| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 |
- #!/usr/bin/env python3
- from __future__ import annotations
- import argparse
- import os
- import sys
- from pathlib import Path
- from pprint import pprint
- import torch
- from sentencepiece import SentencePieceProcessor
- if 'NO_LOCAL_GGUF' not in os.environ:
- sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
- import gguf
- def _flatten_dict(dct, tensors, prefix=None):
- assert isinstance(dct, dict)
- for key in dct.keys():
- new_prefix = prefix + '.' + key if prefix is not None else key
- if isinstance(dct[key], torch.Tensor):
- tensors[new_prefix] = dct[key]
- elif isinstance(dct[key], dict):
- _flatten_dict(dct[key], tensors, new_prefix)
- else:
- raise ValueError(type(dct[key]))
- return None
- def _get_sentencepiece_tokenizer_info(dir_model: Path):
- tokenizer_path = dir_model / 'adept_vocab.model'
- print('gguf: getting sentencepiece tokenizer from', tokenizer_path)
- tokenizer = SentencePieceProcessor(str(tokenizer_path))
- print('gguf: adding tokens')
- tokens: list[bytes] = []
- scores: list[float] = []
- toktypes: list[int] = []
- for i in range(tokenizer.vocab_size()):
- text: bytes
- score: float
- piece = tokenizer.id_to_piece(i)
- text = piece.encode("utf-8")
- score = tokenizer.get_score(i)
- toktype = 1
- if tokenizer.is_unknown(i):
- toktype = 2
- if tokenizer.is_control(i):
- toktype = 3
- if tokenizer.is_unused(i):
- toktype = 5
- if tokenizer.is_byte(i):
- toktype = 6
- tokens.append(text)
- scores.append(score)
- toktypes.append(toktype)
- pass
- return tokens, scores, toktypes
- def main():
- parser = argparse.ArgumentParser(description="Convert a Persimmon model from Adept (e.g. Persimmon 8b chat) to a GGML compatible file")
- parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
- parser.add_argument("--ckpt-path", type=Path, help="path to persimmon checkpoint .pt file")
- parser.add_argument("--model-dir", type=Path, help="directory containing model e.g. 8b_chat_model_release")
- parser.add_argument("--adept-inference-dir", type=str, help="path to adept-inference code directory")
- args = parser.parse_args()
- sys.path.append(str(args.adept_inference_dir))
- persimmon_model = torch.load(args.ckpt_path)
- hparams = persimmon_model['args']
- pprint(hparams)
- tensors: dict[str, torch.Tensor] = {}
- _flatten_dict(persimmon_model['model'], tensors, None)
- arch = gguf.MODEL_ARCH.PERSIMMON
- gguf_writer = gguf.GGUFWriter(args.outfile, gguf.MODEL_ARCH_NAMES[arch])
- block_count = hparams.num_layers
- head_count = hparams.num_attention_heads
- head_count_kv = head_count
- ctx_length = hparams.seq_length
- hidden_size = hparams.hidden_size
- gguf_writer.add_name('persimmon-8b-chat')
- gguf_writer.add_context_length(ctx_length)
- gguf_writer.add_embedding_length(hidden_size)
- gguf_writer.add_block_count(block_count)
- gguf_writer.add_feed_forward_length(hparams.ffn_hidden_size)
- # ref: https://github.com/ggerganov/llama.cpp/pull/4889/commits/eea19039fc52ea2dbd1aab45b59ab4e3e29a3443
- gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
- gguf_writer.add_head_count(head_count)
- gguf_writer.add_head_count_kv(head_count_kv)
- gguf_writer.add_rope_freq_base(hparams.rotary_emb_base)
- gguf_writer.add_layer_norm_eps(hparams.layernorm_epsilon)
- tokens, scores, toktypes = _get_sentencepiece_tokenizer_info(args.model_dir)
- gguf_writer.add_tokenizer_model('llama')
- gguf_writer.add_tokenizer_pre('default')
- gguf_writer.add_token_list(tokens)
- gguf_writer.add_token_scores(scores)
- gguf_writer.add_token_types(toktypes)
- gguf_writer.add_bos_token_id(71013)
- gguf_writer.add_eos_token_id(71013)
- tensor_map = gguf.get_tensor_name_map(arch, block_count)
- print(tensor_map)
- for name in tensors.keys():
- data_torch = tensors[name]
- if name.endswith(".self_attention.rotary_emb.inv_freq"):
- continue
- old_dtype = data_torch.dtype
- # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
- data = data_torch.to(torch.float32).squeeze().numpy()
- new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
- if new_name is None:
- print("Can not map tensor '" + name + "'")
- sys.exit()
- n_dims = len(data.shape)
- print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
- gguf_writer.add_tensor(new_name, data)
- print("gguf: write header")
- gguf_writer.write_header_to_file()
- print("gguf: write metadata")
- gguf_writer.write_kv_data_to_file()
- print("gguf: write tensors")
- gguf_writer.write_tensors_to_file()
- gguf_writer.close()
- print(f"gguf: model successfully exported to '{args.outfile}'")
- print("")
- if __name__ == '__main__':
- main()
|