llama-vocab.cpp 146 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791
  1. #include "llama-vocab.h"
  2. #include "ggml.h"
  3. #include "gguf.h"
  4. #include "llama-impl.h"
  5. #include "llama-model-loader.h"
  6. #include "unicode.h"
  7. #include <algorithm>
  8. #include <cassert>
  9. #include <cctype>
  10. #include <cfloat>
  11. #include <cmath>
  12. #include <cstdarg>
  13. #include <cstring>
  14. #include <forward_list>
  15. #include <limits>
  16. #include <map>
  17. #include <queue>
  18. #include <set>
  19. #include <unordered_map>
  20. //
  21. // helpers
  22. //
  23. struct naive_trie {
  24. naive_trie() : has_value(false), value(0) {
  25. }
  26. void insert(const char * key, size_t len, int32_t value = 0) {
  27. if (len == 0) {
  28. this->has_value = true;
  29. this->value = value;
  30. return;
  31. }
  32. char c = key[0];
  33. auto res = children.find(c);
  34. if (res != children.end()) {
  35. res->second.insert(key + 1, len - 1, value);
  36. } else {
  37. auto res = children.insert(std::make_pair(c, naive_trie()));
  38. res.first->second.insert(key + 1, len - 1, value);
  39. }
  40. }
  41. std::pair<const char *, size_t> get_longest_prefix(const char * key, size_t len, size_t offset = 0) const {
  42. if (len == 0 || offset == len) {
  43. return std::make_pair(key, offset);
  44. }
  45. char c = key[offset];
  46. auto res = children.find(c);
  47. if (res != children.end()) {
  48. return res->second.get_longest_prefix(key, len, offset + 1);
  49. }
  50. return std::make_pair(key, offset);
  51. }
  52. const struct naive_trie * traverse(const char c) const {
  53. auto res = children.find(c);
  54. if (res != children.end()) {
  55. return &res->second;
  56. }
  57. return NULL;
  58. }
  59. std::map<char, struct naive_trie> children;
  60. bool has_value;
  61. llama_token value;
  62. };
  63. //
  64. // tokenizers
  65. //
  66. struct llm_tokenizer {
  67. llm_tokenizer() {}
  68. virtual ~llm_tokenizer() = default;
  69. };
  70. struct llm_symbol {
  71. using index = int;
  72. index prev;
  73. index next;
  74. const char * text;
  75. size_t n;
  76. };
  77. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  78. //
  79. // SPM tokenizer
  80. // original implementation:
  81. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  82. //
  83. struct llm_bigram_spm {
  84. struct comparator {
  85. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  86. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  87. }
  88. };
  89. using queue_storage = std::vector<llm_bigram_spm>;
  90. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  91. llm_symbol::index left;
  92. llm_symbol::index right;
  93. float score;
  94. size_t size;
  95. };
  96. struct llm_tokenizer_spm : llm_tokenizer {
  97. llm_tokenizer_spm(const llama_vocab & /*vocab*/) {}
  98. };
  99. struct llm_tokenizer_spm_session {
  100. llm_tokenizer_spm_session(const llama_vocab & vocab) : vocab(vocab) {}
  101. void tokenize(const std::string & text, std::vector<llama_token> & output) {
  102. // split string into utf8 chars
  103. int index = 0;
  104. size_t offs = 0;
  105. while (offs < text.size()) {
  106. llm_symbol sym;
  107. size_t len = unicode_len_utf8(text[offs]);
  108. sym.text = text.c_str() + offs;
  109. sym.n = std::min(len, text.size() - offs);
  110. offs += sym.n;
  111. sym.prev = index - 1;
  112. sym.next = offs == text.size() ? -1 : index + 1;
  113. index++;
  114. symbols.emplace_back(sym);
  115. }
  116. // seed the work queue with all possible 2-character tokens.
  117. for (int i = 1; i < (int) symbols.size(); ++i) {
  118. try_add_bigram(i - 1, i);
  119. }
  120. // keep substituting the highest frequency pairs for as long as we can.
  121. while (!work_queue.empty()) {
  122. auto bigram = work_queue.top();
  123. work_queue.pop();
  124. auto & left_sym = symbols[bigram.left];
  125. auto & right_sym = symbols[bigram.right];
  126. // if one of the symbols already got merged, skip it.
  127. if (left_sym.n == 0 || right_sym.n == 0 ||
  128. left_sym.n + right_sym.n != bigram.size) {
  129. continue;
  130. }
  131. // merge the right sym into the left one
  132. left_sym.n += right_sym.n;
  133. right_sym.n = 0;
  134. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  135. // remove the right sym from the chain
  136. left_sym.next = right_sym.next;
  137. if (right_sym.next >= 0) {
  138. symbols[right_sym.next].prev = bigram.left;
  139. }
  140. // find more substitutions
  141. try_add_bigram(left_sym.prev, bigram.left);
  142. try_add_bigram(bigram.left, left_sym.next);
  143. }
  144. for (int i = 0; i != -1; i = symbols[i].next) {
  145. auto & symbol = symbols[i];
  146. resegment(symbol, output);
  147. }
  148. }
  149. private:
  150. void resegment(llm_symbol & symbol, std::vector<llama_token> & output) {
  151. auto text = std::string(symbol.text, symbol.n);
  152. auto token = vocab.text_to_token(text);
  153. // Do we need to support is_unused?
  154. if (token != LLAMA_TOKEN_NULL) {
  155. output.push_back(token);
  156. return;
  157. }
  158. const auto p = rev_merge.find(text);
  159. if (p == rev_merge.end()) {
  160. // output any symbols that did not form tokens as bytes.
  161. output.reserve(output.size() + symbol.n);
  162. for (int j = 0; j < (int)symbol.n; ++j) {
  163. llama_token id = vocab.byte_to_token(symbol.text[j]);
  164. output.push_back(id);
  165. }
  166. return;
  167. }
  168. resegment(symbols[p->second.first], output);
  169. resegment(symbols[p->second.second], output);
  170. }
  171. void try_add_bigram(int left, int right) {
  172. if (left == -1 || right == -1) {
  173. return;
  174. }
  175. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  176. auto token = vocab.text_to_token(text);
  177. if (token == LLAMA_TOKEN_NULL) {
  178. return;
  179. }
  180. if (static_cast<uint32_t>(token) >= vocab.n_tokens()) {
  181. return;
  182. }
  183. const auto & tok_data = vocab.get_token_data(token);
  184. llm_bigram_spm bigram;
  185. bigram.left = left;
  186. bigram.right = right;
  187. bigram.score = tok_data.score;
  188. bigram.size = text.size();
  189. work_queue.push(bigram);
  190. // Do we need to support is_unused?
  191. rev_merge[text] = std::make_pair(left, right);
  192. }
  193. const llama_vocab & vocab;
  194. // currently unused
  195. // const llm_tokenizer_spm * spm_tokenizer;
  196. std::vector<llm_symbol> symbols;
  197. llm_bigram_spm::queue work_queue;
  198. std::map<std::string, std::pair<int, int>> rev_merge;
  199. };
  200. //
  201. // BPE tokenizer
  202. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  203. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  204. //
  205. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  206. template<typename T, typename Container = std::vector<T>, typename Compare = std::less<typename Container::value_type>>
  207. class llama_priority_queue : public std::priority_queue<T, Container, Compare> {
  208. public:
  209. using std::priority_queue<T, Container, Compare>::priority_queue;
  210. T pop_move() {
  211. T item = std::move(this->c.front());
  212. std::pop_heap(this->c.begin(), this->c.end(), this->comp);
  213. this->c.pop_back();
  214. return item;
  215. }
  216. void pop() = delete;
  217. };
  218. struct llm_bigram_bpe {
  219. struct comparator {
  220. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  221. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  222. }
  223. };
  224. using queue_storage = std::vector<llm_bigram_bpe>;
  225. using queue = llama_priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  226. llm_symbol::index left;
  227. llm_symbol::index right;
  228. std::string text;
  229. int rank;
  230. size_t size;
  231. };
  232. struct llm_tokenizer_bpe : llm_tokenizer {
  233. llm_tokenizer_bpe(const llama_vocab & vocab) {
  234. GGML_ASSERT(vocab.get_type() == LLAMA_VOCAB_TYPE_BPE);
  235. switch (vocab.get_pre_type()) {
  236. case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
  237. regex_exprs = {
  238. // original regex from tokenizer.json
  239. //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  240. // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
  241. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  242. };
  243. break;
  244. case LLAMA_VOCAB_PRE_TYPE_DBRX:
  245. case LLAMA_VOCAB_PRE_TYPE_SMAUG:
  246. regex_exprs = {
  247. // same as llama3
  248. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  249. };
  250. break;
  251. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
  252. regex_exprs = {
  253. "[\r\n]",
  254. "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
  255. "\\s?[!-/:-~!-/:-~‘-‟ -。]+",
  256. "\\s+$",
  257. "[一-龥ࠀ-一가-퟿]+",
  258. "\\p{N}+",
  259. };
  260. break;
  261. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM:
  262. case LLAMA_VOCAB_PRE_TYPE_HUNYUAN_DENSE:
  263. regex_exprs = {
  264. "\\p{N}{1,3}",
  265. "[一-龥぀-ゟ゠-ヿ]+",
  266. "[!\"#$%&'()*+,\\-./:;<=>?@\\[\\\\\\]^_`{|}~][A-Za-z]+|[^\r\n\\p{L}\\p{P}\\p{S}]?[\\p{L}\\p{M}]+| ?[\\p{P}\\p{S}]+[\r\n]*|\\s*[\r\n]+|\\s+(?!\\S)|\\s+",
  267. };
  268. break;
  269. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
  270. regex_exprs = {
  271. "[\r\n]",
  272. "\\s?\\p{L}+",
  273. "\\s?\\p{P}+",
  274. "[一-龥ࠀ-一가-퟿]+",
  275. "\\p{N}",
  276. };
  277. break;
  278. case LLAMA_VOCAB_PRE_TYPE_FALCON:
  279. regex_exprs = {
  280. "[\\p{P}\\$\\+<=>\\^~\\|`]+",
  281. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  282. "[0-9][0-9][0-9]",
  283. };
  284. break;
  285. case LLAMA_VOCAB_PRE_TYPE_STARCODER:
  286. case LLAMA_VOCAB_PRE_TYPE_REFACT:
  287. case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
  288. case LLAMA_VOCAB_PRE_TYPE_SMOLLM:
  289. case LLAMA_VOCAB_PRE_TYPE_CODESHELL:
  290. case LLAMA_VOCAB_PRE_TYPE_EXAONE:
  291. case LLAMA_VOCAB_PRE_TYPE_MINERVA:
  292. regex_exprs = {
  293. "\\p{N}",
  294. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  295. };
  296. break;
  297. case LLAMA_VOCAB_PRE_TYPE_GPT2:
  298. case LLAMA_VOCAB_PRE_TYPE_MPT:
  299. case LLAMA_VOCAB_PRE_TYPE_OLMO:
  300. case LLAMA_VOCAB_PRE_TYPE_JAIS:
  301. case LLAMA_VOCAB_PRE_TYPE_TRILLION:
  302. regex_exprs = {
  303. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  304. };
  305. break;
  306. case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
  307. case LLAMA_VOCAB_PRE_TYPE_QWEN2:
  308. case LLAMA_VOCAB_PRE_TYPE_HUNYUAN:
  309. regex_exprs = {
  310. // original regex from tokenizer.json
  311. // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
  312. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  313. };
  314. break;
  315. case LLAMA_VOCAB_PRE_TYPE_PORO:
  316. case LLAMA_VOCAB_PRE_TYPE_BLOOM:
  317. case LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH:
  318. regex_exprs = {
  319. " ?[^(\\s|.,!?…。,、।۔،)]+",
  320. };
  321. break;
  322. case LLAMA_VOCAB_PRE_TYPE_CHATGLM4:
  323. regex_exprs = {
  324. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  325. };
  326. break;
  327. case LLAMA_VOCAB_PRE_TYPE_VIKING:
  328. regex_exprs = {
  329. " ?[^(\\s|.,!?…。,、।۔،)]+",
  330. "\\p{N}",
  331. };
  332. break;
  333. case LLAMA_VOCAB_PRE_TYPE_TEKKEN:
  334. // original regex from tokenizer.json
  335. // "[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
  336. regex_exprs = {
  337. "[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))*((?=[\\p{L}])([^A-Z]))+|[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))+((?=[\\p{L}])([^A-Z]))*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  338. };
  339. break;
  340. case LLAMA_VOCAB_PRE_TYPE_CHAMELEON:
  341. // Note: in theory, the special token (sentinel and image token) regex_exprs below
  342. // are unnecessary, as they are split in `tokenizer_st_partition` anyway.
  343. // However, since the upstream pre-tokenizer uses them, they are also
  344. // included here (see https://huggingface.co/facebook/chameleon-7b).
  345. regex_exprs = {
  346. "<sentinel:[0-9]+>", // Sentinel tokens
  347. "(IMGIMG)((A|B|C|D|E|F|G|H|I){1,4})Z", // Image tokens
  348. "([\\t\\n]| | )", // directly from tokenizer.json
  349. "\\p{N}", // Individual digits
  350. "[\\p{P}!-/:-@\\[-`{-~]", // Punctuation, Isolated
  351. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  352. };
  353. break;
  354. case LLAMA_VOCAB_PRE_TYPE_GPT4O:
  355. regex_exprs = {
  356. // original regex from tokenizer.json
  357. // "[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  358. "[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))*((?=[\\p{L}])([^A-Z]))+(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])?|[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))+((?=[\\p{L}])([^A-Z]))*(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])?|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  359. };
  360. break;
  361. case LLAMA_VOCAB_PRE_TYPE_KIMI_K2:
  362. regex_exprs = {
  363. // K2 trigger pattern - this will activate the custom K2 handler in unicode.cpp
  364. // The custom handler implements all K2 patterns with proper Han character exclusion
  365. "\\p{Han}+",
  366. };
  367. break;
  368. case LLAMA_VOCAB_PRE_TYPE_SUPERBPE:
  369. regex_exprs = {
  370. "\\p{N}+",
  371. "(?=(\\d{3})+(?!\\d))",
  372. };
  373. break;
  374. case LLAMA_VOCAB_PRE_TYPE_BAILINGMOE:
  375. regex_exprs = {
  376. // original regex from tokenizer.json
  377. // "'(?i:[sdmt]|ll|ve|re)|[^\\r\\n\\p{L}\\p{N}]?+\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]++[\\r\\n]*|\\s*[\\r\\n]|\\s+(?!\\S)|\\s+"
  378. // FIXME? Changed possessive quantifiers (?+ and ++) to greedy to avoid errors and imatrix hanging (tried atomic grouping but it's not supported?)
  379. "'(?:[sSdDmMtT]|[lL][lL]|[vV][eE]|[rR][eE])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]|\\s+(?!\\S)|\\s+",
  380. };
  381. break;
  382. case LLAMA_VOCAB_PRE_TYPE_SEED_CODER:
  383. regex_exprs = {
  384. // original regex from tokenizer.json
  385. // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1}| ?[^\\s\\p{L}\\p{N}\r\n]+|\\s*[\r\n]+|\\s+(?!\\S)|\\s+"
  386. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1}| ?[^\\s\\p{L}\\p{N}\\r\\n]+|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  387. };
  388. break;
  389. default:
  390. // default regex for BPE tokenization pre-processing
  391. regex_exprs = {
  392. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  393. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  394. "\\p{N}+",
  395. "[0-9][0-9][0-9]",
  396. };
  397. break;
  398. }
  399. }
  400. std::vector<std::string> regex_exprs;
  401. };
  402. struct llm_tokenizer_bpe_session {
  403. llm_tokenizer_bpe_session(const llama_vocab & vocab, const llm_tokenizer_bpe & tokenizer) : vocab(vocab), tokenizer(tokenizer) {}
  404. static void append(const llama_token token_id, std::vector<llama_token> & output) {
  405. output.push_back(token_id);
  406. }
  407. bool append_bos(std::vector<llama_token> & output) const {
  408. if (vocab.get_add_bos()) {
  409. GGML_ASSERT(vocab.token_bos() != LLAMA_TOKEN_NULL);
  410. output.push_back(vocab.token_bos());
  411. return true;
  412. }
  413. return false;
  414. }
  415. bool append_eos(std::vector<llama_token> & output) const {
  416. if (vocab.get_add_eos()) {
  417. GGML_ASSERT(vocab.token_eos() != LLAMA_TOKEN_NULL);
  418. output.push_back(vocab.token_eos());
  419. return true;
  420. }
  421. return false;
  422. }
  423. void check_double_bos_eos(const std::vector<llama_token> & output) const {
  424. if (vocab.get_add_bos() && output.size() >= 2 && output[1] == vocab.token_bos()) {
  425. LLAMA_LOG_WARN(
  426. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  427. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  428. "Are you sure this is what you want?\n", __FUNCTION__);
  429. }
  430. if (vocab.get_add_eos() && output.size() >= 2 && *(output.end()-2) == vocab.token_eos()) {
  431. LLAMA_LOG_WARN(
  432. "%s: Added a EOS token to the prompt as specified by the model but the prompt "
  433. "also ends with a EOS token. So now the final prompt ends with 2 EOS tokens. "
  434. "Are you sure this is what you want?\n", __FUNCTION__);
  435. }
  436. }
  437. void tokenize(const std::string & text, std::vector<llama_token> & output) {
  438. int final_prev_index = -1;
  439. const auto word_collection = unicode_regex_split(text, tokenizer.regex_exprs);
  440. symbols_final.clear();
  441. for (const auto & word : word_collection) {
  442. work_queue = llm_bigram_bpe::queue();
  443. symbols.clear();
  444. int index = 0;
  445. size_t offset = 0;
  446. //if (vocab.tokenizer_ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
  447. if (vocab.get_ignore_merges() && vocab.text_to_token(word) != LLAMA_TOKEN_NULL) {
  448. symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()});
  449. offset = word.size();
  450. }
  451. while (offset < word.size()) {
  452. llm_symbol sym;
  453. size_t char_len = std::min(word.size() - offset, (size_t) unicode_len_utf8(word[offset]));
  454. sym.text = word.c_str() + offset;
  455. sym.n = char_len;
  456. offset += sym.n;
  457. sym.prev = index - 1;
  458. sym.next = offset == word.size() ? -1 : index + 1;
  459. index++;
  460. symbols.emplace_back(sym);
  461. }
  462. for (int i = 1; i < (int) symbols.size(); ++i) {
  463. add_new_bigram(i - 1, i);
  464. }
  465. // build token(s)
  466. while (!work_queue.empty()) {
  467. auto bigram = work_queue.pop_move();
  468. auto & left_symbol = symbols[bigram.left];
  469. auto & right_symbol = symbols[bigram.right];
  470. if (left_symbol.n == 0 || right_symbol.n == 0) {
  471. continue;
  472. }
  473. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  474. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  475. if (left_token + right_token != bigram.text) {
  476. continue; // Skip this bigram if it's outdated
  477. }
  478. // merge the right sym into the left one
  479. left_symbol.n += right_symbol.n;
  480. right_symbol.n = 0;
  481. // remove the right sym from the chain
  482. left_symbol.next = right_symbol.next;
  483. if (right_symbol.next >= 0) {
  484. symbols[right_symbol.next].prev = bigram.left;
  485. }
  486. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  487. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  488. }
  489. // add the finished tokens to the final list keeping correct order for next and prev
  490. for (auto & sym : symbols) {
  491. if (sym.n > 0) {
  492. sym.prev = final_prev_index;
  493. sym.next = -1;
  494. if (final_prev_index != -1) {
  495. symbols_final[final_prev_index].next = symbols_final.size();
  496. }
  497. symbols_final.emplace_back(sym);
  498. final_prev_index = symbols_final.size() - 1;
  499. }
  500. }
  501. }
  502. symbols = symbols_final;
  503. if (!symbols.empty()) {
  504. for (int i = 0; i != -1; i = symbols[i].next) {
  505. auto & symbol = symbols[i];
  506. if (symbol.n == 0) {
  507. continue;
  508. }
  509. const std::string str = std::string(symbol.text, symbol.n);
  510. const auto token = vocab.text_to_token(str);
  511. if (token == LLAMA_TOKEN_NULL) {
  512. for (auto j = str.begin(); j != str.end(); ++j) {
  513. std::string byte_str(1, *j);
  514. auto token_multibyte = vocab.text_to_token(byte_str);
  515. if (token_multibyte != LLAMA_TOKEN_NULL) {
  516. output.push_back(token_multibyte);
  517. }
  518. }
  519. } else {
  520. output.push_back(token);
  521. }
  522. }
  523. }
  524. }
  525. private:
  526. void add_new_bigram(int left, int right) {
  527. if (left == -1 || right == -1) {
  528. return;
  529. }
  530. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  531. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  532. int rank_found = -1;
  533. rank_found = vocab.find_bpe_rank(left_token, right_token);
  534. if (rank_found < 0) {
  535. return;
  536. }
  537. llm_bigram_bpe bigram;
  538. bigram.left = left;
  539. bigram.right = right;
  540. bigram.text = left_token + right_token;
  541. bigram.size = left_token.size() + right_token.size();
  542. bigram.rank = rank_found;
  543. work_queue.push(bigram);
  544. }
  545. const llama_vocab & vocab;
  546. const llm_tokenizer_bpe & tokenizer;
  547. std::vector<llm_symbol> symbols;
  548. std::vector<llm_symbol> symbols_final;
  549. llm_bigram_bpe::queue work_queue;
  550. };
  551. //
  552. // WPM tokenizer
  553. //
  554. struct llm_tokenizer_wpm : llm_tokenizer {
  555. llm_tokenizer_wpm(const llama_vocab & /*vocab*/) {}
  556. };
  557. struct llm_tokenizer_wpm_session {
  558. llm_tokenizer_wpm_session(const llama_vocab & vocab) : vocab(vocab) {}
  559. void tokenize(const std::string & text, std::vector<llama_token> & output) {
  560. // normalize and split by whitespace
  561. std::vector<std::string> words = preprocess(text);
  562. // bos token prepended already
  563. // find the longest tokens that form the words
  564. for (const std::string & word : words) {
  565. // skip empty words
  566. if (word.size() == 0) {
  567. continue;
  568. }
  569. // prepend phantom space
  570. const std::string word1 = "\xe2\x96\x81" + word;
  571. const int n = word1.size();
  572. const size_t current_tokens = output.size();
  573. // we're at the start of a new word
  574. // move through character position in word
  575. for (int i = 0; i < n; ++i) {
  576. // loop through possible match length
  577. bool match = false;
  578. for (int j = std::min(n, i + vocab.max_token_len() + 1); j > i; j--) {
  579. auto id = vocab.text_to_token(word1.substr(i, j - i));
  580. if (id != LLAMA_TOKEN_NULL) {
  581. output.push_back(id);
  582. match = true;
  583. i = j - 1;
  584. break;
  585. }
  586. }
  587. if (!match) { // discard all
  588. output.resize(current_tokens);
  589. break; // and discard next tokens
  590. }
  591. }
  592. // we didn't find any matches for this word
  593. if (current_tokens == output.size()) {
  594. output.push_back(vocab.token_unk());
  595. }
  596. }
  597. }
  598. // TODO: reduce string copies by using cpts_offs array
  599. static std::vector<std::string> preprocess(const std::string & text) {
  600. const std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
  601. std::vector<std::string> words(1, "");
  602. for (const uint32_t cpt : cpts_nfd) {
  603. const auto flags = unicode_cpt_flags_from_cpt(cpt);
  604. if (flags.is_whitespace) {
  605. if (words.back().size()) { // finish previous word if any
  606. words.emplace_back();
  607. }
  608. continue;
  609. }
  610. assert (!flags.is_separator);
  611. if (cpt == 0 || cpt == 0xFFFD || flags.is_control) {
  612. continue;
  613. }
  614. const std::string s = unicode_cpt_to_utf8(unicode_tolower(cpt));
  615. if (flags.is_punctuation || ( cpt < 0x7F && flags.is_symbol ) || is_chinese_char(cpt)) {
  616. if (words.back().size()) { // finish previous word if any
  617. words.emplace_back();
  618. }
  619. words.back() = s; // single char word
  620. words.emplace_back(); // start a new word
  621. } else {
  622. words.back() += s; // append char to word
  623. }
  624. }
  625. if (!words.back().size()) {
  626. words.pop_back();
  627. }
  628. return words;
  629. }
  630. static bool is_chinese_char(uint32_t cpt) {
  631. return
  632. (cpt >= 0x04E00 && cpt <= 0x09FFF) ||
  633. (cpt >= 0x03400 && cpt <= 0x04DBF) ||
  634. (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
  635. (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
  636. (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
  637. (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
  638. (cpt >= 0x0F900 && cpt <= 0x0FAFF) ||
  639. (cpt >= 0x2F800 && cpt <= 0x2FA1F);
  640. //(cpt >= 0x3000 && cpt <= 0x303F) ||
  641. //(cpt >= 0xFF00 && cpt <= 0xFFEF);
  642. }
  643. private:
  644. const llama_vocab & vocab;
  645. // currently unused
  646. // const llm_tokenizer_wpm * wpm_tokenizer;
  647. };
  648. //
  649. // UGM tokenizer
  650. //
  651. struct llm_tokenizer_ugm : llm_tokenizer {
  652. llm_tokenizer_ugm(const llama_vocab & vocab, const std::vector<char> & precompiled_charsmap) {
  653. if (precompiled_charsmap.size() > 0) {
  654. size_t charsmap_offset = 0;
  655. // First four bytes of precompiled_charsmap contains length of binary
  656. // blob containing XOR-compressed compact double array (XCDA) entries
  657. uint32_t xcda_blob_size = *(const uint32_t *) &precompiled_charsmap[0];
  658. charsmap_offset += sizeof(xcda_blob_size);
  659. if (xcda_blob_size + charsmap_offset >= precompiled_charsmap.size()) {
  660. throw std::runtime_error("Index out of array bounds in precompiled charsmap!");
  661. }
  662. // Next xcda_blob_size bytes contain entries of XOR-compressed compact
  663. // double array (XCDA). Each entry is bit-packed into a 32-bit integer.
  664. xcda_array = (const uint32_t *) &precompiled_charsmap[charsmap_offset];
  665. xcda_array_size = xcda_blob_size / sizeof(uint32_t);
  666. charsmap_offset += xcda_blob_size;
  667. // Remaining bytes of precompiled charsmap contain null-terminated
  668. // replacement strings for prefixes matched by the XCDA.
  669. prefix_replacements = &precompiled_charsmap[charsmap_offset];
  670. prefix_replacements_size = precompiled_charsmap.size() - charsmap_offset;
  671. }
  672. for (uint32_t id = 0; id < vocab.n_tokens(); ++id) {
  673. const auto & token_data = vocab.get_token_data(id);
  674. if (vocab.is_normal(id)) {
  675. min_score = std::min<float>(min_score, token_data.score);
  676. max_score = std::max<float>(max_score, token_data.score);
  677. }
  678. if (vocab.is_normal(id) ||
  679. vocab.is_user_defined(id) ||
  680. vocab.is_unused(id)) {
  681. token_matcher.insert(token_data.text.data(), token_data.text.size(), id);
  682. }
  683. if (vocab.is_user_defined(id)) {
  684. user_defined_token_matcher.insert(token_data.text.data(), token_data.text.size());
  685. }
  686. }
  687. unknown_token_score = min_score - unknown_token_score_penalty;
  688. }
  689. // escaped space symbol - U+2581 (Lower One Eighth Block)
  690. const std::string escaped_space = "\xE2\x96\x81";
  691. const char * prefix_replacements = NULL;
  692. size_t prefix_replacements_size = 0;
  693. const uint32_t * xcda_array = NULL;
  694. size_t xcda_array_size = 0;
  695. struct naive_trie user_defined_token_matcher;
  696. float min_score = FLT_MAX;
  697. float max_score = -FLT_MAX;
  698. float unknown_token_score_penalty = 10.0;
  699. float unknown_token_score;
  700. struct naive_trie token_matcher;
  701. };
  702. struct llm_tokenizer_ugm_session {
  703. llm_tokenizer_ugm_session(const llama_vocab & vocab, const llm_tokenizer_ugm & tokenizer) : vocab(vocab), tokenizer(tokenizer) {}
  704. /* This implementation is based on SentencePiece optimized Viterbi algorithm for
  705. * unigram language models. The general idea is to:
  706. * - move along the input sequence in steps of one UTF code point,
  707. * - at each step find all possible tokenizations of the prefix by
  708. * traversing the tokens trie,
  709. * - for each tokenization store the best one so far (by higher score)
  710. * - use the position in sequence after given token as an index to store
  711. * results
  712. * - if there was no valid tokenization of the current UTF code point
  713. * then use unknown token with additional score penalty
  714. * After processing the whole sequence we backtrack from the end to get
  715. * the best tokenization.
  716. */
  717. void tokenize(const std::string & text, std::vector<llama_token> & output) {
  718. // get current size of output (for reversal later)
  719. size_t output_size = output.size();
  720. // normalize the input first
  721. std::string normalized;
  722. normalize(text, &normalized);
  723. size_t input_len = normalized.size();
  724. if (input_len == 0) {
  725. return;
  726. }
  727. // initialize score_sum to -FLT_MAX so it will be always lower than sums of token scores
  728. std::vector<struct best_tokenization> tokenization_results(input_len + 1, {vocab.token_unk(), 0, -DBL_MAX});
  729. // at the beginning tokenization score is zero
  730. tokenization_results[0] = { vocab.token_unk(), 0, 0 };
  731. for (size_t input_offset = 0; input_offset < input_len;) {
  732. size_t prefix_offset = input_offset;
  733. // calculate how many code units are in the currently processed UTF code point
  734. size_t n_utf8_code_units = std::min<size_t>(unicode_len_utf8(normalized[input_offset]), input_len - input_offset);
  735. // traverse the token matcher trie to find a matching token
  736. bool single_codepoint_token_found = false;
  737. const struct best_tokenization & current_best = tokenization_results[input_offset];
  738. const struct naive_trie * node = tokenizer.token_matcher.traverse(normalized[prefix_offset++]);
  739. while (prefix_offset <= input_len && node != NULL) {
  740. // check if we found valid token in prefix
  741. if (node->has_value) {
  742. // check if it corresponds to the whole UTF code point
  743. if (prefix_offset - input_offset == n_utf8_code_units) {
  744. single_codepoint_token_found = true;
  745. }
  746. llama_token token_id = node->value;
  747. const auto & token_data = vocab.get_token_data(token_id);
  748. // we set the user-defined token scores to 0 to make them more likely to be selected
  749. // (normal token scores are log probabilities, so they are negative)
  750. // score type is double here to make tokenization results exactly
  751. // the same as in the HF tokenizer using SentencePiece
  752. const double token_score = vocab.is_user_defined(token_id) ? 0.0 : token_data.score;
  753. const double challenger_score = current_best.score_sum + token_score;
  754. struct best_tokenization & current_champ = tokenization_results[prefix_offset];
  755. if (challenger_score > current_champ.score_sum) {
  756. struct best_tokenization challenger = { token_id, input_offset, challenger_score };
  757. current_champ = challenger;
  758. }
  759. }
  760. node = node->traverse(normalized[prefix_offset++]);
  761. }
  762. // if we didn't find a valid token corresponding to the whole UTF code point
  763. // then use unknown token as the tokenization of this UTF code point
  764. if (!single_codepoint_token_found) {
  765. const double challenger_score = current_best.score_sum + tokenizer.unknown_token_score;
  766. prefix_offset = input_offset + n_utf8_code_units;
  767. struct best_tokenization & current_champ = tokenization_results[prefix_offset];
  768. if (challenger_score > current_champ.score_sum) {
  769. struct best_tokenization challenger = { vocab.token_unk(), input_offset, challenger_score };
  770. current_champ = challenger;
  771. }
  772. }
  773. // move to the next UTF code point
  774. input_offset += n_utf8_code_units;
  775. }
  776. // now backtrack from the end to gather token ids of the best tokenization
  777. // merge sequences of consecutive unknown tokens into single unknown tokens
  778. bool is_prev_unknown = false;
  779. for (struct best_tokenization & tokenization = tokenization_results[input_len]; ; tokenization = tokenization_results[tokenization.input_offset]) {
  780. bool is_unknown = tokenization.token_id == vocab.token_unk();
  781. if (!(is_prev_unknown && is_unknown)) {
  782. output.push_back(tokenization.token_id);
  783. }
  784. if (tokenization.input_offset == 0) {
  785. break;
  786. }
  787. is_prev_unknown = is_unknown;
  788. }
  789. // reverse the output since we added tokens starting from the end of the input
  790. std::reverse(output.begin() + output_size, output.end());
  791. }
  792. private:
  793. // helper structure for returning normalization results
  794. struct normalization_result {
  795. const char * normalized;
  796. size_t normalized_len;
  797. size_t consumed_input;
  798. };
  799. void normalize(const std::string& input, std::string * normalized) {
  800. normalized->clear();
  801. normalized->reserve(input.size() * 3);
  802. const std::string space = vocab.get_escape_whitespaces() ? tokenizer.escaped_space : " ";
  803. const bool shall_prepend_space = !vocab.get_treat_whitespace_as_suffix() && vocab.get_add_space_prefix();
  804. const bool shall_append_space = vocab.get_treat_whitespace_as_suffix() && vocab.get_add_space_prefix();
  805. const bool shall_merge_spaces = vocab.get_remove_extra_whitespaces();
  806. bool is_space_prepended = false;
  807. bool processing_non_ws = false;
  808. size_t input_len = input.size();
  809. for (size_t input_offset = 0; input_offset < input_len; ) {
  810. auto norm_res = normalize_prefix(input, input_offset);
  811. for (size_t i = 0; i < norm_res.normalized_len; i++) {
  812. char c = norm_res.normalized[i];
  813. if (c != ' ') {
  814. if (!processing_non_ws) {
  815. processing_non_ws = true;
  816. if ((shall_prepend_space && !is_space_prepended) || shall_merge_spaces) {
  817. normalized->append(space);
  818. is_space_prepended = true;
  819. }
  820. }
  821. normalized->push_back(c);
  822. } else {
  823. if (processing_non_ws) {
  824. processing_non_ws = false;
  825. }
  826. if (!shall_merge_spaces) {
  827. normalized->append(space);
  828. }
  829. }
  830. }
  831. input_offset += norm_res.consumed_input;
  832. }
  833. if (shall_append_space) {
  834. normalized->append(space);
  835. }
  836. }
  837. /*
  838. * This structure is a view wrapper for XOR-compressed double array (XCDA)
  839. * See Shunsuke Kanda (2018). Space- and Time-Efficient String Dictionaries.
  840. * Each bit-packed entry contains:
  841. * - BASE array value in bits 10-30
  842. * - LCHECK array value in bits 0-7
  843. * - LEAF array value in bit 9
  844. * Entries containing indexes of replacement sequences have set bit 31
  845. */
  846. struct xcda_array_view {
  847. public:
  848. xcda_array_view(const uint32_t * xcda_array, size_t xcda_array_size) : xcda_array(xcda_array), xcda_array_size(xcda_array_size) {
  849. }
  850. uint32_t get_base(size_t index) {
  851. uint32_t packed_node = get_node(index);
  852. return (packed_node >> 10) << ((packed_node & (1U << 9)) >> 6);
  853. }
  854. uint32_t get_lcheck(size_t index) {
  855. uint32_t packed_node = get_node(index);
  856. return packed_node & ((1U << 31) | 0xff);
  857. }
  858. bool get_leaf(size_t index) {
  859. uint32_t packed_node = get_node(index);
  860. return (packed_node >> 8) & 1;
  861. }
  862. uint32_t get_value(size_t index) {
  863. uint32_t packed_node = get_node(index);
  864. return packed_node & ((1U << 31) - 1);
  865. }
  866. private:
  867. uint32_t get_node(size_t index) {
  868. if (index > xcda_array_size) {
  869. throw std::runtime_error("Index out of array bounds in XCDA array!");
  870. }
  871. return xcda_array[index];
  872. }
  873. const uint32_t * xcda_array;
  874. size_t xcda_array_size;
  875. };
  876. // this structure stores the best tokenization so far at input_offset
  877. struct best_tokenization {
  878. llama_token token_id;
  879. size_t input_offset;
  880. double score_sum;
  881. };
  882. struct normalization_result normalize_prefix(const std::string & input, size_t input_offset) {
  883. if (input_offset == input.size()) {
  884. return { &input[input_offset], 0, 0 };
  885. }
  886. // if input prefix matches some user-defined token return this token as normalization result
  887. auto user_defined_token_match =
  888. tokenizer.user_defined_token_matcher.get_longest_prefix(&input[input_offset], input.size() - input_offset);
  889. if (user_defined_token_match.second > 0) {
  890. return { &input[input_offset], user_defined_token_match.second, user_defined_token_match.second };
  891. }
  892. size_t longest_prefix_length = 0;
  893. size_t longest_prefix_offset = 0;
  894. if (tokenizer.xcda_array_size > 0) {
  895. struct xcda_array_view xcda_view(tokenizer.xcda_array, tokenizer.xcda_array_size);
  896. // Find the longest normalized sequence matching the input prefix by walking
  897. // the XOR-compressed compact double array (XCDA) starting from the root node
  898. // We find the index of the next node by calculating BASE[s] ^ c where s is
  899. // the index of the previous node and c is a numerical character value
  900. uint32_t node_index = 0;
  901. // get BASE of the root node
  902. node_index = xcda_view.get_base(node_index);
  903. for (size_t prefix_offset = input_offset; prefix_offset < input.size(); prefix_offset++) {
  904. unsigned char c = input[prefix_offset];
  905. if (c == 0) {
  906. break;
  907. }
  908. node_index ^= c;
  909. // if value of LCHECK is not c it means that this is not a child of
  910. // the previous node, so we stop matching
  911. if (xcda_view.get_lcheck(node_index) != c) {
  912. break;
  913. }
  914. bool is_leaf = xcda_view.get_leaf(node_index);
  915. // get BASE of the current node
  916. node_index ^= xcda_view.get_base(node_index);
  917. // if LEAF of the current node is true, it means that its BASE points to the node
  918. // containing index of replacement sequence for currently matched input prefix
  919. if (is_leaf)
  920. {
  921. longest_prefix_length = prefix_offset - input_offset + 1;
  922. // get index of replacement sequence for currently matched input prefix
  923. longest_prefix_offset = xcda_view.get_value(node_index);
  924. }
  925. }
  926. }
  927. if (longest_prefix_length > 0) {
  928. // we have a match, so return the replacement sequence
  929. if (longest_prefix_offset >= tokenizer.prefix_replacements_size) {
  930. throw std::runtime_error("Index out of array bounds in precompiled charsmap!");
  931. }
  932. const char * prefix_replacement = &(tokenizer.prefix_replacements)[longest_prefix_offset];
  933. return { prefix_replacement, strlen(prefix_replacement), longest_prefix_length };
  934. }
  935. // check if the input prefix contains a valid sequence of UTF-8 code units
  936. try {
  937. // if yes, return this sequence unmodified
  938. size_t prefix_offset = input_offset;
  939. unicode_cpt_from_utf8(input, prefix_offset);
  940. return { &input[input_offset], prefix_offset - input_offset, prefix_offset - input_offset };
  941. } catch (std::invalid_argument & /*ex*/) {
  942. // if no, consume 1 byte and return U+FFFD - REPLACEMENT CHARACTER
  943. return { "\xEF\xBF\xBD", 3, 1 };
  944. }
  945. }
  946. const llama_vocab & vocab;
  947. const llm_tokenizer_ugm & tokenizer;
  948. };
  949. //
  950. // RWKV tokenizer
  951. //
  952. static std::vector<uint8_t> llama_unescape_rwkv_token(const std::string & escaped) {
  953. std::vector<uint8_t> output;
  954. output.reserve(escaped.size());
  955. // Parser state
  956. bool escaping = false;
  957. uint8_t hex_remaining = 0;
  958. uint8_t hex_acc = 0;
  959. // Step through characters, performing parsing
  960. for (const char & c : escaped) {
  961. // If we're parsing a hex code, interpret the next character
  962. if (hex_remaining != 0) {
  963. uint8_t value = (c >= 'a') ? (c - 'a' + 10) : (c - '0');
  964. hex_acc = (hex_acc << 4) + value;
  965. hex_remaining -= 1;
  966. if (hex_remaining == 0) {
  967. output.push_back(hex_acc);
  968. hex_acc = 0;
  969. }
  970. continue;
  971. }
  972. // If we got an escape character, interpret it
  973. if (escaping) {
  974. if (c == 't') {
  975. output.push_back('\t');
  976. } else if (c == 'n') {
  977. output.push_back('\n');
  978. } else if (c == 'r') {
  979. output.push_back('\r');
  980. } else if (c == 'x') {
  981. hex_remaining = 2;
  982. } else {
  983. output.push_back(c);
  984. }
  985. escaping = false;
  986. continue;
  987. }
  988. if (c == '\\') {
  989. escaping = true;
  990. continue;
  991. }
  992. output.push_back(c);
  993. }
  994. return output;
  995. }
  996. struct llm_tokenizer_rwkv : llm_tokenizer {
  997. llm_tokenizer_rwkv(const llama_vocab & vocab) {
  998. // RWKV supports arbitrary byte tokens, but the vocab struct only supports string tokens.
  999. // For now, we decode the vocab here into the lookup we'll use for tokenization.
  1000. // build trie
  1001. for (uint32_t id = 0; id < vocab.n_tokens(); ++id) {
  1002. const auto & data = vocab.get_token_data(id);
  1003. const auto text = llama_unescape_rwkv_token(data.text);
  1004. token_matcher.insert((const char *) text.data(), text.size(), id);
  1005. }
  1006. }
  1007. struct naive_trie token_matcher;
  1008. };
  1009. struct llm_tokenizer_rwkv_session {
  1010. llm_tokenizer_rwkv_session(const llama_vocab & vocab, const llm_tokenizer_rwkv & tokenizer) : vocab(vocab), tokenizer(tokenizer) {}
  1011. void tokenize(const std::string & text, std::vector<llama_token> & output) {
  1012. uint32_t position = 0;
  1013. while (position < text.size()) {
  1014. const struct naive_trie * node = tokenizer.token_matcher.traverse(text[position]);
  1015. if (node == NULL) {
  1016. // no matching token found, add unknown token
  1017. output.push_back(vocab.token_unk());
  1018. position += 1;
  1019. continue;
  1020. }
  1021. // traverse the trie to find the longest matching token
  1022. uint32_t token_id = 0;
  1023. uint32_t token_length = 0;
  1024. while (node != NULL) {
  1025. if (node->has_value) {
  1026. token_id = node->value;
  1027. token_length = position + 1;
  1028. }
  1029. node = node->traverse(text[++position]);
  1030. }
  1031. // add the longest matching token
  1032. output.push_back(token_id);
  1033. position = token_length;
  1034. }
  1035. }
  1036. private:
  1037. const llama_vocab & vocab;
  1038. const llm_tokenizer_rwkv & tokenizer;
  1039. };
  1040. struct llm_tokenizer_plamo2 : llm_tokenizer {
  1041. llm_tokenizer_plamo2(const llama_vocab & vocab) {
  1042. build(vocab);
  1043. }
  1044. void build(const llama_vocab & vocab) {
  1045. // Reset internal structures
  1046. tokens_.clear();
  1047. bytes_.assign(256, 0);
  1048. to_suffix_id_.clear();
  1049. table_.clear();
  1050. // Build token list and byte mapping
  1051. std::unordered_map<std::string, float> suffix_to_score;
  1052. std::unordered_map<std::string, llama_token> token_to_id;
  1053. for (size_t token_id = 0; token_id < vocab.n_tokens(); ++token_id) {
  1054. const auto & entry = vocab.get_token_data(token_id);
  1055. tokens_.push_back(entry.text);
  1056. token_to_id[entry.text] = static_cast<llama_token>(token_id);
  1057. // Handle byte tokens
  1058. if (vocab.is_byte(token_id)) {
  1059. if (entry.text.length() == 6 && entry.text.substr(0, 3) == "<0x" && entry.text.back() == '>') {
  1060. std::string hex_str = entry.text.substr(3, 2);
  1061. int byte_val = std::stoi(hex_str, nullptr, 16);
  1062. bytes_[byte_val] = static_cast<llama_token>(token_id);
  1063. }
  1064. continue;
  1065. }
  1066. // Add token and all its suffixes to suffix_to_score
  1067. suffix_to_score[entry.text] = entry.score;
  1068. // Extract suffixes character by character (UTF-8 aware)
  1069. std::vector<uint32_t> cpts = unicode_cpts_from_utf8(entry.text);
  1070. for (size_t i = 1; i < cpts.size(); ++i) {
  1071. std::string suffix;
  1072. for (size_t j = i; j < cpts.size(); ++j) {
  1073. suffix += unicode_cpt_to_utf8(cpts[j]);
  1074. }
  1075. if (suffix_to_score.find(suffix) == suffix_to_score.end()) {
  1076. suffix_to_score[suffix] = std::numeric_limits<float>::quiet_NaN();
  1077. }
  1078. }
  1079. }
  1080. // Check that all byte tokens are set
  1081. for (int i = 0; i < 256; ++i) {
  1082. if (bytes_[i] == 0) {
  1083. throw std::runtime_error("Byte token for <0x" + std::to_string(i) + "> is not set");
  1084. }
  1085. }
  1086. // Build suffix list in lexicographical order of reversed strings
  1087. std::vector<std::string> suffixes;
  1088. for (const auto & pair : suffix_to_score) {
  1089. suffixes.push_back(pair.first);
  1090. }
  1091. suffixes.push_back(""); // Empty suffix
  1092. std::sort(suffixes.begin(), suffixes.end(), [](const std::string & a, const std::string & b) {
  1093. std::string rev_a(a.rbegin(), a.rend());
  1094. std::string rev_b(b.rbegin(), b.rend());
  1095. return rev_a < rev_b;
  1096. });
  1097. // Build suffix_to_id and to_suffix_id_
  1098. std::unordered_map<std::string, int32_t> suffix_to_id;
  1099. int32_t num_pieces = 0;
  1100. for (const auto & suffix : suffixes) {
  1101. suffix_to_id[suffix] = num_pieces;
  1102. if (!suffix.empty()) {
  1103. std::vector<uint32_t> cpts = unicode_cpts_from_utf8(suffix);
  1104. std::string remaining;
  1105. for (size_t i = 1; i < cpts.size(); ++i) {
  1106. remaining += unicode_cpt_to_utf8(cpts[i]);
  1107. }
  1108. int64_t piece_code = (static_cast<int64_t>(cpts[0]) << 32) | suffix_to_id[remaining];
  1109. to_suffix_id_[piece_code] = num_pieces;
  1110. // Count number of pieces for this suffix
  1111. int32_t pieces_for_suffix = 1; // sentinel row
  1112. for (int32_t piece_length = static_cast<int32_t>(cpts.size()); piece_length > 0; --piece_length) {
  1113. std::string piece;
  1114. for (int32_t i = 0; i < piece_length; ++i) {
  1115. piece += unicode_cpt_to_utf8(cpts[i]);
  1116. }
  1117. if (suffix_to_score.find(piece) != suffix_to_score.end()) {
  1118. pieces_for_suffix++;
  1119. }
  1120. }
  1121. num_pieces += pieces_for_suffix;
  1122. } else {
  1123. num_pieces++; // Empty suffix contributes one piece (sentinel row)
  1124. }
  1125. }
  1126. // Build flattened table
  1127. table_.resize(num_pieces, std::vector<int32_t>(4, 0));
  1128. int32_t table_idx = 0;
  1129. for (const auto & suffix : suffixes) {
  1130. // Add all prefixes of the suffix to the table (in decreasing order of length)
  1131. std::vector<uint32_t> cpts = unicode_cpts_from_utf8(suffix);
  1132. for (int32_t piece_length = static_cast<int32_t>(cpts.size()); piece_length > 0; --piece_length) {
  1133. std::string piece;
  1134. for (int32_t i = 0; i < piece_length; ++i) {
  1135. piece += unicode_cpt_to_utf8(cpts[i]);
  1136. }
  1137. auto score_it = suffix_to_score.find(piece);
  1138. if (score_it == suffix_to_score.end()) {
  1139. continue;
  1140. }
  1141. table_[table_idx][TABLE_PIECE_LENGTH] = piece_length;
  1142. auto token_it = token_to_id.find(piece);
  1143. table_[table_idx][TABLE_TOKEN_ID] = (token_it != token_to_id.end()) ? token_it->second : -1;
  1144. float score = score_it->second;
  1145. table_[table_idx][TABLE_SCORE] = std::isfinite(score) ?
  1146. static_cast<int32_t>(std::round(score * 1e4)) : INVALID_SCORE;
  1147. table_[table_idx][TABLE_PIECE_ID] = suffix_to_id[piece];
  1148. table_idx++;
  1149. }
  1150. // Add sentinel row
  1151. table_[table_idx][TABLE_PIECE_LENGTH] = 1;
  1152. table_[table_idx][TABLE_TOKEN_ID] = -1;
  1153. table_[table_idx][TABLE_SCORE] = UNKNOWN_SCORE;
  1154. table_idx++;
  1155. }
  1156. }
  1157. std::vector<llama_token> encode(const std::string & text) const {
  1158. std::vector<uint32_t> unicode_data = unicode_cpts_from_utf8(text);
  1159. // Skip the first code point if it is a BOM (Byte Order Mark)
  1160. if (!unicode_data.empty() && unicode_data[0] == 0xFEFF) {
  1161. unicode_data.erase(unicode_data.begin());
  1162. }
  1163. if (unicode_data.empty()) {
  1164. return {};
  1165. }
  1166. const size_t data_len = unicode_data.size();
  1167. // Initialize scores array (dynamic programming)
  1168. std::vector<int64_t> scores(data_len + 1, static_cast<int64_t>(1) << 60);
  1169. scores[data_len] = 0;
  1170. // Path array to track best tokenization
  1171. std::vector<std::vector<int32_t>> path(data_len + 1, std::vector<int32_t>(3, 0));
  1172. int32_t suffix_id = 0;
  1173. // Process from end to beginning
  1174. for (int i = static_cast<int>(data_len) - 1; i >= 0; --i) {
  1175. uint32_t c = unicode_data[i];
  1176. // Find next suffix ID
  1177. for (size_t p = suffix_id; p < table_.size(); ++p) {
  1178. int64_t piece_code = (static_cast<int64_t>(c) << 32) | table_[p][TABLE_PIECE_ID];
  1179. auto it = to_suffix_id_.find(piece_code);
  1180. suffix_id = (it != to_suffix_id_.end()) ? it->second : 0;
  1181. if (suffix_id > 0 || table_[p][TABLE_SCORE] == UNKNOWN_SCORE) {
  1182. break;
  1183. }
  1184. }
  1185. // Update best path
  1186. for (size_t p = suffix_id; p < table_.size(); ++p) {
  1187. int32_t score = table_[p][TABLE_SCORE];
  1188. if (score > INVALID_SCORE) {
  1189. int32_t piece_length = table_[p][TABLE_PIECE_LENGTH];
  1190. int64_t s = scores[i + piece_length] - score;
  1191. if (s < scores[i]) {
  1192. scores[i] = s;
  1193. path[i][PATH_TOKEN_LENGTH] = piece_length;
  1194. path[i][PATH_TOKEN_ID] = table_[p][TABLE_TOKEN_ID];
  1195. path[i][PATH_NUM_TOKENS] = path[i + piece_length][PATH_NUM_TOKENS] + 1;
  1196. if (score == UNKNOWN_SCORE) {
  1197. // Add UTF-8 byte count
  1198. path[i][PATH_NUM_TOKENS] += (c >= 0x80) + (c >= 0x800) + (c >= 0x10000);
  1199. }
  1200. }
  1201. }
  1202. if (score == UNKNOWN_SCORE) {
  1203. break;
  1204. }
  1205. }
  1206. }
  1207. // Decode the best path
  1208. std::vector<llama_token> token_ids;
  1209. token_ids.reserve(path[0][PATH_NUM_TOKENS]);
  1210. int pos = 0;
  1211. while (pos < static_cast<int>(data_len)) {
  1212. if (path[pos][PATH_TOKEN_ID] >= 0) {
  1213. token_ids.push_back(path[pos][PATH_TOKEN_ID]);
  1214. } else {
  1215. // Fall back to byte tokens
  1216. uint32_t c = unicode_data[pos];
  1217. int s = 1 + (c >= 0x80) + (c >= 0x800) + (c >= 0x10000);
  1218. for (int i = 0; i < s; ++i) {
  1219. uint8_t b;
  1220. if (s == 1) {
  1221. b = c;
  1222. } else {
  1223. if (i == 0) {
  1224. b = (0xF00 >> s) & 0xFF;
  1225. } else {
  1226. b = 0x80;
  1227. }
  1228. }
  1229. token_ids.push_back(bytes_[b | ((c >> ((s - i - 1) * 6)) & 0x3F)]);
  1230. }
  1231. }
  1232. assert(path[pos][PATH_TOKEN_LENGTH] > 0);
  1233. pos += path[pos][PATH_TOKEN_LENGTH];
  1234. }
  1235. return token_ids;
  1236. }
  1237. private:
  1238. // Constants for table structure
  1239. static constexpr int32_t TABLE_PIECE_LENGTH = 0;
  1240. static constexpr int32_t TABLE_TOKEN_ID = 1;
  1241. static constexpr int32_t TABLE_SCORE = 2;
  1242. static constexpr int32_t TABLE_PIECE_ID = 3;
  1243. // Constants for path array
  1244. static constexpr int32_t PATH_TOKEN_LENGTH = 0;
  1245. static constexpr int32_t PATH_TOKEN_ID = 1;
  1246. static constexpr int32_t PATH_NUM_TOKENS = 2;
  1247. // Score constants
  1248. static constexpr int32_t INVALID_SCORE = -20000000;
  1249. static constexpr int32_t UNKNOWN_SCORE = -10000000;
  1250. // List of tokens in the vocabulary
  1251. std::vector<std::string> tokens_;
  1252. // Mapping from byte code point to token ID (for byte fallback)
  1253. std::vector<llama_token> bytes_;
  1254. // Mapping from piece code to suffix ID
  1255. std::unordered_map<int64_t, int32_t> to_suffix_id_;
  1256. // Flattened table representing the Trie structure
  1257. // Each row contains: [piece_length, token_id, score, piece_id]
  1258. std::vector<std::vector<int32_t>> table_;
  1259. };
  1260. struct llm_tokenizer_plamo2_session {
  1261. llm_tokenizer_plamo2_session(const llm_tokenizer_plamo2 & tokenizer) : tokenizer(tokenizer) {}
  1262. void tokenize(const std::string & text, std::vector<llama_token> & output) {
  1263. std::vector<llama_token> tokens = tokenizer.encode(text);
  1264. output.insert(output.end(), tokens.begin(), tokens.end());
  1265. }
  1266. private:
  1267. const llm_tokenizer_plamo2 & tokenizer;
  1268. };
  1269. //
  1270. // impl
  1271. //
  1272. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
  1273. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  1274. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  1275. } FRAGMENT_BUFFER_VARIANT_TYPE;
  1276. struct fragment_buffer_variant {
  1277. fragment_buffer_variant(llama_token _token)
  1278. :
  1279. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  1280. token(_token),
  1281. raw_text(_dummy),
  1282. offset(0),
  1283. length(0) {}
  1284. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  1285. :
  1286. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  1287. token((llama_token) - 1),
  1288. raw_text(_raw_text),
  1289. offset(_offset),
  1290. length(_length){
  1291. GGML_ASSERT(_offset >= 0);
  1292. GGML_ASSERT(_length >= 1);
  1293. GGML_ASSERT(offset + length <= raw_text.length());
  1294. }
  1295. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  1296. const llama_token token;
  1297. const std::string _dummy;
  1298. const std::string & raw_text;
  1299. const uint64_t offset;
  1300. const uint64_t length;
  1301. };
  1302. struct llama_vocab::impl {
  1303. uint32_t n_token_types = 0; // for BERT-style token types
  1304. std::string tokenizer_model;
  1305. std::string tokenizer_pre;
  1306. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  1307. enum llama_vocab_pre_type pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1308. int max_token_len = 0; // used for optimizing longest token search
  1309. // default LLaMA special tokens
  1310. // TODO: should we set all of these to LLAMA_TOKEN_NULL?
  1311. llama_token special_bos_id = 1;
  1312. llama_token special_eos_id = 2;
  1313. llama_token special_eot_id = LLAMA_TOKEN_NULL;
  1314. llama_token special_eom_id = LLAMA_TOKEN_NULL;
  1315. llama_token special_unk_id = 0;
  1316. llama_token special_sep_id = LLAMA_TOKEN_NULL;
  1317. llama_token special_pad_id = LLAMA_TOKEN_NULL;
  1318. llama_token special_mask_id = LLAMA_TOKEN_NULL;
  1319. llama_token linefeed_id = 13;
  1320. // fim tokens
  1321. llama_token special_fim_pre_id = LLAMA_TOKEN_NULL;
  1322. llama_token special_fim_suf_id = LLAMA_TOKEN_NULL;
  1323. llama_token special_fim_mid_id = LLAMA_TOKEN_NULL;
  1324. llama_token special_fim_pad_id = LLAMA_TOKEN_NULL;
  1325. llama_token special_fim_rep_id = LLAMA_TOKEN_NULL; // repo
  1326. llama_token special_fim_sep_id = LLAMA_TOKEN_NULL; // file separator
  1327. // tokenizer flags
  1328. bool add_space_prefix = false;
  1329. bool add_bos = false;
  1330. bool add_eos = false;
  1331. bool add_sep = false;
  1332. bool ignore_merges = false;
  1333. bool clean_spaces = false; // clean_up_tokenization_spaces
  1334. bool remove_extra_whitespaces = false;
  1335. bool escape_whitespaces = true;
  1336. bool treat_whitespace_as_suffix = false;
  1337. std::unordered_map<std::string, llama_token> token_to_id;
  1338. std::vector<token_data> id_to_token;
  1339. std::vector<llama_token> cache_special_tokens;
  1340. std::vector<std::string> cache_token_to_piece; // llama_token_to_piece(special = true);
  1341. struct pair_hash {
  1342. size_t operator()(const std::pair<std::string, std::string> & p) const {
  1343. return std::hash<std::string>{}(p.first) ^ //create some hash for pair
  1344. (std::hash<std::string>{}(p.second) << 1);
  1345. }
  1346. };
  1347. std::unordered_map<std::pair<std::string, std::string>, int, pair_hash> bpe_ranks;
  1348. // set of all tokens that cause "end of generation"
  1349. std::set<llama_token> special_eog_ids;
  1350. std::unique_ptr<llm_tokenizer> tokenizer;
  1351. std::vector<char> precompiled_charsmap;
  1352. impl(const llama_vocab & vocab) : vocab(vocab) {
  1353. }
  1354. ~impl() = default;
  1355. void load(llama_model_loader & ml, const LLM_KV & kv);
  1356. enum llama_vocab_type get_type() const;
  1357. std::string type_name() const;
  1358. bool is_normal (llama_token id) const;
  1359. bool is_unknown (llama_token id) const;
  1360. bool is_control (llama_token id) const;
  1361. bool is_byte (llama_token id) const;
  1362. bool is_user_defined(llama_token id) const;
  1363. bool is_unused (llama_token id) const;
  1364. bool is_eog (llama_token id) const;
  1365. uint8_t token_to_byte(llama_token id) const;
  1366. llama_token_attr token_get_attr(llama_token id) const;
  1367. void init_tokenizer(enum llama_vocab_type type);
  1368. void tokenizer_st_partition(std::forward_list<fragment_buffer_variant> & buffer, bool parse_special) const;
  1369. std::string token_to_piece_for_cache(
  1370. llama_token token,
  1371. bool special) const;
  1372. std::vector<llama_token> tokenize(
  1373. const std::string & raw_text,
  1374. bool add_special,
  1375. bool parse_special = false) const;
  1376. int32_t tokenize(
  1377. const char * text,
  1378. int32_t text_len,
  1379. llama_token * tokens,
  1380. int32_t n_tokens_max,
  1381. bool add_special,
  1382. bool parse_special) const;
  1383. // does not write null-terminator to buf
  1384. int32_t token_to_piece(
  1385. llama_token token,
  1386. char * buf,
  1387. int32_t length,
  1388. int32_t lstrip,
  1389. bool special) const;
  1390. // use cached data
  1391. const std::string & token_to_piece(llama_token token) const;
  1392. int32_t detokenize(
  1393. const llama_token * tokens,
  1394. int32_t n_tokens,
  1395. char * text,
  1396. int32_t text_len_max,
  1397. bool remove_special,
  1398. bool unparse_special) const;
  1399. std::string detokenize(
  1400. const std::vector<llama_token> & tokens,
  1401. bool special) const;
  1402. void print_info() const;
  1403. private:
  1404. const llama_vocab & vocab;
  1405. };
  1406. void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
  1407. struct gguf_context * ctx = ml.meta.get();
  1408. // determine vocab type
  1409. {
  1410. ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model);
  1411. ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
  1412. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, n_token_types, false);
  1413. if (tokenizer_model == "no_vocab" || tokenizer_model == "none") {
  1414. type = LLAMA_VOCAB_TYPE_NONE;
  1415. // default special tokens
  1416. special_bos_id = LLAMA_TOKEN_NULL;
  1417. special_eos_id = LLAMA_TOKEN_NULL;
  1418. special_unk_id = LLAMA_TOKEN_NULL;
  1419. special_sep_id = LLAMA_TOKEN_NULL;
  1420. special_pad_id = LLAMA_TOKEN_NULL;
  1421. special_mask_id = LLAMA_TOKEN_NULL;
  1422. linefeed_id = LLAMA_TOKEN_NULL;
  1423. // read vocab size from metadata
  1424. uint32_t n_tokens = 0;
  1425. if (ml.get_key(LLM_KV_VOCAB_SIZE, n_tokens, false)) {
  1426. LLAMA_LOG_WARN("%s: adding %u dummy tokens\n", __func__, n_tokens);
  1427. id_to_token.resize(n_tokens);
  1428. }
  1429. return;
  1430. }
  1431. if (tokenizer_model == "llama") {
  1432. type = LLAMA_VOCAB_TYPE_SPM;
  1433. // default special tokens
  1434. special_bos_id = 1;
  1435. special_eos_id = 2;
  1436. special_unk_id = 0;
  1437. special_sep_id = LLAMA_TOKEN_NULL;
  1438. special_pad_id = LLAMA_TOKEN_NULL;
  1439. special_mask_id = LLAMA_TOKEN_NULL;
  1440. } else if (tokenizer_model == "bert") {
  1441. type = LLAMA_VOCAB_TYPE_WPM;
  1442. // default special tokens
  1443. special_bos_id = 101;
  1444. special_eos_id = LLAMA_TOKEN_NULL;
  1445. special_unk_id = 100;
  1446. special_sep_id = 102;
  1447. special_pad_id = 0;
  1448. special_mask_id = 103;
  1449. add_sep = true;
  1450. } else if (tokenizer_model == "gpt2") {
  1451. type = LLAMA_VOCAB_TYPE_BPE;
  1452. // read bpe merges and populate bpe ranks
  1453. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  1454. if (merges_keyidx == -1) {
  1455. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  1456. }
  1457. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  1458. for (int i = 0; i < n_merges; i++) {
  1459. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  1460. //GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  1461. std::string first;
  1462. std::string second;
  1463. const size_t pos = word.find(' ', 1);
  1464. if (pos != std::string::npos) {
  1465. first = word.substr(0, pos);
  1466. second = word.substr(pos + 1);
  1467. }
  1468. bpe_ranks.emplace(std::make_pair(first, second), i);
  1469. }
  1470. // default special tokens
  1471. special_bos_id = 11;
  1472. special_eos_id = 11;
  1473. special_unk_id = LLAMA_TOKEN_NULL;
  1474. special_sep_id = LLAMA_TOKEN_NULL;
  1475. special_pad_id = LLAMA_TOKEN_NULL;
  1476. special_mask_id = LLAMA_TOKEN_NULL;
  1477. } else if (tokenizer_model == "t5") {
  1478. type = LLAMA_VOCAB_TYPE_UGM;
  1479. // default special tokens
  1480. special_bos_id = LLAMA_TOKEN_NULL;
  1481. special_eos_id = 1;
  1482. special_unk_id = 2;
  1483. special_sep_id = LLAMA_TOKEN_NULL;
  1484. special_pad_id = 0;
  1485. special_mask_id = LLAMA_TOKEN_NULL;
  1486. const int precompiled_charsmap_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP).c_str());
  1487. if (precompiled_charsmap_keyidx != -1) {
  1488. const gguf_type pc_type = gguf_get_arr_type(ctx, precompiled_charsmap_keyidx);
  1489. GGML_ASSERT(pc_type == GGUF_TYPE_INT8 || pc_type == GGUF_TYPE_UINT8);
  1490. const size_t n_precompiled_charsmap = gguf_get_arr_n(ctx, precompiled_charsmap_keyidx);
  1491. const char * pc = (const char *) gguf_get_arr_data(ctx, precompiled_charsmap_keyidx);
  1492. precompiled_charsmap.assign(pc, pc + n_precompiled_charsmap);
  1493. #ifdef IS_BIG_ENDIAN
  1494. // correct endiannes of data in precompiled_charsmap binary blob
  1495. uint32_t * xcda_blob_size = (uint32_t *) &precompiled_charsmap[0];
  1496. *xcda_blob_size = __builtin_bswap32(*xcda_blob_size);
  1497. assert(*xcda_blob_size + sizeof(uint32_t) < n_precompiled_charsmap);
  1498. size_t xcda_array_size = *xcda_blob_size / sizeof(uint32_t);
  1499. uint32_t * xcda_array = (uint32_t *) &precompiled_charsmap[sizeof(uint32_t)];
  1500. for (size_t i = 0; i < xcda_array_size; ++i) {
  1501. xcda_array[i] = __builtin_bswap32(xcda_array[i]);
  1502. }
  1503. #endif
  1504. }
  1505. } else if (tokenizer_model == "rwkv") {
  1506. type = LLAMA_VOCAB_TYPE_RWKV;
  1507. // default special tokens
  1508. special_bos_id = LLAMA_TOKEN_NULL;
  1509. special_eos_id = LLAMA_TOKEN_NULL;
  1510. special_unk_id = LLAMA_TOKEN_NULL;
  1511. special_sep_id = LLAMA_TOKEN_NULL;
  1512. special_pad_id = LLAMA_TOKEN_NULL;
  1513. } else if (tokenizer_model == "plamo2") {
  1514. type = LLAMA_VOCAB_TYPE_PLAMO2;
  1515. // PLaMo-2 default special tokens (these will be overridden by model config)
  1516. special_bos_id = 1; // <|plamo:bos|>
  1517. special_eos_id = 2; // <|plamo:eos|>
  1518. special_unk_id = 0; // <|plamo:unk|>
  1519. special_sep_id = LLAMA_TOKEN_NULL;
  1520. special_pad_id = 3; // <|plamo:pad|>
  1521. special_mask_id = LLAMA_TOKEN_NULL;
  1522. } else {
  1523. throw std::runtime_error(format("unknown tokenizer: '%s'", tokenizer_model.c_str()));
  1524. }
  1525. // for now, only BPE models have pre-tokenizers
  1526. if (type == LLAMA_VOCAB_TYPE_BPE) {
  1527. add_space_prefix = false;
  1528. clean_spaces = true;
  1529. if (tokenizer_pre.empty()) {
  1530. LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__);
  1531. LLAMA_LOG_WARN("%s: \n", __func__);
  1532. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  1533. LLAMA_LOG_WARN("%s: GENERATION QUALITY WILL BE DEGRADED! \n", __func__);
  1534. LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL \n", __func__);
  1535. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  1536. LLAMA_LOG_WARN("%s: \n", __func__);
  1537. pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1538. } else if (tokenizer_pre == "default") {
  1539. pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1540. } else if (
  1541. tokenizer_pre == "llama3" ||
  1542. tokenizer_pre == "llama-v3" ||
  1543. tokenizer_pre == "llama-bpe"||
  1544. tokenizer_pre == "falcon3" ||
  1545. tokenizer_pre == "falcon-h1" ||
  1546. tokenizer_pre == "pixtral" ||
  1547. tokenizer_pre == "midm-2.0" ||
  1548. tokenizer_pre == "lfm2") {
  1549. pre_type = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
  1550. ignore_merges = true;
  1551. add_bos = true;
  1552. } else if (
  1553. tokenizer_pre == "deepseek-llm") {
  1554. pre_type = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM;
  1555. clean_spaces = false;
  1556. } else if (
  1557. tokenizer_pre == "deepseek-coder") {
  1558. pre_type = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER;
  1559. clean_spaces = false;
  1560. } else if (
  1561. tokenizer_pre == "deepseek-v3") {
  1562. pre_type = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM;
  1563. clean_spaces = false;
  1564. } else if (
  1565. tokenizer_pre == "falcon") {
  1566. pre_type = LLAMA_VOCAB_PRE_TYPE_FALCON;
  1567. } else if (
  1568. tokenizer_pre == "mpt") {
  1569. pre_type = LLAMA_VOCAB_PRE_TYPE_MPT;
  1570. } else if (
  1571. tokenizer_pre == "starcoder") {
  1572. pre_type = LLAMA_VOCAB_PRE_TYPE_STARCODER;
  1573. } else if (
  1574. tokenizer_pre == "gpt-2" ||
  1575. tokenizer_pre == "phi-2" ||
  1576. tokenizer_pre == "jina-es" ||
  1577. tokenizer_pre == "jina-de" ||
  1578. tokenizer_pre == "gigachat" ||
  1579. tokenizer_pre == "jina-v2-es" ||
  1580. tokenizer_pre == "jina-v2-de" ||
  1581. tokenizer_pre == "a.x-4.0" ||
  1582. tokenizer_pre == "mellum") {
  1583. pre_type = LLAMA_VOCAB_PRE_TYPE_GPT2;
  1584. } else if (
  1585. tokenizer_pre == "jina-v1-en" ||
  1586. tokenizer_pre == "jina-v2-code" ||
  1587. tokenizer_pre == "roberta-bpe") {
  1588. pre_type = LLAMA_VOCAB_PRE_TYPE_GPT2;
  1589. add_sep = true;
  1590. } else if (
  1591. tokenizer_pre == "refact") {
  1592. pre_type = LLAMA_VOCAB_PRE_TYPE_REFACT;
  1593. } else if (
  1594. tokenizer_pre == "command-r") {
  1595. pre_type = LLAMA_VOCAB_PRE_TYPE_COMMAND_R;
  1596. clean_spaces = false;
  1597. } else if (
  1598. tokenizer_pre == "qwen2" ||
  1599. tokenizer_pre == "deepseek-r1-qwen") {
  1600. pre_type = LLAMA_VOCAB_PRE_TYPE_QWEN2;
  1601. clean_spaces = false;
  1602. } else if (
  1603. tokenizer_pre == "stablelm2") {
  1604. pre_type = LLAMA_VOCAB_PRE_TYPE_STABLELM2;
  1605. } else if (
  1606. tokenizer_pre == "olmo") {
  1607. pre_type = LLAMA_VOCAB_PRE_TYPE_OLMO;
  1608. } else if (
  1609. tokenizer_pre == "dbrx") {
  1610. pre_type = LLAMA_VOCAB_PRE_TYPE_DBRX;
  1611. } else if (
  1612. tokenizer_pre == "smaug-bpe") {
  1613. pre_type = LLAMA_VOCAB_PRE_TYPE_SMAUG;
  1614. } else if (
  1615. tokenizer_pre == "poro-chat") {
  1616. pre_type = LLAMA_VOCAB_PRE_TYPE_PORO;
  1617. clean_spaces = false;
  1618. } else if (
  1619. tokenizer_pre == "glm4" ||
  1620. tokenizer_pre == "chatglm-bpe") {
  1621. pre_type = LLAMA_VOCAB_PRE_TYPE_CHATGLM4;
  1622. special_bos_id = LLAMA_TOKEN_NULL;
  1623. } else if (
  1624. tokenizer_pre == "viking") {
  1625. pre_type = LLAMA_VOCAB_PRE_TYPE_VIKING;
  1626. clean_spaces = false;
  1627. } else if (
  1628. tokenizer_pre == "jais") {
  1629. pre_type = LLAMA_VOCAB_PRE_TYPE_JAIS;
  1630. } else if (
  1631. tokenizer_pre == "tekken") {
  1632. pre_type = LLAMA_VOCAB_PRE_TYPE_TEKKEN;
  1633. clean_spaces = false;
  1634. ignore_merges = true;
  1635. add_bos = true;
  1636. } else if (
  1637. tokenizer_pre == "smollm") {
  1638. pre_type = LLAMA_VOCAB_PRE_TYPE_SMOLLM;
  1639. clean_spaces = false;
  1640. } else if (
  1641. tokenizer_pre == "codeshell") {
  1642. pre_type = LLAMA_VOCAB_PRE_TYPE_CODESHELL;
  1643. } else if (
  1644. tokenizer_pre == "bloom") {
  1645. pre_type = LLAMA_VOCAB_PRE_TYPE_BLOOM;
  1646. } else if (
  1647. tokenizer_pre == "gpt3-finnish") {
  1648. pre_type = LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH;
  1649. } else if (
  1650. tokenizer_pre == "exaone") {
  1651. pre_type = LLAMA_VOCAB_PRE_TYPE_EXAONE;
  1652. } else if (
  1653. tokenizer_pre == "exaone4") {
  1654. pre_type = LLAMA_VOCAB_PRE_TYPE_GPT2;
  1655. } else if (
  1656. tokenizer_pre == "chameleon") {
  1657. pre_type = LLAMA_VOCAB_PRE_TYPE_CHAMELEON;
  1658. add_bos = true;
  1659. clean_spaces = false;
  1660. } else if (
  1661. tokenizer_pre == "minerva-7b") {
  1662. pre_type = LLAMA_VOCAB_PRE_TYPE_MINERVA;
  1663. } else if (
  1664. tokenizer_pre == "megrez") {
  1665. pre_type = LLAMA_VOCAB_PRE_TYPE_QWEN2;
  1666. } else if (
  1667. tokenizer_pre == "gpt-4o" ||
  1668. tokenizer_pre == "llama4") {
  1669. pre_type = LLAMA_VOCAB_PRE_TYPE_GPT4O;
  1670. clean_spaces = false;
  1671. } else if (
  1672. tokenizer_pre == "superbpe") {
  1673. pre_type = LLAMA_VOCAB_PRE_TYPE_SUPERBPE;
  1674. clean_spaces = false;
  1675. } else if (
  1676. tokenizer_pre == "trillion") {
  1677. pre_type = LLAMA_VOCAB_PRE_TYPE_TRILLION;
  1678. clean_spaces = false;
  1679. } else if (
  1680. tokenizer_pre == "bailingmoe") {
  1681. pre_type = LLAMA_VOCAB_PRE_TYPE_BAILINGMOE;
  1682. clean_spaces = false;
  1683. } else if (
  1684. tokenizer_pre == "seed-coder") {
  1685. pre_type = LLAMA_VOCAB_PRE_TYPE_SEED_CODER;
  1686. clean_spaces = false;
  1687. } else if (
  1688. tokenizer_pre == "hunyuan") {
  1689. pre_type = LLAMA_VOCAB_PRE_TYPE_HUNYUAN;
  1690. clean_spaces = false;
  1691. } else if (
  1692. tokenizer_pre == "hunyuan-dense") {
  1693. pre_type = LLAMA_VOCAB_PRE_TYPE_HUNYUAN_DENSE;
  1694. clean_spaces = false;
  1695. } else if (
  1696. tokenizer_pre == "kimi-k2") {
  1697. pre_type = LLAMA_VOCAB_PRE_TYPE_KIMI_K2;
  1698. clean_spaces = false;
  1699. } else {
  1700. throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
  1701. }
  1702. } else if (type == LLAMA_VOCAB_TYPE_SPM) {
  1703. pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1704. add_space_prefix = true;
  1705. clean_spaces = false;
  1706. add_bos = true;
  1707. add_eos = false;
  1708. } else if (type == LLAMA_VOCAB_TYPE_WPM) {
  1709. pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1710. add_space_prefix = false;
  1711. clean_spaces = true;
  1712. add_bos = true;
  1713. add_eos = false;
  1714. add_sep = true;
  1715. } else if (type == LLAMA_VOCAB_TYPE_UGM) {
  1716. pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1717. add_bos = false;
  1718. add_eos = true;
  1719. } else if (type == LLAMA_VOCAB_TYPE_RWKV) {
  1720. pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1721. add_space_prefix = false;
  1722. clean_spaces = false;
  1723. add_bos = false;
  1724. add_eos = false;
  1725. } else {
  1726. pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1727. }
  1728. ml.get_key(LLM_KV_TOKENIZER_ADD_PREFIX, add_space_prefix, false);
  1729. ml.get_key(LLM_KV_TOKENIZER_REMOVE_EXTRA_WS, remove_extra_whitespaces, false);
  1730. }
  1731. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  1732. if (token_idx == -1) {
  1733. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  1734. }
  1735. const float * scores = nullptr;
  1736. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  1737. if (score_idx != -1) {
  1738. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  1739. }
  1740. const int * toktypes = nullptr;
  1741. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  1742. if (toktype_idx != -1) {
  1743. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  1744. }
  1745. uint32_t n_tokens = gguf_get_arr_n(ctx, token_idx);
  1746. id_to_token.resize(n_tokens);
  1747. for (uint32_t i = 0; i < n_tokens; i++) {
  1748. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  1749. if (word.empty()) {
  1750. LLAMA_LOG_WARN("%s: empty token at index %u\n", __func__, i);
  1751. word = "[EMPTY_" + std::to_string(i) + "]";
  1752. }
  1753. token_to_id[word] = i;
  1754. max_token_len = std::max(max_token_len, (int) word.size());
  1755. auto & token_data = id_to_token[i];
  1756. token_data.text = std::move(word);
  1757. token_data.score = scores ? scores[i] : 0.0f;
  1758. token_data.attr = LLAMA_TOKEN_ATTR_NORMAL;
  1759. if (toktypes) { //TODO: remove, required until per token attributes are available from GGUF file
  1760. switch(toktypes[i]) {
  1761. case LLAMA_TOKEN_TYPE_UNKNOWN: token_data.attr = LLAMA_TOKEN_ATTR_UNKNOWN; break;
  1762. case LLAMA_TOKEN_TYPE_UNUSED: token_data.attr = LLAMA_TOKEN_ATTR_UNUSED; break;
  1763. case LLAMA_TOKEN_TYPE_NORMAL: token_data.attr = LLAMA_TOKEN_ATTR_NORMAL; break;
  1764. case LLAMA_TOKEN_TYPE_CONTROL: token_data.attr = LLAMA_TOKEN_ATTR_CONTROL; break;
  1765. case LLAMA_TOKEN_TYPE_USER_DEFINED: token_data.attr = LLAMA_TOKEN_ATTR_USER_DEFINED; break;
  1766. case LLAMA_TOKEN_TYPE_BYTE: token_data.attr = LLAMA_TOKEN_ATTR_BYTE; break;
  1767. case LLAMA_TOKEN_TYPE_UNDEFINED: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break;
  1768. default: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break;
  1769. }
  1770. }
  1771. }
  1772. GGML_ASSERT(id_to_token.size() == token_to_id.size());
  1773. init_tokenizer(type);
  1774. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  1775. if (type == LLAMA_VOCAB_TYPE_SPM) {
  1776. try {
  1777. linefeed_id = vocab.byte_to_token('\n');
  1778. } catch (const std::exception & e) {
  1779. LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
  1780. linefeed_id = special_pad_id;
  1781. }
  1782. } else if (type == LLAMA_VOCAB_TYPE_WPM) {
  1783. linefeed_id = special_pad_id;
  1784. } else if (type == LLAMA_VOCAB_TYPE_RWKV) {
  1785. const std::vector<int> ids = tokenize("\n", false);
  1786. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  1787. linefeed_id = ids[0];
  1788. } else {
  1789. const std::vector<int> ids = tokenize("\n", false);
  1790. //GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  1791. if (ids.empty()) {
  1792. LLAMA_LOG_WARN("%s: model vocab missing newline token, using special_pad_id instead\n", __func__);
  1793. linefeed_id = special_pad_id;
  1794. } else {
  1795. linefeed_id = ids[0];
  1796. }
  1797. }
  1798. // special tokens
  1799. {
  1800. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  1801. { LLM_KV_TOKENIZER_BOS_ID, special_bos_id },
  1802. { LLM_KV_TOKENIZER_EOS_ID, special_eos_id },
  1803. { LLM_KV_TOKENIZER_EOT_ID, special_eot_id },
  1804. { LLM_KV_TOKENIZER_EOM_ID, special_eom_id },
  1805. { LLM_KV_TOKENIZER_UNK_ID, special_unk_id },
  1806. { LLM_KV_TOKENIZER_SEP_ID, special_sep_id },
  1807. { LLM_KV_TOKENIZER_PAD_ID, special_pad_id },
  1808. { LLM_KV_TOKENIZER_MASK_ID, special_mask_id },
  1809. { LLM_KV_TOKENIZER_FIM_PRE_ID, special_fim_pre_id },
  1810. { LLM_KV_TOKENIZER_FIM_SUF_ID, special_fim_suf_id },
  1811. { LLM_KV_TOKENIZER_FIM_MID_ID, special_fim_mid_id },
  1812. { LLM_KV_TOKENIZER_FIM_PAD_ID, special_fim_pad_id },
  1813. { LLM_KV_TOKENIZER_FIM_REP_ID, special_fim_rep_id },
  1814. { LLM_KV_TOKENIZER_FIM_SEP_ID, special_fim_sep_id },
  1815. // deprecated
  1816. { LLM_KV_TOKENIZER_PREFIX_ID, special_fim_pre_id },
  1817. { LLM_KV_TOKENIZER_SUFFIX_ID, special_fim_suf_id },
  1818. { LLM_KV_TOKENIZER_MIDDLE_ID, special_fim_mid_id },
  1819. };
  1820. for (const auto & it : special_token_types) {
  1821. const std::string & key = kv(std::get<0>(it));
  1822. int32_t & id = std::get<1>(it);
  1823. uint32_t new_id;
  1824. if (!ml.get_key(std::get<0>(it), new_id, false)) {
  1825. continue;
  1826. }
  1827. if (new_id >= id_to_token.size()) {
  1828. LLAMA_LOG_WARN("%s: bad special token: '%s' = %u, using default id %d\n",
  1829. __func__, key.c_str(), new_id, id);
  1830. } else {
  1831. id = new_id;
  1832. }
  1833. }
  1834. // Handle add_bos, add_eos and add_sep
  1835. {
  1836. bool temp = true;
  1837. if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
  1838. add_bos = temp;
  1839. }
  1840. if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
  1841. add_eos = temp;
  1842. }
  1843. if (ml.get_key(LLM_KV_TOKENIZER_ADD_SEP, temp, false)) {
  1844. add_sep = temp;
  1845. }
  1846. }
  1847. // auto-detect special tokens by text
  1848. // TODO: convert scripts should provide these tokens through the KV metadata LLM_KV_TOKENIZER_...
  1849. // for now, we apply this workaround to find the tokens based on their text
  1850. for (const auto & t : token_to_id) {
  1851. // find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
  1852. if (special_eot_id == LLAMA_TOKEN_NULL) {
  1853. if (false
  1854. || t.first == "<|eot_id|>"
  1855. || t.first == "<|im_end|>"
  1856. || t.first == "<|end|>"
  1857. || t.first == "<end_of_turn>"
  1858. || t.first == "<|endoftext|>"
  1859. || t.first == "<EOT>"
  1860. || t.first == "_<EOT>"
  1861. || t.first == "<|end▁of▁sentence|>" // DeepSeek
  1862. || t.first == "<end_of_utterance>" // smoldocling
  1863. ) {
  1864. special_eot_id = t.second;
  1865. if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
  1866. LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
  1867. __func__, t.second, t.first.c_str());
  1868. id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
  1869. }
  1870. }
  1871. }
  1872. // find EOM token: "<|eom_id|>"
  1873. if (special_eom_id == LLAMA_TOKEN_NULL) {
  1874. if (false
  1875. || t.first == "<|eom_id|>"
  1876. ) {
  1877. special_eom_id = t.second;
  1878. if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
  1879. LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
  1880. __func__, t.second, t.first.c_str());
  1881. id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
  1882. }
  1883. }
  1884. }
  1885. // find FIM_PRE token: "<|fim_prefix|>", "<fim-prefix>", "<PRE>", etc.
  1886. if (special_fim_pre_id == LLAMA_TOKEN_NULL) {
  1887. if (false
  1888. || t.first == "<|fim_prefix|>" // Qwen
  1889. || t.first == "<fim-prefix>"
  1890. || t.first == "<fim_prefix>" // Granite
  1891. || t.first == "<|fim▁begin|>" // DeepSeek
  1892. || t.first == "<PRE>"
  1893. || t.first == "▁<PRE>" // CodeLlama
  1894. || t.first == "<|code_prefix|>" // GLM-4.5
  1895. ) {
  1896. special_fim_pre_id = t.second;
  1897. if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
  1898. LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
  1899. __func__, t.second, t.first.c_str());
  1900. id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
  1901. }
  1902. }
  1903. }
  1904. // find FIM_SUF token: "<|fim_suffix|>", "<fim-suffix>", "<SUF>", etc.
  1905. if (special_fim_suf_id == LLAMA_TOKEN_NULL) {
  1906. if (false
  1907. || t.first == "<|fim_suffix|>" // Qwen
  1908. || t.first == "<fim-suffix>"
  1909. || t.first == "<fim_suffix>" // Granite
  1910. || t.first == "<|fim▁hole|>" // DeepSeek
  1911. || t.first == "<SUF>"
  1912. || t.first == "▁<SUF>" // CodeLlama
  1913. || t.first == "<|code_suffix|>" // GLM-4.5
  1914. ) {
  1915. special_fim_suf_id = t.second;
  1916. if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
  1917. LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
  1918. __func__, t.second, t.first.c_str());
  1919. id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
  1920. }
  1921. }
  1922. }
  1923. // find FIM_MID token: "<|fim_middle|>", "<fim-middle>", "<MID>", etc.
  1924. if (special_fim_mid_id == LLAMA_TOKEN_NULL) {
  1925. if (false
  1926. || t.first == "<|fim_middle|>" // Qwen
  1927. || t.first == "<fim-middle>"
  1928. || t.first == "<fim_middle>" // Granite
  1929. || t.first == "<|fim▁end|>" // DeepSeek
  1930. || t.first == "<MID>"
  1931. || t.first == "▁<MID>" // CodeLlama
  1932. || t.first == "<|code_middle|>" // GLM-4.5
  1933. ) {
  1934. special_fim_mid_id = t.second;
  1935. if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
  1936. LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
  1937. __func__, t.second, t.first.c_str());
  1938. id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
  1939. }
  1940. }
  1941. }
  1942. // find FIM_PAD token: "<|fim_pad|>", "<fim-pad>", "<PAD>", etc.
  1943. if (special_fim_pad_id == LLAMA_TOKEN_NULL) {
  1944. if (false
  1945. || t.first == "<|fim_pad|>" // Qwen
  1946. || t.first == "<fim-pad>"
  1947. || t.first == "<fim_pad>" // Granite
  1948. || t.first == "<PAD>"
  1949. ) {
  1950. special_fim_pad_id = t.second;
  1951. if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
  1952. LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
  1953. __func__, t.second, t.first.c_str());
  1954. id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
  1955. }
  1956. }
  1957. }
  1958. // find FIM_REP token: "<|fim_repo|>", "<fim-repo>", "<REP>", etc.
  1959. if (special_fim_rep_id == LLAMA_TOKEN_NULL) {
  1960. if (false
  1961. || t.first == "<|fim_repo|>" // Qwen
  1962. || t.first == "<|repo_name|>"
  1963. || t.first == "<fim-repo>"
  1964. || t.first == "<REPO>"
  1965. || t.first == "<reponame>" // Granite
  1966. ) {
  1967. special_fim_rep_id = t.second;
  1968. if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
  1969. LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
  1970. __func__, t.second, t.first.c_str());
  1971. id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
  1972. }
  1973. }
  1974. }
  1975. // find FIM_SEP token: "<|file_sep|>"
  1976. if (special_fim_sep_id == LLAMA_TOKEN_NULL) {
  1977. if (false
  1978. || t.first == "<|file_sep|>" // Qwen
  1979. ) {
  1980. special_fim_sep_id = t.second;
  1981. if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
  1982. LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
  1983. __func__, t.second, t.first.c_str());
  1984. id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
  1985. }
  1986. }
  1987. }
  1988. }
  1989. // maintain a list of tokens that cause end-of-generation
  1990. // this is currently determined based on the token text, which is obviously not ideal
  1991. // ref: https://github.com/ggerganov/llama.cpp/issues/9606
  1992. special_eog_ids.clear();
  1993. if (special_fim_pad_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_fim_pad_id) == 0) {
  1994. special_eog_ids.insert(special_fim_pad_id);
  1995. }
  1996. if (special_fim_rep_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_fim_rep_id) == 0) {
  1997. special_eog_ids.insert(special_fim_rep_id);
  1998. }
  1999. if (special_fim_sep_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_fim_sep_id) == 0) {
  2000. special_eog_ids.insert(special_fim_sep_id);
  2001. }
  2002. for (const auto & t : token_to_id) {
  2003. if (false
  2004. || t.first == "<|eot_id|>"
  2005. || t.first == "<|im_end|>"
  2006. || t.first == "<|end|>"
  2007. || t.first == "<|return|>" // o200k_harmony
  2008. || t.first == "<|call|>" // o200k_harmony
  2009. || t.first == "<end_of_turn>"
  2010. || t.first == "<|endoftext|>"
  2011. || t.first == "<|eom_id|>"
  2012. || t.first == "<EOT>"
  2013. || t.first == "_<EOT>"
  2014. || t.first == "<|end_of_text|>"
  2015. || t.first == "<end_of_utterance>" // smoldocling
  2016. ) {
  2017. special_eog_ids.insert(t.second);
  2018. if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
  2019. LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
  2020. __func__, t.second, t.first.c_str());
  2021. id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
  2022. }
  2023. } else {
  2024. // token is control, but not marked as EOG -> print a debug log
  2025. if (id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL && special_eog_ids.count(t.second) == 0) {
  2026. LLAMA_LOG_DEBUG("%s: control token: %6d '%s' is not marked as EOG\n",
  2027. __func__, t.second, t.first.c_str());
  2028. }
  2029. }
  2030. }
  2031. // @ngxson : quick hack for gpt-oss, always render these tokens
  2032. for (const auto & t : token_to_id) {
  2033. if (t.first == "<|channel|>" || t.first == "<|message|>" || t.first == "<|start|>") {
  2034. id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_USER_DEFINED;
  2035. }
  2036. }
  2037. // sanity checks
  2038. if (special_eos_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_eos_id) == 0) {
  2039. special_eog_ids.insert(special_eos_id);
  2040. LLAMA_LOG_WARN("%s: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect\n", __func__);
  2041. }
  2042. if (special_eot_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_eot_id) == 0) {
  2043. special_eog_ids.insert(special_eot_id);
  2044. LLAMA_LOG_WARN("%s: special_eot_id is not in special_eog_ids - the tokenizer config may be incorrect\n", __func__);
  2045. }
  2046. if (special_eom_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_eom_id) == 0) {
  2047. special_eog_ids.insert(special_eom_id);
  2048. LLAMA_LOG_WARN("%s: special_eom_id is not in special_eog_ids - the tokenizer config may be incorrect\n", __func__);
  2049. }
  2050. // TODO: workaround for o200k_harmony tokenizer: the "<|end|>" token should not be EOG
  2051. // we don't have a good way to detect this, so for now, if we have "<|return|>" and "<|call|>" tokens,
  2052. // we remove the "<|end|>" token from the EOG list
  2053. {
  2054. bool has_return = false;
  2055. bool has_call = false;
  2056. bool has_end = false;
  2057. llama_token end_id = LLAMA_TOKEN_NULL;
  2058. LLAMA_LOG_INFO("%s: printing all EOG tokens:\n", __func__);
  2059. for (auto tid : special_eog_ids) {
  2060. LLAMA_LOG_INFO("%s: - %d ('%s')\n", __func__, tid, id_to_token[tid].text.c_str());
  2061. if (id_to_token[tid].text == "<|return|>") {
  2062. has_return = true;
  2063. } else if (id_to_token[tid].text == "<|call|>") {
  2064. has_call = true;
  2065. } else if (id_to_token[tid].text == "<|end|>") {
  2066. has_end = true;
  2067. end_id = tid;
  2068. }
  2069. }
  2070. if (has_return && has_call && has_end) {
  2071. special_eog_ids.erase(end_id);
  2072. LLAMA_LOG_WARN("%s: special_eog_ids contains both '<|return|>' and '<|call|>' tokens, removing '<|end|>' token from EOG list\n", __func__);
  2073. }
  2074. }
  2075. }
  2076. // build special tokens cache
  2077. {
  2078. for (llama_token id = 0; id < (llama_token) n_tokens; ++id) {
  2079. if (id_to_token[id].attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_USER_DEFINED | LLAMA_TOKEN_ATTR_UNKNOWN)) {
  2080. cache_special_tokens.push_back(id);
  2081. }
  2082. }
  2083. std::sort(cache_special_tokens.begin(), cache_special_tokens.end(),
  2084. [&] (const llama_token a, const llama_token b) {
  2085. return id_to_token[a].text.size() > id_to_token[b].text.size();
  2086. }
  2087. );
  2088. LLAMA_LOG_INFO("%s: special tokens cache size = %u\n", __func__, (uint32_t) cache_special_tokens.size());
  2089. }
  2090. // build token to piece cache
  2091. {
  2092. size_t size_cache = 0;
  2093. std::vector<std::string> cache(n_tokens);
  2094. for (uint32_t id = 0; id < n_tokens; ++id) {
  2095. cache[id] = token_to_piece_for_cache(id, true);
  2096. size_cache += cache[id].size();
  2097. }
  2098. std::swap(cache_token_to_piece, cache);
  2099. LLAMA_LOG_INFO("%s: token to piece cache size = %.4f MB\n", __func__, size_cache / 1024.0 / 1024.0);
  2100. }
  2101. // Handle per token attributes
  2102. //NOTE: Each model customizes per token attributes.
  2103. //NOTE: Per token attributes are missing from the GGUF file.
  2104. //TODO: Extract attributes from GGUF file.
  2105. {
  2106. auto _contains_any = [] (const std::string & str, const std::vector<std::string_view> & substrs) -> bool {
  2107. for (const auto & substr : substrs) {
  2108. if (str.find(substr) != std::string::npos) {
  2109. return true;
  2110. }
  2111. }
  2112. return false;
  2113. };
  2114. auto _set_tokenid_attr = [&] (const llama_token id, llama_token_attr attr, bool value) {
  2115. uint32_t current = id_to_token.at(id).attr;
  2116. current = value ? (current | attr) : (current & ~attr);
  2117. id_to_token[id].attr = (llama_token_attr) current;
  2118. };
  2119. auto _set_token_attr = [&] (const std::string & token, llama_token_attr attr, bool value) {
  2120. _set_tokenid_attr(token_to_id.at(token), attr, value);
  2121. };
  2122. std::string model_name;
  2123. std::string tokenizer_pre;
  2124. std::string general_arch;
  2125. ml.get_key(LLM_KV_GENERAL_NAME, model_name, false);
  2126. ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
  2127. ml.get_key(LLM_KV_GENERAL_ARCHITECTURE, general_arch, false);
  2128. // model name to lowercase
  2129. std::transform(model_name.begin(), model_name.end(), model_name.begin(),
  2130. [] (const std::string::value_type x) {
  2131. return std::tolower(x);
  2132. }
  2133. );
  2134. // set attributes by model/tokenizer/architecture name
  2135. if (false
  2136. || _contains_any(tokenizer_pre, {"jina-v2-de", "jina-v2-es", "jina-v2-code"})
  2137. || _contains_any(general_arch, {"nomic-bert-moe"})
  2138. ) {
  2139. if (token_to_id.count("<mask>") == 0) {
  2140. LLAMA_LOG_WARN("%s: Mask token is missing in vocab, please reconvert model!\n", __func__);
  2141. } else {
  2142. _set_token_attr("<mask>", LLAMA_TOKEN_ATTR_LSTRIP, true);
  2143. }
  2144. } else if (_contains_any(model_name, {"phi-3", "phi3"})) {
  2145. for (auto id : cache_special_tokens) {
  2146. _set_tokenid_attr(id, LLAMA_TOKEN_ATTR_RSTRIP, true);
  2147. }
  2148. for (const auto * token : {"</s>"}) {
  2149. _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, true);
  2150. }
  2151. for (const auto * token : {"<unk>", "<s>", "<|endoftext|>"}) {
  2152. _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, false);
  2153. }
  2154. }
  2155. }
  2156. }
  2157. enum llama_vocab_type llama_vocab::impl::get_type() const {
  2158. return type;
  2159. }
  2160. std::string llama_vocab::impl::type_name() const{
  2161. switch (type) {
  2162. case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
  2163. case LLAMA_VOCAB_TYPE_SPM: return "SPM";
  2164. case LLAMA_VOCAB_TYPE_BPE: return "BPE";
  2165. case LLAMA_VOCAB_TYPE_WPM: return "WPM";
  2166. case LLAMA_VOCAB_TYPE_UGM: return "UGM";
  2167. case LLAMA_VOCAB_TYPE_RWKV: return "RWKV";
  2168. case LLAMA_VOCAB_TYPE_PLAMO2: return "PLaMo2";
  2169. default: return "unknown";
  2170. }
  2171. }
  2172. bool llama_vocab::impl::is_normal(llama_token id) const {
  2173. GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
  2174. return id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL;
  2175. }
  2176. bool llama_vocab::impl::is_unknown(llama_token id) const {
  2177. GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
  2178. return id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNKNOWN;
  2179. }
  2180. bool llama_vocab::impl::is_control(llama_token id) const {
  2181. GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
  2182. return id_to_token[id].attr & LLAMA_TOKEN_ATTR_CONTROL;
  2183. }
  2184. bool llama_vocab::impl::is_byte(llama_token id) const {
  2185. GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
  2186. return id_to_token[id].attr & LLAMA_TOKEN_ATTR_BYTE;
  2187. }
  2188. bool llama_vocab::impl::is_user_defined(llama_token id) const {
  2189. GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
  2190. return id_to_token[id].attr & LLAMA_TOKEN_ATTR_USER_DEFINED;
  2191. }
  2192. bool llama_vocab::impl::is_unused(llama_token id) const {
  2193. GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
  2194. return id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNUSED;
  2195. }
  2196. bool llama_vocab::impl::is_eog(llama_token id) const {
  2197. return id != LLAMA_TOKEN_NULL && special_eog_ids.count(id) > 0;
  2198. }
  2199. uint8_t llama_vocab::impl::token_to_byte(llama_token id) const {
  2200. GGML_ASSERT(get_type() != LLAMA_VOCAB_TYPE_NONE);
  2201. GGML_ASSERT(is_byte(id));
  2202. const auto & token_data = id_to_token.at(id);
  2203. switch (get_type()) {
  2204. case LLAMA_VOCAB_TYPE_SPM:
  2205. case LLAMA_VOCAB_TYPE_UGM: {
  2206. auto buf = token_data.text.substr(3, 2);
  2207. return strtol(buf.c_str(), NULL, 16);
  2208. }
  2209. case LLAMA_VOCAB_TYPE_BPE: {
  2210. GGML_ABORT("fatal error");
  2211. }
  2212. case LLAMA_VOCAB_TYPE_WPM: {
  2213. GGML_ABORT("fatal error");
  2214. }
  2215. default:
  2216. GGML_ABORT("fatal error");
  2217. }
  2218. }
  2219. llama_token_attr llama_vocab::impl::token_get_attr(llama_token id) const {
  2220. GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE);
  2221. return id_to_token.at(id).attr;
  2222. }
  2223. void llama_vocab::impl::init_tokenizer(enum llama_vocab_type type) {
  2224. LLAMA_LOG_DEBUG("%s: initializing tokenizer for type %d\n", __func__, type);
  2225. switch (type) {
  2226. case LLAMA_VOCAB_TYPE_SPM:
  2227. tokenizer = std::make_unique<llm_tokenizer_spm>(vocab);
  2228. break;
  2229. case LLAMA_VOCAB_TYPE_BPE:
  2230. tokenizer = std::make_unique<llm_tokenizer_bpe>(vocab);
  2231. break;
  2232. case LLAMA_VOCAB_TYPE_WPM:
  2233. tokenizer = std::make_unique<llm_tokenizer_wpm>(vocab);
  2234. break;
  2235. case LLAMA_VOCAB_TYPE_UGM:
  2236. tokenizer = std::make_unique<llm_tokenizer_ugm>(vocab, precompiled_charsmap);
  2237. break;
  2238. case LLAMA_VOCAB_TYPE_RWKV:
  2239. tokenizer = std::make_unique<llm_tokenizer_rwkv>(vocab);
  2240. break;
  2241. case LLAMA_VOCAB_TYPE_PLAMO2:
  2242. tokenizer = std::make_unique<llm_tokenizer_plamo2>(vocab);
  2243. break;
  2244. default:
  2245. GGML_ABORT("unsupported vocab type");
  2246. }
  2247. }
  2248. //
  2249. // (de-) tokenize
  2250. //
  2251. // #define PRETOKENIZERDEBUG
  2252. void llama_vocab::impl::tokenizer_st_partition(std::forward_list<fragment_buffer_variant> & buffer, bool parse_special) const {
  2253. // for each special token
  2254. for (const llama_token special_id : cache_special_tokens) {
  2255. const auto & data = vocab.get_token_data(special_id);
  2256. const auto & text = data.text;
  2257. if (!parse_special && (data.attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_UNKNOWN))) {
  2258. // Ignore control and unknown tokens when parse_special == false
  2259. continue;
  2260. // User-defined tokens are still pre-tokenized before everything else
  2261. // ref: https://github.com/huggingface/tokenizers/blob/fdd26ba9a3f0c133427aab0423888cbde91362d7/tokenizers/src/tokenizer/mod.rs#L726
  2262. // This is mostly relevant for neox-style tokenizers (mpt, olmo, stablelm, etc.)
  2263. }
  2264. // for each text fragment
  2265. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  2266. while (it != buffer.end()) {
  2267. auto & fragment = (*it);
  2268. // if a fragment is text ( not yet processed )
  2269. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  2270. const auto & raw_text = fragment.raw_text;
  2271. auto raw_text_base_offset = fragment.offset;
  2272. auto raw_text_base_length = fragment.length;
  2273. // loop over the text
  2274. while (true) {
  2275. // find the first occurrence of a given special token in this fragment
  2276. // passing offset argument only limit the "search area" but match coordinates
  2277. // are still relative to the source full raw_text
  2278. // string_view begins at pos 0 for the same reason
  2279. auto match = std::string_view(raw_text.data(), raw_text_base_offset + raw_text_base_length).find(text, raw_text_base_offset);
  2280. // no occurrences found, stop processing this fragment for a given special token
  2281. if (match == std::string::npos) break;
  2282. #ifdef PRETOKENIZERDEBUG
  2283. LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  2284. #endif
  2285. auto source = std::distance(buffer.begin(), it);
  2286. // if match is further than base offset
  2287. // then we have some text to the left of it
  2288. if (match > raw_text_base_offset) {
  2289. // left
  2290. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  2291. int64_t left_reminder_length = match - raw_text_base_offset;
  2292. if (data.attr & LLAMA_TOKEN_ATTR_LSTRIP) {
  2293. while (left_reminder_length > 0 && isspace(raw_text[left_reminder_offset + left_reminder_length - 1])) {
  2294. left_reminder_length--;
  2295. }
  2296. }
  2297. if (left_reminder_length > 0) {
  2298. buffer.emplace_after(it, raw_text, left_reminder_offset, left_reminder_length);
  2299. it++;
  2300. }
  2301. #ifdef PRETOKENIZERDEBUG
  2302. LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  2303. #endif
  2304. }
  2305. // special token
  2306. buffer.emplace_after(it, special_id);
  2307. it++;
  2308. // right
  2309. if (match + text.length() < raw_text_base_offset + raw_text_base_length) {
  2310. int64_t right_reminder_offset = match + text.length();
  2311. int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + text.length());
  2312. if (data.attr & LLAMA_TOKEN_ATTR_RSTRIP) {
  2313. while (right_reminder_length > 0 && isspace(raw_text[right_reminder_offset])) {
  2314. right_reminder_offset++;
  2315. right_reminder_length--;
  2316. }
  2317. }
  2318. if (right_reminder_length > 0) {
  2319. buffer.emplace_after(it, raw_text, right_reminder_offset, right_reminder_length);
  2320. it++;
  2321. }
  2322. #ifdef PRETOKENIZERDEBUG
  2323. LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  2324. #endif
  2325. if (source == 0) {
  2326. buffer.erase_after(buffer.before_begin());
  2327. } else {
  2328. buffer.erase_after(std::next(buffer.begin(), (source - 1)));
  2329. }
  2330. // repeat for the right side
  2331. raw_text_base_offset = right_reminder_offset;
  2332. raw_text_base_length = right_reminder_length;
  2333. #ifdef PRETOKENIZERDEBUG
  2334. LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  2335. #endif
  2336. } else {
  2337. if (source == 0) {
  2338. buffer.erase_after(buffer.before_begin());
  2339. } else {
  2340. buffer.erase_after(std::next(buffer.begin(), (source - 1)));
  2341. }
  2342. break;
  2343. }
  2344. }
  2345. }
  2346. it++;
  2347. }
  2348. }
  2349. }
  2350. // NOTE: avoid ever using this except for building the token_to_piece caches
  2351. std::string llama_vocab::impl::token_to_piece_for_cache(llama_token token, bool special) const {
  2352. std::string piece;
  2353. piece.resize(piece.capacity()); // using string internal cache
  2354. const int n_chars = vocab.token_to_piece(token, &piece[0], piece.size(), 0, special);
  2355. if (n_chars < 0) {
  2356. piece.resize(-n_chars);
  2357. int check = vocab.token_to_piece(token, &piece[0], piece.size(), 0, special);
  2358. GGML_ASSERT(check == -n_chars);
  2359. }
  2360. else {
  2361. piece.resize(n_chars);
  2362. }
  2363. return piece;
  2364. }
  2365. static void llama_escape_whitespace(std::string & text) {
  2366. replace_all(text, " ", "\xe2\x96\x81");
  2367. }
  2368. static void llama_unescape_whitespace(std::string & word) {
  2369. replace_all(word, "\xe2\x96\x81", " ");
  2370. }
  2371. static std::string llama_decode_text(const std::string & text) {
  2372. std::string decoded_text;
  2373. const auto cpts = unicode_cpts_from_utf8(text);
  2374. for (const auto cpt : cpts) {
  2375. const auto utf8 = unicode_cpt_to_utf8(cpt);
  2376. try {
  2377. decoded_text += unicode_utf8_to_byte(utf8);
  2378. } catch (const std::out_of_range & /*e*/) {
  2379. decoded_text += "[UNK_BYTE_0x";
  2380. for (const auto c : utf8) {
  2381. decoded_text += format("%02x", (uint8_t) c);
  2382. }
  2383. decoded_text += text + "]";
  2384. }
  2385. }
  2386. return decoded_text;
  2387. }
  2388. std::vector<llama_token> llama_vocab::impl::tokenize(
  2389. const std::string & raw_text,
  2390. bool add_special,
  2391. bool parse_special) const {
  2392. GGML_ASSERT(tokenizer && "Tokenizer not initialized. Call llama_vocab::init_tokenizer() first.");
  2393. std::vector<llama_token> output;
  2394. std::forward_list<fragment_buffer_variant> fragment_buffer;
  2395. if (!raw_text.empty()) {
  2396. fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
  2397. tokenizer_st_partition(fragment_buffer, parse_special);
  2398. }
  2399. switch (get_type()) {
  2400. case LLAMA_VOCAB_TYPE_SPM:
  2401. {
  2402. // OG tokenizer behavior:
  2403. //
  2404. // tokenizer.encode('', add_special_tokens=True) returns [1]
  2405. // tokenizer.encode('', add_special_tokens=False) returns []
  2406. bool is_prev_special = true; // prefix with space if first token
  2407. if (add_special && add_bos) {
  2408. GGML_ASSERT(special_bos_id != LLAMA_TOKEN_NULL);
  2409. output.push_back(special_bos_id);
  2410. is_prev_special = true;
  2411. }
  2412. for (const auto & fragment : fragment_buffer) {
  2413. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  2414. std::string text;
  2415. // prefix with space if previous is special
  2416. if (add_space_prefix && is_prev_special) {
  2417. text = ' ';
  2418. }
  2419. text += fragment.raw_text.substr(fragment.offset, fragment.length);
  2420. #ifdef PRETOKENIZERDEBUG
  2421. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", text.length(), fragment.offset, fragment.length, text.c_str());
  2422. #endif
  2423. llama_escape_whitespace(text);
  2424. llm_tokenizer_spm_session session(vocab);
  2425. session.tokenize(text, output);
  2426. is_prev_special = false;
  2427. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  2428. output.push_back(fragment.token);
  2429. is_prev_special = true;
  2430. }
  2431. }
  2432. if (add_special && add_bos && output.size() >= 2 && output[1] == special_bos_id) {
  2433. LLAMA_LOG_WARN(
  2434. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  2435. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  2436. "Are you sure this is what you want?\n", __FUNCTION__);
  2437. }
  2438. if (add_special && add_eos) {
  2439. GGML_ASSERT(special_eos_id != LLAMA_TOKEN_NULL);
  2440. output.push_back(special_eos_id);
  2441. }
  2442. } break;
  2443. case LLAMA_VOCAB_TYPE_BPE:
  2444. {
  2445. llm_tokenizer_bpe_session session(vocab, *static_cast<const llm_tokenizer_bpe *>(tokenizer.get()));
  2446. // it calls some other methods that are not exist in llm_tokenizer,
  2447. // here just cast it to bpe tokenizer object
  2448. if (add_special) {
  2449. session.append_bos(output);
  2450. }
  2451. for (const auto & fragment : fragment_buffer) {
  2452. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  2453. std::string text = fragment.raw_text.substr(fragment.offset, fragment.length);
  2454. #ifdef PRETOKENIZERDEBUG
  2455. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", text.length(), fragment.offset, fragment.length, text.c_str());
  2456. #endif
  2457. session.tokenize(text, output);
  2458. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  2459. session.append(fragment.token, output);
  2460. }
  2461. }
  2462. if (add_special) {
  2463. session.append_eos(output);
  2464. session.check_double_bos_eos(output);
  2465. }
  2466. } break;
  2467. case LLAMA_VOCAB_TYPE_WPM:
  2468. {
  2469. if (add_special) {
  2470. GGML_ASSERT(special_bos_id != LLAMA_TOKEN_NULL);
  2471. output.push_back(special_bos_id);
  2472. }
  2473. llm_tokenizer_wpm_session session(vocab);
  2474. for (const auto & fragment : fragment_buffer) {
  2475. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  2476. std::string text = fragment.raw_text.substr(fragment.offset, fragment.length);
  2477. #ifdef PRETOKENIZERDEBUG
  2478. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", text.length(), fragment.offset, fragment.length, text.c_str());
  2479. #endif
  2480. session.tokenize(text, output);
  2481. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  2482. output.push_back(fragment.token);
  2483. }
  2484. }
  2485. if (add_special) {
  2486. GGML_ASSERT(special_sep_id != LLAMA_TOKEN_NULL);
  2487. output.push_back(special_sep_id);
  2488. }
  2489. } break;
  2490. case LLAMA_VOCAB_TYPE_UGM:
  2491. {
  2492. if (add_special && add_bos) {
  2493. GGML_ASSERT(special_bos_id != LLAMA_TOKEN_NULL);
  2494. output.push_back(special_bos_id);
  2495. }
  2496. llm_tokenizer_ugm_session session(vocab, *static_cast<const llm_tokenizer_ugm *>(tokenizer.get()));
  2497. for (const auto & fragment : fragment_buffer) {
  2498. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  2499. std::string text = fragment.raw_text.substr(fragment.offset, fragment.length);
  2500. #ifdef PRETOKENIZERDEBUG
  2501. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", text.length(), fragment.offset, fragment.length, text.c_str());
  2502. #endif
  2503. session.tokenize(text, output);
  2504. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  2505. output.push_back(fragment.token);
  2506. }
  2507. }
  2508. if (add_special && add_bos && output.size() >= 2 && output[1] == special_bos_id) {
  2509. LLAMA_LOG_WARN(
  2510. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  2511. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  2512. "Are you sure this is what you want?\n", __FUNCTION__);
  2513. }
  2514. if (add_special && add_eos) {
  2515. GGML_ASSERT(special_eos_id != LLAMA_TOKEN_NULL);
  2516. output.push_back(special_eos_id);
  2517. }
  2518. } break;
  2519. case LLAMA_VOCAB_TYPE_RWKV:
  2520. {
  2521. llm_tokenizer_rwkv_session session(vocab, *static_cast<const llm_tokenizer_rwkv *>(tokenizer.get()));
  2522. for (const auto & fragment : fragment_buffer) {
  2523. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  2524. std::string text = fragment.raw_text.substr(fragment.offset, fragment.length);
  2525. #ifdef PRETOKENIZERDEBUG
  2526. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", text.length(), fragment.offset, fragment.length, text.c_str());
  2527. #endif
  2528. session.tokenize(text, output);
  2529. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  2530. output.push_back(fragment.token);
  2531. }
  2532. }
  2533. } break;
  2534. case LLAMA_VOCAB_TYPE_PLAMO2:
  2535. {
  2536. llm_tokenizer_plamo2_session session(*static_cast<const llm_tokenizer_plamo2 *>(tokenizer.get()));
  2537. for (const auto & fragment : fragment_buffer) {
  2538. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  2539. std::string text = fragment.raw_text.substr(fragment.offset, fragment.length);
  2540. #ifdef PRETOKENIZERDEBUG
  2541. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", text.length(), fragment.offset, fragment.length, text.c_str());
  2542. #endif
  2543. session.tokenize(text, output);
  2544. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  2545. output.push_back(fragment.token);
  2546. }
  2547. }
  2548. } break;
  2549. case LLAMA_VOCAB_TYPE_NONE:
  2550. GGML_ABORT("fatal error");
  2551. }
  2552. return output;
  2553. }
  2554. int32_t llama_vocab::impl::token_to_piece(llama_token token, char * buf, int32_t length, int32_t lstrip, bool special) const {
  2555. // ref: https://github.com/ggerganov/llama.cpp/pull/7587#discussion_r1620983843
  2556. static const int attr_special = LLAMA_TOKEN_ATTR_UNKNOWN | LLAMA_TOKEN_ATTR_CONTROL;
  2557. const llama_token_attr attr = token_get_attr(token);
  2558. if (!special && (attr & attr_special)) {
  2559. return 0;
  2560. }
  2561. // copy piece chars to output text buffer
  2562. // skip up to 'lstrip' leading spaces before copying
  2563. auto _try_copy = [=] (const char * token, size_t size) -> int32_t {
  2564. if (size >= static_cast<size_t>(std::numeric_limits<int32_t>::max())) {
  2565. GGML_ABORT("invalid token size: %zu exceeds int32_t limit", size);
  2566. }
  2567. for (int32_t i = 0; i < lstrip && size && *token == ' '; ++i) {
  2568. token++;
  2569. size--;
  2570. }
  2571. if (length < (int32_t)size) {
  2572. return -(int32_t) size;
  2573. }
  2574. memcpy(buf, token, size);
  2575. return (int32_t) size;
  2576. };
  2577. // if we have a cache - use it
  2578. {
  2579. const auto & cache = cache_token_to_piece;
  2580. if (!cache.empty()) {
  2581. const auto & result = cache.at(token);
  2582. return _try_copy(result.data(), result.size());
  2583. }
  2584. }
  2585. if (0 <= token && token < (int32_t) id_to_token.size()) {
  2586. const std::string & token_text = id_to_token[token].text;
  2587. switch (get_type()) {
  2588. case LLAMA_VOCAB_TYPE_WPM:
  2589. case LLAMA_VOCAB_TYPE_SPM:
  2590. case LLAMA_VOCAB_TYPE_UGM: {
  2591. // NOTE: we accept all unsupported token types,
  2592. // suppressing them like CONTROL tokens.
  2593. if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) {
  2594. return _try_copy(token_text.data(), token_text.size());
  2595. }
  2596. if (attr & LLAMA_TOKEN_ATTR_NORMAL) {
  2597. std::string result = token_text;
  2598. llama_unescape_whitespace(result);
  2599. return _try_copy(result.data(), result.size());
  2600. }
  2601. if (attr & LLAMA_TOKEN_ATTR_BYTE) {
  2602. char byte = (char) token_to_byte(token);
  2603. return _try_copy((char*) &byte, 1);
  2604. }
  2605. break;
  2606. }
  2607. case LLAMA_VOCAB_TYPE_BPE: {
  2608. // NOTE: we accept all unsupported token types,
  2609. // suppressing them like CONTROL tokens.
  2610. if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) {
  2611. return _try_copy(token_text.data(), token_text.size());
  2612. }
  2613. if (attr & LLAMA_TOKEN_ATTR_NORMAL) {
  2614. std::string result = llama_decode_text(token_text);
  2615. return _try_copy(result.data(), result.size());
  2616. }
  2617. break;
  2618. }
  2619. case LLAMA_VOCAB_TYPE_RWKV: {
  2620. std::vector<uint8_t> result = llama_unescape_rwkv_token(token_text);
  2621. // If we don't have enough space, return an error
  2622. if (result.size() > (size_t)length) {
  2623. return -(int)result.size();
  2624. }
  2625. memcpy(buf, result.data(), result.size());
  2626. return (int)result.size();
  2627. }
  2628. case LLAMA_VOCAB_TYPE_PLAMO2: {
  2629. // PLaMo-2 uses similar token handling as BPE/SPM
  2630. if (vocab.is_byte(token)) {
  2631. // Handle byte tokens like <0xXX>
  2632. if (token_text.length() == 6 && token_text.substr(0, 3) == "<0x" && token_text.back() == '>') {
  2633. int hex_val = std::stoi(token_text.substr(3, 2), nullptr, 16);
  2634. if (length < 1) {
  2635. return -1;
  2636. }
  2637. buf[0] = static_cast<char>(hex_val);
  2638. return 1;
  2639. }
  2640. }
  2641. // Normal token - just copy the text
  2642. std::string result = token_text;
  2643. return _try_copy(result.data(), result.size());
  2644. }
  2645. default:
  2646. GGML_ABORT("fatal error");
  2647. }
  2648. }
  2649. return 0;
  2650. }
  2651. const std::string & llama_vocab::impl::token_to_piece(llama_token token) const {
  2652. return cache_token_to_piece.at(token);
  2653. }
  2654. int32_t llama_vocab::impl::detokenize(
  2655. const llama_token * tokens,
  2656. int32_t n_tokens,
  2657. char * text,
  2658. int32_t text_len_max,
  2659. bool remove_special,
  2660. bool unparse_special) const {
  2661. if (type == LLAMA_VOCAB_TYPE_NONE) {
  2662. return 0;
  2663. }
  2664. GGML_ASSERT(tokenizer && "Tokenizer not initialized. Call llama_vocab::init_tokenizer() first.");
  2665. int32_t avail = text_len_max;
  2666. int32_t total = 0;
  2667. // remove the leading space
  2668. bool remove_space = add_space_prefix;
  2669. if (remove_special && add_bos) {
  2670. if (n_tokens > 0 && tokens[0] == special_bos_id) {
  2671. remove_space = false;
  2672. n_tokens--;
  2673. tokens++;
  2674. }
  2675. }
  2676. if (remove_special && add_eos) {
  2677. if (n_tokens > 0 && tokens[n_tokens - 1] == special_eos_id) {
  2678. n_tokens--;
  2679. }
  2680. }
  2681. for (int32_t i = 0; i < n_tokens; ++i) {
  2682. GGML_ASSERT(avail >= 0);
  2683. int32_t n_chars = token_to_piece(tokens[i], text, avail, remove_space, unparse_special);
  2684. remove_space = false;
  2685. if (n_chars < 0) {
  2686. avail = 0;
  2687. total -= n_chars;
  2688. } else if (n_chars > 0) {
  2689. avail -= n_chars;
  2690. text += n_chars;
  2691. total += n_chars;
  2692. }
  2693. }
  2694. if (total > text_len_max) {
  2695. return -total;
  2696. }
  2697. if (clean_spaces) {
  2698. text -= total; // restart text
  2699. // first pass: characters ?!., //TODO: where do these characters come from?
  2700. const int32_t total1 = total;
  2701. total = total ? 1 : 0;
  2702. for (int32_t i = 1; i < total1; ++i) {
  2703. const char x = text[i];
  2704. if (text[i - 1] == ' ') {
  2705. if (x == '?' || x == '!' || x == '.' || x == ',') { // " ?", " !", " .", " ,"
  2706. total--; // remove space
  2707. }
  2708. }
  2709. text[total++] = x;
  2710. }
  2711. // second pass: strip single apostrophe between spaces
  2712. const int32_t total2 = total;
  2713. total = total ? 1 : 0;
  2714. for (int32_t i = 1; i < total2; ++i) {
  2715. const char x = text[i];
  2716. if (x == '\'' && i + 1 < total2 && text[i - 1] == ' ' && text[i + 1] == ' ') { // " ' "
  2717. total--; // remove prev space
  2718. text[++i] = '\0'; // remove next space
  2719. }
  2720. text[total++] = x;
  2721. }
  2722. // third pass: apostrophe contractions //NOTE: this makes sense?
  2723. const int32_t total3 = total;
  2724. total = total ? 1 : 0;
  2725. for (int32_t i = 1; i < total3; ++i) {
  2726. const char x = text[i];
  2727. if (text[i - 1] == ' ') {
  2728. if (x == '\'' && i + 1 < total3) {
  2729. const char x1 = text[i + 1];
  2730. if (x1 == 't' || x1 == 'd') { // " 't", " 'd"
  2731. //total--; // remove space
  2732. } else if (x1 == 's' || x1 == 'm') { // " 's", " 'm"
  2733. total--; // remove space
  2734. } else if (i + 2 < total3) {
  2735. const char x2 = text[i + 2];
  2736. if ((x1 == 'l' && x2 == 'l')) { // " 'll"
  2737. //total--; // remove space
  2738. } else if ((x1 == 'r' && x2 == 'e') || (x1 == 'v' && x2 == 'e')) { // " 're", " 've"
  2739. total--; // remove space
  2740. } else {
  2741. //total--; // remove space
  2742. }
  2743. } else {
  2744. //total--; // remove space
  2745. }
  2746. }
  2747. }
  2748. text[total++] = x;
  2749. }
  2750. }
  2751. return total <= text_len_max ? total : -total;
  2752. }
  2753. void llama_vocab::impl::print_info() const {
  2754. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, type_name().c_str());
  2755. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, vocab.n_tokens());
  2756. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (uint32_t) bpe_ranks.size());
  2757. // special tokens
  2758. if (special_bos_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, special_bos_id, id_to_token.at(special_bos_id).text.c_str() ); }
  2759. if (special_eos_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, special_eos_id, id_to_token.at(special_eos_id).text.c_str() ); }
  2760. if (special_eot_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, special_eot_id, id_to_token.at(special_eot_id).text.c_str() ); }
  2761. if (special_eom_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: EOM token = %d '%s'\n", __func__, special_eom_id, id_to_token.at(special_eom_id).text.c_str() ); }
  2762. if (special_unk_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, special_unk_id, id_to_token.at(special_unk_id).text.c_str() ); }
  2763. if (special_sep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, special_sep_id, id_to_token.at(special_sep_id).text.c_str() ); }
  2764. if (special_pad_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, special_pad_id, id_to_token.at(special_pad_id).text.c_str() ); }
  2765. if (special_mask_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, special_mask_id, id_to_token.at(special_mask_id).text.c_str() ); }
  2766. if (linefeed_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, linefeed_id, id_to_token.at(linefeed_id).text.c_str() ); }
  2767. if (special_fim_pre_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM PRE token = %d '%s'\n", __func__, special_fim_pre_id, id_to_token.at(special_fim_pre_id).text.c_str() ); }
  2768. if (special_fim_suf_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM SUF token = %d '%s'\n", __func__, special_fim_suf_id, id_to_token.at(special_fim_suf_id).text.c_str() ); }
  2769. if (special_fim_mid_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM MID token = %d '%s'\n", __func__, special_fim_mid_id, id_to_token.at(special_fim_mid_id).text.c_str() ); }
  2770. if (special_fim_pad_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM PAD token = %d '%s'\n", __func__, special_fim_pad_id, id_to_token.at(special_fim_pad_id).text.c_str() ); }
  2771. if (special_fim_rep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM REP token = %d '%s'\n", __func__, special_fim_rep_id, id_to_token.at(special_fim_rep_id).text.c_str() ); }
  2772. if (special_fim_sep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM SEP token = %d '%s'\n", __func__, special_fim_sep_id, id_to_token.at(special_fim_sep_id).text.c_str() ); }
  2773. for (const auto & id : special_eog_ids) {
  2774. LLAMA_LOG_INFO( "%s: EOG token = %d '%s'\n", __func__, id, id_to_token.at(id).text.c_str() );
  2775. }
  2776. LLAMA_LOG_INFO("%s: max token length = %d\n", __func__, max_token_len);
  2777. }
  2778. llama_vocab::llama_vocab() : pimpl(new impl(*this)) {
  2779. }
  2780. llama_vocab::~llama_vocab() {
  2781. }
  2782. void llama_vocab::load(llama_model_loader & ml, const LLM_KV & kv) {
  2783. pimpl->load(ml, kv);
  2784. }
  2785. std::string llama_vocab::get_tokenizer_model() const {
  2786. return pimpl->tokenizer_model;
  2787. }
  2788. std::string llama_vocab::get_tokenizer_pre() const {
  2789. return pimpl->tokenizer_pre;
  2790. }
  2791. enum llama_vocab_type llama_vocab::get_type() const {
  2792. return pimpl->type;
  2793. }
  2794. enum llama_vocab_pre_type llama_vocab::get_pre_type() const {
  2795. return pimpl->pre_type;
  2796. }
  2797. uint32_t llama_vocab::n_tokens() const {
  2798. return (uint32_t) pimpl->id_to_token.size();
  2799. }
  2800. uint32_t llama_vocab::n_token_types() const {
  2801. return (uint32_t) pimpl->n_token_types;
  2802. }
  2803. std::string llama_vocab::type_name() const{
  2804. return pimpl->type_name();
  2805. }
  2806. bool llama_vocab::is_normal(llama_token id) const {
  2807. return pimpl->is_normal(id);
  2808. }
  2809. bool llama_vocab::is_unknown(llama_token id) const {
  2810. return pimpl->is_unknown(id);
  2811. }
  2812. bool llama_vocab::is_control(llama_token id) const {
  2813. return pimpl->is_control(id);
  2814. }
  2815. bool llama_vocab::is_byte(llama_token id) const {
  2816. return pimpl->is_byte(id);
  2817. }
  2818. bool llama_vocab::is_user_defined(llama_token id) const {
  2819. return pimpl->is_user_defined(id);
  2820. }
  2821. bool llama_vocab::is_unused(llama_token id) const {
  2822. return pimpl->is_unused(id);
  2823. }
  2824. bool llama_vocab::is_eog(llama_token id) const {
  2825. return pimpl->is_eog(id);
  2826. }
  2827. uint8_t llama_vocab::token_to_byte(llama_token id) const {
  2828. return pimpl->token_to_byte(id);
  2829. }
  2830. llama_token llama_vocab::byte_to_token(uint8_t ch) const {
  2831. GGML_ASSERT(get_type() != LLAMA_VOCAB_TYPE_NONE);
  2832. static const char * hex = "0123456789ABCDEF";
  2833. switch (get_type()) {
  2834. case LLAMA_VOCAB_TYPE_SPM:
  2835. case LLAMA_VOCAB_TYPE_UGM: {
  2836. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  2837. auto token = pimpl->token_to_id.find(buf);
  2838. if (token != pimpl->token_to_id.end()) {
  2839. return (*token).second;
  2840. }
  2841. // Try to fall back to just the byte as a string
  2842. const char buf2[2] = { (char)ch, 0 };
  2843. return pimpl->token_to_id.at(buf2);
  2844. }
  2845. case LLAMA_VOCAB_TYPE_WPM:
  2846. case LLAMA_VOCAB_TYPE_BPE: {
  2847. return pimpl->token_to_id.at(unicode_byte_to_utf8(ch));
  2848. }
  2849. case LLAMA_VOCAB_TYPE_PLAMO2: {
  2850. // PLaMo-2 uses byte tokens in format <0xXX>
  2851. char hex_str[8];
  2852. snprintf(hex_str, sizeof(hex_str), "<0x%02X>", ch);
  2853. return pimpl->token_to_id.at(hex_str);
  2854. }
  2855. default:
  2856. GGML_ABORT("fatal error");
  2857. }
  2858. }
  2859. llama_token llama_vocab::text_to_token(const std::string & text) const {
  2860. GGML_ASSERT(pimpl->type != LLAMA_VOCAB_TYPE_NONE);
  2861. auto it = pimpl->token_to_id.find(text);
  2862. if (it != pimpl->token_to_id.end()) {
  2863. return (*it).second;
  2864. }
  2865. return LLAMA_TOKEN_NULL;
  2866. }
  2867. const llama_vocab::token_data & llama_vocab::get_token_data(llama_token id) const {
  2868. GGML_ASSERT(pimpl->type != LLAMA_VOCAB_TYPE_NONE);
  2869. return pimpl->id_to_token.at(id);
  2870. }
  2871. const char * llama_vocab::token_get_text(llama_token id) const {
  2872. GGML_ASSERT(pimpl->type != LLAMA_VOCAB_TYPE_NONE);
  2873. return pimpl->id_to_token.at(id).text.c_str();
  2874. }
  2875. float llama_vocab::token_get_score(llama_token id) const {
  2876. GGML_ASSERT(pimpl->type != LLAMA_VOCAB_TYPE_NONE);
  2877. return pimpl->id_to_token.at(id).score;
  2878. }
  2879. llama_token_attr llama_vocab::token_get_attr(llama_token id) const {
  2880. return pimpl->token_get_attr(id);
  2881. }
  2882. llama_token llama_vocab::token_bos() const {
  2883. return pimpl->special_bos_id;
  2884. }
  2885. llama_token llama_vocab::token_eos() const {
  2886. return pimpl->special_eos_id;
  2887. }
  2888. llama_token llama_vocab::token_eot() const {
  2889. return pimpl->special_eot_id;
  2890. }
  2891. llama_token llama_vocab::token_eom() const {
  2892. return pimpl->special_eom_id;
  2893. }
  2894. llama_token llama_vocab::token_unk() const {
  2895. return pimpl->special_unk_id;
  2896. }
  2897. llama_token llama_vocab::token_sep() const {
  2898. return pimpl->special_sep_id;
  2899. }
  2900. llama_token llama_vocab::token_nl() const {
  2901. return pimpl->linefeed_id;
  2902. }
  2903. llama_token llama_vocab::token_pad() const {
  2904. return pimpl->special_pad_id;
  2905. }
  2906. llama_token llama_vocab::token_prefix() const {
  2907. return pimpl->special_fim_pre_id;
  2908. }
  2909. llama_token llama_vocab::token_middle() const {
  2910. return pimpl->special_fim_mid_id;
  2911. }
  2912. llama_token llama_vocab::token_suffix() const {
  2913. return pimpl->special_fim_suf_id;
  2914. }
  2915. llama_token llama_vocab::token_fim_pre() const {
  2916. return pimpl->special_fim_pre_id;
  2917. }
  2918. llama_token llama_vocab::token_fim_suf() const {
  2919. return pimpl->special_fim_suf_id;
  2920. }
  2921. llama_token llama_vocab::token_fim_mid() const {
  2922. return pimpl->special_fim_mid_id;
  2923. }
  2924. llama_token llama_vocab::token_fim_pad() const {
  2925. return pimpl->special_fim_pad_id;
  2926. }
  2927. llama_token llama_vocab::token_fim_rep() const {
  2928. return pimpl->special_fim_rep_id;
  2929. }
  2930. llama_token llama_vocab::token_fim_sep() const {
  2931. return pimpl->special_fim_sep_id;
  2932. }
  2933. llama_token llama_vocab::token_mask() const {
  2934. return pimpl->special_mask_id;
  2935. }
  2936. bool llama_vocab::get_add_space_prefix() const {
  2937. return pimpl->add_space_prefix;
  2938. }
  2939. bool llama_vocab::get_add_bos() const {
  2940. return pimpl->add_bos;
  2941. }
  2942. bool llama_vocab::get_add_eos() const {
  2943. return pimpl->add_eos;
  2944. }
  2945. bool llama_vocab::get_add_sep() const {
  2946. return pimpl->add_sep;
  2947. }
  2948. bool llama_vocab::get_ignore_merges() const {
  2949. return pimpl->ignore_merges;
  2950. }
  2951. bool llama_vocab::get_clean_spaces() const {
  2952. return pimpl->clean_spaces;
  2953. }
  2954. bool llama_vocab::get_remove_extra_whitespaces() const {
  2955. return pimpl->remove_extra_whitespaces;
  2956. }
  2957. bool llama_vocab::get_escape_whitespaces() const {
  2958. return pimpl->escape_whitespaces;
  2959. }
  2960. bool llama_vocab::get_treat_whitespace_as_suffix() const {
  2961. return pimpl->treat_whitespace_as_suffix;
  2962. }
  2963. int llama_vocab::max_token_len() const {
  2964. return pimpl->max_token_len;
  2965. }
  2966. int llama_vocab::find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
  2967. GGML_ASSERT(token_left.find(' ') == std::string::npos);
  2968. GGML_ASSERT(token_left.find('\n') == std::string::npos);
  2969. GGML_ASSERT(token_right.find(' ') == std::string::npos);
  2970. GGML_ASSERT(token_right.find('\n') == std::string::npos);
  2971. auto it = pimpl->bpe_ranks.find(std::make_pair(token_left, token_right));
  2972. if (it == pimpl->bpe_ranks.end()) {
  2973. return -1;
  2974. }
  2975. return it->second;
  2976. }
  2977. std::vector<std::string> llama_vocab::get_bpe_merges() const {
  2978. std::vector<std::string> result(pimpl->bpe_ranks.size());
  2979. for (const auto & pair : pimpl->bpe_ranks) {
  2980. result[pair.second] = pair.first.first + " " + pair.first.second;
  2981. }
  2982. return result;
  2983. }
  2984. std::vector<char> llama_vocab::get_precompiled_charsmap() const {
  2985. return pimpl->precompiled_charsmap;
  2986. }
  2987. int32_t llama_vocab::tokenize(
  2988. const char * text,
  2989. int32_t text_len,
  2990. llama_token * tokens,
  2991. int32_t n_tokens_max,
  2992. bool add_special,
  2993. bool parse_special) const {
  2994. auto res = tokenize(std::string(text, text_len), add_special, parse_special);
  2995. if (res.size() >= static_cast<size_t>(std::numeric_limits<int32_t>::max())) {
  2996. LLAMA_LOG_ERROR("%s: tokenization result size %zu exceeds int32_t limit\n", __func__, res.size());
  2997. return std::numeric_limits<int32_t>::min();
  2998. }
  2999. if (n_tokens_max < (int) res.size()) {
  3000. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  3001. return -((int) res.size());
  3002. }
  3003. for (size_t i = 0; i < res.size(); i++) {
  3004. tokens[i] = res[i];
  3005. }
  3006. return res.size();
  3007. }
  3008. std::vector<llama_token> llama_vocab::tokenize(
  3009. const std::string & raw_text,
  3010. bool add_special,
  3011. bool parse_special) const {
  3012. return pimpl->tokenize(raw_text, add_special, parse_special);
  3013. }
  3014. const std::string & llama_vocab::token_to_piece(llama_token token) const {
  3015. return pimpl->token_to_piece(token);
  3016. }
  3017. int32_t llama_vocab::token_to_piece(llama_token token, char * buf, int32_t length, int32_t lstrip, bool special) const {
  3018. return pimpl->token_to_piece(token, buf, length, lstrip, special);
  3019. }
  3020. int32_t llama_vocab::detokenize(
  3021. const llama_token * tokens,
  3022. int32_t n_tokens,
  3023. char * text,
  3024. int32_t text_len_max,
  3025. bool remove_special,
  3026. bool unparse_special) const {
  3027. return pimpl->detokenize(tokens, n_tokens, text, text_len_max, remove_special, unparse_special);
  3028. }
  3029. std::string llama_vocab::detokenize(const std::vector<llama_token> & tokens, bool special) const {
  3030. std::string text;
  3031. text.resize(std::max(text.capacity(), tokens.size()));
  3032. int32_t n_chars = detokenize(tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
  3033. if (n_chars < 0) {
  3034. text.resize(-n_chars);
  3035. n_chars = detokenize(tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
  3036. GGML_ASSERT(n_chars <= (int32_t)text.size()); // whitespace trimming is performed after per-token detokenization
  3037. }
  3038. text.resize(n_chars);
  3039. // NOTE: the original tokenizer decodes bytes after collecting the pieces.
  3040. return text;
  3041. }
  3042. void llama_vocab::print_info() const {
  3043. pimpl->print_info();
  3044. }
  3045. //
  3046. // interface implementation
  3047. //
  3048. int32_t llama_vocab_n_tokens(const struct llama_vocab * vocab) {
  3049. return vocab->n_tokens();
  3050. }
  3051. // deprecated
  3052. int32_t llama_n_vocab(const struct llama_vocab * vocab) {
  3053. return llama_vocab_n_tokens(vocab);
  3054. }
  3055. enum llama_vocab_type llama_vocab_type(const struct llama_vocab * vocab) {
  3056. return vocab->get_type();
  3057. }
  3058. const char * llama_vocab_get_text(const struct llama_vocab * vocab, llama_token token) {
  3059. return vocab->token_get_text(token);
  3060. }
  3061. float llama_vocab_get_score(const struct llama_vocab * vocab, llama_token token) {
  3062. return vocab->token_get_score(token);
  3063. }
  3064. enum llama_token_attr llama_vocab_get_attr(const struct llama_vocab * vocab, llama_token token) {
  3065. return vocab->token_get_attr(token);
  3066. }
  3067. bool llama_vocab_is_eog(const struct llama_vocab * vocab, llama_token token) {
  3068. return vocab->is_eog(token);
  3069. }
  3070. bool llama_vocab_is_control(const struct llama_vocab * vocab, llama_token token) {
  3071. return vocab->is_control(token);
  3072. }
  3073. llama_token llama_vocab_bos(const struct llama_vocab * vocab) {
  3074. return vocab->token_bos();
  3075. }
  3076. llama_token llama_vocab_eos(const struct llama_vocab * vocab) {
  3077. return vocab->token_eos();
  3078. }
  3079. llama_token llama_vocab_eot(const struct llama_vocab * vocab) {
  3080. return vocab->token_eot();
  3081. }
  3082. // deprecated
  3083. llama_token llama_vocab_cls(const struct llama_vocab * vocab) {
  3084. return vocab->token_bos();
  3085. }
  3086. llama_token llama_vocab_sep(const struct llama_vocab * vocab) {
  3087. return vocab->token_sep();
  3088. }
  3089. llama_token llama_vocab_nl (const struct llama_vocab * vocab) {
  3090. return vocab->token_nl();
  3091. }
  3092. llama_token llama_vocab_pad(const struct llama_vocab * vocab) {
  3093. return vocab->token_pad();
  3094. }
  3095. bool llama_vocab_get_add_bos(const struct llama_vocab * vocab) {
  3096. return vocab->get_add_bos();
  3097. }
  3098. bool llama_vocab_get_add_eos(const struct llama_vocab * vocab) {
  3099. return vocab->get_add_eos();
  3100. }
  3101. bool llama_vocab_get_add_sep(const struct llama_vocab * vocab) {
  3102. return vocab->get_add_sep();
  3103. }
  3104. llama_token llama_vocab_fim_pre(const struct llama_vocab * vocab) {
  3105. return vocab->token_fim_pre();
  3106. }
  3107. llama_token llama_vocab_fim_suf(const struct llama_vocab * vocab) {
  3108. return vocab->token_fim_suf();
  3109. }
  3110. llama_token llama_vocab_fim_mid(const struct llama_vocab * vocab) {
  3111. return vocab->token_fim_mid();
  3112. }
  3113. llama_token llama_vocab_fim_pad(const struct llama_vocab * vocab) {
  3114. return vocab->token_fim_pad();
  3115. }
  3116. llama_token llama_vocab_fim_rep(const struct llama_vocab * vocab) {
  3117. return vocab->token_fim_rep();
  3118. }
  3119. llama_token llama_vocab_fim_sep(const struct llama_vocab * vocab) {
  3120. return vocab->token_fim_sep();
  3121. }
  3122. llama_token llama_vocab_mask(const struct llama_vocab* vocab) {
  3123. return vocab->token_mask();
  3124. }
  3125. // deprecated
  3126. const char * llama_token_get_text(const struct llama_vocab * vocab, llama_token token) {
  3127. return llama_vocab_get_text(vocab, token);
  3128. }
  3129. // deprecated
  3130. float llama_token_get_score(const struct llama_vocab * vocab, llama_token token) {
  3131. return llama_vocab_get_score(vocab, token);
  3132. }
  3133. // deprecated
  3134. enum llama_token_attr llama_token_get_attr(const struct llama_vocab * vocab, llama_token token) {
  3135. return llama_vocab_get_attr(vocab, token);
  3136. }
  3137. // deprecated
  3138. bool llama_token_is_eog(const struct llama_vocab * vocab, llama_token token) {
  3139. return llama_vocab_is_eog(vocab, token);
  3140. }
  3141. // deprecated
  3142. bool llama_token_is_control(const struct llama_vocab * vocab, llama_token token) {
  3143. return llama_vocab_is_control(vocab, token);
  3144. }
  3145. // deprecated
  3146. llama_token llama_token_bos(const struct llama_vocab * vocab) {
  3147. return llama_vocab_bos(vocab);
  3148. }
  3149. // deprecated
  3150. llama_token llama_token_eos(const struct llama_vocab * vocab) {
  3151. return llama_vocab_eos(vocab);
  3152. }
  3153. // deprecated
  3154. llama_token llama_token_eot(const struct llama_vocab * vocab) {
  3155. return llama_vocab_eot(vocab);
  3156. }
  3157. // deprecated
  3158. llama_token llama_token_cls(const struct llama_vocab * vocab) {
  3159. //return llama_vocab_cls(vocab);
  3160. return llama_vocab_bos(vocab); // avoid deprecation warning
  3161. }
  3162. // deprecated
  3163. llama_token llama_token_sep(const struct llama_vocab * vocab) {
  3164. return llama_vocab_sep(vocab);
  3165. }
  3166. // deprecated
  3167. llama_token llama_token_nl (const struct llama_vocab * vocab) {
  3168. return llama_vocab_nl(vocab);
  3169. }
  3170. // deprecated
  3171. llama_token llama_token_pad(const struct llama_vocab * vocab) {
  3172. return llama_vocab_pad(vocab);
  3173. }
  3174. // deprecated
  3175. bool llama_add_bos_token(const struct llama_vocab * vocab) {
  3176. return llama_vocab_get_add_bos(vocab);
  3177. }
  3178. // deprecated
  3179. bool llama_add_eos_token(const struct llama_vocab * vocab) {
  3180. return llama_vocab_get_add_eos(vocab);
  3181. }
  3182. // deprecated
  3183. llama_token llama_token_fim_pre(const struct llama_vocab * vocab) {
  3184. return llama_vocab_fim_pre(vocab);
  3185. }
  3186. // deprecated
  3187. llama_token llama_token_fim_suf(const struct llama_vocab * vocab) {
  3188. return llama_vocab_fim_suf(vocab);
  3189. }
  3190. // deprecated
  3191. llama_token llama_token_fim_mid(const struct llama_vocab * vocab) {
  3192. return llama_vocab_fim_mid(vocab);
  3193. }
  3194. // deprecated
  3195. llama_token llama_token_fim_pad(const struct llama_vocab * vocab) {
  3196. return llama_vocab_fim_pad(vocab);
  3197. }
  3198. // deprecated
  3199. llama_token llama_token_fim_rep(const struct llama_vocab * vocab) {
  3200. return llama_vocab_fim_rep(vocab);
  3201. }
  3202. // deprecated
  3203. llama_token llama_token_fim_sep(const struct llama_vocab * vocab) {
  3204. return llama_vocab_fim_sep(vocab);
  3205. }
  3206. //
  3207. // tokenization
  3208. //
  3209. int32_t llama_tokenize(
  3210. const struct llama_vocab * vocab,
  3211. const char * text,
  3212. int32_t text_len,
  3213. llama_token * tokens,
  3214. int32_t n_tokens_max,
  3215. bool add_special,
  3216. bool parse_special) {
  3217. return vocab->tokenize(text, text_len, tokens, n_tokens_max, add_special, parse_special);
  3218. }
  3219. int32_t llama_token_to_piece(
  3220. const struct llama_vocab * vocab,
  3221. llama_token token,
  3222. char * buf,
  3223. int32_t length,
  3224. int32_t lstrip,
  3225. bool special) {
  3226. return vocab->token_to_piece(token, buf, length, lstrip, special);
  3227. }
  3228. int32_t llama_detokenize(
  3229. const struct llama_vocab * vocab,
  3230. const llama_token * tokens,
  3231. int32_t n_tokens,
  3232. char * text,
  3233. int32_t text_len_max,
  3234. bool remove_special,
  3235. bool unparse_special) {
  3236. return vocab->detokenize(tokens, n_tokens, text, text_len_max, remove_special, unparse_special);
  3237. }