llama-bench.cpp 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstring>
  10. #include <ctime>
  11. #include <iterator>
  12. #include <map>
  13. #include <numeric>
  14. #include <regex>
  15. #include <sstream>
  16. #include <string>
  17. #include <vector>
  18. #include "ggml.h"
  19. #include "llama.h"
  20. #include "common.h"
  21. #include "ggml-cuda.h"
  22. #include "ggml-sycl.h"
  23. // utils
  24. static uint64_t get_time_ns() {
  25. using clock = std::chrono::high_resolution_clock;
  26. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  27. }
  28. template<class T>
  29. static std::string join(const std::vector<T> & values, const std::string & delim) {
  30. std::ostringstream str;
  31. for (size_t i = 0; i < values.size(); i++) {
  32. str << values[i];
  33. if (i < values.size() - 1) {
  34. str << delim;
  35. }
  36. }
  37. return str.str();
  38. }
  39. template<class T>
  40. static std::vector<T> split(const std::string & str, char delim) {
  41. std::vector<T> values;
  42. std::istringstream str_stream(str);
  43. std::string token;
  44. while (std::getline(str_stream, token, delim)) {
  45. T value;
  46. std::istringstream token_stream(token);
  47. token_stream >> value;
  48. values.push_back(value);
  49. }
  50. return values;
  51. }
  52. template<typename T, typename F>
  53. static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  54. std::vector<std::string> str_values;
  55. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  56. return str_values;
  57. }
  58. template<typename T>
  59. static T avg(const std::vector<T> & v) {
  60. if (v.empty()) {
  61. return 0;
  62. }
  63. T sum = std::accumulate(v.begin(), v.end(), T(0));
  64. return sum / (T)v.size();
  65. }
  66. template<typename T>
  67. static T stdev(const std::vector<T> & v) {
  68. if (v.size() <= 1) {
  69. return 0;
  70. }
  71. T mean = avg(v);
  72. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  73. T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
  74. return stdev;
  75. }
  76. static std::string get_cpu_info() {
  77. std::string id;
  78. #ifdef __linux__
  79. FILE * f = fopen("/proc/cpuinfo", "r");
  80. if (f) {
  81. char buf[1024];
  82. while (fgets(buf, sizeof(buf), f)) {
  83. if (strncmp(buf, "model name", 10) == 0) {
  84. char * p = strchr(buf, ':');
  85. if (p) {
  86. p++;
  87. while (std::isspace(*p)) {
  88. p++;
  89. }
  90. while (std::isspace(p[strlen(p) - 1])) {
  91. p[strlen(p) - 1] = '\0';
  92. }
  93. id = p;
  94. break;
  95. }
  96. }
  97. }
  98. }
  99. #endif
  100. // TODO: other platforms
  101. return id;
  102. }
  103. static std::string get_gpu_info() {
  104. std::string id;
  105. #ifdef GGML_USE_CUBLAS
  106. int count = ggml_cuda_get_device_count();
  107. for (int i = 0; i < count; i++) {
  108. char buf[128];
  109. ggml_cuda_get_device_description(i, buf, sizeof(buf));
  110. id += buf;
  111. if (i < count - 1) {
  112. id += "/";
  113. }
  114. }
  115. #endif
  116. #ifdef GGML_USE_SYCL
  117. int device_list[GGML_SYCL_MAX_DEVICES];
  118. ggml_sycl_get_gpu_list(device_list, GGML_SYCL_MAX_DEVICES);
  119. for (int i = 0; i < GGML_SYCL_MAX_DEVICES; i++) {
  120. if (device_list[i] >0 ){
  121. char buf[128];
  122. ggml_sycl_get_device_description(i, buf, sizeof(buf));
  123. id += buf;
  124. id += "/";
  125. }
  126. }
  127. if (id.length() >2 ) {
  128. id.pop_back();
  129. }
  130. #endif
  131. // TODO: other backends
  132. return id;
  133. }
  134. // command line params
  135. enum output_formats {CSV, JSON, MARKDOWN, SQL};
  136. static const char * output_format_str(output_formats format) {
  137. switch (format) {
  138. case CSV: return "csv";
  139. case JSON: return "json";
  140. case MARKDOWN: return "md";
  141. case SQL: return "sql";
  142. default: GGML_ASSERT(!"invalid output format");
  143. }
  144. }
  145. static const char * split_mode_str(llama_split_mode mode) {
  146. switch (mode) {
  147. case LLAMA_SPLIT_NONE: return "none";
  148. case LLAMA_SPLIT_LAYER: return "layer";
  149. case LLAMA_SPLIT_ROW: return "row";
  150. default: GGML_ASSERT(!"invalid split mode");
  151. }
  152. }
  153. struct cmd_params {
  154. std::vector<std::string> model;
  155. std::vector<int> n_prompt;
  156. std::vector<int> n_gen;
  157. std::vector<int> n_batch;
  158. std::vector<ggml_type> type_k;
  159. std::vector<ggml_type> type_v;
  160. std::vector<int> n_threads;
  161. std::vector<int> n_gpu_layers;
  162. std::vector<llama_split_mode> split_mode;
  163. std::vector<int> main_gpu;
  164. std::vector<bool> no_kv_offload;
  165. std::vector<bool> mul_mat_q;
  166. std::vector<std::vector<float>> tensor_split;
  167. std::vector<bool> use_mmap;
  168. int reps;
  169. bool verbose;
  170. output_formats output_format;
  171. };
  172. static const cmd_params cmd_params_defaults = {
  173. /* model */ {"models/7B/ggml-model-q4_0.gguf"},
  174. /* n_prompt */ {512},
  175. /* n_gen */ {128},
  176. /* n_batch */ {512},
  177. /* type_k */ {GGML_TYPE_F16},
  178. /* type_v */ {GGML_TYPE_F16},
  179. /* n_threads */ {get_num_physical_cores()},
  180. /* n_gpu_layers */ {99},
  181. /* split_mode */ {LLAMA_SPLIT_LAYER},
  182. /* main_gpu */ {0},
  183. /* no_kv_offload */ {false},
  184. /* mul_mat_q */ {true},
  185. /* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
  186. /* use_mmap */ {true},
  187. /* reps */ 5,
  188. /* verbose */ false,
  189. /* output_format */ MARKDOWN
  190. };
  191. static void print_usage(int /* argc */, char ** argv) {
  192. printf("usage: %s [options]\n", argv[0]);
  193. printf("\n");
  194. printf("options:\n");
  195. printf(" -h, --help\n");
  196. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  197. printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
  198. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  199. printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
  200. printf(" -ctk <t>, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  201. printf(" -ctv <t>, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  202. printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
  203. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  204. printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
  205. printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
  206. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
  207. printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
  208. printf(" -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
  209. printf(" -ts, --tensor_split <ts0/ts1/..> (default: 0)\n");
  210. printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
  211. printf(" -o, --output <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
  212. printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
  213. printf("\n");
  214. printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
  215. }
  216. static ggml_type ggml_type_from_name(const std::string & s) {
  217. if (s == "f16") {
  218. return GGML_TYPE_F16;
  219. }
  220. if (s == "q8_0") {
  221. return GGML_TYPE_Q8_0;
  222. }
  223. if (s == "q4_0") {
  224. return GGML_TYPE_Q4_0;
  225. }
  226. if (s == "q4_1") {
  227. return GGML_TYPE_Q4_1;
  228. }
  229. if (s == "q5_0") {
  230. return GGML_TYPE_Q5_0;
  231. }
  232. if (s == "q5_1") {
  233. return GGML_TYPE_Q5_1;
  234. }
  235. return GGML_TYPE_COUNT;
  236. }
  237. static cmd_params parse_cmd_params(int argc, char ** argv) {
  238. cmd_params params;
  239. std::string arg;
  240. bool invalid_param = false;
  241. const std::string arg_prefix = "--";
  242. const char split_delim = ',';
  243. params.verbose = cmd_params_defaults.verbose;
  244. params.output_format = cmd_params_defaults.output_format;
  245. params.reps = cmd_params_defaults.reps;
  246. for (int i = 1; i < argc; i++) {
  247. arg = argv[i];
  248. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  249. std::replace(arg.begin(), arg.end(), '_', '-');
  250. }
  251. if (arg == "-h" || arg == "--help") {
  252. print_usage(argc, argv);
  253. exit(0);
  254. } else if (arg == "-m" || arg == "--model") {
  255. if (++i >= argc) {
  256. invalid_param = true;
  257. break;
  258. }
  259. auto p = split<std::string>(argv[i], split_delim);
  260. params.model.insert(params.model.end(), p.begin(), p.end());
  261. } else if (arg == "-p" || arg == "--n-prompt") {
  262. if (++i >= argc) {
  263. invalid_param = true;
  264. break;
  265. }
  266. auto p = split<int>(argv[i], split_delim);
  267. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  268. } else if (arg == "-n" || arg == "--n-gen") {
  269. if (++i >= argc) {
  270. invalid_param = true;
  271. break;
  272. }
  273. auto p = split<int>(argv[i], split_delim);
  274. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  275. } else if (arg == "-b" || arg == "--batch-size") {
  276. if (++i >= argc) {
  277. invalid_param = true;
  278. break;
  279. }
  280. auto p = split<int>(argv[i], split_delim);
  281. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  282. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  283. if (++i >= argc) {
  284. invalid_param = true;
  285. break;
  286. }
  287. auto p = split<std::string>(argv[i], split_delim);
  288. std::vector<ggml_type> types;
  289. for (const auto & t : p) {
  290. ggml_type gt = ggml_type_from_name(t);
  291. if (gt == GGML_TYPE_COUNT) {
  292. invalid_param = true;
  293. break;
  294. }
  295. types.push_back(gt);
  296. }
  297. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  298. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  299. if (++i >= argc) {
  300. invalid_param = true;
  301. break;
  302. }
  303. auto p = split<std::string>(argv[i], split_delim);
  304. std::vector<ggml_type> types;
  305. for (const auto & t : p) {
  306. ggml_type gt = ggml_type_from_name(t);
  307. if (gt == GGML_TYPE_COUNT) {
  308. invalid_param = true;
  309. break;
  310. }
  311. types.push_back(gt);
  312. }
  313. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  314. } else if (arg == "-t" || arg == "--threads") {
  315. if (++i >= argc) {
  316. invalid_param = true;
  317. break;
  318. }
  319. auto p = split<int>(argv[i], split_delim);
  320. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  321. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  322. if (++i >= argc) {
  323. invalid_param = true;
  324. break;
  325. }
  326. auto p = split<int>(argv[i], split_delim);
  327. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  328. } else if (arg == "-sm" || arg == "--split-mode") {
  329. if (++i >= argc) {
  330. invalid_param = true;
  331. break;
  332. }
  333. auto p = split<std::string>(argv[i], split_delim);
  334. std::vector<llama_split_mode> modes;
  335. for (const auto & m : p) {
  336. llama_split_mode mode;
  337. if (m == "none") {
  338. mode = LLAMA_SPLIT_NONE;
  339. } else if (m == "layer") {
  340. mode = LLAMA_SPLIT_LAYER;
  341. } else if (m == "row") {
  342. mode = LLAMA_SPLIT_ROW;
  343. } else {
  344. invalid_param = true;
  345. break;
  346. }
  347. modes.push_back(mode);
  348. }
  349. params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
  350. } else if (arg == "-mg" || arg == "--main-gpu") {
  351. if (++i >= argc) {
  352. invalid_param = true;
  353. break;
  354. }
  355. params.main_gpu = split<int>(argv[i], split_delim);
  356. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  357. if (++i >= argc) {
  358. invalid_param = true;
  359. break;
  360. }
  361. auto p = split<bool>(argv[i], split_delim);
  362. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  363. } else if (arg == "-mmq" || arg == "--mul-mat-q") {
  364. if (++i >= argc) {
  365. invalid_param = true;
  366. break;
  367. }
  368. auto p = split<bool>(argv[i], split_delim);
  369. params.mul_mat_q.insert(params.mul_mat_q.end(), p.begin(), p.end());
  370. } else if (arg == "-mmp" || arg == "--mmap") {
  371. if (++i >= argc) {
  372. invalid_param = true;
  373. break;
  374. }
  375. auto p = split<bool>(argv[i], split_delim);
  376. params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
  377. } else if (arg == "-ts" || arg == "--tensor-split") {
  378. if (++i >= argc) {
  379. invalid_param = true;
  380. break;
  381. }
  382. for (auto ts : split<std::string>(argv[i], split_delim)) {
  383. // split string by ; and /
  384. const std::regex regex{R"([;/]+)"};
  385. std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
  386. std::vector<std::string> split_arg{it, {}};
  387. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  388. std::vector<float> tensor_split(llama_max_devices());
  389. for (size_t i = 0; i < llama_max_devices(); ++i) {
  390. if (i < split_arg.size()) {
  391. tensor_split[i] = std::stof(split_arg[i]);
  392. } else {
  393. tensor_split[i] = 0.0f;
  394. }
  395. }
  396. params.tensor_split.push_back(tensor_split);
  397. }
  398. } else if (arg == "-r" || arg == "--repetitions") {
  399. if (++i >= argc) {
  400. invalid_param = true;
  401. break;
  402. }
  403. params.reps = std::stoi(argv[i]);
  404. } else if (arg == "-o" || arg == "--output") {
  405. if (++i >= argc) {
  406. invalid_param = true;
  407. break;
  408. }
  409. if (argv[i] == std::string("csv")) {
  410. params.output_format = CSV;
  411. } else if (argv[i] == std::string("json")) {
  412. params.output_format = JSON;
  413. } else if (argv[i] == std::string("md")) {
  414. params.output_format = MARKDOWN;
  415. } else if (argv[i] == std::string("sql")) {
  416. params.output_format = SQL;
  417. } else {
  418. invalid_param = true;
  419. break;
  420. }
  421. } else if (arg == "-v" || arg == "--verbose") {
  422. params.verbose = true;
  423. } else {
  424. invalid_param = true;
  425. break;
  426. }
  427. }
  428. if (invalid_param) {
  429. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  430. print_usage(argc, argv);
  431. exit(1);
  432. }
  433. // set defaults
  434. if (params.model.empty()) { params.model = cmd_params_defaults.model; }
  435. if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
  436. if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
  437. if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
  438. if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
  439. if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
  440. if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
  441. if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
  442. if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
  443. if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
  444. if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
  445. if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
  446. if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
  447. if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
  448. return params;
  449. }
  450. struct cmd_params_instance {
  451. std::string model;
  452. int n_prompt;
  453. int n_gen;
  454. int n_batch;
  455. ggml_type type_k;
  456. ggml_type type_v;
  457. int n_threads;
  458. int n_gpu_layers;
  459. llama_split_mode split_mode;
  460. int main_gpu;
  461. bool no_kv_offload;
  462. bool mul_mat_q;
  463. std::vector<float> tensor_split;
  464. bool use_mmap;
  465. llama_model_params to_llama_mparams() const {
  466. llama_model_params mparams = llama_model_default_params();
  467. mparams.n_gpu_layers = n_gpu_layers;
  468. mparams.split_mode = split_mode;
  469. mparams.main_gpu = main_gpu;
  470. mparams.tensor_split = tensor_split.data();
  471. mparams.use_mmap = use_mmap;
  472. return mparams;
  473. }
  474. bool equal_mparams(const cmd_params_instance & other) const {
  475. return model == other.model &&
  476. n_gpu_layers == other.n_gpu_layers &&
  477. split_mode == other.split_mode &&
  478. main_gpu == other.main_gpu &&
  479. use_mmap == other.use_mmap &&
  480. tensor_split == other.tensor_split;
  481. }
  482. llama_context_params to_llama_cparams() const {
  483. llama_context_params cparams = llama_context_default_params();
  484. cparams.n_ctx = n_prompt + n_gen;
  485. cparams.n_batch = n_batch;
  486. cparams.type_k = type_k;
  487. cparams.type_v = type_v;
  488. cparams.mul_mat_q = mul_mat_q;
  489. cparams.offload_kqv = !no_kv_offload;
  490. return cparams;
  491. }
  492. };
  493. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  494. std::vector<cmd_params_instance> instances;
  495. // this ordering minimizes the number of times that each model needs to be reloaded
  496. for (const auto & m : params.model)
  497. for (const auto & nl : params.n_gpu_layers)
  498. for (const auto & sm : params.split_mode)
  499. for (const auto & mg : params.main_gpu)
  500. for (const auto & ts : params.tensor_split)
  501. for (const auto & mmp : params.use_mmap)
  502. for (const auto & nb : params.n_batch)
  503. for (const auto & tk : params.type_k)
  504. for (const auto & tv : params.type_v)
  505. for (const auto & mmq : params.mul_mat_q)
  506. for (const auto & nkvo : params.no_kv_offload)
  507. for (const auto & nt : params.n_threads) {
  508. for (const auto & n_prompt : params.n_prompt) {
  509. if (n_prompt == 0) {
  510. continue;
  511. }
  512. cmd_params_instance instance = {
  513. /* .model = */ m,
  514. /* .n_prompt = */ n_prompt,
  515. /* .n_gen = */ 0,
  516. /* .n_batch = */ nb,
  517. /* .type_k = */ tk,
  518. /* .type_v = */ tv,
  519. /* .n_threads = */ nt,
  520. /* .n_gpu_layers = */ nl,
  521. /* .split_mode = */ sm,
  522. /* .main_gpu = */ mg,
  523. /* .no_kv_offload= */ nkvo,
  524. /* .mul_mat_q = */ mmq,
  525. /* .tensor_split = */ ts,
  526. /* .use_mmap = */ mmp,
  527. };
  528. instances.push_back(instance);
  529. }
  530. for (const auto & n_gen : params.n_gen) {
  531. if (n_gen == 0) {
  532. continue;
  533. }
  534. cmd_params_instance instance = {
  535. /* .model = */ m,
  536. /* .n_prompt = */ 0,
  537. /* .n_gen = */ n_gen,
  538. /* .n_batch = */ nb,
  539. /* .type_k = */ tk,
  540. /* .type_v = */ tv,
  541. /* .n_threads = */ nt,
  542. /* .n_gpu_layers = */ nl,
  543. /* .split_mode = */ sm,
  544. /* .main_gpu = */ mg,
  545. /* .no_kv_offload= */ nkvo,
  546. /* .mul_mat_q = */ mmq,
  547. /* .tensor_split = */ ts,
  548. /* .use_mmap = */ mmp,
  549. };
  550. instances.push_back(instance);
  551. }
  552. }
  553. return instances;
  554. }
  555. struct test {
  556. static const std::string build_commit;
  557. static const int build_number;
  558. static const bool cuda;
  559. static const bool opencl;
  560. static const bool vulkan;
  561. static const bool kompute;
  562. static const bool metal;
  563. static const bool sycl;
  564. static const bool gpu_blas;
  565. static const bool blas;
  566. static const std::string cpu_info;
  567. static const std::string gpu_info;
  568. std::string model_filename;
  569. std::string model_type;
  570. uint64_t model_size;
  571. uint64_t model_n_params;
  572. int n_batch;
  573. int n_threads;
  574. ggml_type type_k;
  575. ggml_type type_v;
  576. int n_gpu_layers;
  577. llama_split_mode split_mode;
  578. int main_gpu;
  579. bool no_kv_offload;
  580. bool mul_mat_q;
  581. std::vector<float> tensor_split;
  582. bool use_mmap;
  583. int n_prompt;
  584. int n_gen;
  585. std::string test_time;
  586. std::vector<uint64_t> samples_ns;
  587. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
  588. model_filename = inst.model;
  589. char buf[128];
  590. llama_model_desc(lmodel, buf, sizeof(buf));
  591. model_type = buf;
  592. model_size = llama_model_size(lmodel);
  593. model_n_params = llama_model_n_params(lmodel);
  594. n_batch = inst.n_batch;
  595. n_threads = inst.n_threads;
  596. type_k = inst.type_k;
  597. type_v = inst.type_v;
  598. n_gpu_layers = inst.n_gpu_layers;
  599. split_mode = inst.split_mode;
  600. main_gpu = inst.main_gpu;
  601. no_kv_offload = inst.no_kv_offload;
  602. mul_mat_q = inst.mul_mat_q;
  603. tensor_split = inst.tensor_split;
  604. use_mmap = inst.use_mmap;
  605. n_prompt = inst.n_prompt;
  606. n_gen = inst.n_gen;
  607. // RFC 3339 date-time format
  608. time_t t = time(NULL);
  609. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  610. test_time = buf;
  611. (void) ctx;
  612. }
  613. uint64_t avg_ns() const {
  614. return ::avg(samples_ns);
  615. }
  616. uint64_t stdev_ns() const {
  617. return ::stdev(samples_ns);
  618. }
  619. std::vector<double> get_ts() const {
  620. int n_tokens = n_prompt + n_gen;
  621. std::vector<double> ts;
  622. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  623. return ts;
  624. }
  625. double avg_ts() const {
  626. return ::avg(get_ts());
  627. }
  628. double stdev_ts() const {
  629. return ::stdev(get_ts());
  630. }
  631. static std::string get_backend() {
  632. if (cuda) {
  633. return GGML_CUDA_NAME;
  634. }
  635. if (opencl) {
  636. return "OpenCL";
  637. }
  638. if (vulkan) {
  639. return "Vulkan";
  640. }
  641. if (kompute) {
  642. return "Kompute";
  643. }
  644. if (metal) {
  645. return "Metal";
  646. }
  647. if (sycl) {
  648. return GGML_SYCL_NAME;
  649. }
  650. if (gpu_blas) {
  651. return "GPU BLAS";
  652. }
  653. if (blas) {
  654. return "BLAS";
  655. }
  656. return "CPU";
  657. }
  658. static const std::vector<std::string> & get_fields() {
  659. static const std::vector<std::string> fields = {
  660. "build_commit", "build_number",
  661. "cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "gpu_blas", "blas",
  662. "cpu_info", "gpu_info",
  663. "model_filename", "model_type", "model_size", "model_n_params",
  664. "n_batch", "n_threads", "type_k", "type_v",
  665. "n_gpu_layers", "split_mode",
  666. "main_gpu", "no_kv_offload",
  667. "mul_mat_q", "tensor_split", "use_mmap",
  668. "n_prompt", "n_gen", "test_time",
  669. "avg_ns", "stddev_ns",
  670. "avg_ts", "stddev_ts"
  671. };
  672. return fields;
  673. }
  674. enum field_type {STRING, BOOL, INT, FLOAT};
  675. static field_type get_field_type(const std::string & field) {
  676. if (field == "build_number" || field == "n_batch" || field == "n_threads" ||
  677. field == "model_size" || field == "model_n_params" ||
  678. field == "n_gpu_layers" || field == "main_gpu" ||
  679. field == "n_prompt" || field == "n_gen" ||
  680. field == "avg_ns" || field == "stddev_ns") {
  681. return INT;
  682. }
  683. if (field == "cuda" || field == "opencl" || field == "vulkan" || field == "kompute" || field == "metal" ||
  684. field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
  685. field == "mul_mat_q" || field == "use_mmap") {
  686. return BOOL;
  687. }
  688. if (field == "avg_ts" || field == "stddev_ts") {
  689. return FLOAT;
  690. }
  691. return STRING;
  692. }
  693. std::vector<std::string> get_values() const {
  694. std::string tensor_split_str;
  695. int max_nonzero = 0;
  696. for (size_t i = 0; i < llama_max_devices(); i++) {
  697. if (tensor_split[i] > 0) {
  698. max_nonzero = i;
  699. }
  700. }
  701. for (int i = 0; i <= max_nonzero; i++) {
  702. char buf[32];
  703. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  704. tensor_split_str += buf;
  705. if (i < max_nonzero) {
  706. tensor_split_str += "/";
  707. }
  708. }
  709. std::vector<std::string> values = {
  710. build_commit, std::to_string(build_number),
  711. std::to_string(cuda), std::to_string(opencl), std::to_string(vulkan), std::to_string(vulkan),
  712. std::to_string(metal), std::to_string(sycl), std::to_string(gpu_blas), std::to_string(blas),
  713. cpu_info, gpu_info,
  714. model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
  715. std::to_string(n_batch), std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
  716. std::to_string(n_gpu_layers), split_mode_str(split_mode),
  717. std::to_string(main_gpu), std::to_string(no_kv_offload),
  718. std::to_string(mul_mat_q), tensor_split_str, std::to_string(use_mmap),
  719. std::to_string(n_prompt), std::to_string(n_gen), test_time,
  720. std::to_string(avg_ns()), std::to_string(stdev_ns()),
  721. std::to_string(avg_ts()), std::to_string(stdev_ts())
  722. };
  723. return values;
  724. }
  725. std::map<std::string, std::string> get_map() const {
  726. std::map<std::string, std::string> map;
  727. auto fields = get_fields();
  728. auto values = get_values();
  729. std::transform(fields.begin(), fields.end(), values.begin(),
  730. std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
  731. return map;
  732. }
  733. };
  734. const std::string test::build_commit = LLAMA_COMMIT;
  735. const int test::build_number = LLAMA_BUILD_NUMBER;
  736. const bool test::cuda = !!ggml_cpu_has_cublas();
  737. const bool test::opencl = !!ggml_cpu_has_clblast();
  738. const bool test::vulkan = !!ggml_cpu_has_vulkan();
  739. const bool test::kompute = !!ggml_cpu_has_kompute();
  740. const bool test::metal = !!ggml_cpu_has_metal();
  741. const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
  742. const bool test::blas = !!ggml_cpu_has_blas();
  743. const bool test::sycl = !!ggml_cpu_has_sycl();
  744. const std::string test::cpu_info = get_cpu_info();
  745. const std::string test::gpu_info = get_gpu_info();
  746. struct printer {
  747. virtual ~printer() {}
  748. FILE * fout;
  749. virtual void print_header(const cmd_params & params) { (void) params; }
  750. virtual void print_test(const test & t) = 0;
  751. virtual void print_footer() { }
  752. };
  753. struct csv_printer : public printer {
  754. static std::string escape_csv(const std::string & field) {
  755. std::string escaped = "\"";
  756. for (auto c : field) {
  757. if (c == '"') {
  758. escaped += "\"";
  759. }
  760. escaped += c;
  761. }
  762. escaped += "\"";
  763. return escaped;
  764. }
  765. void print_header(const cmd_params & params) override {
  766. std::vector<std::string> fields = test::get_fields();
  767. fprintf(fout, "%s\n", join(fields, ",").c_str());
  768. (void) params;
  769. }
  770. void print_test(const test & t) override {
  771. std::vector<std::string> values = t.get_values();
  772. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  773. fprintf(fout, "%s\n", join(values, ",").c_str());
  774. }
  775. };
  776. struct json_printer : public printer {
  777. bool first = true;
  778. static std::string escape_json(const std::string & value) {
  779. std::string escaped;
  780. for (auto c : value) {
  781. if (c == '"') {
  782. escaped += "\\\"";
  783. } else if (c == '\\') {
  784. escaped += "\\\\";
  785. } else if (c <= 0x1f) {
  786. char buf[8];
  787. snprintf(buf, sizeof(buf), "\\u%04x", c);
  788. escaped += buf;
  789. } else {
  790. escaped += c;
  791. }
  792. }
  793. return escaped;
  794. }
  795. static std::string format_value(const std::string & field, const std::string & value) {
  796. switch (test::get_field_type(field)) {
  797. case test::STRING:
  798. return "\"" + escape_json(value) + "\"";
  799. case test::BOOL:
  800. return value == "0" ? "false" : "true";
  801. default:
  802. return value;
  803. }
  804. }
  805. void print_header(const cmd_params & params) override {
  806. fprintf(fout, "[\n");
  807. (void) params;
  808. }
  809. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  810. assert(fields.size() == values.size());
  811. for (size_t i = 0; i < fields.size(); i++) {
  812. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
  813. }
  814. }
  815. void print_test(const test & t) override {
  816. if (first) {
  817. first = false;
  818. } else {
  819. fprintf(fout, ",\n");
  820. }
  821. fprintf(fout, " {\n");
  822. print_fields(test::get_fields(), t.get_values());
  823. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  824. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  825. fprintf(fout, " }");
  826. fflush(fout);
  827. }
  828. void print_footer() override {
  829. fprintf(fout, "\n]\n");
  830. }
  831. };
  832. struct markdown_printer : public printer {
  833. std::vector<std::string> fields;
  834. static int get_field_width(const std::string & field) {
  835. if (field == "model") {
  836. return -30;
  837. }
  838. if (field == "t/s") {
  839. return 16;
  840. }
  841. if (field == "size" || field == "params") {
  842. return 10;
  843. }
  844. if (field == "n_gpu_layers") {
  845. return 3;
  846. }
  847. int width = std::max((int)field.length(), 10);
  848. if (test::get_field_type(field) == test::STRING) {
  849. return -width;
  850. }
  851. return width;
  852. }
  853. static std::string get_field_display_name(const std::string & field) {
  854. if (field == "n_gpu_layers") {
  855. return "ngl";
  856. }
  857. if (field == "split_mode") {
  858. return "sm";
  859. }
  860. if (field == "n_threads") {
  861. return "threads";
  862. }
  863. if (field == "mul_mat_q") {
  864. return "mmq";
  865. }
  866. if (field == "no_kv_offload") {
  867. return "nkvo";
  868. }
  869. if (field == "use_mmap") {
  870. return "mmap";
  871. }
  872. if (field == "tensor_split") {
  873. return "ts";
  874. }
  875. return field;
  876. }
  877. void print_header(const cmd_params & params) override {
  878. // select fields to print
  879. fields.emplace_back("model");
  880. fields.emplace_back("size");
  881. fields.emplace_back("params");
  882. fields.emplace_back("backend");
  883. bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
  884. if (!is_cpu_backend) {
  885. fields.emplace_back("n_gpu_layers");
  886. }
  887. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  888. fields.emplace_back("n_threads");
  889. }
  890. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  891. fields.emplace_back("n_batch");
  892. }
  893. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  894. fields.emplace_back("type_k");
  895. }
  896. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  897. fields.emplace_back("type_v");
  898. }
  899. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  900. fields.emplace_back("main_gpu");
  901. }
  902. if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
  903. fields.emplace_back("split_mode");
  904. }
  905. if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) {
  906. fields.emplace_back("mul_mat_q");
  907. }
  908. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  909. fields.emplace_back("no_kv_offload");
  910. }
  911. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  912. fields.emplace_back("tensor_split");
  913. }
  914. if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
  915. fields.emplace_back("use_mmap");
  916. }
  917. fields.emplace_back("test");
  918. fields.emplace_back("t/s");
  919. fprintf(fout, "|");
  920. for (const auto & field : fields) {
  921. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  922. }
  923. fprintf(fout, "\n");
  924. fprintf(fout, "|");
  925. for (const auto & field : fields) {
  926. int width = get_field_width(field);
  927. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  928. }
  929. fprintf(fout, "\n");
  930. }
  931. void print_test(const test & t) override {
  932. std::map<std::string, std::string> vmap = t.get_map();
  933. fprintf(fout, "|");
  934. for (const auto & field : fields) {
  935. std::string value;
  936. char buf[128];
  937. if (field == "model") {
  938. value = t.model_type;
  939. } else if (field == "size") {
  940. if (t.model_size < 1024*1024*1024) {
  941. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  942. } else {
  943. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  944. }
  945. value = buf;
  946. } else if (field == "params") {
  947. if (t.model_n_params < 1000*1000*1000) {
  948. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  949. } else {
  950. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  951. }
  952. value = buf;
  953. } else if (field == "backend") {
  954. value = test::get_backend();
  955. } else if (field == "test") {
  956. if (t.n_prompt > 0 && t.n_gen == 0) {
  957. snprintf(buf, sizeof(buf), "pp %d", t.n_prompt);
  958. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  959. snprintf(buf, sizeof(buf), "tg %d", t.n_gen);
  960. } else {
  961. assert(false);
  962. exit(1);
  963. }
  964. value = buf;
  965. } else if (field == "t/s") {
  966. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  967. value = buf;
  968. } else if (vmap.find(field) != vmap.end()) {
  969. value = vmap.at(field);
  970. } else {
  971. assert(false);
  972. exit(1);
  973. }
  974. int width = get_field_width(field);
  975. if (field == "t/s") {
  976. // HACK: the utf-8 character is 2 bytes
  977. width += 1;
  978. }
  979. fprintf(fout, " %*s |", width, value.c_str());
  980. }
  981. fprintf(fout, "\n");
  982. }
  983. void print_footer() override {
  984. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  985. }
  986. };
  987. struct sql_printer : public printer {
  988. static std::string get_sql_field_type(const std::string & field) {
  989. switch (test::get_field_type(field)) {
  990. case test::STRING:
  991. return "TEXT";
  992. case test::BOOL:
  993. case test::INT:
  994. return "INTEGER";
  995. case test::FLOAT:
  996. return "REAL";
  997. default:
  998. assert(false);
  999. exit(1);
  1000. }
  1001. }
  1002. void print_header(const cmd_params & params) override {
  1003. std::vector<std::string> fields = test::get_fields();
  1004. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  1005. for (size_t i = 0; i < fields.size(); i++) {
  1006. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
  1007. }
  1008. fprintf(fout, ");\n");
  1009. fprintf(fout, "\n");
  1010. (void) params;
  1011. }
  1012. void print_test(const test & t) override {
  1013. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  1014. fprintf(fout, "VALUES (");
  1015. std::vector<std::string> values = t.get_values();
  1016. for (size_t i = 0; i < values.size(); i++) {
  1017. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  1018. }
  1019. fprintf(fout, ");\n");
  1020. }
  1021. };
  1022. static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
  1023. std::vector<llama_token> tokens(n_batch, llama_token_bos(llama_get_model(ctx)));
  1024. int n_processed = 0;
  1025. llama_set_n_threads(ctx, n_threads, n_threads);
  1026. while (n_processed < n_prompt) {
  1027. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  1028. llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
  1029. n_processed += n_tokens;
  1030. }
  1031. }
  1032. static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
  1033. llama_token token = llama_token_bos(llama_get_model(ctx));
  1034. llama_set_n_threads(ctx, n_threads, n_threads);
  1035. for (int i = 0; i < n_gen; i++) {
  1036. llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
  1037. }
  1038. }
  1039. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  1040. (void) level;
  1041. (void) text;
  1042. (void) user_data;
  1043. }
  1044. int main(int argc, char ** argv) {
  1045. // try to set locale for unicode characters in markdown
  1046. setlocale(LC_CTYPE, ".UTF-8");
  1047. #if !defined(NDEBUG)
  1048. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  1049. #endif
  1050. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  1051. fprintf(stderr, "warning: debug build, performance may be affected\n");
  1052. #endif
  1053. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  1054. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  1055. #endif
  1056. cmd_params params = parse_cmd_params(argc, argv);
  1057. // initialize llama.cpp
  1058. if (!params.verbose) {
  1059. llama_log_set(llama_null_log_callback, NULL);
  1060. }
  1061. llama_backend_init();
  1062. // initialize printer
  1063. std::unique_ptr<printer> p;
  1064. switch (params.output_format) {
  1065. case CSV:
  1066. p.reset(new csv_printer());
  1067. break;
  1068. case JSON:
  1069. p.reset(new json_printer());
  1070. break;
  1071. case MARKDOWN:
  1072. p.reset(new markdown_printer());
  1073. break;
  1074. case SQL:
  1075. p.reset(new sql_printer());
  1076. break;
  1077. default:
  1078. assert(false);
  1079. exit(1);
  1080. }
  1081. p->fout = stdout;
  1082. p->print_header(params);
  1083. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1084. llama_model * lmodel = nullptr;
  1085. const cmd_params_instance * prev_inst = nullptr;
  1086. for (const auto & inst : params_instances) {
  1087. // keep the same model between tests when possible
  1088. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1089. if (lmodel) {
  1090. llama_free_model(lmodel);
  1091. }
  1092. lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1093. if (lmodel == NULL) {
  1094. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1095. return 1;
  1096. }
  1097. prev_inst = &inst;
  1098. }
  1099. llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
  1100. if (ctx == NULL) {
  1101. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1102. llama_free_model(lmodel);
  1103. return 1;
  1104. }
  1105. test t(inst, lmodel, ctx);
  1106. llama_kv_cache_clear(ctx);
  1107. // warmup run
  1108. if (t.n_prompt > 0) {
  1109. test_prompt(ctx, std::min(2, t.n_batch), 0, t.n_batch, t.n_threads);
  1110. }
  1111. if (t.n_gen > 0) {
  1112. test_gen(ctx, 1, 0, t.n_threads);
  1113. }
  1114. for (int i = 0; i < params.reps; i++) {
  1115. llama_kv_cache_clear(ctx);
  1116. uint64_t t_start = get_time_ns();
  1117. if (t.n_prompt > 0) {
  1118. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1119. }
  1120. if (t.n_gen > 0) {
  1121. test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
  1122. }
  1123. uint64_t t_ns = get_time_ns() - t_start;
  1124. t.samples_ns.push_back(t_ns);
  1125. }
  1126. p->print_test(t);
  1127. llama_print_timings(ctx);
  1128. llama_free(ctx);
  1129. }
  1130. llama_free_model(lmodel);
  1131. p->print_footer();
  1132. llama_backend_free();
  1133. return 0;
  1134. }