convert-hf-to-gguf.py 89 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099
  1. #!/usr/bin/env python3
  2. from __future__ import annotations
  3. import argparse
  4. import contextlib
  5. import json
  6. import os
  7. import re
  8. import sys
  9. from abc import ABC, abstractmethod
  10. from enum import IntEnum
  11. from pathlib import Path
  12. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterator, Sequence, TypeVar, cast
  13. import numpy as np
  14. import torch
  15. if TYPE_CHECKING:
  16. from torch import Tensor
  17. if 'NO_LOCAL_GGUF' not in os.environ:
  18. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  19. import gguf
  20. from convert import HfVocab
  21. ###### MODEL DEFINITIONS ######
  22. class SentencePieceTokenTypes(IntEnum):
  23. NORMAL = 1
  24. UNKNOWN = 2
  25. CONTROL = 3
  26. USER_DEFINED = 4
  27. UNUSED = 5
  28. BYTE = 6
  29. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  30. class Model(ABC):
  31. _model_classes: dict[str, type[Model]] = {}
  32. def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool):
  33. self.dir_model = dir_model
  34. self.ftype = ftype
  35. self.fname_out = fname_out
  36. self.is_big_endian = is_big_endian
  37. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  38. self.is_safetensors = self._is_model_safetensors()
  39. self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin")
  40. self.part_names = self._get_part_names()
  41. self.hparams = Model.load_hparams(self.dir_model)
  42. self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=False)
  43. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
  44. @property
  45. @abstractmethod
  46. def model_arch(self) -> gguf.MODEL_ARCH:
  47. pass
  48. def find_hparam(self, keys: Sequence[str], optional: bool = False) -> Any:
  49. key = next((k for k in keys if k in self.hparams), None)
  50. if key is not None:
  51. return self.hparams[key]
  52. if optional:
  53. return None
  54. raise KeyError(f"could not find any of: {keys}")
  55. def set_vocab(self):
  56. self._set_vocab_gpt2()
  57. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  58. for part_name in self.part_names:
  59. print(f"gguf: loading model part '{part_name}'")
  60. ctx: ContextManager[Any]
  61. if self.is_safetensors:
  62. from safetensors import safe_open
  63. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  64. else:
  65. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  66. with ctx as model_part:
  67. for name in model_part.keys():
  68. data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
  69. yield name, data
  70. def set_gguf_parameters(self):
  71. self.gguf_writer.add_name(self.dir_model.name)
  72. self.gguf_writer.add_block_count(self.block_count)
  73. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  74. self.gguf_writer.add_context_length(n_ctx)
  75. print(f"gguf: context length = {n_ctx}")
  76. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  77. self.gguf_writer.add_embedding_length(n_embd)
  78. print(f"gguf: embedding length = {n_embd}")
  79. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  80. self.gguf_writer.add_feed_forward_length(n_ff)
  81. print(f"gguf: feed forward length = {n_ff}")
  82. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  83. self.gguf_writer.add_head_count(n_head)
  84. print(f"gguf: head count = {n_head}")
  85. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  86. self.gguf_writer.add_head_count_kv(n_head_kv)
  87. print(f"gguf: key-value head count = {n_head_kv}")
  88. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  89. self.gguf_writer.add_rope_freq_base(rope_theta)
  90. print(f"gguf: rope theta = {rope_theta}")
  91. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  92. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  93. print(f"gguf: rms norm epsilon = {f_rms_eps}")
  94. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  95. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  96. print(f"gguf: layer norm epsilon = {f_norm_eps}")
  97. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  98. self.gguf_writer.add_expert_count(n_experts)
  99. print(f"gguf: expert count = {n_experts}")
  100. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  101. self.gguf_writer.add_expert_used_count(n_experts_used)
  102. print(f"gguf: experts used count = {n_experts_used}")
  103. self.gguf_writer.add_file_type(self.ftype)
  104. print(f"gguf: file type = {self.ftype}")
  105. def write_tensors(self):
  106. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  107. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  108. for name, data_torch in self.get_tensors():
  109. # we don't need these
  110. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  111. continue
  112. old_dtype = data_torch.dtype
  113. # convert any unsupported data types to float32
  114. if data_torch.dtype not in (torch.float16, torch.float32):
  115. data_torch = data_torch.to(torch.float32)
  116. data = data_torch.squeeze().numpy()
  117. # map tensor names
  118. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  119. if new_name is None:
  120. print(f"Can not map tensor {name!r}")
  121. sys.exit()
  122. n_dims = len(data.shape)
  123. data_dtype = data.dtype
  124. # if f32 desired, convert any float16 to float32
  125. if self.ftype == 0 and data_dtype == np.float16:
  126. data = data.astype(np.float32)
  127. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  128. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  129. data = data.astype(np.float32)
  130. # if f16 desired, convert any float32 2-dim weight tensors to float16
  131. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  132. data = data.astype(np.float16)
  133. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  134. self.gguf_writer.add_tensor(new_name, data)
  135. def write(self):
  136. self.write_tensors()
  137. self.gguf_writer.write_header_to_file()
  138. self.gguf_writer.write_kv_data_to_file()
  139. self.gguf_writer.write_tensors_to_file()
  140. self.gguf_writer.close()
  141. def write_vocab(self):
  142. self.gguf_writer.write_header_to_file()
  143. self.gguf_writer.write_kv_data_to_file()
  144. self.gguf_writer.close()
  145. @staticmethod
  146. def count_model_parts(dir_model: Path, prefix: str) -> int:
  147. num_parts = 0
  148. for filename in os.listdir(dir_model):
  149. if filename.endswith(prefix):
  150. num_parts += 1
  151. return num_parts
  152. @staticmethod
  153. def load_hparams(dir_model):
  154. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  155. return json.load(f)
  156. @classmethod
  157. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  158. assert names
  159. def func(modelcls: type[Model]):
  160. for name in names:
  161. cls._model_classes[name] = modelcls
  162. return modelcls
  163. return func
  164. @classmethod
  165. def from_model_architecture(cls, arch):
  166. try:
  167. return cls._model_classes[arch]
  168. except KeyError:
  169. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  170. def _is_model_safetensors(self) -> bool:
  171. return Model.count_model_parts(self.dir_model, ".safetensors") > 0
  172. def _get_part_names(self):
  173. if self.is_safetensors:
  174. if self.num_parts == 1: # there's only one .safetensors file
  175. return ("model.safetensors",)
  176. return (f"model-{n:05}-of-{self.num_parts:05}.safetensors" for n in range(1, self.num_parts + 1))
  177. if self.num_parts == 1: # there's only one .bin file
  178. return ("pytorch_model.bin",)
  179. return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
  180. def _set_vocab_gpt2(self):
  181. dir_model = self.dir_model
  182. hparams = self.hparams
  183. tokens: list[bytearray] = []
  184. toktypes: list[int] = []
  185. from transformers import AutoTokenizer
  186. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  187. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  188. assert max(tokenizer.vocab.values()) < vocab_size
  189. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  190. added_vocab = tokenizer.get_added_vocab()
  191. for i in range(vocab_size):
  192. if i not in reverse_vocab:
  193. pad_token = f"[PAD{i}]".encode('utf-8')
  194. tokens.append(bytearray(pad_token))
  195. toktypes.append(gguf.TokenType.USER_DEFINED)
  196. elif reverse_vocab[i] in added_vocab:
  197. tokens.append(reverse_vocab[i])
  198. if tokenizer.added_tokens_decoder[i].special:
  199. toktypes.append(gguf.TokenType.CONTROL)
  200. else:
  201. toktypes.append(gguf.TokenType.USER_DEFINED)
  202. else:
  203. tokens.append(reverse_vocab[i])
  204. toktypes.append(gguf.TokenType.NORMAL)
  205. self.gguf_writer.add_tokenizer_model("gpt2")
  206. self.gguf_writer.add_token_list(tokens)
  207. self.gguf_writer.add_token_types(toktypes)
  208. special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
  209. special_vocab.add_to_gguf(self.gguf_writer)
  210. def _set_vocab_qwen(self):
  211. dir_model = self.dir_model
  212. hparams = self.hparams
  213. tokens: list[bytearray] = []
  214. toktypes: list[int] = []
  215. from transformers import AutoTokenizer
  216. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  217. vocab_size = hparams["vocab_size"]
  218. assert max(tokenizer.get_vocab().values()) < vocab_size
  219. merges = []
  220. vocab = {}
  221. mergeable_ranks = tokenizer.mergeable_ranks
  222. for token, rank in mergeable_ranks.items():
  223. vocab[QwenModel.token_bytes_to_string(token)] = rank
  224. if len(token) == 1:
  225. continue
  226. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  227. assert len(merged) == 2
  228. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  229. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  230. added_vocab = tokenizer.special_tokens
  231. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in (vocab | added_vocab).items()}
  232. for i in range(vocab_size):
  233. if i not in reverse_vocab:
  234. pad_token = f"[PAD{i}]".encode("utf-8")
  235. tokens.append(bytearray(pad_token))
  236. toktypes.append(gguf.TokenType.USER_DEFINED)
  237. elif reverse_vocab[i] in added_vocab:
  238. tokens.append(reverse_vocab[i])
  239. toktypes.append(gguf.TokenType.CONTROL)
  240. else:
  241. tokens.append(reverse_vocab[i])
  242. toktypes.append(gguf.TokenType.NORMAL)
  243. self.gguf_writer.add_tokenizer_model("gpt2")
  244. self.gguf_writer.add_token_list(tokens)
  245. self.gguf_writer.add_token_types(toktypes)
  246. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  247. special_vocab.merges = merges
  248. # only add special tokens when they were not already loaded from config.json
  249. if len(special_vocab.special_token_ids) == 0:
  250. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  251. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  252. # this one is usually not in config.json anyway
  253. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  254. special_vocab.add_to_gguf(self.gguf_writer)
  255. def _set_vocab_sentencepiece(self):
  256. from sentencepiece import SentencePieceProcessor
  257. tokenizer_path = self.dir_model / 'tokenizer.model'
  258. tokens: list[bytes] = []
  259. scores: list[float] = []
  260. toktypes: list[int] = []
  261. if not tokenizer_path.is_file():
  262. print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
  263. sys.exit(1)
  264. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  265. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  266. for token_id in range(vocab_size):
  267. piece = tokenizer.id_to_piece(token_id)
  268. text = piece.encode("utf-8")
  269. score = tokenizer.get_score(token_id)
  270. toktype = SentencePieceTokenTypes.NORMAL
  271. if tokenizer.is_unknown(token_id):
  272. toktype = SentencePieceTokenTypes.UNKNOWN
  273. elif tokenizer.is_control(token_id):
  274. toktype = SentencePieceTokenTypes.CONTROL
  275. elif tokenizer.is_unused(token_id):
  276. toktype = SentencePieceTokenTypes.UNUSED
  277. elif tokenizer.is_byte(token_id):
  278. toktype = SentencePieceTokenTypes.BYTE
  279. tokens.append(text)
  280. scores.append(score)
  281. toktypes.append(toktype)
  282. added_tokens_file = self.dir_model / 'added_tokens.json'
  283. if added_tokens_file.is_file():
  284. with open(added_tokens_file, "r", encoding="utf-8") as f:
  285. added_tokens_json = json.load(f)
  286. for key in added_tokens_json:
  287. tokens.append(key.encode("utf-8"))
  288. scores.append(-1000.0)
  289. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  290. self.gguf_writer.add_tokenizer_model("llama")
  291. self.gguf_writer.add_token_list(tokens)
  292. self.gguf_writer.add_token_scores(scores)
  293. self.gguf_writer.add_token_types(toktypes)
  294. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  295. special_vocab.add_to_gguf(self.gguf_writer)
  296. def _set_vocab_hf(self):
  297. path = self.dir_model
  298. added_tokens_path = self.dir_model
  299. vocab = HfVocab(
  300. path, added_tokens_path if added_tokens_path.exists() else None
  301. )
  302. tokens = []
  303. scores = []
  304. toktypes = []
  305. for text, score, toktype in vocab.all_tokens():
  306. tokens.append(text)
  307. scores.append(score)
  308. toktypes.append(toktype)
  309. assert len(tokens) == vocab.vocab_size
  310. self.gguf_writer.add_tokenizer_model("llama")
  311. self.gguf_writer.add_token_list(tokens)
  312. self.gguf_writer.add_token_scores(scores)
  313. self.gguf_writer.add_token_types(toktypes)
  314. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  315. special_vocab.add_to_gguf(self.gguf_writer)
  316. @Model.register("GPTNeoXForCausalLM")
  317. class GPTNeoXModel(Model):
  318. model_arch = gguf.MODEL_ARCH.GPTNEOX
  319. def set_gguf_parameters(self):
  320. block_count = self.hparams["num_hidden_layers"]
  321. self.gguf_writer.add_name(self.dir_model.name)
  322. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  323. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  324. self.gguf_writer.add_block_count(block_count)
  325. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  326. self.gguf_writer.add_rope_dimension_count(
  327. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  328. )
  329. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  330. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  331. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  332. @Model.register("BloomForCausalLM")
  333. class BloomModel(Model):
  334. model_arch = gguf.MODEL_ARCH.BLOOM
  335. def set_gguf_parameters(self):
  336. self.gguf_writer.add_name("Bloom")
  337. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  338. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  339. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  340. self.gguf_writer.add_embedding_length(n_embed)
  341. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  342. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  343. self.gguf_writer.add_head_count(n_head)
  344. self.gguf_writer.add_head_count_kv(n_head)
  345. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  346. self.gguf_writer.add_file_type(self.ftype)
  347. def write_tensors(self):
  348. block_count = self.hparams["n_layer"]
  349. tensors = dict(self.get_tensors())
  350. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  351. has_lm_head = True
  352. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  353. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  354. for name, data_torch in tensors.items():
  355. if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys():
  356. has_lm_head = False
  357. name = re.sub(r'transformer\.', '', name)
  358. old_dtype = data_torch.dtype
  359. # convert any unsupported data types to float32
  360. if data_torch.dtype not in (torch.float16, torch.float32):
  361. data_torch = data_torch.to(torch.float32)
  362. data = data_torch.squeeze().numpy()
  363. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  364. # Map bloom-style qkv_linear to gpt-style qkv_linear
  365. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  366. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  367. qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
  368. data = np.concatenate(
  369. (
  370. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  371. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  372. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  373. ),
  374. axis=0,
  375. )
  376. print("re-format attention.linear_qkv.weight")
  377. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  378. qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
  379. data = np.concatenate(
  380. (
  381. qkv_bias[:, 0, :].reshape((n_embed,)),
  382. qkv_bias[:, 1, :].reshape((n_embed,)),
  383. qkv_bias[:, 2, :].reshape((n_embed,)),
  384. ),
  385. axis=0,
  386. )
  387. print("re-format attention.linear_qkv.bias")
  388. # map tensor names
  389. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  390. if new_name is None:
  391. print(f"Can not map tensor {name!r}")
  392. sys.exit()
  393. n_dims = len(data.shape)
  394. data_dtype = data.dtype
  395. # if f32 desired, convert any float16 to float32
  396. if self.ftype == 0 and data_dtype == np.float16:
  397. data = data.astype(np.float32)
  398. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  399. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  400. data = data.astype(np.float32)
  401. # if f16 desired, convert any float32 2-dim weight tensors to float16
  402. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  403. data = data.astype(np.float16)
  404. print(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  405. self.gguf_writer.add_tensor(new_name, data)
  406. if not has_lm_head and name == "word_embeddings.weight":
  407. self.gguf_writer.add_tensor("output.weight", data)
  408. print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  409. @Model.register("MPTForCausalLM")
  410. class MPTModel(Model):
  411. model_arch = gguf.MODEL_ARCH.MPT
  412. def set_gguf_parameters(self):
  413. block_count = self.hparams["n_layers"]
  414. self.gguf_writer.add_name(self.dir_model.name)
  415. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  416. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  417. self.gguf_writer.add_block_count(block_count)
  418. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  419. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  420. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  421. self.gguf_writer.add_head_count_kv(kv_n_heads)
  422. self.gguf_writer.add_layer_norm_eps(1e-5)
  423. if self.hparams["attn_config"]["clip_qkv"] is not None:
  424. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  425. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  426. def write_tensors(self):
  427. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers"))
  428. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  429. for name, data_torch in self.get_tensors():
  430. # we don't need these
  431. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  432. continue
  433. old_dtype = data_torch.dtype
  434. # convert any unsupported data types to float32
  435. if data_torch.dtype not in (torch.float16, torch.float32):
  436. data_torch = data_torch.to(torch.float32)
  437. data = data_torch.squeeze().numpy()
  438. # map tensor names
  439. if "scales" in name:
  440. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  441. if new_name is not None:
  442. new_name = new_name.replace("scales", "act.scales")
  443. else:
  444. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  445. if new_name is None:
  446. print(f"Can not map tensor {name!r}")
  447. sys.exit()
  448. n_dims = len(data.shape)
  449. data_dtype = data.dtype
  450. # if f32 desired, convert any float16 to float32
  451. if self.ftype == 0 and data_dtype == np.float16:
  452. data = data.astype(np.float32)
  453. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  454. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  455. data = data.astype(np.float32)
  456. # if f16 desired, convert any float32 2-dim weight tensors to float16
  457. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  458. data = data.astype(np.float16)
  459. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  460. self.gguf_writer.add_tensor(new_name, data)
  461. @Model.register("OrionForCausalLM")
  462. class OrionModel(Model):
  463. model_arch = gguf.MODEL_ARCH.ORION
  464. def set_vocab(self):
  465. self._set_vocab_sentencepiece()
  466. def set_gguf_parameters(self):
  467. block_count = self.hparams["num_hidden_layers"]
  468. head_count = self.hparams["num_attention_heads"]
  469. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  470. hf_repo = self.hparams.get("_name_or_path", "")
  471. ctx_length = 0
  472. if "max_sequence_length" in self.hparams:
  473. ctx_length = self.hparams["max_sequence_length"]
  474. elif "max_position_embeddings" in self.hparams:
  475. ctx_length = self.hparams["max_position_embeddings"]
  476. elif "model_max_length" in self.hparams:
  477. ctx_length = self.hparams["model_max_length"]
  478. else:
  479. print("gguf: can not find ctx length parameter.")
  480. sys.exit()
  481. self.gguf_writer.add_file_type(self.ftype)
  482. self.gguf_writer.add_name(self.dir_model.name)
  483. self.gguf_writer.add_source_hf_repo(hf_repo)
  484. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  485. self.gguf_writer.add_context_length(ctx_length)
  486. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  487. self.gguf_writer.add_block_count(block_count)
  488. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  489. self.gguf_writer.add_head_count(head_count)
  490. self.gguf_writer.add_head_count_kv(head_count_kv)
  491. # note: config provides rms norm but it is actually layer norm
  492. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  493. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  494. def write_tensors(self):
  495. # Collect tensors from generator object
  496. model_kv = dict(self.get_tensors())
  497. block_count = self.hparams["num_hidden_layers"]
  498. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  499. for name, data_torch in model_kv.items():
  500. # we don't need these
  501. if name.endswith(".rotary_emb.inv_freq"):
  502. continue
  503. old_dtype = data_torch.dtype
  504. # convert any unsupported data types to float32
  505. if data_torch.dtype not in (torch.float16, torch.float32):
  506. data_torch = data_torch.to(torch.float32)
  507. data = data_torch.squeeze().numpy()
  508. # map tensor names
  509. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  510. if new_name is None:
  511. print(f"Can not map tensor {name!r}")
  512. sys.exit()
  513. n_dims = len(data.shape)
  514. data_dtype = data.dtype
  515. # if f32 desired, convert any float16 to float32
  516. if self.ftype == 0 and data_dtype == np.float16:
  517. data = data.astype(np.float32)
  518. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  519. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  520. data = data.astype(np.float32)
  521. # if f16 desired, convert any float32 2-dim weight tensors to float16
  522. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  523. data = data.astype(np.float16)
  524. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  525. self.gguf_writer.add_tensor(new_name, data)
  526. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  527. class BaichuanModel(Model):
  528. model_arch = gguf.MODEL_ARCH.BAICHUAN
  529. def set_vocab(self):
  530. self._set_vocab_sentencepiece()
  531. def set_gguf_parameters(self):
  532. block_count = self.hparams["num_hidden_layers"]
  533. head_count = self.hparams["num_attention_heads"]
  534. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  535. hf_repo = self.hparams.get("_name_or_path", "")
  536. ctx_length = 0
  537. if "max_sequence_length" in self.hparams:
  538. ctx_length = self.hparams["max_sequence_length"]
  539. elif "max_position_embeddings" in self.hparams:
  540. ctx_length = self.hparams["max_position_embeddings"]
  541. elif "model_max_length" in self.hparams:
  542. ctx_length = self.hparams["model_max_length"]
  543. else:
  544. print("gguf: can not find ctx length parameter.")
  545. sys.exit()
  546. self.gguf_writer.add_name(self.dir_model.name)
  547. self.gguf_writer.add_source_hf_repo(hf_repo)
  548. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  549. self.gguf_writer.add_context_length(ctx_length)
  550. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  551. self.gguf_writer.add_block_count(block_count)
  552. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  553. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  554. self.gguf_writer.add_head_count(head_count)
  555. self.gguf_writer.add_head_count_kv(head_count_kv)
  556. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  557. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  558. if self.hparams["rope_scaling"].get("type") == "linear":
  559. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  560. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  561. def write_tensors(self):
  562. # Collect tensors from generator object
  563. model_kv = dict(self.get_tensors())
  564. block_count = self.hparams["num_hidden_layers"]
  565. head_count = self.hparams["num_attention_heads"]
  566. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  567. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  568. for i in range(block_count):
  569. if (w := model_kv.get(f"model.layers.{i}.self_attn.W_pack.weight")) is not None:
  570. print(f"Unpacking and permuting layer {i}")
  571. model_kv[f"model.layers.{i}.self_attn.q_proj.weight"] = \
  572. self._reverse_hf_permute_part(w, 0, head_count, head_count)
  573. model_kv[f"model.layers.{i}.self_attn.k_proj.weight"] = \
  574. self._reverse_hf_permute_part(w, 1, head_count, head_count_kv)
  575. model_kv[f"model.layers.{i}.self_attn.v_proj.weight"] = \
  576. self._reverse_hf_part(w, 2)
  577. del model_kv[f"model.layers.{i}.self_attn.W_pack.weight"]
  578. for name, data_torch in model_kv.items():
  579. # we don't need these
  580. if name.endswith(".rotary_emb.inv_freq"):
  581. continue
  582. old_dtype = data_torch.dtype
  583. # convert any unsupported data types to float32
  584. if data_torch.dtype not in (torch.float16, torch.float32):
  585. data_torch = data_torch.to(torch.float32)
  586. data = data_torch.squeeze().numpy()
  587. # map tensor names
  588. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  589. if new_name is None:
  590. print(f"Can not map tensor {name!r}")
  591. sys.exit()
  592. n_dims = len(data.shape)
  593. data_dtype = data.dtype
  594. # if f32 desired, convert any float16 to float32
  595. if self.ftype == 0 and data_dtype == np.float16:
  596. data = data.astype(np.float32)
  597. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  598. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  599. data = data.astype(np.float32)
  600. # if f16 desired, convert any float32 2-dim weight tensors to float16
  601. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  602. data = data.astype(np.float16)
  603. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  604. self.gguf_writer.add_tensor(new_name, data)
  605. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  606. if n_kv_head is not None and n_head != n_kv_head:
  607. n_head //= n_kv_head
  608. return (
  609. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  610. .swapaxes(1, 2)
  611. .reshape(weights.shape)
  612. )
  613. def _reverse_hf_permute_part(
  614. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  615. ) -> Tensor:
  616. r = weights.shape[0] // 3
  617. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  618. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  619. r = weights.shape[0] // 3
  620. return weights[r * n_part:r * n_part + r, ...]
  621. @Model.register("FalconForCausalLM", "RWForCausalLM")
  622. class FalconModel(Model):
  623. model_arch = gguf.MODEL_ARCH.FALCON
  624. def set_gguf_parameters(self):
  625. block_count = self.hparams.get("num_hidden_layers")
  626. if block_count is None:
  627. block_count = self.hparams["n_layer"] # old name
  628. n_head = self.hparams.get("num_attention_heads")
  629. if n_head is None:
  630. n_head = self.hparams["n_head"] # old name
  631. n_head_kv = self.hparams.get("num_kv_heads")
  632. if n_head_kv is None:
  633. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  634. self.gguf_writer.add_name("Falcon")
  635. self.gguf_writer.add_context_length(2048) # not in config.json
  636. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  637. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  638. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  639. self.gguf_writer.add_block_count(block_count)
  640. self.gguf_writer.add_head_count(n_head)
  641. self.gguf_writer.add_head_count_kv(n_head_kv)
  642. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  643. self.gguf_writer.add_file_type(self.ftype)
  644. def write_tensors(self):
  645. block_count = self.hparams.get("num_hidden_layers")
  646. if block_count is None:
  647. block_count = self.hparams["n_layer"] # old name
  648. n_head = self.hparams.get("num_attention_heads")
  649. if n_head is None:
  650. n_head = self.hparams["n_head"] # old name
  651. n_head_kv = self.hparams.get("num_kv_heads")
  652. if n_head_kv is None:
  653. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  654. head_dim = self.hparams["hidden_size"] // n_head
  655. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  656. for name, data_torch in self.get_tensors():
  657. old_dtype = data_torch.dtype
  658. # convert any unsupported data types to float32
  659. if data_torch.dtype not in (torch.float16, torch.float32):
  660. data_torch = data_torch.to(torch.float32)
  661. # QKV tensor transform
  662. # The original query_key_value tensor contains n_head_kv "kv groups",
  663. # each consisting of n_head/n_head_kv query weights followed by one key
  664. # and one value weight (shared by all query heads in the kv group).
  665. # This layout makes it a big pain to work with in GGML.
  666. # So we rearrange them here,, so that we have n_head query weights
  667. # followed by n_head_kv key weights followed by n_head_kv value weights,
  668. # in contiguous fashion.
  669. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  670. if "query_key_value" in name:
  671. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  672. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  673. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  674. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  675. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  676. data = data_torch.squeeze().numpy()
  677. # map tensor names
  678. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  679. if new_name is None:
  680. print(f"Can not map tensor {name!r}")
  681. sys.exit()
  682. n_dims = len(data.shape)
  683. data_dtype = data.dtype
  684. # if f32 desired, convert any float16 to float32
  685. if self.ftype == 0 and data_dtype == np.float16:
  686. data = data.astype(np.float32)
  687. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  688. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  689. data = data.astype(np.float32)
  690. # if f16 desired, convert any float32 2-dim weight tensors to float16
  691. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  692. data = data.astype(np.float16)
  693. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  694. self.gguf_writer.add_tensor(new_name, data)
  695. @Model.register("GPTBigCodeForCausalLM")
  696. class StarCoderModel(Model):
  697. model_arch = gguf.MODEL_ARCH.STARCODER
  698. def set_gguf_parameters(self):
  699. block_count = self.hparams["n_layer"]
  700. self.gguf_writer.add_name("StarCoder")
  701. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  702. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  703. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  704. self.gguf_writer.add_block_count(block_count)
  705. self.gguf_writer.add_head_count(self.hparams["n_head"])
  706. self.gguf_writer.add_head_count_kv(1)
  707. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  708. self.gguf_writer.add_file_type(self.ftype)
  709. @Model.register("GPTRefactForCausalLM")
  710. class RefactModel(Model):
  711. model_arch = gguf.MODEL_ARCH.REFACT
  712. def set_gguf_parameters(self):
  713. hidden_dim = self.hparams["n_embd"]
  714. inner_dim = 4 * hidden_dim
  715. hidden_dim = int(2 * inner_dim / 3)
  716. multiple_of = 256
  717. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  718. block_count = self.hparams["n_layer"]
  719. self.gguf_writer.add_name("Refact")
  720. # refact uses Alibi. So this is from config.json which might be used by training.
  721. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  722. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  723. self.gguf_writer.add_feed_forward_length(ff_dim)
  724. self.gguf_writer.add_block_count(block_count)
  725. self.gguf_writer.add_head_count(self.hparams["n_head"])
  726. self.gguf_writer.add_head_count_kv(1)
  727. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  728. self.gguf_writer.add_file_type(self.ftype)
  729. def write_tensors(self):
  730. hidden_dim = self.hparams["n_embd"]
  731. inner_dim = 4 * hidden_dim
  732. hidden_dim = int(2 * inner_dim / 3)
  733. multiple_of = 256
  734. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  735. n_head = self.hparams["n_head"]
  736. n_head_kv = 1
  737. head_dim = self.hparams["n_embd"] // n_head
  738. block_count = self.hparams["n_layer"]
  739. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  740. tensors = dict(self.get_tensors())
  741. for i in range(block_count):
  742. if (w := tensors.get(f"transformer.h.{i}.attn.kv.weight")) is not None:
  743. tensors[f"model.layers.{i}.self_attn.k_proj.weight"] = w[:n_head_kv * head_dim]
  744. tensors[f"model.layers.{i}.self_attn.v_proj.weight"] = w[n_head_kv * head_dim:]
  745. del tensors[f"transformer.h.{i}.attn.kv.weight"]
  746. if (w := tensors.get(f"transformer.h.{i}.attn.q.weight")) is not None:
  747. tensors[f"model.layers.{i}.self_attn.q_proj.weight"] = w
  748. del tensors[f"transformer.h.{i}.attn.q.weight"]
  749. if (w := tensors.get(f"transformer.h.{i}.mlp.gate_up_proj.weight")) is not None:
  750. tensors[f"model.layers.{i}.mlp.gate_proj.weight"] = w[:ff_dim]
  751. tensors[f"model.layers.{i}.mlp.up_proj.weight"] = w[ff_dim:]
  752. del tensors[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
  753. for name, data_torch in tensors.items():
  754. old_dtype = data_torch.dtype
  755. # convert any unsupported data types to float32
  756. if data_torch.dtype not in (torch.float16, torch.float32):
  757. data_torch = data_torch.to(torch.float32)
  758. data = data_torch.squeeze().numpy()
  759. # map tensor names
  760. new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
  761. if new_name is None:
  762. print(f"Can not map tensor {name!r}")
  763. sys.exit()
  764. n_dims = len(data.shape)
  765. data_dtype = data.dtype
  766. # if f32 desired, convert any float16 to float32
  767. if self.ftype == 0 and data_dtype == np.float16:
  768. data = data.astype(np.float32)
  769. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  770. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  771. data = data.astype(np.float32)
  772. # if f16 desired, convert any float32 2-dim weight tensors to float16
  773. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  774. data = data.astype(np.float16)
  775. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  776. self.gguf_writer.add_tensor(new_name, data)
  777. @Model.register("PersimmonForCausalLM")
  778. class PersimmonModel(Model):
  779. model_arch = gguf.MODEL_ARCH.PERSIMMON
  780. def set_gguf_parameters(self):
  781. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  782. head_count = self.hparams["num_attention_heads"]
  783. head_count_kv = head_count
  784. hidden_size = self.hparams["hidden_size"]
  785. self.gguf_writer.add_name('persimmon-8b-chat')
  786. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  787. self.gguf_writer.add_embedding_length(hidden_size)
  788. self.gguf_writer.add_block_count(block_count)
  789. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  790. # NOTE: not sure about this change - why does the model not have a rope dimension count when it is smaller
  791. # than the head size?
  792. # ref: https://github.com/ggerganov/llama.cpp/pull/4889
  793. # self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
  794. self.gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
  795. self.gguf_writer.add_head_count(head_count)
  796. self.gguf_writer.add_head_count_kv(head_count_kv)
  797. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  798. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  799. def set_vocab(self):
  800. self._set_vocab_sentencepiece()
  801. # self.gguf_writer.add_bos_token_id(71013)
  802. # self.gguf_writer.add_eos_token_id(71013)
  803. def write_tensors(self):
  804. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  805. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  806. for name, data_torch in self.get_tensors():
  807. if name.endswith(".self_attention.rotary_emb.inv_freq"):
  808. continue
  809. old_dtype = data_torch.dtype
  810. # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
  811. data = data_torch.to(torch.float32).squeeze().numpy()
  812. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  813. if new_name is None:
  814. print(f"Can not map tensor {name!r}")
  815. sys.exit()
  816. n_dims = len(data.shape)
  817. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  818. self.gguf_writer.add_tensor(new_name, data)
  819. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  820. class StableLMModel(Model):
  821. model_arch = gguf.MODEL_ARCH.STABLELM
  822. def set_vocab(self):
  823. if (self.dir_model / "tokenizer.json").is_file():
  824. self._set_vocab_gpt2()
  825. else:
  826. # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
  827. self._set_vocab_qwen()
  828. def set_gguf_parameters(self):
  829. hparams = self.hparams
  830. block_count = hparams["num_hidden_layers"]
  831. self.gguf_writer.add_name(self.dir_model.name)
  832. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  833. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  834. self.gguf_writer.add_block_count(block_count)
  835. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  836. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  837. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  838. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  839. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  840. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  841. @Model.register("MixtralForCausalLM")
  842. class MixtralModel(Model):
  843. model_arch = gguf.MODEL_ARCH.LLAMA
  844. def set_vocab(self):
  845. self._set_vocab_sentencepiece()
  846. @Model.register("GrokForCausalLM")
  847. class GrokModel(Model):
  848. model_arch = gguf.MODEL_ARCH.GROK
  849. def set_vocab(self):
  850. self._set_vocab_sentencepiece()
  851. def __init__(self, *args, **kwargs):
  852. super().__init__(*args, **kwargs)
  853. def set_gguf_parameters(self):
  854. super().set_gguf_parameters()
  855. self.gguf_writer.add_name("Grok")
  856. @Model.register("MiniCPMForCausalLM")
  857. class MiniCPMModel(Model):
  858. model_arch = gguf.MODEL_ARCH.MINICPM
  859. def set_gguf_parameters(self):
  860. block_count = self.hparams["num_hidden_layers"]
  861. self.gguf_writer.add_name("MiniCPM")
  862. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  863. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  864. self.gguf_writer.add_block_count(block_count)
  865. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  866. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  867. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  868. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  869. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  870. self.gguf_writer.add_file_type(self.ftype)
  871. def set_vocab(self):
  872. self._set_vocab_hf()
  873. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  874. if n_kv_head is not None and n_head != n_kv_head:
  875. n_head //= n_kv_head
  876. return (
  877. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  878. .swapaxes(1, 2)
  879. .reshape(weights.shape)
  880. )
  881. def write_tensors(self):
  882. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  883. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  884. n_head = self.hparams.get("num_attention_heads")
  885. n_kv_head = self.hparams.get("num_key_value_heads")
  886. for name, data_torch in self.get_tensors():
  887. # we don't need these
  888. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  889. continue
  890. old_dtype = data_torch.dtype
  891. # convert any unsupported data types to float32
  892. if data_torch.dtype not in (torch.float16, torch.float32):
  893. data_torch = data_torch.to(torch.float32)
  894. # HF models permute some of the tensors, so we need to undo that
  895. if name.endswith(("q_proj.weight")):
  896. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  897. if name.endswith(("k_proj.weight")):
  898. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  899. data = data_torch.squeeze().numpy()
  900. # map tensor names
  901. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  902. if new_name is None:
  903. print(f"Can not map tensor {name!r}")
  904. sys.exit()
  905. n_dims = len(data.shape)
  906. data_dtype = data.dtype
  907. # if f32 desired, convert any float16 to float32
  908. if self.ftype == 0 and data_dtype == np.float16:
  909. data = data.astype(np.float32)
  910. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  911. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  912. data = data.astype(np.float32)
  913. # if f16 desired, convert any float32 2-dim weight tensors to float16
  914. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  915. data = data.astype(np.float16)
  916. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  917. self.gguf_writer.add_tensor(new_name, data)
  918. @Model.register("QWenLMHeadModel")
  919. class QwenModel(Model):
  920. model_arch = gguf.MODEL_ARCH.QWEN
  921. @staticmethod
  922. def token_bytes_to_string(b):
  923. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  924. byte_encoder = bytes_to_unicode()
  925. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  926. @staticmethod
  927. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  928. parts = [bytes([b]) for b in token]
  929. while True:
  930. min_idx = None
  931. min_rank = None
  932. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  933. rank = mergeable_ranks.get(pair[0] + pair[1])
  934. if rank is not None and (min_rank is None or rank < min_rank):
  935. min_idx = i
  936. min_rank = rank
  937. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  938. break
  939. assert min_idx is not None
  940. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  941. return parts
  942. def set_vocab(self):
  943. self._set_vocab_qwen()
  944. def set_gguf_parameters(self):
  945. self.gguf_writer.add_name("Qwen")
  946. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  947. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  948. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  949. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  950. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  951. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  952. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  953. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  954. def write_tensors(self):
  955. block_count = self.hparams["num_hidden_layers"]
  956. model_kv = dict(self.get_tensors())
  957. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  958. for name, data_torch in model_kv.items():
  959. # we don't need these
  960. if name.endswith(".rotary_emb.inv_freq"):
  961. continue
  962. old_dtype = data_torch.dtype
  963. # convert any unsupported data types to float32
  964. if data_torch.dtype not in (torch.float16, torch.float32):
  965. data_torch = data_torch.to(torch.float32)
  966. data = data_torch.squeeze().numpy()
  967. # map tensor names
  968. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  969. if new_name is None:
  970. print(f"Can not map tensor {name!r}")
  971. sys.exit()
  972. n_dims = len(data.shape)
  973. data_dtype = data.dtype
  974. # if f32 desired, convert any float16 to float32
  975. if self.ftype == 0 and data_dtype == np.float16:
  976. data = data.astype(np.float32)
  977. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  978. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  979. data = data.astype(np.float32)
  980. # if f16 desired, convert any float32 2-dim weight tensors to float16
  981. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  982. data = data.astype(np.float16)
  983. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  984. self.gguf_writer.add_tensor(new_name, data)
  985. @Model.register("Qwen2ForCausalLM")
  986. class Qwen2Model(Model):
  987. model_arch = gguf.MODEL_ARCH.QWEN2
  988. @Model.register("GPT2LMHeadModel")
  989. class GPT2Model(Model):
  990. model_arch = gguf.MODEL_ARCH.GPT2
  991. def set_gguf_parameters(self):
  992. self.gguf_writer.add_name(self.dir_model.name)
  993. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  994. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  995. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  996. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  997. self.gguf_writer.add_head_count(self.hparams["n_head"])
  998. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  999. self.gguf_writer.add_file_type(self.ftype)
  1000. def write_tensors(self):
  1001. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1002. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1003. for name, data_torch in self.get_tensors():
  1004. # we don't need these
  1005. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq", ".attn.bias", ".attn.masked_bias")):
  1006. continue
  1007. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1008. data_torch = data_torch.transpose(1, 0)
  1009. old_dtype = data_torch.dtype
  1010. # convert any unsupported data types to float32
  1011. if data_torch.dtype not in (torch.float16, torch.float32):
  1012. data_torch = data_torch.to(torch.float32)
  1013. data = data_torch.squeeze().numpy()
  1014. # map tensor names
  1015. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1016. if new_name is None:
  1017. print(f"Can not map tensor {name!r}")
  1018. sys.exit()
  1019. n_dims = len(data.shape)
  1020. data_dtype = data.dtype
  1021. # if f32 desired, convert any float16 to float32
  1022. if self.ftype == 0 and data_dtype == np.float16:
  1023. data = data.astype(np.float32)
  1024. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1025. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1026. data = data.astype(np.float32)
  1027. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1028. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1029. data = data.astype(np.float16)
  1030. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1031. self.gguf_writer.add_tensor(new_name, data)
  1032. # note: GPT2 output is tied to (same as) wte in original model
  1033. if new_name == "token_embd.weight":
  1034. print(f"output.weight, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1035. self.gguf_writer.add_tensor("output.weight", data)
  1036. @Model.register("PhiForCausalLM")
  1037. class Phi2Model(Model):
  1038. model_arch = gguf.MODEL_ARCH.PHI2
  1039. def set_gguf_parameters(self):
  1040. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1041. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1042. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1043. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1044. self.gguf_writer.add_name("Phi2")
  1045. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1046. self.gguf_writer.add_embedding_length(n_embd)
  1047. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1048. self.gguf_writer.add_block_count(block_count)
  1049. self.gguf_writer.add_head_count(n_head)
  1050. self.gguf_writer.add_head_count_kv(n_head)
  1051. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1052. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1053. self.gguf_writer.add_file_type(self.ftype)
  1054. self.gguf_writer.add_add_bos_token(False)
  1055. @Model.register("PlamoForCausalLM")
  1056. class PlamoModel(Model):
  1057. model_arch = gguf.MODEL_ARCH.PLAMO
  1058. def set_vocab(self):
  1059. self._set_vocab_sentencepiece()
  1060. def set_gguf_parameters(self):
  1061. hparams = self.hparams
  1062. block_count = hparams["num_hidden_layers"]
  1063. self.gguf_writer.add_name("PLaMo")
  1064. self.gguf_writer.add_context_length(4096) # not in config.json
  1065. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1066. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1067. self.gguf_writer.add_block_count(block_count)
  1068. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1069. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1070. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1071. def shuffle_attn_q_weight(self, data_torch):
  1072. assert data_torch.size() == (5120, 5120)
  1073. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1074. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1075. data_torch = torch.reshape(data_torch, (5120, 5120))
  1076. return data_torch
  1077. def shuffle_attn_output_weight(self, data_torch):
  1078. assert data_torch.size() == (5120, 5120)
  1079. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1080. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1081. data_torch = torch.reshape(data_torch, (5120, 5120))
  1082. return data_torch
  1083. def write_tensors(self):
  1084. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  1085. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1086. for name, data_torch in self.get_tensors():
  1087. if "self_attn.rotary_emb.inv_freq" in name:
  1088. continue
  1089. # map tensor names
  1090. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1091. if new_name is None:
  1092. print(f"Can not map tensor {name!r}")
  1093. sys.exit()
  1094. # shuffle for broadcasting of gqa in ggml_mul_mat
  1095. if new_name.endswith("attn_q.weight"):
  1096. data_torch = self.shuffle_attn_q_weight(data_torch)
  1097. elif new_name.endswith("attn_output.weight"):
  1098. data_torch = self.shuffle_attn_output_weight(data_torch)
  1099. old_dtype = data_torch.dtype
  1100. # convert any unsupported data types to float32
  1101. if data_torch.dtype not in (torch.float16, torch.float32):
  1102. data_torch = data_torch.to(torch.float32)
  1103. data = data_torch.squeeze().numpy()
  1104. n_dims = len(data.shape)
  1105. data_dtype = data.dtype
  1106. # if f32 desired, convert any float16 to float32
  1107. if self.ftype == 0 and data_dtype == np.float16:
  1108. data = data.astype(np.float32)
  1109. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1110. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1111. data = data.astype(np.float32)
  1112. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1113. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1114. data = data.astype(np.float16)
  1115. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1116. self.gguf_writer.add_tensor(new_name, data)
  1117. @Model.register("CodeShellForCausalLM")
  1118. class CodeShellModel(Model):
  1119. model_arch = gguf.MODEL_ARCH.CODESHELL
  1120. def set_gguf_parameters(self):
  1121. block_count = self.hparams["n_layer"]
  1122. self.gguf_writer.add_name("CodeShell")
  1123. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1124. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1125. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1126. self.gguf_writer.add_block_count(block_count)
  1127. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1128. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1129. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1130. self.gguf_writer.add_file_type(self.ftype)
  1131. self.gguf_writer.add_rope_freq_base(10000.0)
  1132. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1133. self.gguf_writer.add_rope_scaling_factor(1.0)
  1134. def write_tensors(self):
  1135. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1136. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1137. tensors = dict(self.get_tensors())
  1138. has_lm_head = "lm_head.weight" in tensors.keys() or "output.weight" in tensors.keys()
  1139. for name, data_torch in tensors.items():
  1140. # we don't need these
  1141. if name.endswith((".attn.rotary_emb.inv_freq")):
  1142. continue
  1143. old_dtype = data_torch.dtype
  1144. # convert any unsupported data types to float32
  1145. if data_torch.dtype not in (torch.float16, torch.float32):
  1146. data_torch = data_torch.to(torch.float32)
  1147. data = data_torch.squeeze().numpy()
  1148. # map tensor names
  1149. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1150. if new_name is None:
  1151. print(f"Can not map tensor {name!r}")
  1152. sys.exit()
  1153. n_dims = len(data.shape)
  1154. data_dtype = data.dtype
  1155. # if f32 desired, convert any float16 to float32
  1156. if self.ftype == 0 and data_dtype == np.float16:
  1157. data = data.astype(np.float32)
  1158. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1159. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1160. data = data.astype(np.float32)
  1161. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1162. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1163. data = data.astype(np.float16)
  1164. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1165. self.gguf_writer.add_tensor(new_name, data)
  1166. if not has_lm_head and name == "transformer.wte.weight":
  1167. self.gguf_writer.add_tensor("output.weight", data)
  1168. print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1169. @Model.register("InternLM2ForCausalLM")
  1170. class InternLM2Model(Model):
  1171. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1172. def set_vocab(self):
  1173. # (TODO): Is there a better way?
  1174. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1175. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1176. # recognized as an empty string in C++.
  1177. from sentencepiece import SentencePieceProcessor
  1178. from sentencepiece import sentencepiece_model_pb2 as model
  1179. tokenizer_path = self.dir_model / 'tokenizer.model'
  1180. tokens: list[bytes] = []
  1181. scores: list[float] = []
  1182. toktypes: list[int] = []
  1183. if not tokenizer_path.is_file():
  1184. print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
  1185. sys.exit(1)
  1186. sentencepiece_model = model.ModelProto()
  1187. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1188. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1189. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  1190. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1191. for token_id in range(vocab_size):
  1192. piece = tokenizer.id_to_piece(token_id)
  1193. text = piece.encode("utf-8")
  1194. score = tokenizer.get_score(token_id)
  1195. if text == b"\x00":
  1196. # (TODO): fixme
  1197. # Hack here and replace the \x00 characters.
  1198. print(f"InternLM2 convert token '{text}' to '🐉'!")
  1199. text = "🐉"
  1200. toktype = SentencePieceTokenTypes.NORMAL
  1201. if tokenizer.is_unknown(token_id):
  1202. toktype = SentencePieceTokenTypes.UNKNOWN
  1203. elif tokenizer.is_control(token_id):
  1204. toktype = SentencePieceTokenTypes.CONTROL
  1205. elif tokenizer.is_unused(token_id):
  1206. toktype = SentencePieceTokenTypes.UNUSED
  1207. elif tokenizer.is_byte(token_id):
  1208. toktype = SentencePieceTokenTypes.BYTE
  1209. tokens.append(text)
  1210. scores.append(score)
  1211. toktypes.append(toktype)
  1212. added_tokens_file = self.dir_model / 'added_tokens.json'
  1213. if added_tokens_file.is_file():
  1214. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1215. added_tokens_json = json.load(f)
  1216. for key in added_tokens_json:
  1217. tokens.append(key.encode("utf-8"))
  1218. scores.append(-1000.0)
  1219. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1220. self.gguf_writer.add_tokenizer_model("llama")
  1221. self.gguf_writer.add_token_list(tokens)
  1222. self.gguf_writer.add_token_scores(scores)
  1223. self.gguf_writer.add_token_types(toktypes)
  1224. self.gguf_writer.add_add_space_prefix(add_prefix)
  1225. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1226. old_eos = special_vocab.special_token_ids["eos"]
  1227. if "chat" in os.path.basename(self.dir_model.absolute()):
  1228. # For the chat model, we replace the eos with '<|im_end|>'.
  1229. special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
  1230. print(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
  1231. in chat mode so that the conversation can end normally.")
  1232. special_vocab.add_to_gguf(self.gguf_writer)
  1233. def _try_get_sft_eos(self, tokenizer):
  1234. unused_145_list = tokenizer.encode('[UNUSED_TOKEN_145]')
  1235. im_end_list = tokenizer.encode('<|im_end|>')
  1236. assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
  1237. if len(unused_145_list) == 1:
  1238. eos_token = unused_145_list[0]
  1239. if len(im_end_list) == 1:
  1240. eos_token = im_end_list[0]
  1241. return eos_token
  1242. def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
  1243. if n_head_kv is not None and n_head != n_head_kv:
  1244. n_head = n_head_kv
  1245. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1246. .swapaxes(1, 2)
  1247. .reshape(weights.shape))
  1248. def set_gguf_parameters(self):
  1249. self.gguf_writer.add_name("InternLM2")
  1250. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1251. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1252. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1253. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1254. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1255. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1256. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1257. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1258. def post_write_tensors(self, tensor_map, name, data_torch):
  1259. old_dtype = data_torch.dtype
  1260. # convert any unsupported data types to float32
  1261. if data_torch.dtype not in (torch.float16, torch.float32):
  1262. data_torch = data_torch.to(torch.float32)
  1263. data = data_torch.squeeze().numpy()
  1264. # map tensor names
  1265. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1266. if new_name is None:
  1267. print(f"Can not map tensor {name!r}")
  1268. sys.exit()
  1269. n_dims = len(data.shape)
  1270. data_dtype = data.dtype
  1271. # if f32 desired, convert any float16 to float32
  1272. if self.ftype == 0 and data_dtype == np.float16:
  1273. data = data.astype(np.float32)
  1274. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1275. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1276. data = data.astype(np.float32)
  1277. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1278. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1279. data = data.astype(np.float16)
  1280. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1281. self.gguf_writer.add_tensor(new_name, data)
  1282. def write_tensors(self):
  1283. from einops import rearrange
  1284. num_heads = self.hparams.get("num_attention_heads")
  1285. num_kv_heads = self.hparams.get("num_key_value_heads")
  1286. hidden_size = self.hparams.get("hidden_size")
  1287. q_per_kv = num_heads // num_kv_heads
  1288. head_dim = hidden_size // num_heads
  1289. num_groups = num_heads // q_per_kv
  1290. block_count = self.hparams["num_hidden_layers"]
  1291. model_kv = dict(self.get_tensors())
  1292. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1293. qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
  1294. for name, data_torch in model_kv.items():
  1295. # we don't need these
  1296. if name.endswith(".rotary_emb.inv_freq"):
  1297. continue
  1298. if re.match(qkv_pattern, name):
  1299. bid = re.findall(qkv_pattern, name)[0]
  1300. qkv = data_torch
  1301. qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
  1302. q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
  1303. # The model weights of q and k equire additional reshape.
  1304. q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
  1305. k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
  1306. v = rearrange(v, " o g n i -> o (g n i)").T
  1307. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wq.weight", q)
  1308. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wk.weight", k)
  1309. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wv.weight", v)
  1310. else:
  1311. self.post_write_tensors(tensor_map, name, data_torch)
  1312. @Model.register("BertModel", "CamembertModel")
  1313. class BertModel(Model):
  1314. model_arch = gguf.MODEL_ARCH.BERT
  1315. def __init__(self, *args, **kwargs):
  1316. super().__init__(*args, **kwargs)
  1317. self.vocab_size = None
  1318. def set_gguf_parameters(self):
  1319. super().set_gguf_parameters()
  1320. self.gguf_writer.add_causal_attention(False)
  1321. # get pooling path
  1322. pooling_path = None
  1323. module_path = self.dir_model / "modules.json"
  1324. if module_path.is_file():
  1325. with open(module_path, encoding="utf-8") as f:
  1326. modules = json.load(f)
  1327. for mod in modules:
  1328. if mod["type"] == "sentence_transformers.models.Pooling":
  1329. pooling_path = mod["path"]
  1330. break
  1331. # get pooling type
  1332. if pooling_path is not None:
  1333. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1334. pooling = json.load(f)
  1335. if pooling["pooling_mode_mean_tokens"]:
  1336. pooling_type = gguf.PoolingType.MEAN
  1337. elif pooling["pooling_mode_cls_token"]:
  1338. pooling_type = gguf.PoolingType.CLS
  1339. else:
  1340. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1341. self.gguf_writer.add_pooling_type(pooling_type)
  1342. def set_vocab(self):
  1343. path = self.dir_model
  1344. added_tokens_path = self.dir_model if self.dir_model.exists() else None
  1345. # use huggingface vocab to get all tokens
  1346. vocab = HfVocab(path, added_tokens_path)
  1347. tokens, scores, toktypes = zip(*vocab.all_tokens())
  1348. assert len(tokens) == vocab.vocab_size
  1349. self.vocab_size = vocab.vocab_size
  1350. # we need this to validate the size of the token_type embeddings
  1351. # though currently we are passing all zeros to the token_type embeddings
  1352. n_token_types = len(set(toktypes))
  1353. self.gguf_writer.add_token_type_count(n_token_types)
  1354. # convert to phantom space vocab
  1355. def phantom(tok, typ):
  1356. if tok.startswith(b"[") and tok.endswith(b"]"):
  1357. return tok
  1358. if tok.startswith(b"##"):
  1359. return tok[2:]
  1360. return b"\xe2\x96\x81" + tok
  1361. tokens = tuple(phantom(t, y) for t, y in zip(tokens, toktypes))
  1362. # set up bos and eos tokens (cls and sep)
  1363. self.gguf_writer.add_bos_token_id(vocab.tokenizer.cls_token_id)
  1364. self.gguf_writer.add_eos_token_id(vocab.tokenizer.sep_token_id)
  1365. # add vocab to gguf
  1366. self.gguf_writer.add_tokenizer_model("bert")
  1367. self.gguf_writer.add_token_list(tokens)
  1368. self.gguf_writer.add_token_scores(scores)
  1369. self.gguf_writer.add_token_types(toktypes)
  1370. # handle special tokens
  1371. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1372. special_vocab.add_to_gguf(self.gguf_writer)
  1373. def write_tensors(self):
  1374. tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  1375. tensors = dict(self.get_tensors())
  1376. for name, data_torch in tensors.items():
  1377. # we are only using BERT for embeddings so we don't need the pooling layer
  1378. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  1379. continue # we don't need these
  1380. # map tensor names
  1381. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1382. if new_name is None:
  1383. print(f"Can not map tensor {name!r}")
  1384. sys.exit()
  1385. data = data_torch.squeeze().numpy()
  1386. n_dims = len(data.shape)
  1387. new_dtype: type[np.floating[Any]]
  1388. if (
  1389. self.ftype == 1 and name.endswith(".weight") and n_dims == 2
  1390. and name != "embeddings.token_type_embeddings.weight" # not used with get_rows, must be F32
  1391. ):
  1392. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1393. new_dtype = np.float16
  1394. else:
  1395. # if f32 desired, convert any float16 to float32
  1396. new_dtype = np.float32
  1397. print(f"{new_name}, n_dims = {n_dims}, {data_torch.dtype} --> {new_dtype}")
  1398. if data.dtype != new_dtype:
  1399. data = data.astype(new_dtype)
  1400. self.gguf_writer.add_tensor(new_name, data)
  1401. @Model.register("NomicBertModel")
  1402. class NomicBertModel(BertModel):
  1403. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  1404. def __init__(self, *args, **kwargs):
  1405. super().__init__(*args, **kwargs)
  1406. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  1407. self.hparams["n_ctx"] = 2048
  1408. # SwigLU activation
  1409. assert self.hparams["activation_function"] == "swiglu"
  1410. # this doesn't do anything in the HF version
  1411. assert self.hparams["causal"] is False
  1412. # no bias tensors
  1413. assert self.hparams["qkv_proj_bias"] is False
  1414. assert self.hparams["mlp_fc1_bias"] is False
  1415. assert self.hparams["mlp_fc2_bias"] is False
  1416. # norm at end of layer
  1417. assert self.hparams["prenorm"] is False
  1418. # standard RoPE
  1419. assert self.hparams["rotary_emb_fraction"] == 1.0
  1420. assert self.hparams["rotary_emb_interleaved"] is False
  1421. assert self.hparams["rotary_emb_scale_base"] is None
  1422. def set_gguf_parameters(self):
  1423. super().set_gguf_parameters()
  1424. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1425. def get_tensors(self):
  1426. assert self.vocab_size is not None
  1427. for name, data in super().get_tensors():
  1428. # Nomic Embed's token embeddings tensor is padded, but llama.cpp wants tensor sizes to match exactly.
  1429. if name == 'embeddings.word_embeddings.weight' and data.shape[1] != self.vocab_size:
  1430. rounded_vocab_size = (self.vocab_size + 63) // 64 * 64
  1431. assert data.shape == (rounded_vocab_size, self.hparams["n_embd"])
  1432. data = data[:self.vocab_size, :]
  1433. yield name, data
  1434. @Model.register("GemmaForCausalLM")
  1435. class GemmaModel(Model):
  1436. model_arch = gguf.MODEL_ARCH.GEMMA
  1437. def set_vocab(self):
  1438. self._set_vocab_sentencepiece()
  1439. def set_gguf_parameters(self):
  1440. hparams = self.hparams
  1441. block_count = hparams["num_hidden_layers"]
  1442. self.gguf_writer.add_name(self.dir_model.name)
  1443. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1444. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1445. self.gguf_writer.add_block_count(block_count)
  1446. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1447. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1448. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  1449. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1450. self.gguf_writer.add_key_length(hparams["head_dim"])
  1451. self.gguf_writer.add_value_length(hparams["head_dim"])
  1452. self.gguf_writer.add_file_type(self.ftype)
  1453. def write_tensors(self):
  1454. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1455. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1456. for name, data_torch in self.get_tensors():
  1457. old_dtype = data_torch.dtype
  1458. # convert any unsupported data types to float32
  1459. if data_torch.dtype not in (torch.float16, torch.float32):
  1460. data_torch = data_torch.to(torch.float32)
  1461. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  1462. if name.endswith("norm.weight"):
  1463. data_torch = data_torch + 1
  1464. data = data_torch.squeeze().numpy()
  1465. # map tensor names
  1466. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1467. if new_name is None:
  1468. print(f"Can not map tensor {name!r}")
  1469. sys.exit()
  1470. n_dims = len(data.shape)
  1471. data_dtype = data.dtype
  1472. data = data.astype(np.float32)
  1473. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1474. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1475. data = data.astype(np.float16)
  1476. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1477. self.gguf_writer.add_tensor(new_name, data)
  1478. @Model.register("Starcoder2ForCausalLM")
  1479. class StarCoder2Model(Model):
  1480. model_arch = gguf.MODEL_ARCH.STARCODER2
  1481. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  1482. class MambaModel(Model):
  1483. model_arch = gguf.MODEL_ARCH.MAMBA
  1484. def set_vocab(self):
  1485. vocab_size = self.hparams["vocab_size"]
  1486. # Round vocab size to next multiple of 8
  1487. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  1488. # pad using ceiling division
  1489. # ref: https://stackoverflow.com/a/17511341/22827863
  1490. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  1491. self.hparams["vocab_size"] = vocab_size
  1492. if (self.dir_model / "tokenizer.json").is_file():
  1493. self._set_vocab_gpt2()
  1494. else:
  1495. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  1496. tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
  1497. print(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1498. neox_reader = gguf.GGUFReader(tokenizer_path, "r")
  1499. field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1500. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]))
  1501. field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1502. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1503. field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1504. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1505. field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1506. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1507. field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
  1508. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1509. field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
  1510. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1511. field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
  1512. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1513. def set_gguf_parameters(self):
  1514. d_model = self.find_hparam(["hidden_size", "d_model"])
  1515. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  1516. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  1517. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  1518. # ceiling division
  1519. # ref: https://stackoverflow.com/a/17511341/22827863
  1520. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  1521. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  1522. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  1523. # Fail early for models which don't have a block expansion factor of 2
  1524. assert d_inner == 2 * d_model
  1525. self.gguf_writer.add_name(self.dir_model.name)
  1526. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  1527. self.gguf_writer.add_embedding_length(d_model)
  1528. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  1529. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  1530. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1531. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  1532. self.gguf_writer.add_ssm_inner_size(d_inner)
  1533. self.gguf_writer.add_ssm_state_size(d_state)
  1534. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  1535. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  1536. self.gguf_writer.add_file_type(self.ftype)
  1537. def write_tensors(self):
  1538. block_count = self.hparams["n_layer"]
  1539. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1540. tok_embd = None
  1541. tok_embd_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.TOKEN_EMBD] + ".weight"
  1542. output_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.OUTPUT] + ".weight"
  1543. for name, data_torch in self.get_tensors():
  1544. old_dtype = data_torch.dtype
  1545. # convert any unsupported data types to float32
  1546. if data_torch.dtype not in (torch.float16, torch.float32):
  1547. data_torch = data_torch.to(torch.float32)
  1548. # map tensor names
  1549. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1550. if new_name is None:
  1551. print(f"Can not map tensor {name!r}")
  1552. sys.exit()
  1553. if name.endswith(".A_log"):
  1554. print("A_log --> A ==> " + new_name)
  1555. data_torch = -torch.exp(data_torch)
  1556. # assuming token_embd.weight is seen before output.weight
  1557. if tok_embd is not None and new_name == output_name:
  1558. if torch.equal(tok_embd, data_torch):
  1559. print(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  1560. continue
  1561. if new_name == tok_embd_name:
  1562. tok_embd = data_torch
  1563. data = data_torch.squeeze().numpy()
  1564. n_dims = len(data.shape)
  1565. data_dtype = data.dtype
  1566. # if f32 desired, convert any float16 to float32
  1567. if self.ftype == 0 and data_dtype == np.float16:
  1568. data = data.astype(np.float32)
  1569. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1570. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1571. data = data.astype(np.float32)
  1572. # if f16 desired, convert big float32 2-dim weight tensors to float16
  1573. if self.ftype == 1 and data_dtype == np.float32 and new_name.removesuffix(".weight").endswith((".ssm_in", ".ssm_out", "token_embd", "output")) and n_dims == 2:
  1574. data = data.astype(np.float16)
  1575. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1576. self.gguf_writer.add_tensor(new_name, data)
  1577. @Model.register("CohereForCausalLM")
  1578. class CommandR2Model(Model):
  1579. model_arch = gguf.MODEL_ARCH.COMMAND_R
  1580. def __init__(self, *args, **kwargs):
  1581. super().__init__(*args, **kwargs)
  1582. # max_position_embeddings = 8192 in config.json but model was actually
  1583. # trained on 128k context length
  1584. self.hparams["max_position_embeddings"] = self.hparams["model_max_length"]
  1585. def set_gguf_parameters(self):
  1586. super().set_gguf_parameters()
  1587. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  1588. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  1589. ###### CONVERSION LOGIC ######
  1590. def parse_args() -> argparse.Namespace:
  1591. parser = argparse.ArgumentParser(
  1592. description="Convert a huggingface model to a GGML compatible file")
  1593. parser.add_argument(
  1594. "--vocab-only", action="store_true",
  1595. help="extract only the vocab",
  1596. )
  1597. parser.add_argument(
  1598. "--awq-path", type=Path, default=None,
  1599. help="Path to scale awq cache file")
  1600. parser.add_argument(
  1601. "--outfile", type=Path,
  1602. help="path to write to; default: based on input",
  1603. )
  1604. parser.add_argument(
  1605. "--outtype", type=str, choices=["f32", "f16"], default="f16",
  1606. help="output format - use f32 for float32, f16 for float16",
  1607. )
  1608. parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
  1609. parser.add_argument(
  1610. "model", type=Path,
  1611. help="directory containing model file",
  1612. )
  1613. return parser.parse_args()
  1614. def main() -> None:
  1615. args = parse_args()
  1616. dir_model = args.model
  1617. if args.awq_path:
  1618. sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
  1619. from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
  1620. tmp_model_path = args.model / "weighted_model"
  1621. dir_model = tmp_model_path
  1622. if tmp_model_path.is_dir():
  1623. print(f"{tmp_model_path} exists as a weighted model.")
  1624. else:
  1625. tmp_model_path.mkdir(parents=True, exist_ok=True)
  1626. print("Saving new weighted model ...")
  1627. add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
  1628. print(f"Saved weighted model at {tmp_model_path}.")
  1629. if not dir_model.is_dir():
  1630. print(f'Error: {args.model} is not a directory', file=sys.stderr)
  1631. sys.exit(1)
  1632. ftype_map = {
  1633. "f32": gguf.GGMLQuantizationType.F32,
  1634. "f16": gguf.GGMLQuantizationType.F16,
  1635. }
  1636. if args.outfile is not None:
  1637. fname_out = args.outfile
  1638. else:
  1639. # output in the same directory as the model by default
  1640. fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
  1641. print(f"Loading model: {dir_model.name}")
  1642. hparams = Model.load_hparams(dir_model)
  1643. with torch.inference_mode():
  1644. model_class = Model.from_model_architecture(hparams["architectures"][0])
  1645. model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian)
  1646. print("Set model parameters")
  1647. model_instance.set_gguf_parameters()
  1648. print("Set model tokenizer")
  1649. model_instance.set_vocab()
  1650. if args.vocab_only:
  1651. print(f"Exporting model vocab to '{fname_out}'")
  1652. model_instance.write_vocab()
  1653. else:
  1654. print(f"Exporting model to '{fname_out}'")
  1655. model_instance.write()
  1656. print(f"Model successfully exported to '{fname_out}'")
  1657. if __name__ == '__main__':
  1658. main()