_n < cgraph->n_nodes) {
  13766. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13767. struct ggml_tensor * node = cgraph->nodes[node_n];
  13768. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13769. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13770. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13771. params.nth = n_tasks;
  13772. /* INIT */
  13773. if (GGML_OP_HAS_INIT[node->op]) {
  13774. params.type = GGML_TASK_INIT;
  13775. ggml_compute_forward(&params, node);
  13776. }
  13777. if (n_tasks == 1) {
  13778. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13779. // they do something more efficient than spinning (?)
  13780. params.type = GGML_TASK_COMPUTE;
  13781. ggml_compute_forward(&params, node);
  13782. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13783. params.type = GGML_TASK_FINALIZE;
  13784. ggml_compute_forward(&params, node);
  13785. }
  13786. ggml_graph_compute_perf_stats_node(node, state->shared);
  13787. } else {
  13788. break;
  13789. }
  13790. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13791. break;
  13792. }
  13793. }
  13794. atomic_store(&state->shared->n_active, n_threads);
  13795. atomic_store(&state->shared->node_n, node_n);
  13796. } else {
  13797. // wait for other threads to finish
  13798. const int last = node_n;
  13799. const bool do_yield = last < 0 || cgraph->nodes[last]->op == GGML_OP_MUL_MAT;
  13800. while (true) {
  13801. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  13802. // depending on the workload and the operating system.
  13803. // since it is not clear what is the best approach, it should potentially become user-configurable
  13804. // ref: https://github.com/ggerganov/ggml/issues/291
  13805. // UPD: adding the do_yield flag seems to resolve the issue universally
  13806. if (do_yield) {
  13807. sched_yield();
  13808. }
  13809. node_n = atomic_load(&state->shared->node_n);
  13810. if (node_n != last) break;
  13811. };
  13812. }
  13813. // check if we should stop
  13814. if (node_n >= cgraph->n_nodes) break;
  13815. /* COMPUTE */
  13816. struct ggml_tensor * node = cgraph->nodes[node_n];
  13817. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13818. struct ggml_compute_params params = {
  13819. /*.type =*/ GGML_TASK_COMPUTE,
  13820. /*.ith =*/ state->ith,
  13821. /*.nth =*/ n_tasks,
  13822. /*.wsize =*/ cplan->work_size,
  13823. /*.wdata =*/ cplan->work_data,
  13824. };
  13825. if (state->ith < n_tasks) {
  13826. ggml_compute_forward(&params, node);
  13827. }
  13828. }
  13829. return GGML_EXIT_SUCCESS;
  13830. }
  13831. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13832. if (n_threads <= 0) {
  13833. n_threads = GGML_DEFAULT_N_THREADS;
  13834. }
  13835. size_t work_size = 0;
  13836. struct ggml_cplan cplan;
  13837. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13838. // thread scheduling for the different operations + work buffer size estimation
  13839. for (int i = 0; i < cgraph->n_nodes; i++) {
  13840. struct ggml_tensor * node = cgraph->nodes[i];
  13841. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13842. size_t cur = 0;
  13843. switch (node->op) {
  13844. case GGML_OP_CPY:
  13845. case GGML_OP_DUP:
  13846. {
  13847. if (ggml_is_quantized(node->type)) {
  13848. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13849. }
  13850. } break;
  13851. case GGML_OP_ADD:
  13852. case GGML_OP_ADD1:
  13853. {
  13854. if (ggml_is_quantized(node->src[0]->type)) {
  13855. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13856. }
  13857. } break;
  13858. case GGML_OP_ACC:
  13859. {
  13860. if (ggml_is_quantized(node->src[0]->type)) {
  13861. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  13862. }
  13863. } break;
  13864. case GGML_OP_MUL_MAT:
  13865. {
  13866. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13867. #if defined(GGML_USE_CLBLAST)
  13868. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13869. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13870. } else
  13871. #endif
  13872. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13873. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  13874. if (node->src[0]->type != GGML_TYPE_F32) {
  13875. // here we need memory just for single 2D matrix from src0
  13876. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13877. }
  13878. } else
  13879. #endif
  13880. if (node->src[1]->type != vec_dot_type) {
  13881. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  13882. }
  13883. } break;
  13884. case GGML_OP_MUL_MAT_ID:
  13885. {
  13886. const struct ggml_tensor * src0 = node->src[2];
  13887. const struct ggml_tensor * src1 = node->src[1];
  13888. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  13889. if (src1->type != vec_dot_type) {
  13890. cur = ggml_row_size(vec_dot_type, ggml_nelements(src1));
  13891. }
  13892. const int n_as = ggml_get_op_params_i32(node, 1);
  13893. cur = GGML_PAD(cur, sizeof(int64_t)); // align
  13894. cur += n_as * sizeof(int64_t); // matrix_row_counts
  13895. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  13896. } break;
  13897. case GGML_OP_OUT_PROD:
  13898. {
  13899. if (ggml_is_quantized(node->src[0]->type)) {
  13900. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13901. }
  13902. } break;
  13903. case GGML_OP_SOFT_MAX:
  13904. {
  13905. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13906. } break;
  13907. case GGML_OP_CONV_TRANSPOSE_1D:
  13908. {
  13909. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13910. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13911. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13912. const int64_t ne00 = node->src[0]->ne[0]; // K
  13913. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  13914. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  13915. const int64_t ne10 = node->src[1]->ne[0]; // L
  13916. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  13917. if (node->src[0]->type == GGML_TYPE_F16 &&
  13918. node->src[1]->type == GGML_TYPE_F32) {
  13919. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  13920. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  13921. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13922. node->src[1]->type == GGML_TYPE_F32) {
  13923. cur += sizeof(float)*ne00*ne01*ne02;
  13924. cur += sizeof(float)*ne10*ne11;
  13925. } else {
  13926. GGML_ASSERT(false);
  13927. }
  13928. } break;
  13929. case GGML_OP_CONV_TRANSPOSE_2D:
  13930. {
  13931. const int64_t ne00 = node->src[0]->ne[0]; // W
  13932. const int64_t ne01 = node->src[0]->ne[1]; // H
  13933. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  13934. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  13935. const int64_t ne10 = node->src[1]->ne[0]; // W
  13936. const int64_t ne11 = node->src[1]->ne[1]; // H
  13937. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  13938. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  13939. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  13940. } break;
  13941. case GGML_OP_FLASH_ATTN:
  13942. {
  13943. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13944. if (node->src[1]->type == GGML_TYPE_F32) {
  13945. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13946. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13947. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13948. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13949. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13950. }
  13951. } break;
  13952. case GGML_OP_FLASH_FF:
  13953. {
  13954. if (node->src[1]->type == GGML_TYPE_F32) {
  13955. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13956. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13957. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13958. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13959. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13960. }
  13961. } break;
  13962. case GGML_OP_FLASH_ATTN_BACK:
  13963. {
  13964. const int64_t D = node->src[0]->ne[0];
  13965. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13966. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13967. if (node->src[1]->type == GGML_TYPE_F32) {
  13968. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13969. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13970. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13971. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13972. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13973. }
  13974. } break;
  13975. case GGML_OP_CROSS_ENTROPY_LOSS:
  13976. {
  13977. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  13978. } break;
  13979. case GGML_OP_COUNT:
  13980. {
  13981. GGML_ASSERT(false);
  13982. } break;
  13983. default:
  13984. break;
  13985. }
  13986. work_size = MAX(work_size, cur);
  13987. }
  13988. if (work_size > 0) {
  13989. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  13990. }
  13991. cplan.n_threads = n_threads;
  13992. cplan.work_size = work_size;
  13993. cplan.work_data = NULL;
  13994. return cplan;
  13995. }
  13996. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  13997. {
  13998. GGML_ASSERT(cplan);
  13999. GGML_ASSERT(cplan->n_threads > 0);
  14000. if (cplan->work_size > 0) {
  14001. GGML_ASSERT(cplan->work_data);
  14002. }
  14003. }
  14004. const int n_threads = cplan->n_threads;
  14005. struct ggml_compute_state_shared state_shared = {
  14006. /*.cgraph =*/ cgraph,
  14007. /*.cgraph_plan =*/ cplan,
  14008. /*.perf_node_start_cycles =*/ 0,
  14009. /*.perf_node_start_time_us =*/ 0,
  14010. /*.n_threads =*/ n_threads,
  14011. /*.n_active =*/ n_threads,
  14012. /*.node_n =*/ -1,
  14013. /*.abort_callback =*/ NULL,
  14014. /*.abort_callback_data =*/ NULL,
  14015. };
  14016. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14017. // create thread pool
  14018. if (n_threads > 1) {
  14019. for (int j = 1; j < n_threads; ++j) {
  14020. workers[j] = (struct ggml_compute_state) {
  14021. .thrd = 0,
  14022. .ith = j,
  14023. .shared = &state_shared,
  14024. };
  14025. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14026. GGML_ASSERT(rc == 0);
  14027. UNUSED(rc);
  14028. }
  14029. }
  14030. workers[0].ith = 0;
  14031. workers[0].shared = &state_shared;
  14032. const int64_t perf_start_cycles = ggml_perf_cycles();
  14033. const int64_t perf_start_time_us = ggml_perf_time_us();
  14034. // this is a work thread too
  14035. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14036. // don't leave affinity set on the main thread
  14037. clear_numa_thread_affinity();
  14038. // join or kill thread pool
  14039. if (n_threads > 1) {
  14040. for (int j = 1; j < n_threads; j++) {
  14041. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14042. GGML_ASSERT(rc == 0);
  14043. }
  14044. }
  14045. // performance stats (graph)
  14046. {
  14047. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14048. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14049. cgraph->perf_runs++;
  14050. cgraph->perf_cycles += perf_cycles_cur;
  14051. cgraph->perf_time_us += perf_time_us_cur;
  14052. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14053. __func__, cgraph->perf_runs,
  14054. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14055. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14056. (double) perf_time_us_cur / 1000.0,
  14057. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14058. }
  14059. return compute_status;
  14060. }
  14061. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14062. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14063. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14064. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14065. ggml_graph_compute(cgraph, &cplan);
  14066. }
  14067. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14068. for (int i = 0; i < cgraph->n_leafs; i++) {
  14069. struct ggml_tensor * leaf = cgraph->leafs[i];
  14070. if (strcmp(leaf->name, name) == 0) {
  14071. return leaf;
  14072. }
  14073. }
  14074. for (int i = 0; i < cgraph->n_nodes; i++) {
  14075. struct ggml_tensor * node = cgraph->nodes[i];
  14076. if (strcmp(node->name, name) == 0) {
  14077. return node;
  14078. }
  14079. }
  14080. return NULL;
  14081. }
  14082. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14083. const int64_t * ne = tensor->ne;
  14084. const size_t * nb = tensor->nb;
  14085. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14086. ggml_type_name(tensor->type),
  14087. ggml_op_name (tensor->op),
  14088. ggml_n_dims(tensor),
  14089. ne[0], ne[1], ne[2], ne[3],
  14090. nb[0], nb[1], nb[2], nb[3],
  14091. tensor->data,
  14092. tensor->name);
  14093. }
  14094. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14095. const int64_t * ne = tensor->ne;
  14096. const size_t * nb = tensor->nb;
  14097. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14098. arg,
  14099. ggml_type_name(tensor->type),
  14100. ggml_op_name (tensor->op),
  14101. ggml_n_dims(tensor),
  14102. ne[0], ne[1], ne[2], ne[3],
  14103. nb[0], nb[1], nb[2], nb[3],
  14104. tensor->data,
  14105. tensor->name);
  14106. }
  14107. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14108. uint64_t size_eval = 0;
  14109. // compute size of intermediate results
  14110. // TODO: does not take into account scratch buffers !!!!
  14111. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14112. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14113. }
  14114. // print
  14115. {
  14116. FILE * fout = stdout;
  14117. fprintf(fout, "\n");
  14118. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14119. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14120. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14121. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14122. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14123. // header
  14124. fprintf(fout, "\n");
  14125. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14126. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14127. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14128. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14129. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14130. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14131. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14132. }
  14133. // header
  14134. fprintf(fout, "\n");
  14135. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14136. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14137. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14138. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14139. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14140. if (cgraph->nodes[i]->src[j]) {
  14141. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14142. }
  14143. }
  14144. fprintf(fout, "\n");
  14145. }
  14146. fprintf(fout, "\n");
  14147. }
  14148. // write binary data
  14149. {
  14150. FILE * fout = fopen(fname, "wb");
  14151. if (!fout) {
  14152. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14153. return;
  14154. }
  14155. // header
  14156. {
  14157. const uint32_t magic = GGML_FILE_MAGIC;
  14158. const uint32_t version = GGML_FILE_VERSION;
  14159. const uint32_t n_leafs = cgraph->n_leafs;
  14160. const uint32_t n_nodes = cgraph->n_nodes;
  14161. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14162. fwrite(&version, sizeof(uint32_t), 1, fout);
  14163. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14164. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  14165. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14166. }
  14167. // leafs
  14168. {
  14169. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14170. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14171. const uint32_t type = tensor->type;
  14172. const uint32_t op = tensor->op;
  14173. fwrite(&type, sizeof(uint32_t), 1, fout);
  14174. fwrite(&op, sizeof(uint32_t), 1, fout);
  14175. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14176. const uint64_t ne = tensor->ne[j];
  14177. const uint64_t nb = tensor->nb[j];
  14178. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14179. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14180. }
  14181. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14182. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14183. // dump the data
  14184. // TODO: pad this to 32 byte boundary
  14185. {
  14186. const size_t size = ggml_nbytes(tensor);
  14187. fwrite(tensor->data, sizeof(char), size, fout);
  14188. }
  14189. }
  14190. }
  14191. // nodes
  14192. {
  14193. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14194. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14195. const uint32_t type = tensor->type;
  14196. const uint32_t op = tensor->op;
  14197. fwrite(&type, sizeof(uint32_t), 1, fout);
  14198. fwrite(&op, sizeof(uint32_t), 1, fout);
  14199. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14200. const uint64_t ne = tensor->ne[j];
  14201. const uint64_t nb = tensor->nb[j];
  14202. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14203. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14204. }
  14205. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14206. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14207. // output the op arguments
  14208. {
  14209. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14210. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14211. args[j] = tensor->src[j];
  14212. }
  14213. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14214. if (args[j]) {
  14215. int32_t idx = -1;
  14216. // check if leaf
  14217. {
  14218. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14219. if (args[j] == cgraph->leafs[k]) {
  14220. idx = k;
  14221. break;
  14222. }
  14223. }
  14224. }
  14225. // check if node
  14226. if (idx == -1) {
  14227. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14228. if (args[j] == cgraph->nodes[k]) {
  14229. idx = cgraph->n_leafs + k;
  14230. break;
  14231. }
  14232. }
  14233. }
  14234. if (idx == -1) {
  14235. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14236. fclose(fout);
  14237. return;
  14238. }
  14239. fwrite(&idx, sizeof(int32_t), 1, fout);
  14240. } else {
  14241. const int32_t nul = -1;
  14242. fwrite(&nul, sizeof(int32_t), 1, fout);
  14243. }
  14244. }
  14245. }
  14246. }
  14247. }
  14248. fclose(fout);
  14249. }
  14250. }
  14251. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14252. assert(*ctx_data == NULL);
  14253. assert(*ctx_eval == NULL);
  14254. struct ggml_cgraph * result = NULL;
  14255. struct ggml_tensor * data = NULL;
  14256. // read file into data
  14257. {
  14258. FILE * fin = fopen(fname, "rb");
  14259. if (!fin) {
  14260. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14261. return result;
  14262. }
  14263. size_t fsize = 0;
  14264. fseek(fin, 0, SEEK_END);
  14265. fsize = ftell(fin);
  14266. fseek(fin, 0, SEEK_SET);
  14267. // create the data context
  14268. {
  14269. const size_t overhead = 1*ggml_tensor_overhead();
  14270. struct ggml_init_params params = {
  14271. .mem_size = fsize + overhead,
  14272. .mem_buffer = NULL,
  14273. .no_alloc = false,
  14274. };
  14275. *ctx_data = ggml_init(params);
  14276. if (!*ctx_data) {
  14277. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14278. fclose(fin);
  14279. return result;
  14280. }
  14281. }
  14282. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14283. {
  14284. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14285. if (ret != fsize) {
  14286. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14287. fclose(fin);
  14288. return result;
  14289. }
  14290. }
  14291. fclose(fin);
  14292. }
  14293. // populate result
  14294. {
  14295. char * ptr = (char *) data->data;
  14296. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14297. if (magic != GGML_FILE_MAGIC) {
  14298. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14299. return result;
  14300. }
  14301. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14302. if (version != GGML_FILE_VERSION) {
  14303. fprintf(stderr, "%s: invalid version number\n", __func__);
  14304. return result;
  14305. }
  14306. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14307. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14308. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14309. const int graph_size = MAX(n_leafs, n_nodes);
  14310. // create the data context
  14311. {
  14312. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  14313. struct ggml_init_params params = {
  14314. .mem_size = size_eval + overhead,
  14315. .mem_buffer = NULL,
  14316. .no_alloc = true,
  14317. };
  14318. *ctx_eval = ggml_init(params);
  14319. if (!*ctx_eval) {
  14320. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14321. return result;
  14322. }
  14323. }
  14324. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  14325. result->n_leafs = n_leafs;
  14326. result->n_nodes = n_nodes;
  14327. // leafs
  14328. {
  14329. uint32_t type;
  14330. uint32_t op;
  14331. for (uint32_t i = 0; i < n_leafs; ++i) {
  14332. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14333. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14334. int64_t ne[GGML_MAX_DIMS];
  14335. size_t nb[GGML_MAX_DIMS];
  14336. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14337. uint64_t ne_cur;
  14338. uint64_t nb_cur;
  14339. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14340. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14341. ne[j] = ne_cur;
  14342. nb[j] = nb_cur;
  14343. }
  14344. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14345. tensor->op = (enum ggml_op) op;
  14346. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14347. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14348. tensor->data = (void *) ptr;
  14349. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14350. tensor->nb[j] = nb[j];
  14351. }
  14352. result->leafs[i] = tensor;
  14353. ptr += ggml_nbytes(tensor);
  14354. fprintf(stderr, "%s: loaded leaf %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14355. }
  14356. }
  14357. ggml_set_no_alloc(*ctx_eval, false);
  14358. // nodes
  14359. {
  14360. uint32_t type;
  14361. uint32_t op;
  14362. for (uint32_t i = 0; i < n_nodes; ++i) {
  14363. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14364. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14365. enum ggml_op eop = (enum ggml_op) op;
  14366. int64_t ne[GGML_MAX_DIMS];
  14367. size_t nb[GGML_MAX_DIMS];
  14368. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14369. uint64_t ne_cur;
  14370. uint64_t nb_cur;
  14371. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14372. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14373. ne[j] = ne_cur;
  14374. nb[j] = nb_cur;
  14375. }
  14376. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14377. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14378. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14379. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14380. // parse args
  14381. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14382. const int32_t arg_idx = ptr_arg_idx[j];
  14383. if (arg_idx == -1) {
  14384. continue;
  14385. }
  14386. if (arg_idx < result->n_leafs) {
  14387. args[j] = result->leafs[arg_idx];
  14388. } else {
  14389. args[j] = result->nodes[arg_idx - result->n_leafs];
  14390. }
  14391. }
  14392. // create the tensor
  14393. // "view" operations are handled differently
  14394. // TODO: handle inplace ops - currently a copy is always made
  14395. struct ggml_tensor * tensor = NULL;
  14396. switch (eop) {
  14397. // TODO: implement other view ops
  14398. case GGML_OP_RESHAPE:
  14399. {
  14400. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14401. } break;
  14402. case GGML_OP_VIEW:
  14403. {
  14404. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14405. size_t offs;
  14406. memcpy(&offs, ptr_op_params, sizeof(offs));
  14407. tensor->data = ((char *) tensor->data) + offs;
  14408. } break;
  14409. case GGML_OP_TRANSPOSE:
  14410. {
  14411. tensor = ggml_transpose(*ctx_eval, args[0]);
  14412. } break;
  14413. case GGML_OP_PERMUTE:
  14414. {
  14415. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14416. } break;
  14417. default:
  14418. {
  14419. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14420. tensor->op = eop;
  14421. } break;
  14422. }
  14423. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14424. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14425. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14426. tensor->nb[j] = nb[j];
  14427. }
  14428. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14429. tensor->src[j] = args[j];
  14430. }
  14431. result->nodes[i] = tensor;
  14432. fprintf(stderr, "%s: loaded node %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14433. }
  14434. }
  14435. }
  14436. return result;
  14437. }
  14438. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14439. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14440. GGML_PRINT("=== GRAPH ===\n");
  14441. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14442. for (int i = 0; i < cgraph->n_nodes; i++) {
  14443. struct ggml_tensor * node = cgraph->nodes[i];
  14444. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14445. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14446. i,
  14447. node->ne[0], node->ne[1], node->ne[2],
  14448. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14449. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14450. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14451. (double) node->perf_time_us / 1000.0,
  14452. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14453. }
  14454. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14455. for (int i = 0; i < cgraph->n_leafs; i++) {
  14456. struct ggml_tensor * node = cgraph->leafs[i];
  14457. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  14458. i,
  14459. node->ne[0], node->ne[1],
  14460. ggml_op_name(node->op),
  14461. ggml_get_name(node));
  14462. }
  14463. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14464. if (perf_total_per_op_us[i] == 0) {
  14465. continue;
  14466. }
  14467. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14468. }
  14469. GGML_PRINT("========================================\n");
  14470. }
  14471. // check if node is part of the graph
  14472. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14473. if (cgraph == NULL) {
  14474. return true;
  14475. }
  14476. for (int i = 0; i < cgraph->n_nodes; i++) {
  14477. if (cgraph->nodes[i] == node) {
  14478. return true;
  14479. }
  14480. }
  14481. return false;
  14482. }
  14483. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14484. for (int i = 0; i < cgraph->n_nodes; i++) {
  14485. struct ggml_tensor * parent = cgraph->nodes[i];
  14486. if (parent->grad == node) {
  14487. return parent;
  14488. }
  14489. }
  14490. return NULL;
  14491. }
  14492. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14493. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14494. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14495. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14496. gparent0 ? (void *) gparent0 : (void *) parent,
  14497. gparent0 ? "g" : "x",
  14498. gparent ? (void *) gparent : (void *) node,
  14499. gparent ? "g" : "x",
  14500. gparent ? "empty" : "vee",
  14501. gparent ? "dashed" : "solid",
  14502. label);
  14503. }
  14504. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14505. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14506. (void *) parent, "x",
  14507. (void *) node, "x",
  14508. label);
  14509. }
  14510. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14511. char color[16];
  14512. FILE * fp = fopen(filename, "w");
  14513. GGML_ASSERT(fp);
  14514. fprintf(fp, "digraph G {\n");
  14515. fprintf(fp, " newrank = true;\n");
  14516. fprintf(fp, " rankdir = LR;\n");
  14517. for (int i = 0; i < gb->n_nodes; i++) {
  14518. struct ggml_tensor * node = gb->nodes[i];
  14519. if (ggml_graph_get_parent(gb, node) != NULL) {
  14520. continue;
  14521. }
  14522. if (node->is_param) {
  14523. snprintf(color, sizeof(color), "yellow");
  14524. } else if (node->grad) {
  14525. if (ggml_graph_find(gf, node)) {
  14526. snprintf(color, sizeof(color), "green");
  14527. } else {
  14528. snprintf(color, sizeof(color), "lightblue");
  14529. }
  14530. } else {
  14531. snprintf(color, sizeof(color), "white");
  14532. }
  14533. fprintf(fp, " \"%p\" [ "
  14534. "style = filled; fillcolor = %s; shape = record; "
  14535. "label=\"",
  14536. (void *) node, color);
  14537. if (strlen(node->name) > 0) {
  14538. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14539. } else {
  14540. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14541. }
  14542. if (ggml_is_matrix(node)) {
  14543. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  14544. } else {
  14545. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  14546. }
  14547. if (node->grad) {
  14548. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  14549. } else {
  14550. fprintf(fp, "\"; ]\n");
  14551. }
  14552. }
  14553. for (int i = 0; i < gb->n_leafs; i++) {
  14554. struct ggml_tensor * node = gb->leafs[i];
  14555. snprintf(color, sizeof(color), "pink");
  14556. fprintf(fp, " \"%p\" [ "
  14557. "style = filled; fillcolor = %s; shape = record; "
  14558. "label=\"<x>",
  14559. (void *) node, color);
  14560. if (strlen(node->name) > 0) {
  14561. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14562. } else {
  14563. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14564. }
  14565. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14566. if (ggml_nelements(node) < 5) {
  14567. fprintf(fp, " | (");
  14568. for (int j = 0; j < ggml_nelements(node); j++) {
  14569. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14570. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14571. }
  14572. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14573. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14574. }
  14575. else {
  14576. fprintf(fp, "#");
  14577. }
  14578. if (j < ggml_nelements(node) - 1) {
  14579. fprintf(fp, ", ");
  14580. }
  14581. }
  14582. fprintf(fp, ")");
  14583. }
  14584. fprintf(fp, "\"; ]\n");
  14585. }
  14586. for (int i = 0; i < gb->n_nodes; i++) {
  14587. struct ggml_tensor * node = gb->nodes[i];
  14588. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14589. if (node->src[j]) {
  14590. char label[16];
  14591. snprintf(label, sizeof(label), "src %d", j);
  14592. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14593. }
  14594. }
  14595. }
  14596. for (int i = 0; i < gb->n_leafs; i++) {
  14597. struct ggml_tensor * node = gb->leafs[i];
  14598. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14599. if (node->src[j]) {
  14600. char label[16];
  14601. snprintf(label, sizeof(label), "src %d", j);
  14602. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14603. }
  14604. }
  14605. }
  14606. fprintf(fp, "}\n");
  14607. fclose(fp);
  14608. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14609. }
  14610. ////////////////////////////////////////////////////////////////////////////////
  14611. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14612. int i = 0;
  14613. for (int p = 0; p < np; ++p) {
  14614. const int64_t ne = ggml_nelements(ps[p]) ;
  14615. // TODO: add function to set tensor from array
  14616. for (int64_t j = 0; j < ne; ++j) {
  14617. ggml_set_f32_1d(ps[p], j, x[i++]);
  14618. }
  14619. }
  14620. }
  14621. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14622. int i = 0;
  14623. for (int p = 0; p < np; ++p) {
  14624. const int64_t ne = ggml_nelements(ps[p]) ;
  14625. // TODO: add function to get all elements at once
  14626. for (int64_t j = 0; j < ne; ++j) {
  14627. x[i++] = ggml_get_f32_1d(ps[p], j);
  14628. }
  14629. }
  14630. }
  14631. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14632. int64_t i = 0;
  14633. for (int p = 0; p < np; ++p) {
  14634. const int64_t ne = ggml_nelements(ps[p]) ;
  14635. // TODO: add function to get all elements at once
  14636. for (int64_t j = 0; j < ne; ++j) {
  14637. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14638. }
  14639. }
  14640. }
  14641. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  14642. int64_t i = 0;
  14643. for (int p = 0; p < np; ++p) {
  14644. const int64_t ne = ggml_nelements(ps[p]) ;
  14645. // TODO: add function to get all elements at once
  14646. for (int64_t j = 0; j < ne; ++j) {
  14647. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  14648. }
  14649. }
  14650. }
  14651. //
  14652. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  14653. //
  14654. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  14655. //
  14656. static enum ggml_opt_result ggml_opt_adam(
  14657. struct ggml_context * ctx,
  14658. struct ggml_opt_context * opt,
  14659. struct ggml_opt_params params,
  14660. struct ggml_tensor * f,
  14661. struct ggml_cgraph * gf,
  14662. struct ggml_cgraph * gb,
  14663. ggml_opt_callback callback,
  14664. void * callback_data) {
  14665. GGML_ASSERT(ggml_is_scalar(f));
  14666. // these will store the parameters we want to optimize
  14667. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14668. int np = 0;
  14669. int64_t nx = 0;
  14670. for (int i = 0; i < gf->n_nodes; ++i) {
  14671. if (gf->nodes[i]->is_param) {
  14672. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14673. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14674. ps[np++] = gf->nodes[i];
  14675. nx += ggml_nelements(gf->nodes[i]);
  14676. }
  14677. }
  14678. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14679. int iter = opt->iter;
  14680. ggml_opt_init(opt->ctx, opt, params, nx);
  14681. opt->iter = iter;
  14682. }
  14683. // constants
  14684. float sched = params.adam.sched;
  14685. const float alpha = params.adam.alpha;
  14686. const float decay = params.adam.decay * alpha;
  14687. const float beta1 = params.adam.beta1;
  14688. const float beta2 = params.adam.beta2;
  14689. const float eps = params.adam.eps;
  14690. const float gclip = params.adam.gclip;
  14691. const int decay_min_ndim = params.adam.decay_min_ndim;
  14692. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14693. const float accum_norm = 1.0f / (float) n_accum;
  14694. float * g = opt->adam.g->data; // gradients
  14695. float * m = opt->adam.m->data; // first moment
  14696. float * v = opt->adam.v->data; // second moment
  14697. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14698. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14699. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14700. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14701. bool cancel = false;
  14702. // compute the function value
  14703. float fx = 0;
  14704. ggml_set_zero(opt->adam.g);
  14705. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14706. if (callback) {
  14707. callback(callback_data, accum_step, &sched, &cancel);
  14708. if (cancel) {
  14709. return GGML_OPT_CANCEL;
  14710. }
  14711. }
  14712. // ggml_graph_reset (gf);
  14713. ggml_set_f32 (f->grad, 1.0f);
  14714. ggml_graph_compute(gb, &cplan);
  14715. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14716. fx += ggml_get_f32_1d(f, 0);
  14717. }
  14718. fx *= accum_norm;
  14719. opt->adam.fx_prev = fx;
  14720. opt->adam.fx_best = opt->adam.fx_prev;
  14721. if (pf) {
  14722. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14723. }
  14724. opt->loss_before = opt->adam.fx_prev;
  14725. opt->loss_after = opt->adam.fx_prev;
  14726. // initialize
  14727. if (opt->just_initialized) {
  14728. opt->adam.n_no_improvement = 0;
  14729. opt->just_initialized = false;
  14730. }
  14731. float * fx_best = &opt->adam.fx_best;
  14732. float * fx_prev = &opt->adam.fx_prev;
  14733. int * n_no_improvement = &opt->adam.n_no_improvement;
  14734. int iter0 = opt->iter;
  14735. // run the optimizer
  14736. for (int t = 0; t < params.adam.n_iter; ++t) {
  14737. opt->iter = iter0 + t + 1;
  14738. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14739. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14740. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14741. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14742. for (int i = 0; i < np; ++i) {
  14743. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14744. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14745. }
  14746. const int64_t t_start_wall = ggml_time_us();
  14747. const int64_t t_start_cpu = ggml_cycles();
  14748. UNUSED(t_start_wall);
  14749. UNUSED(t_start_cpu);
  14750. {
  14751. float gnorm = 1.0f;
  14752. if (gclip > 0.0f) {
  14753. // gradient clipping
  14754. ggml_float sum = 0.0;
  14755. for (int64_t i = 0; i < nx; ++i) {
  14756. sum += (ggml_float)(g[i]*g[i]);
  14757. }
  14758. ggml_float norm = sqrt(sum);
  14759. if (norm > (ggml_float) gclip) {
  14760. gnorm = (float) ((ggml_float) gclip / norm);
  14761. }
  14762. }
  14763. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  14764. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  14765. int64_t i = 0;
  14766. for (int p = 0; p < np; ++p) {
  14767. const int64_t ne = ggml_nelements(ps[p]);
  14768. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  14769. for (int64_t j = 0; j < ne; ++j) {
  14770. float x = ggml_get_f32_1d(ps[p], j);
  14771. float g_ = g[i]*gnorm;
  14772. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  14773. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  14774. float mh = m[i]*beta1h;
  14775. float vh = v[i]*beta2h;
  14776. vh = sqrtf(vh) + eps;
  14777. x = x*(1.0f - p_decay) - mh/vh;
  14778. ggml_set_f32_1d(ps[p], j, x);
  14779. ++i;
  14780. }
  14781. }
  14782. }
  14783. fx = 0;
  14784. ggml_set_zero(opt->adam.g);
  14785. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14786. if (callback) {
  14787. callback(callback_data, accum_step, &sched, &cancel);
  14788. if (cancel) {
  14789. return GGML_OPT_CANCEL;;
  14790. }
  14791. }
  14792. // ggml_graph_reset (gf);
  14793. ggml_set_f32 (f->grad, 1.0f);
  14794. ggml_graph_compute(gb, &cplan);
  14795. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14796. fx += ggml_get_f32_1d(f, 0);
  14797. }
  14798. fx *= accum_norm;
  14799. opt->loss_after = fx;
  14800. // check convergence
  14801. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14802. GGML_PRINT_DEBUG("converged\n");
  14803. return GGML_OPT_OK;
  14804. }
  14805. // delta-based convergence test
  14806. if (pf != NULL) {
  14807. // need at least params.past iterations to start checking for convergence
  14808. if (params.past <= iter0 + t) {
  14809. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14810. if (fabsf(rate) < params.delta) {
  14811. return GGML_OPT_OK;
  14812. }
  14813. }
  14814. pf[(iter0 + t)%params.past] = fx;
  14815. }
  14816. // check for improvement
  14817. if (params.max_no_improvement > 0) {
  14818. if (fx_best[0] > fx) {
  14819. fx_best[0] = fx;
  14820. n_no_improvement[0] = 0;
  14821. } else {
  14822. ++n_no_improvement[0];
  14823. if (n_no_improvement[0] >= params.max_no_improvement) {
  14824. return GGML_OPT_OK;
  14825. }
  14826. }
  14827. }
  14828. fx_prev[0] = fx;
  14829. {
  14830. const int64_t t_end_cpu = ggml_cycles();
  14831. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14832. UNUSED(t_end_cpu);
  14833. const int64_t t_end_wall = ggml_time_us();
  14834. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14835. UNUSED(t_end_wall);
  14836. }
  14837. }
  14838. return GGML_OPT_DID_NOT_CONVERGE;
  14839. }
  14840. //
  14841. // L-BFGS
  14842. //
  14843. // the L-BFGS implementation below is based on the following implementation:
  14844. //
  14845. // https://github.com/chokkan/liblbfgs
  14846. //
  14847. struct ggml_lbfgs_iteration_data {
  14848. float alpha;
  14849. float ys;
  14850. float * s;
  14851. float * y;
  14852. };
  14853. static enum ggml_opt_result linesearch_backtracking(
  14854. const struct ggml_opt_params * params,
  14855. int nx,
  14856. float * x,
  14857. float * fx,
  14858. float * g,
  14859. float * d,
  14860. float * step,
  14861. const float * xp,
  14862. struct ggml_tensor * f,
  14863. struct ggml_cgraph * gb,
  14864. struct ggml_cplan * cplan,
  14865. const int np,
  14866. struct ggml_tensor * ps[],
  14867. bool * cancel,
  14868. ggml_opt_callback callback,
  14869. void * callback_data) {
  14870. int count = 0;
  14871. float width = 0.0f;
  14872. float dg = 0.0f;
  14873. float finit = 0.0f;
  14874. float dginit = 0.0f;
  14875. float dgtest = 0.0f;
  14876. const float dec = 0.5f;
  14877. const float inc = 2.1f;
  14878. const int n_accum = MAX(1, params->n_gradient_accumulation);
  14879. const float accum_norm = 1.0f / (float) n_accum;
  14880. if (*step <= 0.f) {
  14881. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14882. }
  14883. // compute the initial gradient in the search direction
  14884. ggml_vec_dot_f32(nx, &dginit, g, d);
  14885. // make sure that d points to a descent direction
  14886. if (0 < dginit) {
  14887. return GGML_LINESEARCH_FAIL;
  14888. }
  14889. // initialize local variables
  14890. finit = *fx;
  14891. dgtest = params->lbfgs.ftol*dginit;
  14892. while (true) {
  14893. ggml_vec_cpy_f32(nx, x, xp);
  14894. ggml_vec_mad_f32(nx, x, d, *step);
  14895. // evaluate the function and gradient values
  14896. {
  14897. ggml_opt_set_params(np, ps, x);
  14898. *fx = 0;
  14899. memset(g, 0, sizeof(float)*nx);
  14900. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14901. if (callback) {
  14902. // LBFG-S does not support learning rate -> ignore learning schedule
  14903. float sched = 0;
  14904. callback(callback_data, accum_step, &sched, cancel);
  14905. if (*cancel) {
  14906. return GGML_OPT_CANCEL;
  14907. }
  14908. }
  14909. // ggml_graph_reset (gf);
  14910. ggml_set_f32 (f->grad, 1.0f);
  14911. ggml_graph_compute(gb, cplan);
  14912. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14913. *fx += ggml_get_f32_1d(f, 0);
  14914. }
  14915. *fx *= accum_norm;
  14916. }
  14917. ++count;
  14918. if (*fx > finit + (*step)*dgtest) {
  14919. width = dec;
  14920. } else {
  14921. // Armijo condition is satisfied
  14922. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14923. return count;
  14924. }
  14925. ggml_vec_dot_f32(nx, &dg, g, d);
  14926. // check the Wolfe condition
  14927. if (dg < params->lbfgs.wolfe * dginit) {
  14928. width = inc;
  14929. } else {
  14930. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14931. // regular Wolfe conditions
  14932. return count;
  14933. }
  14934. if(dg > -params->lbfgs.wolfe*dginit) {
  14935. width = dec;
  14936. } else {
  14937. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14938. return count;
  14939. }
  14940. }
  14941. }
  14942. if (*step < params->lbfgs.min_step) {
  14943. return GGML_LINESEARCH_MINIMUM_STEP;
  14944. }
  14945. if (*step > params->lbfgs.max_step) {
  14946. return GGML_LINESEARCH_MAXIMUM_STEP;
  14947. }
  14948. if (params->lbfgs.max_linesearch <= count) {
  14949. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14950. }
  14951. (*step) *= width;
  14952. }
  14953. GGML_UNREACHABLE();
  14954. }
  14955. static enum ggml_opt_result ggml_opt_lbfgs(
  14956. struct ggml_context * ctx,
  14957. struct ggml_opt_context * opt,
  14958. struct ggml_opt_params params,
  14959. struct ggml_tensor * f,
  14960. struct ggml_cgraph * gf,
  14961. struct ggml_cgraph * gb,
  14962. ggml_opt_callback callback,
  14963. void * callback_data) {
  14964. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14965. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14966. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14967. return GGML_OPT_INVALID_WOLFE;
  14968. }
  14969. }
  14970. const int m = params.lbfgs.m;
  14971. // these will store the parameters we want to optimize
  14972. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14973. int np = 0;
  14974. int nx = 0;
  14975. for (int i = 0; i < gf->n_nodes; ++i) {
  14976. if (gf->nodes[i]->is_param) {
  14977. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14978. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14979. ps[np++] = gf->nodes[i];
  14980. nx += ggml_nelements(gf->nodes[i]);
  14981. }
  14982. }
  14983. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14984. int iter = opt->iter;
  14985. ggml_opt_init(ctx, opt, params, nx);
  14986. opt->iter = iter;
  14987. }
  14988. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14989. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14990. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14991. float * x = opt->lbfgs.x->data; // current parameters
  14992. float * xp = opt->lbfgs.xp->data; // previous parameters
  14993. float * g = opt->lbfgs.g->data; // current gradient
  14994. float * gp = opt->lbfgs.gp->data; // previous gradient
  14995. float * d = opt->lbfgs.d->data; // search direction
  14996. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14997. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14998. const float accum_norm = 1.0f / (float) n_accum;
  14999. float fx = 0.0f; // cost function value
  15000. float xnorm = 0.0f; // ||x||
  15001. float gnorm = 0.0f; // ||g||
  15002. // initialize x from the graph nodes
  15003. ggml_opt_get_params(np, ps, x);
  15004. // the L-BFGS memory
  15005. float * lm_alpha = opt->lbfgs.lmal->data;
  15006. float * lm_ys = opt->lbfgs.lmys->data;
  15007. float * lm_s = opt->lbfgs.lms->data;
  15008. float * lm_y = opt->lbfgs.lmy->data;
  15009. bool cancel = false;
  15010. // evaluate the function value and its gradient
  15011. {
  15012. ggml_opt_set_params(np, ps, x);
  15013. fx = 0;
  15014. memset(g, 0, sizeof(float)*nx);
  15015. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15016. if (callback) {
  15017. // LBFG-S does not support learning rate -> ignore learning schedule
  15018. float sched = 0;
  15019. callback(callback_data, accum_step, &sched, &cancel);
  15020. if (cancel) {
  15021. return GGML_OPT_CANCEL;
  15022. }
  15023. }
  15024. // ggml_graph_reset (gf);
  15025. ggml_set_f32 (f->grad, 1.0f);
  15026. ggml_graph_compute(gb, &cplan);
  15027. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15028. fx += ggml_get_f32_1d(f, 0);
  15029. }
  15030. fx *= accum_norm;
  15031. opt->loss_before = fx;
  15032. opt->loss_after = fx;
  15033. }
  15034. // search direction = -gradient
  15035. ggml_vec_neg_f32(nx, d, g);
  15036. // ||x||, ||g||
  15037. ggml_vec_norm_f32(nx, &xnorm, x);
  15038. ggml_vec_norm_f32(nx, &gnorm, g);
  15039. if (xnorm < 1.0f) {
  15040. xnorm = 1.0f;
  15041. }
  15042. // already optimized
  15043. if (gnorm/xnorm <= params.lbfgs.eps) {
  15044. return GGML_OPT_OK;
  15045. }
  15046. if (opt->just_initialized) {
  15047. if (pf) {
  15048. pf[0] = fx;
  15049. }
  15050. opt->lbfgs.fx_best = fx;
  15051. // initial step
  15052. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15053. opt->lbfgs.j = 0;
  15054. opt->lbfgs.k = 1;
  15055. opt->lbfgs.end = 0;
  15056. opt->lbfgs.n_no_improvement = 0;
  15057. opt->just_initialized = false;
  15058. }
  15059. float * fx_best = &opt->lbfgs.fx_best;
  15060. float * step = &opt->lbfgs.step;
  15061. int * j = &opt->lbfgs.j;
  15062. int * k = &opt->lbfgs.k;
  15063. int * end = &opt->lbfgs.end;
  15064. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15065. int ls = 0;
  15066. int bound = 0;
  15067. float ys = 0.0f;
  15068. float yy = 0.0f;
  15069. float beta = 0.0f;
  15070. int it = 0;
  15071. while (true) {
  15072. // store the current position and gradient vectors
  15073. ggml_vec_cpy_f32(nx, xp, x);
  15074. ggml_vec_cpy_f32(nx, gp, g);
  15075. // TODO: instead of passing &cancel here, use the return code of the linesearch
  15076. // to determine if the optimization should be cancelled
  15077. // this is a simple change, but not doing this atm, since I don't have a nice
  15078. // way to test and don't want to break something with so many changes lined up
  15079. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  15080. if (cancel) {
  15081. return GGML_OPT_CANCEL;
  15082. }
  15083. if (ls < 0) {
  15084. // linesearch failed - go back to the previous point and return
  15085. ggml_vec_cpy_f32(nx, x, xp);
  15086. ggml_vec_cpy_f32(nx, g, gp);
  15087. return ls;
  15088. }
  15089. opt->loss_after = fx;
  15090. ggml_vec_norm_f32(nx, &xnorm, x);
  15091. ggml_vec_norm_f32(nx, &gnorm, g);
  15092. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15093. if (xnorm < 1.0f) {
  15094. xnorm = 1.0f;
  15095. }
  15096. if (gnorm/xnorm <= params.lbfgs.eps) {
  15097. // converged
  15098. return GGML_OPT_OK;
  15099. }
  15100. // delta-based convergence test
  15101. if (pf != NULL) {
  15102. // need at least params.past iterations to start checking for convergence
  15103. if (params.past <= k[0]) {
  15104. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15105. if (fabsf(rate) < params.delta) {
  15106. return GGML_OPT_OK;
  15107. }
  15108. }
  15109. pf[k[0]%params.past] = fx;
  15110. }
  15111. // check for improvement
  15112. if (params.max_no_improvement > 0) {
  15113. if (fx < fx_best[0]) {
  15114. fx_best[0] = fx;
  15115. n_no_improvement[0] = 0;
  15116. } else {
  15117. n_no_improvement[0]++;
  15118. if (n_no_improvement[0] >= params.max_no_improvement) {
  15119. return GGML_OPT_OK;
  15120. }
  15121. }
  15122. }
  15123. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15124. // reached the maximum number of iterations
  15125. return GGML_OPT_DID_NOT_CONVERGE;
  15126. }
  15127. // update vectors s and y:
  15128. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15129. // y_{k+1} = g_{k+1} - g_{k}.
  15130. //
  15131. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15132. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15133. // compute scalars ys and yy:
  15134. // ys = y^t \cdot s -> 1 / \rho.
  15135. // yy = y^t \cdot y.
  15136. //
  15137. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  15138. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  15139. lm_ys[end[0]] = ys;
  15140. // find new search direction
  15141. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15142. bound = (m <= k[0]) ? m : k[0];
  15143. k[0]++;
  15144. it++;
  15145. end[0] = (end[0] + 1)%m;
  15146. // initialize search direction with -g
  15147. ggml_vec_neg_f32(nx, d, g);
  15148. j[0] = end[0];
  15149. for (int i = 0; i < bound; ++i) {
  15150. j[0] = (j[0] + m - 1) % m;
  15151. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15152. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  15153. lm_alpha[j[0]] /= lm_ys[j[0]];
  15154. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15155. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15156. }
  15157. ggml_vec_scale_f32(nx, d, ys/yy);
  15158. for (int i = 0; i < bound; ++i) {
  15159. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15160. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  15161. beta /= lm_ys[j[0]];
  15162. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15163. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15164. j[0] = (j[0] + 1)%m;
  15165. }
  15166. step[0] = 1.0;
  15167. }
  15168. GGML_UNREACHABLE();
  15169. }
  15170. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15171. struct ggml_opt_params result;
  15172. switch (type) {
  15173. case GGML_OPT_ADAM:
  15174. {
  15175. result = (struct ggml_opt_params) {
  15176. .type = GGML_OPT_ADAM,
  15177. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15178. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  15179. .past = 0,
  15180. .delta = 1e-5f,
  15181. .max_no_improvement = 100,
  15182. .print_forward_graph = true,
  15183. .print_backward_graph = true,
  15184. .n_gradient_accumulation = 1,
  15185. .adam = {
  15186. .n_iter = 10000,
  15187. .sched = 1.000f,
  15188. .decay = 0.0f,
  15189. .decay_min_ndim = 2,
  15190. .alpha = 0.001f,
  15191. .beta1 = 0.9f,
  15192. .beta2 = 0.999f,
  15193. .eps = 1e-8f,
  15194. .eps_f = 1e-5f,
  15195. .eps_g = 1e-3f,
  15196. .gclip = 0.0f,
  15197. },
  15198. };
  15199. } break;
  15200. case GGML_OPT_LBFGS:
  15201. {
  15202. result = (struct ggml_opt_params) {
  15203. .type = GGML_OPT_LBFGS,
  15204. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15205. .n_threads = 1,
  15206. .past = 0,
  15207. .delta = 1e-5f,
  15208. .max_no_improvement = 0,
  15209. .print_forward_graph = true,
  15210. .print_backward_graph = true,
  15211. .n_gradient_accumulation = 1,
  15212. .lbfgs = {
  15213. .m = 6,
  15214. .n_iter = 100,
  15215. .max_linesearch = 20,
  15216. .eps = 1e-5f,
  15217. .ftol = 1e-4f,
  15218. .wolfe = 0.9f,
  15219. .min_step = 1e-20f,
  15220. .max_step = 1e+20f,
  15221. .linesearch = GGML_LINESEARCH_DEFAULT,
  15222. },
  15223. };
  15224. } break;
  15225. }
  15226. return result;
  15227. }
  15228. GGML_API void ggml_opt_init(
  15229. struct ggml_context * ctx,
  15230. struct ggml_opt_context * opt,
  15231. struct ggml_opt_params params,
  15232. int64_t nx) {
  15233. opt->ctx = ctx;
  15234. opt->params = params;
  15235. opt->iter = 0;
  15236. opt->nx = nx;
  15237. opt->just_initialized = true;
  15238. if (opt->ctx == NULL) {
  15239. struct ggml_init_params ctx_opt_params;
  15240. if (opt->params.type == GGML_OPT_ADAM) {
  15241. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  15242. if (opt->params.past > 0) {
  15243. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15244. }
  15245. } else if (opt->params.type == GGML_OPT_LBFGS) {
  15246. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  15247. if (opt->params.past > 0) {
  15248. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15249. }
  15250. }
  15251. ctx_opt_params.mem_buffer = NULL;
  15252. ctx_opt_params.no_alloc = false;
  15253. opt->ctx = ggml_init(ctx_opt_params);
  15254. }
  15255. switch (opt->params.type) {
  15256. case GGML_OPT_ADAM:
  15257. {
  15258. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15259. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15260. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15261. opt->adam.pf = params.past > 0
  15262. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15263. : NULL;
  15264. ggml_set_zero(opt->adam.m);
  15265. ggml_set_zero(opt->adam.v);
  15266. if (opt->adam.pf) {
  15267. ggml_set_zero(opt->adam.pf);
  15268. }
  15269. } break;
  15270. case GGML_OPT_LBFGS:
  15271. {
  15272. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15273. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15274. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15275. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15276. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15277. opt->lbfgs.pf = params.past > 0
  15278. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15279. : NULL;
  15280. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15281. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15282. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15283. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15284. ggml_set_zero(opt->lbfgs.x);
  15285. ggml_set_zero(opt->lbfgs.xp);
  15286. ggml_set_zero(opt->lbfgs.g);
  15287. ggml_set_zero(opt->lbfgs.gp);
  15288. ggml_set_zero(opt->lbfgs.d);
  15289. if (opt->lbfgs.pf) {
  15290. ggml_set_zero(opt->lbfgs.pf);
  15291. }
  15292. ggml_set_zero(opt->lbfgs.lmal);
  15293. ggml_set_zero(opt->lbfgs.lmys);
  15294. ggml_set_zero(opt->lbfgs.lms);
  15295. ggml_set_zero(opt->lbfgs.lmy);
  15296. } break;
  15297. }
  15298. }
  15299. enum ggml_opt_result ggml_opt(
  15300. struct ggml_context * ctx,
  15301. struct ggml_opt_params params,
  15302. struct ggml_tensor * f) {
  15303. bool free_ctx = false;
  15304. if (ctx == NULL) {
  15305. struct ggml_init_params params_ctx = {
  15306. .mem_size = 16*1024*1024,
  15307. .mem_buffer = NULL,
  15308. .no_alloc = false,
  15309. };
  15310. ctx = ggml_init(params_ctx);
  15311. if (ctx == NULL) {
  15312. return GGML_OPT_NO_CONTEXT;
  15313. }
  15314. free_ctx = true;
  15315. }
  15316. enum ggml_opt_result result = GGML_OPT_OK;
  15317. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15318. ggml_opt_init(ctx, opt, params, 0);
  15319. result = ggml_opt_resume(ctx, opt, f);
  15320. if (free_ctx) {
  15321. ggml_free(ctx);
  15322. }
  15323. return result;
  15324. }
  15325. enum ggml_opt_result ggml_opt_resume(
  15326. struct ggml_context * ctx,
  15327. struct ggml_opt_context * opt,
  15328. struct ggml_tensor * f) {
  15329. // build forward + backward compute graphs
  15330. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  15331. ggml_build_forward_expand(gf, f);
  15332. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  15333. ggml_build_backward_expand(ctx, gf, gb, true);
  15334. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15335. }
  15336. enum ggml_opt_result ggml_opt_resume_g(
  15337. struct ggml_context * ctx,
  15338. struct ggml_opt_context * opt,
  15339. struct ggml_tensor * f,
  15340. struct ggml_cgraph * gf,
  15341. struct ggml_cgraph * gb,
  15342. ggml_opt_callback callback,
  15343. void * callback_data) {
  15344. // build forward + backward compute graphs
  15345. enum ggml_opt_result result = GGML_OPT_OK;
  15346. switch (opt->params.type) {
  15347. case GGML_OPT_ADAM:
  15348. {
  15349. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15350. } break;
  15351. case GGML_OPT_LBFGS:
  15352. {
  15353. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15354. } break;
  15355. }
  15356. if (opt->params.print_forward_graph) {
  15357. ggml_graph_print (gf);
  15358. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15359. }
  15360. if (opt->params.print_backward_graph) {
  15361. ggml_graph_print (gb);
  15362. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15363. }
  15364. return result;
  15365. }
  15366. ////////////////////////////////////////////////////////////////////////////////
  15367. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15368. assert(k % QK4_0 == 0);
  15369. const int nb = k / QK4_0;
  15370. for (int b = 0; b < n; b += k) {
  15371. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15372. quantize_row_q4_0_reference(src + b, y, k);
  15373. for (int i = 0; i < nb; i++) {
  15374. for (int j = 0; j < QK4_0; j += 2) {
  15375. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15376. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15377. hist[vi0]++;
  15378. hist[vi1]++;
  15379. }
  15380. }
  15381. }
  15382. return (n/QK4_0*sizeof(block_q4_0));
  15383. }
  15384. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15385. assert(k % QK4_1 == 0);
  15386. const int nb = k / QK4_1;
  15387. for (int b = 0; b < n; b += k) {
  15388. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15389. quantize_row_q4_1_reference(src + b, y, k);
  15390. for (int i = 0; i < nb; i++) {
  15391. for (int j = 0; j < QK4_1; j += 2) {
  15392. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15393. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15394. hist[vi0]++;
  15395. hist[vi1]++;
  15396. }
  15397. }
  15398. }
  15399. return (n/QK4_1*sizeof(block_q4_1));
  15400. }
  15401. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15402. assert(k % QK5_0 == 0);
  15403. const int nb = k / QK5_0;
  15404. for (int b = 0; b < n; b += k) {
  15405. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15406. quantize_row_q5_0_reference(src + b, y, k);
  15407. for (int i = 0; i < nb; i++) {
  15408. uint32_t qh;
  15409. memcpy(&qh, &y[i].qh, sizeof(qh));
  15410. for (int j = 0; j < QK5_0; j += 2) {
  15411. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15412. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15413. // cast to 16 bins
  15414. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15415. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15416. hist[vi0]++;
  15417. hist[vi1]++;
  15418. }
  15419. }
  15420. }
  15421. return (n/QK5_0*sizeof(block_q5_0));
  15422. }
  15423. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15424. assert(k % QK5_1 == 0);
  15425. const int nb = k / QK5_1;
  15426. for (int b = 0; b < n; b += k) {
  15427. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15428. quantize_row_q5_1_reference(src + b, y, k);
  15429. for (int i = 0; i < nb; i++) {
  15430. uint32_t qh;
  15431. memcpy(&qh, &y[i].qh, sizeof(qh));
  15432. for (int j = 0; j < QK5_1; j += 2) {
  15433. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15434. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15435. // cast to 16 bins
  15436. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15437. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15438. hist[vi0]++;
  15439. hist[vi1]++;
  15440. }
  15441. }
  15442. }
  15443. return (n/QK5_1*sizeof(block_q5_1));
  15444. }
  15445. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15446. assert(k % QK8_0 == 0);
  15447. const int nb = k / QK8_0;
  15448. for (int b = 0; b < n; b += k) {
  15449. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15450. quantize_row_q8_0_reference(src + b, y, k);
  15451. for (int i = 0; i < nb; i++) {
  15452. for (int j = 0; j < QK8_0; ++j) {
  15453. const int8_t vi = y[i].qs[j];
  15454. hist[vi/16 + 8]++;
  15455. }
  15456. }
  15457. }
  15458. return (n/QK8_0*sizeof(block_q8_0));
  15459. }
  15460. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15461. size_t result = 0;
  15462. switch (type) {
  15463. case GGML_TYPE_Q4_0:
  15464. {
  15465. GGML_ASSERT(start % QK4_0 == 0);
  15466. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15467. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15468. } break;
  15469. case GGML_TYPE_Q4_1:
  15470. {
  15471. GGML_ASSERT(start % QK4_1 == 0);
  15472. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15473. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15474. } break;
  15475. case GGML_TYPE_Q5_0:
  15476. {
  15477. GGML_ASSERT(start % QK5_0 == 0);
  15478. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15479. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15480. } break;
  15481. case GGML_TYPE_Q5_1:
  15482. {
  15483. GGML_ASSERT(start % QK5_1 == 0);
  15484. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15485. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15486. } break;
  15487. case GGML_TYPE_Q8_0:
  15488. {
  15489. GGML_ASSERT(start % QK8_0 == 0);
  15490. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15491. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15492. } break;
  15493. case GGML_TYPE_Q2_K:
  15494. {
  15495. GGML_ASSERT(start % QK_K == 0);
  15496. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15497. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15498. } break;
  15499. case GGML_TYPE_Q3_K:
  15500. {
  15501. GGML_ASSERT(start % QK_K == 0);
  15502. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15503. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15504. } break;
  15505. case GGML_TYPE_Q4_K:
  15506. {
  15507. GGML_ASSERT(start % QK_K == 0);
  15508. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15509. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15510. } break;
  15511. case GGML_TYPE_Q5_K:
  15512. {
  15513. GGML_ASSERT(start % QK_K == 0);
  15514. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15515. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15516. } break;
  15517. case GGML_TYPE_Q6_K:
  15518. {
  15519. GGML_ASSERT(start % QK_K == 0);
  15520. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15521. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15522. } break;
  15523. case GGML_TYPE_IQ2_XXS:
  15524. {
  15525. GGML_ASSERT(start % QK_K == 0);
  15526. block_iq2_xxs * block = (block_iq2_xxs*)dst + start / QK_K;
  15527. result = ggml_quantize_iq2_xxs(src + start, block, n, n, hist);
  15528. } break;
  15529. case GGML_TYPE_IQ2_XS:
  15530. {
  15531. GGML_ASSERT(start % QK_K == 0);
  15532. block_iq2_xs * block = (block_iq2_xs*)dst + start / QK_K;
  15533. result = ggml_quantize_iq2_xs(src + start, block, n, n, hist);
  15534. } break;
  15535. case GGML_TYPE_F16:
  15536. {
  15537. int elemsize = sizeof(ggml_fp16_t);
  15538. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15539. result = n * elemsize;
  15540. } break;
  15541. case GGML_TYPE_F32:
  15542. {
  15543. int elemsize = sizeof(float);
  15544. result = n * elemsize;
  15545. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15546. } break;
  15547. default:
  15548. assert(false);
  15549. }
  15550. return result;
  15551. }
  15552. ////////////////////////////////////////////////////////////////////////////////
  15553. struct gguf_str {
  15554. uint64_t n; // GGUFv2
  15555. char * data;
  15556. };
  15557. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  15558. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  15559. [GGUF_TYPE_INT8] = sizeof(int8_t),
  15560. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  15561. [GGUF_TYPE_INT16] = sizeof(int16_t),
  15562. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  15563. [GGUF_TYPE_INT32] = sizeof(int32_t),
  15564. [GGUF_TYPE_FLOAT32] = sizeof(float),
  15565. [GGUF_TYPE_BOOL] = sizeof(bool),
  15566. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  15567. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  15568. [GGUF_TYPE_INT64] = sizeof(int64_t),
  15569. [GGUF_TYPE_FLOAT64] = sizeof(double),
  15570. [GGUF_TYPE_ARRAY] = 0, // undefined
  15571. };
  15572. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15573. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  15574. [GGUF_TYPE_UINT8] = "u8",
  15575. [GGUF_TYPE_INT8] = "i8",
  15576. [GGUF_TYPE_UINT16] = "u16",
  15577. [GGUF_TYPE_INT16] = "i16",
  15578. [GGUF_TYPE_UINT32] = "u32",
  15579. [GGUF_TYPE_INT32] = "i32",
  15580. [GGUF_TYPE_FLOAT32] = "f32",
  15581. [GGUF_TYPE_BOOL] = "bool",
  15582. [GGUF_TYPE_STRING] = "str",
  15583. [GGUF_TYPE_ARRAY] = "arr",
  15584. [GGUF_TYPE_UINT64] = "u64",
  15585. [GGUF_TYPE_INT64] = "i64",
  15586. [GGUF_TYPE_FLOAT64] = "f64",
  15587. };
  15588. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15589. union gguf_value {
  15590. uint8_t uint8;
  15591. int8_t int8;
  15592. uint16_t uint16;
  15593. int16_t int16;
  15594. uint32_t uint32;
  15595. int32_t int32;
  15596. float float32;
  15597. uint64_t uint64;
  15598. int64_t int64;
  15599. double float64;
  15600. bool bool_;
  15601. struct gguf_str str;
  15602. struct {
  15603. enum gguf_type type;
  15604. uint64_t n; // GGUFv2
  15605. void * data;
  15606. } arr;
  15607. };
  15608. struct gguf_kv {
  15609. struct gguf_str key;
  15610. enum gguf_type type;
  15611. union gguf_value value;
  15612. };
  15613. struct gguf_header {
  15614. char magic[4];
  15615. uint32_t version;
  15616. uint64_t n_tensors; // GGUFv2
  15617. uint64_t n_kv; // GGUFv2
  15618. };
  15619. struct gguf_tensor_info {
  15620. struct gguf_str name;
  15621. uint32_t n_dims;
  15622. uint64_t ne[GGML_MAX_DIMS];
  15623. enum ggml_type type;
  15624. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  15625. // for writing API
  15626. const void * data;
  15627. size_t size;
  15628. };
  15629. struct gguf_context {
  15630. struct gguf_header header;
  15631. struct gguf_kv * kv;
  15632. struct gguf_tensor_info * infos;
  15633. size_t alignment;
  15634. size_t offset; // offset of `data` from beginning of file
  15635. size_t size; // size of `data` in bytes
  15636. //uint8_t * padding;
  15637. void * data;
  15638. };
  15639. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  15640. const size_t n = fread(dst, 1, size, file);
  15641. *offset += n;
  15642. return n == size;
  15643. }
  15644. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  15645. p->n = 0;
  15646. p->data = NULL;
  15647. bool ok = true;
  15648. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  15649. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  15650. return ok;
  15651. }
  15652. struct gguf_context * gguf_init_empty(void) {
  15653. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15654. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  15655. ctx->header.version = GGUF_VERSION;
  15656. ctx->header.n_tensors = 0;
  15657. ctx->header.n_kv = 0;
  15658. ctx->kv = NULL;
  15659. ctx->infos = NULL;
  15660. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15661. ctx->offset = 0;
  15662. ctx->size = 0;
  15663. ctx->data = NULL;
  15664. return ctx;
  15665. }
  15666. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  15667. FILE * file = fopen(fname, "rb");
  15668. if (!file) {
  15669. return NULL;
  15670. }
  15671. // offset from start of file
  15672. size_t offset = 0;
  15673. char magic[4];
  15674. // check the magic before making allocations
  15675. {
  15676. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  15677. for (uint32_t i = 0; i < sizeof(magic); i++) {
  15678. if (magic[i] != GGUF_MAGIC[i]) {
  15679. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  15680. fclose(file);
  15681. return NULL;
  15682. }
  15683. }
  15684. }
  15685. bool ok = true;
  15686. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15687. // read the header
  15688. {
  15689. strncpy(ctx->header.magic, magic, 4);
  15690. ctx->kv = NULL;
  15691. ctx->infos = NULL;
  15692. ctx->data = NULL;
  15693. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  15694. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  15695. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  15696. if (ctx->header.version == 1) {
  15697. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  15698. fclose(file);
  15699. gguf_free(ctx);
  15700. return NULL;
  15701. }
  15702. if (!ok) {
  15703. fprintf(stderr, "%s: failed to read header\n", __func__);
  15704. fclose(file);
  15705. gguf_free(ctx);
  15706. return NULL;
  15707. }
  15708. }
  15709. // read the kv pairs
  15710. {
  15711. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  15712. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  15713. struct gguf_kv * kv = &ctx->kv[i];
  15714. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  15715. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  15716. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  15717. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  15718. switch (kv->type) {
  15719. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  15720. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  15721. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  15722. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  15723. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  15724. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  15725. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  15726. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  15727. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  15728. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  15729. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  15730. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  15731. case GGUF_TYPE_ARRAY:
  15732. {
  15733. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  15734. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  15735. switch (kv->value.arr.type) {
  15736. case GGUF_TYPE_UINT8:
  15737. case GGUF_TYPE_INT8:
  15738. case GGUF_TYPE_UINT16:
  15739. case GGUF_TYPE_INT16:
  15740. case GGUF_TYPE_UINT32:
  15741. case GGUF_TYPE_INT32:
  15742. case GGUF_TYPE_FLOAT32:
  15743. case GGUF_TYPE_UINT64:
  15744. case GGUF_TYPE_INT64:
  15745. case GGUF_TYPE_FLOAT64:
  15746. case GGUF_TYPE_BOOL:
  15747. {
  15748. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  15749. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  15750. } break;
  15751. case GGUF_TYPE_STRING:
  15752. {
  15753. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  15754. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  15755. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  15756. }
  15757. } break;
  15758. case GGUF_TYPE_ARRAY:
  15759. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15760. }
  15761. } break;
  15762. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  15763. }
  15764. if (!ok) {
  15765. break;
  15766. }
  15767. }
  15768. if (!ok) {
  15769. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  15770. fclose(file);
  15771. gguf_free(ctx);
  15772. return NULL;
  15773. }
  15774. }
  15775. // read the tensor infos
  15776. {
  15777. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  15778. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15779. struct gguf_tensor_info * info = &ctx->infos[i];
  15780. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15781. info->ne[j] = 1;
  15782. }
  15783. ok = ok && gguf_fread_str(file, &info->name, &offset);
  15784. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  15785. for (uint32_t j = 0; j < info->n_dims; ++j) {
  15786. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  15787. }
  15788. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  15789. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  15790. if (!ok) {
  15791. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  15792. fclose(file);
  15793. gguf_free(ctx);
  15794. return NULL;
  15795. }
  15796. }
  15797. }
  15798. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15799. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  15800. if (alignment_idx != -1) {
  15801. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  15802. }
  15803. // we require the data section to be aligned, so take into account any padding
  15804. {
  15805. const size_t offset_pad = offset % ctx->alignment;
  15806. if (offset_pad != 0) {
  15807. offset += ctx->alignment - offset_pad;
  15808. fseek(file, offset, SEEK_SET);
  15809. }
  15810. }
  15811. // store the current file offset - this is where the data section starts
  15812. ctx->offset = offset;
  15813. // compute the total size of the data section, taking into account the alignment
  15814. {
  15815. ctx->size = 0;
  15816. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15817. struct gguf_tensor_info * info = &ctx->infos[i];
  15818. const int64_t ne =
  15819. (int64_t) info->ne[0] *
  15820. (int64_t) info->ne[1] *
  15821. (int64_t) info->ne[2] *
  15822. (int64_t) info->ne[3];
  15823. if (ne % ggml_blck_size(info->type) != 0) {
  15824. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  15825. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  15826. fclose(file);
  15827. gguf_free(ctx);
  15828. return NULL;
  15829. }
  15830. const size_t size_cur = ggml_row_size(info->type, ne);
  15831. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  15832. }
  15833. }
  15834. // load the tensor data only if requested
  15835. if (params.ctx != NULL) {
  15836. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  15837. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  15838. // the ggml_tensor structs to the appropriate locations in the binary blob
  15839. // compute the exact size needed for the new ggml_context
  15840. const size_t mem_size =
  15841. params.no_alloc ?
  15842. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  15843. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  15844. struct ggml_init_params pdata = {
  15845. .mem_size = mem_size,
  15846. .mem_buffer = NULL,
  15847. .no_alloc = params.no_alloc,
  15848. };
  15849. *params.ctx = ggml_init(pdata);
  15850. struct ggml_context * ctx_data = *params.ctx;
  15851. struct ggml_tensor * data = NULL;
  15852. if (!params.no_alloc) {
  15853. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  15854. ok = ok && data != NULL;
  15855. // read the binary blob with the tensor data
  15856. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  15857. if (!ok) {
  15858. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  15859. fclose(file);
  15860. ggml_free(ctx_data);
  15861. gguf_free(ctx);
  15862. return NULL;
  15863. }
  15864. ctx->data = data->data;
  15865. }
  15866. ggml_set_no_alloc(ctx_data, true);
  15867. // create the tensors
  15868. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15869. const int64_t ne[GGML_MAX_DIMS] = {
  15870. ctx->infos[i].ne[0],
  15871. ctx->infos[i].ne[1],
  15872. ctx->infos[i].ne[2],
  15873. ctx->infos[i].ne[3],
  15874. };
  15875. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  15876. ok = ok && cur != NULL;
  15877. ggml_set_name(cur, ctx->infos[i].name.data);
  15878. if (!ok) {
  15879. break;
  15880. }
  15881. // point the data member to the appropriate location in the binary blob using the tensor infos
  15882. if (!params.no_alloc) {
  15883. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  15884. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  15885. }
  15886. }
  15887. if (!ok) {
  15888. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  15889. fclose(file);
  15890. ggml_free(ctx_data);
  15891. gguf_free(ctx);
  15892. return NULL;
  15893. }
  15894. ggml_set_no_alloc(ctx_data, params.no_alloc);
  15895. }
  15896. fclose(file);
  15897. return ctx;
  15898. }
  15899. void gguf_free(struct gguf_context * ctx) {
  15900. if (ctx == NULL) {
  15901. return;
  15902. }
  15903. if (ctx->kv) {
  15904. // free string memory - not great..
  15905. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  15906. struct gguf_kv * kv = &ctx->kv[i];
  15907. if (kv->key.data) {
  15908. free(kv->key.data);
  15909. }
  15910. if (kv->type == GGUF_TYPE_STRING) {
  15911. if (kv->value.str.data) {
  15912. free(kv->value.str.data);
  15913. }
  15914. }
  15915. if (kv->type == GGUF_TYPE_ARRAY) {
  15916. if (kv->value.arr.data) {
  15917. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  15918. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  15919. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  15920. if (str->data) {
  15921. free(str->data);
  15922. }
  15923. }
  15924. }
  15925. free(kv->value.arr.data);
  15926. }
  15927. }
  15928. }
  15929. free(ctx->kv);
  15930. }
  15931. if (ctx->infos) {
  15932. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15933. struct gguf_tensor_info * info = &ctx->infos[i];
  15934. if (info->name.data) {
  15935. free(info->name.data);
  15936. }
  15937. }
  15938. free(ctx->infos);
  15939. }
  15940. GGML_ALIGNED_FREE(ctx);
  15941. }
  15942. const char * gguf_type_name(enum gguf_type type) {
  15943. return GGUF_TYPE_NAME[type];
  15944. }
  15945. int gguf_get_version(const struct gguf_context * ctx) {
  15946. return ctx->header.version;
  15947. }
  15948. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  15949. return ctx->alignment;
  15950. }
  15951. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  15952. return ctx->offset;
  15953. }
  15954. void * gguf_get_data(const struct gguf_context * ctx) {
  15955. return ctx->data;
  15956. }
  15957. int gguf_get_n_kv(const struct gguf_context * ctx) {
  15958. return ctx->header.n_kv;
  15959. }
  15960. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  15961. // return -1 if key not found
  15962. int keyfound = -1;
  15963. const int n_kv = gguf_get_n_kv(ctx);
  15964. for (int i = 0; i < n_kv; ++i) {
  15965. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  15966. keyfound = i;
  15967. break;
  15968. }
  15969. }
  15970. return keyfound;
  15971. }
  15972. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  15973. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15974. return ctx->kv[key_id].key.data;
  15975. }
  15976. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  15977. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15978. return ctx->kv[key_id].type;
  15979. }
  15980. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  15981. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15982. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15983. return ctx->kv[key_id].value.arr.type;
  15984. }
  15985. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  15986. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15987. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15988. return ctx->kv[key_id].value.arr.data;
  15989. }
  15990. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  15991. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15992. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15993. struct gguf_kv * kv = &ctx->kv[key_id];
  15994. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  15995. return str->data;
  15996. }
  15997. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  15998. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15999. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16000. return ctx->kv[key_id].value.arr.n;
  16001. }
  16002. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  16003. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16004. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  16005. return ctx->kv[key_id].value.uint8;
  16006. }
  16007. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  16008. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16009. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  16010. return ctx->kv[key_id].value.int8;
  16011. }
  16012. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  16013. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16014. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  16015. return ctx->kv[key_id].value.uint16;
  16016. }
  16017. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  16018. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16019. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  16020. return ctx->kv[key_id].value.int16;
  16021. }
  16022. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  16023. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16024. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  16025. return ctx->kv[key_id].value.uint32;
  16026. }
  16027. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  16028. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16029. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  16030. return ctx->kv[key_id].value.int32;
  16031. }
  16032. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  16033. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16034. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  16035. return ctx->kv[key_id].value.float32;
  16036. }
  16037. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  16038. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16039. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  16040. return ctx->kv[key_id].value.uint64;
  16041. }
  16042. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  16043. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16044. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  16045. return ctx->kv[key_id].value.int64;
  16046. }
  16047. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  16048. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16049. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  16050. return ctx->kv[key_id].value.float64;
  16051. }
  16052. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  16053. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16054. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  16055. return ctx->kv[key_id].value.bool_;
  16056. }
  16057. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  16058. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16059. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  16060. return ctx->kv[key_id].value.str.data;
  16061. }
  16062. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  16063. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16064. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  16065. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  16066. return &ctx->kv[key_id].value;
  16067. }
  16068. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  16069. return ctx->header.n_tensors;
  16070. }
  16071. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  16072. // return -1 if tensor not found
  16073. int tensorfound = -1;
  16074. const int n_tensors = gguf_get_n_tensors(ctx);
  16075. for (int i = 0; i < n_tensors; ++i) {
  16076. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16077. tensorfound = i;
  16078. break;
  16079. }
  16080. }
  16081. return tensorfound;
  16082. }
  16083. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  16084. return ctx->infos[i].offset;
  16085. }
  16086. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  16087. return ctx->infos[i].name.data;
  16088. }
  16089. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  16090. return ctx->infos[i].type;
  16091. }
  16092. // returns the index
  16093. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16094. const int idx = gguf_find_key(ctx, key);
  16095. if (idx >= 0) {
  16096. return idx;
  16097. }
  16098. const int n_kv = gguf_get_n_kv(ctx);
  16099. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16100. ctx->kv[n_kv].key.n = strlen(key);
  16101. ctx->kv[n_kv].key.data = strdup(key);
  16102. ctx->header.n_kv++;
  16103. return n_kv;
  16104. }
  16105. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16106. const int idx = gguf_get_or_add_key(ctx, key);
  16107. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16108. ctx->kv[idx].value.uint8 = val;
  16109. }
  16110. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16111. const int idx = gguf_get_or_add_key(ctx, key);
  16112. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16113. ctx->kv[idx].value.int8 = val;
  16114. }
  16115. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16116. const int idx = gguf_get_or_add_key(ctx, key);
  16117. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16118. ctx->kv[idx].value.uint16 = val;
  16119. }
  16120. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16121. const int idx = gguf_get_or_add_key(ctx, key);
  16122. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16123. ctx->kv[idx].value.int16 = val;
  16124. }
  16125. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16126. const int idx = gguf_get_or_add_key(ctx, key);
  16127. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16128. ctx->kv[idx].value.uint32 = val;
  16129. }
  16130. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16131. const int idx = gguf_get_or_add_key(ctx, key);
  16132. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16133. ctx->kv[idx].value.int32 = val;
  16134. }
  16135. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16136. const int idx = gguf_get_or_add_key(ctx, key);
  16137. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16138. ctx->kv[idx].value.float32 = val;
  16139. }
  16140. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16141. const int idx = gguf_get_or_add_key(ctx, key);
  16142. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16143. ctx->kv[idx].value.uint64 = val;
  16144. }
  16145. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16146. const int idx = gguf_get_or_add_key(ctx, key);
  16147. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16148. ctx->kv[idx].value.int64 = val;
  16149. }
  16150. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16151. const int idx = gguf_get_or_add_key(ctx, key);
  16152. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16153. ctx->kv[idx].value.float64 = val;
  16154. }
  16155. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16156. const int idx = gguf_get_or_add_key(ctx, key);
  16157. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16158. ctx->kv[idx].value.bool_ = val;
  16159. }
  16160. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16161. const int idx = gguf_get_or_add_key(ctx, key);
  16162. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16163. ctx->kv[idx].value.str.n = strlen(val);
  16164. ctx->kv[idx].value.str.data = strdup(val);
  16165. }
  16166. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16167. const int idx = gguf_get_or_add_key(ctx, key);
  16168. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16169. ctx->kv[idx].value.arr.type = type;
  16170. ctx->kv[idx].value.arr.n = n;
  16171. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  16172. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  16173. }
  16174. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16175. const int idx = gguf_get_or_add_key(ctx, key);
  16176. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16177. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16178. ctx->kv[idx].value.arr.n = n;
  16179. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  16180. for (int i = 0; i < n; i++) {
  16181. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16182. str->n = strlen(data[i]);
  16183. str->data = strdup(data[i]);
  16184. }
  16185. }
  16186. // set or add KV pairs from another context
  16187. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16188. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16189. switch (src->kv[i].type) {
  16190. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16191. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16192. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16193. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16194. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16195. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16196. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16197. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16198. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16199. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16200. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16201. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16202. case GGUF_TYPE_ARRAY:
  16203. {
  16204. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16205. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  16206. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16207. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16208. }
  16209. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16210. free((void *)data);
  16211. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16212. GGML_ASSERT(false && "nested arrays not supported");
  16213. } else {
  16214. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16215. }
  16216. } break;
  16217. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16218. }
  16219. }
  16220. }
  16221. void gguf_add_tensor(
  16222. struct gguf_context * ctx,
  16223. const struct ggml_tensor * tensor) {
  16224. const int idx = ctx->header.n_tensors;
  16225. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16226. ctx->infos[idx].name.n = strlen(tensor->name);
  16227. ctx->infos[idx].name.data = strdup(tensor->name);
  16228. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16229. ctx->infos[idx].ne[i] = 1;
  16230. }
  16231. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  16232. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  16233. ctx->infos[idx].ne[i] = tensor->ne[i];
  16234. }
  16235. ctx->infos[idx].type = tensor->type;
  16236. ctx->infos[idx].offset = 0;
  16237. ctx->infos[idx].data = tensor->data;
  16238. ctx->infos[idx].size = ggml_nbytes(tensor);
  16239. if (ctx->header.n_tensors > 0) {
  16240. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16241. }
  16242. ctx->header.n_tensors++;
  16243. }
  16244. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16245. const int idx = gguf_find_tensor(ctx, name);
  16246. if (idx < 0) {
  16247. GGML_ASSERT(false && "tensor not found");
  16248. }
  16249. ctx->infos[idx].type = type;
  16250. }
  16251. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16252. const int idx = gguf_find_tensor(ctx, name);
  16253. if (idx < 0) {
  16254. GGML_ASSERT(false && "tensor not found");
  16255. }
  16256. ctx->infos[idx].data = data;
  16257. ctx->infos[idx].size = size;
  16258. // update offsets
  16259. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16260. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16261. }
  16262. }
  16263. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16264. // fwrite(&val->n, sizeof(val->n), 1, file);
  16265. // fwrite(val->data, sizeof(char), val->n, file);
  16266. //}
  16267. //
  16268. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16269. // fwrite(val, sizeof(char), size, file);
  16270. //}
  16271. struct gguf_buf {
  16272. void * data;
  16273. size_t size;
  16274. size_t offset;
  16275. };
  16276. static struct gguf_buf gguf_buf_init(size_t size) {
  16277. struct gguf_buf buf = {
  16278. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  16279. /*buf.size =*/ size,
  16280. /*buf.offset =*/ 0,
  16281. };
  16282. return buf;
  16283. }
  16284. static void gguf_buf_free(struct gguf_buf buf) {
  16285. if (buf.data) {
  16286. free(buf.data);
  16287. }
  16288. }
  16289. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16290. if (buf->offset + size > buf->size) {
  16291. buf->size = 1.5*(buf->offset + size);
  16292. if (buf->data) {
  16293. buf->data = realloc(buf->data, buf->size);
  16294. }
  16295. }
  16296. }
  16297. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16298. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16299. if (buf->data) {
  16300. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16301. }
  16302. buf->offset += sizeof(val->n);
  16303. if (buf->data) {
  16304. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16305. }
  16306. buf->offset += val->n;
  16307. }
  16308. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16309. gguf_buf_grow(buf, el_size);
  16310. if (buf->data) {
  16311. memcpy((char *) buf->data + buf->offset, val, el_size);
  16312. }
  16313. buf->offset += el_size;
  16314. }
  16315. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16316. // write header
  16317. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16318. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16319. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16320. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16321. // write key-value pairs
  16322. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16323. struct gguf_kv * kv = &ctx->kv[i];
  16324. gguf_bwrite_str(buf, &kv->key);
  16325. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16326. switch (kv->type) {
  16327. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16328. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16329. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16330. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16331. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16332. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16333. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16334. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16335. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16336. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16337. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16338. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16339. case GGUF_TYPE_ARRAY:
  16340. {
  16341. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16342. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16343. switch (kv->value.arr.type) {
  16344. case GGUF_TYPE_UINT8:
  16345. case GGUF_TYPE_INT8:
  16346. case GGUF_TYPE_UINT16:
  16347. case GGUF_TYPE_INT16:
  16348. case GGUF_TYPE_UINT32:
  16349. case GGUF_TYPE_INT32:
  16350. case GGUF_TYPE_FLOAT32:
  16351. case GGUF_TYPE_UINT64:
  16352. case GGUF_TYPE_INT64:
  16353. case GGUF_TYPE_FLOAT64:
  16354. case GGUF_TYPE_BOOL:
  16355. {
  16356. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16357. } break;
  16358. case GGUF_TYPE_STRING:
  16359. {
  16360. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16361. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16362. }
  16363. } break;
  16364. case GGUF_TYPE_ARRAY:
  16365. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16366. }
  16367. } break;
  16368. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16369. }
  16370. }
  16371. // write tensor infos
  16372. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16373. struct gguf_tensor_info * info = &ctx->infos[i];
  16374. gguf_bwrite_str(buf, &info->name);
  16375. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16376. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16377. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16378. }
  16379. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16380. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16381. }
  16382. // we require the data section to be aligned, so take into account any padding
  16383. {
  16384. const size_t offset = buf->offset;
  16385. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16386. if (offset_pad != offset) {
  16387. uint8_t pad = 0;
  16388. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16389. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16390. }
  16391. }
  16392. }
  16393. if (only_meta) {
  16394. return;
  16395. }
  16396. size_t offset = 0;
  16397. // write tensor data
  16398. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16399. struct gguf_tensor_info * info = &ctx->infos[i];
  16400. const size_t size = info->size;
  16401. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16402. gguf_bwrite_el(buf, info->data, size);
  16403. if (size_pad != size) {
  16404. uint8_t pad = 0;
  16405. for (size_t j = 0; j < size_pad - size; ++j) {
  16406. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16407. }
  16408. }
  16409. GGML_ASSERT(offset == info->offset);
  16410. offset += size_pad;
  16411. }
  16412. }
  16413. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  16414. FILE * file = fopen(fname, "wb");
  16415. if (!file) {
  16416. GGML_ASSERT(false && "failed to open file for writing");
  16417. }
  16418. struct gguf_buf buf = gguf_buf_init(16*1024);
  16419. gguf_write_to_buf(ctx, &buf, only_meta);
  16420. fwrite(buf.data, 1, buf.offset, file);
  16421. gguf_buf_free(buf);
  16422. fclose(file);
  16423. }
  16424. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  16425. // no allocs - only compute size
  16426. struct gguf_buf buf = gguf_buf_init(0);
  16427. gguf_write_to_buf(ctx, &buf, true);
  16428. return buf.offset;
  16429. }
  16430. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  16431. struct gguf_buf buf = gguf_buf_init(16*1024);
  16432. gguf_write_to_buf(ctx, &buf, true);
  16433. memcpy(data, buf.data, buf.offset);
  16434. gguf_buf_free(buf);
  16435. }
  16436. ////////////////////////////////////////////////////////////////////////////////
  16437. int ggml_cpu_has_avx(void) {
  16438. #if defined(__AVX__)
  16439. return 1;
  16440. #else
  16441. return 0;
  16442. #endif
  16443. }
  16444. int ggml_cpu_has_avx_vnni(void) {
  16445. #if defined(__AVXVNNI__)
  16446. return 1;
  16447. #else
  16448. return 0;
  16449. #endif
  16450. }
  16451. int ggml_cpu_has_avx2(void) {
  16452. #if defined(__AVX2__)
  16453. return 1;
  16454. #else
  16455. return 0;
  16456. #endif
  16457. }
  16458. int ggml_cpu_has_avx512(void) {
  16459. #if defined(__AVX512F__)
  16460. return 1;
  16461. #else
  16462. return 0;
  16463. #endif
  16464. }
  16465. int ggml_cpu_has_avx512_vbmi(void) {
  16466. #if defined(__AVX512VBMI__)
  16467. return 1;
  16468. #else
  16469. return 0;
  16470. #endif
  16471. }
  16472. int ggml_cpu_has_avx512_vnni(void) {
  16473. #if defined(__AVX512VNNI__)
  16474. return 1;
  16475. #else
  16476. return 0;
  16477. #endif
  16478. }
  16479. int ggml_cpu_has_fma(void) {
  16480. #if defined(__FMA__)
  16481. return 1;
  16482. #else
  16483. return 0;
  16484. #endif
  16485. }
  16486. int ggml_cpu_has_neon(void) {
  16487. #if defined(__ARM_NEON)
  16488. return 1;
  16489. #else
  16490. return 0;
  16491. #endif
  16492. }
  16493. int ggml_cpu_has_arm_fma(void) {
  16494. #if defined(__ARM_FEATURE_FMA)
  16495. return 1;
  16496. #else
  16497. return 0;
  16498. #endif
  16499. }
  16500. int ggml_cpu_has_metal(void) {
  16501. #if defined(GGML_USE_METAL)
  16502. return 1;
  16503. #else
  16504. return 0;
  16505. #endif
  16506. }
  16507. int ggml_cpu_has_f16c(void) {
  16508. #if defined(__F16C__)
  16509. return 1;
  16510. #else
  16511. return 0;
  16512. #endif
  16513. }
  16514. int ggml_cpu_has_fp16_va(void) {
  16515. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  16516. return 1;
  16517. #else
  16518. return 0;
  16519. #endif
  16520. }
  16521. int ggml_cpu_has_wasm_simd(void) {
  16522. #if defined(__wasm_simd128__)
  16523. return 1;
  16524. #else
  16525. return 0;
  16526. #endif
  16527. }
  16528. int ggml_cpu_has_blas(void) {
  16529. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  16530. return 1;
  16531. #else
  16532. return 0;
  16533. #endif
  16534. }
  16535. int ggml_cpu_has_cublas(void) {
  16536. #if defined(GGML_USE_CUBLAS)
  16537. return 1;
  16538. #else
  16539. return 0;
  16540. #endif
  16541. }
  16542. int ggml_cpu_has_clblast(void) {
  16543. #if defined(GGML_USE_CLBLAST)
  16544. return 1;
  16545. #else
  16546. return 0;
  16547. #endif
  16548. }
  16549. int ggml_cpu_has_gpublas(void) {
  16550. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  16551. }
  16552. int ggml_cpu_has_sse3(void) {
  16553. #if defined(__SSE3__)
  16554. return 1;
  16555. #else
  16556. return 0;
  16557. #endif
  16558. }
  16559. int ggml_cpu_has_ssse3(void) {
  16560. #if defined(__SSSE3__)
  16561. return 1;
  16562. #else
  16563. return 0;
  16564. #endif
  16565. }
  16566. int ggml_cpu_has_vsx(void) {
  16567. #if defined(__POWER9_VECTOR__)
  16568. return 1;
  16569. #else
  16570. return 0;
  16571. #endif
  16572. }
  16573. ////////////////////////////////////////////////////////////////////////////////