| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339 |
- import Foundation
- import llama
- enum LlamaError: Error {
- case couldNotInitializeContext
- }
- func llama_batch_clear(_ batch: inout llama_batch) {
- batch.n_tokens = 0
- }
- func llama_batch_add(_ batch: inout llama_batch, _ id: llama_token, _ pos: llama_pos, _ seq_ids: [llama_seq_id], _ logits: Bool) {
- batch.token [Int(batch.n_tokens)] = id
- batch.pos [Int(batch.n_tokens)] = pos
- batch.n_seq_id[Int(batch.n_tokens)] = Int32(seq_ids.count)
- for i in 0..<seq_ids.count {
- batch.seq_id[Int(batch.n_tokens)]![Int(i)] = seq_ids[i]
- }
- batch.logits [Int(batch.n_tokens)] = logits ? 1 : 0
- batch.n_tokens += 1
- }
- actor LlamaContext {
- private var model: OpaquePointer
- private var context: OpaquePointer
- private var batch: llama_batch
- private var tokens_list: [llama_token]
- /// This variable is used to store temporarily invalid cchars
- private var temporary_invalid_cchars: [CChar]
- var n_len: Int32 = 64
- var n_cur: Int32 = 0
- var n_decode: Int32 = 0
- init(model: OpaquePointer, context: OpaquePointer) {
- self.model = model
- self.context = context
- self.tokens_list = []
- self.batch = llama_batch_init(512, 0, 1)
- self.temporary_invalid_cchars = []
- }
- deinit {
- llama_batch_free(batch)
- llama_free(context)
- llama_free_model(model)
- llama_backend_free()
- }
- static func create_context(path: String) throws -> LlamaContext {
- llama_backend_init()
- var model_params = llama_model_default_params()
- #if targetEnvironment(simulator)
- model_params.n_gpu_layers = 0
- print("Running on simulator, force use n_gpu_layers = 0")
- #endif
- let model = llama_load_model_from_file(path, model_params)
- guard let model else {
- print("Could not load model at \(path)")
- throw LlamaError.couldNotInitializeContext
- }
- let n_threads = max(1, min(8, ProcessInfo.processInfo.processorCount - 2))
- print("Using \(n_threads) threads")
- var ctx_params = llama_context_default_params()
- ctx_params.seed = 1234
- ctx_params.n_ctx = 2048
- ctx_params.n_threads = UInt32(n_threads)
- ctx_params.n_threads_batch = UInt32(n_threads)
- let context = llama_new_context_with_model(model, ctx_params)
- guard let context else {
- print("Could not load context!")
- throw LlamaError.couldNotInitializeContext
- }
- return LlamaContext(model: model, context: context)
- }
- func model_info() -> String {
- let result = UnsafeMutablePointer<Int8>.allocate(capacity: 256)
- result.initialize(repeating: Int8(0), count: 256)
- defer {
- result.deallocate()
- }
- // TODO: this is probably very stupid way to get the string from C
- let nChars = llama_model_desc(model, result, 256)
- let bufferPointer = UnsafeBufferPointer(start: result, count: Int(nChars))
- var SwiftString = ""
- for char in bufferPointer {
- SwiftString.append(Character(UnicodeScalar(UInt8(char))))
- }
- return SwiftString
- }
- func get_n_tokens() -> Int32 {
- return batch.n_tokens;
- }
- func completion_init(text: String) {
- print("attempting to complete \"\(text)\"")
- tokens_list = tokenize(text: text, add_bos: true)
- temporary_invalid_cchars = []
- let n_ctx = llama_n_ctx(context)
- let n_kv_req = tokens_list.count + (Int(n_len) - tokens_list.count)
- print("\n n_len = \(n_len), n_ctx = \(n_ctx), n_kv_req = \(n_kv_req)")
- if n_kv_req > n_ctx {
- print("error: n_kv_req > n_ctx, the required KV cache size is not big enough")
- }
- for id in tokens_list {
- print(String(cString: token_to_piece(token: id) + [0]))
- }
- llama_batch_clear(&batch)
- for i1 in 0..<tokens_list.count {
- let i = Int(i1)
- llama_batch_add(&batch, tokens_list[i], Int32(i), [0], false)
- }
- batch.logits[Int(batch.n_tokens) - 1] = 1 // true
- if llama_decode(context, batch) != 0 {
- print("llama_decode() failed")
- }
- n_cur = batch.n_tokens
- }
- func completion_loop() -> String {
- var new_token_id: llama_token = 0
- let n_vocab = llama_n_vocab(model)
- let logits = llama_get_logits_ith(context, batch.n_tokens - 1)
- var candidates = Array<llama_token_data>()
- candidates.reserveCapacity(Int(n_vocab))
- for token_id in 0..<n_vocab {
- candidates.append(llama_token_data(id: token_id, logit: logits![Int(token_id)], p: 0.0))
- }
- candidates.withUnsafeMutableBufferPointer() { buffer in
- var candidates_p = llama_token_data_array(data: buffer.baseAddress, size: buffer.count, sorted: false)
- new_token_id = llama_sample_token_greedy(context, &candidates_p)
- }
- if new_token_id == llama_token_eos(model) || n_cur == n_len {
- print("\n")
- let new_token_str = String(cString: temporary_invalid_cchars + [0])
- temporary_invalid_cchars.removeAll()
- return new_token_str
- }
- let new_token_cchars = token_to_piece(token: new_token_id)
- temporary_invalid_cchars.append(contentsOf: new_token_cchars)
- let new_token_str: String
- if let string = String(validatingUTF8: temporary_invalid_cchars + [0]) {
- temporary_invalid_cchars.removeAll()
- new_token_str = string
- } else if (0 ..< temporary_invalid_cchars.count).contains(where: {$0 != 0 && String(validatingUTF8: Array(temporary_invalid_cchars.suffix($0)) + [0]) != nil}) {
- // in this case, at least the suffix of the temporary_invalid_cchars can be interpreted as UTF8 string
- let string = String(cString: temporary_invalid_cchars + [0])
- temporary_invalid_cchars.removeAll()
- new_token_str = string
- } else {
- new_token_str = ""
- }
- print(new_token_str)
- // tokens_list.append(new_token_id)
- llama_batch_clear(&batch)
- llama_batch_add(&batch, new_token_id, n_cur, [0], true)
- n_decode += 1
- n_cur += 1
- if llama_decode(context, batch) != 0 {
- print("failed to evaluate llama!")
- }
- return new_token_str
- }
- func bench(pp: Int, tg: Int, pl: Int, nr: Int = 1) -> String {
- var pp_avg: Double = 0
- var tg_avg: Double = 0
- var pp_std: Double = 0
- var tg_std: Double = 0
- for _ in 0..<nr {
- // bench prompt processing
- llama_batch_clear(&batch)
- let n_tokens = pp
- for i in 0..<n_tokens {
- llama_batch_add(&batch, 0, Int32(i), [0], false)
- }
- batch.logits[Int(batch.n_tokens) - 1] = 1 // true
- llama_kv_cache_clear(context)
- let t_pp_start = ggml_time_us()
- if llama_decode(context, batch) != 0 {
- print("llama_decode() failed during prompt")
- }
- let t_pp_end = ggml_time_us()
- // bench text generation
- llama_kv_cache_clear(context)
- let t_tg_start = ggml_time_us()
- for i in 0..<tg {
- llama_batch_clear(&batch)
- for j in 0..<pl {
- llama_batch_add(&batch, 0, Int32(i), [Int32(j)], true)
- }
- if llama_decode(context, batch) != 0 {
- print("llama_decode() failed during text generation")
- }
- }
- let t_tg_end = ggml_time_us()
- llama_kv_cache_clear(context)
- let t_pp = Double(t_pp_end - t_pp_start) / 1000000.0
- let t_tg = Double(t_tg_end - t_tg_start) / 1000000.0
- let speed_pp = Double(pp) / t_pp
- let speed_tg = Double(pl*tg) / t_tg
- pp_avg += speed_pp
- tg_avg += speed_tg
- pp_std += speed_pp * speed_pp
- tg_std += speed_tg * speed_tg
- print("pp \(speed_pp) t/s, tg \(speed_tg) t/s")
- }
- pp_avg /= Double(nr)
- tg_avg /= Double(nr)
- if nr > 1 {
- pp_std = sqrt(pp_std / Double(nr - 1) - pp_avg * pp_avg * Double(nr) / Double(nr - 1))
- tg_std = sqrt(tg_std / Double(nr - 1) - tg_avg * tg_avg * Double(nr) / Double(nr - 1))
- } else {
- pp_std = 0
- tg_std = 0
- }
- let model_desc = model_info();
- let model_size = String(format: "%.2f GiB", Double(llama_model_size(model)) / 1024.0 / 1024.0 / 1024.0);
- let model_n_params = String(format: "%.2f B", Double(llama_model_n_params(model)) / 1e9);
- let backend = "Metal";
- let pp_avg_str = String(format: "%.2f", pp_avg);
- let tg_avg_str = String(format: "%.2f", tg_avg);
- let pp_std_str = String(format: "%.2f", pp_std);
- let tg_std_str = String(format: "%.2f", tg_std);
- var result = ""
- result += String("| model | size | params | backend | test | t/s |\n")
- result += String("| --- | --- | --- | --- | --- | --- |\n")
- result += String("| \(model_desc) | \(model_size) | \(model_n_params) | \(backend) | pp \(pp) | \(pp_avg_str) ± \(pp_std_str) |\n")
- result += String("| \(model_desc) | \(model_size) | \(model_n_params) | \(backend) | tg \(tg) | \(tg_avg_str) ± \(tg_std_str) |\n")
- return result;
- }
- func clear() {
- tokens_list.removeAll()
- temporary_invalid_cchars.removeAll()
- llama_kv_cache_clear(context)
- }
- private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
- let utf8Count = text.utf8.count
- let n_tokens = utf8Count + (add_bos ? 1 : 0) + 1
- let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens)
- let tokenCount = llama_tokenize(model, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, false)
- var swiftTokens: [llama_token] = []
- for i in 0..<tokenCount {
- swiftTokens.append(tokens[Int(i)])
- }
- tokens.deallocate()
- return swiftTokens
- }
- /// - note: The result does not contain null-terminator
- private func token_to_piece(token: llama_token) -> [CChar] {
- let result = UnsafeMutablePointer<Int8>.allocate(capacity: 8)
- result.initialize(repeating: Int8(0), count: 8)
- defer {
- result.deallocate()
- }
- let nTokens = llama_token_to_piece(model, token, result, 8)
- if nTokens < 0 {
- let newResult = UnsafeMutablePointer<Int8>.allocate(capacity: Int(-nTokens))
- newResult.initialize(repeating: Int8(0), count: Int(-nTokens))
- defer {
- newResult.deallocate()
- }
- let nNewTokens = llama_token_to_piece(model, token, newResult, -nTokens)
- let bufferPointer = UnsafeBufferPointer(start: newResult, count: Int(nNewTokens))
- return Array(bufferPointer)
- } else {
- let bufferPointer = UnsafeBufferPointer(start: result, count: Int(nTokens))
- return Array(bufferPointer)
- }
- }
- }
|