tensor_mapping.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf
  13. "tok_embeddings", # llama-pth
  14. "embeddings.word_embeddings", # bert
  15. "language_model.embedding.word_embeddings", # persimmon
  16. "wte", # gpt2
  17. "transformer.embd.wte", # phi2
  18. ),
  19. # Token type embeddings
  20. MODEL_TENSOR.TOKEN_TYPES: (
  21. "embeddings.token_type_embeddings", # bert
  22. ),
  23. # Normalization of token embeddings
  24. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  25. "word_embeddings_layernorm", # bloom
  26. ),
  27. # Position embeddings
  28. MODEL_TENSOR.POS_EMBD: (
  29. "transformer.wpe", # gpt2
  30. "embeddings.position_embeddings", # bert
  31. "wpe", # gpt2
  32. ),
  33. # Output
  34. MODEL_TENSOR.OUTPUT: (
  35. "embed_out", # gptneox
  36. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen
  37. "output", # llama-pth bloom
  38. "word_embeddings_for_head", # persimmon
  39. "lm_head.linear", # phi2
  40. ),
  41. # Output norm
  42. MODEL_TENSOR.OUTPUT_NORM: (
  43. "gpt_neox.final_layer_norm", # gptneox
  44. "transformer.ln_f", # gpt2 gpt-j falcon
  45. "model.norm", # llama-hf baichuan
  46. "norm", # llama-pth
  47. "embeddings.LayerNorm", # bert
  48. "transformer.norm_f", # mpt
  49. "ln_f", # refact bloom qwen gpt2
  50. "language_model.encoder.final_layernorm", # persimmon
  51. "model.final_layernorm", # persimmon
  52. "lm_head.ln", # phi2
  53. ),
  54. # Rope frequencies
  55. MODEL_TENSOR.ROPE_FREQS: (
  56. "rope.freqs", # llama-pth
  57. ),
  58. }
  59. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  60. # Attention norm
  61. MODEL_TENSOR.ATTN_NORM: (
  62. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  63. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen
  64. "transformer.blocks.{bid}.norm_1", # mpt
  65. "transformer.h.{bid}.input_layernorm", # falcon7b
  66. "h.{bid}.input_layernorm", # bloom
  67. "transformer.h.{bid}.ln_mlp", # falcon40b
  68. "model.layers.{bid}.input_layernorm", # llama-hf
  69. "layers.{bid}.attention_norm", # llama-pth
  70. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  71. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  72. "model.layers.{bid}.ln1", # yi
  73. "h.{bid}.ln_1", # gpt2
  74. "transformer.h.{bid}.ln", # phi2
  75. "model.layers.layers.{bid}.norm", # plamo
  76. ),
  77. # Attention norm 2
  78. MODEL_TENSOR.ATTN_NORM_2: (
  79. "transformer.h.{bid}.ln_attn", # falcon40b
  80. ),
  81. # Attention query-key-value
  82. MODEL_TENSOR.ATTN_QKV: (
  83. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  84. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen
  85. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  86. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  87. "h.{bid}.self_attention.query_key_value", # bloom
  88. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  89. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  90. "h.{bid}.attn.c_attn", # gpt2
  91. "transformer.h.{bid}.mixer.Wqkv", # phi2
  92. ),
  93. # Attention query
  94. MODEL_TENSOR.ATTN_Q: (
  95. "model.layers.{bid}.self_attn.q_proj", # llama-hf
  96. "layers.{bid}.attention.wq", # llama-pth
  97. "encoder.layer.{bid}.attention.self.query", # bert
  98. "transformer.h.{bid}.attn.q_proj", # gpt-j
  99. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  100. ),
  101. # Attention key
  102. MODEL_TENSOR.ATTN_K: (
  103. "model.layers.{bid}.self_attn.k_proj", # llama-hf
  104. "layers.{bid}.attention.wk", # llama-pth
  105. "encoder.layer.{bid}.attention.self.key", # bert
  106. "transformer.h.{bid}.attn.k_proj", # gpt-j
  107. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  108. ),
  109. # Attention value
  110. MODEL_TENSOR.ATTN_V: (
  111. "model.layers.{bid}.self_attn.v_proj", # llama-hf
  112. "layers.{bid}.attention.wv", # llama-pth
  113. "encoder.layer.{bid}.attention.self.value", # bert
  114. "transformer.h.{bid}.attn.v_proj", # gpt-j
  115. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  116. ),
  117. # Attention output
  118. MODEL_TENSOR.ATTN_OUT: (
  119. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  120. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen
  121. "transformer.blocks.{bid}.attn.out_proj", # mpt
  122. "transformer.h.{bid}.self_attention.dense", # falcon
  123. "h.{bid}.self_attention.dense", # bloom
  124. "model.layers.{bid}.self_attn.o_proj", # llama-hf
  125. "layers.{bid}.attention.wo", # llama-pth
  126. "encoder.layer.{bid}.attention.output.dense", # bert
  127. "transformer.h.{bid}.attn.out_proj", # gpt-j
  128. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  129. "model.layers.{bid}.self_attn.dense", # persimmon
  130. "h.{bid}.attn.c_proj", # gpt2
  131. "transformer.h.{bid}.mixer.out_proj", # phi2
  132. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  133. ),
  134. # Rotary embeddings
  135. MODEL_TENSOR.ATTN_ROT_EMBD: (
  136. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  137. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  138. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  139. ),
  140. # Feed-forward norm
  141. MODEL_TENSOR.FFN_NORM: (
  142. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  143. "transformer.h.{bid}.ln_2", # gpt2 refact qwen
  144. "h.{bid}.post_attention_layernorm", # bloom
  145. "transformer.blocks.{bid}.norm_2", # mpt
  146. "model.layers.{bid}.post_attention_layernorm", # llama-hf
  147. "layers.{bid}.ffn_norm", # llama-pth
  148. "encoder.layer.{bid}.output.LayerNorm", # bert
  149. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  150. "model.layers.{bid}.ln2", # yi
  151. "h.{bid}.ln_2", # gpt2
  152. ),
  153. MODEL_TENSOR.FFN_GATE_INP: (
  154. "layers.{bid}.feed_forward.gate", # mixtral
  155. "model.layers.{bid}.block_sparse_moe.gate", # mixtral
  156. ),
  157. # Feed-forward up
  158. MODEL_TENSOR.FFN_UP: (
  159. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  160. "transformer.h.{bid}.mlp.c_fc", # gpt2
  161. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  162. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  163. "h.{bid}.mlp.dense_h_to_4h", # bloom
  164. "model.layers.{bid}.mlp.up_proj", # llama-hf refact
  165. "layers.{bid}.feed_forward.w3", # llama-pth
  166. "encoder.layer.{bid}.intermediate.dense", # bert
  167. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  168. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  169. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  170. "transformer.h.{bid}.mlp.w1", # qwen
  171. "h.{bid}.mlp.c_fc", # gpt2
  172. "transformer.h.{bid}.mlp.fc1", # phi2
  173. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  174. ),
  175. MODEL_TENSOR.FFN_UP_EXP: (
  176. "layers.{bid}.feed_forward.experts.{xid}.w3", # mixtral
  177. "model.layers.{bid}.block_sparse_moe.experts.{xid}.w3", # mixtral
  178. ),
  179. # AWQ-activation gate
  180. MODEL_TENSOR.FFN_ACT: (
  181. "transformer.blocks.{bid}.ffn.act", # mpt
  182. ),
  183. # Feed-forward gate
  184. MODEL_TENSOR.FFN_GATE: (
  185. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact
  186. "layers.{bid}.feed_forward.w1", # llama-pth
  187. "transformer.h.{bid}.mlp.w2", # qwen
  188. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  189. ),
  190. MODEL_TENSOR.FFN_GATE_EXP: (
  191. "layers.{bid}.feed_forward.experts.{xid}.w1", # mixtral
  192. "model.layers.{bid}.block_sparse_moe.experts.{xid}.w1", # mixtral
  193. ),
  194. # Feed-forward down
  195. MODEL_TENSOR.FFN_DOWN: (
  196. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  197. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen
  198. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  199. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  200. "h.{bid}.mlp.dense_4h_to_h", # bloom
  201. "model.layers.{bid}.mlp.down_proj", # llama-hf
  202. "layers.{bid}.feed_forward.w2", # llama-pth
  203. "encoder.layer.{bid}.output.dense", # bert
  204. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  205. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  206. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  207. "h.{bid}.mlp.c_proj", # gpt2
  208. "transformer.h.{bid}.mlp.fc2", # phi2
  209. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  210. ),
  211. MODEL_TENSOR.FFN_DOWN_EXP: (
  212. "layers.{bid}.feed_forward.experts.{xid}.w2", # mixtral
  213. "model.layers.{bid}.block_sparse_moe.experts.{xid}.w2", # mixtral
  214. ),
  215. MODEL_TENSOR.ATTN_Q_NORM: (
  216. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  217. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  218. ),
  219. MODEL_TENSOR.ATTN_K_NORM: (
  220. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  221. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  222. ),
  223. MODEL_TENSOR.ROPE_FREQS: (
  224. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  225. ),
  226. }
  227. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  228. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  229. self.mapping = {}
  230. for tensor, keys in self.mappings_cfg.items():
  231. if tensor not in MODEL_TENSORS[arch]:
  232. continue
  233. tensor_name = TENSOR_NAMES[tensor]
  234. self.mapping[tensor_name] = (tensor, tensor_name)
  235. for key in keys:
  236. self.mapping[key] = (tensor, tensor_name)
  237. for bid in range(n_blocks):
  238. for tensor, keys in self.block_mappings_cfg.items():
  239. if tensor not in MODEL_TENSORS[arch]:
  240. continue
  241. # TODO: make this configurable
  242. n_experts = 8
  243. for xid in range(n_experts):
  244. tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid)
  245. self.mapping[tensor_name] = (tensor, tensor_name)
  246. for key in keys:
  247. key = key.format(bid = bid, xid = xid)
  248. self.mapping[key] = (tensor, tensor_name)
  249. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  250. result = self.mapping.get(key)
  251. if result is not None:
  252. return result
  253. for suffix in try_suffixes:
  254. if key.endswith(suffix):
  255. result = self.mapping.get(key[:-len(suffix)])
  256. if result is not None:
  257. return result[0], result[1] + suffix
  258. return None
  259. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  260. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  261. if result is None:
  262. return None
  263. return result[1]
  264. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  265. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  266. if result is None:
  267. return None
  268. return result[0]
  269. def __getitem__(self, key: str) -> str:
  270. try:
  271. return self.mapping[key][1]
  272. except KeyError:
  273. raise KeyError(key)
  274. def __contains__(self, key: str) -> bool:
  275. return key in self.mapping
  276. def __repr__(self) -> str:
  277. return repr(self.mapping)
  278. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  279. return TensorNameMap(arch, n_blocks)