tensor_mapping.py 81 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2 glm4-0414 plamo2 granite-hybrid
  13. "embed_tokens", # embeddinggemma
  14. "tok_embeddings", # llama-pth
  15. "embeddings.word_embeddings", # bert nomic-bert
  16. "embeddings.tok_embeddings", # modern-bert
  17. "language_model.embedding.word_embeddings", # persimmon
  18. "wte", # gpt2
  19. "transformer.embd.wte", # phi2
  20. "model.tok_embeddings", # internlm2
  21. "model.embedding", # mamba-qbert
  22. "backbone.embedding", # mamba
  23. "backbone.embeddings", # mamba-hf
  24. "transformer.in_out_embed", # Grok
  25. "embedding.word_embeddings", # chatglm
  26. "transformer.token_embeddings", # openelm
  27. "shared", # t5
  28. "rwkv.embeddings", # rwkv6
  29. "model.embeddings", # rwkv7
  30. "model.word_embeddings", # bailingmoe
  31. "language_model.model.embed_tokens", # llama4
  32. "encoder", # neobert
  33. "model.transformer.wte", # llada
  34. "embed_tokens", # qwen3-embedding
  35. ),
  36. # Token type embeddings
  37. MODEL_TENSOR.TOKEN_TYPES: (
  38. "embeddings.token_type_embeddings", # bert nomic-bert
  39. ),
  40. # Normalization of token embeddings
  41. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  42. "word_embeddings_layernorm", # bloom
  43. "embeddings.LayerNorm", # bert
  44. "embeddings.norm", # modern-bert
  45. "emb_ln", # nomic-bert
  46. "transformer.norm", # openelm
  47. "rwkv.blocks.0.pre_ln", # rwkv
  48. "rwkv.blocks.0.pre_ln", # rwkv6
  49. "model.pre_ln", # rwkv7
  50. "model.layers.0.pre_norm", # rwkv7
  51. "backbone.norm", # wavtokenizer
  52. "model.embedding_norm", # lfm2
  53. ),
  54. # Position embeddings
  55. MODEL_TENSOR.POS_EMBD: (
  56. "transformer.wpe", # gpt2
  57. "embeddings.position_embeddings", # bert
  58. "wpe", # gpt2
  59. ),
  60. # Output
  61. MODEL_TENSOR.OUTPUT: (
  62. "embed_out", # gptneox
  63. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe plamo2
  64. "output", # llama-pth bloom internlm2
  65. "word_embeddings_for_head", # persimmon
  66. "lm_head.linear", # phi2
  67. "output_layer", # chatglm
  68. "head", # rwkv
  69. "head.out", # wavtokenizer
  70. "lm_head", # llama4
  71. "model.transformer.ff_out", # llada
  72. "head.decoder", # modern-bert
  73. ),
  74. MODEL_TENSOR.DENSE_2_OUT: (
  75. "dense_2_out", # embeddinggemma
  76. ),
  77. MODEL_TENSOR.DENSE_3_OUT: (
  78. "dense_3_out", # embeddinggemma
  79. ),
  80. # Output norm
  81. MODEL_TENSOR.OUTPUT_NORM: (
  82. "gpt_neox.final_layer_norm", # gptneox
  83. "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
  84. "model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe plamo2
  85. "norm", # llama-pth
  86. "transformer.norm_f", # mpt dbrx
  87. "ln_f", # refact bloom qwen gpt2
  88. "language_model.encoder.final_layernorm", # persimmon
  89. "model.final_layernorm", # persimmon
  90. "lm_head.ln", # phi2
  91. "model.norm_f", # mamba-qbert
  92. "backbone.norm_f", # mamba
  93. "transformer.rms_norm", # Grok
  94. "encoder.final_layernorm", # chatglm
  95. "transformer.norm", # openelm
  96. "model.norm", # nemotron
  97. "rwkv.ln_out", # rwkv6
  98. "model.ln_out", # rwkv7
  99. "backbone.final_layer_norm", # wavtokenizer
  100. "model.norm", # llama4
  101. "model.transformer.ln_f", # llada
  102. "final_norm", # modern-bert
  103. "model.norm", # cogvlm
  104. ),
  105. # Rope frequencies
  106. MODEL_TENSOR.ROPE_FREQS: (
  107. "rope.freqs", # llama-pth
  108. "rotary_pos_emb.inv_freq", # chatglm
  109. ),
  110. MODEL_TENSOR.ROPE_FACTORS_LONG: (),
  111. MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
  112. MODEL_TENSOR.CONV1D: (
  113. "backbone.embed", # roberta
  114. ),
  115. }
  116. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  117. # Attention norm
  118. MODEL_TENSOR.ATTN_NORM: (
  119. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  120. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
  121. "transformer.blocks.{bid}.norm_1", # mpt
  122. "transformer.h.{bid}.input_layernorm", # falcon7b
  123. "h.{bid}.input_layernorm", # bloom
  124. "transformer.h.{bid}.ln_mlp", # falcon40b
  125. "model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe phimoe granite-hybrid
  126. "layers.{bid}.attention_norm", # llama-pth
  127. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  128. "model.layers.{bid}.ln1", # yi
  129. "h.{bid}.ln_1", # gpt2
  130. "transformer.h.{bid}.ln", # phi2
  131. "model.layers.layers.{bid}.norm", # plamo
  132. "model.layers.layers.{bid}.pre_mixer_norm", # plamo2
  133. "model.layers.{bid}.attention_norm", # internlm2
  134. "model.layers.{bid}.norm", # mamba-qbert
  135. "backbone.layers.{bid}.norm", # mamba
  136. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  137. "model.layers.{bid}.pre_attn_norm", # grok-2
  138. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  139. "encoder.layers.{bid}.input_layernorm", # chatglm
  140. "transformer.layers.{bid}.attn_norm", # openelm
  141. "rwkv.blocks.{bid}.ln1", # rwkv6
  142. "model.layers.{bid}.ln1", # rwkv7
  143. "model.layers.{bid}.input_layernorm", # llama4
  144. "layers.{bid}.input_layernorm", # embeddinggemma
  145. "transformer_encoder.{bid}.attention_norm", # neobert
  146. "layers.{bid}.attn_norm", # modern-bert
  147. "model.layers.{bid}.operator_norm", # lfm2
  148. "model.transformer.blocks.{bid}.attn_norm", # llada
  149. "layers.{bid}.input_layernorm", # qwen3-embedding
  150. "model.layers.{bid}.attention_layernorm", # apertus
  151. "model.layers.{bid}.pre_attention_layernorm", # kormo
  152. ),
  153. # Attention norm 2
  154. MODEL_TENSOR.ATTN_NORM_2: (
  155. "transformer.h.{bid}.ln_attn", # falcon40b
  156. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  157. "rwkv.blocks.{bid}.ln2", # rwkv6
  158. "model.layers.{bid}.ln2", # rwkv7
  159. "model.layers.{bid}.post_attention_layernorm", # cogvlm
  160. ),
  161. # Attention query-key-value
  162. MODEL_TENSOR.ATTN_QKV: (
  163. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  164. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  165. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  166. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  167. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  168. "h.{bid}.self_attention.query_key_value", # bloom
  169. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  170. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  171. "model.layers.{bid}.attention.query_key_value", # bailingmoe2
  172. "h.{bid}.attn.c_attn", # gpt2
  173. "transformer.h.{bid}.mixer.Wqkv", # phi2
  174. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  175. "encoder.layers.{bid}.mixer.Wqkv", # jina
  176. "model.layers.{bid}.self_attn.qkv_proj", # phi3
  177. "model.layers.layers.{bid}.mixer.qkv_proj", # plamo2
  178. "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
  179. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  180. "transformer_encoder.{bid}.qkv", # neobert
  181. "layers.{bid}.attn.Wqkv", # modern-bert
  182. "model.layers.{bid}.self_attn.language_expert_query_key_value", # cogvlm
  183. ),
  184. # Attention query
  185. MODEL_TENSOR.ATTN_Q: (
  186. "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe
  187. "layers.{bid}.self_attn.q_proj", # embeddinggemma
  188. "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
  189. "layers.{bid}.attention.wq", # llama-pth
  190. "encoder.layer.{bid}.attention.self.query", # bert
  191. "transformer.layer.{bid}.attention.q_lin", # distillbert
  192. "transformer.h.{bid}.attn.q_proj", # gpt-j
  193. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  194. "model.layers.{bid}.attention.wq", # internlm2
  195. "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
  196. "transformer.h.{bid}.attn.attention.q_proj", # exaone
  197. "model.layers.{bid}.self_attn.q_proj", # llama4
  198. "model.transformer.blocks.{bid}.q_proj", # llada
  199. "layers.{bid}.self_attn.q_proj", # qwen3-embedding
  200. "backbone.layers.{bid}.mixer.q_proj", # nemotron-h
  201. ),
  202. # Attention key
  203. MODEL_TENSOR.ATTN_K: (
  204. "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe
  205. "layers.{bid}.self_attn.k_proj", # embeddinggemma
  206. "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
  207. "layers.{bid}.attention.wk", # llama-pth
  208. "encoder.layer.{bid}.attention.self.key", # bert
  209. "transformer.layer.{bid}.attention.k_lin", # distillbert
  210. "transformer.h.{bid}.attn.k_proj", # gpt-j
  211. "transformer.h.{bid}.attn.k", # refact
  212. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  213. "model.layers.{bid}.attention.wk", # internlm2
  214. "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
  215. "transformer.h.{bid}.attn.attention.k_proj", # exaone
  216. "model.layers.{bid}.self_attn.k_proj", # llama4
  217. "model.transformer.blocks.{bid}.k_proj", # llada
  218. "layers.{bid}.self_attn.k_proj", # qwen3-embedding
  219. "backbone.layers.{bid}.mixer.k_proj", # nemotron-h
  220. ),
  221. # Attention value
  222. MODEL_TENSOR.ATTN_V: (
  223. "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe
  224. "layers.{bid}.self_attn.v_proj", # embeddinggemma
  225. "layers.{bid}.attention.wv", # llama-pth
  226. "encoder.layer.{bid}.attention.self.value", # bert
  227. "transformer.layer.{bid}.attention.v_lin", # distillbert
  228. "transformer.h.{bid}.attn.v_proj", # gpt-j
  229. "transformer.h.{bid}.attn.v", # refact
  230. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  231. "model.layers.{bid}.attention.wv", # internlm2
  232. "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
  233. "transformer.h.{bid}.attn.attention.v_proj", # exaone
  234. "model.layers.{bid}.self_attn.v_proj", # llama4
  235. "model.transformer.blocks.{bid}.v_proj", # llada
  236. "layers.{bid}.self_attn.v_proj", # qwen3-embedding
  237. "backbone.layers.{bid}.mixer.v_proj", # nemotron-h
  238. ),
  239. # Attention output
  240. MODEL_TENSOR.ATTN_OUT: (
  241. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  242. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  243. "transformer.blocks.{bid}.attn.out_proj", # mpt
  244. "transformer.h.{bid}.self_attention.dense", # falcon
  245. "h.{bid}.self_attention.dense", # bloom
  246. "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe
  247. "layers.{bid}.self_attn.o_proj", # embeddinggemma
  248. "model.layers.{bid}.self_attn.out_proj", # lfm2
  249. "model.layers.{bid}.self_attn.linear_attn", # deci
  250. "layers.{bid}.attention.wo", # llama-pth
  251. "encoder.layer.{bid}.attention.output.dense", # bert
  252. "layers.{bid}.attn.Wo", # modern-bert
  253. "transformer.layer.{bid}.attention.out_lin", # distillbert
  254. "transformer.h.{bid}.attn.out_proj", # gpt-j
  255. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  256. "model.layers.{bid}.self_attn.dense", # persimmon
  257. "model.layers.{bid}.attention.dense", # bailingmoe2
  258. "h.{bid}.attn.c_proj", # gpt2
  259. "transformer.h.{bid}.mixer.out_proj", # phi2
  260. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  261. "model.layers.layers.{bid}.mixer.o_proj", # plamo2
  262. "model.layers.{bid}.attention.wo", # internlm2
  263. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  264. "encoder.layers.{bid}.mixer.out_proj", # jina
  265. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  266. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  267. "encoder.layers.{bid}.self_attention.dense", # chatglm
  268. "transformer.layers.{bid}.attn.out_proj", # openelm
  269. "transformer.h.{bid}.attn.attention.out_proj", # exaone
  270. "model.layers.{bid}.self_attn.o_proj", # llama4
  271. "transformer_encoder.{bid}.wo", # neobert
  272. "model.transformer.blocks.{bid}.attn_out", # llada
  273. "layers.{bid}.self_attn.o_proj", # qwen3-embedding
  274. "backbone.layers.{bid}.mixer.o_proj", # nemotron-h
  275. "model.layers.{bid}.self_attn.language_expert_dense", # cogvlm
  276. ),
  277. # Attention output norm
  278. MODEL_TENSOR.ATTN_OUT_NORM: (
  279. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  280. "transformer.layer.{bid}.sa_layer_norm", # distillbert
  281. "encoder.layers.{bid}.norm1", # nomic-bert
  282. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  283. "model.layers.{bid}.post_attn_norm", # grok-2
  284. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  285. ),
  286. MODEL_TENSOR.ATTN_POST_NORM: (
  287. "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2 # ge
  288. "layers.{bid}.post_attention_layernorm", # embeddinggemma
  289. "model.layers.{bid}.post_self_attn_layernorm", # glm-4-0414
  290. "model.layers.layers.{bid}.post_mixer_norm.weight", # plamo2
  291. ),
  292. # Rotary embeddings
  293. MODEL_TENSOR.ATTN_ROT_EMBD: (
  294. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  295. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  296. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  297. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  298. ),
  299. MODEL_TENSOR.ATTN_SINKS: (
  300. "model.layers.{bid}.self_attn.sinks", # openai-moe
  301. "model.layers.{bid}.self_attn.attention_sink_bias", # mimov2
  302. ),
  303. MODEL_TENSOR.ATTN_GATE: (
  304. "model.layers.{bid}.self_attn.gate_proj", # afmoe
  305. ),
  306. # Feed-forward norm
  307. MODEL_TENSOR.FFN_NORM: (
  308. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  309. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
  310. "h.{bid}.post_attention_layernorm", # bloom
  311. "transformer.blocks.{bid}.norm_2", # mpt
  312. "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe phimoe
  313. "layers.{bid}.ffn_norm", # llama-pth
  314. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  315. "model.layers.{bid}.ln2", # yi
  316. "h.{bid}.ln_2", # gpt2
  317. "model.layers.{bid}.ffn_norm", # internlm2
  318. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  319. "model.layers.{bid}.pre_moe_norm", # grok-2
  320. "encoder.layers.{bid}.post_attention_layernorm", # chatglm
  321. "transformer.layers.{bid}.ffn_norm", # openelm
  322. "model.layers.{bid}.pre_ff_layernorm", # jamba granite-hybrid
  323. "model.layers.{bid}.pre_moe_layernorm", # mini-jamba
  324. "model.layers.{bid}.post_attention_layernorm", # llama4
  325. "transformer_encoder.{bid}.ffn_norm", # neobert
  326. "model.layers.layers.{bid}.pre_mlp_norm", # plamo2
  327. "model.transformer.blocks.{bid}.ff_norm", # llada
  328. "layers.{bid}.post_attention_layernorm", # qwen3-embedding
  329. "model.layers.{bid}.feedforward_layernorm", # apertus
  330. "model.layers.{bid}.pre_mlp_layernorm", # kormo
  331. "layers.{bid}.mlp_norm" # modern-bert
  332. ),
  333. # Pre feed-forward norm
  334. MODEL_TENSOR.FFN_PRE_NORM: (
  335. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  336. "layers.{bid}.pre_feedforward_layernorm", # embeddinggemma
  337. "model.layers.{bid}.pre_ff_layernorm.weight",
  338. "model.layers.{bid}.pre_mlp_layernorm", # afmoe
  339. ),
  340. # Post feed-forward norm
  341. MODEL_TENSOR.FFN_POST_NORM: (
  342. "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
  343. "layers.{bid}.post_feedforward_layernorm", # embeddinggemma
  344. "model.layers.{bid}.post_mlp_layernorm", # glm-4-0414
  345. "model.layers.layers.{bid}.post_mlp_norm.weight", # plamo2
  346. "model.layers.{bid}.feed_forward.up_proj",
  347. "model.layers.{bid}.post_moe_norm", # grok-2
  348. ),
  349. MODEL_TENSOR.FFN_GATE_INP: (
  350. "layers.{bid}.feed_forward.gate", # mixtral
  351. "model.layers.{bid}.block_sparse_moe.gate", # mixtral phimoe
  352. "model.layers.{bid}.mlp.gate", # qwen2moe olmoe
  353. "transformer.decoder_layer.{bid}.router", # Grok
  354. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  355. "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
  356. "model.layers.{bid}.feed_forward.router", # llama4 jamba
  357. "encoder.layers.{bid}.mlp.router.layer", # nomic-bert-moe
  358. "model.layers.{bid}.mlp.router", # openai-moe
  359. "model.layers.{bid}.mlp.gate.wg", # hunyuan
  360. "model.layers.{bid}.block_sparse_moe.primary_router", # smallthinker
  361. "model.layers.{bid}.feed_forward.gate", # lfm2moe
  362. "model.layers.{bid}.mlp.router.gate", # afmoe
  363. "layers.{bid}.gate", # mistral-large
  364. "backbone.layers.{bid}.mixer.gate", # nemotron-h-moe
  365. ),
  366. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  367. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  368. ),
  369. MODEL_TENSOR.FFN_EXP_PROBS_B: (
  370. "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1
  371. "model.layers.{bid}.mlp.moe_statics.e_score_correction", # ernie4.5-moe
  372. "model.layers.{bid}.mlp.gate.expert_bias", # bailingmoe2
  373. "model.layers.{bid}.mlp.expert_bias", # afmoe
  374. "model.layers.{bid}.feed_forward.expert_bias", # lfm2moe
  375. "model.layers.{bid}.block_sparse_moe.e_score_correction", # minimax-m2
  376. "backbone.layers.{bid}.mixer.gate.e_score_correction" # nemotron-h-moe
  377. ),
  378. # Feed-forward up
  379. MODEL_TENSOR.FFN_UP: (
  380. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  381. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  382. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  383. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  384. "h.{bid}.mlp.dense_h_to_4h", # bloom
  385. "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2
  386. "layers.{bid}.mlp.up_proj", # embeddinggemma
  387. "layers.{bid}.feed_forward.w3", # llama-pth
  388. "encoder.layer.{bid}.intermediate.dense", # bert
  389. "layers.{bid}.mlp.Wi", # modern-bert
  390. "transformer.layer.{bid}.ffn.lin1", # distillbert
  391. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  392. "transformer.h.{bid}.mlp.linear_3", # refact
  393. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  394. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  395. "transformer.h.{bid}.mlp.w1", # qwen
  396. "h.{bid}.mlp.c_fc", # gpt2
  397. "transformer.h.{bid}.mlp.fc1", # phi2
  398. "model.layers.{bid}.mlp.fc1", # phi2
  399. "model.layers.{bid}.mlp.gate_up_proj", # phi3 glm-4-0414
  400. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  401. "model.layers.layers.{bid}.mlp.gate_up_proj", # plamo2
  402. "model.layers.{bid}.feed_forward.w3", # internlm2
  403. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  404. "encoder.layers.{bid}.mlp.fc1", # nomic-bert-moe
  405. "model.layers.{bid}.mlp.c_fc", # starcoder2
  406. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2 (split up/gate, no longer used)
  407. "encoder.layer.{bid}.mlp.gated_layers", # jina-bert-v2 (GEGLU)
  408. "encoder.layer.{bid}.mlp.up_gated_layer", # jina-v2-code (GEGLU)
  409. "model.layers.{bid}.residual_mlp.w3", # arctic
  410. "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
  411. "transformer.h.{bid}.mlp.c_fc_1", # exaone
  412. "model.layers.{bid}.feed_forward.up_proj", # llama4 jamba granite-hybrid
  413. "transformer_encoder.{bid}.ffn.w12", # neobert
  414. "model.layers.{bid}.block_sparse_moe.up", # smallthinker
  415. "model.transformer.blocks.{bid}.up_proj", # llada
  416. "layers.{bid}.mlp.up_proj", # qwen3-embedding
  417. "backbone.layers.{bid}.mixer.up_proj", # nemotron-h
  418. "model.layers.{bid}.mlp.language_mlp.up_proj", # cogvlm
  419. ),
  420. MODEL_TENSOR.FFN_UP_EXP: (
  421. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  422. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  423. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  424. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged) ernie4.5-moe, nemotron-h-moe (merged)
  425. "model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
  426. "model.layers.{bid}.feed_forward.experts.up_proj", # llama4
  427. "encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe
  428. "model.layers.{bid}.block_sparse_moe.experts.up", # smallthinker
  429. ),
  430. MODEL_TENSOR.FFN_UP_SHEXP: (
  431. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  432. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
  433. "model.layers.{bid}.feed_forward.shared_expert.up_proj", # llama4
  434. "model.layers.{bid}.feed_forward.down_proj",
  435. "model.layers.{bid}.mlp.shared_mlp.up_proj", # hunyuan
  436. "layers.{bid}.shared_experts.w3", # mistral-large
  437. "backbone.layers.{bid}.mixer.shared_experts.up_proj", # nemotron-h-moe
  438. ),
  439. MODEL_TENSOR.FFN_UP_CHEXP: (
  440. "model.layers.{bid}.mlp.chunk_experts.up_proj", # grovemoe
  441. ),
  442. # AWQ-activation gate
  443. MODEL_TENSOR.FFN_ACT: (
  444. "transformer.blocks.{bid}.ffn.act", # mpt
  445. ),
  446. # Feed-forward gate
  447. MODEL_TENSOR.FFN_GATE: (
  448. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2
  449. "layers.{bid}.mlp.gate_proj", # embeddinggemma
  450. "layers.{bid}.feed_forward.w1", # llama-pth
  451. "transformer.h.{bid}.mlp.w2", # qwen
  452. "transformer.h.{bid}.mlp.c_fc2", # jais
  453. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  454. "model.layers.{bid}.feed_forward.w1", # internlm2
  455. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  456. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2 (split up/gate, no longer used)
  457. "transformer.h.{bid}.mlp.linear_1", # refact
  458. "model.layers.{bid}.residual_mlp.w1", # arctic
  459. "transformer.h.{bid}.mlp.c_fc_0", # exaone
  460. "model.layers.{bid}.feed_forward.gate_proj", # llama4 jamba granite-hybrid
  461. "model.transformer.blocks.{bid}.ff_proj", # llada
  462. "layers.{bid}.mlp.gate_proj", # qwen3-embedding
  463. "model.layers.{bid}.mlp.language_mlp.gate_proj", # cogvlm
  464. ),
  465. MODEL_TENSOR.FFN_GATE_EXP: (
  466. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  467. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  468. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  469. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  470. "model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
  471. "model.layers.{bid}.feed_forward.experts.gate_proj", # llama4
  472. "model.layers.{bid}.block_sparse_moe.experts.gate", # smallthinker
  473. ),
  474. MODEL_TENSOR.FFN_GATE_SHEXP: (
  475. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  476. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
  477. "model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4
  478. "model.layers.{bid}.mlp.shared_mlp.gate_proj", # hunyuan
  479. "layers.{bid}.shared_experts.w1", # mistral-large
  480. ),
  481. MODEL_TENSOR.FFN_GATE_CHEXP: (
  482. "model.layers.{bid}.mlp.chunk_experts.gate_proj", # grovemoe
  483. ),
  484. # Feed-forward down
  485. MODEL_TENSOR.FFN_DOWN: (
  486. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  487. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  488. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  489. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  490. "h.{bid}.mlp.dense_4h_to_h", # bloom
  491. "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2
  492. "layers.{bid}.mlp.down_proj", # embeddinggemma
  493. "layers.{bid}.feed_forward.w2", # llama-pth
  494. "encoder.layer.{bid}.output.dense", # bert
  495. "layers.{bid}.mlp.Wo", # modern-bert
  496. "transformer.layer.{bid}.ffn.lin2", # distillbert
  497. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  498. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  499. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  500. "h.{bid}.mlp.c_proj", # gpt2
  501. "transformer.h.{bid}.mlp.fc2", # phi2
  502. "model.layers.{bid}.mlp.fc2", # phi2
  503. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  504. "model.layers.{bid}.feed_forward.w2", # internlm2
  505. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  506. "model.layers.{bid}.mlp.c_proj", # starcoder2
  507. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  508. "transformer.layers.{bid}.ffn.proj_2", # openelm
  509. "model.layers.{bid}.residual_mlp.w2", # arctic
  510. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  511. "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
  512. "model.layers.h.{bid}.mlp.c_proj", # exaone
  513. "model.layers.{bid}.feed_forward.down_proj", # llama4 jamba granite-hybrid
  514. "transformer_encoder.{bid}.ffn.w3", # neobert
  515. "model.layers.{bid}.block_sparse_moe.down", # smallthinker
  516. "model.transformer.blocks.{bid}.ff_out", # llada
  517. "layers.{bid}.mlp.down_proj", # qwen3-embedding
  518. "backbone.layers.{bid}.mixer.down_proj", # nemotron-h
  519. "model.layers.{bid}.mlp.language_mlp.down_proj", # cogvlm
  520. ),
  521. MODEL_TENSOR.FFN_DOWN_EXP: (
  522. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  523. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  524. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  525. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged) ernie4.5-moe nemotron-h-moe (merged)
  526. "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
  527. "model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
  528. "model.layers.{bid}.feed_forward.experts.down_proj", # llama4
  529. "encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe
  530. "model.layers.{bid}.block_sparse_moe.experts.down", # smallthinker
  531. ),
  532. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  533. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  534. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
  535. "model.layers.{bid}.feed_forward.shared_expert.down_proj", # llama4
  536. "model.layers.{bid}.shared_mlp.output_linear", # granitemoe
  537. "model.layers.{bid}.mlp.shared_mlp.down_proj", # hunyuan
  538. "layers.{bid}.shared_experts.w2", # mistral-large
  539. "backbone.layers.{bid}.mixer.shared_experts.down_proj", # nemotron-h-moe
  540. ),
  541. MODEL_TENSOR.FFN_DOWN_CHEXP: (
  542. "model.layers.{bid}.mlp.chunk_experts.down_proj", # grovemoe
  543. ),
  544. MODEL_TENSOR.ATTN_Q_NORM: (
  545. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  546. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  547. "model.layers.{bid}.self_attn.query_layernorm", # hunyuan
  548. "model.layers.{bid}.attention.query_layernorm", # bailingmoe2
  549. "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2
  550. "layers.{bid}.self_attn.q_norm", # embeddinggemma
  551. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  552. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  553. "transformer.layers.{bid}.attn.q_norm", # openelm
  554. "model.layers.layers.{bid}.mixer.q", # plamo2
  555. "model.layers.layers.{bid}.mixer.q_norm", # plamo3
  556. "layers.{bid}.self_attn.q_norm", # qwen3-embedding
  557. "model.layers.{bid}.attention.query_layernorm", # apertus
  558. ),
  559. MODEL_TENSOR.ATTN_K_NORM: (
  560. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  561. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  562. "model.layers.{bid}.self_attn.key_layernorm", # hunyuan
  563. "model.layers.{bid}.attention.key_layernorm", # bailingmoe2
  564. "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2
  565. "layers.{bid}.self_attn.k_norm", # embeddinggemma
  566. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  567. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  568. "transformer.layers.{bid}.attn.k_norm", # openelm
  569. "model.layers.layers.{bid}.mixer.k", # plamo2
  570. "model.layers.layers.{bid}.mixer.k_norm", # plamo3
  571. "layers.{bid}.self_attn.k_norm", # qwen3-embedding
  572. "model.layers.{bid}.attention.key_layernorm", # apertus
  573. ),
  574. MODEL_TENSOR.ROPE_FREQS: (
  575. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  576. ),
  577. MODEL_TENSOR.LAYER_OUT_NORM: (
  578. "encoder.layer.{bid}.output.LayerNorm", # bert
  579. "transformer.layer.{bid}.output_layer_norm", # distillbert
  580. "encoder.layers.{bid}.norm2", # nomic-bert
  581. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  582. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  583. "encoder.layer.{bid}.layer_norm_2", # jina-v2-code
  584. "model.layers.{bid}.final_layernorm", # bailingmoe2
  585. ),
  586. MODEL_TENSOR.PER_LAYER_TOKEN_EMBD: (
  587. "model.embed_tokens_per_layer", # gemma3n
  588. ),
  589. MODEL_TENSOR.PER_LAYER_MODEL_PROJ: (
  590. "model.per_layer_model_projection", # gemma3n
  591. ),
  592. MODEL_TENSOR.PER_LAYER_PROJ_NORM: (
  593. "model.per_layer_projection_norm", # gemma3n
  594. ),
  595. MODEL_TENSOR.ALTUP_PROJ: (
  596. "model.altup_projections", # gemma3n
  597. ),
  598. MODEL_TENSOR.ALTUP_UNEMBD_PROJ: (
  599. "model.altup_unembed_projections", # gemma3n
  600. ),
  601. MODEL_TENSOR.PER_LAYER_INP_GATE: (
  602. "model.layers.{bid}.per_layer_input_gate", # gemma3n
  603. ),
  604. MODEL_TENSOR.PER_LAYER_PROJ: (
  605. "model.layers.{bid}.per_layer_projection", # gemma3n
  606. ),
  607. MODEL_TENSOR.PER_LAYER_POST_NORM: (
  608. "model.layers.{bid}.post_per_layer_input_norm", # gemma3n
  609. ),
  610. MODEL_TENSOR.ALTUP_CORRECT_COEF: (
  611. "model.layers.{bid}.altup.correction_coefs", # gemma3n
  612. ),
  613. MODEL_TENSOR.ALTUP_CORRECT_SCALE: (
  614. "model.layers.{bid}.altup.correct_output_scale", # gemma3n
  615. ),
  616. MODEL_TENSOR.ALTUP_PREDICT_COEF: (
  617. "model.layers.{bid}.altup.prediction_coefs", # gemma3n
  618. ),
  619. MODEL_TENSOR.ALTUP_ROUTER: (
  620. "model.layers.{bid}.altup.modality_router", # gemma3n
  621. ),
  622. MODEL_TENSOR.ALTUP_ROUTER_NORM: (
  623. "model.layers.{bid}.altup.router_norm", # gemma3n
  624. ),
  625. MODEL_TENSOR.LAUREL_L: (
  626. "model.layers.{bid}.laurel.linear_left", # gemma3n
  627. ),
  628. MODEL_TENSOR.LAUREL_R: (
  629. "model.layers.{bid}.laurel.linear_right", # gemma3n
  630. ),
  631. MODEL_TENSOR.LAUREL_POST_NORM: (
  632. "model.layers.{bid}.laurel.post_laurel_norm", # gemma3n
  633. ),
  634. MODEL_TENSOR.SSM_IN: (
  635. "model.layers.{bid}.in_proj", # mamba-hf
  636. "backbone.layers.{bid}.mixer.in_proj", # mamba
  637. "model.layers.{bid}.mamba.in_proj", # jamba falcon-h1 granite-hybrid
  638. "model.layers.layers.{bid}.mixer.in_proj", # plamo2
  639. "model.layers.{bid}.linear_attn.in_proj_qkvz", # qwen3next
  640. ),
  641. MODEL_TENSOR.SSM_CONV1D: (
  642. "model.layers.{bid}.conv1d", # mamba-hf
  643. "backbone.layers.{bid}.mixer.conv1d", # mamba
  644. "model.layers.{bid}.mamba.conv1d", # jamba falcon-h1 granite-hybrid
  645. "model.layers.layers.{bid}.mixer.conv1d", # plamo2
  646. "model.layers.{bid}.linear_attn.conv1d", # qwen3next
  647. ),
  648. MODEL_TENSOR.SSM_X: (
  649. "model.layers.{bid}.x_proj", # mamba-hf
  650. "backbone.layers.{bid}.mixer.x_proj", # mamba
  651. "model.layers.{bid}.mamba.x_proj", # jamba
  652. "model.layers.layers.{bid}.mixer.bcdt_proj", # plamo2
  653. ),
  654. MODEL_TENSOR.SSM_DT: (
  655. "model.layers.{bid}.dt_proj", # mamba-hf
  656. "backbone.layers.{bid}.mixer.dt_proj", # mamba
  657. "model.layers.{bid}.mamba.dt_proj", # jamba falcon-h1 granite-hybrid
  658. "model.layers.layers.{bid}.mixer.dt_proj", # plamo2
  659. "model.layers.{bid}.linear_attn.dt_proj", # qwen3next
  660. "backbone.layers.{bid}.mixer.dt", # nemotron-h-moe
  661. ),
  662. MODEL_TENSOR.SSM_DT_NORM: (
  663. "model.layers.layers.{bid}.mixer.dt_norm.weight", # plamo2
  664. "model.layers.{bid}.mamba.dt_layernorm", # jamba
  665. ),
  666. MODEL_TENSOR.SSM_A: (
  667. "model.layers.{bid}.A_log", # mamba-hf
  668. "backbone.layers.{bid}.mixer.A_log", # mamba
  669. "model.layers.{bid}.mamba.A_log", # jamba falcon-h1 granite-hybrid
  670. "model.layers.layers.{bid}.mixer.A_log", # plamo2
  671. "model.layers.{bid}.linear_attn.A_log", # qwen3next
  672. ),
  673. MODEL_TENSOR.SSM_B_NORM: (
  674. "model.layers.{bid}.mamba.b_layernorm", # jamba
  675. "model.layers.{bid}.mamba.B_layernorm", # mini-jamba
  676. "model.layers.layers.{bid}.mixer.B_norm.weight", # plamo2
  677. ),
  678. MODEL_TENSOR.SSM_C_NORM: (
  679. "model.layers.{bid}.mamba.c_layernorm", # jamba
  680. "model.layers.{bid}.mamba.C_layernorm", # mini-jamba
  681. "model.layers.layers.{bid}.mixer.C_norm.weight", # plamo2
  682. ),
  683. MODEL_TENSOR.SSM_D: (
  684. "model.layers.{bid}.D", # mamba-hf
  685. "backbone.layers.{bid}.mixer.D", # mamba
  686. "model.layers.{bid}.mamba.D", # jamba falcon-h1 granite-hybrid
  687. "model.layers.layers.{bid}.mixer.D", # plamo2
  688. ),
  689. MODEL_TENSOR.SSM_NORM: (
  690. "model.layers.{bid}.mamba.norm", # falcon-h1 granite-hybrid
  691. "model.layers.{bid}.linear_attn.norm", # qwen3next
  692. "backbone.layers.{bid}.mixer.norm", # mamba2
  693. ),
  694. MODEL_TENSOR.SSM_OUT: (
  695. "model.layers.{bid}.out_proj", # mamba-hf
  696. "backbone.layers.{bid}.mixer.out_proj", # mamba
  697. "model.layers.{bid}.mamba.out_proj", # jamba falcon-h1 granite-hybrid
  698. "model.layers.{bid}.linear_attn.out_proj", # qwen3next
  699. "model.layers.layers.{bid}.mixer.out_proj", # plamo2
  700. ),
  701. MODEL_TENSOR.SSM_BETA_ALPHA: (
  702. "model.layers.{bid}.linear_attn.in_proj_ba", # qwen3next
  703. ),
  704. MODEL_TENSOR.TIME_MIX_W0: (
  705. "model.layers.{bid}.attention.w0", # rwkv7
  706. ),
  707. MODEL_TENSOR.TIME_MIX_W1: (
  708. "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv6
  709. "model.layers.{bid}.self_attn.time_maa_w1", # rwkv6qwen2
  710. "model.layers.{bid}.attention.w1", # rwkv7
  711. ),
  712. MODEL_TENSOR.TIME_MIX_W2: (
  713. "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv6
  714. "model.layers.{bid}.self_attn.time_maa_w2", # rwkv6qwen2
  715. "model.layers.{bid}.attention.w2", # rwkv7
  716. ),
  717. MODEL_TENSOR.TIME_MIX_A0: (
  718. "model.layers.{bid}.attention.a0", # rwkv7
  719. ),
  720. MODEL_TENSOR.TIME_MIX_A1: (
  721. "model.layers.{bid}.attention.a1", # rwkv7
  722. ),
  723. MODEL_TENSOR.TIME_MIX_A2: (
  724. "model.layers.{bid}.attention.a2", # rwkv7
  725. ),
  726. MODEL_TENSOR.TIME_MIX_V0: (
  727. "model.layers.{bid}.attention.v0", # rwkv7
  728. ),
  729. MODEL_TENSOR.TIME_MIX_V1: (
  730. "model.layers.{bid}.attention.v1", # rwkv7
  731. ),
  732. MODEL_TENSOR.TIME_MIX_V2: (
  733. "model.layers.{bid}.attention.v2", # rwkv7
  734. ),
  735. MODEL_TENSOR.TIME_MIX_G1: (
  736. "model.layers.{bid}.attention.g1", # rwkv7
  737. ),
  738. MODEL_TENSOR.TIME_MIX_G2: (
  739. "model.layers.{bid}.attention.g2", # rwkv7
  740. ),
  741. MODEL_TENSOR.TIME_MIX_K_K: (
  742. "model.layers.{bid}.attention.k_k", # rwkv7
  743. ),
  744. MODEL_TENSOR.TIME_MIX_K_A: (
  745. "model.layers.{bid}.attention.k_a", # rwkv7
  746. ),
  747. MODEL_TENSOR.TIME_MIX_R_K: (
  748. "model.layers.{bid}.attention.r_k", # rwkv7
  749. ),
  750. MODEL_TENSOR.TIME_MIX_LERP_X: (
  751. "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv6
  752. "model.layers.{bid}.self_attn.time_maa_x", # rwkv6qwen2
  753. ),
  754. MODEL_TENSOR.TIME_MIX_LERP_K: (
  755. "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv6
  756. "model.layers.{bid}.self_attn.time_maa_k", # rwkv6qwen2
  757. ),
  758. MODEL_TENSOR.TIME_MIX_LERP_V: (
  759. "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv6
  760. "model.layers.{bid}.self_attn.time_maa_v", # rwkv6qwen2
  761. ),
  762. MODEL_TENSOR.TIME_MIX_LERP_R: (
  763. "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv6
  764. "model.layers.{bid}.self_attn.time_maa_r", # rwkv6qwen2
  765. ),
  766. MODEL_TENSOR.TIME_MIX_LERP_G: (
  767. "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv6
  768. "model.layers.{bid}.self_attn.time_maa_g", # rwkv6qwen2
  769. ),
  770. MODEL_TENSOR.TIME_MIX_LERP_W: (
  771. "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv6
  772. "model.layers.{bid}.self_attn.time_maa_w", # rwkv6qwen2
  773. ),
  774. MODEL_TENSOR.TIME_MIX_FIRST: (
  775. "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv6
  776. ),
  777. MODEL_TENSOR.TIME_MIX_DECAY: (
  778. "rwkv.blocks.{bid}.attention.time_decay", # rwkv6
  779. "model.layers.{bid}.self_attn.time_decay", # rwkv6qwen2
  780. ),
  781. MODEL_TENSOR.TIME_MIX_DECAY_W1: (
  782. "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv6
  783. "model.layers.{bid}.self_attn.time_decay_w1", # rwkv6qwen2
  784. ),
  785. MODEL_TENSOR.TIME_MIX_DECAY_W2: (
  786. "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv6
  787. "model.layers.{bid}.self_attn.time_decay_w2", # rwkv6qwen2
  788. ),
  789. MODEL_TENSOR.TIME_MIX_KEY: (
  790. "rwkv.blocks.{bid}.attention.key", # rwkv6
  791. "model.layers.{bid}.self_attn.k_proj", # rwkv6qwen2
  792. "model.layers.{bid}.attention.key", # rwkv7
  793. "model.layers.{bid}.attention.k_proj", # rwkv7
  794. ),
  795. MODEL_TENSOR.TIME_MIX_VALUE: (
  796. "rwkv.blocks.{bid}.attention.value", # rwkv6
  797. "model.layers.{bid}.self_attn.v_proj", # rwkv6qwen2
  798. "model.layers.{bid}.attention.value", # rwkv7
  799. "model.layers.{bid}.attention.v_proj", # rwkv7
  800. ),
  801. MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
  802. "rwkv.blocks.{bid}.attention.receptance", # rwkv6
  803. "model.layers.{bid}.self_attn.q_proj", # rwkv6qwen2
  804. "model.layers.{bid}.attention.receptance", # rwkv7
  805. "model.layers.{bid}.attention.r_proj", # rwkv7
  806. ),
  807. MODEL_TENSOR.TIME_MIX_GATE: (
  808. "rwkv.blocks.{bid}.attention.gate", # rwkv6
  809. "model.layers.{bid}.self_attn.gate", # rwkv6qwen2
  810. ),
  811. MODEL_TENSOR.TIME_MIX_LN: (
  812. "rwkv.blocks.{bid}.attention.ln_x", # rwkv6
  813. "model.layers.{bid}.attention.ln_x" # rwkv7
  814. ),
  815. MODEL_TENSOR.TIME_MIX_OUTPUT: (
  816. "rwkv.blocks.{bid}.attention.output", # rwkv6
  817. "model.layers.{bid}.self_attn.o_proj", # rwkv6qwen2
  818. "model.layers.{bid}.attention.output", # rwkv7
  819. "model.layers.{bid}.attention.o_proj", # rwkv7
  820. ),
  821. MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
  822. "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv6
  823. "model.layers.{bid}.feed_forward.x_k", # rwkv7
  824. ),
  825. MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
  826. "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv6
  827. ),
  828. MODEL_TENSOR.CHANNEL_MIX_KEY: (
  829. "rwkv.blocks.{bid}.feed_forward.key", # rwkv6
  830. "model.layers.{bid}.feed_forward.key", # rwkv7
  831. ),
  832. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
  833. "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv6
  834. ),
  835. MODEL_TENSOR.CHANNEL_MIX_VALUE: (
  836. "rwkv.blocks.{bid}.feed_forward.value", # rwkv6
  837. "model.layers.{bid}.feed_forward.value", # rwkv7
  838. ),
  839. MODEL_TENSOR.ATTN_Q_A: (
  840. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  841. "layers.{bid}.attention.wq_a", # mistral-large
  842. ),
  843. MODEL_TENSOR.ATTN_Q_B: (
  844. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  845. "layers.{bid}.attention.wq_b", # mistral-large
  846. ),
  847. MODEL_TENSOR.ATTN_KV_A_MQA: (
  848. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  849. "layers.{bid}.attention.wkv_a_with_mqa", # mistral-large
  850. ),
  851. MODEL_TENSOR.ATTN_KV_B: (
  852. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  853. ),
  854. MODEL_TENSOR.ATTN_K_B: (
  855. "model.layers.{bid}.self_attn.k_b_proj", # deepseek2
  856. "layers.{bid}.attention.k_b_proj", # mistral-large
  857. ),
  858. MODEL_TENSOR.ATTN_V_B: (
  859. "model.layers.{bid}.self_attn.v_b_proj", # deepseek2
  860. "layers.{bid}.attention.v_b_proj", # mistral-large
  861. ),
  862. MODEL_TENSOR.ATTN_Q_A_NORM: (
  863. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  864. "layers.{bid}.attention.q_a_norm", # mistral-large
  865. ),
  866. MODEL_TENSOR.ATTN_KV_A_NORM: (
  867. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  868. "layers.{bid}.attention.kv_a_norm", # mistral-large
  869. ),
  870. MODEL_TENSOR.ATTN_SUB_NORM: (
  871. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  872. ),
  873. MODEL_TENSOR.FFN_SUB_NORM: (
  874. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  875. ),
  876. MODEL_TENSOR.DEC_ATTN_NORM: (
  877. "decoder.block.{bid}.layer.0.layer_norm", # t5
  878. ),
  879. MODEL_TENSOR.DEC_ATTN_Q: (
  880. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  881. ),
  882. MODEL_TENSOR.DEC_ATTN_K: (
  883. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  884. ),
  885. MODEL_TENSOR.DEC_ATTN_V: (
  886. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  887. ),
  888. MODEL_TENSOR.DEC_ATTN_OUT: (
  889. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  890. ),
  891. MODEL_TENSOR.DEC_ATTN_REL_B: (
  892. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  893. ),
  894. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  895. "decoder.block.{bid}.layer.1.layer_norm", # t5
  896. ),
  897. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  898. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  899. ),
  900. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  901. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  902. ),
  903. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  904. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  905. ),
  906. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  907. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  908. ),
  909. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  910. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  911. ),
  912. MODEL_TENSOR.DEC_FFN_NORM: (
  913. "decoder.block.{bid}.layer.2.layer_norm", # t5
  914. ),
  915. MODEL_TENSOR.DEC_FFN_GATE: (
  916. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  917. ),
  918. MODEL_TENSOR.DEC_FFN_UP: (
  919. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  920. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  921. ),
  922. MODEL_TENSOR.DEC_FFN_DOWN: (
  923. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  924. ),
  925. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  926. "decoder.final_layer_norm", # t5
  927. ),
  928. MODEL_TENSOR.ENC_ATTN_NORM: (
  929. "encoder.block.{bid}.layer.0.layer_norm", # t5
  930. ),
  931. MODEL_TENSOR.ENC_ATTN_Q: (
  932. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  933. ),
  934. MODEL_TENSOR.ENC_ATTN_K: (
  935. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  936. ),
  937. MODEL_TENSOR.ENC_ATTN_V: (
  938. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  939. ),
  940. MODEL_TENSOR.ENC_ATTN_OUT: (
  941. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  942. ),
  943. MODEL_TENSOR.ENC_ATTN_REL_B: (
  944. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  945. ),
  946. MODEL_TENSOR.ENC_FFN_NORM: (
  947. "encoder.block.{bid}.layer.1.layer_norm", # t5
  948. ),
  949. MODEL_TENSOR.ENC_FFN_GATE: (
  950. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  951. ),
  952. MODEL_TENSOR.ENC_FFN_UP: (
  953. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  954. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  955. ),
  956. MODEL_TENSOR.ENC_FFN_DOWN: (
  957. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  958. ),
  959. MODEL_TENSOR.VISEXP_UP: (
  960. "model.layers.{bid}.mlp.vision_mlp.up_proj", # cogvlm
  961. ),
  962. MODEL_TENSOR.VISEXP_GATE: (
  963. "model.layers.{bid}.mlp.vision_mlp.gate_proj", # cogvlm
  964. ),
  965. MODEL_TENSOR.VISEXP_DOWN: (
  966. "model.layers.{bid}.mlp.vision_mlp.down_proj", # cogvlm
  967. ),
  968. MODEL_TENSOR.VISEXP_ATTN_OUT: (
  969. "model.layers.{bid}.self_attn.vision_expert_dense", # cogvlm
  970. ),
  971. MODEL_TENSOR.VISEXP_ATTN_QKV: (
  972. "model.layers.{bid}.self_attn.vision_expert_query_key_value", # cogvlm
  973. ),
  974. ############################################################################
  975. # TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
  976. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  977. "encoder.final_layer_norm", # t5
  978. "layer_norm", # neobert
  979. ),
  980. MODEL_TENSOR.CLS: (
  981. "classifier", # jina
  982. "classifier.dense", # roberta
  983. "pre_classifier", # distillbert
  984. "dense", # neobert
  985. "head.dense", # modern-bert
  986. ),
  987. MODEL_TENSOR.CLS_OUT: (
  988. "classifier.out_proj", # roberta
  989. ),
  990. #############################################################################
  991. MODEL_TENSOR.CONVNEXT_DW: (
  992. "backbone.convnext.{bid}.dwconv", # wavtokenizer
  993. ),
  994. MODEL_TENSOR.CONVNEXT_NORM: (
  995. "backbone.convnext.{bid}.norm", # wavtokenizer
  996. ),
  997. MODEL_TENSOR.CONVNEXT_PW1: (
  998. "backbone.convnext.{bid}.pwconv1", # wavtokenizer
  999. ),
  1000. MODEL_TENSOR.CONVNEXT_PW2: (
  1001. "backbone.convnext.{bid}.pwconv2", # wavtokenizer
  1002. ),
  1003. MODEL_TENSOR.CONVNEXT_GAMMA: (
  1004. "backbone.convnext.{bid}.gamma", # wavtokenizer
  1005. ),
  1006. MODEL_TENSOR.POSNET_CONV1: (
  1007. "backbone.posnet.{bid}.conv1", # wavtokenizer
  1008. ),
  1009. MODEL_TENSOR.POSNET_CONV2: (
  1010. "backbone.posnet.{bid}.conv2", # wavtokenizer
  1011. ),
  1012. MODEL_TENSOR.POSNET_NORM: (
  1013. "backbone.posnet.{bid}.norm", # wavtokenizer
  1014. ),
  1015. MODEL_TENSOR.POSNET_NORM1: (
  1016. "backbone.posnet.{bid}.norm1", # wavtokenizer
  1017. ),
  1018. MODEL_TENSOR.POSNET_NORM2: (
  1019. "backbone.posnet.{bid}.norm2", # wavtokenizer
  1020. ),
  1021. MODEL_TENSOR.POSNET_ATTN_NORM: (
  1022. "backbone.posnet.{bid}.norm", # wavtokenizer
  1023. ),
  1024. MODEL_TENSOR.POSNET_ATTN_Q: (
  1025. "backbone.posnet.{bid}.q", # wavtokenizer
  1026. ),
  1027. MODEL_TENSOR.POSNET_ATTN_K: (
  1028. "backbone.posnet.{bid}.k", # wavtokenizer
  1029. ),
  1030. MODEL_TENSOR.POSNET_ATTN_V: (
  1031. "backbone.posnet.{bid}.v", # wavtokenizer
  1032. ),
  1033. MODEL_TENSOR.POSNET_ATTN_OUT: (
  1034. "backbone.posnet.{bid}.proj_out", # wavtokenizer
  1035. ),
  1036. MODEL_TENSOR.SHORTCONV_CONV: (
  1037. "model.layers.{bid}.conv.conv",
  1038. ),
  1039. MODEL_TENSOR.SHORTCONV_INPROJ: (
  1040. "model.layers.{bid}.conv.in_proj",
  1041. ),
  1042. MODEL_TENSOR.SHORTCONV_OUTPROJ: (
  1043. "model.layers.{bid}.conv.out_proj",
  1044. ),
  1045. #############################################################################
  1046. ## Vision encoder
  1047. MODEL_TENSOR.V_MMPROJ: (
  1048. "multi_modal_projector.linear_{bid}",
  1049. "visual.merger.mlp.{bid}", # qwen2vl
  1050. "merger.mlp.{bid}",
  1051. ),
  1052. MODEL_TENSOR.V_MMPROJ_FC: (
  1053. "model.connector.modality_projection.proj", # SmolVLM
  1054. "model.vision.linear_proj.linear_proj", # cogvlm
  1055. "visual.merger.proj", # glm4v
  1056. ),
  1057. MODEL_TENSOR.V_MMPROJ_MLP: (
  1058. "model.mm_projector.mlp.mlp.{bid}",
  1059. "vision_model.vision_adapter.mlp.fc{bid}", # llama 4
  1060. "mlp1.{bid}", # InternVL
  1061. "model.aligner.fc1.hidden_layers.{bid}", # Janus Pro
  1062. ),
  1063. MODEL_TENSOR.V_MMPROJ_PEG: (
  1064. "model.mm_projector.peg.peg.{bid}",
  1065. ),
  1066. MODEL_TENSOR.V_ENC_EMBD_CLS: (
  1067. "vision_tower.vision_model.embeddings.class_embedding",
  1068. "model.vision_tower.embeddings.cls_token", # Intern-S1
  1069. "vision_model.class_embedding", # llama 4
  1070. "model.vision.patch_embedding.cls_embedding", # cogvlm
  1071. ),
  1072. MODEL_TENSOR.V_ENC_EMBD_PATCH: (
  1073. "vision_tower.vision_model.embeddings.patch_embedding",
  1074. "model.vision_tower.embeddings.patch_embeddings.projection", # Intern-S1
  1075. "vpm.embeddings.patch_embedding",
  1076. "model.vision_model.embeddings.patch_embedding", # SmolVLM
  1077. "vision_tower.patch_conv", # pixtral-hf
  1078. "vision_encoder.patch_conv", # pixtral
  1079. "vision_model.patch_embedding.linear", # llama 4
  1080. "visual.patch_embed.proj", # qwen2vl
  1081. "vision_tower.patch_embed.proj", # kimi-vl
  1082. "model.vision.patch_embedding.proj", # cogvlm
  1083. "siglip2.vision_model.embeddings.patch_embedding",
  1084. ),
  1085. MODEL_TENSOR.V_ENC_EMBD_NORM: (
  1086. "visual.post_conv_layernorm", # glm4v
  1087. ),
  1088. MODEL_TENSOR.V_ENC_EMBD_POS: (
  1089. "vision_tower.vision_model.embeddings.position_embedding",
  1090. "model.vision_tower.embeddings.position_embeddings", # Intern-S1
  1091. "vpm.embeddings.position_embedding",
  1092. "model.vision_model.embeddings.position_embedding", # SmolVLM
  1093. "vision_model.positional_embedding_vlm", # llama 4
  1094. "vision_tower.patch_embed.pos_emb", # kimi-vl
  1095. "visual.pos_embed", # qwen3vl
  1096. "model.vision.patch_embedding.position_embedding", # cogvlm
  1097. "visual.embeddings.position_embedding", # glm4v
  1098. ),
  1099. MODEL_TENSOR.V_ENC_ATTN_QKV: (
  1100. "visual.blocks.{bid}.attn.qkv", # qwen3vl
  1101. "model.vision.transformer.layers.{bid}.attention.query_key_value", # cogvlm
  1102. ),
  1103. MODEL_TENSOR.V_ENC_ATTN_Q: (
  1104. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.q_proj",
  1105. "model.vision_tower.encoder.layer.{bid}.attention.q_proj", # Intern-S1
  1106. "vpm.encoder.layers.{bid}.self_attn.q_proj",
  1107. "model.vision_model.encoder.layers.{bid}.self_attn.q_proj", # SmolVLM
  1108. "vision_model.model.layers.{bid}.self_attn.q_proj", # llama4
  1109. "vision_tower.transformer.layers.{bid}.attention.q_proj", # pixtral-hf
  1110. "vision_encoder.transformer.layers.{bid}.attention.wq", # pixtral
  1111. "visual.blocks.{bid}.attn.q", # qwen2vl, generated
  1112. "vision_tower.encoder.blocks.{bid}.wq", # kimi-vl, generated
  1113. "siglip2.vision_model.encoder.layers.{bid}.self_attn.q_proj", # youtuvl
  1114. ),
  1115. MODEL_TENSOR.V_ENC_ATTN_Q_NORM: (
  1116. "vision_tower.vision_model.encoder.layers.{bid}.attn.q_norm", # InternVL
  1117. "model.vision_tower.encoder.layer.{bid}.attention.q_norm", # Intern-S1
  1118. ),
  1119. MODEL_TENSOR.V_ENC_ATTN_K: (
  1120. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.k_proj",
  1121. "model.vision_tower.encoder.layer.{bid}.attention.k_proj", # Intern-S1
  1122. "vpm.encoder.layers.{bid}.self_attn.k_proj",
  1123. "model.vision_model.encoder.layers.{bid}.self_attn.k_proj", # SmolVLM
  1124. "vision_model.model.layers.{bid}.self_attn.k_proj", # llama4
  1125. "vision_tower.transformer.layers.{bid}.attention.k_proj", # pixtral-hf
  1126. "vision_encoder.transformer.layers.{bid}.attention.wk", # pixtral
  1127. "visual.blocks.{bid}.attn.k", # qwen2vl, generated
  1128. "vision_tower.encoder.blocks.{bid}.wk", # kimi-vl, generated
  1129. "siglip2.vision_model.encoder.layers.{bid}.self_attn.k_proj",
  1130. ),
  1131. MODEL_TENSOR.V_ENC_ATTN_K_NORM: (
  1132. "vision_tower.vision_model.encoder.layers.{bid}.attn.k_norm", # InternVL
  1133. "model.vision_tower.encoder.layer.{bid}.attention.k_norm", # Intern-S1
  1134. ),
  1135. MODEL_TENSOR.V_ENC_ATTN_V: (
  1136. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.v_proj",
  1137. "model.vision_tower.encoder.layer.{bid}.attention.v_proj", # Intern-S1
  1138. "vpm.encoder.layers.{bid}.self_attn.v_proj",
  1139. "model.vision_model.encoder.layers.{bid}.self_attn.v_proj", # SmolVLM
  1140. "vision_model.model.layers.{bid}.self_attn.v_proj", # llama4
  1141. "vision_tower.transformer.layers.{bid}.attention.v_proj", # pixtral-hf
  1142. "vision_encoder.transformer.layers.{bid}.attention.wv", # pixtral
  1143. "visual.blocks.{bid}.attn.v", # qwen2vl, generated
  1144. "vision_tower.encoder.blocks.{bid}.wv", # kimi-vl, generated
  1145. "siglip2.vision_model.encoder.layers.{bid}.self_attn.v_proj",
  1146. ),
  1147. MODEL_TENSOR.V_ENC_INPUT_NORM: (
  1148. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm1",
  1149. "vision_tower.vision_model.encoder.layers.{bid}.norm1", # InternVL
  1150. "model.vision_tower.encoder.layer.{bid}.layernorm_before", # Intern-S1
  1151. "vpm.encoder.layers.{bid}.layer_norm1",
  1152. "model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM
  1153. "vision_tower.transformer.layers.{bid}.attention_norm", # pixtral-hf
  1154. "vision_encoder.transformer.layers.{bid}.attention_norm", # pixtral
  1155. "vision_model.model.layers.{bid}.input_layernorm", # llama4
  1156. "visual.blocks.{bid}.norm1", # qwen2vl
  1157. "vision_tower.encoder.blocks.{bid}.norm0", # kimi-vl (norm0/norm1)
  1158. "model.vision.transformer.layers.{bid}.input_layernorm", # cogvlm
  1159. "siglip2.vision_model.encoder.layers.{bid}.layer_norm1",
  1160. ),
  1161. MODEL_TENSOR.V_ENC_ATTN_O: (
  1162. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.out_proj",
  1163. "vision_tower.vision_model.encoder.layers.{bid}.attn.proj", # InternVL
  1164. "model.vision_tower.encoder.layer.{bid}.attention.projection_layer", # Intern-S1
  1165. "vpm.encoder.layers.{bid}.self_attn.out_proj",
  1166. "model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
  1167. "model.vision_model.encoder.layers.{bid}.self_attn.projection_layer", # Janus Pro
  1168. "vision_model.model.layers.{bid}.self_attn.o_proj", # llama4
  1169. "vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral-hf
  1170. "vision_encoder.transformer.layers.{bid}.attention.wo", # pixtral
  1171. "visual.blocks.{bid}.attn.proj", # qwen2vl
  1172. "vision_tower.encoder.blocks.{bid}.wo", # kimi-vl
  1173. "model.vision.transformer.layers.{bid}.attention.dense", # cogvlm
  1174. "siglip2.vision_model.encoder.layers.{bid}.self_attn.out_proj", # youtuvl
  1175. ),
  1176. MODEL_TENSOR.V_ENC_POST_ATTN_NORM: (
  1177. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm2",
  1178. "vision_tower.vision_model.encoder.layers.{bid}.norm2", # InternVL
  1179. "model.vision_tower.encoder.layer.{bid}.layernorm_after", # Intern-S1
  1180. "vpm.encoder.layers.{bid}.layer_norm2",
  1181. "model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM
  1182. "vision_model.model.layers.{bid}.post_attention_layernorm", # llama4
  1183. "vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral-hf
  1184. "vision_encoder.transformer.layers.{bid}.ffn_norm", # pixtral
  1185. "visual.blocks.{bid}.norm2", # qwen2vl
  1186. "vision_tower.encoder.blocks.{bid}.norm1", # kimi-vl (norm0/norm1)
  1187. "model.vision.transformer.layers.{bid}.post_attention_layernorm", # cogvlm
  1188. "siglip2.vision_model.encoder.layers.{bid}.layer_norm2",
  1189. ),
  1190. MODEL_TENSOR.V_ENC_FFN_UP: (
  1191. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc1",
  1192. "model.vision_tower.encoder.layer.{bid}.mlp.fc1", # Intern-S1
  1193. "vpm.encoder.layers.{bid}.mlp.fc1",
  1194. "model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3
  1195. "vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral-hf
  1196. "vision_encoder.transformer.layers.{bid}.feed_forward.w3", # pixtral
  1197. "vision_model.model.layers.{bid}.mlp.fc1", # llama4
  1198. "visual.blocks.{bid}.mlp.fc1", # qwen2vl
  1199. "visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl
  1200. "visual.blocks.{bid}.mlp.linear_fc1", # qwen3vl
  1201. "vision_tower.encoder.blocks.{bid}.mlp.fc0", # kimi-vl (fc0/fc1)
  1202. "model.vision.transformer.layers.{bid}.mlp.fc1", # cogvlm
  1203. "siglip2.vision_model.encoder.layers.{bid}.mlp.fc1",
  1204. ),
  1205. MODEL_TENSOR.V_ENC_FFN_GATE: (
  1206. "vision_tower.transformer.layers.{bid}.feed_forward.gate_proj", # pixtral-hf
  1207. "vision_encoder.transformer.layers.{bid}.feed_forward.w1", # pixtral
  1208. "visual.blocks.{bid}.mlp.gate_proj", # qwen2.5vl
  1209. ),
  1210. MODEL_TENSOR.V_ENC_FFN_DOWN: (
  1211. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc2",
  1212. "model.vision_tower.encoder.layer.{bid}.mlp.fc2", # Intern-S1
  1213. "vpm.encoder.layers.{bid}.mlp.fc2",
  1214. "model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3
  1215. "vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral-hf
  1216. "vision_encoder.transformer.layers.{bid}.feed_forward.w2", # pixtral
  1217. "vision_model.model.layers.{bid}.mlp.fc2", # llama4
  1218. "visual.blocks.{bid}.mlp.fc2", # qwen2vl
  1219. "visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl
  1220. "visual.blocks.{bid}.mlp.linear_fc2", # qwen3vl
  1221. "vision_tower.encoder.blocks.{bid}.mlp.fc1", # kimi-vl (fc0/fc1)
  1222. "model.vision.transformer.layers.{bid}.mlp.fc2", # cogvlm
  1223. "siglip2.vision_model.encoder.layers.{bid}.mlp.fc2",
  1224. ),
  1225. MODEL_TENSOR.V_LAYER_SCALE_1: (
  1226. "vision_tower.vision_model.encoder.layers.{bid}.ls1", # InternVL
  1227. "model.vision_tower.encoder.layer.{bid}.lambda_1", # Intern-S1
  1228. ),
  1229. MODEL_TENSOR.V_LAYER_SCALE_2: (
  1230. "vision_tower.vision_model.encoder.layers.{bid}.ls2", # InternVL
  1231. "model.vision_tower.encoder.layer.{bid}.lambda_2", # Intern-S1
  1232. ),
  1233. MODEL_TENSOR.V_PRE_NORM: (
  1234. "vision_tower.vision_model.pre_layrnorm",
  1235. "vision_tower.ln_pre", # pixtral-hf
  1236. "vision_encoder.ln_pre", # pixtral
  1237. "vision_model.layernorm_pre", # llama4
  1238. ),
  1239. MODEL_TENSOR.V_POST_NORM: (
  1240. "vision_tower.vision_model.post_layernorm",
  1241. "model.vision_model.post_layernorm", # SmolVLM
  1242. "vision_model.layernorm_post", # llama4
  1243. "visual.merger.ln_q", # qwen2vl
  1244. "vision_tower.encoder.final_layernorm", # kimi-vl
  1245. "visual.post_layernorm", # glm4v
  1246. "siglip2.vision_model.post_layernorm",
  1247. ),
  1248. MODEL_TENSOR.V_MM_POST_NORM: (
  1249. "visual.merger.post_projection_norm", # glm4v
  1250. ),
  1251. MODEL_TENSOR.V_MM_INP_PROJ: (
  1252. "multi_modal_projector.mm_input_projection",
  1253. ),
  1254. MODEL_TENSOR.V_MM_INP_NORM: (
  1255. "multi_modal_projector.norm",
  1256. "multi_modal_projector.layer_norm",
  1257. "multi_modal_projector.pre_norm",
  1258. "pre_mm_projector_norm",
  1259. "model.vision.linear_proj.norm1", # cogvlm
  1260. "merger.ln_q",
  1261. ),
  1262. MODEL_TENSOR.V_MM_SOFT_EMB_NORM: (
  1263. "multi_modal_projector.mm_soft_emb_norm",
  1264. ),
  1265. MODEL_TENSOR.V_RESMPL_POS_EMBD_K: (
  1266. "resampler.pos_embed_k",
  1267. ),
  1268. MODEL_TENSOR.V_RESMPL_ATTN_Q: (
  1269. "resampler.attn.in_proj_q", # tensor generated from resampler.attn.in_proj
  1270. ),
  1271. MODEL_TENSOR.V_RESMPL_ATTN_K: (
  1272. "resampler.attn.in_proj_k", # tensor generated from resampler.attn.in_proj
  1273. ),
  1274. MODEL_TENSOR.V_RESMPL_ATTN_V: (
  1275. "resampler.attn.in_proj_v", # tensor generated from resampler.attn.in_proj
  1276. ),
  1277. MODEL_TENSOR.V_RESMPL_ATTN_OUT: (
  1278. "resampler.attn.out_proj",
  1279. ),
  1280. MODEL_TENSOR.V_RESMPL_KV: (
  1281. "resampler.kv_proj",
  1282. ),
  1283. MODEL_TENSOR.V_RESMPL_POST_NORM: (
  1284. "resampler.ln_post",
  1285. ),
  1286. MODEL_TENSOR.V_RESMPL_KV_NORM: (
  1287. "resampler.ln_kv",
  1288. ),
  1289. MODEL_TENSOR.V_RESMPL_Q_NORM: (
  1290. "resampler.ln_q",
  1291. ),
  1292. MODEL_TENSOR.V_RESMPL_PROJ: (
  1293. "resampler.proj",
  1294. ),
  1295. MODEL_TENSOR.V_RESMPL_QUERY: (
  1296. "resampler.query",
  1297. ),
  1298. MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK: (
  1299. "v.token_embd.img_break", # for pixtral, this is a generated vector
  1300. ),
  1301. MODEL_TENSOR.V_MM_PATCH_MERGER: (
  1302. "multi_modal_projector.patch_merger.merging_layer", # mistral small 3.1 - hf
  1303. "patch_merger.merging_layer", # mistral
  1304. "visual.downsample", # glm4v
  1305. ),
  1306. MODEL_TENSOR.V_DS_NORM: (
  1307. "model.visual.deepstack_merger_list.{bid}.norm", # deepstack in qwen3vl
  1308. ),
  1309. MODEL_TENSOR.V_DS_FC1: (
  1310. "model.visual.deepstack_merger_list.{bid}.linear_fc1", # deepstack in qwen3vl
  1311. ),
  1312. MODEL_TENSOR.V_DS_FC2: (
  1313. "model.visual.deepstack_merger_list.{bid}.linear_fc2", # deepstack in qwen3vl
  1314. ),
  1315. MODEL_TENSOR.V_MM_POST_FC_NORM: (
  1316. "model.vision.linear_proj.norm1", # cogvlm
  1317. ),
  1318. MODEL_TENSOR.V_MM_UP: (
  1319. "model.vision.linear_proj.dense_h_to_4h", # cogvlm
  1320. "visual.merger.up_proj", # glm4v
  1321. ),
  1322. MODEL_TENSOR.V_MM_DOWN: (
  1323. "model.vision.linear_proj.dense_4h_to_h", # cogvlm
  1324. "visual.merger.down_proj", # glm4v
  1325. ),
  1326. MODEL_TENSOR.V_MM_GATE: (
  1327. "model.vision.linear_proj.gate_proj", # cogvlm
  1328. "visual.merger.gate_proj", # glm4v
  1329. ),
  1330. MODEL_TENSOR.V_TOK_BOI: (
  1331. "model.vision.boi", # cogvlm
  1332. ),
  1333. MODEL_TENSOR.V_TOK_EOI: (
  1334. "model.vision.eoi", # cogvlm
  1335. ),
  1336. # audio (mtmd)
  1337. MODEL_TENSOR.A_ENC_EMBD_POS: (
  1338. "audio_tower.embed_positions", # ultravox
  1339. "audio_embedding.embedding", # lfm2
  1340. ),
  1341. MODEL_TENSOR.A_ENC_EMBD_NORM: (
  1342. "audio_embedding.embedding_norm", # lfm2
  1343. ),
  1344. MODEL_TENSOR.A_ENC_EMBD_TO_LOGITS: (
  1345. "audio_embedding.to_logits", # lfm2
  1346. ),
  1347. MODEL_TENSOR.A_ENC_CONV1D: (
  1348. "audio_tower.conv{bid}", # ultravox
  1349. "conformer.pre_encode.conv.{bid}", # lfm2
  1350. ),
  1351. MODEL_TENSOR.A_PRE_NORM: (),
  1352. MODEL_TENSOR.A_POST_NORM: (
  1353. "audio_tower.layer_norm", # ultravox
  1354. "audio_tower.ln_post", # qwen2omni
  1355. ),
  1356. MODEL_TENSOR.A_ENC_ATTN_Q: (
  1357. "audio_tower.layers.{bid}.self_attn.q_proj", # ultravox
  1358. "conformer.layers.{bid}.self_attn.linear_q", # lfm2
  1359. ),
  1360. MODEL_TENSOR.A_ENC_ATTN_K: (
  1361. "audio_tower.layers.{bid}.self_attn.k_proj", # ultravox
  1362. "conformer.layers.{bid}.self_attn.linear_k", # lfm2
  1363. ),
  1364. MODEL_TENSOR.A_ENC_ATTN_V: (
  1365. "audio_tower.layers.{bid}.self_attn.v_proj", # ultravox
  1366. "conformer.layers.{bid}.self_attn.linear_v", # lfm2
  1367. ),
  1368. MODEL_TENSOR.A_ENC_INPUT_NORM: (
  1369. "audio_tower.layers.{bid}.self_attn_layer_norm", # ultravox
  1370. "conformer.layers.{bid}.norm_self_att", # lfm2
  1371. ),
  1372. MODEL_TENSOR.A_ENC_OUTPUT: (
  1373. "audio_tower.layers.{bid}.self_attn.out_proj", # ultravox
  1374. "conformer.layers.{bid}.self_attn.linear_out", # lfm2
  1375. ),
  1376. MODEL_TENSOR.A_ENC_OUTPUT_NORM: (
  1377. "audio_tower.layers.{bid}.final_layer_norm", # ultravox
  1378. "conformer.layers.{bid}.norm_out", # lfm2
  1379. ),
  1380. MODEL_TENSOR.A_ENC_FFN_NORM: (
  1381. "conformer.layers.{bid}.norm_feed_forward1", # lfm2
  1382. ),
  1383. MODEL_TENSOR.A_ENC_FFN_UP: (
  1384. "audio_tower.layers.{bid}.fc1", # ultravox
  1385. "conformer.layers.{bid}.feed_forward1.linear1", # lfm2
  1386. ),
  1387. MODEL_TENSOR.A_ENC_FFN_GATE: (),
  1388. MODEL_TENSOR.A_ENC_FFN_DOWN: (
  1389. "audio_tower.layers.{bid}.fc2", # ultravox
  1390. "conformer.layers.{bid}.feed_forward1.linear2", # lfm2
  1391. ),
  1392. MODEL_TENSOR.A_ENC_FFN_UP_1: (
  1393. "conformer.layers.{bid}.feed_forward2.linear1", # lfm2
  1394. ),
  1395. MODEL_TENSOR.A_ENC_FFN_DOWN_1: (
  1396. "conformer.layers.{bid}.feed_forward2.linear2", # lfm2
  1397. ),
  1398. MODEL_TENSOR.A_ENC_FFN_NORM_1: (
  1399. "conformer.layers.{bid}.norm_feed_forward2", # lfm2
  1400. ),
  1401. MODEL_TENSOR.A_ENC_LINEAR_POS: (
  1402. "conformer.layers.{bid}.self_attn.linear_pos", # lfm2
  1403. ),
  1404. MODEL_TENSOR.A_ENC_POS_BIAS_U: (
  1405. "conformer.layers.{bid}.self_attn.pos_bias_u", # lfm2
  1406. ),
  1407. MODEL_TENSOR.A_ENC_POS_BIAS_V: (
  1408. "conformer.layers.{bid}.self_attn.pos_bias_v", # lfm2
  1409. ),
  1410. MODEL_TENSOR.A_ENC_OUT: (
  1411. "conformer.pre_encode.out", # lfm2
  1412. ),
  1413. # note: some tensors below has "audio." pseudo-prefix, to prevent conflicts with vision tensors
  1414. # this prefix is added in the conversion code in modify_tensors()
  1415. MODEL_TENSOR.A_MMPROJ: (
  1416. "audio.multi_modal_projector.linear_{bid}", # ultravox
  1417. "audio_adapter.model.{bid}" # lfm2
  1418. ),
  1419. MODEL_TENSOR.A_MMPROJ_FC: (
  1420. "audio.multi_modal_projector.linear", # qwen2audio
  1421. "audio_tower.proj", # qwen2omni
  1422. ),
  1423. MODEL_TENSOR.A_MM_NORM_PRE: (
  1424. "audio.multi_modal_projector.ln_pre", # ultravox
  1425. ),
  1426. MODEL_TENSOR.A_MM_NORM_MID: (
  1427. "audio.multi_modal_projector.ln_mid", # ultravox
  1428. ),
  1429. MODEL_TENSOR.A_ENC_CONV_DW: (
  1430. "conformer.layers.{bid}.conv.depthwise_conv", # lfm2
  1431. ),
  1432. MODEL_TENSOR.A_ENC_CONV_NORM: (
  1433. "conformer.layers.{bid}.conv.batch_norm", # lfm2
  1434. ),
  1435. MODEL_TENSOR.A_ENC_CONV_PW1: (
  1436. "conformer.layers.{bid}.conv.pointwise_conv1", # lfm2
  1437. ),
  1438. MODEL_TENSOR.A_ENC_CONV_PW2: (
  1439. "conformer.layers.{bid}.conv.pointwise_conv2", # lfm2
  1440. ),
  1441. MODEL_TENSOR.A_ENC_NORM_CONV: (
  1442. "conformer.layers.{bid}.norm_conv", # lfm2
  1443. ),
  1444. # NextN/MTP tensors for GLM4_MOE
  1445. MODEL_TENSOR.NEXTN_EH_PROJ: (
  1446. "model.layers.{bid}.eh_proj",
  1447. ),
  1448. MODEL_TENSOR.NEXTN_EMBED_TOKENS: (
  1449. "model.layers.{bid}.embed_tokens",
  1450. ),
  1451. MODEL_TENSOR.NEXTN_ENORM: (
  1452. "model.layers.{bid}.enorm",
  1453. ),
  1454. MODEL_TENSOR.NEXTN_HNORM: (
  1455. "model.layers.{bid}.hnorm",
  1456. ),
  1457. MODEL_TENSOR.NEXTN_SHARED_HEAD_HEAD: (
  1458. "model.layers.{bid}.shared_head.head",
  1459. ),
  1460. MODEL_TENSOR.NEXTN_SHARED_HEAD_NORM: (
  1461. "model.layers.{bid}.shared_head.norm",
  1462. ),
  1463. }
  1464. # architecture-specific block mappings
  1465. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  1466. MODEL_ARCH.ARCTIC: {
  1467. MODEL_TENSOR.FFN_NORM: (
  1468. "model.layers.{bid}.residual_layernorm",
  1469. ),
  1470. MODEL_TENSOR.FFN_NORM_EXP: (
  1471. "model.layers.{bid}.post_attention_layernorm",
  1472. ),
  1473. },
  1474. }
  1475. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  1476. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  1477. self.mapping = {}
  1478. for tensor, keys in self.mappings_cfg.items():
  1479. if tensor not in MODEL_TENSORS[arch]:
  1480. continue
  1481. tensor_name = TENSOR_NAMES[tensor]
  1482. self.mapping[tensor_name] = (tensor, tensor_name)
  1483. for key in keys:
  1484. self.mapping[key] = (tensor, tensor_name)
  1485. if arch in self.arch_block_mappings_cfg:
  1486. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  1487. for bid in range(n_blocks):
  1488. for tensor, keys in self.block_mappings_cfg.items():
  1489. if tensor not in MODEL_TENSORS[arch]:
  1490. continue
  1491. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  1492. self.mapping[tensor_name] = (tensor, tensor_name)
  1493. for key in keys:
  1494. key = key.format(bid = bid)
  1495. self.mapping[key] = (tensor, tensor_name)
  1496. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  1497. result = self.mapping.get(key)
  1498. if result is not None:
  1499. return result
  1500. for suffix in try_suffixes:
  1501. if key.endswith(suffix):
  1502. result = self.mapping.get(key[:-len(suffix)])
  1503. if result is not None:
  1504. return result[0], result[1] + suffix
  1505. return None
  1506. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  1507. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1508. if result is None:
  1509. return None
  1510. return result[1]
  1511. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  1512. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1513. if result is None:
  1514. return None
  1515. return result[0]
  1516. def __getitem__(self, key: str) -> str:
  1517. try:
  1518. return self.mapping[key][1]
  1519. except KeyError:
  1520. raise KeyError(key)
  1521. def __contains__(self, key: str) -> bool:
  1522. return key in self.mapping
  1523. def __repr__(self) -> str:
  1524. return repr(self.mapping)
  1525. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  1526. return TensorNameMap(arch, n_blocks)