common.h 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329
  1. // Various helper functions and utilities
  2. #pragma once
  3. #include "llama.h"
  4. #include "sampling.h"
  5. #define LOG_NO_FILE_LINE_FUNCTION
  6. #include "log.h"
  7. #include <cmath>
  8. #include <string>
  9. #include <vector>
  10. #include <random>
  11. #include <thread>
  12. #include <unordered_map>
  13. #include <tuple>
  14. #ifdef _WIN32
  15. #define DIRECTORY_SEPARATOR '\\'
  16. #else
  17. #define DIRECTORY_SEPARATOR '/'
  18. #endif // _WIN32
  19. #define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
  20. #define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
  21. #define print_build_info() do { \
  22. fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
  23. fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
  24. } while(0)
  25. // build info
  26. extern int LLAMA_BUILD_NUMBER;
  27. extern char const *LLAMA_COMMIT;
  28. extern char const *LLAMA_COMPILER;
  29. extern char const *LLAMA_BUILD_TARGET;
  30. struct llama_control_vector_load_info;
  31. int get_math_cpu_count();
  32. int32_t get_num_physical_cores();
  33. //
  34. // CLI argument parsing
  35. //
  36. struct gpt_params {
  37. uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
  38. int32_t n_threads = get_math_cpu_count();
  39. int32_t n_threads_draft = -1;
  40. int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
  41. int32_t n_threads_batch_draft = -1;
  42. int32_t n_predict = -1; // new tokens to predict
  43. int32_t n_ctx = 512; // context size
  44. int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
  45. int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
  46. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  47. int32_t n_draft = 5; // number of tokens to draft during speculative decoding
  48. int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
  49. int32_t n_parallel = 1; // number of parallel sequences to decode
  50. int32_t n_sequences = 1; // number of sequences to decode
  51. float p_split = 0.1f; // speculative decoding split probability
  52. int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
  53. int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
  54. llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
  55. int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
  56. float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
  57. int32_t n_beams = 0; // if non-zero then use beam search of given width.
  58. int32_t grp_attn_n = 1; // group-attention factor
  59. int32_t grp_attn_w = 512; // group-attention width
  60. int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
  61. float rope_freq_base = 0.0f; // RoPE base frequency
  62. float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
  63. float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
  64. float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
  65. float yarn_beta_fast = 32.0f; // YaRN low correction dim
  66. float yarn_beta_slow = 1.0f; // YaRN high correction dim
  67. int32_t yarn_orig_ctx = 0; // YaRN original context length
  68. float defrag_thold = -1.0f; // KV cache defragmentation threshold
  69. ggml_backend_sched_eval_callback cb_eval = nullptr;
  70. void * cb_eval_user_data = nullptr;
  71. ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
  72. enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  73. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
  74. // // sampling parameters
  75. struct llama_sampling_params sparams;
  76. std::string model = "models/7B/ggml-model-f16.gguf"; // model path
  77. std::string model_draft = ""; // draft model for speculative decoding
  78. std::string model_alias = "unknown"; // model alias
  79. std::string model_url = ""; // model url to download
  80. std::string hf_repo = ""; // HF repo
  81. std::string hf_file = ""; // HF file
  82. std::string prompt = "";
  83. std::string prompt_file = ""; // store the external prompt file name
  84. std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
  85. std::string input_prefix = ""; // string to prefix user inputs with
  86. std::string input_suffix = ""; // string to suffix user inputs with
  87. std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
  88. std::string logdir = ""; // directory in which to save YAML log files
  89. std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding
  90. std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding
  91. std::string logits_file = ""; // file for saving *all* logits
  92. std::vector<llama_model_kv_override> kv_overrides;
  93. // TODO: avoid tuple, use struct
  94. std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
  95. std::string lora_base = ""; // base model path for the lora adapter
  96. std::vector<llama_control_vector_load_info> control_vectors; // control vector with user defined scale
  97. int32_t control_vector_layer_start = -1; // layer range for control vector
  98. int32_t control_vector_layer_end = -1; // layer range for control vector
  99. int ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
  100. int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
  101. // (which is more convenient to use for plotting)
  102. //
  103. bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
  104. size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
  105. bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
  106. size_t winogrande_tasks= 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
  107. bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
  108. size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
  109. bool kl_divergence = false; // compute KL-divergence
  110. bool random_prompt = false; // do not randomize prompt if none provided
  111. bool use_color = false; // use color to distinguish generations and inputs
  112. bool interactive = false; // interactive mode
  113. bool chatml = false; // chatml mode (used for models trained on chatml syntax)
  114. bool prompt_cache_all = false; // save user input and generations to prompt cache
  115. bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
  116. bool embedding = false; // get only sentence embedding
  117. bool escape = false; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
  118. bool interactive_first = false; // wait for user input immediately
  119. bool multiline_input = false; // reverse the usage of `\`
  120. bool simple_io = false; // improves compatibility with subprocesses and limited consoles
  121. bool cont_batching = true; // insert new sequences for decoding on-the-fly
  122. bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
  123. bool ignore_eos = false; // ignore generated EOS tokens
  124. bool instruct = false; // instruction mode (used for Alpaca models)
  125. bool logits_all = false; // return logits for all tokens in the batch
  126. bool use_mmap = true; // use mmap for faster loads
  127. bool use_mlock = false; // use mlock to keep model in memory
  128. bool verbose_prompt = false; // print prompt tokens before generation
  129. bool display_prompt = true; // print prompt before generation
  130. bool infill = false; // use infill mode
  131. bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
  132. bool no_kv_offload = false; // disable KV offloading
  133. bool warmup = true; // warmup run
  134. bool check_tensors = false; // validate tensor data
  135. std::string cache_type_k = "f16"; // KV cache data type for the K
  136. std::string cache_type_v = "f16"; // KV cache data type for the V
  137. // multimodal models (see examples/llava)
  138. std::string mmproj = ""; // path to multimodal projector
  139. std::string image = ""; // path to an image file
  140. };
  141. bool parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
  142. bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params);
  143. bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
  144. void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
  145. bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param);
  146. std::string get_system_info(const gpt_params & params);
  147. std::string gpt_random_prompt(std::mt19937 & rng);
  148. void process_escapes(std::string& input);
  149. bool validate_file_name(const std::string & filename);
  150. //
  151. // String utils
  152. //
  153. std::vector<llama_sampler_type> sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
  154. std::vector<llama_sampler_type> sampler_types_from_chars(const std::string & names_string);
  155. std::vector<std::string> string_split(std::string input, char separator);
  156. std::string string_strip(const std::string & str);
  157. std::string sampler_type_to_name_string(llama_sampler_type sampler_type);
  158. //
  159. // Model utils
  160. //
  161. // TODO: avoid tuplue, use struct
  162. std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params);
  163. struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
  164. struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
  165. struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model, const struct llama_model_params & params);
  166. struct llama_model * llama_load_model_from_hf(const char * repo, const char * file, const char * path_model, const struct llama_model_params & params);
  167. // Batch utils
  168. void llama_batch_clear(struct llama_batch & batch);
  169. void llama_batch_add(
  170. struct llama_batch & batch,
  171. llama_token id,
  172. llama_pos pos,
  173. const std::vector<llama_seq_id> & seq_ids,
  174. bool logits);
  175. //
  176. // Vocab utils
  177. //
  178. // tokenizes a string into a vector of tokens
  179. // should work similar to Python's `tokenizer.encode`
  180. std::vector<llama_token> llama_tokenize(
  181. const struct llama_context * ctx,
  182. const std::string & text,
  183. bool add_special,
  184. bool parse_special = false);
  185. std::vector<llama_token> llama_tokenize(
  186. const struct llama_model * model,
  187. const std::string & text,
  188. bool add_special,
  189. bool parse_special = false);
  190. // tokenizes a token into a piece, optionally renders special/control tokens
  191. // should work similar to Python's `tokenizer.id_to_piece`
  192. std::string llama_token_to_piece(
  193. const struct llama_context * ctx,
  194. llama_token token,
  195. bool special = true);
  196. // TODO: these should be moved in llama.h C-style API under single `llama_detokenize` function
  197. // that takes into account the tokenizer type and decides how to handle the leading space
  198. //
  199. // detokenizes a vector of tokens into a string
  200. // should work similar to Python's `tokenizer.decode`
  201. // removes the leading space from the first non-BOS token
  202. std::string llama_detokenize_spm(
  203. llama_context * ctx,
  204. const std::vector<llama_token> & tokens);
  205. // detokenizes a vector of tokens into a string
  206. // should work similar to Python's `tokenizer.decode`
  207. std::string llama_detokenize_bpe(
  208. llama_context * ctx,
  209. const std::vector<llama_token> & tokens);
  210. // Uses the value from the model metadata if possible, otherwise
  211. // defaults to true when model type is SPM, otherwise false.
  212. bool llama_should_add_bos_token(const llama_model * model);
  213. //
  214. // YAML utils
  215. //
  216. bool create_directory_with_parents(const std::string & path);
  217. void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data);
  218. void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data);
  219. void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data);
  220. std::string get_sortable_timestamp();
  221. void dump_non_result_info_yaml(
  222. FILE * stream, const gpt_params & params, const llama_context * lctx,
  223. const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
  224. //
  225. // KV cache utils
  226. //
  227. // Dump the KV cache view with the number of sequences per cell.
  228. void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size = 80);
  229. // Dump the KV cache view showing individual sequences in each cell (long output).
  230. void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
  231. //
  232. // Embedding utils
  233. //
  234. void llama_embd_normalize(const float * inp, float * out, int n);
  235. float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n);
  236. //
  237. // Control vector utils
  238. //
  239. struct llama_control_vector_data {
  240. int n_embd;
  241. // stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
  242. std::vector<float> data;
  243. };
  244. struct llama_control_vector_load_info {
  245. float strength;
  246. std::string fname;
  247. };
  248. // Load control vectors, scale each by strength, and add them together.
  249. // On error, returns {-1, empty}
  250. llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos);
  251. //
  252. // Split utils
  253. //
  254. static const char * const LLM_KV_SPLIT_NO = "split.no";
  255. static const char * const LLM_KV_SPLIT_COUNT = "split.count";
  256. static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";