convert-hf-to-gguf.py 130 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997
  1. #!/usr/bin/env python3
  2. from __future__ import annotations
  3. import argparse
  4. import contextlib
  5. import json
  6. import os
  7. import re
  8. import sys
  9. from abc import ABC, abstractmethod
  10. from enum import IntEnum
  11. from pathlib import Path
  12. from hashlib import sha256
  13. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterator, Sequence, TypeVar, cast
  14. import numpy as np
  15. import torch
  16. if TYPE_CHECKING:
  17. from torch import Tensor
  18. if 'NO_LOCAL_GGUF' not in os.environ:
  19. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  20. import gguf
  21. from convert import LlamaHfVocab, permute
  22. ###### MODEL DEFINITIONS ######
  23. class SentencePieceTokenTypes(IntEnum):
  24. NORMAL = 1
  25. UNKNOWN = 2
  26. CONTROL = 3
  27. USER_DEFINED = 4
  28. UNUSED = 5
  29. BYTE = 6
  30. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  31. class Model(ABC):
  32. _model_classes: dict[str, type[Model]] = {}
  33. def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool, use_temp_file: bool):
  34. self.dir_model = dir_model
  35. self.ftype = ftype
  36. self.fname_out = fname_out
  37. self.is_big_endian = is_big_endian
  38. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  39. self.use_temp_file = use_temp_file
  40. self.is_safetensors = self._is_model_safetensors()
  41. self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin")
  42. self.part_names = self._get_part_names()
  43. self.hparams = Model.load_hparams(self.dir_model)
  44. self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file)
  45. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
  46. @property
  47. @abstractmethod
  48. def model_arch(self) -> gguf.MODEL_ARCH:
  49. pass
  50. def find_hparam(self, keys: Sequence[str], optional: bool = False) -> Any:
  51. key = next((k for k in keys if k in self.hparams), None)
  52. if key is not None:
  53. return self.hparams[key]
  54. if optional:
  55. return None
  56. raise KeyError(f"could not find any of: {keys}")
  57. def set_vocab(self):
  58. self._set_vocab_gpt2()
  59. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  60. for part_name in self.part_names:
  61. print(f"gguf: loading model part '{part_name}'")
  62. ctx: ContextManager[Any]
  63. if self.is_safetensors:
  64. from safetensors import safe_open
  65. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  66. else:
  67. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  68. with ctx as model_part:
  69. for name in model_part.keys():
  70. data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
  71. yield name, data
  72. def set_gguf_parameters(self):
  73. self.gguf_writer.add_name(self.dir_model.name)
  74. self.gguf_writer.add_block_count(self.block_count)
  75. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  76. self.gguf_writer.add_context_length(n_ctx)
  77. print(f"gguf: context length = {n_ctx}")
  78. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  79. self.gguf_writer.add_embedding_length(n_embd)
  80. print(f"gguf: embedding length = {n_embd}")
  81. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  82. self.gguf_writer.add_feed_forward_length(n_ff)
  83. print(f"gguf: feed forward length = {n_ff}")
  84. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  85. self.gguf_writer.add_head_count(n_head)
  86. print(f"gguf: head count = {n_head}")
  87. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  88. self.gguf_writer.add_head_count_kv(n_head_kv)
  89. print(f"gguf: key-value head count = {n_head_kv}")
  90. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  91. self.gguf_writer.add_rope_freq_base(rope_theta)
  92. print(f"gguf: rope theta = {rope_theta}")
  93. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  94. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  95. print(f"gguf: rms norm epsilon = {f_rms_eps}")
  96. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  97. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  98. print(f"gguf: layer norm epsilon = {f_norm_eps}")
  99. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  100. self.gguf_writer.add_expert_count(n_experts)
  101. print(f"gguf: expert count = {n_experts}")
  102. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  103. self.gguf_writer.add_expert_used_count(n_experts_used)
  104. print(f"gguf: experts used count = {n_experts_used}")
  105. self.gguf_writer.add_file_type(self.ftype)
  106. print(f"gguf: file type = {self.ftype}")
  107. def write_tensors(self):
  108. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  109. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  110. for name, data_torch in self.get_tensors():
  111. # we don't need these
  112. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  113. continue
  114. old_dtype = data_torch.dtype
  115. # convert any unsupported data types to float32
  116. if data_torch.dtype not in (torch.float16, torch.float32):
  117. data_torch = data_torch.to(torch.float32)
  118. data = data_torch.squeeze().numpy()
  119. # map tensor names
  120. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  121. if new_name is None:
  122. print(f"Can not map tensor {name!r}")
  123. sys.exit()
  124. n_dims = len(data.shape)
  125. data_dtype = data.dtype
  126. # if f32 desired, convert any float16 to float32
  127. if self.ftype == 0 and data_dtype == np.float16:
  128. data = data.astype(np.float32)
  129. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  130. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  131. data = data.astype(np.float32)
  132. # if f16 desired, convert any float32 2-dim weight tensors to float16
  133. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  134. data = data.astype(np.float16)
  135. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  136. self.gguf_writer.add_tensor(new_name, data)
  137. def write(self):
  138. self.write_tensors()
  139. self.gguf_writer.write_header_to_file()
  140. self.gguf_writer.write_kv_data_to_file()
  141. self.gguf_writer.write_tensors_to_file()
  142. self.gguf_writer.close()
  143. def write_vocab(self):
  144. self.gguf_writer.write_header_to_file()
  145. self.gguf_writer.write_kv_data_to_file()
  146. self.gguf_writer.close()
  147. @staticmethod
  148. def count_model_parts(dir_model: Path, prefix: str) -> int:
  149. num_parts = 0
  150. for filename in os.listdir(dir_model):
  151. if filename.endswith(prefix):
  152. num_parts += 1
  153. return num_parts
  154. @staticmethod
  155. def load_hparams(dir_model):
  156. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  157. return json.load(f)
  158. @classmethod
  159. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  160. assert names
  161. def func(modelcls: type[Model]):
  162. for name in names:
  163. cls._model_classes[name] = modelcls
  164. return modelcls
  165. return func
  166. @classmethod
  167. def from_model_architecture(cls, arch):
  168. try:
  169. return cls._model_classes[arch]
  170. except KeyError:
  171. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  172. def _is_model_safetensors(self) -> bool:
  173. return Model.count_model_parts(self.dir_model, ".safetensors") > 0
  174. def _get_part_names(self):
  175. if self.is_safetensors:
  176. if self.num_parts == 1: # there's only one .safetensors file
  177. return ("model.safetensors",)
  178. return (f"model-{n:05}-of-{self.num_parts:05}.safetensors" for n in range(1, self.num_parts + 1))
  179. if self.num_parts == 1: # there's only one .bin file
  180. return ("pytorch_model.bin",)
  181. return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
  182. # used for GPT-2 BPE and WordPiece vocabs
  183. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  184. tokens: list[str] = []
  185. toktypes: list[int] = []
  186. from transformers import AutoTokenizer
  187. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  188. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  189. assert max(tokenizer.vocab.values()) < vocab_size
  190. tokpre = self.get_vocab_base_pre(tokenizer)
  191. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  192. added_vocab = tokenizer.get_added_vocab()
  193. for i in range(vocab_size):
  194. if i not in reverse_vocab:
  195. tokens.append(f"[PAD{i}]")
  196. toktypes.append(gguf.TokenType.USER_DEFINED)
  197. elif reverse_vocab[i] in added_vocab:
  198. tokens.append(reverse_vocab[i])
  199. if tokenizer.added_tokens_decoder[i].special:
  200. toktypes.append(gguf.TokenType.CONTROL)
  201. else:
  202. toktypes.append(gguf.TokenType.USER_DEFINED)
  203. else:
  204. tokens.append(reverse_vocab[i])
  205. toktypes.append(gguf.TokenType.NORMAL)
  206. return tokens, toktypes, tokpre
  207. # NOTE: this function is generated by convert-hf-to-gguf-update.py
  208. # do not modify it manually!
  209. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  210. def get_vocab_base_pre(self, tokenizer) -> str:
  211. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  212. # is specific for the BPE pre-tokenizer used by the model
  213. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  214. # use in llama.cpp to implement the same pre-tokenizer
  215. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  216. chktok = tokenizer.encode(chktxt)
  217. chkhsh = sha256(str(chktok).encode()).hexdigest()
  218. print(f"chktok: {chktok}")
  219. print(f"chkhsh: {chkhsh}")
  220. res = None
  221. # NOTE: if you get an error here, you need to add the model to the if-elif chain below
  222. # don't do this manually - use the convert-hf-to-gguf-update.py script!
  223. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  224. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  225. res = "llama-bpe"
  226. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  227. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  228. res = "deepseek-llm"
  229. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  230. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  231. res = "deepseek-coder"
  232. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  233. # ref: https://huggingface.co/tiiuae/falcon-7b
  234. res = "falcon"
  235. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  236. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  237. res = "bert-bge"
  238. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  239. # ref: https://huggingface.co/mosaicml/mpt-7b
  240. res = "mpt"
  241. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  242. # ref: https://huggingface.co/bigcode/starcoder2-3b
  243. res = "starcoder"
  244. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  245. # ref: https://huggingface.co/openai-community/gpt2
  246. res = "gpt-2"
  247. if res is None:
  248. print("\n")
  249. print("**************************************************************************************")
  250. print("** WARNING: The BPE pre-tokenizer was not recognized!")
  251. print("** This means that it was not added yet or you are using an older version.")
  252. print("** Check convert-hf-to-gguf-update.py and update it accordingly.")
  253. print("**")
  254. print(f"** chkhsh: {chkhsh}")
  255. print("**************************************************************************************")
  256. print("\n")
  257. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  258. print(f"tokenizer.ggml.pre: {res}")
  259. print(f"chkhsh: {chkhsh}")
  260. return res
  261. def _set_vocab_gpt2(self) -> None:
  262. tokens, toktypes, tokpre = self.get_vocab_base()
  263. self.gguf_writer.add_tokenizer_model("gpt2")
  264. self.gguf_writer.add_tokenizer_pre(tokpre)
  265. self.gguf_writer.add_token_list(tokens)
  266. self.gguf_writer.add_token_types(toktypes)
  267. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  268. special_vocab.add_to_gguf(self.gguf_writer)
  269. def _set_vocab_qwen(self):
  270. dir_model = self.dir_model
  271. hparams = self.hparams
  272. tokens: list[str] = []
  273. toktypes: list[int] = []
  274. from transformers import AutoTokenizer
  275. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  276. vocab_size = hparams["vocab_size"]
  277. assert max(tokenizer.get_vocab().values()) < vocab_size
  278. tokpre = self.get_vocab_base_pre(tokenizer)
  279. merges = []
  280. vocab = {}
  281. mergeable_ranks = tokenizer.mergeable_ranks
  282. for token, rank in mergeable_ranks.items():
  283. vocab[QwenModel.token_bytes_to_string(token)] = rank
  284. if len(token) == 1:
  285. continue
  286. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  287. assert len(merged) == 2
  288. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  289. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  290. added_vocab = tokenizer.special_tokens
  291. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in (vocab | added_vocab).items()}
  292. for i in range(vocab_size):
  293. if i not in reverse_vocab:
  294. tokens.append(f"[PAD{i}]")
  295. toktypes.append(gguf.TokenType.USER_DEFINED)
  296. elif reverse_vocab[i] in added_vocab:
  297. tokens.append(reverse_vocab[i])
  298. toktypes.append(gguf.TokenType.CONTROL)
  299. else:
  300. tokens.append(reverse_vocab[i])
  301. toktypes.append(gguf.TokenType.NORMAL)
  302. self.gguf_writer.add_tokenizer_model("gpt2")
  303. self.gguf_writer.add_tokenizer_pre(tokpre)
  304. self.gguf_writer.add_token_list(tokens)
  305. self.gguf_writer.add_token_types(toktypes)
  306. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  307. special_vocab.merges = merges
  308. # only add special tokens when they were not already loaded from config.json
  309. if len(special_vocab.special_token_ids) == 0:
  310. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  311. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  312. # this one is usually not in config.json anyway
  313. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  314. special_vocab.add_to_gguf(self.gguf_writer)
  315. def _set_vocab_sentencepiece(self):
  316. from sentencepiece import SentencePieceProcessor
  317. tokenizer_path = self.dir_model / 'tokenizer.model'
  318. tokens: list[bytes] = []
  319. scores: list[float] = []
  320. toktypes: list[int] = []
  321. if not tokenizer_path.is_file():
  322. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  323. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  324. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  325. for token_id in range(tokenizer.vocab_size()):
  326. piece = tokenizer.id_to_piece(token_id)
  327. text = piece.encode("utf-8")
  328. score = tokenizer.get_score(token_id)
  329. toktype = SentencePieceTokenTypes.NORMAL
  330. if tokenizer.is_unknown(token_id):
  331. toktype = SentencePieceTokenTypes.UNKNOWN
  332. elif tokenizer.is_control(token_id):
  333. toktype = SentencePieceTokenTypes.CONTROL
  334. elif tokenizer.is_unused(token_id):
  335. toktype = SentencePieceTokenTypes.UNUSED
  336. elif tokenizer.is_byte(token_id):
  337. toktype = SentencePieceTokenTypes.BYTE
  338. tokens.append(text)
  339. scores.append(score)
  340. toktypes.append(toktype)
  341. added_tokens_file = self.dir_model / 'added_tokens.json'
  342. if added_tokens_file.is_file():
  343. with open(added_tokens_file, "r", encoding="utf-8") as f:
  344. added_tokens_json = json.load(f)
  345. for key in added_tokens_json:
  346. key = key.encode("utf-8")
  347. if key not in tokens:
  348. tokens.append(key)
  349. scores.append(-1000.0)
  350. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  351. if vocab_size > len(tokens):
  352. pad_count = vocab_size - len(tokens)
  353. print(
  354. f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]"
  355. )
  356. for i in range(1, pad_count + 1):
  357. tokens.append(f"[PAD{i}]")
  358. scores.append(-1000.0)
  359. toktypes.append(SentencePieceTokenTypes.UNUSED)
  360. assert len(tokens) == vocab_size
  361. self.gguf_writer.add_tokenizer_model("llama")
  362. self.gguf_writer.add_tokenizer_pre("default")
  363. self.gguf_writer.add_token_list(tokens)
  364. self.gguf_writer.add_token_scores(scores)
  365. self.gguf_writer.add_token_types(toktypes)
  366. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  367. special_vocab.add_to_gguf(self.gguf_writer)
  368. def _set_vocab_llama_hf(self):
  369. vocab = LlamaHfVocab(self.dir_model)
  370. tokens = []
  371. scores = []
  372. toktypes = []
  373. for text, score, toktype in vocab.all_tokens():
  374. tokens.append(text)
  375. scores.append(score)
  376. toktypes.append(toktype)
  377. assert len(tokens) == vocab.vocab_size
  378. self.gguf_writer.add_tokenizer_model("llama")
  379. self.gguf_writer.add_tokenizer_pre("default")
  380. self.gguf_writer.add_token_list(tokens)
  381. self.gguf_writer.add_token_scores(scores)
  382. self.gguf_writer.add_token_types(toktypes)
  383. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  384. special_vocab.add_to_gguf(self.gguf_writer)
  385. @Model.register("GPTNeoXForCausalLM")
  386. class GPTNeoXModel(Model):
  387. model_arch = gguf.MODEL_ARCH.GPTNEOX
  388. def set_gguf_parameters(self):
  389. block_count = self.hparams["num_hidden_layers"]
  390. self.gguf_writer.add_name(self.dir_model.name)
  391. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  392. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  393. self.gguf_writer.add_block_count(block_count)
  394. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  395. self.gguf_writer.add_rope_dimension_count(
  396. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  397. )
  398. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  399. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  400. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  401. @Model.register("BloomForCausalLM")
  402. class BloomModel(Model):
  403. model_arch = gguf.MODEL_ARCH.BLOOM
  404. def set_gguf_parameters(self):
  405. self.gguf_writer.add_name("Bloom")
  406. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  407. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  408. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  409. self.gguf_writer.add_embedding_length(n_embed)
  410. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  411. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  412. self.gguf_writer.add_head_count(n_head)
  413. self.gguf_writer.add_head_count_kv(n_head)
  414. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  415. self.gguf_writer.add_file_type(self.ftype)
  416. def write_tensors(self):
  417. block_count = self.hparams["n_layer"]
  418. tensors = dict(self.get_tensors())
  419. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  420. has_lm_head = True
  421. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  422. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  423. for name, data_torch in tensors.items():
  424. if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys():
  425. has_lm_head = False
  426. name = re.sub(r'transformer\.', '', name)
  427. old_dtype = data_torch.dtype
  428. # convert any unsupported data types to float32
  429. if data_torch.dtype not in (torch.float16, torch.float32):
  430. data_torch = data_torch.to(torch.float32)
  431. data = data_torch.squeeze().numpy()
  432. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  433. # Map bloom-style qkv_linear to gpt-style qkv_linear
  434. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  435. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  436. qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
  437. data = np.concatenate(
  438. (
  439. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  440. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  441. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  442. ),
  443. axis=0,
  444. )
  445. print("re-format attention.linear_qkv.weight")
  446. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  447. qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
  448. data = np.concatenate(
  449. (
  450. qkv_bias[:, 0, :].reshape((n_embed,)),
  451. qkv_bias[:, 1, :].reshape((n_embed,)),
  452. qkv_bias[:, 2, :].reshape((n_embed,)),
  453. ),
  454. axis=0,
  455. )
  456. print("re-format attention.linear_qkv.bias")
  457. # map tensor names
  458. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  459. if new_name is None:
  460. print(f"Can not map tensor {name!r}")
  461. sys.exit()
  462. n_dims = len(data.shape)
  463. data_dtype = data.dtype
  464. # if f32 desired, convert any float16 to float32
  465. if self.ftype == 0 and data_dtype == np.float16:
  466. data = data.astype(np.float32)
  467. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  468. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  469. data = data.astype(np.float32)
  470. # if f16 desired, convert any float32 2-dim weight tensors to float16
  471. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  472. data = data.astype(np.float16)
  473. print(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  474. self.gguf_writer.add_tensor(new_name, data)
  475. if not has_lm_head and name == "word_embeddings.weight":
  476. self.gguf_writer.add_tensor("output.weight", data)
  477. print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  478. @Model.register("MPTForCausalLM")
  479. class MPTModel(Model):
  480. model_arch = gguf.MODEL_ARCH.MPT
  481. def set_vocab(self):
  482. try:
  483. self._set_vocab_gpt2()
  484. except Exception:
  485. # Fallback for SEA-LION model
  486. self._set_vocab_sentencepiece()
  487. self.gguf_writer.add_add_bos_token(False)
  488. self.gguf_writer.add_pad_token_id(3)
  489. self.gguf_writer.add_eos_token_id(1)
  490. self.gguf_writer.add_unk_token_id(0)
  491. def set_gguf_parameters(self):
  492. block_count = self.hparams["n_layers"]
  493. self.gguf_writer.add_name(self.dir_model.name)
  494. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  495. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  496. self.gguf_writer.add_block_count(block_count)
  497. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  498. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  499. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  500. self.gguf_writer.add_head_count_kv(kv_n_heads)
  501. self.gguf_writer.add_layer_norm_eps(1e-5)
  502. if self.hparams["attn_config"]["clip_qkv"] is not None:
  503. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  504. if self.hparams["attn_config"]["alibi"]:
  505. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  506. else:
  507. self.gguf_writer.add_max_alibi_bias(0.0)
  508. def write_tensors(self):
  509. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers"))
  510. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  511. for name, data_torch in self.get_tensors():
  512. # we don't need these
  513. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  514. continue
  515. old_dtype = data_torch.dtype
  516. # convert any unsupported data types to float32
  517. if data_torch.dtype not in (torch.float16, torch.float32):
  518. data_torch = data_torch.to(torch.float32)
  519. data = data_torch.squeeze().numpy()
  520. # map tensor names
  521. if "scales" in name:
  522. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  523. if new_name is not None:
  524. new_name = new_name.replace("scales", "act.scales")
  525. else:
  526. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  527. if new_name is None:
  528. print(f"Can not map tensor {name!r}")
  529. sys.exit()
  530. n_dims = len(data.shape)
  531. data_dtype = data.dtype
  532. # if f32 desired, convert any float16 to float32
  533. if self.ftype == 0 and data_dtype == np.float16:
  534. data = data.astype(np.float32)
  535. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  536. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  537. data = data.astype(np.float32)
  538. # if f16 desired, convert any float32 2-dim weight tensors to float16
  539. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  540. data = data.astype(np.float16)
  541. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  542. self.gguf_writer.add_tensor(new_name, data)
  543. @Model.register("OrionForCausalLM")
  544. class OrionModel(Model):
  545. model_arch = gguf.MODEL_ARCH.ORION
  546. def set_vocab(self):
  547. self._set_vocab_sentencepiece()
  548. def set_gguf_parameters(self):
  549. block_count = self.hparams["num_hidden_layers"]
  550. head_count = self.hparams["num_attention_heads"]
  551. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  552. hf_repo = self.hparams.get("_name_or_path", "")
  553. ctx_length = 0
  554. if "max_sequence_length" in self.hparams:
  555. ctx_length = self.hparams["max_sequence_length"]
  556. elif "max_position_embeddings" in self.hparams:
  557. ctx_length = self.hparams["max_position_embeddings"]
  558. elif "model_max_length" in self.hparams:
  559. ctx_length = self.hparams["model_max_length"]
  560. else:
  561. print("gguf: can not find ctx length parameter.")
  562. sys.exit()
  563. self.gguf_writer.add_file_type(self.ftype)
  564. self.gguf_writer.add_name(self.dir_model.name)
  565. self.gguf_writer.add_source_hf_repo(hf_repo)
  566. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  567. self.gguf_writer.add_context_length(ctx_length)
  568. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  569. self.gguf_writer.add_block_count(block_count)
  570. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  571. self.gguf_writer.add_head_count(head_count)
  572. self.gguf_writer.add_head_count_kv(head_count_kv)
  573. # note: config provides rms norm but it is actually layer norm
  574. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  575. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  576. def write_tensors(self):
  577. # Collect tensors from generator object
  578. model_kv = dict(self.get_tensors())
  579. block_count = self.hparams["num_hidden_layers"]
  580. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  581. for name, data_torch in model_kv.items():
  582. # we don't need these
  583. if name.endswith(".rotary_emb.inv_freq"):
  584. continue
  585. old_dtype = data_torch.dtype
  586. # convert any unsupported data types to float32
  587. if data_torch.dtype not in (torch.float16, torch.float32):
  588. data_torch = data_torch.to(torch.float32)
  589. data = data_torch.squeeze().numpy()
  590. # map tensor names
  591. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  592. if new_name is None:
  593. print(f"Can not map tensor {name!r}")
  594. sys.exit()
  595. n_dims = len(data.shape)
  596. data_dtype = data.dtype
  597. # if f32 desired, convert any float16 to float32
  598. if self.ftype == 0 and data_dtype == np.float16:
  599. data = data.astype(np.float32)
  600. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  601. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  602. data = data.astype(np.float32)
  603. # if f16 desired, convert any float32 2-dim weight tensors to float16
  604. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  605. data = data.astype(np.float16)
  606. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  607. self.gguf_writer.add_tensor(new_name, data)
  608. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  609. class BaichuanModel(Model):
  610. model_arch = gguf.MODEL_ARCH.BAICHUAN
  611. def set_vocab(self):
  612. self._set_vocab_sentencepiece()
  613. def set_gguf_parameters(self):
  614. block_count = self.hparams["num_hidden_layers"]
  615. head_count = self.hparams["num_attention_heads"]
  616. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  617. hf_repo = self.hparams.get("_name_or_path", "")
  618. ctx_length = 0
  619. if "max_sequence_length" in self.hparams:
  620. ctx_length = self.hparams["max_sequence_length"]
  621. elif "max_position_embeddings" in self.hparams:
  622. ctx_length = self.hparams["max_position_embeddings"]
  623. elif "model_max_length" in self.hparams:
  624. ctx_length = self.hparams["model_max_length"]
  625. else:
  626. print("gguf: can not find ctx length parameter.")
  627. sys.exit()
  628. self.gguf_writer.add_name(self.dir_model.name)
  629. self.gguf_writer.add_source_hf_repo(hf_repo)
  630. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  631. self.gguf_writer.add_context_length(ctx_length)
  632. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  633. self.gguf_writer.add_block_count(block_count)
  634. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  635. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  636. self.gguf_writer.add_head_count(head_count)
  637. self.gguf_writer.add_head_count_kv(head_count_kv)
  638. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  639. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  640. if self.hparams["rope_scaling"].get("type") == "linear":
  641. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  642. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  643. def write_tensors(self):
  644. # Collect tensors from generator object
  645. model_kv = dict(self.get_tensors())
  646. block_count = self.hparams["num_hidden_layers"]
  647. head_count = self.hparams["num_attention_heads"]
  648. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  649. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  650. for i in range(block_count):
  651. if (w := model_kv.get(f"model.layers.{i}.self_attn.W_pack.weight")) is not None:
  652. print(f"Unpacking and permuting layer {i}")
  653. model_kv[f"model.layers.{i}.self_attn.q_proj.weight"] = \
  654. self._reverse_hf_permute_part(w, 0, head_count, head_count)
  655. model_kv[f"model.layers.{i}.self_attn.k_proj.weight"] = \
  656. self._reverse_hf_permute_part(w, 1, head_count, head_count_kv)
  657. model_kv[f"model.layers.{i}.self_attn.v_proj.weight"] = \
  658. self._reverse_hf_part(w, 2)
  659. del model_kv[f"model.layers.{i}.self_attn.W_pack.weight"]
  660. for name, data_torch in model_kv.items():
  661. # we don't need these
  662. if name.endswith(".rotary_emb.inv_freq"):
  663. continue
  664. old_dtype = data_torch.dtype
  665. # convert any unsupported data types to float32
  666. if data_torch.dtype not in (torch.float16, torch.float32):
  667. data_torch = data_torch.to(torch.float32)
  668. data = data_torch.squeeze().numpy()
  669. # map tensor names
  670. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  671. if new_name is None:
  672. print(f"Can not map tensor {name!r}")
  673. sys.exit()
  674. n_dims = len(data.shape)
  675. data_dtype = data.dtype
  676. # if f32 desired, convert any float16 to float32
  677. if self.ftype == 0 and data_dtype == np.float16:
  678. data = data.astype(np.float32)
  679. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  680. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  681. data = data.astype(np.float32)
  682. # if f16 desired, convert any float32 2-dim weight tensors to float16
  683. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  684. data = data.astype(np.float16)
  685. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  686. self.gguf_writer.add_tensor(new_name, data)
  687. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  688. if n_kv_head is not None and n_head != n_kv_head:
  689. n_head //= n_kv_head
  690. return (
  691. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  692. .swapaxes(1, 2)
  693. .reshape(weights.shape)
  694. )
  695. def _reverse_hf_permute_part(
  696. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  697. ) -> Tensor:
  698. r = weights.shape[0] // 3
  699. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  700. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  701. r = weights.shape[0] // 3
  702. return weights[r * n_part:r * n_part + r, ...]
  703. @Model.register("XverseForCausalLM")
  704. class XverseModel(Model):
  705. model_arch = gguf.MODEL_ARCH.XVERSE
  706. def set_vocab(self):
  707. assert (self.dir_model / "tokenizer.json").is_file()
  708. dir_model = self.dir_model
  709. hparams = self.hparams
  710. tokens: list[bytearray] = []
  711. toktypes: list[int] = []
  712. from transformers import AutoTokenizer
  713. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  714. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  715. assert max(tokenizer.vocab.values()) < vocab_size
  716. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  717. added_vocab = tokenizer.get_added_vocab()
  718. for token_id in range(vocab_size):
  719. token_text = reverse_vocab[token_id].encode('utf-8')
  720. # replace "\x00" to string with length > 0
  721. if token_text == b"\x00":
  722. toktype = gguf.TokenType.BYTE # special
  723. token_text = f"<{token_text}>".encode('utf-8')
  724. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  725. toktype = gguf.TokenType.BYTE # special
  726. elif reverse_vocab[token_id] in added_vocab:
  727. if tokenizer.added_tokens_decoder[token_id].special:
  728. toktype = gguf.TokenType.CONTROL
  729. else:
  730. toktype = gguf.TokenType.USER_DEFINED
  731. else:
  732. toktype = gguf.TokenType.NORMAL
  733. tokens.append(token_text)
  734. toktypes.append(toktype)
  735. self.gguf_writer.add_tokenizer_model("llama")
  736. self.gguf_writer.add_tokenizer_pre("default")
  737. self.gguf_writer.add_token_list(tokens)
  738. self.gguf_writer.add_token_types(toktypes)
  739. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  740. special_vocab.add_to_gguf(self.gguf_writer)
  741. def set_gguf_parameters(self):
  742. block_count = self.hparams["num_hidden_layers"]
  743. head_count = self.hparams["num_attention_heads"]
  744. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  745. hf_repo = self.hparams.get("_name_or_path", "")
  746. ctx_length = 0
  747. if "max_sequence_length" in self.hparams:
  748. ctx_length = self.hparams["max_sequence_length"]
  749. elif "max_position_embeddings" in self.hparams:
  750. ctx_length = self.hparams["max_position_embeddings"]
  751. elif "model_max_length" in self.hparams:
  752. ctx_length = self.hparams["model_max_length"]
  753. else:
  754. print("gguf: can not find ctx length parameter.")
  755. sys.exit()
  756. self.gguf_writer.add_name(self.dir_model.name)
  757. self.gguf_writer.add_source_hf_repo(hf_repo)
  758. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  759. self.gguf_writer.add_context_length(ctx_length)
  760. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  761. self.gguf_writer.add_block_count(block_count)
  762. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  763. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  764. self.gguf_writer.add_head_count(head_count)
  765. self.gguf_writer.add_head_count_kv(head_count_kv)
  766. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  767. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  768. if self.hparams["rope_scaling"].get("type") == "linear":
  769. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  770. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  771. def write_tensors(self):
  772. # Collect tensors from generator object
  773. model_kv = dict(self.get_tensors())
  774. block_count = self.hparams["num_hidden_layers"]
  775. head_count = self.hparams["num_attention_heads"]
  776. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  777. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  778. for name, data_torch in model_kv.items():
  779. # we don't need these
  780. if name.endswith(".rotary_emb.inv_freq"):
  781. continue
  782. old_dtype = data_torch.dtype
  783. # convert any unsupported data types to float32
  784. if data_torch.dtype not in (torch.float16, torch.float32):
  785. data_torch = data_torch.to(torch.float32)
  786. # HF models permute some of the tensors, so we need to undo that
  787. if name.endswith(("q_proj.weight")):
  788. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  789. if name.endswith(("k_proj.weight")):
  790. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  791. data = data_torch.squeeze().numpy()
  792. # map tensor names
  793. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  794. if new_name is None:
  795. print(f"Can not map tensor {name!r}")
  796. sys.exit()
  797. n_dims = len(data.shape)
  798. data_dtype = data.dtype
  799. # if f32 desired, convert any float16 to float32
  800. if self.ftype == 0 and data_dtype == np.float16:
  801. data = data.astype(np.float32)
  802. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  803. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  804. data = data.astype(np.float32)
  805. # if f16 desired, convert any float32 2-dim weight tensors to float16
  806. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  807. data = data.astype(np.float16)
  808. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  809. self.gguf_writer.add_tensor(new_name, data)
  810. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  811. if n_kv_head is not None and n_head != n_kv_head:
  812. n_head //= n_kv_head
  813. return (
  814. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  815. .swapaxes(1, 2)
  816. .reshape(weights.shape)
  817. )
  818. @Model.register("FalconForCausalLM", "RWForCausalLM")
  819. class FalconModel(Model):
  820. model_arch = gguf.MODEL_ARCH.FALCON
  821. def set_gguf_parameters(self):
  822. block_count = self.hparams.get("num_hidden_layers")
  823. if block_count is None:
  824. block_count = self.hparams["n_layer"] # old name
  825. n_head = self.hparams.get("num_attention_heads")
  826. if n_head is None:
  827. n_head = self.hparams["n_head"] # old name
  828. n_head_kv = self.hparams.get("num_kv_heads")
  829. if n_head_kv is None:
  830. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  831. self.gguf_writer.add_name("Falcon")
  832. self.gguf_writer.add_context_length(2048) # not in config.json
  833. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  834. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  835. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  836. self.gguf_writer.add_block_count(block_count)
  837. self.gguf_writer.add_head_count(n_head)
  838. self.gguf_writer.add_head_count_kv(n_head_kv)
  839. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  840. self.gguf_writer.add_file_type(self.ftype)
  841. def write_tensors(self):
  842. block_count = self.hparams.get("num_hidden_layers")
  843. if block_count is None:
  844. block_count = self.hparams["n_layer"] # old name
  845. n_head = self.hparams.get("num_attention_heads")
  846. if n_head is None:
  847. n_head = self.hparams["n_head"] # old name
  848. n_head_kv = self.hparams.get("num_kv_heads")
  849. if n_head_kv is None:
  850. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  851. head_dim = self.hparams["hidden_size"] // n_head
  852. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  853. for name, data_torch in self.get_tensors():
  854. old_dtype = data_torch.dtype
  855. # convert any unsupported data types to float32
  856. if data_torch.dtype not in (torch.float16, torch.float32):
  857. data_torch = data_torch.to(torch.float32)
  858. # QKV tensor transform
  859. # The original query_key_value tensor contains n_head_kv "kv groups",
  860. # each consisting of n_head/n_head_kv query weights followed by one key
  861. # and one value weight (shared by all query heads in the kv group).
  862. # This layout makes it a big pain to work with in GGML.
  863. # So we rearrange them here,, so that we have n_head query weights
  864. # followed by n_head_kv key weights followed by n_head_kv value weights,
  865. # in contiguous fashion.
  866. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  867. if "query_key_value" in name:
  868. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  869. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  870. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  871. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  872. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  873. data = data_torch.squeeze().numpy()
  874. # map tensor names
  875. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  876. if new_name is None:
  877. print(f"Can not map tensor {name!r}")
  878. sys.exit()
  879. n_dims = len(data.shape)
  880. data_dtype = data.dtype
  881. # if f32 desired, convert any float16 to float32
  882. if self.ftype == 0 and data_dtype == np.float16:
  883. data = data.astype(np.float32)
  884. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  885. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  886. data = data.astype(np.float32)
  887. # if f16 desired, convert any float32 2-dim weight tensors to float16
  888. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  889. data = data.astype(np.float16)
  890. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  891. self.gguf_writer.add_tensor(new_name, data)
  892. @Model.register("GPTBigCodeForCausalLM")
  893. class StarCoderModel(Model):
  894. model_arch = gguf.MODEL_ARCH.STARCODER
  895. def set_gguf_parameters(self):
  896. block_count = self.hparams["n_layer"]
  897. self.gguf_writer.add_name("StarCoder")
  898. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  899. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  900. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  901. self.gguf_writer.add_block_count(block_count)
  902. self.gguf_writer.add_head_count(self.hparams["n_head"])
  903. self.gguf_writer.add_head_count_kv(1)
  904. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  905. self.gguf_writer.add_file_type(self.ftype)
  906. @Model.register("GPTRefactForCausalLM")
  907. class RefactModel(Model):
  908. model_arch = gguf.MODEL_ARCH.REFACT
  909. def set_gguf_parameters(self):
  910. hidden_dim = self.hparams["n_embd"]
  911. inner_dim = 4 * hidden_dim
  912. hidden_dim = int(2 * inner_dim / 3)
  913. multiple_of = 256
  914. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  915. block_count = self.hparams["n_layer"]
  916. self.gguf_writer.add_name("Refact")
  917. # refact uses Alibi. So this is from config.json which might be used by training.
  918. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  919. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  920. self.gguf_writer.add_feed_forward_length(ff_dim)
  921. self.gguf_writer.add_block_count(block_count)
  922. self.gguf_writer.add_head_count(self.hparams["n_head"])
  923. self.gguf_writer.add_head_count_kv(1)
  924. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  925. self.gguf_writer.add_file_type(self.ftype)
  926. def write_tensors(self):
  927. hidden_dim = self.hparams["n_embd"]
  928. inner_dim = 4 * hidden_dim
  929. hidden_dim = int(2 * inner_dim / 3)
  930. multiple_of = 256
  931. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  932. n_head = self.hparams["n_head"]
  933. n_head_kv = 1
  934. head_dim = self.hparams["n_embd"] // n_head
  935. block_count = self.hparams["n_layer"]
  936. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  937. tensors = dict(self.get_tensors())
  938. for i in range(block_count):
  939. if (w := tensors.get(f"transformer.h.{i}.attn.kv.weight")) is not None:
  940. tensors[f"model.layers.{i}.self_attn.k_proj.weight"] = w[:n_head_kv * head_dim]
  941. tensors[f"model.layers.{i}.self_attn.v_proj.weight"] = w[n_head_kv * head_dim:]
  942. del tensors[f"transformer.h.{i}.attn.kv.weight"]
  943. if (w := tensors.get(f"transformer.h.{i}.attn.q.weight")) is not None:
  944. tensors[f"model.layers.{i}.self_attn.q_proj.weight"] = w
  945. del tensors[f"transformer.h.{i}.attn.q.weight"]
  946. if (w := tensors.get(f"transformer.h.{i}.mlp.gate_up_proj.weight")) is not None:
  947. tensors[f"model.layers.{i}.mlp.gate_proj.weight"] = w[:ff_dim]
  948. tensors[f"model.layers.{i}.mlp.up_proj.weight"] = w[ff_dim:]
  949. del tensors[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
  950. for name, data_torch in tensors.items():
  951. old_dtype = data_torch.dtype
  952. # convert any unsupported data types to float32
  953. if data_torch.dtype not in (torch.float16, torch.float32):
  954. data_torch = data_torch.to(torch.float32)
  955. data = data_torch.squeeze().numpy()
  956. # map tensor names
  957. new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
  958. if new_name is None:
  959. print(f"Can not map tensor {name!r}")
  960. sys.exit()
  961. n_dims = len(data.shape)
  962. data_dtype = data.dtype
  963. # if f32 desired, convert any float16 to float32
  964. if self.ftype == 0 and data_dtype == np.float16:
  965. data = data.astype(np.float32)
  966. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  967. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  968. data = data.astype(np.float32)
  969. # if f16 desired, convert any float32 2-dim weight tensors to float16
  970. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  971. data = data.astype(np.float16)
  972. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  973. self.gguf_writer.add_tensor(new_name, data)
  974. @Model.register("PersimmonForCausalLM")
  975. class PersimmonModel(Model):
  976. model_arch = gguf.MODEL_ARCH.PERSIMMON
  977. def set_gguf_parameters(self):
  978. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  979. head_count = self.hparams["num_attention_heads"]
  980. head_count_kv = head_count
  981. hidden_size = self.hparams["hidden_size"]
  982. self.gguf_writer.add_name('persimmon-8b-chat')
  983. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  984. self.gguf_writer.add_embedding_length(hidden_size)
  985. self.gguf_writer.add_block_count(block_count)
  986. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  987. # NOTE: not sure about this change - why does the model not have a rope dimension count when it is smaller
  988. # than the head size?
  989. # ref: https://github.com/ggerganov/llama.cpp/pull/4889
  990. # self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
  991. self.gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
  992. self.gguf_writer.add_head_count(head_count)
  993. self.gguf_writer.add_head_count_kv(head_count_kv)
  994. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  995. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  996. def set_vocab(self):
  997. self._set_vocab_sentencepiece()
  998. # self.gguf_writer.add_bos_token_id(71013)
  999. # self.gguf_writer.add_eos_token_id(71013)
  1000. def write_tensors(self):
  1001. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  1002. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1003. for name, data_torch in self.get_tensors():
  1004. if name.endswith(".self_attention.rotary_emb.inv_freq"):
  1005. continue
  1006. old_dtype = data_torch.dtype
  1007. # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
  1008. data = data_torch.to(torch.float32).squeeze().numpy()
  1009. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1010. if new_name is None:
  1011. print(f"Can not map tensor {name!r}")
  1012. sys.exit()
  1013. n_dims = len(data.shape)
  1014. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1015. self.gguf_writer.add_tensor(new_name, data)
  1016. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1017. class StableLMModel(Model):
  1018. model_arch = gguf.MODEL_ARCH.STABLELM
  1019. def set_vocab(self):
  1020. if (self.dir_model / "tokenizer.json").is_file():
  1021. self._set_vocab_gpt2()
  1022. else:
  1023. # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
  1024. self._set_vocab_qwen()
  1025. def set_gguf_parameters(self):
  1026. hparams = self.hparams
  1027. block_count = hparams["num_hidden_layers"]
  1028. self.gguf_writer.add_name(self.dir_model.name)
  1029. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1030. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1031. self.gguf_writer.add_block_count(block_count)
  1032. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1033. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1034. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1035. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1036. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1037. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1038. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1039. def write_tensors(self):
  1040. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1041. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1042. n_head = self.hparams.get("num_attention_heads")
  1043. n_kv_head = self.hparams.get("num_key_value_heads")
  1044. q_norms = dict()
  1045. k_norms = dict()
  1046. for name, data_torch in self.get_tensors():
  1047. # we don't need these
  1048. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1049. continue
  1050. old_dtype = data_torch.dtype
  1051. # convert any unsupported data types to float32
  1052. if data_torch.dtype not in (torch.float16, torch.float32):
  1053. data_torch = data_torch.to(torch.float32)
  1054. data = data_torch.squeeze().numpy()
  1055. n_dims = len(data.shape)
  1056. if name.find("q_layernorm.norms") != -1:
  1057. q_norms[name] = data
  1058. if len(q_norms) >= (block_count * n_head):
  1059. self._stack_qk_norm(block_count, name, tensor_map, n_head, q_norms, n_dims, layer_name="q_layernorm")
  1060. continue
  1061. if name.find("k_layernorm.norms") != -1:
  1062. k_norms[name] = data
  1063. if len(k_norms) >= (block_count * n_kv_head):
  1064. self._stack_qk_norm(block_count, name, tensor_map, n_kv_head, k_norms, n_dims, layer_name="k_layernorm")
  1065. continue
  1066. # map tensor names
  1067. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1068. if new_name is None:
  1069. print(f"Can not map tensor {name!r}")
  1070. sys.exit()
  1071. n_dims = len(data.shape)
  1072. data_dtype = data.dtype
  1073. # if f32 desired, convert any float16 to float32
  1074. if self.ftype == 0 and data_dtype == np.float16:
  1075. data = data.astype(np.float32)
  1076. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1077. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  1078. data = data.astype(np.float32)
  1079. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1080. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
  1081. data = data.astype(np.float16)
  1082. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1083. self.gguf_writer.add_tensor(new_name, data)
  1084. def _stack_qk_norm(self, block_count, name, tensor_map, n_head, norms, n_dims, layer_name="q_layernorm"):
  1085. for bid in range(block_count):
  1086. datas = []
  1087. for xid in range(n_head):
  1088. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1089. datas.append(norms[ename])
  1090. del norms[ename]
  1091. data = np.stack(datas, axis=0)
  1092. data_dtype = data.dtype
  1093. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1094. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1095. if new_name is None:
  1096. print(f"Can not map tensor {name!r}")
  1097. sys.exit()
  1098. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  1099. data = data.astype(np.float32)
  1100. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1101. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
  1102. data = data.astype(np.float16)
  1103. print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1104. self.gguf_writer.add_tensor(new_name, data)
  1105. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1106. class LlamaModel(Model):
  1107. model_arch = gguf.MODEL_ARCH.LLAMA
  1108. def set_vocab(self):
  1109. try:
  1110. self. _set_vocab_sentencepiece()
  1111. except FileNotFoundError:
  1112. try:
  1113. self._set_vocab_llama_hf()
  1114. except (FileNotFoundError, TypeError):
  1115. # Llama 3
  1116. self._set_vocab_gpt2()
  1117. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1118. if self.hparams.get("vocab_size", 32000) == 32016:
  1119. special_vocab = gguf.SpecialVocab(
  1120. self.dir_model, load_merges=False,
  1121. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1122. )
  1123. special_vocab._set_special_token("prefix", 32007)
  1124. special_vocab._set_special_token("suffix", 32008)
  1125. special_vocab._set_special_token("middle", 32009)
  1126. special_vocab._set_special_token("eot", 32010)
  1127. special_vocab.add_to_gguf(self.gguf_writer)
  1128. def set_gguf_parameters(self):
  1129. super().set_gguf_parameters()
  1130. hparams = self.hparams
  1131. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1132. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  1133. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1134. if self.hparams["rope_scaling"].get("type") == "linear":
  1135. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1136. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1137. # Same as super class, but permuting q_proj, k_proj
  1138. def write_tensors(self):
  1139. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1140. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1141. n_head = self.hparams.get("num_attention_heads")
  1142. n_kv_head = self.hparams.get("num_key_value_heads")
  1143. n_experts = self.hparams.get("num_local_experts")
  1144. experts = dict()
  1145. for name, data_torch in self.get_tensors():
  1146. # we don't need these
  1147. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1148. continue
  1149. old_dtype = data_torch.dtype
  1150. # convert any unsupported data types to float32
  1151. if data_torch.dtype not in (torch.float16, torch.float32):
  1152. data_torch = data_torch.to(torch.float32)
  1153. data = data_torch.numpy()
  1154. if name.endswith("q_proj.weight"):
  1155. data = permute(data, n_head, n_head)
  1156. if name.endswith("k_proj.weight"):
  1157. data = permute(data, n_head, n_kv_head)
  1158. data = data.squeeze()
  1159. # process the experts separately
  1160. if name.find("block_sparse_moe.experts") != -1:
  1161. experts[name] = data
  1162. if len(experts) >= n_experts:
  1163. # merge the experts into a single 3d tensor
  1164. for bid in range(block_count):
  1165. for wid in range(1, 4):
  1166. full = True
  1167. for xid in range(n_experts):
  1168. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
  1169. if ename not in experts:
  1170. full = False
  1171. break
  1172. if not full:
  1173. continue
  1174. datas = []
  1175. for xid in range(n_experts):
  1176. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
  1177. datas.append(experts[ename])
  1178. del experts[ename]
  1179. data = np.stack(datas, axis=0)
  1180. data_dtype = data.dtype
  1181. if self.ftype == 0 and data_dtype == np.float16:
  1182. data = data.astype(np.float32)
  1183. if self.ftype == 1 and data_dtype == np.float32:
  1184. data = data.astype(np.float16)
  1185. merged_name = f"layers.{bid}.feed_forward.experts.w{wid}.weight"
  1186. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1187. if new_name is None:
  1188. print(f"Can not map tensor {name!r}")
  1189. sys.exit()
  1190. print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1191. self.gguf_writer.add_tensor(new_name, data)
  1192. continue
  1193. # map tensor names
  1194. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1195. if new_name is None:
  1196. print(f"Can not map tensor {name!r}")
  1197. sys.exit()
  1198. n_dims = len(data.shape)
  1199. data_dtype = data.dtype
  1200. # if f32 desired, convert any float16 to float32
  1201. if self.ftype == 0 and data_dtype == np.float16:
  1202. data = data.astype(np.float32)
  1203. # 1d tensors need to be converted to float32
  1204. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1205. data = data.astype(np.float32)
  1206. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1207. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1208. data = data.astype(np.float16)
  1209. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1210. self.gguf_writer.add_tensor(new_name, data)
  1211. if len(experts) > 0:
  1212. raise ValueError(f"Unprocessed experts: {experts.keys()}")
  1213. @Model.register("GrokForCausalLM")
  1214. class GrokModel(Model):
  1215. model_arch = gguf.MODEL_ARCH.GROK
  1216. def set_vocab(self):
  1217. self._set_vocab_sentencepiece()
  1218. def __init__(self, *args, **kwargs):
  1219. super().__init__(*args, **kwargs)
  1220. def set_gguf_parameters(self):
  1221. super().set_gguf_parameters()
  1222. self.gguf_writer.add_name("Grok")
  1223. def write_tensors(self):
  1224. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1225. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1226. n_experts = self.hparams.get("num_local_experts")
  1227. experts = dict()
  1228. for name, data_torch in self.get_tensors():
  1229. # we don't need these
  1230. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1231. continue
  1232. old_dtype = data_torch.dtype
  1233. # convert any unsupported data types to float32
  1234. if data_torch.dtype not in (torch.float16, torch.float32):
  1235. data_torch = data_torch.to(torch.float32)
  1236. data = data_torch.squeeze().numpy()
  1237. # process the experts separately
  1238. if name.find(".moe.") != -1:
  1239. experts[name] = data
  1240. if len(experts) >= n_experts:
  1241. # merge the experts into a single 3d tensor
  1242. for bid in range(block_count):
  1243. for wid in ["linear", "linear_1", "linear_v"]:
  1244. full = True
  1245. for xid in range(n_experts):
  1246. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1247. if ename not in experts:
  1248. full = False
  1249. break
  1250. if not full:
  1251. continue
  1252. datas = []
  1253. for xid in range(n_experts):
  1254. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1255. datas.append(experts[ename])
  1256. del experts[ename]
  1257. data = np.stack(datas, axis=0)
  1258. data_dtype = data.dtype
  1259. if self.ftype == 0 and data_dtype == np.float16:
  1260. data = data.astype(np.float32)
  1261. if self.ftype == 1 and data_dtype == np.float32:
  1262. data = data.astype(np.float16)
  1263. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1264. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1265. if new_name is None:
  1266. print(f"Can not map tensor {name!r}")
  1267. sys.exit()
  1268. print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1269. self.gguf_writer.add_tensor(new_name, data)
  1270. continue
  1271. # map tensor names
  1272. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1273. if new_name is None:
  1274. print(f"Can not map tensor {name!r}")
  1275. sys.exit()
  1276. n_dims = len(data.shape)
  1277. data_dtype = data.dtype
  1278. # if f32 desired, convert any float16 to float32
  1279. if self.ftype == 0 and data_dtype == np.float16:
  1280. data = data.astype(np.float32)
  1281. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1282. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1283. data = data.astype(np.float32)
  1284. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1285. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1286. data = data.astype(np.float16)
  1287. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1288. self.gguf_writer.add_tensor(new_name, data)
  1289. @Model.register("DbrxForCausalLM")
  1290. class DbrxModel(Model):
  1291. model_arch = gguf.MODEL_ARCH.DBRX
  1292. def set_gguf_parameters(self):
  1293. ffn_config = self.hparams["ffn_config"]
  1294. attn_config = self.hparams["attn_config"]
  1295. self.gguf_writer.add_name(self.hparams["model_type"])
  1296. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1297. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1298. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1299. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1300. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1301. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1302. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1303. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1304. self.gguf_writer.add_file_type(self.ftype)
  1305. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1306. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1307. self.gguf_writer.add_layer_norm_eps(1e-5)
  1308. self.gguf_writer.add_file_type(self.ftype)
  1309. print(f"gguf: file type = {self.ftype}")
  1310. def write_tensors(self):
  1311. block_count = self.hparams.get("n_layers")
  1312. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1313. for name, data_torch in self.get_tensors():
  1314. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1315. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1316. n_embd = self.hparams["d_model"]
  1317. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1318. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1319. # But llama.cpp moe graph works differently
  1320. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1321. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1322. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1323. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1324. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1325. experts = False
  1326. for exp_tensor_name in exp_tensor_names.keys():
  1327. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1328. experts = True
  1329. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1330. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1331. data_torch = data_torch.permute(*permute_tensor)
  1332. break
  1333. old_dtype = data_torch.dtype
  1334. # convert any unsupported data types to float32
  1335. if data_torch.dtype not in (torch.float16, torch.float32):
  1336. data_torch = data_torch.to(torch.float32)
  1337. data = data_torch.squeeze().numpy()
  1338. # map tensor names
  1339. # In MoE models the ffn tensors are typically most of the model weights,
  1340. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1341. # Every other model has the weight names ending in .weight,
  1342. # let's assume that is the convention which is not the case for dbrx:
  1343. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1344. new_name = tensor_map.get_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1345. if new_name is None:
  1346. print(f"Can not map tensor {name!r}")
  1347. sys.exit()
  1348. n_dims = len(data.shape)
  1349. data_dtype = data.dtype
  1350. # Most of the codebase that takes in 1D tensors only handles F32 tensors
  1351. # and most of the outputs tensors are F32.
  1352. if data_dtype != np.float32 and n_dims == 1:
  1353. print(f"Can not map tensor {name!r}: all 1D tensors must be F32")
  1354. sys.exit()
  1355. # if f32 desired, convert any float16 to float32
  1356. if self.ftype == 0 and data_dtype == np.float16:
  1357. data = data.astype(np.float32)
  1358. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1359. if self.ftype == 1 and data_dtype == np.float32 and n_dims > 1:
  1360. data = data.astype(np.float16)
  1361. print(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1362. self.gguf_writer.add_tensor(new_name, data)
  1363. @Model.register("MiniCPMForCausalLM")
  1364. class MiniCPMModel(Model):
  1365. model_arch = gguf.MODEL_ARCH.MINICPM
  1366. def set_gguf_parameters(self):
  1367. block_count = self.hparams["num_hidden_layers"]
  1368. self.gguf_writer.add_name("MiniCPM")
  1369. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1370. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1371. self.gguf_writer.add_block_count(block_count)
  1372. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1373. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1374. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1375. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1376. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1377. self.gguf_writer.add_file_type(self.ftype)
  1378. def set_vocab(self):
  1379. self._set_vocab_llama_hf()
  1380. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1381. if n_kv_head is not None and n_head != n_kv_head:
  1382. n_head //= n_kv_head
  1383. return (
  1384. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1385. .swapaxes(1, 2)
  1386. .reshape(weights.shape)
  1387. )
  1388. def write_tensors(self):
  1389. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1390. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1391. n_head = self.hparams.get("num_attention_heads")
  1392. n_kv_head = self.hparams.get("num_key_value_heads")
  1393. for name, data_torch in self.get_tensors():
  1394. # we don't need these
  1395. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1396. continue
  1397. old_dtype = data_torch.dtype
  1398. # convert any unsupported data types to float32
  1399. if data_torch.dtype not in (torch.float16, torch.float32):
  1400. data_torch = data_torch.to(torch.float32)
  1401. # HF models permute some of the tensors, so we need to undo that
  1402. if name.endswith(("q_proj.weight")):
  1403. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1404. if name.endswith(("k_proj.weight")):
  1405. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1406. data = data_torch.squeeze().numpy()
  1407. # map tensor names
  1408. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1409. if new_name is None:
  1410. print(f"Can not map tensor {name!r}")
  1411. sys.exit()
  1412. n_dims = len(data.shape)
  1413. data_dtype = data.dtype
  1414. # if f32 desired, convert any float16 to float32
  1415. if self.ftype == 0 and data_dtype == np.float16:
  1416. data = data.astype(np.float32)
  1417. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1418. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1419. data = data.astype(np.float32)
  1420. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1421. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1422. data = data.astype(np.float16)
  1423. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1424. self.gguf_writer.add_tensor(new_name, data)
  1425. @Model.register("QWenLMHeadModel")
  1426. class QwenModel(Model):
  1427. model_arch = gguf.MODEL_ARCH.QWEN
  1428. @staticmethod
  1429. def token_bytes_to_string(b):
  1430. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1431. byte_encoder = bytes_to_unicode()
  1432. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1433. @staticmethod
  1434. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1435. parts = [bytes([b]) for b in token]
  1436. while True:
  1437. min_idx = None
  1438. min_rank = None
  1439. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1440. rank = mergeable_ranks.get(pair[0] + pair[1])
  1441. if rank is not None and (min_rank is None or rank < min_rank):
  1442. min_idx = i
  1443. min_rank = rank
  1444. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1445. break
  1446. assert min_idx is not None
  1447. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1448. return parts
  1449. def set_vocab(self):
  1450. self._set_vocab_qwen()
  1451. def set_gguf_parameters(self):
  1452. self.gguf_writer.add_name("Qwen")
  1453. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1454. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1455. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1456. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1457. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1458. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1459. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1460. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1461. def write_tensors(self):
  1462. block_count = self.hparams["num_hidden_layers"]
  1463. model_kv = dict(self.get_tensors())
  1464. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1465. for name, data_torch in model_kv.items():
  1466. # we don't need these
  1467. if name.endswith(".rotary_emb.inv_freq"):
  1468. continue
  1469. old_dtype = data_torch.dtype
  1470. # convert any unsupported data types to float32
  1471. if data_torch.dtype not in (torch.float16, torch.float32):
  1472. data_torch = data_torch.to(torch.float32)
  1473. data = data_torch.squeeze().numpy()
  1474. # map tensor names
  1475. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1476. if new_name is None:
  1477. print(f"Can not map tensor {name!r}")
  1478. sys.exit()
  1479. n_dims = len(data.shape)
  1480. data_dtype = data.dtype
  1481. # if f32 desired, convert any float16 to float32
  1482. if self.ftype == 0 and data_dtype == np.float16:
  1483. data = data.astype(np.float32)
  1484. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1485. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1486. data = data.astype(np.float32)
  1487. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1488. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1489. data = data.astype(np.float16)
  1490. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1491. self.gguf_writer.add_tensor(new_name, data)
  1492. @Model.register("Qwen2ForCausalLM")
  1493. class Qwen2Model(Model):
  1494. model_arch = gguf.MODEL_ARCH.QWEN2
  1495. def set_vocab(self):
  1496. try:
  1497. self._set_vocab_sentencepiece()
  1498. except FileNotFoundError:
  1499. self._set_vocab_gpt2()
  1500. @Model.register("Qwen2MoeForCausalLM")
  1501. class Qwen2MoeModel(Model):
  1502. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1503. def set_gguf_parameters(self):
  1504. super().set_gguf_parameters()
  1505. if (n_experts := self.hparams.get("num_experts")) is not None:
  1506. self.gguf_writer.add_expert_count(n_experts)
  1507. def write_tensors(self):
  1508. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1509. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1510. n_experts = self.hparams.get("num_experts")
  1511. experts = dict()
  1512. for name, data_torch in self.get_tensors():
  1513. # we don't need these
  1514. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1515. continue
  1516. old_dtype = data_torch.dtype
  1517. # convert any unsupported data types to float32
  1518. if data_torch.dtype not in (torch.float16, torch.float32):
  1519. data_torch = data_torch.to(torch.float32)
  1520. data = data_torch.squeeze().numpy()
  1521. # process the experts separately
  1522. if name.find("experts") != -1:
  1523. experts[name] = data
  1524. if len(experts) >= n_experts * 3:
  1525. # merge the experts into a single 3d tensor
  1526. for bid in range(block_count):
  1527. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1528. full = True
  1529. for xid in range(n_experts):
  1530. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1531. if ename not in experts:
  1532. full = False
  1533. break
  1534. if not full:
  1535. continue
  1536. datas = []
  1537. for xid in range(n_experts):
  1538. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1539. datas.append(experts[ename])
  1540. del experts[ename]
  1541. data = np.stack(datas, axis=0)
  1542. data_dtype = data.dtype
  1543. if self.ftype == 0 and data_dtype == np.float16:
  1544. data = data.astype(np.float32)
  1545. if self.ftype == 1 and data_dtype == np.float32:
  1546. data = data.astype(np.float16)
  1547. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1548. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1549. if new_name is None:
  1550. print(f"Can not map tensor {name!r}")
  1551. sys.exit()
  1552. print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1553. self.gguf_writer.add_tensor(new_name, data)
  1554. continue
  1555. # map tensor names
  1556. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1557. if new_name is None:
  1558. print(f"Can not map tensor {name!r}")
  1559. sys.exit()
  1560. n_dims = len(data.shape)
  1561. data_dtype = data.dtype
  1562. # if f32 desired, convert any float16 to float32
  1563. if self.ftype == 0 and data_dtype == np.float16:
  1564. data = data.astype(np.float32)
  1565. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1566. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  1567. data = data.astype(np.float32)
  1568. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1569. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1570. data = data.astype(np.float16)
  1571. print(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1572. self.gguf_writer.add_tensor(new_name, data)
  1573. if len(experts) > 0:
  1574. raise ValueError(f"Unprocessed experts: {experts.keys()}")
  1575. @Model.register("GPT2LMHeadModel")
  1576. class GPT2Model(Model):
  1577. model_arch = gguf.MODEL_ARCH.GPT2
  1578. def set_gguf_parameters(self):
  1579. self.gguf_writer.add_name(self.dir_model.name)
  1580. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1581. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1582. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1583. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1584. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1585. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1586. self.gguf_writer.add_file_type(self.ftype)
  1587. def write_tensors(self):
  1588. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1589. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1590. for name, data_torch in self.get_tensors():
  1591. # we don't need these
  1592. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq", ".attn.bias", ".attn.masked_bias")):
  1593. continue
  1594. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1595. data_torch = data_torch.transpose(1, 0)
  1596. old_dtype = data_torch.dtype
  1597. # convert any unsupported data types to float32
  1598. if data_torch.dtype not in (torch.float16, torch.float32):
  1599. data_torch = data_torch.to(torch.float32)
  1600. data = data_torch.squeeze().numpy()
  1601. # map tensor names
  1602. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1603. if new_name is None:
  1604. print(f"Can not map tensor {name!r}")
  1605. sys.exit()
  1606. n_dims = len(data.shape)
  1607. data_dtype = data.dtype
  1608. # if f32 desired, convert any float16 to float32
  1609. if self.ftype == 0 and data_dtype == np.float16:
  1610. data = data.astype(np.float32)
  1611. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1612. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1613. data = data.astype(np.float32)
  1614. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1615. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1616. data = data.astype(np.float16)
  1617. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1618. self.gguf_writer.add_tensor(new_name, data)
  1619. # note: GPT2 output is tied to (same as) wte in original model
  1620. if new_name == "token_embd.weight":
  1621. print(f"output.weight, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1622. self.gguf_writer.add_tensor("output.weight", data)
  1623. @Model.register("PhiForCausalLM")
  1624. class Phi2Model(Model):
  1625. model_arch = gguf.MODEL_ARCH.PHI2
  1626. def set_gguf_parameters(self):
  1627. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1628. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1629. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1630. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1631. self.gguf_writer.add_name("Phi2")
  1632. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1633. self.gguf_writer.add_embedding_length(n_embd)
  1634. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1635. self.gguf_writer.add_block_count(block_count)
  1636. self.gguf_writer.add_head_count(n_head)
  1637. self.gguf_writer.add_head_count_kv(n_head)
  1638. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1639. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1640. self.gguf_writer.add_file_type(self.ftype)
  1641. self.gguf_writer.add_add_bos_token(False)
  1642. @Model.register("Phi3ForCausalLM")
  1643. class Phi3MiniModel(Model):
  1644. model_arch = gguf.MODEL_ARCH.PHI3
  1645. def set_vocab(self):
  1646. from sentencepiece import SentencePieceProcessor
  1647. tokenizer_path = self.dir_model / 'tokenizer.model'
  1648. if not tokenizer_path.is_file():
  1649. print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
  1650. sys.exit(1)
  1651. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  1652. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1653. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1654. scores: list[float] = [-10000.0] * vocab_size
  1655. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  1656. for token_id in range(tokenizer.vocab_size()):
  1657. piece = tokenizer.id_to_piece(token_id)
  1658. text = piece.encode("utf-8")
  1659. score = tokenizer.get_score(token_id)
  1660. toktype = SentencePieceTokenTypes.NORMAL
  1661. if tokenizer.is_unknown(token_id):
  1662. toktype = SentencePieceTokenTypes.UNKNOWN
  1663. elif tokenizer.is_control(token_id):
  1664. toktype = SentencePieceTokenTypes.CONTROL
  1665. elif tokenizer.is_unused(token_id):
  1666. toktype = SentencePieceTokenTypes.UNUSED
  1667. elif tokenizer.is_byte(token_id):
  1668. toktype = SentencePieceTokenTypes.BYTE
  1669. tokens[token_id] = text
  1670. scores[token_id] = score
  1671. toktypes[token_id] = toktype
  1672. added_tokens_file = self.dir_model / 'added_tokens.json'
  1673. if added_tokens_file.is_file():
  1674. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1675. added_tokens_json = json.load(f)
  1676. for key in added_tokens_json:
  1677. token_id = added_tokens_json[key]
  1678. if (token_id >= vocab_size):
  1679. print(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1680. continue
  1681. tokens[token_id] = key.encode("utf-8")
  1682. scores[token_id] = -1000.0
  1683. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1684. self.gguf_writer.add_tokenizer_model("llama")
  1685. self.gguf_writer.add_tokenizer_pre("default")
  1686. self.gguf_writer.add_token_list(tokens)
  1687. self.gguf_writer.add_token_scores(scores)
  1688. self.gguf_writer.add_token_types(toktypes)
  1689. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1690. special_vocab.add_to_gguf(self.gguf_writer)
  1691. def set_gguf_parameters(self):
  1692. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1693. rot_pct = 1.0
  1694. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1695. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1696. rms_eps = self.find_hparam(["rms_norm_eps"])
  1697. self.gguf_writer.add_name("Phi3")
  1698. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1699. self.gguf_writer.add_embedding_length(n_embd)
  1700. self.gguf_writer.add_feed_forward_length(8192)
  1701. self.gguf_writer.add_block_count(block_count)
  1702. self.gguf_writer.add_head_count(n_head)
  1703. self.gguf_writer.add_head_count_kv(n_head)
  1704. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1705. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1706. self.gguf_writer.add_file_type(self.ftype)
  1707. @Model.register("PlamoForCausalLM")
  1708. class PlamoModel(Model):
  1709. model_arch = gguf.MODEL_ARCH.PLAMO
  1710. def set_vocab(self):
  1711. self._set_vocab_sentencepiece()
  1712. def set_gguf_parameters(self):
  1713. hparams = self.hparams
  1714. block_count = hparams["num_hidden_layers"]
  1715. self.gguf_writer.add_name("PLaMo")
  1716. self.gguf_writer.add_context_length(4096) # not in config.json
  1717. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1718. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1719. self.gguf_writer.add_block_count(block_count)
  1720. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1721. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1722. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1723. def shuffle_attn_q_weight(self, data_torch):
  1724. assert data_torch.size() == (5120, 5120)
  1725. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1726. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1727. data_torch = torch.reshape(data_torch, (5120, 5120))
  1728. return data_torch
  1729. def shuffle_attn_output_weight(self, data_torch):
  1730. assert data_torch.size() == (5120, 5120)
  1731. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1732. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1733. data_torch = torch.reshape(data_torch, (5120, 5120))
  1734. return data_torch
  1735. def write_tensors(self):
  1736. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  1737. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1738. for name, data_torch in self.get_tensors():
  1739. if "self_attn.rotary_emb.inv_freq" in name:
  1740. continue
  1741. # map tensor names
  1742. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1743. if new_name is None:
  1744. print(f"Can not map tensor {name!r}")
  1745. sys.exit()
  1746. # shuffle for broadcasting of gqa in ggml_mul_mat
  1747. if new_name.endswith("attn_q.weight"):
  1748. data_torch = self.shuffle_attn_q_weight(data_torch)
  1749. elif new_name.endswith("attn_output.weight"):
  1750. data_torch = self.shuffle_attn_output_weight(data_torch)
  1751. old_dtype = data_torch.dtype
  1752. # convert any unsupported data types to float32
  1753. if data_torch.dtype not in (torch.float16, torch.float32):
  1754. data_torch = data_torch.to(torch.float32)
  1755. data = data_torch.squeeze().numpy()
  1756. n_dims = len(data.shape)
  1757. data_dtype = data.dtype
  1758. # if f32 desired, convert any float16 to float32
  1759. if self.ftype == 0 and data_dtype == np.float16:
  1760. data = data.astype(np.float32)
  1761. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1762. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1763. data = data.astype(np.float32)
  1764. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1765. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1766. data = data.astype(np.float16)
  1767. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1768. self.gguf_writer.add_tensor(new_name, data)
  1769. @Model.register("CodeShellForCausalLM")
  1770. class CodeShellModel(Model):
  1771. model_arch = gguf.MODEL_ARCH.CODESHELL
  1772. def set_gguf_parameters(self):
  1773. block_count = self.hparams["n_layer"]
  1774. self.gguf_writer.add_name("CodeShell")
  1775. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1776. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1777. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1778. self.gguf_writer.add_block_count(block_count)
  1779. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1780. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1781. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1782. self.gguf_writer.add_file_type(self.ftype)
  1783. self.gguf_writer.add_rope_freq_base(10000.0)
  1784. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1785. self.gguf_writer.add_rope_scaling_factor(1.0)
  1786. def write_tensors(self):
  1787. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1788. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1789. tensors = dict(self.get_tensors())
  1790. has_lm_head = "lm_head.weight" in tensors.keys() or "output.weight" in tensors.keys()
  1791. for name, data_torch in tensors.items():
  1792. # we don't need these
  1793. if name.endswith((".attn.rotary_emb.inv_freq")):
  1794. continue
  1795. old_dtype = data_torch.dtype
  1796. # convert any unsupported data types to float32
  1797. if data_torch.dtype not in (torch.float16, torch.float32):
  1798. data_torch = data_torch.to(torch.float32)
  1799. data = data_torch.squeeze().numpy()
  1800. # map tensor names
  1801. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1802. if new_name is None:
  1803. print(f"Can not map tensor {name!r}")
  1804. sys.exit()
  1805. n_dims = len(data.shape)
  1806. data_dtype = data.dtype
  1807. # if f32 desired, convert any float16 to float32
  1808. if self.ftype == 0 and data_dtype == np.float16:
  1809. data = data.astype(np.float32)
  1810. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1811. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1812. data = data.astype(np.float32)
  1813. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1814. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1815. data = data.astype(np.float16)
  1816. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1817. self.gguf_writer.add_tensor(new_name, data)
  1818. if not has_lm_head and name == "transformer.wte.weight":
  1819. self.gguf_writer.add_tensor("output.weight", data)
  1820. print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1821. @Model.register("InternLM2ForCausalLM")
  1822. class InternLM2Model(Model):
  1823. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1824. def set_vocab(self):
  1825. # (TODO): Is there a better way?
  1826. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1827. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1828. # recognized as an empty string in C++.
  1829. from sentencepiece import SentencePieceProcessor
  1830. from sentencepiece import sentencepiece_model_pb2 as model
  1831. tokenizer_path = self.dir_model / 'tokenizer.model'
  1832. tokens: list[bytes] = []
  1833. scores: list[float] = []
  1834. toktypes: list[int] = []
  1835. if not tokenizer_path.is_file():
  1836. print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
  1837. sys.exit(1)
  1838. sentencepiece_model = model.ModelProto()
  1839. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1840. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1841. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  1842. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1843. for token_id in range(vocab_size):
  1844. piece = tokenizer.id_to_piece(token_id)
  1845. text = piece.encode("utf-8")
  1846. score = tokenizer.get_score(token_id)
  1847. if text == b"\x00":
  1848. # (TODO): fixme
  1849. # Hack here and replace the \x00 characters.
  1850. print(f"InternLM2 convert token '{text}' to '🐉'!")
  1851. text = "🐉"
  1852. toktype = SentencePieceTokenTypes.NORMAL
  1853. if tokenizer.is_unknown(token_id):
  1854. toktype = SentencePieceTokenTypes.UNKNOWN
  1855. elif tokenizer.is_control(token_id):
  1856. toktype = SentencePieceTokenTypes.CONTROL
  1857. elif tokenizer.is_unused(token_id):
  1858. toktype = SentencePieceTokenTypes.UNUSED
  1859. elif tokenizer.is_byte(token_id):
  1860. toktype = SentencePieceTokenTypes.BYTE
  1861. tokens.append(text)
  1862. scores.append(score)
  1863. toktypes.append(toktype)
  1864. added_tokens_file = self.dir_model / 'added_tokens.json'
  1865. if added_tokens_file.is_file():
  1866. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1867. added_tokens_json = json.load(f)
  1868. for key in added_tokens_json:
  1869. tokens.append(key.encode("utf-8"))
  1870. scores.append(-1000.0)
  1871. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1872. self.gguf_writer.add_tokenizer_model("llama")
  1873. self.gguf_writer.add_tokenizer_pre("default")
  1874. self.gguf_writer.add_token_list(tokens)
  1875. self.gguf_writer.add_token_scores(scores)
  1876. self.gguf_writer.add_token_types(toktypes)
  1877. self.gguf_writer.add_add_space_prefix(add_prefix)
  1878. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1879. old_eos = special_vocab.special_token_ids["eos"]
  1880. if "chat" in os.path.basename(self.dir_model.absolute()):
  1881. # For the chat model, we replace the eos with '<|im_end|>'.
  1882. # TODO: this is a hack, should be fixed
  1883. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1884. special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
  1885. print(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
  1886. in chat mode so that the conversation can end normally.")
  1887. special_vocab.add_to_gguf(self.gguf_writer)
  1888. def _try_get_sft_eos(self, tokenizer):
  1889. unused_145_list = tokenizer.encode('[UNUSED_TOKEN_145]')
  1890. im_end_list = tokenizer.encode('<|im_end|>')
  1891. assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
  1892. if len(unused_145_list) == 1:
  1893. eos_token = unused_145_list[0]
  1894. if len(im_end_list) == 1:
  1895. eos_token = im_end_list[0]
  1896. return eos_token
  1897. def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
  1898. if n_head_kv is not None and n_head != n_head_kv:
  1899. n_head = n_head_kv
  1900. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1901. .swapaxes(1, 2)
  1902. .reshape(weights.shape))
  1903. def set_gguf_parameters(self):
  1904. self.gguf_writer.add_name("InternLM2")
  1905. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1906. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1907. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1908. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1909. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1910. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1911. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1912. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1913. def post_write_tensors(self, tensor_map, name, data_torch):
  1914. old_dtype = data_torch.dtype
  1915. # convert any unsupported data types to float32
  1916. if data_torch.dtype not in (torch.float16, torch.float32):
  1917. data_torch = data_torch.to(torch.float32)
  1918. data = data_torch.squeeze().numpy()
  1919. # map tensor names
  1920. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1921. if new_name is None:
  1922. print(f"Can not map tensor {name!r}")
  1923. sys.exit()
  1924. n_dims = len(data.shape)
  1925. data_dtype = data.dtype
  1926. # if f32 desired, convert any float16 to float32
  1927. if self.ftype == 0 and data_dtype == np.float16:
  1928. data = data.astype(np.float32)
  1929. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1930. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1931. data = data.astype(np.float32)
  1932. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1933. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1934. data = data.astype(np.float16)
  1935. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1936. self.gguf_writer.add_tensor(new_name, data)
  1937. def write_tensors(self):
  1938. from einops import rearrange
  1939. num_heads = self.hparams.get("num_attention_heads")
  1940. num_kv_heads = self.hparams.get("num_key_value_heads")
  1941. hidden_size = self.hparams.get("hidden_size")
  1942. q_per_kv = num_heads // num_kv_heads
  1943. head_dim = hidden_size // num_heads
  1944. num_groups = num_heads // q_per_kv
  1945. block_count = self.hparams["num_hidden_layers"]
  1946. model_kv = dict(self.get_tensors())
  1947. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1948. qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
  1949. for name, data_torch in model_kv.items():
  1950. # we don't need these
  1951. if name.endswith(".rotary_emb.inv_freq"):
  1952. continue
  1953. if re.match(qkv_pattern, name):
  1954. bid = re.findall(qkv_pattern, name)[0]
  1955. qkv = data_torch
  1956. qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
  1957. q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
  1958. # The model weights of q and k equire additional reshape.
  1959. q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
  1960. k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
  1961. v = rearrange(v, " o g n i -> o (g n i)").T
  1962. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wq.weight", q)
  1963. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wk.weight", k)
  1964. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wv.weight", v)
  1965. else:
  1966. self.post_write_tensors(tensor_map, name, data_torch)
  1967. @Model.register("BertModel", "CamembertModel")
  1968. class BertModel(Model):
  1969. model_arch = gguf.MODEL_ARCH.BERT
  1970. def __init__(self, *args, **kwargs):
  1971. super().__init__(*args, **kwargs)
  1972. self.vocab_size = None
  1973. def set_gguf_parameters(self):
  1974. super().set_gguf_parameters()
  1975. self.gguf_writer.add_causal_attention(False)
  1976. # get pooling path
  1977. pooling_path = None
  1978. module_path = self.dir_model / "modules.json"
  1979. if module_path.is_file():
  1980. with open(module_path, encoding="utf-8") as f:
  1981. modules = json.load(f)
  1982. for mod in modules:
  1983. if mod["type"] == "sentence_transformers.models.Pooling":
  1984. pooling_path = mod["path"]
  1985. break
  1986. # get pooling type
  1987. if pooling_path is not None:
  1988. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1989. pooling = json.load(f)
  1990. if pooling["pooling_mode_mean_tokens"]:
  1991. pooling_type = gguf.PoolingType.MEAN
  1992. elif pooling["pooling_mode_cls_token"]:
  1993. pooling_type = gguf.PoolingType.CLS
  1994. else:
  1995. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1996. self.gguf_writer.add_pooling_type(pooling_type)
  1997. def set_vocab(self):
  1998. tokens, toktypes, tokpre = self.get_vocab_base()
  1999. self.vocab_size = len(tokens)
  2000. # we need this to validate the size of the token_type embeddings
  2001. # though currently we are passing all zeros to the token_type embeddings
  2002. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  2003. # convert to phantom space vocab
  2004. def phantom(tok):
  2005. if tok.startswith("[") and tok.endswith("]"):
  2006. return tok
  2007. if tok.startswith("##"):
  2008. return tok[2:]
  2009. return "\u2581" + tok
  2010. tokens = list(map(phantom, tokens))
  2011. # add vocab to gguf
  2012. self.gguf_writer.add_tokenizer_model("bert")
  2013. self.gguf_writer.add_tokenizer_pre(tokpre)
  2014. self.gguf_writer.add_token_list(tokens)
  2015. self.gguf_writer.add_token_types(toktypes)
  2016. # handle special tokens
  2017. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2018. special_vocab.add_to_gguf(self.gguf_writer)
  2019. def write_tensors(self):
  2020. tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  2021. tensors = dict(self.get_tensors())
  2022. for name, data_torch in tensors.items():
  2023. # we are only using BERT for embeddings so we don't need the pooling layer
  2024. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2025. continue # we don't need these
  2026. # map tensor names
  2027. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  2028. if new_name is None:
  2029. print(f"Can not map tensor {name!r}")
  2030. sys.exit()
  2031. # convert any unsupported data types to float32
  2032. if data_torch.dtype not in (torch.float16, torch.float32):
  2033. data_torch = data_torch.to(torch.float32)
  2034. data = data_torch.squeeze().numpy()
  2035. n_dims = len(data.shape)
  2036. new_dtype: type[np.floating[Any]]
  2037. if (
  2038. self.ftype == 1 and name.endswith(".weight") and n_dims == 2
  2039. and name != "embeddings.token_type_embeddings.weight" # not used with get_rows, must be F32
  2040. ):
  2041. # if f16 desired, convert any float32 2-dim weight tensors to float16
  2042. new_dtype = np.float16
  2043. else:
  2044. # if f32 desired, convert any float16 to float32
  2045. new_dtype = np.float32
  2046. print(f"{new_name}, n_dims = {n_dims}, {data_torch.dtype} --> {new_dtype}")
  2047. if data.dtype != new_dtype:
  2048. data = data.astype(new_dtype)
  2049. self.gguf_writer.add_tensor(new_name, data)
  2050. @Model.register("NomicBertModel")
  2051. class NomicBertModel(BertModel):
  2052. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2053. def __init__(self, *args, **kwargs):
  2054. super().__init__(*args, **kwargs)
  2055. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2056. self.hparams["n_ctx"] = 2048
  2057. # SwigLU activation
  2058. assert self.hparams["activation_function"] == "swiglu"
  2059. # this doesn't do anything in the HF version
  2060. assert self.hparams["causal"] is False
  2061. # no bias tensors
  2062. assert self.hparams["qkv_proj_bias"] is False
  2063. assert self.hparams["mlp_fc1_bias"] is False
  2064. assert self.hparams["mlp_fc2_bias"] is False
  2065. # norm at end of layer
  2066. assert self.hparams["prenorm"] is False
  2067. # standard RoPE
  2068. assert self.hparams["rotary_emb_fraction"] == 1.0
  2069. assert self.hparams["rotary_emb_interleaved"] is False
  2070. assert self.hparams["rotary_emb_scale_base"] is None
  2071. def set_gguf_parameters(self):
  2072. super().set_gguf_parameters()
  2073. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2074. @Model.register("GemmaForCausalLM")
  2075. class GemmaModel(Model):
  2076. model_arch = gguf.MODEL_ARCH.GEMMA
  2077. def set_vocab(self):
  2078. self._set_vocab_sentencepiece()
  2079. # TODO: these special tokens should be exported only for the CodeGemma family
  2080. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2081. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2082. special_vocab._set_special_token("prefix", 67)
  2083. special_vocab._set_special_token("suffix", 69)
  2084. special_vocab._set_special_token("middle", 68)
  2085. special_vocab._set_special_token("fsep", 70)
  2086. special_vocab._set_special_token("eot", 107)
  2087. special_vocab.add_to_gguf(self.gguf_writer)
  2088. def set_gguf_parameters(self):
  2089. hparams = self.hparams
  2090. block_count = hparams["num_hidden_layers"]
  2091. self.gguf_writer.add_name(self.dir_model.name)
  2092. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2093. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2094. self.gguf_writer.add_block_count(block_count)
  2095. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2096. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2097. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2098. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2099. self.gguf_writer.add_key_length(hparams["head_dim"])
  2100. self.gguf_writer.add_value_length(hparams["head_dim"])
  2101. self.gguf_writer.add_file_type(self.ftype)
  2102. def write_tensors(self):
  2103. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  2104. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  2105. for name, data_torch in self.get_tensors():
  2106. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2107. # To prevent errors, skip loading lm_head.weight.
  2108. if name == "lm_head.weight":
  2109. print(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2110. continue
  2111. old_dtype = data_torch.dtype
  2112. # convert any unsupported data types to float32
  2113. if data_torch.dtype not in (torch.float16, torch.float32):
  2114. data_torch = data_torch.to(torch.float32)
  2115. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2116. if name.endswith("norm.weight"):
  2117. data_torch = data_torch + 1
  2118. data = data_torch.squeeze().numpy()
  2119. # map tensor names
  2120. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  2121. if new_name is None:
  2122. print(f"Can not map tensor {name!r}")
  2123. sys.exit()
  2124. n_dims = len(data.shape)
  2125. data_dtype = data.dtype
  2126. data = data.astype(np.float32)
  2127. # if f16 desired, convert any float32 2-dim weight tensors to float16
  2128. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  2129. data = data.astype(np.float16)
  2130. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  2131. self.gguf_writer.add_tensor(new_name, data)
  2132. @Model.register("Starcoder2ForCausalLM")
  2133. class StarCoder2Model(Model):
  2134. model_arch = gguf.MODEL_ARCH.STARCODER2
  2135. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  2136. class MambaModel(Model):
  2137. model_arch = gguf.MODEL_ARCH.MAMBA
  2138. def set_vocab(self):
  2139. vocab_size = self.hparams["vocab_size"]
  2140. # Round vocab size to next multiple of 8
  2141. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2142. # pad using ceiling division
  2143. # ref: https://stackoverflow.com/a/17511341/22827863
  2144. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2145. self.hparams["vocab_size"] = vocab_size
  2146. if (self.dir_model / "tokenizer.json").is_file():
  2147. self._set_vocab_gpt2()
  2148. else:
  2149. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2150. tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
  2151. print(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  2152. neox_reader = gguf.GGUFReader(tokenizer_path, "r")
  2153. field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  2154. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]))
  2155. field = neox_reader.get_field(gguf.Keys.Tokenizer.PRE)
  2156. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]))
  2157. field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
  2158. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  2159. field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  2160. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  2161. field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  2162. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  2163. field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
  2164. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  2165. field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
  2166. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  2167. field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
  2168. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  2169. def set_gguf_parameters(self):
  2170. d_model = self.find_hparam(["hidden_size", "d_model"])
  2171. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2172. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2173. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2174. # ceiling division
  2175. # ref: https://stackoverflow.com/a/17511341/22827863
  2176. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2177. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2178. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2179. # Fail early for models which don't have a block expansion factor of 2
  2180. assert d_inner == 2 * d_model
  2181. self.gguf_writer.add_name(self.dir_model.name)
  2182. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2183. self.gguf_writer.add_embedding_length(d_model)
  2184. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2185. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2186. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2187. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2188. self.gguf_writer.add_ssm_inner_size(d_inner)
  2189. self.gguf_writer.add_ssm_state_size(d_state)
  2190. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2191. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2192. self.gguf_writer.add_file_type(self.ftype)
  2193. def write_tensors(self):
  2194. block_count = self.hparams["n_layer"]
  2195. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  2196. tok_embd = None
  2197. tok_embd_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.TOKEN_EMBD] + ".weight"
  2198. output_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.OUTPUT] + ".weight"
  2199. for name, data_torch in self.get_tensors():
  2200. old_dtype = data_torch.dtype
  2201. # convert any unsupported data types to float32
  2202. if data_torch.dtype not in (torch.float16, torch.float32):
  2203. data_torch = data_torch.to(torch.float32)
  2204. # map tensor names
  2205. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  2206. if new_name is None:
  2207. print(f"Can not map tensor {name!r}")
  2208. sys.exit()
  2209. if name.endswith(".A_log"):
  2210. print("A_log --> A ==> " + new_name)
  2211. data_torch = -torch.exp(data_torch)
  2212. # assuming token_embd.weight is seen before output.weight
  2213. if tok_embd is not None and new_name == output_name:
  2214. if torch.equal(tok_embd, data_torch):
  2215. print(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2216. continue
  2217. if new_name == tok_embd_name:
  2218. tok_embd = data_torch
  2219. data = data_torch.squeeze().numpy()
  2220. n_dims = len(data.shape)
  2221. data_dtype = data.dtype
  2222. # if f32 desired, convert any float16 to float32
  2223. if self.ftype == 0 and data_dtype == np.float16:
  2224. data = data.astype(np.float32)
  2225. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  2226. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  2227. data = data.astype(np.float32)
  2228. # if f16 desired, convert big float32 2-dim weight tensors to float16
  2229. new_weight_name = new_name[:-len(".weight")] if new_name.endswith(".weight") else ""
  2230. if self.ftype == 1 and data_dtype == np.float32 and new_weight_name.endswith((".ssm_in", ".ssm_out", "token_embd", "output")) and n_dims == 2:
  2231. data = data.astype(np.float16)
  2232. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  2233. self.gguf_writer.add_tensor(new_name, data)
  2234. @Model.register("CohereForCausalLM")
  2235. class CommandR2Model(Model):
  2236. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2237. def __init__(self, *args, **kwargs):
  2238. super().__init__(*args, **kwargs)
  2239. # max_position_embeddings = 8192 in config.json but model was actually
  2240. # trained on 128k context length
  2241. self.hparams["max_position_embeddings"] = self.hparams["model_max_length"]
  2242. def set_gguf_parameters(self):
  2243. super().set_gguf_parameters()
  2244. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2245. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2246. @Model.register("OlmoForCausalLM")
  2247. @Model.register("OLMoForCausalLM")
  2248. class OlmoModel(Model):
  2249. model_arch = gguf.MODEL_ARCH.OLMO
  2250. def set_gguf_parameters(self):
  2251. super().set_gguf_parameters()
  2252. self.gguf_writer.add_layer_norm_eps(1e-5)
  2253. if "clip_qkv" in self.hparams is not None:
  2254. self.gguf_writer.add_clamp_kqv(self.hparams["clip_qkv"])
  2255. # Same as super class, but permuting q_proj, k_proj
  2256. # Copied from: LlamaModel
  2257. def write_tensors(self):
  2258. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  2259. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  2260. n_head = self.hparams.get("num_attention_heads")
  2261. n_kv_head = self.hparams.get("num_key_value_heads")
  2262. for name, data_torch in self.get_tensors():
  2263. old_dtype = data_torch.dtype
  2264. # convert any unsupported data types to float32
  2265. if data_torch.dtype not in (torch.float16, torch.float32):
  2266. data_torch = data_torch.to(torch.float32)
  2267. data = data_torch.numpy()
  2268. if name.endswith("q_proj.weight"):
  2269. data = permute(data, n_head, n_head)
  2270. if name.endswith("k_proj.weight"):
  2271. data = permute(data, n_head, n_kv_head)
  2272. data = data.squeeze()
  2273. # map tensor names
  2274. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  2275. if new_name is None:
  2276. print(f"Can not map tensor {name!r}")
  2277. sys.exit()
  2278. n_dims = len(data.shape)
  2279. data_dtype = data.dtype
  2280. # if f32 desired, convert any float16 to float32
  2281. if self.ftype == 0 and data_dtype == np.float16:
  2282. data = data.astype(np.float32)
  2283. # 1d tensors need to be converted to float32
  2284. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  2285. data = data.astype(np.float32)
  2286. # if f16 desired, convert any float32 2-dim weight tensors to float16
  2287. if self.ftype == 1 and data_dtype == np.float32 and n_dims == 2:
  2288. data = data.astype(np.float16)
  2289. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  2290. self.gguf_writer.add_tensor(new_name, data)
  2291. ###### CONVERSION LOGIC ######
  2292. def parse_args() -> argparse.Namespace:
  2293. parser = argparse.ArgumentParser(
  2294. description="Convert a huggingface model to a GGML compatible file")
  2295. parser.add_argument(
  2296. "--vocab-only", action="store_true",
  2297. help="extract only the vocab",
  2298. )
  2299. parser.add_argument(
  2300. "--awq-path", type=Path, default=None,
  2301. help="Path to scale awq cache file")
  2302. parser.add_argument(
  2303. "--outfile", type=Path,
  2304. help="path to write to; default: based on input",
  2305. )
  2306. parser.add_argument(
  2307. "--outtype", type=str, choices=["f32", "f16"], default="f16",
  2308. help="output format - use f32 for float32, f16 for float16",
  2309. )
  2310. parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
  2311. parser.add_argument(
  2312. "model", type=Path,
  2313. help="directory containing model file",
  2314. )
  2315. parser.add_argument("--use-temp-file", action="store_true", help="use the tempfile library while processing (helpful when running out of memory, process killed)")
  2316. parser.add_argument("--model-name", type=str, default=None, help="name of the model")
  2317. return parser.parse_args()
  2318. def main() -> None:
  2319. args = parse_args()
  2320. dir_model = args.model
  2321. if args.awq_path:
  2322. sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
  2323. from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
  2324. tmp_model_path = args.model / "weighted_model"
  2325. dir_model = tmp_model_path
  2326. if tmp_model_path.is_dir():
  2327. print(f"{tmp_model_path} exists as a weighted model.")
  2328. else:
  2329. tmp_model_path.mkdir(parents=True, exist_ok=True)
  2330. print("Saving new weighted model ...")
  2331. add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
  2332. print(f"Saved weighted model at {tmp_model_path}.")
  2333. if not dir_model.is_dir():
  2334. print(f'Error: {args.model} is not a directory', file=sys.stderr)
  2335. sys.exit(1)
  2336. ftype_map = {
  2337. "f32": gguf.GGMLQuantizationType.F32,
  2338. "f16": gguf.GGMLQuantizationType.F16,
  2339. }
  2340. if args.outfile is not None:
  2341. fname_out = args.outfile
  2342. else:
  2343. # output in the same directory as the model by default
  2344. fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
  2345. print(f"Loading model: {dir_model.name}")
  2346. hparams = Model.load_hparams(dir_model)
  2347. with torch.inference_mode():
  2348. model_class = Model.from_model_architecture(hparams["architectures"][0])
  2349. model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file)
  2350. print("Set model parameters")
  2351. model_instance.set_gguf_parameters()
  2352. print("Set model tokenizer")
  2353. model_instance.set_vocab()
  2354. if args.vocab_only:
  2355. print(f"Exporting model vocab to '{fname_out}'")
  2356. model_instance.write_vocab()
  2357. else:
  2358. print(f"Exporting model to '{fname_out}'")
  2359. model_instance.write()
  2360. print(f"Model successfully exported to '{fname_out}'")
  2361. if __name__ == '__main__':
  2362. main()