embedding.cpp 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185
  1. #include "common.h"
  2. #include "llama.h"
  3. #include <ctime>
  4. #if defined(_MSC_VER)
  5. #pragma warning(disable: 4244 4267) // possible loss of data
  6. #endif
  7. static std::vector<std::string> split_lines(const std::string & s) {
  8. std::string line;
  9. std::vector<std::string> lines;
  10. std::stringstream ss(s);
  11. while (std::getline(ss, line)) {
  12. lines.push_back(line);
  13. }
  14. return lines;
  15. }
  16. static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, int seq_id) {
  17. for (size_t i = 0; i < tokens.size(); i++) {
  18. llama_batch_add(batch, tokens[i], i, { seq_id }, false);
  19. }
  20. }
  21. static void normalize(float * vec, float * out, int n) {
  22. float norm = 0;
  23. for (int i = 0; i < n; i++) {
  24. norm += vec[i] * vec[i];
  25. }
  26. norm = sqrt(norm);
  27. for (int i = 0; i < n; i++) {
  28. out[i] = vec[i] / norm;
  29. }
  30. }
  31. static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) {
  32. // clear previous kv_cache values (irrelevant for embeddings)
  33. llama_kv_cache_clear(ctx);
  34. // run model
  35. fprintf(stderr, "%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
  36. if (llama_decode(ctx, batch) < 0) {
  37. fprintf(stderr, "%s : failed to decode\n", __func__);
  38. }
  39. // normalize on copy
  40. for (int k = 0; k < n_seq; k++) {
  41. float * emb = llama_get_embeddings_ith(ctx, k);
  42. float * out = output + k * n_embd;
  43. normalize(emb, out, n_embd);
  44. }
  45. }
  46. int main(int argc, char ** argv) {
  47. gpt_params params;
  48. if (!gpt_params_parse(argc, argv, params)) {
  49. return 1;
  50. }
  51. params.embedding = true;
  52. print_build_info();
  53. if (params.seed == LLAMA_DEFAULT_SEED) {
  54. params.seed = time(NULL);
  55. }
  56. fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
  57. std::mt19937 rng(params.seed);
  58. if (params.random_prompt) {
  59. params.prompt = gpt_random_prompt(rng);
  60. }
  61. llama_backend_init();
  62. llama_numa_init(params.numa);
  63. llama_model * model;
  64. llama_context * ctx;
  65. // load the model
  66. std::tie(model, ctx) = llama_init_from_gpt_params(params);
  67. if (model == NULL) {
  68. fprintf(stderr, "%s: error: unable to load model\n", __func__);
  69. return 1;
  70. }
  71. const int n_ctx_train = llama_n_ctx_train(model);
  72. const int n_ctx = llama_n_ctx(ctx);
  73. if (n_ctx > n_ctx_train) {
  74. fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
  75. __func__, n_ctx_train, n_ctx);
  76. }
  77. // print system information
  78. {
  79. fprintf(stderr, "\n");
  80. fprintf(stderr, "%s\n", get_system_info(params).c_str());
  81. }
  82. // split the prompt into lines
  83. std::vector<std::string> prompts = split_lines(params.prompt);
  84. // max batch size
  85. const uint64_t n_batch = params.n_batch;
  86. GGML_ASSERT(params.n_batch == params.n_ctx);
  87. // tokenize the prompts and trim
  88. std::vector<std::vector<int32_t>> inputs;
  89. for (const auto & prompt : prompts) {
  90. auto inp = ::llama_tokenize(ctx, prompt, true);
  91. if (inp.size() > n_batch) {
  92. inp.resize(n_batch);
  93. }
  94. inputs.push_back(inp);
  95. }
  96. // tokenization stats
  97. if (params.verbose_prompt) {
  98. for (int i = 0; i < (int) inputs.size(); i++) {
  99. fprintf(stderr, "%s: prompt %d: '%s'\n", __func__, i, prompts[i].c_str());
  100. fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, inputs[i].size());
  101. for (int j = 0; j < (int) inputs[i].size(); j++) {
  102. fprintf(stderr, "%6d -> '%s'\n", inputs[i][j], llama_token_to_piece(ctx, inputs[i][j]).c_str());
  103. }
  104. fprintf(stderr, "\n\n");
  105. }
  106. }
  107. // initialize batch
  108. const int n_prompts = prompts.size();
  109. struct llama_batch batch = llama_batch_init(n_batch, 0, n_prompts);
  110. // allocate output
  111. const int n_embd = llama_n_embd(model);
  112. std::vector<float> embeddings(n_prompts * n_embd, 0);
  113. float * emb = embeddings.data();
  114. // break into batches
  115. int p = 0; // number of prompts processed already
  116. int s = 0; // number of prompts in current batch
  117. for (int k = 0; k < n_prompts; k++) {
  118. // clamp to n_batch tokens
  119. auto & inp = inputs[k];
  120. const uint64_t n_toks = inp.size();
  121. // encode if at capacity
  122. if (batch.n_tokens + n_toks > n_batch) {
  123. float * out = emb + p * n_embd;
  124. batch_decode(ctx, batch, out, s, n_embd);
  125. llama_batch_clear(batch);
  126. p += s;
  127. s = 0;
  128. }
  129. // add to batch
  130. batch_add_seq(batch, inp, s);
  131. s += 1;
  132. }
  133. // final batch
  134. float * out = emb + p * n_embd;
  135. batch_decode(ctx, batch, out, s, n_embd);
  136. // print first 3 embeddings
  137. for (int j = 0; j < std::min(3, n_prompts); j++) {
  138. fprintf(stderr, "embedding %d: ", j);
  139. for (int i = 0; i < n_embd; i++) {
  140. fprintf(stderr, "%f ", emb[j * n_embd + i]);
  141. }
  142. fprintf(stderr, "\n\n");
  143. }
  144. fprintf(stderr, "\n");
  145. // clean up
  146. llama_print_timings(ctx);
  147. llama_free(ctx);
  148. llama_free_model(model);
  149. llama_backend_free();
  150. return 0;
  151. }