lookup.cpp 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241
  1. #include "common.h"
  2. #include "ggml.h"
  3. #include "llama.h"
  4. #include <cmath>
  5. #include <cstdint>
  6. #include <cstdio>
  7. #include <string>
  8. #include <vector>
  9. int main(int argc, char ** argv){
  10. gpt_params params;
  11. if (!gpt_params_parse(argc, argv, params)) {
  12. return 1;
  13. }
  14. // max/min n-grams size to search for in prompt
  15. const int ngram_max = 4;
  16. const int ngram_min = 1;
  17. // length of the candidate / draft sequence, if match is found
  18. const int n_draft = params.n_draft;
  19. const bool dump_kv_cache = params.dump_kv_cache;
  20. #ifndef LOG_DISABLE_LOGS
  21. log_set_target(log_filename_generator("lookup", "log"));
  22. LOG_TEE("Log start\n");
  23. log_dump_cmdline(argc, argv);
  24. #endif // LOG_DISABLE_LOGS
  25. // init llama.cpp
  26. llama_backend_init();
  27. llama_numa_init(params.numa);
  28. llama_model * model = NULL;
  29. llama_context * ctx = NULL;
  30. // load the model
  31. std::tie(model, ctx) = llama_init_from_gpt_params(params);
  32. // tokenize the prompt
  33. const bool add_bos = llama_should_add_bos_token(model);
  34. LOG("add_bos tgt: %d\n", add_bos);
  35. std::vector<llama_token> inp;
  36. inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
  37. const int max_context_size = llama_n_ctx(ctx);
  38. const int max_tokens_list_size = max_context_size - 4;
  39. if ((int) inp.size() > max_tokens_list_size) {
  40. fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
  41. return 1;
  42. }
  43. fprintf(stderr, "\n\n");
  44. for (auto id : inp) {
  45. fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
  46. }
  47. fflush(stderr);
  48. const int n_input = inp.size();
  49. const auto t_enc_start = ggml_time_us();
  50. llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1, 0, 0));
  51. llama_decode(ctx, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0));
  52. const auto t_enc_end = ggml_time_us();
  53. int n_predict = 0;
  54. int n_drafted = 0;
  55. int n_accept = 0;
  56. int64_t t_draft_us = 0;
  57. int n_past = inp.size();
  58. bool has_eos = false;
  59. struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
  60. std::vector<llama_token> draft;
  61. llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, 1);
  62. // debug
  63. struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, 1);
  64. const auto t_dec_start = ggml_time_us();
  65. while (true) {
  66. // debug
  67. if (dump_kv_cache) {
  68. llama_kv_cache_view_update(ctx, &kvc_view);
  69. dump_kv_cache_view_seqs(kvc_view, 40);
  70. }
  71. // print current draft sequence
  72. LOG("drafted %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, draft).c_str());
  73. int i_dft = 0;
  74. while (true) {
  75. // sample from the target model
  76. llama_token id = llama_sampling_sample(ctx_sampling, ctx, NULL, i_dft);
  77. llama_sampling_accept(ctx_sampling, ctx, id, true);
  78. const std::string token_str = llama_token_to_piece(ctx, id);
  79. if (!params.use_color) {
  80. printf("%s", token_str.c_str());
  81. }
  82. if (id == llama_token_eos(model)) {
  83. has_eos = true;
  84. }
  85. ++n_predict;
  86. // check if the target token matches the draft
  87. if (i_dft < (int) draft.size() && id == draft[i_dft]) {
  88. LOG("the sampled target token matches the %dth drafted token (%d, '%s') - accepted\n", i_dft, id, token_str.c_str());
  89. ++n_accept;
  90. ++n_past;
  91. ++i_dft;
  92. inp.push_back(id);
  93. if (params.use_color) {
  94. // color accepted draft token
  95. printf("\033[34m%s\033[0m", token_str.c_str());
  96. fflush(stdout);
  97. }
  98. continue;
  99. }
  100. if (params.use_color) {
  101. printf("%s", token_str.c_str());
  102. }
  103. fflush(stdout);
  104. LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str());
  105. draft.clear();
  106. draft.push_back(id);
  107. inp.push_back(id);
  108. break;
  109. }
  110. if ((params.n_predict > 0 && n_predict > params.n_predict) || has_eos) {
  111. break;
  112. }
  113. // KV cache management
  114. // clean the cache of draft tokens that weren't accepted
  115. llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
  116. llama_batch_clear(batch_tgt);
  117. llama_batch_add(batch_tgt, draft[0], n_past, { 0 }, true);
  118. // generate n_pred tokens through prompt lookup
  119. auto prompt_lookup = [&]() -> void {
  120. const int inp_size = inp.size();
  121. for (int ngram_size = ngram_max ; ngram_size > ngram_min; --ngram_size){
  122. const llama_token * ngram = &inp[inp_size - ngram_size];
  123. for (int i = 0; i <= (int) inp_size - (ngram_size * 2); ++i) {
  124. bool match = true;
  125. for (int j = 0; j < ngram_size; ++j) {
  126. if (inp[i + j] != ngram[j]) {
  127. match = false;
  128. break;
  129. }
  130. }
  131. if (match) {
  132. const int startIdx = i + ngram_size;
  133. const int endIdx = startIdx + n_draft;
  134. if (endIdx < inp_size) {
  135. for (int j = startIdx; j < endIdx; ++j) {
  136. LOG(" - draft candidate %d: %d\n", j, inp[j]);
  137. draft.push_back(inp[j]);
  138. llama_batch_add(batch_tgt, inp[j], n_past + (j - startIdx) + 1, { 0 }, true);
  139. ++n_drafted;
  140. }
  141. return;
  142. }
  143. }
  144. }
  145. }
  146. return;
  147. };
  148. const int64_t t_start_draft_us = ggml_time_us();
  149. prompt_lookup();
  150. t_draft_us += ggml_time_us() - t_start_draft_us;
  151. llama_decode(ctx, batch_tgt);
  152. ++n_past;
  153. draft.erase(draft.begin());
  154. }
  155. auto t_dec_end = ggml_time_us();
  156. LOG_TEE("\n\n");
  157. LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
  158. LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
  159. LOG_TEE("\n");
  160. LOG_TEE("n_draft = %d\n", n_draft);
  161. LOG_TEE("n_predict = %d\n", n_predict);
  162. LOG_TEE("n_drafted = %d\n", n_drafted);
  163. LOG_TEE("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n",
  164. t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us));
  165. LOG_TEE("n_accept = %d\n", n_accept);
  166. LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
  167. LOG_TEE("\ntarget:\n");
  168. llama_print_timings(ctx);
  169. llama_sampling_free(ctx_sampling);
  170. llama_batch_free(batch_tgt);
  171. llama_free(ctx);
  172. llama_free_model(model);
  173. llama_backend_free();
  174. fprintf(stderr, "\n\n");
  175. return 0;
  176. }