| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297 |
- #include "common.h"
- #include "llama.h"
- #include <cmath>
- #include <cstdio>
- #include <string>
- #include <vector>
- int main(int argc, char ** argv) {
- gpt_params params;
- if (argc == 1 || argv[1][0] == '-') {
- printf("usage: %s MODEL_PATH N_JUNK N_GRP I_POS SEED\n" , argv[0]);
- return 1 ;
- }
- int seed = -1;
- int n_junk = 250; // number of times to repeat the junk text
- int n_keep = 32; // number of tokens in the prompt prefix
- int n_grp = 1; // if more than 1 - perform LongLM SelfExtend
- int i_pos = -1; // position of the passkey in the junk text
- if (argc >= 2) {
- params.model = argv[1];
- }
- if (argc >= 3) {
- n_junk = std::stoi(argv[2]);
- }
- if (argc >= 4) {
- n_grp = std::stoi(argv[3]);
- }
- if (argc >= 5) {
- i_pos = std::stoi(argv[4]);
- }
- if (argc >= 6) {
- seed = std::stoi(argv[5]);
- }
- if (seed == -1) {
- seed = time(NULL);
- }
- srand(seed);
- if (i_pos == -1) {
- i_pos = rand() % n_junk;
- }
- const std::string prompt_prefix = "There is an important info hidden inside a lot of irrelevant text. Find it and memorize them. I will quiz you about the important information there.";
- const std::string prompt_suffix = " What is the pass key? The pass key is";
- // generate junk text
- params.prompt = prompt_prefix;
- const int passkey = rand() % 50000 + 1;
- for (int i = 0; i < n_junk; i++) {
- if (i % n_junk == i_pos) {
- params.prompt += " The pass key is " + std::to_string(passkey) + ". Remember it. " + std::to_string(passkey) + " is the pass key.";
- }
- params.prompt += " The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.";
- }
- params.prompt += prompt_suffix;
- // init LLM
- llama_backend_init();
- llama_numa_init(params.numa);
- // initialize the model
- llama_model_params model_params = llama_model_default_params();
- model_params.n_gpu_layers = 99; // offload all layers to the GPU
- llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
- if (model == NULL) {
- fprintf(stderr , "%s: error: unable to load model\n" , __func__);
- return 1;
- }
- // initialize the context
- llama_context_params ctx_params = llama_context_default_params();
- ctx_params.seed = seed;
- ctx_params.n_ctx = llama_n_ctx_train(model)*n_grp + n_keep;
- ctx_params.n_batch = 512;
- ctx_params.n_threads = params.n_threads;
- ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
- GGML_ASSERT(ctx_params.n_batch % n_grp == 0 && "n_batch must be divisible by n_grp");
- llama_context * ctx = llama_new_context_with_model(model, ctx_params);
- if (ctx == NULL) {
- fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
- return 1;
- }
- // tokenize the prompt
- std::vector<llama_token> tokens_list;
- tokens_list = ::llama_tokenize(ctx, params.prompt, true);
- // tokenize the prefix and use it as a sink
- const int n_tokens_prefix = ::llama_tokenize(ctx, prompt_prefix, true).size();
- const int n_tokens_all = tokens_list.size();
- // we leave a margin of 16 tokens for the generated text - it should contain just the passkey
- const int n_predict = 16;
- // total length of the sequences including the prompt
- const int n_len = n_tokens_all + n_predict;
- const int n_ctx = llama_n_ctx(ctx) - n_keep;
- const int n_kv_req = llama_n_ctx(ctx);
- const int n_batch = ctx_params.n_batch;
- const int n_batch_grp = ctx_params.n_batch/n_grp;
- LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d, n_grp = %d, n_batch = %d\n", __func__, n_len, n_ctx, n_kv_req, n_grp, n_batch);
- // print the prompt token-by-token
- LOG_TEE("\n");
- LOG_TEE("prefix tokens: %d\n", n_tokens_prefix);
- LOG_TEE("prompt tokens: %d\n", n_tokens_all);
- //LOG_TEE("prompt: %s\n", params.prompt.c_str());
- llama_batch batch = llama_batch_init(512, 0, 1);
- int n_past = 0;
- // fill the KV cache
- for (int i = 0; i < n_ctx; i += n_batch) {
- if (i > 0 && n_grp > 1) {
- // if SelfExtend is enabled, we compress the position from the last batch by a factor of n_grp
- const int ib = i/n_batch - 1;
- const int bd = n_batch_grp*(n_grp - 1);
- llama_kv_cache_seq_shift(ctx, 0, n_past - n_batch, n_past, ib*bd);
- llama_kv_cache_seq_div (ctx, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp);
- n_past -= bd;
- }
- llama_batch_clear(batch);
- for (int j = 0; j < n_batch && i + j < n_tokens_all; j++) {
- llama_batch_add(batch, tokens_list[i + j], n_past++, { 0 }, false);
- }
- if (i + n_batch >= n_tokens_all) {
- batch.logits[batch.n_tokens - 1] = true;
- }
- if (llama_decode(ctx, batch) != 0) {
- LOG_TEE("%s: llama_decode() failed\n", __func__);
- return 1;
- }
- LOG_TEE("%s: processed: [%6d, %6d)\n", __func__, i, std::min(i + n_batch, n_tokens_all));
- if (i + n_batch >= n_tokens_all) {
- break;
- }
- }
- for (int i = n_ctx; i < n_tokens_all; i += n_batch) {
- const int n_discard = n_batch;
- LOG_TEE("%s: shifting KV cache with %d\n", __func__, n_discard);
- llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
- llama_kv_cache_seq_shift(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
- n_past -= n_discard;
- llama_batch_clear(batch);
- for (int j = 0; j < n_batch && i + j < n_tokens_all; j++) {
- llama_batch_add(batch, tokens_list[i + j], n_past++, { 0 }, false);
- }
- if (i + n_batch >= n_tokens_all) {
- batch.logits[batch.n_tokens - 1] = true;
- }
- if (llama_decode(ctx, batch) != 0) {
- LOG_TEE("%s: llama_decode() failed\n", __func__);
- return 1;
- }
- LOG_TEE("%s: processed: [%6d, %6d)\n", __func__, i, std::min(i + n_batch, n_tokens_all));
- }
- {
- const int n_discard = n_past - n_ctx + n_predict;
- if (n_discard > 0) {
- LOG_TEE("%s: shifting KV cache with %d to free space for the answer\n", __func__, n_discard);
- llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
- llama_kv_cache_seq_shift(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
- n_past -= n_discard;
- }
- }
- LOG_TEE("\n");
- LOG_TEE("%s: passkey = %d, inserted at position %d / %d (token pos: ~%d)\n", __func__, passkey, i_pos, n_junk, (i_pos * n_tokens_all) / n_junk);
- LOG_TEE("\n");
- // main loop
- int n_cur = n_tokens_all;
- int n_decode = 0;
- LOG_TEE("%s", prompt_suffix.c_str());
- fflush(stdout);
- const auto t_main_start = ggml_time_us();
- while (n_cur <= n_len) {
- // sample the next token
- {
- auto n_vocab = llama_n_vocab(model);
- auto * logits = llama_get_logits_ith(ctx, batch.n_tokens - 1);
- std::vector<llama_token_data> candidates;
- candidates.reserve(n_vocab);
- for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
- candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
- }
- llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
- // sample the most likely token
- const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
- // is it an end of stream?
- if (new_token_id == llama_token_eos(model) || n_cur == n_len) {
- LOG_TEE("\n");
- break;
- }
- LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
- fflush(stdout);
- n_decode += 1;
- // prepare the next batch
- llama_batch_clear(batch);
- // push this new token for next evaluation
- llama_batch_add(batch, new_token_id, n_past++, { 0 }, true);
- }
- n_cur += 1;
- // evaluate the current batch with the transformer model
- if (llama_decode(ctx, batch)) {
- fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
- return 1;
- }
- }
- LOG_TEE("\n");
- const auto t_main_end = ggml_time_us();
- LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
- __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
- llama_print_timings(ctx);
- fprintf(stderr, "\n");
- llama_batch_free(batch);
- llama_free(ctx);
- llama_free_model(model);
- llama_backend_free();
- return 0;
- }
|