llama.cpp 707 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795
  1. #define LLAMA_API_INTERNAL
  2. #include "llama.h"
  3. #include "unicode.h"
  4. #include "ggml.h"
  5. #include "ggml-alloc.h"
  6. #include "ggml-backend.h"
  7. #ifdef GGML_USE_CUDA
  8. # include "ggml-cuda.h"
  9. #elif defined(GGML_USE_CLBLAST)
  10. # include "ggml-opencl.h"
  11. #elif defined(GGML_USE_VULKAN)
  12. # include "ggml-vulkan.h"
  13. #elif defined(GGML_USE_SYCL)
  14. # include "ggml-sycl.h"
  15. #elif defined(GGML_USE_KOMPUTE)
  16. # include "ggml-kompute.h"
  17. #endif
  18. #ifdef GGML_USE_METAL
  19. # include "ggml-metal.h"
  20. #endif
  21. #ifdef GGML_USE_MPI
  22. # include "ggml-mpi.h"
  23. #endif
  24. #ifndef QK_K
  25. # ifdef GGML_QKK_64
  26. # define QK_K 64
  27. # else
  28. # define QK_K 256
  29. # endif
  30. #endif
  31. #ifdef __has_include
  32. #if __has_include(<unistd.h>)
  33. #include <unistd.h>
  34. #if defined(_POSIX_MAPPED_FILES)
  35. #include <sys/mman.h>
  36. #include <fcntl.h>
  37. #endif
  38. #if defined(_POSIX_MEMLOCK_RANGE)
  39. #include <sys/resource.h>
  40. #endif
  41. #endif
  42. #endif
  43. #if defined(_WIN32)
  44. #define WIN32_LEAN_AND_MEAN
  45. #ifndef NOMINMAX
  46. #define NOMINMAX
  47. #endif
  48. #include <windows.h>
  49. #ifndef PATH_MAX
  50. #define PATH_MAX MAX_PATH
  51. #endif
  52. #include <io.h>
  53. #endif
  54. #include <algorithm>
  55. #include <array>
  56. #include <cassert>
  57. #include <cctype>
  58. #include <cfloat>
  59. #include <cinttypes>
  60. #include <climits>
  61. #include <cmath>
  62. #include <cstdarg>
  63. #include <cstddef>
  64. #include <cstdint>
  65. #include <cstdio>
  66. #include <cstring>
  67. #include <ctime>
  68. #include <forward_list>
  69. #include <fstream>
  70. #include <functional>
  71. #include <future>
  72. #include <initializer_list>
  73. #include <locale>
  74. #include <map>
  75. #include <memory>
  76. #include <mutex>
  77. #include <numeric>
  78. #include <queue>
  79. #include <random>
  80. #include <regex>
  81. #include <set>
  82. #include <sstream>
  83. #include <thread>
  84. #include <type_traits>
  85. #include <unordered_map>
  86. #if defined(_MSC_VER)
  87. #pragma warning(disable: 4244 4267) // possible loss of data
  88. #endif
  89. #ifdef __GNUC__
  90. #ifdef __MINGW32__
  91. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  92. #else
  93. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  94. #endif
  95. #else
  96. #define LLAMA_ATTRIBUTE_FORMAT(...)
  97. #endif
  98. #define LLAMA_MAX_NODES 8192
  99. #define LLAMA_MAX_EXPERTS 60
  100. //
  101. // logging
  102. //
  103. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  104. static void llama_log_internal (ggml_log_level level, const char* format, ...);
  105. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  106. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  107. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  108. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  109. //
  110. // helpers
  111. //
  112. static size_t utf8_len(char src) {
  113. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  114. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  115. return lookup[highbits];
  116. }
  117. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  118. std::string result;
  119. for (size_t pos = 0; ; pos += search.length()) {
  120. auto new_pos = s.find(search, pos);
  121. if (new_pos == std::string::npos) {
  122. result += s.substr(pos, s.size() - pos);
  123. break;
  124. }
  125. result += s.substr(pos, new_pos - pos) + replace;
  126. pos = new_pos;
  127. }
  128. s = std::move(result);
  129. }
  130. static bool is_float_close(float a, float b, float abs_tol) {
  131. // Check for non-negative tolerance
  132. if (abs_tol < 0.0) {
  133. throw std::invalid_argument("Tolerance must be non-negative");
  134. }
  135. // Exact equality check
  136. if (a == b) {
  137. return true;
  138. }
  139. // Check for infinities
  140. if (std::isinf(a) || std::isinf(b)) {
  141. return false;
  142. }
  143. // Regular comparison using the provided absolute tolerance
  144. return std::fabs(b - a) <= abs_tol;
  145. }
  146. static void zeros(std::ofstream & file, size_t n) {
  147. char zero = 0;
  148. for (size_t i = 0; i < n; ++i) {
  149. file.write(&zero, 1);
  150. }
  151. }
  152. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  153. static std::string format(const char * fmt, ...) {
  154. va_list ap;
  155. va_list ap2;
  156. va_start(ap, fmt);
  157. va_copy(ap2, ap);
  158. int size = vsnprintf(NULL, 0, fmt, ap);
  159. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  160. std::vector<char> buf(size + 1);
  161. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  162. GGML_ASSERT(size2 == size);
  163. va_end(ap2);
  164. va_end(ap);
  165. return std::string(buf.data(), size);
  166. }
  167. //
  168. // gguf constants (sync with gguf.py)
  169. //
  170. enum llm_arch {
  171. LLM_ARCH_LLAMA,
  172. LLM_ARCH_FALCON,
  173. LLM_ARCH_BAICHUAN,
  174. LLM_ARCH_GROK,
  175. LLM_ARCH_GPT2,
  176. LLM_ARCH_GPTJ,
  177. LLM_ARCH_GPTNEOX,
  178. LLM_ARCH_MPT,
  179. LLM_ARCH_STARCODER,
  180. LLM_ARCH_PERSIMMON,
  181. LLM_ARCH_REFACT,
  182. LLM_ARCH_BERT,
  183. LLM_ARCH_NOMIC_BERT,
  184. LLM_ARCH_BLOOM,
  185. LLM_ARCH_STABLELM,
  186. LLM_ARCH_QWEN,
  187. LLM_ARCH_QWEN2,
  188. LLM_ARCH_QWEN2MOE,
  189. LLM_ARCH_PHI2,
  190. LLM_ARCH_PHI3,
  191. LLM_ARCH_PLAMO,
  192. LLM_ARCH_CODESHELL,
  193. LLM_ARCH_ORION,
  194. LLM_ARCH_INTERNLM2,
  195. LLM_ARCH_MINICPM,
  196. LLM_ARCH_GEMMA,
  197. LLM_ARCH_STARCODER2,
  198. LLM_ARCH_MAMBA,
  199. LLM_ARCH_XVERSE,
  200. LLM_ARCH_COMMAND_R,
  201. LLM_ARCH_DBRX,
  202. LLM_ARCH_OLMO,
  203. LLM_ARCH_UNKNOWN,
  204. };
  205. static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
  206. { LLM_ARCH_LLAMA, "llama" },
  207. { LLM_ARCH_FALCON, "falcon" },
  208. { LLM_ARCH_GROK, "grok" },
  209. { LLM_ARCH_GPT2, "gpt2" },
  210. { LLM_ARCH_GPTJ, "gptj" },
  211. { LLM_ARCH_GPTNEOX, "gptneox" },
  212. { LLM_ARCH_MPT, "mpt" },
  213. { LLM_ARCH_BAICHUAN, "baichuan" },
  214. { LLM_ARCH_STARCODER, "starcoder" },
  215. { LLM_ARCH_PERSIMMON, "persimmon" },
  216. { LLM_ARCH_REFACT, "refact" },
  217. { LLM_ARCH_BERT, "bert" },
  218. { LLM_ARCH_NOMIC_BERT, "nomic-bert" },
  219. { LLM_ARCH_BLOOM, "bloom" },
  220. { LLM_ARCH_STABLELM, "stablelm" },
  221. { LLM_ARCH_QWEN, "qwen" },
  222. { LLM_ARCH_QWEN2, "qwen2" },
  223. { LLM_ARCH_QWEN2MOE, "qwen2moe" },
  224. { LLM_ARCH_PHI2, "phi2" },
  225. { LLM_ARCH_PHI3, "phi3" },
  226. { LLM_ARCH_PLAMO, "plamo" },
  227. { LLM_ARCH_CODESHELL, "codeshell" },
  228. { LLM_ARCH_ORION, "orion" },
  229. { LLM_ARCH_INTERNLM2, "internlm2" },
  230. { LLM_ARCH_MINICPM, "minicpm" },
  231. { LLM_ARCH_GEMMA, "gemma" },
  232. { LLM_ARCH_STARCODER2, "starcoder2" },
  233. { LLM_ARCH_MAMBA, "mamba" },
  234. { LLM_ARCH_XVERSE, "xverse" },
  235. { LLM_ARCH_COMMAND_R, "command-r" },
  236. { LLM_ARCH_DBRX, "dbrx" },
  237. { LLM_ARCH_OLMO, "olmo" },
  238. { LLM_ARCH_UNKNOWN, "(unknown)" },
  239. };
  240. enum llm_kv {
  241. LLM_KV_GENERAL_ARCHITECTURE,
  242. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  243. LLM_KV_GENERAL_ALIGNMENT,
  244. LLM_KV_GENERAL_NAME,
  245. LLM_KV_GENERAL_AUTHOR,
  246. LLM_KV_GENERAL_VERSION,
  247. LLM_KV_GENERAL_URL,
  248. LLM_KV_GENERAL_DESCRIPTION,
  249. LLM_KV_GENERAL_LICENSE,
  250. LLM_KV_GENERAL_SOURCE_URL,
  251. LLM_KV_GENERAL_SOURCE_HF_REPO,
  252. LLM_KV_VOCAB_SIZE,
  253. LLM_KV_CONTEXT_LENGTH,
  254. LLM_KV_EMBEDDING_LENGTH,
  255. LLM_KV_BLOCK_COUNT,
  256. LLM_KV_FEED_FORWARD_LENGTH,
  257. LLM_KV_USE_PARALLEL_RESIDUAL,
  258. LLM_KV_TENSOR_DATA_LAYOUT,
  259. LLM_KV_EXPERT_COUNT,
  260. LLM_KV_EXPERT_USED_COUNT,
  261. LLM_KV_POOLING_TYPE,
  262. LLM_KV_LOGIT_SCALE,
  263. LLM_KV_ATTENTION_HEAD_COUNT,
  264. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  265. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  266. LLM_KV_ATTENTION_CLAMP_KQV,
  267. LLM_KV_ATTENTION_KEY_LENGTH,
  268. LLM_KV_ATTENTION_VALUE_LENGTH,
  269. LLM_KV_ATTENTION_LAYERNORM_EPS,
  270. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  271. LLM_KV_ATTENTION_CAUSAL,
  272. LLM_KV_ROPE_DIMENSION_COUNT,
  273. LLM_KV_ROPE_FREQ_BASE,
  274. LLM_KV_ROPE_SCALE_LINEAR,
  275. LLM_KV_ROPE_SCALING_TYPE,
  276. LLM_KV_ROPE_SCALING_FACTOR,
  277. LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
  278. LLM_KV_ROPE_SCALING_FINETUNED,
  279. LLM_KV_SPLIT_NO,
  280. LLM_KV_SPLIT_COUNT,
  281. LLM_KV_SPLIT_TENSORS_COUNT,
  282. LLM_KV_SSM_INNER_SIZE,
  283. LLM_KV_SSM_CONV_KERNEL,
  284. LLM_KV_SSM_STATE_SIZE,
  285. LLM_KV_SSM_TIME_STEP_RANK,
  286. LLM_KV_TOKENIZER_MODEL,
  287. LLM_KV_TOKENIZER_PRE,
  288. LLM_KV_TOKENIZER_LIST,
  289. LLM_KV_TOKENIZER_TOKEN_TYPE,
  290. LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
  291. LLM_KV_TOKENIZER_SCORES,
  292. LLM_KV_TOKENIZER_MERGES,
  293. LLM_KV_TOKENIZER_BOS_ID,
  294. LLM_KV_TOKENIZER_EOS_ID,
  295. LLM_KV_TOKENIZER_UNK_ID,
  296. LLM_KV_TOKENIZER_SEP_ID,
  297. LLM_KV_TOKENIZER_PAD_ID,
  298. LLM_KV_TOKENIZER_CLS_ID,
  299. LLM_KV_TOKENIZER_MASK_ID,
  300. LLM_KV_TOKENIZER_ADD_BOS,
  301. LLM_KV_TOKENIZER_ADD_EOS,
  302. LLM_KV_TOKENIZER_ADD_PREFIX,
  303. LLM_KV_TOKENIZER_HF_JSON,
  304. LLM_KV_TOKENIZER_RWKV,
  305. LLM_KV_TOKENIZER_PREFIX_ID,
  306. LLM_KV_TOKENIZER_SUFFIX_ID,
  307. LLM_KV_TOKENIZER_MIDDLE_ID,
  308. LLM_KV_TOKENIZER_EOT_ID,
  309. };
  310. static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
  311. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  312. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  313. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  314. { LLM_KV_GENERAL_NAME, "general.name" },
  315. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  316. { LLM_KV_GENERAL_VERSION, "general.version" },
  317. { LLM_KV_GENERAL_URL, "general.url" },
  318. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  319. { LLM_KV_GENERAL_LICENSE, "general.license" },
  320. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  321. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  322. { LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
  323. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  324. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  325. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  326. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  327. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  328. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  329. { LLM_KV_EXPERT_COUNT, "%s.expert_count" },
  330. { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
  331. { LLM_KV_POOLING_TYPE , "%s.pooling_type" },
  332. { LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
  333. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  334. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  335. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  336. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  337. { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
  338. { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
  339. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  340. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  341. { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
  342. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  343. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  344. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  345. { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
  346. { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
  347. { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
  348. { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
  349. { LLM_KV_SPLIT_NO, "split.no" },
  350. { LLM_KV_SPLIT_COUNT, "split.count" },
  351. { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" },
  352. { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" },
  353. { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" },
  354. { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" },
  355. { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" },
  356. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  357. { LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" },
  358. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  359. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  360. { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" },
  361. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  362. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  363. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  364. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  365. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  366. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  367. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  368. { LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" },
  369. { LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" },
  370. { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
  371. { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
  372. { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
  373. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  374. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  375. { LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" },
  376. { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" },
  377. { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" },
  378. { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" },
  379. };
  380. struct LLM_KV {
  381. LLM_KV(llm_arch arch) : arch(arch) {}
  382. llm_arch arch;
  383. std::string operator()(llm_kv kv) const {
  384. return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
  385. }
  386. };
  387. enum llm_tensor {
  388. LLM_TENSOR_TOKEN_EMBD,
  389. LLM_TENSOR_TOKEN_EMBD_NORM,
  390. LLM_TENSOR_TOKEN_TYPES,
  391. LLM_TENSOR_POS_EMBD,
  392. LLM_TENSOR_OUTPUT,
  393. LLM_TENSOR_OUTPUT_NORM,
  394. LLM_TENSOR_ROPE_FREQS,
  395. LLM_TENSOR_ATTN_Q,
  396. LLM_TENSOR_ATTN_K,
  397. LLM_TENSOR_ATTN_V,
  398. LLM_TENSOR_ATTN_QKV,
  399. LLM_TENSOR_ATTN_OUT,
  400. LLM_TENSOR_ATTN_NORM,
  401. LLM_TENSOR_ATTN_NORM_2,
  402. LLM_TENSOR_ATTN_OUT_NORM,
  403. LLM_TENSOR_ATTN_ROT_EMBD,
  404. LLM_TENSOR_FFN_GATE_INP,
  405. LLM_TENSOR_FFN_GATE_INP_SHEXP,
  406. LLM_TENSOR_FFN_NORM,
  407. LLM_TENSOR_FFN_GATE,
  408. LLM_TENSOR_FFN_DOWN,
  409. LLM_TENSOR_FFN_UP,
  410. LLM_TENSOR_FFN_ACT,
  411. LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
  412. LLM_TENSOR_FFN_GATE_EXP,
  413. LLM_TENSOR_FFN_UP_EXP,
  414. LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
  415. LLM_TENSOR_FFN_GATE_EXPS,
  416. LLM_TENSOR_FFN_UP_EXPS,
  417. LLM_TENSOR_FFN_DOWN_SHEXP,
  418. LLM_TENSOR_FFN_GATE_SHEXP,
  419. LLM_TENSOR_FFN_UP_SHEXP,
  420. LLM_TENSOR_ATTN_Q_NORM,
  421. LLM_TENSOR_ATTN_K_NORM,
  422. LLM_TENSOR_LAYER_OUT_NORM,
  423. LLM_TENSOR_SSM_IN,
  424. LLM_TENSOR_SSM_CONV1D,
  425. LLM_TENSOR_SSM_X,
  426. LLM_TENSOR_SSM_DT,
  427. LLM_TENSOR_SSM_A,
  428. LLM_TENSOR_SSM_D,
  429. LLM_TENSOR_SSM_OUT,
  430. };
  431. static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  432. {
  433. LLM_ARCH_LLAMA,
  434. {
  435. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  436. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  437. { LLM_TENSOR_OUTPUT, "output" },
  438. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  439. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  440. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  441. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  442. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  443. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  444. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  445. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  446. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  447. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  448. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  449. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  450. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  451. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  452. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  453. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  454. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  455. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  456. },
  457. },
  458. {
  459. LLM_ARCH_BAICHUAN,
  460. {
  461. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  462. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  463. { LLM_TENSOR_OUTPUT, "output" },
  464. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  465. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  466. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  467. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  468. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  469. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  470. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  471. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  472. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  473. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  474. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  475. },
  476. },
  477. {
  478. LLM_ARCH_FALCON,
  479. {
  480. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  481. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  482. { LLM_TENSOR_OUTPUT, "output" },
  483. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  484. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  485. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  486. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  487. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  488. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  489. },
  490. },
  491. {
  492. LLM_ARCH_GROK,
  493. {
  494. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  495. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  496. { LLM_TENSOR_OUTPUT, "output" },
  497. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  498. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  499. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  500. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  501. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  502. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  503. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  504. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  505. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  506. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  507. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  508. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  509. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  510. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  511. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  512. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  513. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  514. },
  515. },
  516. {
  517. LLM_ARCH_GPT2,
  518. {
  519. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  520. { LLM_TENSOR_POS_EMBD, "position_embd" },
  521. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  522. { LLM_TENSOR_OUTPUT, "output" },
  523. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  524. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  525. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  526. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  527. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  528. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  529. },
  530. },
  531. {
  532. LLM_ARCH_GPTJ,
  533. {
  534. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  535. },
  536. },
  537. {
  538. LLM_ARCH_GPTNEOX,
  539. {
  540. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  541. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  542. { LLM_TENSOR_OUTPUT, "output" },
  543. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  544. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  545. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  546. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  547. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  548. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  549. },
  550. },
  551. {
  552. LLM_ARCH_PERSIMMON,
  553. {
  554. { LLM_TENSOR_TOKEN_EMBD, "token_embd"},
  555. { LLM_TENSOR_OUTPUT_NORM, "output_norm"},
  556. { LLM_TENSOR_OUTPUT, "output"},
  557. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm"},
  558. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv"},
  559. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output"},
  560. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  561. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  562. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm"},
  563. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down"},
  564. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up"},
  565. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd"},
  566. },
  567. },
  568. {
  569. LLM_ARCH_MPT,
  570. {
  571. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  572. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  573. { LLM_TENSOR_OUTPUT, "output"},
  574. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  575. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  576. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  577. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  578. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  579. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  580. { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
  581. { LLM_TENSOR_POS_EMBD, "position_embd" },
  582. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  583. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  584. },
  585. },
  586. {
  587. LLM_ARCH_STARCODER,
  588. {
  589. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  590. { LLM_TENSOR_POS_EMBD, "position_embd" },
  591. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  592. { LLM_TENSOR_OUTPUT, "output" },
  593. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  594. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  595. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  596. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  597. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  598. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  599. },
  600. },
  601. {
  602. LLM_ARCH_REFACT,
  603. {
  604. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  605. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  606. { LLM_TENSOR_OUTPUT, "output" },
  607. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  608. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  609. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  610. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  611. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  612. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  613. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  614. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  615. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  616. },
  617. },
  618. {
  619. LLM_ARCH_BERT,
  620. {
  621. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  622. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  623. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  624. { LLM_TENSOR_POS_EMBD, "position_embd" },
  625. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  626. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  627. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  628. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  629. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  630. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  631. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  632. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  633. },
  634. },
  635. {
  636. LLM_ARCH_NOMIC_BERT,
  637. {
  638. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  639. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  640. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  641. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  642. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  643. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  644. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  645. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  646. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  647. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  648. },
  649. },
  650. {
  651. LLM_ARCH_BLOOM,
  652. {
  653. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  654. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  655. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  656. { LLM_TENSOR_OUTPUT, "output" },
  657. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  658. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  659. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  660. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  661. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  662. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  663. },
  664. },
  665. {
  666. LLM_ARCH_STABLELM,
  667. {
  668. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  669. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  670. { LLM_TENSOR_OUTPUT, "output" },
  671. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  672. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  673. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  674. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  675. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  676. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  677. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  678. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  679. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  680. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  681. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  682. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  683. },
  684. },
  685. {
  686. LLM_ARCH_QWEN,
  687. {
  688. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  689. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  690. { LLM_TENSOR_OUTPUT, "output" },
  691. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  692. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  693. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  694. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  695. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  696. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  697. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  698. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  699. },
  700. },
  701. {
  702. LLM_ARCH_QWEN2,
  703. {
  704. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  705. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  706. { LLM_TENSOR_OUTPUT, "output" },
  707. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  708. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  709. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  710. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  711. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  712. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  713. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  714. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  715. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  716. },
  717. },
  718. {
  719. LLM_ARCH_QWEN2MOE,
  720. {
  721. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  722. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  723. { LLM_TENSOR_OUTPUT, "output" },
  724. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  725. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  726. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  727. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  728. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  729. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  730. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  731. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  732. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  733. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  734. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  735. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  736. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  737. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  738. },
  739. },
  740. {
  741. LLM_ARCH_PHI2,
  742. {
  743. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  744. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  745. { LLM_TENSOR_OUTPUT, "output" },
  746. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  747. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  748. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  749. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  750. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  751. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  752. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  753. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  754. },
  755. },
  756. {
  757. LLM_ARCH_PHI3,
  758. {
  759. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  760. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  761. { LLM_TENSOR_OUTPUT, "output" },
  762. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  763. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  764. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  765. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  766. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  767. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  768. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  769. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  770. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  771. },
  772. },
  773. {
  774. LLM_ARCH_PLAMO,
  775. {
  776. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  777. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  778. { LLM_TENSOR_OUTPUT, "output" },
  779. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  780. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  781. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  782. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  783. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  784. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  785. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  786. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  787. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  788. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  789. },
  790. },
  791. {
  792. LLM_ARCH_CODESHELL,
  793. {
  794. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  795. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  796. { LLM_TENSOR_OUTPUT, "output" },
  797. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  798. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  799. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  800. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  801. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  802. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  803. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  804. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  805. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  806. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  807. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  808. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  809. },
  810. },
  811. {
  812. LLM_ARCH_ORION,
  813. {
  814. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  815. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  816. { LLM_TENSOR_OUTPUT, "output" },
  817. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  818. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  819. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  820. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  821. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  822. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  823. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  824. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  825. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  826. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  827. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  828. },
  829. },
  830. {
  831. LLM_ARCH_INTERNLM2,
  832. {
  833. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  834. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  835. { LLM_TENSOR_OUTPUT, "output" },
  836. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  837. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  838. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  839. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  840. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  841. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  842. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  843. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  844. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  845. },
  846. },
  847. {
  848. LLM_ARCH_MINICPM,
  849. {
  850. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  851. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  852. { LLM_TENSOR_OUTPUT, "output" },
  853. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  854. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  855. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  856. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  857. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  858. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  859. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  860. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  861. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  862. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  863. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  864. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  865. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  866. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  867. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  868. },
  869. },
  870. {
  871. LLM_ARCH_GEMMA,
  872. {
  873. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  874. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  875. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  876. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  877. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  878. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  879. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  880. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  881. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  882. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  883. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  884. },
  885. },
  886. {
  887. LLM_ARCH_STARCODER2,
  888. {
  889. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  890. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  891. { LLM_TENSOR_OUTPUT, "output" },
  892. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  893. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  894. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  895. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  896. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  897. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  898. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  899. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  900. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  901. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  902. },
  903. },
  904. {
  905. LLM_ARCH_MAMBA,
  906. {
  907. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  908. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  909. { LLM_TENSOR_OUTPUT, "output" },
  910. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  911. { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
  912. { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
  913. { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
  914. { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
  915. { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
  916. { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
  917. { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
  918. },
  919. },
  920. {
  921. LLM_ARCH_XVERSE,
  922. {
  923. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  924. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  925. { LLM_TENSOR_OUTPUT, "output" },
  926. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  927. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  928. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  929. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  930. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  931. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  932. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  933. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  934. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  935. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  936. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  937. },
  938. },
  939. {
  940. LLM_ARCH_COMMAND_R,
  941. {
  942. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  943. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  944. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  945. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  946. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  947. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  948. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  949. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  950. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  951. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  952. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  953. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  954. },
  955. },
  956. {
  957. LLM_ARCH_DBRX,
  958. {
  959. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  960. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  961. { LLM_TENSOR_OUTPUT, "output" },
  962. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  963. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  964. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  965. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  966. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  967. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  968. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  969. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  970. },
  971. },
  972. {
  973. LLM_ARCH_OLMO,
  974. {
  975. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  976. { LLM_TENSOR_OUTPUT, "output" },
  977. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  978. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  979. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  980. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  981. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  982. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  983. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  984. },
  985. },
  986. {
  987. LLM_ARCH_UNKNOWN,
  988. {
  989. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  990. },
  991. },
  992. };
  993. static llm_arch llm_arch_from_string(const std::string & name) {
  994. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  995. if (kv.second == name) {
  996. return kv.first;
  997. }
  998. }
  999. return LLM_ARCH_UNKNOWN;
  1000. }
  1001. // helper to handle gguf constants
  1002. // usage:
  1003. //
  1004. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  1005. //
  1006. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  1007. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  1008. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  1009. //
  1010. struct LLM_TN {
  1011. LLM_TN(llm_arch arch) : arch(arch) {}
  1012. llm_arch arch;
  1013. std::string operator()(llm_tensor tensor) const {
  1014. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1015. return "__missing__";
  1016. }
  1017. return LLM_TENSOR_NAMES.at(arch).at(tensor);
  1018. }
  1019. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  1020. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1021. return "__missing__";
  1022. }
  1023. return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
  1024. }
  1025. std::string operator()(llm_tensor tensor, int bid) const {
  1026. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1027. return "__missing__";
  1028. }
  1029. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
  1030. }
  1031. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  1032. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1033. return "__missing__";
  1034. }
  1035. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
  1036. }
  1037. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
  1038. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1039. return "__missing__";
  1040. }
  1041. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
  1042. }
  1043. };
  1044. //
  1045. // gguf helpers
  1046. //
  1047. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  1048. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  1049. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  1050. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  1051. };
  1052. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  1053. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  1054. if (kv.second == name) {
  1055. return (llama_rope_scaling_type) kv.first;
  1056. }
  1057. }
  1058. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  1059. }
  1060. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  1061. switch (type) {
  1062. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  1063. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  1064. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  1065. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  1066. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  1067. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  1068. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  1069. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  1070. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  1071. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  1072. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  1073. default: return format("unknown type %d", type);
  1074. }
  1075. }
  1076. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  1077. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  1078. switch (type) {
  1079. case GGUF_TYPE_STRING:
  1080. return gguf_get_val_str(ctx_gguf, i);
  1081. case GGUF_TYPE_ARRAY:
  1082. {
  1083. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  1084. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  1085. const void * data = gguf_get_arr_data(ctx_gguf, i);
  1086. std::stringstream ss;
  1087. ss << "[";
  1088. for (int j = 0; j < arr_n; j++) {
  1089. if (arr_type == GGUF_TYPE_STRING) {
  1090. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  1091. // escape quotes
  1092. replace_all(val, "\\", "\\\\");
  1093. replace_all(val, "\"", "\\\"");
  1094. ss << '"' << val << '"';
  1095. } else if (arr_type == GGUF_TYPE_ARRAY) {
  1096. ss << "???";
  1097. } else {
  1098. ss << gguf_data_to_str(arr_type, data, j);
  1099. }
  1100. if (j < arr_n - 1) {
  1101. ss << ", ";
  1102. }
  1103. }
  1104. ss << "]";
  1105. return ss.str();
  1106. }
  1107. default:
  1108. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  1109. }
  1110. }
  1111. //
  1112. // llama helpers
  1113. //
  1114. #if defined(_WIN32)
  1115. static std::string llama_format_win_err(DWORD err) {
  1116. LPSTR buf;
  1117. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  1118. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  1119. if (!size) {
  1120. return "FormatMessageA failed";
  1121. }
  1122. std::string ret(buf, size);
  1123. LocalFree(buf);
  1124. return ret;
  1125. }
  1126. #endif
  1127. template <typename T>
  1128. struct no_init {
  1129. T value;
  1130. no_init() { /* do nothing */ }
  1131. };
  1132. struct llama_file {
  1133. // use FILE * so we don't have to re-open the file to mmap
  1134. FILE * fp;
  1135. size_t size;
  1136. llama_file(const char * fname, const char * mode) {
  1137. fp = ggml_fopen(fname, mode);
  1138. if (fp == NULL) {
  1139. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  1140. }
  1141. seek(0, SEEK_END);
  1142. size = tell();
  1143. seek(0, SEEK_SET);
  1144. }
  1145. size_t tell() const {
  1146. #ifdef _WIN32
  1147. __int64 ret = _ftelli64(fp);
  1148. #else
  1149. long ret = std::ftell(fp);
  1150. #endif
  1151. GGML_ASSERT(ret != -1); // this really shouldn't fail
  1152. return (size_t) ret;
  1153. }
  1154. void seek(size_t offset, int whence) const {
  1155. #ifdef _WIN32
  1156. int ret = _fseeki64(fp, (__int64) offset, whence);
  1157. #else
  1158. int ret = std::fseek(fp, (long) offset, whence);
  1159. #endif
  1160. GGML_ASSERT(ret == 0); // same
  1161. }
  1162. void read_raw(void * ptr, size_t len) const {
  1163. if (len == 0) {
  1164. return;
  1165. }
  1166. errno = 0;
  1167. std::size_t ret = std::fread(ptr, len, 1, fp);
  1168. if (ferror(fp)) {
  1169. throw std::runtime_error(format("read error: %s", strerror(errno)));
  1170. }
  1171. if (ret != 1) {
  1172. throw std::runtime_error("unexpectedly reached end of file");
  1173. }
  1174. }
  1175. uint32_t read_u32() const {
  1176. uint32_t ret;
  1177. read_raw(&ret, sizeof(ret));
  1178. return ret;
  1179. }
  1180. void write_raw(const void * ptr, size_t len) const {
  1181. if (len == 0) {
  1182. return;
  1183. }
  1184. errno = 0;
  1185. size_t ret = std::fwrite(ptr, len, 1, fp);
  1186. if (ret != 1) {
  1187. throw std::runtime_error(format("write error: %s", strerror(errno)));
  1188. }
  1189. }
  1190. void write_u32(std::uint32_t val) const {
  1191. write_raw(&val, sizeof(val));
  1192. }
  1193. ~llama_file() {
  1194. if (fp) {
  1195. std::fclose(fp);
  1196. }
  1197. }
  1198. };
  1199. using llama_files = std::vector<std::unique_ptr<llama_file>>;
  1200. struct llama_mmap {
  1201. void * addr;
  1202. size_t size;
  1203. llama_mmap(const llama_mmap &) = delete;
  1204. #ifdef _POSIX_MAPPED_FILES
  1205. static constexpr bool SUPPORTED = true;
  1206. // list of mapped fragments (first_offset, last_offset)
  1207. std::vector<std::pair<size_t, size_t>> mapped_fragments;
  1208. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  1209. size = file->size;
  1210. int fd = fileno(file->fp);
  1211. int flags = MAP_SHARED;
  1212. // prefetch/readahead impairs performance on NUMA systems
  1213. if (numa) { prefetch = 0; }
  1214. #ifdef __linux__
  1215. // advise the kernel to read the file sequentially (increases readahead)
  1216. if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
  1217. LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
  1218. strerror(errno));
  1219. }
  1220. if (prefetch) { flags |= MAP_POPULATE; }
  1221. #endif
  1222. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  1223. if (addr == MAP_FAILED) { // NOLINT
  1224. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  1225. }
  1226. if (prefetch > 0) {
  1227. // advise the kernel to preload the mapped memory
  1228. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  1229. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  1230. strerror(errno));
  1231. }
  1232. }
  1233. if (numa) {
  1234. // advise the kernel not to use readahead
  1235. // (because the next page might not belong on the same node)
  1236. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  1237. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  1238. strerror(errno));
  1239. }
  1240. }
  1241. // initialize list of mapped_fragments
  1242. mapped_fragments.emplace_back(0, file->size);
  1243. }
  1244. static void align_range(size_t * first, size_t * last, size_t page_size) {
  1245. // align first to the next page
  1246. size_t offset_in_page = *first & (page_size - 1);
  1247. size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
  1248. *first += offset_to_page;
  1249. // align last to the previous page
  1250. *last = *last & ~(page_size - 1);
  1251. if (*last <= *first) {
  1252. *last = *first;
  1253. }
  1254. }
  1255. // partially unmap the file in the range [first, last)
  1256. void unmap_fragment(size_t first, size_t last) {
  1257. // note: this function must not be called multiple times with overlapping ranges
  1258. // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
  1259. int page_size = sysconf(_SC_PAGESIZE);
  1260. align_range(&first, &last, page_size);
  1261. size_t len = last - first;
  1262. if (len == 0) {
  1263. return;
  1264. }
  1265. GGML_ASSERT(first % page_size == 0);
  1266. GGML_ASSERT(last % page_size == 0);
  1267. GGML_ASSERT(last > first);
  1268. void * next_page_start = (uint8_t *) addr + first;
  1269. // unmap the range
  1270. if (munmap(next_page_start, len)) {
  1271. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1272. }
  1273. // update the list of mapped fragments to avoid unmapping the same range again in the destructor
  1274. std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
  1275. for (const auto & frag : mapped_fragments) {
  1276. if (frag.first < first && frag.second > last) {
  1277. // the range is in the middle of the fragment, split it
  1278. new_mapped_fragments.emplace_back(frag.first, first);
  1279. new_mapped_fragments.emplace_back(last, frag.second);
  1280. } else if (frag.first < first && frag.second > first) {
  1281. // the range starts in the middle of the fragment
  1282. new_mapped_fragments.emplace_back(frag.first, first);
  1283. } else if (frag.first < last && frag.second > last) {
  1284. // the range ends in the middle of the fragment
  1285. new_mapped_fragments.emplace_back(last, frag.second);
  1286. } else if (frag.first >= first && frag.second <= last) {
  1287. // the range covers the entire fragment
  1288. } else {
  1289. // the range is outside the fragment
  1290. new_mapped_fragments.push_back(frag);
  1291. }
  1292. }
  1293. mapped_fragments = std::move(new_mapped_fragments);
  1294. }
  1295. ~llama_mmap() {
  1296. for (const auto & frag : mapped_fragments) {
  1297. if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
  1298. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1299. }
  1300. }
  1301. }
  1302. #elif defined(_WIN32)
  1303. static constexpr bool SUPPORTED = true;
  1304. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
  1305. GGML_UNUSED(numa);
  1306. size = file->size;
  1307. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  1308. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  1309. if (hMapping == NULL) {
  1310. DWORD error = GetLastError();
  1311. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  1312. }
  1313. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  1314. DWORD error = GetLastError();
  1315. CloseHandle(hMapping);
  1316. if (addr == NULL) {
  1317. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  1318. }
  1319. if (prefetch > 0) {
  1320. #if _WIN32_WINNT >= 0x602
  1321. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  1322. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  1323. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  1324. // may fail on pre-Windows 8 systems
  1325. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  1326. if (pPrefetchVirtualMemory) {
  1327. // advise the kernel to preload the mapped memory
  1328. WIN32_MEMORY_RANGE_ENTRY range;
  1329. range.VirtualAddress = addr;
  1330. range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
  1331. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  1332. LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
  1333. llama_format_win_err(GetLastError()).c_str());
  1334. }
  1335. }
  1336. #else
  1337. throw std::runtime_error("PrefetchVirtualMemory unavailable");
  1338. #endif
  1339. }
  1340. }
  1341. void unmap_fragment(size_t first, size_t last) {
  1342. // not supported
  1343. GGML_UNUSED(first);
  1344. GGML_UNUSED(last);
  1345. }
  1346. ~llama_mmap() {
  1347. if (!UnmapViewOfFile(addr)) {
  1348. LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
  1349. llama_format_win_err(GetLastError()).c_str());
  1350. }
  1351. }
  1352. #else
  1353. static constexpr bool SUPPORTED = false;
  1354. llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
  1355. GGML_UNUSED(file);
  1356. GGML_UNUSED(prefetch);
  1357. GGML_UNUSED(numa);
  1358. throw std::runtime_error("mmap not supported");
  1359. }
  1360. void unmap_fragment(size_t first, size_t last) {
  1361. GGML_UNUSED(first);
  1362. GGML_UNUSED(last);
  1363. throw std::runtime_error("mmap not supported");
  1364. }
  1365. #endif
  1366. };
  1367. using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
  1368. // Represents some region of memory being locked using mlock or VirtualLock;
  1369. // will automatically unlock on destruction.
  1370. struct llama_mlock {
  1371. void * addr = NULL;
  1372. size_t size = 0;
  1373. bool failed_already = false;
  1374. llama_mlock() {}
  1375. llama_mlock(const llama_mlock &) = delete;
  1376. ~llama_mlock() {
  1377. if (size) {
  1378. raw_unlock(addr, size);
  1379. }
  1380. }
  1381. void init(void * ptr) {
  1382. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  1383. addr = ptr;
  1384. }
  1385. void grow_to(size_t target_size) {
  1386. GGML_ASSERT(addr);
  1387. if (failed_already) {
  1388. return;
  1389. }
  1390. size_t granularity = lock_granularity();
  1391. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  1392. if (target_size > size) {
  1393. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  1394. size = target_size;
  1395. } else {
  1396. failed_already = true;
  1397. }
  1398. }
  1399. }
  1400. #ifdef _POSIX_MEMLOCK_RANGE
  1401. static constexpr bool SUPPORTED = true;
  1402. static size_t lock_granularity() {
  1403. return (size_t) sysconf(_SC_PAGESIZE);
  1404. }
  1405. #ifdef __APPLE__
  1406. #define MLOCK_SUGGESTION \
  1407. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  1408. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
  1409. #else
  1410. #define MLOCK_SUGGESTION \
  1411. "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
  1412. #endif
  1413. bool raw_lock(const void * addr, size_t size) const {
  1414. if (!mlock(addr, size)) {
  1415. return true;
  1416. }
  1417. char* errmsg = std::strerror(errno);
  1418. bool suggest = (errno == ENOMEM);
  1419. // Check if the resource limit is fine after all
  1420. struct rlimit lock_limit;
  1421. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  1422. suggest = false;
  1423. }
  1424. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  1425. suggest = false;
  1426. }
  1427. LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  1428. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  1429. return false;
  1430. }
  1431. #undef MLOCK_SUGGESTION
  1432. static void raw_unlock(void * addr, size_t size) {
  1433. if (munlock(addr, size)) {
  1434. LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
  1435. }
  1436. }
  1437. #elif defined(_WIN32)
  1438. static constexpr bool SUPPORTED = true;
  1439. static size_t lock_granularity() {
  1440. SYSTEM_INFO si;
  1441. GetSystemInfo(&si);
  1442. return (size_t) si.dwPageSize;
  1443. }
  1444. bool raw_lock(void * ptr, size_t len) const {
  1445. for (int tries = 1; ; tries++) {
  1446. if (VirtualLock(ptr, len)) {
  1447. return true;
  1448. }
  1449. if (tries == 2) {
  1450. LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  1451. len, size, llama_format_win_err(GetLastError()).c_str());
  1452. return false;
  1453. }
  1454. // It failed but this was only the first try; increase the working
  1455. // set size and try again.
  1456. SIZE_T min_ws_size, max_ws_size;
  1457. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  1458. LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
  1459. llama_format_win_err(GetLastError()).c_str());
  1460. return false;
  1461. }
  1462. // Per MSDN: "The maximum number of pages that a process can lock
  1463. // is equal to the number of pages in its minimum working set minus
  1464. // a small overhead."
  1465. // Hopefully a megabyte is enough overhead:
  1466. size_t increment = len + 1048576;
  1467. // The minimum must be <= the maximum, so we need to increase both:
  1468. min_ws_size += increment;
  1469. max_ws_size += increment;
  1470. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  1471. LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
  1472. llama_format_win_err(GetLastError()).c_str());
  1473. return false;
  1474. }
  1475. }
  1476. }
  1477. static void raw_unlock(void * ptr, size_t len) {
  1478. if (!VirtualUnlock(ptr, len)) {
  1479. LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
  1480. llama_format_win_err(GetLastError()).c_str());
  1481. }
  1482. }
  1483. #else
  1484. static constexpr bool SUPPORTED = false;
  1485. static size_t lock_granularity() {
  1486. return (size_t) 65536;
  1487. }
  1488. bool raw_lock(const void * addr, size_t len) const {
  1489. LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
  1490. return false;
  1491. }
  1492. static void raw_unlock(const void * addr, size_t len) {}
  1493. #endif
  1494. };
  1495. using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
  1496. static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
  1497. std::vector<char> result(8, 0);
  1498. const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
  1499. if (n_tokens < 0) {
  1500. result.resize(-n_tokens);
  1501. int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
  1502. GGML_ASSERT(check == -n_tokens);
  1503. }
  1504. else {
  1505. result.resize(n_tokens);
  1506. }
  1507. return std::string(result.data(), result.size());
  1508. }
  1509. static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
  1510. ggml_backend_buffer_type_t buft = nullptr;
  1511. #if defined(GGML_USE_CUDA)
  1512. // host buffers should only be used when data is expected to be copied to/from the GPU
  1513. if (host_buffer) {
  1514. buft = ggml_backend_cuda_host_buffer_type();
  1515. }
  1516. #elif defined(GGML_USE_SYCL)
  1517. if (host_buffer) {
  1518. buft = ggml_backend_sycl_host_buffer_type();
  1519. }
  1520. #elif defined(GGML_USE_CPU_HBM)
  1521. buft = ggml_backend_cpu_hbm_buffer_type();
  1522. #elif defined(GGML_USE_VULKAN)
  1523. if (host_buffer) {
  1524. buft = ggml_backend_vk_host_buffer_type();
  1525. }
  1526. #endif
  1527. if (buft == nullptr) {
  1528. buft = ggml_backend_cpu_buffer_type();
  1529. }
  1530. return buft;
  1531. GGML_UNUSED(host_buffer);
  1532. }
  1533. static ggml_backend_buffer_type_t llama_default_buffer_type_offload(int gpu) {
  1534. ggml_backend_buffer_type_t buft = nullptr;
  1535. #ifdef GGML_USE_METAL
  1536. buft = ggml_backend_metal_buffer_type();
  1537. #elif defined(GGML_USE_CUDA)
  1538. buft = ggml_backend_cuda_buffer_type(gpu);
  1539. #elif defined(GGML_USE_VULKAN)
  1540. buft = ggml_backend_vk_buffer_type(gpu);
  1541. #elif defined(GGML_USE_SYCL)
  1542. buft = ggml_backend_sycl_buffer_type(gpu);
  1543. #elif defined(GGML_USE_CLBLAST)
  1544. buft = ggml_backend_opencl_buffer_type();
  1545. #elif defined(GGML_USE_KOMPUTE)
  1546. buft = ggml_backend_kompute_buffer_type(gpu);
  1547. if (buft == nullptr) {
  1548. LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
  1549. }
  1550. #endif
  1551. if (buft == nullptr) {
  1552. buft = llama_default_buffer_type_cpu(true);
  1553. }
  1554. return buft;
  1555. GGML_UNUSED(gpu);
  1556. }
  1557. static ggml_backend_buffer_type_t llama_default_buffer_type_split(int fallback_gpu, const float * tensor_split) {
  1558. ggml_backend_buffer_type_t buft = nullptr;
  1559. #ifdef GGML_USE_CUDA
  1560. if (ggml_backend_cuda_get_device_count() > 1) {
  1561. buft = ggml_backend_cuda_split_buffer_type(tensor_split);
  1562. }
  1563. #endif
  1564. #ifdef GGML_USE_SYCL
  1565. if (ggml_backend_sycl_get_device_count() > 1) {
  1566. buft = ggml_backend_sycl_split_buffer_type(tensor_split);
  1567. }
  1568. #endif
  1569. if (buft == nullptr) {
  1570. buft = llama_default_buffer_type_offload(fallback_gpu);
  1571. }
  1572. return buft;
  1573. GGML_UNUSED(tensor_split);
  1574. }
  1575. static size_t llama_get_device_count() {
  1576. #if defined(GGML_USE_CUDA)
  1577. return ggml_backend_cuda_get_device_count();
  1578. #elif defined(GGML_USE_SYCL)
  1579. return ggml_backend_sycl_get_device_count();
  1580. #elif defined(GGML_USE_VULKAN)
  1581. return ggml_backend_vk_get_device_count();
  1582. #else
  1583. return 1;
  1584. #endif
  1585. }
  1586. static size_t llama_get_device_memory(int device) {
  1587. #if defined(GGML_USE_CUDA)
  1588. size_t total;
  1589. size_t free;
  1590. ggml_backend_cuda_get_device_memory(device, &free, &total);
  1591. return free;
  1592. #elif defined(GGML_USE_SYCL)
  1593. size_t total;
  1594. size_t free;
  1595. ggml_backend_sycl_get_device_memory(device, &free, &total);
  1596. return free;
  1597. #elif defined(GGML_USE_VULKAN)
  1598. size_t total;
  1599. size_t free;
  1600. ggml_backend_vk_get_device_memory(device, &free, &total);
  1601. return free;
  1602. #else
  1603. return 1;
  1604. GGML_UNUSED(device);
  1605. #endif
  1606. }
  1607. //
  1608. // globals
  1609. //
  1610. struct llama_state {
  1611. llama_state() {
  1612. #ifdef GGML_USE_METAL
  1613. ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
  1614. #endif
  1615. }
  1616. // We save the log callback globally
  1617. ggml_log_callback log_callback = llama_log_callback_default;
  1618. void * log_callback_user_data = nullptr;
  1619. };
  1620. static llama_state g_state;
  1621. // available llama models
  1622. enum e_model {
  1623. MODEL_UNKNOWN,
  1624. MODEL_17M,
  1625. MODEL_22M,
  1626. MODEL_33M,
  1627. MODEL_109M,
  1628. MODEL_137M,
  1629. MODEL_335M,
  1630. MODEL_0_5B,
  1631. MODEL_1B,
  1632. MODEL_2B,
  1633. MODEL_3B,
  1634. MODEL_4B,
  1635. MODEL_7B,
  1636. MODEL_8B,
  1637. MODEL_12B,
  1638. MODEL_13B,
  1639. MODEL_14B,
  1640. MODEL_15B,
  1641. MODEL_20B,
  1642. MODEL_30B,
  1643. MODEL_34B,
  1644. MODEL_35B,
  1645. MODEL_40B,
  1646. MODEL_65B,
  1647. MODEL_70B,
  1648. MODEL_314B,
  1649. MODEL_SMALL,
  1650. MODEL_MEDIUM,
  1651. MODEL_LARGE,
  1652. MODEL_XL,
  1653. MODEL_A2_7B,
  1654. MODEL_8x7B,
  1655. MODEL_8x22B,
  1656. MODEL_16x12B,
  1657. };
  1658. static const size_t kiB = 1024;
  1659. static const size_t MiB = 1024*kiB;
  1660. static const size_t GiB = 1024*MiB;
  1661. struct llama_hparams {
  1662. bool vocab_only;
  1663. bool rope_finetuned;
  1664. uint32_t n_vocab;
  1665. uint32_t n_ctx_train; // context size the model was trained on
  1666. uint32_t n_embd;
  1667. uint32_t n_head;
  1668. uint32_t n_head_kv;
  1669. uint32_t n_layer;
  1670. uint32_t n_rot;
  1671. uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
  1672. uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
  1673. uint32_t n_ff;
  1674. uint32_t n_expert = 0;
  1675. uint32_t n_expert_used = 0;
  1676. uint32_t n_vocab_type = 0; // for BERT-style token types
  1677. float f_norm_eps;
  1678. float f_norm_rms_eps;
  1679. float rope_freq_base_train;
  1680. float rope_freq_scale_train;
  1681. uint32_t n_yarn_orig_ctx;
  1682. // for State Space Models
  1683. uint32_t ssm_d_conv = 0;
  1684. uint32_t ssm_d_inner = 0;
  1685. uint32_t ssm_d_state = 0;
  1686. uint32_t ssm_dt_rank = 0;
  1687. float f_clamp_kqv = 0.0f;
  1688. float f_max_alibi_bias = 0.0f;
  1689. float f_logit_scale = 0.0f;
  1690. bool causal_attn = true;
  1691. bool need_kq_pos = false;
  1692. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
  1693. enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
  1694. enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
  1695. bool operator!=(const llama_hparams & other) const {
  1696. if (this->vocab_only != other.vocab_only) return true;
  1697. if (this->n_vocab != other.n_vocab) return true;
  1698. if (this->n_ctx_train != other.n_ctx_train) return true;
  1699. if (this->n_embd != other.n_embd) return true;
  1700. if (this->n_head != other.n_head) return true;
  1701. if (this->n_head_kv != other.n_head_kv) return true;
  1702. if (this->n_layer != other.n_layer) return true;
  1703. if (this->n_rot != other.n_rot) return true;
  1704. if (this->n_embd_head_k != other.n_embd_head_k) return true;
  1705. if (this->n_embd_head_v != other.n_embd_head_v) return true;
  1706. if (this->n_ff != other.n_ff) return true;
  1707. if (this->n_expert != other.n_expert) return true;
  1708. if (this->n_expert_used != other.n_expert_used) return true;
  1709. if (this->rope_finetuned != other.rope_finetuned) return true;
  1710. if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true;
  1711. if (this->ssm_d_conv != other.ssm_d_conv) return true;
  1712. if (this->ssm_d_inner != other.ssm_d_inner) return true;
  1713. if (this->ssm_d_state != other.ssm_d_state) return true;
  1714. if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
  1715. const float EPSILON = 1e-9f;
  1716. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  1717. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  1718. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  1719. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  1720. return false;
  1721. }
  1722. uint32_t n_gqa() const {
  1723. if (n_head_kv == 0) {
  1724. return 0;
  1725. }
  1726. return n_head/n_head_kv;
  1727. }
  1728. uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads
  1729. return n_embd_head_k * n_head_kv;
  1730. }
  1731. uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads
  1732. return n_embd_head_v * n_head_kv;
  1733. }
  1734. uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
  1735. // corresponds to Mamba's conv_states size
  1736. // TODO: maybe support other convolution strides than 1
  1737. // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
  1738. return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
  1739. }
  1740. uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
  1741. // corresponds to Mamba's ssm_states size
  1742. return ssm_d_state * ssm_d_inner;
  1743. }
  1744. };
  1745. struct llama_cparams {
  1746. uint32_t n_ctx; // context size used during inference
  1747. uint32_t n_batch;
  1748. uint32_t n_ubatch;
  1749. uint32_t n_seq_max;
  1750. uint32_t n_threads; // number of threads to use for generation
  1751. uint32_t n_threads_batch; // number of threads to use for batch processing
  1752. float rope_freq_base;
  1753. float rope_freq_scale;
  1754. uint32_t n_yarn_orig_ctx;
  1755. // These hyperparameters are not exposed in GGUF, because all
  1756. // existing YaRN models use the same values for them.
  1757. float yarn_ext_factor;
  1758. float yarn_attn_factor;
  1759. float yarn_beta_fast;
  1760. float yarn_beta_slow;
  1761. float defrag_thold;
  1762. bool embeddings;
  1763. bool causal_attn;
  1764. bool offload_kqv;
  1765. enum llama_pooling_type pooling_type;
  1766. ggml_backend_sched_eval_callback cb_eval;
  1767. void * cb_eval_user_data;
  1768. };
  1769. struct llama_layer {
  1770. // normalization
  1771. struct ggml_tensor * attn_norm;
  1772. struct ggml_tensor * attn_norm_b;
  1773. struct ggml_tensor * attn_norm_2;
  1774. struct ggml_tensor * attn_norm_2_b;
  1775. struct ggml_tensor * attn_q_norm;
  1776. struct ggml_tensor * attn_q_norm_b;
  1777. struct ggml_tensor * attn_k_norm;
  1778. struct ggml_tensor * attn_k_norm_b;
  1779. struct ggml_tensor * attn_out_norm;
  1780. struct ggml_tensor * attn_out_norm_b;
  1781. // attention
  1782. struct ggml_tensor * wq;
  1783. struct ggml_tensor * wk;
  1784. struct ggml_tensor * wv;
  1785. struct ggml_tensor * wo;
  1786. struct ggml_tensor * wqkv;
  1787. // attention bias
  1788. struct ggml_tensor * bq;
  1789. struct ggml_tensor * bk;
  1790. struct ggml_tensor * bv;
  1791. struct ggml_tensor * bo;
  1792. struct ggml_tensor * bqkv;
  1793. // normalization
  1794. struct ggml_tensor * ffn_norm;
  1795. struct ggml_tensor * ffn_norm_b;
  1796. struct ggml_tensor * layer_out_norm;
  1797. struct ggml_tensor * layer_out_norm_b;
  1798. // ff
  1799. struct ggml_tensor * ffn_gate; // w1
  1800. struct ggml_tensor * ffn_down; // w2
  1801. struct ggml_tensor * ffn_up; // w3
  1802. // ff MoE
  1803. struct ggml_tensor * ffn_gate_inp;
  1804. struct ggml_tensor * ffn_gate_exps;
  1805. struct ggml_tensor * ffn_down_exps;
  1806. struct ggml_tensor * ffn_up_exps ;
  1807. // ff shared expert (shexp)
  1808. struct ggml_tensor * ffn_gate_inp_shexp;
  1809. struct ggml_tensor * ffn_gate_shexp;
  1810. struct ggml_tensor * ffn_down_shexp;
  1811. struct ggml_tensor * ffn_up_shexp;
  1812. // ff bias
  1813. struct ggml_tensor * ffn_down_b; // b2
  1814. struct ggml_tensor * ffn_up_b; // b3
  1815. struct ggml_tensor * ffn_act;
  1816. // mamba proj
  1817. struct ggml_tensor * ssm_in;
  1818. struct ggml_tensor * ssm_x;
  1819. struct ggml_tensor * ssm_dt;
  1820. struct ggml_tensor * ssm_out;
  1821. // mamba
  1822. struct ggml_tensor * ssm_conv1d;
  1823. struct ggml_tensor * ssm_a;
  1824. struct ggml_tensor * ssm_d;
  1825. // mamba bias
  1826. struct ggml_tensor * ssm_conv1d_b;
  1827. struct ggml_tensor * ssm_dt_b;
  1828. };
  1829. struct llama_kv_cell {
  1830. llama_pos pos = -1;
  1831. llama_pos delta = 0;
  1832. int32_t src = 0; // used by recurrent state models to copy states
  1833. std::set<llama_seq_id> seq_id;
  1834. bool has_seq_id(const llama_seq_id & id) const {
  1835. return seq_id.find(id) != seq_id.end();
  1836. }
  1837. bool is_empty() const {
  1838. return seq_id.empty();
  1839. }
  1840. bool is_same_seq(const llama_kv_cell & other) const {
  1841. return seq_id == other.seq_id;
  1842. }
  1843. };
  1844. // ring-buffer of cached KV data
  1845. struct llama_kv_cache {
  1846. bool has_shift = false;
  1847. bool do_defrag = false;
  1848. bool do_copy = false;
  1849. // with recurrent state models, a cell can hold the state for more than one past token
  1850. bool recurrent = false;
  1851. // Note: The value of head isn't only used to optimize searching
  1852. // for a free KV slot. llama_decode_internal also uses it, so it
  1853. // cannot be freely changed after a slot has been allocated.
  1854. uint32_t head = 0;
  1855. uint32_t size = 0;
  1856. uint32_t used = 0; // used cells (i.e. at least one seq_id)
  1857. // computed before each graph build
  1858. uint32_t n = 0;
  1859. ggml_type type_k = GGML_TYPE_F16;
  1860. ggml_type type_v = GGML_TYPE_F16;
  1861. std::vector<llama_kv_cell> cells;
  1862. std::vector<struct ggml_tensor *> k_l; // per layer
  1863. std::vector<struct ggml_tensor *> v_l;
  1864. std::vector<struct ggml_context *> ctxs;
  1865. std::vector<ggml_backend_buffer_t> bufs;
  1866. size_t total_size() const {
  1867. size_t size = 0;
  1868. for (ggml_backend_buffer_t buf : bufs) {
  1869. size += ggml_backend_buffer_get_size(buf);
  1870. }
  1871. return size;
  1872. }
  1873. ~llama_kv_cache() {
  1874. for (struct ggml_context * ctx : ctxs) {
  1875. ggml_free(ctx);
  1876. }
  1877. for (ggml_backend_buffer_t buf : bufs) {
  1878. ggml_backend_buffer_free(buf);
  1879. }
  1880. }
  1881. };
  1882. struct llama_control_vector {
  1883. std::vector<struct ggml_tensor *> tensors; // per layer
  1884. std::vector<struct ggml_context *> ctxs;
  1885. std::vector<ggml_backend_buffer_t> bufs;
  1886. int32_t layer_start = -1;
  1887. int32_t layer_end = -1;
  1888. ggml_tensor * tensor_for(int il) const {
  1889. if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
  1890. return nullptr;
  1891. }
  1892. return tensors[il];
  1893. }
  1894. ~llama_control_vector() {
  1895. for (struct ggml_context * ctx : ctxs) {
  1896. ggml_free(ctx);
  1897. }
  1898. for (ggml_backend_buffer_t buf : bufs) {
  1899. ggml_backend_buffer_free(buf);
  1900. }
  1901. }
  1902. };
  1903. struct llama_vocab {
  1904. using id = int32_t;
  1905. using token = std::string;
  1906. using ttype = llama_token_type;
  1907. struct token_data {
  1908. token text;
  1909. float score;
  1910. ttype type;
  1911. };
  1912. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  1913. enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1914. std::unordered_map<token, id> token_to_id;
  1915. std::vector<token_data> id_to_token;
  1916. std::unordered_map<token, id> special_tokens_cache;
  1917. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  1918. // default LLaMA special tokens
  1919. id special_bos_id = 1;
  1920. id special_eos_id = 2;
  1921. id special_unk_id = 0;
  1922. id special_sep_id = -1;
  1923. id special_pad_id = -1;
  1924. id special_cls_id = -1;
  1925. id special_mask_id = -1;
  1926. int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
  1927. int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
  1928. id linefeed_id = 13;
  1929. id special_prefix_id = -1;
  1930. id special_suffix_id = -1;
  1931. id special_middle_id = -1;
  1932. id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token
  1933. bool add_space_prefix = true;
  1934. int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
  1935. GGML_ASSERT(token_left.find(' ') == std::string::npos);
  1936. GGML_ASSERT(token_left.find('\n') == std::string::npos);
  1937. GGML_ASSERT(token_right.find(' ') == std::string::npos);
  1938. GGML_ASSERT(token_right.find('\n') == std::string::npos);
  1939. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  1940. if (it == bpe_ranks.end()) {
  1941. return -1;
  1942. }
  1943. return it->second;
  1944. }
  1945. };
  1946. struct llama_model {
  1947. e_model type = MODEL_UNKNOWN;
  1948. llm_arch arch = LLM_ARCH_UNKNOWN;
  1949. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  1950. std::string name = "n/a";
  1951. llama_hparams hparams = {};
  1952. llama_vocab vocab;
  1953. struct ggml_tensor * tok_embd;
  1954. struct ggml_tensor * type_embd;
  1955. struct ggml_tensor * pos_embd;
  1956. struct ggml_tensor * tok_norm;
  1957. struct ggml_tensor * tok_norm_b;
  1958. struct ggml_tensor * output_norm;
  1959. struct ggml_tensor * output_norm_b;
  1960. struct ggml_tensor * output;
  1961. struct ggml_tensor * output_b;
  1962. std::vector<llama_layer> layers;
  1963. llama_split_mode split_mode;
  1964. int main_gpu;
  1965. int n_gpu_layers;
  1966. // gguf metadata
  1967. std::unordered_map<std::string, std::string> gguf_kv;
  1968. // layer -> buffer type mapping
  1969. struct layer_buft {
  1970. layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
  1971. layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
  1972. layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
  1973. ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
  1974. ggml_backend_buffer_type_t buft; // everything else
  1975. };
  1976. layer_buft buft_input;
  1977. layer_buft buft_output;
  1978. std::vector<layer_buft> buft_layer;
  1979. // contexts where the model tensors metadata is stored
  1980. std::vector<struct ggml_context *> ctxs;
  1981. // the model memory buffers for the tensor data
  1982. std::vector<ggml_backend_buffer_t> bufs;
  1983. // model memory mapped files
  1984. llama_mmaps mappings;
  1985. // objects representing data potentially being locked in memory
  1986. llama_mlocks mlock_bufs;
  1987. llama_mlocks mlock_mmaps;
  1988. // for quantize-stats only
  1989. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  1990. int64_t t_load_us = 0;
  1991. int64_t t_start_us = 0;
  1992. ~llama_model() {
  1993. for (struct ggml_context * ctx : ctxs) {
  1994. ggml_free(ctx);
  1995. }
  1996. for (ggml_backend_buffer_t buf : bufs) {
  1997. #ifdef GGML_USE_CUDA
  1998. if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
  1999. ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
  2000. }
  2001. #endif
  2002. ggml_backend_buffer_free(buf);
  2003. }
  2004. }
  2005. };
  2006. struct llama_context {
  2007. llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
  2008. ~llama_context() {
  2009. ggml_backend_sched_free(sched);
  2010. for (ggml_backend_t backend : backends) {
  2011. ggml_backend_free(backend);
  2012. }
  2013. ggml_backend_buffer_free(buf_output);
  2014. }
  2015. llama_cparams cparams;
  2016. std::vector<ggml_backend_t> backends;
  2017. #ifdef GGML_USE_METAL
  2018. ggml_backend_t backend_metal = nullptr;
  2019. #endif
  2020. ggml_backend_t backend_cpu = nullptr;
  2021. const llama_model & model;
  2022. // key + value cache for the self attention
  2023. struct llama_kv_cache kv_self;
  2024. std::mt19937 rng;
  2025. bool has_evaluated_once = false;
  2026. int64_t t_start_us;
  2027. int64_t t_load_us;
  2028. int64_t t_sample_us = 0;
  2029. int64_t t_p_eval_us = 0;
  2030. int64_t t_eval_us = 0;
  2031. int64_t t_compute_start_us = 0;
  2032. int64_t n_queued_tokens = 0;
  2033. int32_t n_sample = 0; // number of tokens sampled
  2034. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  2035. int32_t n_eval = 0; // number of eval calls
  2036. // host buffer for the model output (logits and embeddings)
  2037. ggml_backend_buffer_t buf_output = nullptr;
  2038. // decode output (2-dimensional array: [n_outputs][n_vocab])
  2039. size_t logits_size = 0; // capacity (of floats) for logits
  2040. float * logits = nullptr;
  2041. std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
  2042. size_t output_size = 0; // capacity (of tokens positions) for the output buffers
  2043. int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
  2044. bool logits_all = false;
  2045. // embeddings output (2-dimensional array: [n_outputs][n_embd])
  2046. // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
  2047. size_t embd_size = 0; // capacity (of floats) for embeddings
  2048. float * embd = nullptr;
  2049. // sequence embeddings output (map of [n_embd] vectors)
  2050. // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
  2051. std::map<llama_seq_id, std::vector<float>> embd_seq;
  2052. // memory buffers used to evaluate the model
  2053. std::vector<uint8_t> buf_compute_meta;
  2054. ggml_backend_sched_t sched = nullptr;
  2055. ggml_abort_callback abort_callback = nullptr;
  2056. void * abort_callback_data = nullptr;
  2057. // input tensors
  2058. struct ggml_tensor * inp_tokens; // I32 [n_batch]
  2059. struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
  2060. struct ggml_tensor * inp_pos; // I32 [n_batch]
  2061. struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
  2062. struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
  2063. struct ggml_tensor * inp_KQ_pos; // F32 [n_kv]
  2064. struct ggml_tensor * inp_K_shift; // I32 [kv_size]
  2065. struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
  2066. struct ggml_tensor * inp_cls; // I32 [n_batch]
  2067. struct ggml_tensor * inp_s_copy; // I32 [kv_size]
  2068. struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
  2069. struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
  2070. // control vectors
  2071. struct llama_control_vector cvec;
  2072. #ifdef GGML_USE_MPI
  2073. ggml_mpi_context * ctx_mpi = NULL;
  2074. #endif
  2075. };
  2076. //
  2077. // kv cache helpers
  2078. //
  2079. static bool llama_kv_cache_init(
  2080. struct llama_kv_cache & cache,
  2081. const llama_model & model,
  2082. ggml_type type_k,
  2083. ggml_type type_v,
  2084. uint32_t kv_size,
  2085. bool offload) {
  2086. const struct llama_hparams & hparams = model.hparams;
  2087. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  2088. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  2089. const int64_t n_layer = hparams.n_layer;
  2090. cache.has_shift = false;
  2091. // TODO: find a nicer way to add other recurrent model architectures
  2092. cache.recurrent = model.arch == LLM_ARCH_MAMBA;
  2093. // TODO: support mixed reccurent Transformer architectues
  2094. // NOTE: (!a || b) is a logical implication (a -> b)
  2095. GGML_ASSERT(!cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_s());
  2096. GGML_ASSERT(!cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_s());
  2097. GGML_ASSERT( cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_gqa());
  2098. GGML_ASSERT( cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_gqa());
  2099. cache.head = 0;
  2100. cache.size = kv_size;
  2101. cache.used = 0;
  2102. cache.type_k = type_k;
  2103. cache.type_v = type_v;
  2104. cache.cells.clear();
  2105. cache.cells.resize(kv_size);
  2106. if (cache.recurrent) {
  2107. // init state copy sources
  2108. for (uint32_t i = 0; i < cache.size; ++i) {
  2109. cache.cells[i].src = i;
  2110. }
  2111. }
  2112. #ifdef GGML_USE_CLBLAST
  2113. offload = false;
  2114. #endif
  2115. // count used buffer types
  2116. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  2117. if (offload) {
  2118. for (int64_t i = 0; i < n_layer; ++i) {
  2119. buft_layer_count[model.buft_layer[i].buft]++;
  2120. }
  2121. } else {
  2122. buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
  2123. }
  2124. // create a context for each buffer type
  2125. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  2126. for (auto & it : buft_layer_count) {
  2127. int n_layers = it.second;
  2128. struct ggml_init_params params = {
  2129. /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
  2130. /*.mem_buffer =*/ NULL,
  2131. /*.no_alloc =*/ true,
  2132. };
  2133. ggml_context * ctx = ggml_init(params);
  2134. if (!ctx) {
  2135. LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
  2136. return false;
  2137. }
  2138. ctx_map[it.first] = ctx;
  2139. cache.ctxs.push_back(ctx);
  2140. }
  2141. cache.k_l.reserve(n_layer);
  2142. cache.v_l.reserve(n_layer);
  2143. for (int i = 0; i < (int) n_layer; i++) {
  2144. struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
  2145. ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
  2146. ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
  2147. ggml_format_name(k, "cache_k_l%d", i);
  2148. ggml_format_name(v, "cache_v_l%d", i);
  2149. cache.k_l.push_back(k);
  2150. cache.v_l.push_back(v);
  2151. }
  2152. // allocate tensors and initialize the buffers to avoid NaNs in the padding
  2153. for (auto it : ctx_map) {
  2154. ggml_backend_buffer_type_t buft = it.first;
  2155. ggml_context * ctx = it.second;
  2156. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  2157. if (!buf) {
  2158. LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
  2159. return false;
  2160. }
  2161. ggml_backend_buffer_clear(buf, 0);
  2162. LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
  2163. cache.bufs.push_back(buf);
  2164. }
  2165. return true;
  2166. }
  2167. // find an empty slot of size "n_tokens" in the cache
  2168. // updates the cache head
  2169. // Note: On success, it's important that cache.head points
  2170. // to the first cell of the slot.
  2171. static bool llama_kv_cache_find_slot(
  2172. struct llama_kv_cache & cache,
  2173. const struct llama_batch & batch) {
  2174. const uint32_t n_ctx = cache.size;
  2175. const uint32_t n_tokens = batch.n_tokens;
  2176. if (cache.recurrent) {
  2177. // For recurrent state architectures (like Mamba),
  2178. // each KV cache cell can store the state for a whole sequence.
  2179. llama_seq_id min = cache.size - 1;
  2180. llama_seq_id max = 0;
  2181. for (uint32_t i = 0; i < n_tokens; ++i) {
  2182. for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) {
  2183. llama_seq_id seq_id = batch.seq_id[i][j];
  2184. // make sure it's a valid seq_id
  2185. if ((uint32_t) seq_id < cache.size) {
  2186. if (seq_id > max) {
  2187. max = seq_id;
  2188. }
  2189. if (seq_id < min) {
  2190. min = seq_id;
  2191. }
  2192. // Assuming the tokens are in-order
  2193. if (batch.pos[i] != cache.cells[seq_id].pos + 1) {
  2194. // What should happen when the pos backtracks or skips a value?
  2195. // Clearing the state mid-batch would require special-casing which isn't done.
  2196. LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n",
  2197. __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id);
  2198. }
  2199. if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) {
  2200. cache.used += 1;
  2201. }
  2202. cache.cells[seq_id].pos = batch.pos[i];
  2203. // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set
  2204. } else {
  2205. // too big seq_id
  2206. // TODO: would it be possible to resize the KV cache size instead?
  2207. LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
  2208. return false;
  2209. }
  2210. }
  2211. }
  2212. // allow getting the range of used cells, from head to head + n
  2213. cache.head = min;
  2214. cache.n = max - min + 1;
  2215. // sanity check
  2216. return max >= min;
  2217. }
  2218. // otherwise, one cell per token.
  2219. if (n_tokens > n_ctx) {
  2220. LLAMA_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, n_ctx);
  2221. return false;
  2222. }
  2223. uint32_t n_tested = 0;
  2224. while (true) {
  2225. if (cache.head + n_tokens > n_ctx) {
  2226. n_tested += n_ctx - cache.head;
  2227. cache.head = 0;
  2228. continue;
  2229. }
  2230. bool found = true;
  2231. for (uint32_t i = 0; i < n_tokens; i++) {
  2232. if (cache.cells[cache.head + i].pos >= 0) {
  2233. found = false;
  2234. cache.head += i + 1;
  2235. n_tested += i + 1;
  2236. break;
  2237. }
  2238. }
  2239. if (found) {
  2240. break;
  2241. }
  2242. if (n_tested >= n_ctx) {
  2243. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  2244. return false;
  2245. }
  2246. }
  2247. for (uint32_t i = 0; i < n_tokens; i++) {
  2248. cache.cells[cache.head + i].pos = batch.pos[i];
  2249. for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
  2250. cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
  2251. }
  2252. }
  2253. cache.used += n_tokens;
  2254. return true;
  2255. }
  2256. // find how many cells are currently in use
  2257. static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  2258. for (uint32_t i = cache.size; i > 0; --i) {
  2259. const llama_kv_cell & cell = cache.cells[i - 1];
  2260. if (cell.pos >= 0 && !cell.is_empty()) {
  2261. return i;
  2262. }
  2263. }
  2264. return 0;
  2265. }
  2266. static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
  2267. for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
  2268. cache.cells[i].pos = -1;
  2269. cache.cells[i].seq_id.clear();
  2270. }
  2271. cache.head = 0;
  2272. cache.used = 0;
  2273. }
  2274. static bool llama_kv_cache_seq_rm(
  2275. struct llama_kv_cache & cache,
  2276. llama_seq_id seq_id,
  2277. llama_pos p0,
  2278. llama_pos p1) {
  2279. uint32_t new_head = cache.size;
  2280. if (p0 < 0) p0 = 0;
  2281. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2282. // models like Mamba can't have a state partially erased
  2283. if (cache.recurrent) {
  2284. if (seq_id >= (int64_t) cache.size) {
  2285. // could be fatal
  2286. return false;
  2287. }
  2288. if (0 <= seq_id) {
  2289. // partial intersection is invalid
  2290. if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) {
  2291. return false;
  2292. }
  2293. } else {
  2294. // seq_id is negative, then the range should include everything or nothing
  2295. if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
  2296. return false;
  2297. }
  2298. }
  2299. }
  2300. for (uint32_t i = 0; i < cache.size; ++i) {
  2301. if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2302. if (seq_id < 0) {
  2303. cache.cells[i].seq_id.clear();
  2304. } else if (cache.cells[i].has_seq_id(seq_id)) {
  2305. cache.cells[i].seq_id.erase(seq_id);
  2306. } else {
  2307. continue;
  2308. }
  2309. if (cache.cells[i].is_empty()) {
  2310. // keep count of the number of used cells
  2311. if (cache.cells[i].pos >= 0) cache.used--;
  2312. cache.cells[i].pos = -1;
  2313. if (new_head == cache.size) new_head = i;
  2314. }
  2315. }
  2316. }
  2317. // If we freed up a slot, set head to it so searching can start there.
  2318. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2319. return true;
  2320. }
  2321. static void llama_kv_cache_seq_cp(
  2322. struct llama_kv_cache & cache,
  2323. llama_seq_id seq_id_src,
  2324. llama_seq_id seq_id_dst,
  2325. llama_pos p0,
  2326. llama_pos p1) {
  2327. if (p0 < 0) p0 = 0;
  2328. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2329. if (cache.recurrent) {
  2330. if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
  2331. seq_id_src = cache.cells[seq_id_src].src;
  2332. GGML_ASSERT((uint32_t) seq_id_src < cache.size);
  2333. // intent to "copy from"
  2334. // supports copy chains thanks to taking the source of the source
  2335. cache.cells[seq_id_dst].src = seq_id_src;
  2336. // preserve the "keep or clear" status of the copied sequence
  2337. if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) {
  2338. cache.cells[seq_id_dst].seq_id.insert(seq_id_dst);
  2339. } else {
  2340. cache.cells[seq_id_dst].seq_id.erase(seq_id_dst);
  2341. }
  2342. cache.do_copy = true;
  2343. cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos;
  2344. }
  2345. return;
  2346. }
  2347. // otherwise, this is the KV cache of a Transformer-like model
  2348. cache.head = 0;
  2349. for (uint32_t i = 0; i < cache.size; ++i) {
  2350. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2351. cache.cells[i].seq_id.insert(seq_id_dst);
  2352. }
  2353. }
  2354. }
  2355. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2356. uint32_t new_head = cache.size;
  2357. for (uint32_t i = 0; i < cache.size; ++i) {
  2358. if (!cache.cells[i].has_seq_id(seq_id)) {
  2359. if (cache.cells[i].pos >= 0) cache.used--;
  2360. cache.cells[i].pos = -1;
  2361. cache.cells[i].seq_id.clear();
  2362. if (new_head == cache.size) new_head = i;
  2363. } else {
  2364. cache.cells[i].seq_id.clear();
  2365. cache.cells[i].seq_id.insert(seq_id);
  2366. }
  2367. }
  2368. // If we freed up a slot, set head to it so searching can start there.
  2369. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2370. }
  2371. static void llama_kv_cache_seq_add(
  2372. struct llama_kv_cache & cache,
  2373. llama_seq_id seq_id,
  2374. llama_pos p0,
  2375. llama_pos p1,
  2376. llama_pos delta) {
  2377. uint32_t new_head = cache.size;
  2378. if (p0 < 0) p0 = 0;
  2379. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2380. if (cache.recurrent) {
  2381. // for Mamba-like models, only the pos needs to be shifted
  2382. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2383. llama_kv_cell & cell = cache.cells[seq_id];
  2384. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2385. cell.pos += delta;
  2386. }
  2387. }
  2388. return;
  2389. }
  2390. for (uint32_t i = 0; i < cache.size; ++i) {
  2391. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2392. cache.has_shift = true;
  2393. cache.cells[i].pos += delta;
  2394. cache.cells[i].delta += delta;
  2395. if (cache.cells[i].pos < 0) {
  2396. if (!cache.cells[i].is_empty()) {
  2397. cache.used--;
  2398. }
  2399. cache.cells[i].pos = -1;
  2400. cache.cells[i].seq_id.clear();
  2401. if (new_head == cache.size) {
  2402. new_head = i;
  2403. }
  2404. }
  2405. }
  2406. }
  2407. // If we freed up a slot, set head to it so searching can start there.
  2408. // Otherwise we just start the next search from the beginning.
  2409. cache.head = new_head != cache.size ? new_head : 0;
  2410. }
  2411. static void llama_kv_cache_seq_div(
  2412. struct llama_kv_cache & cache,
  2413. llama_seq_id seq_id,
  2414. llama_pos p0,
  2415. llama_pos p1,
  2416. int d) {
  2417. if (p0 < 0) p0 = 0;
  2418. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2419. if (cache.recurrent) {
  2420. // for Mamba-like models, only the pos needs to be changed
  2421. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2422. llama_kv_cell & cell = cache.cells[seq_id];
  2423. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2424. cell.pos /= d;
  2425. }
  2426. }
  2427. return;
  2428. }
  2429. for (uint32_t i = 0; i < cache.size; ++i) {
  2430. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2431. cache.has_shift = true;
  2432. {
  2433. llama_pos p_old = cache.cells[i].pos;
  2434. cache.cells[i].pos /= d;
  2435. cache.cells[i].delta += cache.cells[i].pos - p_old;
  2436. }
  2437. }
  2438. }
  2439. }
  2440. static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2441. llama_pos result = 0;
  2442. for (uint32_t i = 0; i < cache.size; ++i) {
  2443. if (cache.cells[i].has_seq_id(seq_id)) {
  2444. result = std::max(result, cache.cells[i].pos);
  2445. }
  2446. }
  2447. return result;
  2448. }
  2449. static void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
  2450. cache.do_defrag = true;
  2451. }
  2452. //
  2453. // model loading and saving
  2454. //
  2455. enum llama_fver {
  2456. GGUF_FILE_VERSION_V1 = 1,
  2457. GGUF_FILE_VERSION_V2 = 2,
  2458. GGUF_FILE_VERSION_V3 = 3,
  2459. };
  2460. static const char * llama_file_version_name(llama_fver version) {
  2461. switch (version) {
  2462. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  2463. case GGUF_FILE_VERSION_V2: return "GGUF V2";
  2464. case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
  2465. }
  2466. return "unknown";
  2467. }
  2468. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  2469. char buf[256];
  2470. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  2471. for (size_t i = 1; i < ne.size(); i++) {
  2472. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  2473. }
  2474. return buf;
  2475. }
  2476. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  2477. char buf[256];
  2478. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  2479. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2480. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  2481. }
  2482. return buf;
  2483. }
  2484. namespace GGUFMeta {
  2485. template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
  2486. struct GKV_Base_Type {
  2487. static constexpr gguf_type gt = gt_;
  2488. static T getter(const gguf_context * ctx, const int kid) {
  2489. return gfun(ctx, kid);
  2490. }
  2491. };
  2492. template<typename T> struct GKV_Base;
  2493. template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
  2494. template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
  2495. template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
  2496. template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
  2497. template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
  2498. template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
  2499. template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
  2500. template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
  2501. template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
  2502. template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
  2503. template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
  2504. template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
  2505. template<> struct GKV_Base<std::string> {
  2506. static constexpr gguf_type gt = GGUF_TYPE_STRING;
  2507. static std::string getter(const gguf_context * ctx, const int kid) {
  2508. return gguf_get_val_str(ctx, kid);
  2509. }
  2510. };
  2511. struct ArrayInfo {
  2512. const gguf_type gt;
  2513. const size_t length;
  2514. const void * data;
  2515. };
  2516. template<> struct GKV_Base<ArrayInfo> {
  2517. public:
  2518. static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
  2519. static ArrayInfo getter(const gguf_context *ctx, const int k) {
  2520. return ArrayInfo {
  2521. gguf_get_arr_type(ctx, k),
  2522. size_t(gguf_get_arr_n(ctx, k)),
  2523. gguf_get_arr_data(ctx, k),
  2524. };
  2525. }
  2526. };
  2527. template<typename T>
  2528. class GKV : public GKV_Base<T> {
  2529. GKV() = delete;
  2530. public:
  2531. static T get_kv(const gguf_context * ctx, const int k) {
  2532. const enum gguf_type kt = gguf_get_kv_type(ctx, k);
  2533. if (kt != GKV::gt) {
  2534. throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
  2535. gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
  2536. }
  2537. return GKV::getter(ctx, k);
  2538. }
  2539. static const char * override_type_to_str(const llama_model_kv_override_type ty) {
  2540. switch (ty) {
  2541. case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
  2542. case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
  2543. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
  2544. case LLAMA_KV_OVERRIDE_TYPE_STR: return "str";
  2545. }
  2546. return "unknown";
  2547. }
  2548. static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
  2549. if (!ovrd) { return false; }
  2550. if (ovrd->tag == expected_type) {
  2551. LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
  2552. __func__, override_type_to_str(ovrd->tag), ovrd->key);
  2553. switch (ovrd->tag) {
  2554. case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
  2555. LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false");
  2556. } break;
  2557. case LLAMA_KV_OVERRIDE_TYPE_INT: {
  2558. LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64);
  2559. } break;
  2560. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
  2561. LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64);
  2562. } break;
  2563. case LLAMA_KV_OVERRIDE_TYPE_STR: {
  2564. LLAMA_LOG_INFO("%s\n", ovrd->val_str);
  2565. } break;
  2566. default:
  2567. // Shouldn't be possible to end up here, but just in case...
  2568. throw std::runtime_error(
  2569. format("Unsupported attempt to override %s type for metadata key %s\n",
  2570. override_type_to_str(ovrd->tag), ovrd->key));
  2571. }
  2572. return true;
  2573. }
  2574. LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
  2575. __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
  2576. return false;
  2577. }
  2578. template<typename OT>
  2579. static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
  2580. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2581. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
  2582. target = ovrd->val_bool;
  2583. return true;
  2584. }
  2585. return false;
  2586. }
  2587. template<typename OT>
  2588. static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
  2589. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2590. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
  2591. target = ovrd->val_i64;
  2592. return true;
  2593. }
  2594. return false;
  2595. }
  2596. template<typename OT>
  2597. static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
  2598. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2599. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
  2600. target = ovrd->val_f64;
  2601. return true;
  2602. }
  2603. return false;
  2604. }
  2605. template<typename OT>
  2606. static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
  2607. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2608. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) {
  2609. target = ovrd->val_str;
  2610. return true;
  2611. }
  2612. return false;
  2613. }
  2614. static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2615. if (try_override<T>(target, ovrd)) {
  2616. return true;
  2617. }
  2618. if (k < 0) { return false; }
  2619. target = get_kv(ctx, k);
  2620. return true;
  2621. }
  2622. static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2623. return set(ctx, gguf_find_key(ctx, key), target, ovrd);
  2624. }
  2625. static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2626. return set(ctx, key.c_str(), target, ovrd);
  2627. }
  2628. };
  2629. }
  2630. using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
  2631. struct llama_model_loader {
  2632. int n_kv = 0;
  2633. int n_tensors = 0;
  2634. int n_created = 0;
  2635. int64_t n_elements = 0;
  2636. size_t n_bytes = 0;
  2637. bool use_mmap = false;
  2638. bool check_tensors;
  2639. llama_files files;
  2640. llama_ftype ftype;
  2641. llama_fver fver;
  2642. llama_mmaps mappings;
  2643. // Holds information on a model weight
  2644. struct llama_tensor_weight {
  2645. uint16_t idx; // source file index
  2646. size_t offs; // tensor data offset in the original file
  2647. ggml_tensor * tensor;
  2648. llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
  2649. const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
  2650. offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
  2651. if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) {
  2652. throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name));
  2653. }
  2654. }
  2655. };
  2656. std::vector<llama_tensor_weight> weights;
  2657. std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
  2658. struct gguf_context * meta = NULL;
  2659. std::vector<ggml_context *> contexts;
  2660. std::string arch_name;
  2661. LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
  2662. llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
  2663. int trace = 0;
  2664. if (getenv("LLAMA_TRACE")) {
  2665. trace = atoi(getenv("LLAMA_TRACE"));
  2666. }
  2667. if (param_overrides_p != nullptr) {
  2668. for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
  2669. kv_overrides.insert({std::string(p->key), *p});
  2670. }
  2671. }
  2672. struct ggml_context * ctx = NULL;
  2673. struct gguf_init_params params = {
  2674. /*.no_alloc = */ true,
  2675. /*.ctx = */ &ctx,
  2676. };
  2677. meta = gguf_init_from_file(fname.c_str(), params);
  2678. if (!meta) {
  2679. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  2680. }
  2681. get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
  2682. llm_kv = LLM_KV(llm_arch_from_string(arch_name));
  2683. files.emplace_back(new llama_file(fname.c_str(), "rb"));
  2684. contexts.emplace_back(ctx);
  2685. // Save tensors data offset of the main file.
  2686. // For subsidiary files, `meta` tensor data offset must not be used,
  2687. // so we build a unified tensors index for weights.
  2688. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2689. weights.emplace_back(files.back().get(), 0, cur->name, meta, cur);
  2690. }
  2691. uint16_t n_split = 0;
  2692. get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
  2693. // Load additional GGML contexts
  2694. if (n_split > 1) {
  2695. uint16_t idx = 0;
  2696. get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
  2697. if (idx != 0) {
  2698. throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
  2699. }
  2700. char split_prefix[PATH_MAX] = {0};
  2701. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) {
  2702. throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
  2703. }
  2704. if (trace > 0) {
  2705. LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
  2706. }
  2707. char split_path[PATH_MAX] = {0};
  2708. for (idx = 1; idx < n_split; idx++) {
  2709. llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
  2710. struct gguf_init_params split_params = {
  2711. /*.no_alloc = */ true,
  2712. /*.ctx = */ &ctx,
  2713. };
  2714. struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params);
  2715. if (!ctx_gguf) {
  2716. throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
  2717. }
  2718. files.emplace_back(new llama_file(split_path, "rb"));
  2719. contexts.emplace_back(ctx);
  2720. // Save tensors data offset info of the shard.
  2721. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2722. weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur);
  2723. }
  2724. gguf_free(ctx_gguf);
  2725. }
  2726. get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
  2727. // sanity check
  2728. {
  2729. const int n_tensors_loaded = (int) weights.size();
  2730. if (n_tensors != n_tensors_loaded) {
  2731. throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
  2732. }
  2733. }
  2734. LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1);
  2735. }
  2736. n_kv = gguf_get_n_kv(meta);
  2737. n_tensors = weights.size();
  2738. fver = (enum llama_fver) gguf_get_version(meta);
  2739. std::set<std::string> tensor_names;
  2740. for (auto & w : weights) {
  2741. n_elements += ggml_nelements(w.tensor);
  2742. n_bytes += ggml_nbytes(w.tensor);
  2743. // make sure there is no duplicated tensor names
  2744. const std::string name(w.tensor->name);
  2745. auto found = tensor_names.find(name);
  2746. if (found != tensor_names.end()) {
  2747. throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", w.tensor->name));
  2748. }
  2749. tensor_names.insert(name);
  2750. }
  2751. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  2752. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  2753. // determine file type based on the number of tensors for each quantization and print meta data
  2754. // TODO: make optional
  2755. {
  2756. std::map<enum ggml_type, uint32_t> n_type;
  2757. uint32_t n_type_max = 0;
  2758. enum ggml_type type_max = GGML_TYPE_F32;
  2759. for (int i = 0; i < n_tensors; i++) {
  2760. const ggml_tensor * tensor = weights.at(i).tensor;
  2761. enum ggml_type type = tensor->type;
  2762. n_type[type]++;
  2763. if (n_type_max < n_type[type]) {
  2764. n_type_max = n_type[type];
  2765. type_max = type;
  2766. }
  2767. if (trace > 0) {
  2768. const uint16_t sid = weights.at(i).idx;
  2769. LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
  2770. }
  2771. }
  2772. switch (type_max) {
  2773. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  2774. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  2775. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  2776. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  2777. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  2778. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  2779. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  2780. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  2781. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  2782. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  2783. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  2784. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  2785. case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
  2786. case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
  2787. case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
  2788. case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
  2789. case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
  2790. case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
  2791. case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
  2792. case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
  2793. case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
  2794. default:
  2795. {
  2796. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  2797. ftype = LLAMA_FTYPE_ALL_F32;
  2798. } break;
  2799. }
  2800. // this is a way to mark that we have "guessed" the file type
  2801. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  2802. {
  2803. const int kid = gguf_find_key(meta, "general.file_type");
  2804. if (kid >= 0) {
  2805. ftype = (llama_ftype) gguf_get_val_u32(meta, kid);
  2806. }
  2807. }
  2808. LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  2809. for (int i = 0; i < n_kv; i++) {
  2810. const char * name = gguf_get_key(meta, i);
  2811. const enum gguf_type type = gguf_get_kv_type(meta, i);
  2812. const std::string type_name =
  2813. type == GGUF_TYPE_ARRAY
  2814. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i))
  2815. : gguf_type_name(type);
  2816. std::string value = gguf_kv_to_str(meta, i);
  2817. const size_t MAX_VALUE_LEN = 40;
  2818. if (value.size() > MAX_VALUE_LEN) {
  2819. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  2820. }
  2821. replace_all(value, "\n", "\\n");
  2822. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  2823. }
  2824. // print type counts
  2825. for (auto & kv : n_type) {
  2826. if (kv.second == 0) {
  2827. continue;
  2828. }
  2829. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  2830. }
  2831. }
  2832. if (!llama_mmap::SUPPORTED) {
  2833. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  2834. use_mmap = false;
  2835. }
  2836. this->use_mmap = use_mmap;
  2837. this->check_tensors = check_tensors;
  2838. }
  2839. ~llama_model_loader() {
  2840. if (meta) {
  2841. gguf_free(meta);
  2842. }
  2843. for (auto * ctx : contexts) {
  2844. ggml_free(ctx);
  2845. }
  2846. }
  2847. template<typename T>
  2848. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2849. get_arr_n(const std::string & key, T & result, const bool required = true) {
  2850. const int kid = gguf_find_key(meta, key.c_str());
  2851. if (kid < 0) {
  2852. if (required) {
  2853. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2854. }
  2855. return false;
  2856. }
  2857. struct GGUFMeta::ArrayInfo arr_info =
  2858. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  2859. result = arr_info.length;
  2860. return true;
  2861. }
  2862. template<typename T>
  2863. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2864. get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
  2865. return get_arr_n(llm_kv(kid), result, required);
  2866. }
  2867. template<typename T>
  2868. bool get_key(const std::string & key, T & result, const bool required = true) {
  2869. auto it = kv_overrides.find(key);
  2870. const struct llama_model_kv_override * override =
  2871. it != kv_overrides.end() ? &it->second : nullptr;
  2872. const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override);
  2873. if (required && !found) {
  2874. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2875. }
  2876. return found;
  2877. }
  2878. template<typename T>
  2879. bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
  2880. return get_key(llm_kv(kid), result, required);
  2881. }
  2882. std::string get_arch_name() const {
  2883. return arch_name;
  2884. }
  2885. enum llm_arch get_arch() const {
  2886. return llm_kv.arch;
  2887. }
  2888. const char * get_tensor_name(int i) const {
  2889. return weights.at(i).tensor->name;
  2890. }
  2891. const llama_tensor_weight * get_weight(const char * name) const {
  2892. for (const auto & weight : weights) {
  2893. if (strcmp(name, weight.tensor->name) == 0) {
  2894. return &weight;
  2895. }
  2896. }
  2897. return nullptr;
  2898. }
  2899. const llama_tensor_weight * get_weight(int i) const {
  2900. return get_weight(get_tensor_name(i));
  2901. }
  2902. const llama_tensor_weight & require_weight(const char * name) const {
  2903. const llama_tensor_weight * weight = get_weight(name);
  2904. if (!weight) {
  2905. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  2906. }
  2907. return *weight;
  2908. }
  2909. struct ggml_tensor * get_tensor_meta(const char * name) const {
  2910. const auto * weight = get_weight(name);
  2911. if (!weight) {
  2912. return nullptr;
  2913. }
  2914. return weight->tensor;
  2915. }
  2916. struct ggml_tensor * require_tensor_meta(const char * name) const {
  2917. struct ggml_tensor * tensor = get_tensor_meta(name);
  2918. if (!tensor) {
  2919. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  2920. }
  2921. return tensor;
  2922. }
  2923. struct ggml_tensor * get_tensor_meta(int i) const {
  2924. return get_tensor_meta(get_tensor_name(i));
  2925. }
  2926. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur) {
  2927. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
  2928. ggml_set_name(tensor, ggml_get_name(cur));
  2929. n_created++;
  2930. return tensor;
  2931. }
  2932. const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
  2933. const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
  2934. if (cur == NULL) {
  2935. if (!required) {
  2936. return NULL;
  2937. }
  2938. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  2939. }
  2940. {
  2941. bool is_ok = true;
  2942. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  2943. if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
  2944. is_ok = false;
  2945. break;
  2946. }
  2947. }
  2948. if (!is_ok) {
  2949. throw std::runtime_error(
  2950. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  2951. __func__, name.c_str(),
  2952. llama_format_tensor_shape(ne).c_str(),
  2953. llama_format_tensor_shape(cur).c_str()));
  2954. }
  2955. }
  2956. return cur;
  2957. }
  2958. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, bool required = true) {
  2959. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  2960. if (cur == NULL) {
  2961. return NULL;
  2962. }
  2963. return create_tensor_for(ctx, cur);
  2964. }
  2965. struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) {
  2966. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  2967. if (cur == NULL) {
  2968. return NULL;
  2969. }
  2970. if (cur->type != base->type) {
  2971. throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
  2972. }
  2973. std::array<int64_t, GGML_MAX_DIMS> dims;
  2974. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  2975. dims[i] = i < ne.size() ? ne[i] : 1;
  2976. }
  2977. struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
  2978. dims[0], dims[1], dims[2], dims[3],
  2979. cur->nb[1], cur->nb[2], cur->nb[3],
  2980. offset);
  2981. ggml_set_name(tensor, name.c_str());
  2982. n_created++;
  2983. return tensor;
  2984. }
  2985. void done_getting_tensors() const {
  2986. if (n_created != n_tensors) {
  2987. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  2988. }
  2989. }
  2990. void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
  2991. if (use_mmap) {
  2992. mappings.reserve(files.size());
  2993. mmaps_used.reserve(files.size());
  2994. for (const auto & file : files) {
  2995. std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
  2996. mmaps_used.emplace_back(mapping->size, 0);
  2997. if (mlock_mmaps) {
  2998. std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
  2999. mlock_mmap->init(mapping->addr);
  3000. mlock_mmaps->emplace_back(std::move(mlock_mmap));
  3001. }
  3002. mappings.emplace_back(std::move(mapping));
  3003. }
  3004. }
  3005. // compute the total size of all tensors for progress reporting
  3006. for (auto & w : weights) {
  3007. size_data += ggml_nbytes(w.tensor);
  3008. }
  3009. }
  3010. void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
  3011. GGML_ASSERT(!mappings.empty());
  3012. const auto & mapping = mappings.at(idx);
  3013. *first = mapping->size;
  3014. *last = 0;
  3015. *addr = mapping->addr;
  3016. for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
  3017. try {
  3018. const auto * weight = get_weight(ggml_get_name(tensor));
  3019. if (!weight) {
  3020. continue;
  3021. }
  3022. if (weight->idx != idx) {
  3023. continue;
  3024. }
  3025. *first = std::min(*first, weight->offs);
  3026. *last = std::max(*last, weight->offs + ggml_nbytes(tensor));
  3027. } catch(...) {
  3028. // the tensor is not in the model
  3029. }
  3030. }
  3031. }
  3032. // for backwards compatibility, does not support ggml-backend
  3033. void load_data_for(struct ggml_tensor * cur) const {
  3034. const auto & w = require_weight(ggml_get_name(cur));
  3035. if (use_mmap) {
  3036. const auto & mapping = mappings.at(w.idx);
  3037. if (cur->data == nullptr) {
  3038. cur->data = (uint8_t *)mapping->addr + w.offs;
  3039. } else {
  3040. memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur));
  3041. }
  3042. } else {
  3043. GGML_ASSERT(cur->data != nullptr);
  3044. GGML_ASSERT(w.idx < files.size());
  3045. const auto & file = files.at(w.idx);
  3046. file->seek(w.offs, SEEK_SET);
  3047. file->read_raw(cur->data, ggml_nbytes(cur));
  3048. }
  3049. if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) {
  3050. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3051. }
  3052. }
  3053. size_t size_done = 0;
  3054. size_t size_data = 0;
  3055. std::vector<std::pair<size_t, size_t>> mmaps_used;
  3056. // Returns false if cancelled by progress_callback
  3057. bool load_all_data(
  3058. struct ggml_context * ctx,
  3059. llama_buf_map & bufs_mmap,
  3060. llama_mlocks * lmlocks,
  3061. llama_progress_callback progress_callback,
  3062. void * progress_callback_user_data) {
  3063. GGML_ASSERT(size_data != 0 && "call init_mappings() first");
  3064. std::vector<no_init<uint8_t>> read_buf;
  3065. std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
  3066. for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  3067. const auto * weight = get_weight(ggml_get_name(cur));
  3068. if (weight == nullptr) {
  3069. // this can happen with split experts models
  3070. continue;
  3071. }
  3072. if (progress_callback) {
  3073. if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
  3074. return false;
  3075. }
  3076. }
  3077. size_t n_size = ggml_nbytes(cur);
  3078. if (use_mmap) {
  3079. const auto & mapping = mappings.at(weight->idx);
  3080. ggml_backend_buffer_t buf_mmap = nullptr;
  3081. if (bufs_mmap.count(weight->idx)) {
  3082. buf_mmap = bufs_mmap.at(weight->idx);
  3083. }
  3084. uint8_t * data = (uint8_t *) mapping->addr + weight->offs;
  3085. if (check_tensors) {
  3086. validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] {
  3087. return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size));
  3088. }));
  3089. }
  3090. GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
  3091. if (buf_mmap && cur->data == nullptr) {
  3092. ggml_backend_tensor_alloc(buf_mmap, cur, data);
  3093. if (lmlocks) {
  3094. const auto & lmlock = lmlocks->at(weight->idx);
  3095. lmlock->grow_to(weight->offs + n_size);
  3096. }
  3097. auto & mmap_used = mmaps_used[weight->idx];
  3098. mmap_used.first = std::min(mmap_used.first, weight->offs);
  3099. mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
  3100. } else {
  3101. ggml_backend_tensor_set(cur, data, 0, n_size);
  3102. }
  3103. } else {
  3104. GGML_ASSERT(weight->idx < files.size());
  3105. const auto & file = files.at(weight->idx);
  3106. if (ggml_backend_buffer_is_host(cur->buffer)) {
  3107. file->seek(weight->offs, SEEK_SET);
  3108. file->read_raw(cur->data, n_size);
  3109. if (check_tensors) {
  3110. validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] {
  3111. return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size));
  3112. }));
  3113. }
  3114. } else {
  3115. read_buf.resize(n_size);
  3116. file->seek(weight->offs, SEEK_SET);
  3117. file->read_raw(read_buf.data(), n_size);
  3118. ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
  3119. if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
  3120. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3121. }
  3122. }
  3123. }
  3124. size_done += n_size;
  3125. }
  3126. // check validation results
  3127. bool validation_failed = false;
  3128. for (auto & future : validation_result) {
  3129. auto result = future.get();
  3130. if (!result.second) {
  3131. LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first));
  3132. validation_failed = true;
  3133. }
  3134. }
  3135. if (validation_failed) {
  3136. throw std::runtime_error("found tensors with invalid data");
  3137. }
  3138. // check if this is the last call and do final cleanup
  3139. if (size_done >= size_data) {
  3140. // unmap offloaded tensors and metadata
  3141. if (use_mmap) {
  3142. for (uint32_t idx = 0; idx < mappings.size(); idx++) {
  3143. const auto & mmap_used = mmaps_used.at(idx);
  3144. auto & mapping = mappings.at(idx);
  3145. mapping->unmap_fragment(0, mmap_used.first);
  3146. if (mmap_used.second != 0) {
  3147. mapping->unmap_fragment(mmap_used.second, mapping->size);
  3148. }
  3149. }
  3150. }
  3151. if (progress_callback) {
  3152. // Even though the model is done loading, we still honor
  3153. // cancellation since we need to free allocations.
  3154. return progress_callback(1.0f, progress_callback_user_data);
  3155. }
  3156. }
  3157. return true;
  3158. }
  3159. };
  3160. template<>
  3161. bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) {
  3162. uint32_t tmp;
  3163. const bool found = get_key(kid, tmp, required);
  3164. if (found) {
  3165. result = (enum llama_pooling_type) tmp;
  3166. } else {
  3167. result = LLAMA_POOLING_TYPE_UNSPECIFIED;
  3168. }
  3169. return found;
  3170. }
  3171. //
  3172. // load LLaMA models
  3173. //
  3174. static const char * llama_model_arch_name(llm_arch arch) {
  3175. auto it = LLM_ARCH_NAMES.find(arch);
  3176. if (it == LLM_ARCH_NAMES.end()) {
  3177. return "unknown";
  3178. }
  3179. return it->second;
  3180. }
  3181. static std::string llama_model_ftype_name(llama_ftype ftype) {
  3182. if (ftype & LLAMA_FTYPE_GUESSED) {
  3183. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  3184. }
  3185. switch (ftype) {
  3186. case LLAMA_FTYPE_ALL_F32: return "all F32";
  3187. case LLAMA_FTYPE_MOSTLY_F16: return "F16";
  3188. case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
  3189. case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
  3190. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  3191. return "Q4_1, some F16";
  3192. case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
  3193. case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
  3194. case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
  3195. // K-quants
  3196. case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
  3197. case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
  3198. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
  3199. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
  3200. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
  3201. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
  3202. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
  3203. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
  3204. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
  3205. case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
  3206. case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw";
  3207. case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
  3208. case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
  3209. case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
  3210. case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
  3211. case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
  3212. case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw";
  3213. case LLAMA_FTYPE_MOSTLY_IQ1_M :return "IQ1_M - 1.75 bpw";
  3214. case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
  3215. case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
  3216. case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
  3217. case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
  3218. default: return "unknown, may not work";
  3219. }
  3220. }
  3221. static const char * llama_model_type_name(e_model type) {
  3222. switch (type) {
  3223. case MODEL_22M: return "22M";
  3224. case MODEL_33M: return "33M";
  3225. case MODEL_109M: return "109M";
  3226. case MODEL_137M: return "137M";
  3227. case MODEL_0_5B: return "0.5B";
  3228. case MODEL_1B: return "1B";
  3229. case MODEL_2B: return "2B";
  3230. case MODEL_3B: return "3B";
  3231. case MODEL_7B: return "7B";
  3232. case MODEL_8B: return "8B";
  3233. case MODEL_12B: return "12B";
  3234. case MODEL_13B: return "13B";
  3235. case MODEL_14B: return "14B";
  3236. case MODEL_15B: return "15B";
  3237. case MODEL_20B: return "20B";
  3238. case MODEL_30B: return "30B";
  3239. case MODEL_34B: return "34B";
  3240. case MODEL_35B: return "35B";
  3241. case MODEL_40B: return "40B";
  3242. case MODEL_65B: return "65B";
  3243. case MODEL_70B: return "70B";
  3244. case MODEL_314B: return "314B";
  3245. case MODEL_SMALL: return "0.1B";
  3246. case MODEL_MEDIUM: return "0.4B";
  3247. case MODEL_LARGE: return "0.8B";
  3248. case MODEL_XL: return "1.5B";
  3249. case MODEL_A2_7B: return "A2.7B";
  3250. case MODEL_8x7B: return "8x7B";
  3251. case MODEL_8x22B: return "8x22B";
  3252. case MODEL_16x12B: return "16x12B";
  3253. default: return "?B";
  3254. }
  3255. }
  3256. static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
  3257. switch (type) {
  3258. case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
  3259. case LLAMA_VOCAB_TYPE_SPM: return "SPM";
  3260. case LLAMA_VOCAB_TYPE_BPE: return "BPE";
  3261. case LLAMA_VOCAB_TYPE_WPM: return "WPM";
  3262. default: return "unknown";
  3263. }
  3264. }
  3265. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  3266. model.arch = ml.get_arch();
  3267. if (model.arch == LLM_ARCH_UNKNOWN) {
  3268. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  3269. }
  3270. }
  3271. static void llm_load_hparams(
  3272. llama_model_loader & ml,
  3273. llama_model & model) {
  3274. auto & hparams = model.hparams;
  3275. const gguf_context * ctx = ml.meta;
  3276. // get metadata as string
  3277. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  3278. enum gguf_type type = gguf_get_kv_type(ctx, i);
  3279. if (type == GGUF_TYPE_ARRAY) {
  3280. continue;
  3281. }
  3282. const char * name = gguf_get_key(ctx, i);
  3283. const std::string value = gguf_kv_to_str(ctx, i);
  3284. model.gguf_kv.emplace(name, value);
  3285. }
  3286. // get general kv
  3287. ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
  3288. // get hparams kv
  3289. ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
  3290. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  3291. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  3292. ml.get_key(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
  3293. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
  3294. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  3295. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  3296. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  3297. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  3298. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  3299. if (hparams.n_expert > 0) {
  3300. GGML_ASSERT(hparams.n_expert_used > 0);
  3301. } else {
  3302. GGML_ASSERT(hparams.n_expert_used == 0);
  3303. }
  3304. // n_head_kv is optional, default to n_head
  3305. hparams.n_head_kv = hparams.n_head;
  3306. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false);
  3307. bool rope_finetuned = false;
  3308. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  3309. hparams.rope_finetuned = rope_finetuned;
  3310. hparams.n_yarn_orig_ctx = hparams.n_ctx_train;
  3311. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_yarn_orig_ctx, false);
  3312. // rope_freq_base (optional)
  3313. hparams.rope_freq_base_train = 10000.0f;
  3314. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  3315. std::string rope_scaling("linear");
  3316. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  3317. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  3318. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  3319. // rope_freq_scale (inverse of the kv) is optional
  3320. float ropescale = 0.0f;
  3321. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  3322. // try the old key name
  3323. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  3324. }
  3325. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  3326. // sanity check for n_rot (optional)
  3327. {
  3328. hparams.n_rot = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3329. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  3330. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  3331. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  3332. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  3333. }
  3334. }
  3335. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  3336. // gpt-j n_rot = rotary_dim
  3337. }
  3338. hparams.n_embd_head_k = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3339. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  3340. hparams.n_embd_head_v = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3341. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  3342. // arch-specific KVs
  3343. switch (model.arch) {
  3344. case LLM_ARCH_LLAMA:
  3345. {
  3346. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3347. if (hparams.n_expert == 8) {
  3348. switch (hparams.n_layer) {
  3349. case 32: model.type = e_model::MODEL_8x7B; break;
  3350. case 56: model.type = e_model::MODEL_8x22B; break;
  3351. default: model.type = e_model::MODEL_UNKNOWN;
  3352. }
  3353. } else {
  3354. switch (hparams.n_layer) {
  3355. case 22: model.type = e_model::MODEL_1B; break;
  3356. case 26: model.type = e_model::MODEL_3B; break;
  3357. case 32: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_7B : e_model::MODEL_8B; break; // LLaMa 8B v3 uses GQA
  3358. case 40: model.type = e_model::MODEL_13B; break;
  3359. case 48: model.type = e_model::MODEL_34B; break;
  3360. case 60: model.type = e_model::MODEL_30B; break;
  3361. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  3362. default: model.type = e_model::MODEL_UNKNOWN;
  3363. }
  3364. }
  3365. } break;
  3366. case LLM_ARCH_MINICPM:
  3367. {
  3368. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3369. switch (hparams.n_layer) {
  3370. case 40: model.type = e_model::MODEL_2B; break;
  3371. default: model.type = e_model::MODEL_UNKNOWN;
  3372. }
  3373. } break;
  3374. case LLM_ARCH_GROK:
  3375. {
  3376. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3377. switch (hparams.n_layer) {
  3378. case 64: model.type = e_model::MODEL_314B; break;
  3379. default: model.type = e_model::MODEL_UNKNOWN;
  3380. }
  3381. } break;
  3382. case LLM_ARCH_FALCON:
  3383. {
  3384. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3385. switch (hparams.n_layer) {
  3386. case 32: model.type = e_model::MODEL_7B; break;
  3387. case 60: model.type = e_model::MODEL_40B; break;
  3388. default: model.type = e_model::MODEL_UNKNOWN;
  3389. }
  3390. } break;
  3391. case LLM_ARCH_BAICHUAN:
  3392. {
  3393. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3394. switch (hparams.n_layer) {
  3395. case 32: model.type = e_model::MODEL_7B; break;
  3396. case 40: model.type = e_model::MODEL_13B; break;
  3397. default: model.type = e_model::MODEL_UNKNOWN;
  3398. }
  3399. if (model.type == e_model::MODEL_13B) {
  3400. // TODO: become GGUF KV parameter
  3401. hparams.f_max_alibi_bias = 8.0f;
  3402. }
  3403. } break;
  3404. case LLM_ARCH_STARCODER:
  3405. {
  3406. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3407. switch (hparams.n_layer) {
  3408. case 24: model.type = e_model::MODEL_1B; break;
  3409. case 36: model.type = e_model::MODEL_3B; break;
  3410. case 42: model.type = e_model::MODEL_7B; break;
  3411. case 40: model.type = e_model::MODEL_15B; break;
  3412. default: model.type = e_model::MODEL_UNKNOWN;
  3413. }
  3414. } break;
  3415. case LLM_ARCH_PERSIMMON:
  3416. {
  3417. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3418. switch (hparams.n_layer) {
  3419. case 36: model.type = e_model::MODEL_8B; break;
  3420. default: model.type = e_model::MODEL_UNKNOWN;
  3421. }
  3422. } break;
  3423. case LLM_ARCH_REFACT:
  3424. {
  3425. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3426. switch (hparams.n_layer) {
  3427. case 32: model.type = e_model::MODEL_1B; break;
  3428. default: model.type = e_model::MODEL_UNKNOWN;
  3429. }
  3430. // TODO: become GGUF KV parameter
  3431. hparams.f_max_alibi_bias = 8.0f;
  3432. } break;
  3433. case LLM_ARCH_BERT:
  3434. {
  3435. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3436. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3437. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3438. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  3439. switch (hparams.n_layer) {
  3440. case 3:
  3441. model.type = e_model::MODEL_17M; break; // bge-micro
  3442. case 6:
  3443. model.type = e_model::MODEL_22M; break; // MiniLM-L6
  3444. case 12:
  3445. switch (hparams.n_embd) {
  3446. case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
  3447. case 768: model.type = e_model::MODEL_109M; break; // bge-base
  3448. } break;
  3449. case 24:
  3450. model.type = e_model::MODEL_335M; break; // bge-large
  3451. }
  3452. } break;
  3453. case LLM_ARCH_NOMIC_BERT:
  3454. {
  3455. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3456. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3457. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3458. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3459. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  3460. model.type = e_model::MODEL_137M;
  3461. }
  3462. } break;
  3463. case LLM_ARCH_BLOOM:
  3464. {
  3465. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3466. switch (hparams.n_layer) {
  3467. case 24: model.type = e_model::MODEL_1B; break;
  3468. case 30:
  3469. switch (hparams.n_embd) {
  3470. case 2560: model.type = e_model::MODEL_3B; break;
  3471. case 4096: model.type = e_model::MODEL_7B; break;
  3472. } break;
  3473. }
  3474. // TODO: become GGUF KV parameter
  3475. hparams.f_max_alibi_bias = 8.0f;
  3476. } break;
  3477. case LLM_ARCH_MPT:
  3478. {
  3479. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3480. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3481. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  3482. switch (hparams.n_layer) {
  3483. case 32: model.type = e_model::MODEL_7B; break;
  3484. case 48: model.type = e_model::MODEL_30B; break;
  3485. default: model.type = e_model::MODEL_UNKNOWN;
  3486. }
  3487. } break;
  3488. case LLM_ARCH_STABLELM:
  3489. {
  3490. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3491. switch (hparams.n_layer) {
  3492. case 24: model.type = e_model::MODEL_1B; break;
  3493. case 32: model.type = e_model::MODEL_3B; break;
  3494. case 40: model.type = e_model::MODEL_12B; break;
  3495. default: model.type = e_model::MODEL_UNKNOWN;
  3496. }
  3497. } break;
  3498. case LLM_ARCH_QWEN:
  3499. {
  3500. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3501. switch (hparams.n_layer) {
  3502. case 32: model.type = e_model::MODEL_7B; break;
  3503. case 40: model.type = e_model::MODEL_13B; break;
  3504. default: model.type = e_model::MODEL_UNKNOWN;
  3505. }
  3506. } break;
  3507. case LLM_ARCH_QWEN2:
  3508. {
  3509. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3510. switch (hparams.n_layer) {
  3511. case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
  3512. case 32: model.type = e_model::MODEL_7B; break;
  3513. case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
  3514. case 80: model.type = e_model::MODEL_70B; break;
  3515. default: model.type = e_model::MODEL_UNKNOWN;
  3516. }
  3517. } break;
  3518. case LLM_ARCH_QWEN2MOE:
  3519. {
  3520. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3521. switch (hparams.n_layer) {
  3522. case 24: model.type = e_model::MODEL_A2_7B; break;
  3523. default: model.type = e_model::MODEL_UNKNOWN;
  3524. }
  3525. } break;
  3526. case LLM_ARCH_PHI2:
  3527. {
  3528. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3529. switch (hparams.n_layer) {
  3530. case 24: model.type = e_model::MODEL_1B; break;
  3531. case 32: model.type = e_model::MODEL_3B; break;
  3532. default: model.type = e_model::MODEL_UNKNOWN;
  3533. }
  3534. } break;
  3535. case LLM_ARCH_PHI3:
  3536. {
  3537. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3538. switch (hparams.n_layer) {
  3539. case 24: model.type = e_model::MODEL_1B; break;
  3540. case 32: model.type = e_model::MODEL_3B; break;
  3541. default: model.type = e_model::MODEL_UNKNOWN;
  3542. }
  3543. } break;
  3544. case LLM_ARCH_PLAMO:
  3545. {
  3546. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3547. switch (hparams.n_layer) {
  3548. case 40: model.type = e_model::MODEL_13B; break;
  3549. default: model.type = e_model::MODEL_UNKNOWN;
  3550. }
  3551. } break;
  3552. case LLM_ARCH_GPT2:
  3553. {
  3554. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3555. switch (hparams.n_layer) {
  3556. case 12: model.type = e_model::MODEL_SMALL; break;
  3557. case 24: model.type = e_model::MODEL_MEDIUM; break;
  3558. case 36: model.type = e_model::MODEL_LARGE; break;
  3559. case 48: model.type = e_model::MODEL_XL; break;
  3560. default: model.type = e_model::MODEL_UNKNOWN;
  3561. }
  3562. } break;
  3563. case LLM_ARCH_CODESHELL:
  3564. {
  3565. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3566. switch (hparams.n_layer) {
  3567. case 42: model.type = e_model::MODEL_SMALL; break;
  3568. default: model.type = e_model::MODEL_UNKNOWN;
  3569. }
  3570. } break;
  3571. case LLM_ARCH_ORION:
  3572. {
  3573. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3574. switch (hparams.n_layer) {
  3575. case 40: model.type = e_model::MODEL_14B; break;
  3576. default: model.type = e_model::MODEL_UNKNOWN;
  3577. }
  3578. } break;
  3579. case LLM_ARCH_INTERNLM2:
  3580. {
  3581. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3582. switch (hparams.n_layer) {
  3583. case 32: model.type = e_model::MODEL_7B; break;
  3584. case 48: model.type = e_model::MODEL_20B; break;
  3585. default: model.type = e_model::MODEL_UNKNOWN;
  3586. }
  3587. } break;
  3588. case LLM_ARCH_GEMMA:
  3589. {
  3590. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3591. switch (hparams.n_layer) {
  3592. case 18: model.type = e_model::MODEL_2B; break;
  3593. case 28: model.type = e_model::MODEL_7B; break;
  3594. default: model.type = e_model::MODEL_UNKNOWN;
  3595. }
  3596. } break;
  3597. case LLM_ARCH_STARCODER2:
  3598. {
  3599. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3600. switch (hparams.n_layer) {
  3601. case 30: model.type = e_model::MODEL_3B; break;
  3602. case 32: model.type = e_model::MODEL_7B; break;
  3603. case 40: model.type = e_model::MODEL_15B; break;
  3604. default: model.type = e_model::MODEL_UNKNOWN;
  3605. }
  3606. } break;
  3607. case LLM_ARCH_MAMBA:
  3608. {
  3609. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  3610. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  3611. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  3612. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  3613. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3614. switch (hparams.n_layer) {
  3615. case 24:
  3616. switch (hparams.n_embd) {
  3617. case 768: model.type = e_model::MODEL_SMALL; break;
  3618. default: model.type = e_model::MODEL_UNKNOWN;
  3619. } break;
  3620. case 48:
  3621. switch (hparams.n_embd) {
  3622. case 1024: model.type = e_model::MODEL_MEDIUM; break;
  3623. case 1536: model.type = e_model::MODEL_LARGE; break;
  3624. case 2048: model.type = e_model::MODEL_XL; break;
  3625. default: model.type = e_model::MODEL_UNKNOWN;
  3626. } break;
  3627. case 64:
  3628. switch (hparams.n_embd) {
  3629. case 2560: model.type = e_model::MODEL_3B; break;
  3630. default: model.type = e_model::MODEL_UNKNOWN;
  3631. } break;
  3632. default: model.type = e_model::MODEL_UNKNOWN;
  3633. }
  3634. } break;
  3635. case LLM_ARCH_XVERSE:
  3636. {
  3637. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3638. switch (hparams.n_layer) {
  3639. case 32: model.type = e_model::MODEL_7B; break;
  3640. case 40: model.type = e_model::MODEL_13B; break;
  3641. case 80: model.type = e_model::MODEL_65B; break;
  3642. default: model.type = e_model::MODEL_UNKNOWN;
  3643. }
  3644. } break;
  3645. case LLM_ARCH_COMMAND_R:
  3646. {
  3647. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  3648. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3649. switch (hparams.n_layer) {
  3650. case 40: model.type = e_model::MODEL_35B; break;
  3651. default: model.type = e_model::MODEL_UNKNOWN;
  3652. }
  3653. } break;
  3654. case LLM_ARCH_DBRX:
  3655. {
  3656. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3657. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  3658. switch (hparams.n_layer) {
  3659. case 40: model.type = e_model::MODEL_16x12B; break;
  3660. default: model.type = e_model::MODEL_UNKNOWN;
  3661. }
  3662. } break;
  3663. case LLM_ARCH_OLMO:
  3664. {
  3665. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3666. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3667. switch (hparams.n_layer) {
  3668. case 22: model.type = e_model::MODEL_1B; break;
  3669. case 32: model.type = e_model::MODEL_7B; break;
  3670. case 80: model.type = e_model::MODEL_70B; break;
  3671. default: model.type = e_model::MODEL_UNKNOWN;
  3672. }
  3673. } break;
  3674. default: (void)0;
  3675. }
  3676. model.ftype = ml.ftype;
  3677. if (hparams.f_max_alibi_bias > 0.0f) {
  3678. hparams.need_kq_pos = true;
  3679. }
  3680. hparams.rope_type = llama_rope_type(&model);
  3681. }
  3682. // TODO: This should probably be in llama.h
  3683. static std::vector<llama_vocab::id> llama_tokenize_internal(
  3684. const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special = false
  3685. );
  3686. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  3687. static void llm_load_vocab(
  3688. llama_model_loader & ml,
  3689. llama_model & model) {
  3690. auto & vocab = model.vocab;
  3691. struct gguf_context * ctx = ml.meta;
  3692. const auto kv = LLM_KV(model.arch);
  3693. // determine vocab type
  3694. {
  3695. std::string tokenizer_model;
  3696. std::string tokenizer_pre;
  3697. ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model);
  3698. ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
  3699. if (tokenizer_model == "no_vocab") {
  3700. vocab.type = LLAMA_VOCAB_TYPE_NONE;
  3701. // default special tokens
  3702. vocab.special_bos_id = -1;
  3703. vocab.special_eos_id = -1;
  3704. vocab.special_unk_id = -1;
  3705. vocab.special_sep_id = -1;
  3706. vocab.special_pad_id = -1;
  3707. vocab.special_cls_id = -1;
  3708. vocab.special_mask_id = -1;
  3709. vocab.linefeed_id = -1;
  3710. return;
  3711. } else if (tokenizer_model == "llama") {
  3712. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3713. // default special tokens
  3714. vocab.special_bos_id = 1;
  3715. vocab.special_eos_id = 2;
  3716. vocab.special_unk_id = 0;
  3717. vocab.special_sep_id = -1;
  3718. vocab.special_pad_id = -1;
  3719. vocab.special_cls_id = -1;
  3720. vocab.special_mask_id = -1;
  3721. // For Fill-In-the-Middle (FIM)/infill models which where converted
  3722. // prior to support of FIM special tokens in GGUF, the following
  3723. // will allow those models to continue to work. The general names
  3724. // of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and
  3725. // CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once
  3726. // new versions of these models have been published.
  3727. std::string gen_name;
  3728. ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false);
  3729. std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(),
  3730. [](unsigned char c){ return std::tolower(c); });
  3731. if (gen_name.find("code") != std::string::npos) {
  3732. if (model.arch == LLM_ARCH_LLAMA) {
  3733. vocab.special_prefix_id = 32007;
  3734. vocab.special_suffix_id = 32008;
  3735. vocab.special_middle_id = 32009;
  3736. vocab.special_eot_id = 32010;
  3737. } else if (model.arch == LLM_ARCH_GEMMA) {
  3738. vocab.special_prefix_id = 67;
  3739. vocab.special_suffix_id = 69;
  3740. vocab.special_middle_id = 68;
  3741. // TODO: this is not EOT, it is "file separator" token, needs fix
  3742. // https://huggingface.co/google/codegemma-7b-it/blob/9b1d9231388358c04d90bd003458f5070d97db44/tokenizer_config.json#L565-L572
  3743. //vocab.special_eot_id = 70;
  3744. vocab.special_eot_id = 107;
  3745. }
  3746. }
  3747. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  3748. if (add_space_prefix_keyidx != -1) {
  3749. vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  3750. } // The default value of add_space_prefix is true.
  3751. } else if (tokenizer_model == "bert") {
  3752. vocab.type = LLAMA_VOCAB_TYPE_WPM;
  3753. // default special tokens
  3754. vocab.special_bos_id = -1;
  3755. vocab.special_eos_id = -1;
  3756. vocab.special_unk_id = 100;
  3757. vocab.special_sep_id = 102;
  3758. vocab.special_pad_id = 0;
  3759. vocab.special_cls_id = 101;
  3760. vocab.special_mask_id = 103;
  3761. vocab.add_space_prefix = false;
  3762. } else {
  3763. if (tokenizer_model == "gpt2") {
  3764. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  3765. } else {
  3766. LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_model.c_str());
  3767. LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
  3768. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3769. return;
  3770. }
  3771. // read bpe merges and populate bpe ranks
  3772. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  3773. if (merges_keyidx == -1) {
  3774. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  3775. }
  3776. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  3777. for (int i = 0; i < n_merges; i++) {
  3778. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  3779. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  3780. std::string first;
  3781. std::string second;
  3782. const size_t pos = word.find(' ', 1);
  3783. if (pos != std::string::npos) {
  3784. first = word.substr(0, pos);
  3785. second = word.substr(pos + 1);
  3786. }
  3787. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  3788. }
  3789. // default special tokens
  3790. vocab.special_bos_id = 11;
  3791. vocab.special_eos_id = 11;
  3792. vocab.special_unk_id = -1;
  3793. vocab.special_sep_id = -1;
  3794. vocab.special_pad_id = -1;
  3795. vocab.special_cls_id = -1;
  3796. vocab.special_mask_id = -1;
  3797. }
  3798. // for now, only BPE models have pre-tokenizers
  3799. if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
  3800. if (tokenizer_pre.empty()) {
  3801. LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__);
  3802. LLAMA_LOG_WARN("%s: \n", __func__);
  3803. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  3804. LLAMA_LOG_WARN("%s: GENERATION QUALITY WILL BE DEGRADED! \n", __func__);
  3805. LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL \n", __func__);
  3806. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  3807. LLAMA_LOG_WARN("%s: \n", __func__);
  3808. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  3809. } else if (
  3810. tokenizer_pre == "default") {
  3811. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  3812. } else if (
  3813. tokenizer_pre == "llama3" ||
  3814. tokenizer_pre == "llama-v3" ||
  3815. tokenizer_pre == "llama-bpe") {
  3816. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
  3817. } else if (
  3818. tokenizer_pre == "deepseek-llm") {
  3819. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM;
  3820. } else if (
  3821. tokenizer_pre == "deepseek-coder") {
  3822. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER;
  3823. } else if (
  3824. tokenizer_pre == "falcon") {
  3825. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON;
  3826. } else if (
  3827. tokenizer_pre == "mpt") {
  3828. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MPT;
  3829. } else if (
  3830. tokenizer_pre == "starcoder") {
  3831. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STARCODER;
  3832. } else if (
  3833. tokenizer_pre == "gpt-2") {
  3834. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT2;
  3835. } else {
  3836. throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
  3837. }
  3838. } else {
  3839. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  3840. }
  3841. }
  3842. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  3843. if (token_idx == -1) {
  3844. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  3845. }
  3846. const float * scores = nullptr;
  3847. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  3848. if (score_idx != -1) {
  3849. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  3850. }
  3851. const int * toktypes = nullptr;
  3852. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  3853. if (toktype_idx != -1) {
  3854. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  3855. }
  3856. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  3857. vocab.id_to_token.resize(n_vocab);
  3858. for (uint32_t i = 0; i < n_vocab; i++) {
  3859. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  3860. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  3861. vocab.token_to_id[word] = i;
  3862. auto & token_data = vocab.id_to_token[i];
  3863. token_data.text = std::move(word);
  3864. token_data.score = scores ? scores[i] : 0.0f;
  3865. token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL;
  3866. }
  3867. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  3868. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  3869. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  3870. try {
  3871. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  3872. } catch (const std::exception & e) {
  3873. LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
  3874. vocab.linefeed_id = vocab.special_pad_id;
  3875. }
  3876. } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
  3877. vocab.linefeed_id = vocab.special_pad_id;
  3878. } else {
  3879. const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
  3880. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  3881. vocab.linefeed_id = ids[0];
  3882. }
  3883. // special tokens
  3884. {
  3885. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  3886. { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
  3887. { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
  3888. { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
  3889. { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
  3890. { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
  3891. { LLM_KV_TOKENIZER_CLS_ID, vocab.special_cls_id },
  3892. { LLM_KV_TOKENIZER_MASK_ID, vocab.special_mask_id },
  3893. { LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id },
  3894. { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
  3895. { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
  3896. { LLM_KV_TOKENIZER_EOT_ID, vocab.special_eot_id },
  3897. };
  3898. for (const auto & it : special_token_types) {
  3899. const std::string & key = kv(std::get<0>(it));
  3900. int32_t & id = std::get<1>(it);
  3901. uint32_t new_id;
  3902. if (!ml.get_key(std::get<0>(it), new_id, false)) {
  3903. continue;
  3904. }
  3905. if (new_id >= vocab.id_to_token.size()) {
  3906. LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
  3907. __func__, key.c_str(), new_id, id);
  3908. } else {
  3909. id = new_id;
  3910. }
  3911. }
  3912. // Handle add_bos_token and add_eos_token
  3913. {
  3914. bool temp = true;
  3915. if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
  3916. vocab.special_add_bos = int(temp);
  3917. }
  3918. if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
  3919. vocab.special_add_eos = int(temp);
  3920. }
  3921. }
  3922. // find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
  3923. //
  3924. // TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOT_ID
  3925. // for now, we apply this workaround to find the EOT token based on its text
  3926. if (vocab.special_eot_id == -1) {
  3927. for (const auto & t : vocab.token_to_id) {
  3928. if (
  3929. // TODO: gemma "<end_of_turn>" is exported as a normal token, so the following check does not work
  3930. // need to fix convert script
  3931. //vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL &&
  3932. (t.first == "<|eot_id|>" ||
  3933. t.first == "<|im_end|>" ||
  3934. t.first == "<|end|>" ||
  3935. t.first == "<end_of_turn>"
  3936. )
  3937. ) {
  3938. vocab.special_eot_id = t.second;
  3939. break;
  3940. }
  3941. }
  3942. }
  3943. }
  3944. // build special tokens cache
  3945. {
  3946. // TODO: It is unclear (to me) at this point, whether special tokes are guaranteed to be of a deterministic type,
  3947. // and will always be correctly labeled in 'added_tokens.json' etc.
  3948. // The assumption is, since special tokens aren't meant to be exposed to end user, they are designed
  3949. // to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer
  3950. // are special tokens.
  3951. // From testing, this appears to correlate 1:1 with special tokens.
  3952. //
  3953. // Counting special tokens and verifying in only one direction
  3954. // is sufficient to detect difference in those two sets.
  3955. //
  3956. uint32_t special_tokens_count_by_type = 0;
  3957. uint32_t special_tokens_count_from_verification = 0;
  3958. bool special_tokens_definition_mismatch = false;
  3959. for (const auto & t : vocab.token_to_id) {
  3960. const auto & token = t.first;
  3961. const auto & id = t.second;
  3962. // Count all non-normal tokens in the vocab while iterating
  3963. if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) {
  3964. special_tokens_count_by_type++;
  3965. }
  3966. // Skip single character tokens
  3967. if (token.length() > 1) {
  3968. bool is_tokenizable = false;
  3969. // Split token string representation in two, in all possible ways
  3970. // and check if both halves can be matched to a valid token
  3971. for (unsigned i = 1; i < token.length();) {
  3972. const auto left = token.substr(0, i);
  3973. const auto right = token.substr(i);
  3974. // check if we didnt partition in the middle of a utf sequence
  3975. auto utf = utf8_len(left.at(left.length() - 1));
  3976. if (utf == 1) {
  3977. if (vocab.token_to_id.find(left) != vocab.token_to_id.end() &&
  3978. vocab.token_to_id.find(right) != vocab.token_to_id.end() ) {
  3979. is_tokenizable = true;
  3980. break;
  3981. }
  3982. i++;
  3983. } else {
  3984. // skip over the rest of multibyte utf sequence
  3985. i += utf - 1;
  3986. }
  3987. }
  3988. if (!is_tokenizable) {
  3989. // Some tokens are multibyte, but they are utf sequences with equivalent text length of 1
  3990. // it's faster to re-filter them here, since there are way less candidates now
  3991. // Calculate a total "utf" length of a token string representation
  3992. size_t utf8_str_len = 0;
  3993. for (unsigned i = 0; i < token.length();) {
  3994. utf8_str_len++;
  3995. i += utf8_len(token.at(i));
  3996. }
  3997. // And skip the ones which are one character
  3998. if (utf8_str_len > 1) {
  3999. // At this point what we have left are special tokens only
  4000. vocab.special_tokens_cache[token] = id;
  4001. // Count manually found special tokens
  4002. special_tokens_count_from_verification++;
  4003. // If this manually found special token is not marked as such, flag a mismatch
  4004. if (vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL) {
  4005. special_tokens_definition_mismatch = true;
  4006. }
  4007. }
  4008. }
  4009. }
  4010. }
  4011. if (special_tokens_definition_mismatch || special_tokens_count_from_verification != special_tokens_count_by_type) {
  4012. LLAMA_LOG_WARN("%s: mismatch in special tokens definition ( %u/%zu vs %u/%zu ).\n",
  4013. __func__,
  4014. special_tokens_count_from_verification, vocab.id_to_token.size(),
  4015. special_tokens_count_by_type, vocab.id_to_token.size()
  4016. );
  4017. } else {
  4018. LLAMA_LOG_INFO("%s: special tokens definition check successful ( %u/%zu ).\n",
  4019. __func__,
  4020. special_tokens_count_from_verification, vocab.id_to_token.size()
  4021. );
  4022. }
  4023. }
  4024. }
  4025. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  4026. const auto & hparams = model.hparams;
  4027. const auto & vocab = model.vocab;
  4028. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  4029. // hparams
  4030. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  4031. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch));
  4032. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
  4033. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  4034. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  4035. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  4036. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  4037. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  4038. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  4039. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  4040. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  4041. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  4042. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  4043. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  4044. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa());
  4045. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa());
  4046. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  4047. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  4048. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  4049. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  4050. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  4051. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  4052. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  4053. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  4054. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  4055. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  4056. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  4057. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  4058. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  4059. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  4060. LLAMA_LOG_INFO("%s: n_yarn_orig_ctx = %u\n", __func__, hparams.n_yarn_orig_ctx);
  4061. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  4062. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  4063. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  4064. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  4065. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  4066. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  4067. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  4068. if (ml.n_elements >= 1e12) {
  4069. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
  4070. } else if (ml.n_elements >= 1e9) {
  4071. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  4072. } else if (ml.n_elements >= 1e6) {
  4073. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
  4074. } else {
  4075. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
  4076. }
  4077. if (ml.n_bytes < GiB) {
  4078. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4079. } else {
  4080. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4081. }
  4082. // general kv
  4083. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  4084. // special tokens
  4085. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  4086. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  4087. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  4088. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  4089. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  4090. if (vocab.special_cls_id != -1) { LLAMA_LOG_INFO( "%s: CLS token = %d '%s'\n", __func__, vocab.special_cls_id, vocab.id_to_token[vocab.special_cls_id].text.c_str() ); }
  4091. if (vocab.special_mask_id != -1) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); }
  4092. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  4093. if (vocab.special_prefix_id != -1) { LLAMA_LOG_INFO( "%s: PRE token = %d '%s'\n", __func__, vocab.special_prefix_id, vocab.id_to_token[vocab.special_prefix_id].text.c_str() ); }
  4094. if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); }
  4095. if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); }
  4096. if (vocab.special_eot_id != -1) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, vocab.special_eot_id, vocab.id_to_token[vocab.special_eot_id].text.c_str() ); }
  4097. }
  4098. // Returns false if cancelled by progress_callback
  4099. static bool llm_load_tensors(
  4100. llama_model_loader & ml,
  4101. llama_model & model,
  4102. int n_gpu_layers,
  4103. enum llama_split_mode split_mode,
  4104. int main_gpu,
  4105. const float * tensor_split,
  4106. bool use_mlock,
  4107. llama_progress_callback progress_callback,
  4108. void * progress_callback_user_data) {
  4109. model.t_start_us = ggml_time_us();
  4110. auto & hparams = model.hparams;
  4111. #ifdef GGML_USE_SYCL
  4112. // disable MoE with SYCL until mul_mat_id is updated
  4113. if (hparams.n_expert > 0) {
  4114. n_gpu_layers = 0;
  4115. }
  4116. #endif
  4117. model.split_mode = split_mode;
  4118. model.main_gpu = main_gpu;
  4119. model.n_gpu_layers = n_gpu_layers;
  4120. const int64_t n_layer = hparams.n_layer;
  4121. const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0);
  4122. bool use_mmap_buffer = true;
  4123. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  4124. model.buft_input = llama_default_buffer_type_cpu(true);
  4125. //model.buft_input = llama_default_buffer_type_offload(main_gpu);
  4126. model.buft_layer.resize(n_layer);
  4127. // assign cpu layers
  4128. for (int64_t i = 0; i < i_gpu_start; ++i) {
  4129. model.buft_layer[i] = llama_default_buffer_type_cpu(true);
  4130. }
  4131. if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
  4132. // calculate the split points
  4133. int device_count = llama_get_device_count();
  4134. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
  4135. std::vector<float> splits(device_count);
  4136. if (all_zero) {
  4137. // default split, by free memory
  4138. for (int i = 0; i < device_count; ++i) {
  4139. splits[i] = llama_get_device_memory(i);
  4140. }
  4141. } else {
  4142. std::copy(tensor_split, tensor_split + device_count, splits.begin());
  4143. }
  4144. // sum and normalize the splits to get the split points
  4145. float split_sum = 0.0f;
  4146. for (int i = 0; i < device_count; ++i) {
  4147. split_sum += splits[i];
  4148. splits[i] = split_sum;
  4149. }
  4150. for (int i = 0; i < device_count; ++i) {
  4151. splits[i] /= split_sum;
  4152. }
  4153. // assign the repeating layers to the devices according to the splits
  4154. int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
  4155. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4156. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
  4157. model.buft_layer[i] = llama_default_buffer_type_offload(layer_gpu);
  4158. }
  4159. // assign the output layer
  4160. if (n_gpu_layers > n_layer) {
  4161. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
  4162. model.buft_output = llama_default_buffer_type_offload(layer_gpu);
  4163. } else {
  4164. model.buft_output = llama_default_buffer_type_cpu(true);
  4165. }
  4166. } else {
  4167. ggml_backend_buffer_type_t split_buft;
  4168. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  4169. split_buft = llama_default_buffer_type_split(main_gpu, tensor_split);
  4170. } else {
  4171. // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
  4172. split_buft = llama_default_buffer_type_offload(main_gpu);
  4173. }
  4174. // assign the repeating layers
  4175. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4176. model.buft_layer[i] = {
  4177. split_buft,
  4178. llama_default_buffer_type_offload(main_gpu)
  4179. };
  4180. }
  4181. // assign the output layer
  4182. if (n_gpu_layers > n_layer) {
  4183. model.buft_output = {
  4184. split_buft,
  4185. llama_default_buffer_type_offload(main_gpu)
  4186. };
  4187. } else {
  4188. model.buft_output = llama_default_buffer_type_cpu(true);
  4189. }
  4190. }
  4191. // count used buffer types
  4192. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  4193. buft_layer_count[model.buft_input.buft]++;
  4194. buft_layer_count[model.buft_input.buft_matrix]++;
  4195. buft_layer_count[model.buft_output.buft]++;
  4196. buft_layer_count[model.buft_output.buft_matrix]++;
  4197. for (int64_t i = 0; i < n_layer; ++i) {
  4198. buft_layer_count[model.buft_layer[i].buft]++;
  4199. buft_layer_count[model.buft_layer[i].buft_matrix]++;
  4200. }
  4201. // create one context per buffer type
  4202. size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
  4203. // for moe merged tensors
  4204. ctx_size += ggml_tensor_overhead()*n_layer*3;
  4205. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  4206. for (auto & it : buft_layer_count) {
  4207. struct ggml_init_params params = {
  4208. /*.mem_size =*/ ctx_size,
  4209. /*.mem_buffer =*/ NULL,
  4210. /*.no_alloc =*/ true,
  4211. };
  4212. ggml_context * ctx = ggml_init(params);
  4213. if (!ctx) {
  4214. throw std::runtime_error(format("failed to create context"));
  4215. }
  4216. ctx_map[it.first] = ctx;
  4217. model.ctxs.push_back(ctx);
  4218. }
  4219. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
  4220. // create tensors for the weights
  4221. {
  4222. const int64_t n_embd = hparams.n_embd;
  4223. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4224. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4225. const int64_t n_embd_gqa = n_embd_v_gqa;
  4226. const int64_t n_vocab = hparams.n_vocab;
  4227. const int64_t n_vocab_type = hparams.n_vocab_type;
  4228. const int64_t n_ff = hparams.n_ff;
  4229. const int64_t n_expert = hparams.n_expert;
  4230. if (n_expert > 0 && hparams.n_expert_used == 0) {
  4231. throw std::runtime_error("model has expert layers but no expert layers are used");
  4232. }
  4233. GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
  4234. ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
  4235. ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
  4236. ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
  4237. auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
  4238. auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
  4239. model.layers.resize(n_layer);
  4240. const auto tn = LLM_TN(model.arch);
  4241. switch (model.arch) {
  4242. case LLM_ARCH_LLAMA:
  4243. case LLM_ARCH_REFACT:
  4244. case LLM_ARCH_MINICPM:
  4245. {
  4246. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4247. // output
  4248. {
  4249. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4250. if (model.arch != LLM_ARCH_MINICPM){
  4251. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4252. // if output is NULL, init from the input tok embed
  4253. if (model.output == NULL) {
  4254. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4255. ml.n_created--; // artificial tensor
  4256. ml.size_data += ggml_nbytes(model.output);
  4257. }
  4258. }
  4259. }
  4260. for (int i = 0; i < n_layer; ++i) {
  4261. ggml_context * ctx_layer = ctx_for_layer(i);
  4262. ggml_context * ctx_split = ctx_for_layer_split(i);
  4263. auto & layer = model.layers[i];
  4264. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4265. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4266. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4267. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4268. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4269. // optional bias tensors
  4270. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
  4271. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
  4272. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
  4273. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
  4274. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4275. if (n_expert == 0) {
  4276. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4277. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4278. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4279. } else {
  4280. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4281. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  4282. if (layer.ffn_gate_exps) {
  4283. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4284. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4285. } else {
  4286. // merge split expert into a single tensor for compatibility with older models
  4287. // requires disabling mmap
  4288. use_mmap_buffer = false;
  4289. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4290. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4291. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4292. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4293. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4294. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4295. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4296. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4297. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4298. for (uint32_t x = 0; x < n_expert; ++x) {
  4299. // the individual experts are loaded into a view of the merged tensor
  4300. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4301. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4302. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4303. }
  4304. }
  4305. }
  4306. }
  4307. } break;
  4308. case LLM_ARCH_GROK:
  4309. {
  4310. if (n_expert == 0) {
  4311. throw std::runtime_error("Grok model cannot have zero experts");
  4312. }
  4313. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4314. // output
  4315. {
  4316. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4317. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4318. // if output is NULL, init from the input tok embed
  4319. if (model.output == NULL) {
  4320. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4321. ml.n_created--; // artificial tensor
  4322. ml.size_data += ggml_nbytes(model.output);
  4323. }
  4324. }
  4325. for (int i = 0; i < n_layer; ++i) {
  4326. ggml_context * ctx_layer = ctx_for_layer(i);
  4327. ggml_context * ctx_split = ctx_for_layer_split(i);
  4328. auto & layer = model.layers[i];
  4329. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4330. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4331. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4332. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4333. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4334. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4335. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4336. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4337. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  4338. if (layer.ffn_gate_exps) {
  4339. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4340. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4341. } else {
  4342. // merge split expert into a single tensor for compatibility with older models
  4343. // requires disabling mmap
  4344. use_mmap_buffer = false;
  4345. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4346. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4347. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4348. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4349. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4350. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4351. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4352. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4353. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4354. for (uint32_t x = 0; x < n_expert; ++x) {
  4355. // the individual experts are loaded into a view of the merged tensor
  4356. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4357. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4358. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4359. }
  4360. }
  4361. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4362. }
  4363. } break;
  4364. case LLM_ARCH_DBRX:
  4365. {
  4366. if (n_expert == 0) {
  4367. throw std::runtime_error("DBRX model cannot have zero experts");
  4368. }
  4369. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4370. // output
  4371. {
  4372. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4373. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4374. }
  4375. for (int i = 0; i < n_layer; ++i) {
  4376. ggml_context * ctx_layer = ctx_for_layer(i);
  4377. ggml_context * ctx_split = ctx_for_layer_split(i);
  4378. auto & layer = model.layers[i];
  4379. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4380. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4381. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4382. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4383. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4384. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4385. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
  4386. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4387. }
  4388. } break;
  4389. case LLM_ARCH_BAICHUAN:
  4390. {
  4391. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4392. {
  4393. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4394. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4395. }
  4396. for (int i = 0; i < n_layer; ++i) {
  4397. ggml_context * ctx_layer = ctx_for_layer(i);
  4398. ggml_context * ctx_split = ctx_for_layer_split(i);
  4399. auto & layer = model.layers[i];
  4400. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4401. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4402. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4403. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4404. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4405. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4406. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4407. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4408. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4409. }
  4410. } break;
  4411. case LLM_ARCH_FALCON:
  4412. {
  4413. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4414. // output
  4415. {
  4416. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4417. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4418. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4419. if (!model.output) {
  4420. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
  4421. ml.n_created--; // artificial tensor
  4422. ml.size_data += ggml_nbytes(model.output);
  4423. }
  4424. }
  4425. for (int i = 0; i < n_layer; ++i) {
  4426. ggml_context * ctx_layer = ctx_for_layer(i);
  4427. ggml_context * ctx_split = ctx_for_layer_split(i);
  4428. auto & layer = model.layers[i];
  4429. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4430. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4431. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, false);
  4432. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, false);
  4433. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4434. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4435. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4436. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4437. }
  4438. } break;
  4439. case LLM_ARCH_STARCODER:
  4440. {
  4441. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4442. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4443. // output
  4444. {
  4445. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4446. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4447. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4448. }
  4449. for (int i = 0; i < n_layer; ++i) {
  4450. ggml_context * ctx_layer = ctx_for_layer(i);
  4451. ggml_context * ctx_split = ctx_for_layer_split(i);
  4452. auto & layer = model.layers[i];
  4453. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4454. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4455. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4456. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4457. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4458. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4459. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4460. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4461. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4462. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4463. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4464. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4465. }
  4466. } break;
  4467. case LLM_ARCH_PERSIMMON:
  4468. {
  4469. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4470. {
  4471. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4472. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4473. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4474. }
  4475. for (int i = 0; i < n_layer; ++i) {
  4476. ggml_context * ctx_layer = ctx_for_layer(i);
  4477. ggml_context * ctx_split = ctx_for_layer_split(i);
  4478. auto & layer = model.layers[i];
  4479. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4480. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4481. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4482. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4483. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4484. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4485. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4486. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4487. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4488. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4489. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4490. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4491. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {64});
  4492. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {64});
  4493. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {64});
  4494. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {64});
  4495. }
  4496. } break;
  4497. case LLM_ARCH_BERT:
  4498. case LLM_ARCH_NOMIC_BERT:
  4499. {
  4500. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4501. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
  4502. if (model.arch == LLM_ARCH_BERT) {
  4503. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4504. }
  4505. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4506. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4507. for (int i = 0; i < n_layer; ++i) {
  4508. ggml_context * ctx_layer = ctx_for_layer(i);
  4509. ggml_context * ctx_split = ctx_for_layer_split(i);
  4510. auto & layer = model.layers[i];
  4511. if (model.arch == LLM_ARCH_BERT) {
  4512. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4513. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4514. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4515. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4516. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4517. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4518. } else {
  4519. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4520. }
  4521. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4522. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4523. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  4524. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4525. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4526. if (model.arch == LLM_ARCH_BERT) {
  4527. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4528. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4529. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4530. } else {
  4531. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4532. }
  4533. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4534. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  4535. }
  4536. } break;
  4537. case LLM_ARCH_BLOOM:
  4538. {
  4539. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4540. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4541. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4542. // output
  4543. {
  4544. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4545. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4546. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4547. }
  4548. for (int i = 0; i < n_layer; ++i) {
  4549. ggml_context * ctx_layer = ctx_for_layer(i);
  4550. ggml_context * ctx_split = ctx_for_layer_split(i);
  4551. auto & layer = model.layers[i];
  4552. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4553. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4554. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4555. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4556. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4557. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4558. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4559. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4560. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4561. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4562. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4563. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4564. }
  4565. } break;
  4566. case LLM_ARCH_MPT:
  4567. {
  4568. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4569. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, false);
  4570. // output
  4571. {
  4572. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4573. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, false);
  4574. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4575. if (!model.output) {
  4576. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
  4577. ml.n_created--; // artificial tensor
  4578. ml.size_data += ggml_nbytes(model.output);
  4579. }
  4580. }
  4581. for (int i = 0; i < n_layer; ++i) {
  4582. ggml_context * ctx_layer = ctx_for_layer(i);
  4583. ggml_context * ctx_split = ctx_for_layer_split(i);
  4584. auto & layer = model.layers[i];
  4585. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4586. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, false);
  4587. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4588. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
  4589. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4590. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
  4591. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4592. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
  4593. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4594. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, false);
  4595. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4596. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, false);
  4597. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, false);
  4598. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, false);
  4599. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, false);
  4600. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, false);
  4601. // AWQ ScaleActivation layer
  4602. layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, false);
  4603. }
  4604. } break;
  4605. case LLM_ARCH_STABLELM:
  4606. {
  4607. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4608. // output
  4609. {
  4610. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4611. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4612. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4613. }
  4614. for (int i = 0; i < n_layer; ++i) {
  4615. ggml_context * ctx_layer = ctx_for_layer(i);
  4616. ggml_context * ctx_split = ctx_for_layer_split(i);
  4617. auto & layer = model.layers[i];
  4618. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4619. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4620. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4621. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4622. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4623. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4624. // optional bias tensors, present in Stable LM 2 1.6B
  4625. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
  4626. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
  4627. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
  4628. // optional q and k layernorms, present in StableLM 2 12B
  4629. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head}, false);
  4630. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}, false);
  4631. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  4632. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, false);
  4633. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
  4634. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4635. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4636. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4637. }
  4638. } break;
  4639. case LLM_ARCH_QWEN:
  4640. {
  4641. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4642. // output
  4643. {
  4644. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4645. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4646. }
  4647. for (int i = 0; i < n_layer; ++i) {
  4648. ggml_context * ctx_layer = ctx_for_layer(i);
  4649. ggml_context * ctx_split = ctx_for_layer_split(i);
  4650. auto & layer = model.layers[i];
  4651. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4652. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
  4653. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
  4654. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4655. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4656. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
  4657. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
  4658. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
  4659. }
  4660. } break;
  4661. case LLM_ARCH_QWEN2:
  4662. {
  4663. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4664. // output
  4665. {
  4666. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4667. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4668. // if output is NULL, init from the input tok embed
  4669. if (model.output == NULL) {
  4670. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4671. ml.n_created--; // artificial tensor
  4672. ml.size_data += ggml_nbytes(model.output);
  4673. }
  4674. }
  4675. for (int i = 0; i < n_layer; ++i) {
  4676. ggml_context * ctx_layer = ctx_for_layer(i);
  4677. ggml_context * ctx_split = ctx_for_layer_split(i);
  4678. auto & layer = model.layers[i];
  4679. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4680. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4681. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4682. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4683. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4684. // optional bias tensors
  4685. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4686. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4687. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4688. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4689. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4690. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4691. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4692. }
  4693. } break;
  4694. case LLM_ARCH_QWEN2MOE:
  4695. {
  4696. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4697. // output
  4698. {
  4699. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4700. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4701. }
  4702. for (int i = 0; i < n_layer; ++i) {
  4703. ggml_context * ctx_layer = ctx_for_layer(i);
  4704. ggml_context * ctx_split = ctx_for_layer_split(i);
  4705. auto & layer = model.layers[i];
  4706. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4707. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4708. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4709. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4710. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4711. // optional bias tensors
  4712. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4713. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4714. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4715. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4716. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4717. GGML_ASSERT(hparams.n_expert > 0);
  4718. GGML_ASSERT(hparams.n_expert_used > 0);
  4719. // MoE branch
  4720. auto n_ff_exp = n_ff / hparams.n_expert_used;
  4721. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  4722. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  4723. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  4724. // Shared expert branch
  4725. layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
  4726. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff});
  4727. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff, n_embd});
  4728. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff});
  4729. }
  4730. } break;
  4731. case LLM_ARCH_PHI2:
  4732. {
  4733. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4734. // output
  4735. {
  4736. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4737. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4738. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4739. model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
  4740. }
  4741. for (int i = 0; i < n_layer; ++i) {
  4742. ggml_context * ctx_layer = ctx_for_layer(i);
  4743. ggml_context * ctx_split = ctx_for_layer_split(i);
  4744. auto & layer = model.layers[i];
  4745. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4746. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4747. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, false);
  4748. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
  4749. if (layer.wqkv == nullptr) {
  4750. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4751. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4752. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4753. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4754. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4755. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4756. }
  4757. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4758. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4759. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4760. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4761. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4762. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4763. }
  4764. } break;
  4765. case LLM_ARCH_PHI3:
  4766. {
  4767. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab });
  4768. // output
  4769. {
  4770. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd });
  4771. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab });
  4772. }
  4773. for (int i = 0; i < n_layer; ++i) {
  4774. ggml_context* ctx_layer = ctx_for_layer(i);
  4775. ggml_context* ctx_split = ctx_for_layer_split(i);
  4776. auto& layer = model.layers[i];
  4777. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd });
  4778. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, false);
  4779. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd });
  4780. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd });
  4781. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd });
  4782. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff });
  4783. }
  4784. } break;
  4785. case LLM_ARCH_PLAMO:
  4786. {
  4787. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4788. // output
  4789. {
  4790. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4791. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4792. }
  4793. for (int i = 0; i < n_layer; ++i) {
  4794. ggml_context * ctx_layer = ctx_for_layer(i);
  4795. ggml_context * ctx_split = ctx_for_layer_split(i);
  4796. auto & layer = model.layers[i];
  4797. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4798. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4799. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4800. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4801. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4802. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4803. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4804. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4805. }
  4806. } break;
  4807. case LLM_ARCH_GPT2:
  4808. {
  4809. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4810. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4811. // output
  4812. {
  4813. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4814. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4815. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4816. }
  4817. for (int i = 0; i < n_layer; ++i) {
  4818. ggml_context * ctx_layer = ctx_for_layer(i);
  4819. ggml_context * ctx_split = ctx_for_layer_split(i);
  4820. auto & layer = model.layers[i];
  4821. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4822. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4823. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4824. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4825. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4826. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4827. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4828. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4829. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4830. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4831. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4832. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4833. }
  4834. } break;
  4835. case LLM_ARCH_CODESHELL:
  4836. {
  4837. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4838. // output
  4839. {
  4840. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4841. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4842. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4843. }
  4844. for (int i = 0; i < n_layer; ++i) {
  4845. ggml_context * ctx_layer = ctx_for_layer(i);
  4846. ggml_context * ctx_split = ctx_for_layer_split(i);
  4847. auto & layer = model.layers[i];
  4848. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4849. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4850. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4851. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4852. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4853. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4854. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4855. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4856. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4857. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4858. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4859. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4860. }
  4861. } break;
  4862. case LLM_ARCH_ORION:
  4863. {
  4864. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4865. {
  4866. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4867. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4868. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4869. }
  4870. for (int i = 0; i < n_layer; ++i) {
  4871. ggml_context * ctx_layer = ctx_for_layer(i);
  4872. ggml_context * ctx_split = ctx_for_layer_split(i);
  4873. auto & layer = model.layers[i];
  4874. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4875. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4876. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4877. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4878. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4879. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4880. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4881. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4882. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4883. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4884. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4885. }
  4886. } break;
  4887. case LLM_ARCH_INTERNLM2:
  4888. {
  4889. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4890. // output
  4891. {
  4892. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4893. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4894. }
  4895. for (int i = 0; i < n_layer; ++i) {
  4896. ggml_context * ctx_layer = ctx_for_layer(i);
  4897. ggml_context * ctx_split = ctx_for_layer_split(i);
  4898. auto & layer = model.layers[i];
  4899. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4900. // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4901. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4902. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4903. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4904. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4905. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4906. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4907. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4908. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4909. }
  4910. } break;
  4911. case LLM_ARCH_GEMMA:
  4912. {
  4913. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4914. // output
  4915. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4916. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // same as tok_embd, duplicated to allow offloading
  4917. ml.n_created--; // artificial tensor
  4918. ml.size_data += ggml_nbytes(model.output);
  4919. const int64_t n_ff = hparams.n_ff;
  4920. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  4921. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4922. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4923. for (uint32_t i = 0; i < n_layer; ++i) {
  4924. ggml_context * ctx_layer = ctx_for_layer(i);
  4925. ggml_context * ctx_split = ctx_for_layer_split(i);
  4926. auto & layer = model.layers[i];
  4927. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4928. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
  4929. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  4930. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  4931. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
  4932. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4933. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4934. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4935. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4936. }
  4937. } break;
  4938. case LLM_ARCH_STARCODER2:
  4939. {
  4940. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4941. // output
  4942. {
  4943. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4944. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4945. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4946. // if output is NULL, init from the input tok embed
  4947. if (model.output == NULL) {
  4948. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4949. ml.n_created--; // artificial tensor
  4950. ml.size_data += ggml_nbytes(model.output);
  4951. }
  4952. }
  4953. for (int i = 0; i < n_layer; ++i) {
  4954. ggml_context * ctx_layer = ctx_for_layer(i);
  4955. ggml_context * ctx_split = ctx_for_layer_split(i);
  4956. auto & layer = model.layers[i];
  4957. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4958. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4959. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4960. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4961. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4962. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4963. // optional bias tensors
  4964. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4965. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4966. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4967. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4968. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4969. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4970. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4971. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4972. // optional bias tensors
  4973. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4974. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
  4975. }
  4976. } break;
  4977. case LLM_ARCH_MAMBA:
  4978. {
  4979. const int64_t d_conv = hparams.ssm_d_conv;
  4980. const int64_t d_inner = hparams.ssm_d_inner;
  4981. const int64_t d_state = hparams.ssm_d_state;
  4982. const int64_t dt_rank = hparams.ssm_dt_rank;
  4983. // only an expansion factor of 2 is supported for now
  4984. GGML_ASSERT(2 * n_embd == d_inner);
  4985. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4986. // output
  4987. {
  4988. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4989. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4990. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  4991. if (model.output == NULL) {
  4992. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4993. ml.n_created--; // artificial tensor
  4994. ml.size_data += ggml_nbytes(model.output);
  4995. }
  4996. }
  4997. for (int i = 0; i < n_layer; ++i) {
  4998. ggml_context * ctx_layer = ctx_for_layer(i);
  4999. ggml_context * ctx_split = ctx_for_layer_split(i);
  5000. auto & layer = model.layers[i];
  5001. // norm
  5002. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5003. layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
  5004. layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
  5005. layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
  5006. layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
  5007. layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
  5008. layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
  5009. // no "weight" suffix for these
  5010. layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
  5011. layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
  5012. // out_proj
  5013. layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
  5014. }
  5015. } break;
  5016. case LLM_ARCH_XVERSE:
  5017. {
  5018. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5019. {
  5020. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5021. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5022. }
  5023. for (int i = 0; i < n_layer; ++i) {
  5024. ggml_context * ctx_layer = ctx_for_layer(i);
  5025. ggml_context * ctx_split = ctx_for_layer_split(i);
  5026. auto & layer = model.layers[i];
  5027. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5028. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5029. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5030. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5031. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5032. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5033. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5034. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5035. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5036. }
  5037. } break;
  5038. case LLM_ARCH_COMMAND_R:
  5039. {
  5040. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5041. // output
  5042. {
  5043. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5044. // init output from the input tok embed
  5045. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5046. ml.n_created--; // artificial tensor
  5047. ml.size_data += ggml_nbytes(model.output);
  5048. }
  5049. for (int i = 0; i < n_layer; ++i) {
  5050. ggml_context * ctx_layer = ctx_for_layer(i);
  5051. ggml_context * ctx_split = ctx_for_layer_split(i);
  5052. auto & layer = model.layers[i];
  5053. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5054. if (n_layer >= 64){
  5055. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head});
  5056. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv});
  5057. }
  5058. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5059. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5060. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5061. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5062. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5063. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5064. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5065. }
  5066. } break;
  5067. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  5068. {
  5069. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5070. // output
  5071. {
  5072. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  5073. // if output is NULL, init from the input tok embed
  5074. if (model.output == NULL) {
  5075. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5076. ml.n_created--; // artificial tensor
  5077. ml.size_data += ggml_nbytes(model.output);
  5078. }
  5079. }
  5080. for (int i = 0; i < n_layer; ++i) {
  5081. ggml_context * ctx_split = ctx_for_layer_split(i);
  5082. auto & layer = model.layers[i];
  5083. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5084. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5085. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5086. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5087. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5088. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5089. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5090. }
  5091. } break;
  5092. default:
  5093. throw std::runtime_error("unknown architecture");
  5094. }
  5095. }
  5096. ml.done_getting_tensors();
  5097. ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
  5098. model.mappings.reserve(ml.mappings.size());
  5099. // create the backend buffers
  5100. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  5101. ctx_bufs.reserve(ctx_map.size());
  5102. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  5103. size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  5104. model.bufs.reserve(n_max_backend_buffer);
  5105. for (auto & it : ctx_map) {
  5106. ggml_backend_buffer_type_t buft = it.first;
  5107. ggml_context * ctx = it.second;
  5108. llama_buf_map bufs;
  5109. bufs.reserve(n_max_backend_buffer);
  5110. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  5111. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  5112. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  5113. if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
  5114. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5115. void * addr = nullptr;
  5116. size_t first, last;
  5117. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5118. if (first >= last) {
  5119. continue;
  5120. }
  5121. ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
  5122. if (buf == nullptr) {
  5123. throw std::runtime_error("unable to allocate backend CPU buffer");
  5124. }
  5125. model.bufs.push_back(buf);
  5126. bufs.emplace(idx, buf);
  5127. #ifdef GGML_USE_CUDA
  5128. if (n_layer >= n_gpu_layers) {
  5129. ggml_backend_cuda_register_host_buffer(
  5130. ggml_backend_buffer_get_base(buf),
  5131. ggml_backend_buffer_get_size(buf));
  5132. }
  5133. #endif
  5134. }
  5135. }
  5136. #ifdef GGML_USE_METAL
  5137. else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
  5138. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5139. const size_t max_size = ggml_get_max_tensor_size(ctx);
  5140. void * addr = nullptr;
  5141. size_t first, last;
  5142. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5143. if (first >= last) {
  5144. continue;
  5145. }
  5146. ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
  5147. if (buf == nullptr) {
  5148. throw std::runtime_error("unable to allocate backend metal buffer");
  5149. }
  5150. model.bufs.push_back(buf);
  5151. bufs.emplace(idx, buf);
  5152. }
  5153. }
  5154. #endif
  5155. else {
  5156. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  5157. if (buf == nullptr) {
  5158. throw std::runtime_error("unable to allocate backend buffer");
  5159. }
  5160. model.bufs.push_back(buf);
  5161. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  5162. model.mlock_bufs.emplace_back(new llama_mlock);
  5163. auto & mlock_buf = model.mlock_bufs.back();
  5164. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  5165. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  5166. }
  5167. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5168. bufs.emplace(idx, buf);
  5169. }
  5170. }
  5171. if (bufs.empty()) {
  5172. throw std::runtime_error("failed to allocate buffer");
  5173. }
  5174. for (auto & buf : bufs) {
  5175. // indicate that this buffer contains weights
  5176. // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
  5177. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  5178. }
  5179. ctx_bufs.emplace_back(ctx, bufs);
  5180. }
  5181. if (llama_supports_gpu_offload()) {
  5182. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  5183. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  5184. if (n_gpu_layers > (int) hparams.n_layer) {
  5185. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  5186. }
  5187. const int max_backend_supported_layers = hparams.n_layer + 1;
  5188. const int max_offloadable_layers = hparams.n_layer + 1;
  5189. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  5190. }
  5191. // print memory requirements
  5192. for (ggml_backend_buffer_t buf : model.bufs) {
  5193. LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
  5194. }
  5195. // populate tensors_by_name
  5196. for (ggml_context * ctx : model.ctxs) {
  5197. for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  5198. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  5199. }
  5200. }
  5201. // load tensor data
  5202. for (auto & it : ctx_bufs) {
  5203. ggml_context * ctx = it.first;
  5204. auto & bufs = it.second;
  5205. if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
  5206. return false;
  5207. }
  5208. }
  5209. if (use_mmap_buffer) {
  5210. for (auto & mapping : ml.mappings) {
  5211. model.mappings.emplace_back(std::move(mapping));
  5212. }
  5213. }
  5214. // loading time will be recalculate after the first eval, so
  5215. // we take page faults deferred by mmap() into consideration
  5216. model.t_load_us = ggml_time_us() - model.t_start_us;
  5217. return true;
  5218. }
  5219. // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
  5220. static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
  5221. try {
  5222. llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides);
  5223. model.hparams.vocab_only = params.vocab_only;
  5224. try {
  5225. llm_load_arch(ml, model);
  5226. } catch(const std::exception & e) {
  5227. throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
  5228. }
  5229. try {
  5230. llm_load_hparams(ml, model);
  5231. } catch(const std::exception & e) {
  5232. throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
  5233. }
  5234. try {
  5235. llm_load_vocab(ml, model);
  5236. } catch(const std::exception & e) {
  5237. throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
  5238. }
  5239. llm_load_print_meta(ml, model);
  5240. if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
  5241. model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  5242. throw std::runtime_error("vocab size mismatch");
  5243. }
  5244. if (params.vocab_only) {
  5245. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  5246. return 0;
  5247. }
  5248. #ifdef GGML_USE_KOMPUTE
  5249. if (params.n_gpu_layers > 0 && (
  5250. !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
  5251. || !(
  5252. model.ftype == LLAMA_FTYPE_ALL_F32 ||
  5253. model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
  5254. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  5255. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
  5256. )
  5257. )) {
  5258. // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
  5259. LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
  5260. params.n_gpu_layers = 0;
  5261. }
  5262. #endif
  5263. #ifdef GGML_USE_SYCL
  5264. if (params.split_mode == LLAMA_SPLIT_MODE_NONE) {
  5265. ggml_backend_sycl_set_single_device_mode(params.main_gpu);
  5266. //SYCL use device index (0, 1, 2) directly, uer input device id, then convert to device index.
  5267. params.main_gpu = ggml_backend_sycl_get_device_index(params.main_gpu);
  5268. } else {
  5269. ggml_backend_sycl_set_mul_device_mode();
  5270. }
  5271. #endif
  5272. if (!llm_load_tensors(
  5273. ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
  5274. params.progress_callback, params.progress_callback_user_data
  5275. )) {
  5276. return -2;
  5277. }
  5278. } catch (const std::exception & err) {
  5279. LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
  5280. return -1;
  5281. }
  5282. return 0;
  5283. }
  5284. //
  5285. // llm_build
  5286. //
  5287. using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
  5288. enum llm_ffn_op_type {
  5289. LLM_FFN_SILU,
  5290. LLM_FFN_GELU,
  5291. LLM_FFN_RELU,
  5292. LLM_FFN_RELU_SQR,
  5293. };
  5294. enum llm_ffn_gate_type {
  5295. LLM_FFN_SEQ,
  5296. LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
  5297. };
  5298. enum llm_norm_type {
  5299. LLM_NORM,
  5300. LLM_NORM_RMS,
  5301. };
  5302. static struct ggml_tensor * llm_build_inp_embd(
  5303. struct ggml_context * ctx,
  5304. struct llama_context & lctx,
  5305. const llama_hparams & hparams,
  5306. const llama_batch & batch,
  5307. struct ggml_tensor * tok_embd,
  5308. const llm_build_cb & cb) {
  5309. const int64_t n_embd = hparams.n_embd;
  5310. struct ggml_tensor * inpL;
  5311. if (batch.token) {
  5312. lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
  5313. cb(lctx.inp_tokens, "inp_tokens", -1);
  5314. ggml_set_input(lctx.inp_tokens);
  5315. inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
  5316. } else {
  5317. #ifdef GGML_USE_MPI
  5318. GGML_ASSERT(false && "not implemented");
  5319. #endif
  5320. lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
  5321. inpL = lctx.inp_embd;
  5322. ggml_set_input(lctx.inp_embd);
  5323. }
  5324. cb(inpL, "inp_embd", -1);
  5325. return inpL;
  5326. }
  5327. static void llm_build_kv_store(
  5328. struct ggml_context * ctx,
  5329. const llama_hparams & hparams,
  5330. const llama_kv_cache & kv,
  5331. struct ggml_cgraph * graph,
  5332. struct ggml_tensor * k_cur,
  5333. struct ggml_tensor * v_cur,
  5334. int64_t n_ctx,
  5335. int32_t n_tokens,
  5336. int32_t kv_head,
  5337. const llm_build_cb & cb,
  5338. int64_t il) {
  5339. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5340. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5341. GGML_ASSERT(kv.size == n_ctx);
  5342. // compute the transposed [n_tokens, n_embd] V matrix
  5343. assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
  5344. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, v_cur);
  5345. cb(v_cur_t, "v_cur_t", il);
  5346. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
  5347. (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
  5348. cb(k_cache_view, "k_cache_view", il);
  5349. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
  5350. ( n_ctx)*ggml_element_size(kv.v_l[il]),
  5351. (kv_head)*ggml_element_size(kv.v_l[il]));
  5352. cb(v_cache_view, "v_cache_view", il);
  5353. // important: storing RoPE-ed version of K in the KV cache!
  5354. ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
  5355. ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur_t, v_cache_view));
  5356. }
  5357. static struct ggml_tensor * llm_build_norm(
  5358. struct ggml_context * ctx,
  5359. struct ggml_tensor * cur,
  5360. const llama_hparams & hparams,
  5361. struct ggml_tensor * mw,
  5362. struct ggml_tensor * mb,
  5363. llm_norm_type type,
  5364. const llm_build_cb & cb,
  5365. int il) {
  5366. switch (type) {
  5367. case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
  5368. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
  5369. }
  5370. if (mw || mb) {
  5371. cb(cur, "norm", il);
  5372. }
  5373. if (mw) {
  5374. cur = ggml_mul(ctx, cur, mw);
  5375. if (mb) {
  5376. cb(cur, "norm_w", il);
  5377. }
  5378. }
  5379. if (mb) {
  5380. cur = ggml_add(ctx, cur, mb);
  5381. }
  5382. return cur;
  5383. }
  5384. static struct ggml_tensor * llm_build_ffn(
  5385. struct ggml_context * ctx,
  5386. struct ggml_tensor * cur,
  5387. struct ggml_tensor * up,
  5388. struct ggml_tensor * up_b,
  5389. struct ggml_tensor * gate,
  5390. struct ggml_tensor * gate_b,
  5391. struct ggml_tensor * down,
  5392. struct ggml_tensor * down_b,
  5393. struct ggml_tensor * act_scales,
  5394. llm_ffn_op_type type_op,
  5395. llm_ffn_gate_type type_gate,
  5396. const llm_build_cb & cb,
  5397. int il) {
  5398. struct ggml_tensor * tmp = ggml_mul_mat(ctx, up, cur);
  5399. cb(tmp, "ffn_up", il);
  5400. if (up_b) {
  5401. tmp = ggml_add(ctx, tmp, up_b);
  5402. cb(tmp, "ffn_up_b", il);
  5403. }
  5404. if (gate) {
  5405. switch (type_gate) {
  5406. case LLM_FFN_SEQ:
  5407. {
  5408. cur = ggml_mul_mat(ctx, gate, tmp);
  5409. cb(cur, "ffn_gate", il);
  5410. } break;
  5411. case LLM_FFN_PAR:
  5412. {
  5413. cur = ggml_mul_mat(ctx, gate, cur);
  5414. cb(cur, "ffn_gate", il);
  5415. } break;
  5416. }
  5417. if (gate_b) {
  5418. cur = ggml_add(ctx, cur, gate_b);
  5419. cb(cur, "ffn_gate_b", il);
  5420. }
  5421. } else {
  5422. cur = tmp;
  5423. }
  5424. switch (type_op) {
  5425. case LLM_FFN_SILU:
  5426. {
  5427. cur = ggml_silu(ctx, cur);
  5428. cb(cur, "ffn_silu", il);
  5429. } break;
  5430. case LLM_FFN_GELU:
  5431. {
  5432. cur = ggml_gelu(ctx, cur);
  5433. cb(cur, "ffn_gelu", il);
  5434. if (act_scales != NULL) {
  5435. cur = ggml_div(ctx, cur, act_scales);
  5436. cb(cur, "ffn_act", il);
  5437. }
  5438. } break;
  5439. case LLM_FFN_RELU:
  5440. {
  5441. cur = ggml_relu(ctx, cur);
  5442. cb(cur, "ffn_relu", il);
  5443. } break;
  5444. case LLM_FFN_RELU_SQR:
  5445. {
  5446. cur = ggml_relu(ctx, cur);
  5447. cb(cur, "ffn_relu", il);
  5448. cur = ggml_sqr(ctx, cur);
  5449. cb(cur, "ffn_sqr(relu)", il);
  5450. } break;
  5451. }
  5452. if (type_gate == LLM_FFN_PAR) {
  5453. cur = ggml_mul(ctx, cur, tmp);
  5454. cb(cur, "ffn_gate_par", il);
  5455. }
  5456. cur = ggml_mul_mat(ctx, down, cur);
  5457. if (down_b) {
  5458. cb(cur, "ffn_down", il);
  5459. }
  5460. if (down_b) {
  5461. cur = ggml_add(ctx, cur, down_b);
  5462. }
  5463. return cur;
  5464. }
  5465. static struct ggml_tensor * llm_build_moe_ffn(
  5466. struct ggml_context * ctx,
  5467. struct ggml_tensor * cur,
  5468. struct ggml_tensor * gate_inp,
  5469. struct ggml_tensor * up_exps,
  5470. struct ggml_tensor * gate_exps,
  5471. struct ggml_tensor * down_exps,
  5472. int64_t n_expert,
  5473. int64_t n_expert_used,
  5474. llm_ffn_op_type type_op,
  5475. bool norm_w,
  5476. const llm_build_cb & cb,
  5477. int il) {
  5478. int64_t n_embd = cur->ne[0];
  5479. int64_t n_tokens = cur->ne[1];
  5480. ggml_tensor * logits = ggml_mul_mat(ctx, gate_inp, cur); // [n_expert, n_tokens]
  5481. cb(logits, "ffn_moe_logits", il);
  5482. ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
  5483. cb(probs, "ffn_moe_probs", il);
  5484. // select experts
  5485. ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
  5486. cb(selected_experts->src[0], "ffn_moe_argsort", il);
  5487. cb(selected_experts, "ffn_moe_topk", il);
  5488. ggml_tensor * weights = ggml_get_rows(ctx,
  5489. ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  5490. cb(weights, "ffn_moe_weights", il);
  5491. if (norm_w) {
  5492. weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
  5493. ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens]
  5494. cb(weights_sum, "ffn_moe_weights_sum", il);
  5495. weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens]
  5496. cb(weights, "ffn_moe_weights_norm", il);
  5497. weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
  5498. }
  5499. cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens);
  5500. ggml_tensor * up = ggml_mul_mat_id(ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5501. cb(up, "ffn_moe_up", il);
  5502. ggml_tensor * gate = ggml_mul_mat_id(ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5503. cb(gate, "ffn_moe_gate", il);
  5504. switch (type_op) {
  5505. case LLM_FFN_SILU:
  5506. {
  5507. gate = ggml_silu(ctx, gate);
  5508. cb(gate, "ffn_moe_silu", il);
  5509. } break;
  5510. case LLM_FFN_GELU:
  5511. {
  5512. gate = ggml_gelu(ctx, gate);
  5513. cb(gate, "ffn_moe_gelu", il);
  5514. } break;
  5515. default:
  5516. GGML_ASSERT(false);
  5517. }
  5518. ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens]
  5519. cb(par, "ffn_moe_gate_par", il);
  5520. ggml_tensor * experts = ggml_mul_mat_id(ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
  5521. cb(experts, "ffn_moe_down", il);
  5522. experts = ggml_mul(ctx, experts, weights);
  5523. // aggregate experts
  5524. ggml_tensor * moe_out = nullptr;
  5525. for (int i = 0; i < n_expert_used; ++i) {
  5526. ggml_tensor * cur_expert = ggml_view_2d(ctx, experts, n_embd, n_tokens,
  5527. experts->nb[2], i*experts->nb[1]);
  5528. if (i == 0) {
  5529. moe_out = cur_expert;
  5530. } else {
  5531. moe_out = ggml_add(ctx, moe_out, cur_expert);
  5532. }
  5533. }
  5534. if (n_expert_used == 1) {
  5535. // avoid returning a non-contiguous tensor
  5536. moe_out = ggml_cont(ctx, moe_out);
  5537. }
  5538. return moe_out;
  5539. }
  5540. // if max_alibi_bias > 0 then apply ALiBi
  5541. static struct ggml_tensor * llm_build_kqv(
  5542. struct ggml_context * ctx,
  5543. const llama_model & model,
  5544. const llama_hparams & hparams,
  5545. const llama_kv_cache & kv,
  5546. struct ggml_cgraph * graph,
  5547. struct ggml_tensor * wo,
  5548. struct ggml_tensor * wo_b,
  5549. struct ggml_tensor * q_cur,
  5550. struct ggml_tensor * kq_mask,
  5551. struct ggml_tensor * kq_pos,
  5552. int64_t n_ctx,
  5553. int32_t n_tokens,
  5554. int32_t n_kv,
  5555. float kq_scale,
  5556. const llm_build_cb & cb,
  5557. int il) {
  5558. const int64_t n_head = hparams.n_head;
  5559. const int64_t n_head_kv = hparams.n_head_kv;
  5560. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5561. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5562. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  5563. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  5564. cb(q, "q", il);
  5565. struct ggml_tensor * k =
  5566. ggml_view_3d(ctx, kv.k_l[il],
  5567. n_embd_head_k, n_kv, n_head_kv,
  5568. ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
  5569. ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
  5570. 0);
  5571. cb(k, "k", il);
  5572. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  5573. cb(kq, "kq", il);
  5574. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3) {
  5575. // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
  5576. // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
  5577. ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5578. }
  5579. if (model.arch == LLM_ARCH_GROK) {
  5580. // need to do the following:
  5581. // multiply by attn_output_multiplyer of 0.08838834764831845
  5582. // and then :
  5583. // kq = 30 * tanh(kq / 30)
  5584. // before the softmax below
  5585. //try from phi2
  5586. //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5587. kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
  5588. kq = ggml_scale(ctx, kq, 30);
  5589. }
  5590. #if defined(GGML_USE_KOMPUTE)
  5591. #pragma message("TODO: ALiBi support in ggml_soft_max_ext is not implemented for Kompute")
  5592. #pragma message(" Falling back to ggml_alibi(). Will become an error in Mar 2024")
  5593. #pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5488")
  5594. if (hparams.f_max_alibi_bias > 0.0f) {
  5595. kq = ggml_scale(ctx, kq, kq_scale);
  5596. cb(kq, "kq_scaled", il);
  5597. kq = ggml_alibi(ctx, kq, /*n_past*/ 0, n_head, hparams.f_max_alibi_bias);
  5598. cb(kq, "kq_scaled_alibi", il);
  5599. kq = ggml_add(ctx, kq, kq_mask);
  5600. cb(kq, "kq_masked", il);
  5601. kq = ggml_soft_max(ctx, kq);
  5602. cb(kq, "kq_soft_max", il);
  5603. } else
  5604. #endif
  5605. {
  5606. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_pos, kq_scale, hparams.f_max_alibi_bias);
  5607. cb(kq, "kq_soft_max_ext", il);
  5608. }
  5609. GGML_ASSERT(kv.size == n_ctx);
  5610. // split cached v into n_head heads
  5611. struct ggml_tensor * v =
  5612. ggml_view_3d(ctx, kv.v_l[il],
  5613. n_kv, n_embd_head_v, n_head_kv,
  5614. ggml_element_size(kv.v_l[il])*n_ctx,
  5615. ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
  5616. 0);
  5617. cb(v, "v", il);
  5618. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  5619. cb(kqv, "kqv", il);
  5620. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  5621. cb(kqv_merged, "kqv_merged", il);
  5622. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_k*n_head, n_tokens);
  5623. cb(cur, "kqv_merged_cont", il);
  5624. ggml_build_forward_expand(graph, cur);
  5625. cur = ggml_mul_mat(ctx, wo, cur);
  5626. if (wo_b) {
  5627. cb(cur, "kqv_wo", il);
  5628. }
  5629. if (wo_b) {
  5630. cur = ggml_add(ctx, cur, wo_b);
  5631. }
  5632. return cur;
  5633. }
  5634. static struct ggml_tensor * llm_build_kv(
  5635. struct ggml_context * ctx,
  5636. const llama_model & model,
  5637. const llama_hparams & hparams,
  5638. const llama_kv_cache & kv,
  5639. struct ggml_cgraph * graph,
  5640. struct ggml_tensor * wo,
  5641. struct ggml_tensor * wo_b,
  5642. struct ggml_tensor * k_cur,
  5643. struct ggml_tensor * v_cur,
  5644. struct ggml_tensor * q_cur,
  5645. struct ggml_tensor * kq_mask,
  5646. struct ggml_tensor * kq_pos,
  5647. int64_t n_ctx,
  5648. int32_t n_tokens,
  5649. int32_t kv_head,
  5650. int32_t n_kv,
  5651. float kq_scale,
  5652. const llm_build_cb & cb,
  5653. int il) {
  5654. // these nodes are added to the graph together so that they are not reordered
  5655. // by doing so, the number of splits in the graph is reduced
  5656. ggml_build_forward_expand(graph, q_cur);
  5657. ggml_build_forward_expand(graph, k_cur);
  5658. ggml_build_forward_expand(graph, v_cur);
  5659. llm_build_kv_store(ctx, hparams, kv, graph, k_cur, v_cur, n_ctx, n_tokens, kv_head, cb, il);
  5660. struct ggml_tensor * cur;
  5661. cur = llm_build_kqv(ctx, model, hparams, kv, graph, wo, wo_b,
  5662. q_cur, kq_mask, kq_pos, n_ctx, n_tokens, n_kv, kq_scale, cb, il);
  5663. cb(cur, "kqv_out", il);
  5664. return cur;
  5665. }
  5666. struct llm_build_context {
  5667. const llama_model & model;
  5668. llama_context & lctx;
  5669. const llama_hparams & hparams;
  5670. const llama_cparams & cparams;
  5671. const llama_batch & batch;
  5672. const llama_kv_cache & kv_self;
  5673. const int64_t n_embd;
  5674. const int64_t n_layer;
  5675. const int64_t n_rot;
  5676. const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
  5677. const int64_t n_head;
  5678. const int64_t n_head_kv;
  5679. const int64_t n_embd_head_k;
  5680. const int64_t n_embd_k_gqa;
  5681. const int64_t n_embd_head_v;
  5682. const int64_t n_embd_v_gqa;
  5683. const int64_t n_expert;
  5684. const int64_t n_expert_used;
  5685. const float freq_base;
  5686. const float freq_scale;
  5687. const float ext_factor;
  5688. const float attn_factor;
  5689. const float beta_fast;
  5690. const float beta_slow;
  5691. const float norm_eps;
  5692. const float norm_rms_eps;
  5693. const int32_t n_tokens;
  5694. const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size)
  5695. const int32_t n_outputs;
  5696. const int32_t kv_head; // index of where we store new KV data in the cache
  5697. const int32_t n_orig_ctx;
  5698. const enum llama_pooling_type pooling_type;
  5699. const enum llama_rope_type rope_type;
  5700. const llm_build_cb & cb;
  5701. std::vector<uint8_t> & buf_compute_meta;
  5702. struct ggml_context * ctx0 = nullptr;
  5703. // TODO: consider making the entire interface noexcept
  5704. llm_build_context(
  5705. llama_context & lctx,
  5706. const llama_batch & batch,
  5707. const llm_build_cb & cb,
  5708. bool worst_case) :
  5709. model (lctx.model),
  5710. lctx (lctx),
  5711. hparams (model.hparams),
  5712. cparams (lctx.cparams),
  5713. batch (batch),
  5714. kv_self (lctx.kv_self),
  5715. n_embd (hparams.n_embd),
  5716. n_layer (hparams.n_layer),
  5717. n_rot (hparams.n_rot),
  5718. n_ctx (cparams.n_ctx),
  5719. n_head (hparams.n_head),
  5720. n_head_kv (hparams.n_head_kv),
  5721. n_embd_head_k (hparams.n_embd_head_k),
  5722. n_embd_k_gqa (hparams.n_embd_k_gqa()),
  5723. n_embd_head_v (hparams.n_embd_head_v),
  5724. n_embd_v_gqa (hparams.n_embd_v_gqa()),
  5725. n_expert (hparams.n_expert),
  5726. n_expert_used (hparams.n_expert_used),
  5727. freq_base (cparams.rope_freq_base),
  5728. freq_scale (cparams.rope_freq_scale),
  5729. ext_factor (cparams.yarn_ext_factor),
  5730. attn_factor (cparams.yarn_attn_factor),
  5731. beta_fast (cparams.yarn_beta_fast),
  5732. beta_slow (cparams.yarn_beta_slow),
  5733. norm_eps (hparams.f_norm_eps),
  5734. norm_rms_eps (hparams.f_norm_rms_eps),
  5735. n_tokens (batch.n_tokens),
  5736. n_kv (worst_case ? kv_self.size : kv_self.n),
  5737. n_outputs (worst_case ? n_tokens : lctx.n_outputs),
  5738. kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
  5739. n_orig_ctx (cparams.n_yarn_orig_ctx),
  5740. pooling_type (cparams.pooling_type),
  5741. rope_type (hparams.rope_type),
  5742. cb (cb),
  5743. buf_compute_meta (lctx.buf_compute_meta) {
  5744. // all initializations should be done in init()
  5745. }
  5746. void init() {
  5747. struct ggml_init_params params = {
  5748. /*.mem_size =*/ buf_compute_meta.size(),
  5749. /*.mem_buffer =*/ buf_compute_meta.data(),
  5750. /*.no_alloc =*/ true,
  5751. };
  5752. ctx0 = ggml_init(params);
  5753. lctx.inp_tokens = nullptr;
  5754. lctx.inp_embd = nullptr;
  5755. lctx.inp_pos = nullptr;
  5756. lctx.inp_out_ids = nullptr;
  5757. lctx.inp_KQ_mask = nullptr;
  5758. lctx.inp_KQ_pos = nullptr;
  5759. lctx.inp_K_shift = nullptr;
  5760. lctx.inp_mean = nullptr;
  5761. lctx.inp_cls = nullptr;
  5762. lctx.inp_s_copy = nullptr;
  5763. lctx.inp_s_mask = nullptr;
  5764. lctx.inp_s_seq = nullptr;
  5765. }
  5766. void free() {
  5767. if (ctx0) {
  5768. ggml_free(ctx0);
  5769. ctx0 = nullptr;
  5770. }
  5771. }
  5772. struct ggml_cgraph * build_k_shift() {
  5773. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5774. GGML_ASSERT(kv_self.size == n_ctx);
  5775. lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  5776. cb(lctx.inp_K_shift, "K_shift", -1);
  5777. ggml_set_input(lctx.inp_K_shift);
  5778. for (int il = 0; il < n_layer; ++il) {
  5779. struct ggml_tensor * tmp =
  5780. // we rotate only the first n_rot dimensions
  5781. ggml_rope_custom_inplace(ctx0,
  5782. ggml_view_3d(ctx0, kv_self.k_l[il],
  5783. n_embd_head_k, n_head_kv, n_ctx,
  5784. ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
  5785. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5786. 0),
  5787. lctx.inp_K_shift, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5788. ext_factor, attn_factor, beta_fast, beta_slow);
  5789. cb(tmp, "K_shifted", il);
  5790. ggml_build_forward_expand(gf, tmp);
  5791. }
  5792. return gf;
  5793. }
  5794. struct ggml_cgraph * build_s_copy() {
  5795. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5796. GGML_ASSERT(kv_self.recurrent);
  5797. struct ggml_tensor * state_copy = build_inp_s_copy();
  5798. for (int il = 0; il < n_layer; ++il) {
  5799. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  5800. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  5801. conv_states = ggml_get_rows(ctx0, conv_states, state_copy);
  5802. ssm_states = ggml_get_rows(ctx0, ssm_states, state_copy);
  5803. // TODO: name the intermediate tensors with cb()
  5804. ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
  5805. ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il]));
  5806. }
  5807. return gf;
  5808. }
  5809. struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
  5810. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5811. for (uint32_t i = 0; i < ids.size(); ++i) {
  5812. const uint32_t id = ids[i];
  5813. if (i == id || id == ids.size()) {
  5814. continue;
  5815. }
  5816. uint32_t nm = 1;
  5817. while (i + nm < ids.size() && ids[i + nm] == id + nm) {
  5818. nm++;
  5819. }
  5820. for (int il = 0; il < n_layer; ++il) {
  5821. ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
  5822. n_embd_k_gqa, nm,
  5823. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5824. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
  5825. ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
  5826. n_embd_k_gqa, nm,
  5827. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5828. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
  5829. ggml_tensor * view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  5830. nm, n_embd_v_gqa,
  5831. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  5832. ggml_row_size(kv_self.v_l[il]->type, i));
  5833. ggml_tensor * view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  5834. nm, n_embd_v_gqa,
  5835. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  5836. ggml_row_size(kv_self.v_l[il]->type, id));
  5837. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
  5838. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
  5839. }
  5840. i += nm - 1;
  5841. }
  5842. //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
  5843. return gf;
  5844. }
  5845. struct ggml_tensor * build_inp_pos() {
  5846. lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  5847. cb(lctx.inp_pos, "inp_pos", -1);
  5848. ggml_set_input(lctx.inp_pos);
  5849. return lctx.inp_pos;
  5850. }
  5851. struct ggml_tensor * build_inp_out_ids() {
  5852. lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
  5853. cb(lctx.inp_out_ids, "inp_out_ids", -1);
  5854. ggml_set_input(lctx.inp_out_ids);
  5855. return lctx.inp_out_ids;
  5856. }
  5857. struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
  5858. if (causal) {
  5859. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, n_tokens);
  5860. } else {
  5861. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  5862. }
  5863. cb(lctx.inp_KQ_mask, "KQ_mask", -1);
  5864. ggml_set_input(lctx.inp_KQ_mask);
  5865. return lctx.inp_KQ_mask;
  5866. }
  5867. struct ggml_tensor * build_inp_KQ_pos() {
  5868. lctx.inp_KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n_kv);
  5869. cb(lctx.inp_KQ_pos, "KQ_pos", -1);
  5870. ggml_set_input(lctx.inp_KQ_pos);
  5871. return lctx.inp_KQ_pos;
  5872. }
  5873. struct ggml_tensor * build_inp_mean() {
  5874. lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  5875. cb(lctx.inp_mean, "inp_mean", -1);
  5876. ggml_set_input(lctx.inp_mean);
  5877. return lctx.inp_mean;
  5878. }
  5879. struct ggml_tensor * build_inp_cls() {
  5880. lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  5881. cb(lctx.inp_cls, "inp_cls", -1);
  5882. ggml_set_input(lctx.inp_cls);
  5883. return lctx.inp_cls;
  5884. }
  5885. struct ggml_tensor * build_inp_s_copy() {
  5886. lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size);
  5887. cb(lctx.inp_s_copy, "inp_s_copy", -1);
  5888. ggml_set_input(lctx.inp_s_copy);
  5889. return lctx.inp_s_copy;
  5890. }
  5891. struct ggml_tensor * build_inp_s_mask() {
  5892. lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
  5893. cb(lctx.inp_s_mask, "inp_s_mask", -1);
  5894. ggml_set_input(lctx.inp_s_mask);
  5895. return lctx.inp_s_mask;
  5896. }
  5897. struct ggml_tensor * build_inp_s_seq() {
  5898. lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
  5899. cb(lctx.inp_s_seq, "inp_s_seq", -1);
  5900. ggml_set_input(lctx.inp_s_seq);
  5901. return lctx.inp_s_seq;
  5902. }
  5903. struct ggml_cgraph * build_llama() {
  5904. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5905. // mutable variable, needed during the last layer of the computation to skip unused tokens
  5906. int32_t n_tokens = this->n_tokens;
  5907. const int64_t n_embd_head = hparams.n_embd_head_v;
  5908. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5909. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5910. struct ggml_tensor * cur;
  5911. struct ggml_tensor * inpL;
  5912. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  5913. // inp_pos - contains the positions
  5914. struct ggml_tensor * inp_pos = build_inp_pos();
  5915. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5916. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  5917. for (int il = 0; il < n_layer; ++il) {
  5918. struct ggml_tensor * inpSA = inpL;
  5919. // norm
  5920. cur = llm_build_norm(ctx0, inpL, hparams,
  5921. model.layers[il].attn_norm, NULL,
  5922. LLM_NORM_RMS, cb, il);
  5923. cb(cur, "attn_norm", il);
  5924. // self-attention
  5925. {
  5926. // compute Q and K and RoPE them
  5927. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  5928. cb(Qcur, "Qcur", il);
  5929. if (model.layers[il].bq) {
  5930. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5931. cb(Qcur, "Qcur", il);
  5932. }
  5933. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  5934. cb(Kcur, "Kcur", il);
  5935. if (model.layers[il].bk) {
  5936. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5937. cb(Kcur, "Kcur", il);
  5938. }
  5939. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  5940. cb(Vcur, "Vcur", il);
  5941. if (model.layers[il].bv) {
  5942. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5943. cb(Vcur, "Vcur", il);
  5944. }
  5945. Qcur = ggml_rope_custom(
  5946. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  5947. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5948. ext_factor, attn_factor, beta_fast, beta_slow
  5949. );
  5950. cb(Qcur, "Qcur", il);
  5951. Kcur = ggml_rope_custom(
  5952. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  5953. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5954. ext_factor, attn_factor, beta_fast, beta_slow
  5955. );
  5956. cb(Kcur, "Kcur", il);
  5957. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5958. model.layers[il].wo, model.layers[il].bo,
  5959. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5960. }
  5961. if (il == n_layer - 1) {
  5962. // skip computing output for unused tokens
  5963. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  5964. n_tokens = n_outputs;
  5965. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5966. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5967. }
  5968. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5969. cb(ffn_inp, "ffn_inp", il);
  5970. // feed-forward network
  5971. if (model.layers[il].ffn_gate_inp == nullptr) {
  5972. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5973. model.layers[il].ffn_norm, NULL,
  5974. LLM_NORM_RMS, cb, il);
  5975. cb(cur, "ffn_norm", il);
  5976. cur = llm_build_ffn(ctx0, cur,
  5977. model.layers[il].ffn_up, NULL,
  5978. model.layers[il].ffn_gate, NULL,
  5979. model.layers[il].ffn_down, NULL,
  5980. NULL,
  5981. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  5982. cb(cur, "ffn_out", il);
  5983. } else {
  5984. // MoE branch
  5985. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5986. model.layers[il].ffn_norm, NULL,
  5987. LLM_NORM_RMS, cb, il);
  5988. cb(cur, "ffn_norm", il);
  5989. cur = llm_build_moe_ffn(ctx0, cur,
  5990. model.layers[il].ffn_gate_inp,
  5991. model.layers[il].ffn_up_exps,
  5992. model.layers[il].ffn_gate_exps,
  5993. model.layers[il].ffn_down_exps,
  5994. n_expert, n_expert_used,
  5995. LLM_FFN_SILU, true,
  5996. cb, il);
  5997. cb(cur, "ffn_moe_out", il);
  5998. }
  5999. cur = ggml_add(ctx0, cur, ffn_inp);
  6000. cb(cur, "ffn_out", il);
  6001. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6002. if (layer_dir != nullptr) {
  6003. cur = ggml_add(ctx0, cur, layer_dir);
  6004. }
  6005. cb(cur, "l_out", il);
  6006. // input for next layer
  6007. inpL = cur;
  6008. }
  6009. cur = inpL;
  6010. cur = llm_build_norm(ctx0, cur, hparams,
  6011. model.output_norm, NULL,
  6012. LLM_NORM_RMS, cb, -1);
  6013. cb(cur, "result_norm", -1);
  6014. // lm_head
  6015. cur = ggml_mul_mat(ctx0, model.output, cur);
  6016. cb(cur, "result_output", -1);
  6017. ggml_build_forward_expand(gf, cur);
  6018. return gf;
  6019. }
  6020. struct ggml_cgraph * build_baichuan() {
  6021. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6022. const int64_t n_embd_head = hparams.n_embd_head_v;
  6023. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6024. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6025. struct ggml_tensor * cur;
  6026. struct ggml_tensor * inpL;
  6027. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6028. // inp_pos - contains the positions
  6029. struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
  6030. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6031. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6032. // positions of the tokens in the KV cache
  6033. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  6034. for (int il = 0; il < n_layer; ++il) {
  6035. struct ggml_tensor * inpSA = inpL;
  6036. cur = llm_build_norm(ctx0, inpL, hparams,
  6037. model.layers[il].attn_norm, NULL,
  6038. LLM_NORM_RMS, cb, il);
  6039. cb(cur, "attn_norm", il);
  6040. // self-attention
  6041. {
  6042. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6043. cb(Qcur, "Qcur", il);
  6044. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6045. cb(Kcur, "Kcur", il);
  6046. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6047. cb(Vcur, "Vcur", il);
  6048. switch (model.type) {
  6049. case MODEL_7B:
  6050. Qcur = ggml_rope_custom(
  6051. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6052. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6053. ext_factor, attn_factor, beta_fast, beta_slow
  6054. );
  6055. Kcur = ggml_rope_custom(
  6056. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6057. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6058. ext_factor, attn_factor, beta_fast, beta_slow
  6059. );
  6060. break;
  6061. case MODEL_13B:
  6062. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
  6063. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
  6064. break;
  6065. default:
  6066. GGML_ASSERT(false);
  6067. }
  6068. cb(Qcur, "Qcur", il);
  6069. cb(Kcur, "Kcur", il);
  6070. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6071. model.layers[il].wo, NULL,
  6072. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6073. }
  6074. if (il == n_layer - 1) {
  6075. // skip computing output for unused tokens
  6076. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6077. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6078. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6079. }
  6080. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6081. cb(ffn_inp, "ffn_inp", il);
  6082. // feed-forward network
  6083. {
  6084. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6085. model.layers[il].ffn_norm, NULL,
  6086. LLM_NORM_RMS, cb, il);
  6087. cb(cur, "ffn_norm", il);
  6088. cur = llm_build_ffn(ctx0, cur,
  6089. model.layers[il].ffn_up, NULL,
  6090. model.layers[il].ffn_gate, NULL,
  6091. model.layers[il].ffn_down, NULL,
  6092. NULL,
  6093. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6094. cb(cur, "ffn_out", il);
  6095. }
  6096. cur = ggml_add(ctx0, cur, ffn_inp);
  6097. cb(cur, "l_out", il);
  6098. // input for next layer
  6099. inpL = cur;
  6100. }
  6101. cur = inpL;
  6102. cur = llm_build_norm(ctx0, cur, hparams,
  6103. model.output_norm, NULL,
  6104. LLM_NORM_RMS, cb, -1);
  6105. cb(cur, "result_norm", -1);
  6106. // lm_head
  6107. cur = ggml_mul_mat(ctx0, model.output, cur);
  6108. cb(cur, "result_output", -1);
  6109. ggml_build_forward_expand(gf, cur);
  6110. return gf;
  6111. }
  6112. struct ggml_cgraph * build_xverse() {
  6113. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6114. const int64_t n_embd_head = hparams.n_embd_head_v;
  6115. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6116. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6117. struct ggml_tensor * cur;
  6118. struct ggml_tensor * inpL;
  6119. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6120. // inp_pos - contains the positions
  6121. struct ggml_tensor * inp_pos = build_inp_pos();
  6122. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6123. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6124. // positions of the tokens in the KV cache
  6125. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  6126. for (int il = 0; il < n_layer; ++il) {
  6127. struct ggml_tensor * inpSA = inpL;
  6128. cur = llm_build_norm(ctx0, inpL, hparams,
  6129. model.layers[il].attn_norm, NULL,
  6130. LLM_NORM_RMS, cb, il);
  6131. cb(cur, "attn_norm", il);
  6132. // self-attention
  6133. {
  6134. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6135. cb(Qcur, "Qcur", il);
  6136. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6137. cb(Kcur, "Kcur", il);
  6138. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6139. cb(Vcur, "Vcur", il);
  6140. Qcur = ggml_rope_custom(
  6141. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6142. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6143. ext_factor, attn_factor, beta_fast, beta_slow
  6144. );
  6145. cb(Qcur, "Qcur", il);
  6146. Kcur = ggml_rope_custom(
  6147. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6148. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6149. ext_factor, attn_factor, beta_fast, beta_slow
  6150. );
  6151. cb(Kcur, "Kcur", il);
  6152. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6153. model.layers[il].wo, NULL,
  6154. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6155. }
  6156. if (il == n_layer - 1) {
  6157. // skip computing output for unused tokens
  6158. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6159. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6160. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6161. }
  6162. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6163. cb(ffn_inp, "ffn_inp", il);
  6164. // feed-forward network
  6165. {
  6166. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6167. model.layers[il].ffn_norm, NULL,
  6168. LLM_NORM_RMS, cb, il);
  6169. cb(cur, "ffn_norm", il);
  6170. cur = llm_build_ffn(ctx0, cur,
  6171. model.layers[il].ffn_up, NULL,
  6172. model.layers[il].ffn_gate, NULL,
  6173. model.layers[il].ffn_down, NULL,
  6174. NULL,
  6175. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6176. cb(cur, "ffn_out", il);
  6177. }
  6178. cur = ggml_add(ctx0, cur, ffn_inp);
  6179. cb(cur, "l_out", il);
  6180. // input for next layer
  6181. inpL = cur;
  6182. }
  6183. cur = inpL;
  6184. cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
  6185. cb(cur, "result_norm", -1);
  6186. // lm_head
  6187. cur = ggml_mul_mat(ctx0, model.output, cur);
  6188. cb(cur, "result_output", -1);
  6189. ggml_build_forward_expand(gf, cur);
  6190. return gf;
  6191. }
  6192. struct ggml_cgraph * build_falcon() {
  6193. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6194. const int64_t n_embd_head = hparams.n_embd_head_v;
  6195. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6196. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6197. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6198. struct ggml_tensor * cur;
  6199. struct ggml_tensor * inpL;
  6200. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6201. // inp_pos - contains the positions
  6202. struct ggml_tensor * inp_pos = build_inp_pos();
  6203. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6204. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6205. for (int il = 0; il < n_layer; ++il) {
  6206. struct ggml_tensor * attn_norm;
  6207. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  6208. model.layers[il].attn_norm,
  6209. model.layers[il].attn_norm_b,
  6210. LLM_NORM, cb, il);
  6211. cb(attn_norm, "attn_norm", il);
  6212. // self-attention
  6213. {
  6214. if (model.layers[il].attn_norm_2) {
  6215. // Falcon-40B
  6216. cur = llm_build_norm(ctx0, inpL, hparams,
  6217. model.layers[il].attn_norm_2,
  6218. model.layers[il].attn_norm_2_b,
  6219. LLM_NORM, cb, il);
  6220. cb(cur, "attn_norm_2", il);
  6221. } else {
  6222. cur = attn_norm;
  6223. }
  6224. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6225. cb(cur, "wqkv", il);
  6226. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6227. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6228. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6229. cb(Qcur, "Qcur", il);
  6230. cb(Kcur, "Kcur", il);
  6231. cb(Vcur, "Vcur", il);
  6232. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6233. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6234. // using mode = 2 for neox mode
  6235. Qcur = ggml_rope_custom(
  6236. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6237. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6238. );
  6239. cb(Qcur, "Qcur", il);
  6240. Kcur = ggml_rope_custom(
  6241. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6242. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6243. );
  6244. cb(Kcur, "Kcur", il);
  6245. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6246. model.layers[il].wo, NULL,
  6247. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6248. }
  6249. if (il == n_layer - 1) {
  6250. // skip computing output for unused tokens
  6251. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6252. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6253. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6254. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  6255. }
  6256. struct ggml_tensor * ffn_inp = cur;
  6257. // feed forward
  6258. {
  6259. cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
  6260. model.layers[il].ffn_up, NULL,
  6261. NULL, NULL,
  6262. model.layers[il].ffn_down, NULL,
  6263. NULL,
  6264. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6265. cb(cur, "ffn_out", il);
  6266. }
  6267. cur = ggml_add(ctx0, cur, ffn_inp);
  6268. cb(cur, "l_out", il);
  6269. cur = ggml_add(ctx0, cur, inpL);
  6270. cb(cur, "l_out", il);
  6271. // input for next layer
  6272. inpL = cur;
  6273. }
  6274. cur = inpL;
  6275. // norm
  6276. cur = llm_build_norm(ctx0, cur, hparams,
  6277. model.output_norm,
  6278. model.output_norm_b,
  6279. LLM_NORM, cb, -1);
  6280. cb(cur, "result_norm", -1);
  6281. cur = ggml_mul_mat(ctx0, model.output, cur);
  6282. cb(cur, "result_output", -1);
  6283. ggml_build_forward_expand(gf, cur);
  6284. return gf;
  6285. }
  6286. struct ggml_cgraph * build_grok() {
  6287. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6288. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6289. int32_t n_tokens = this->n_tokens;
  6290. const int64_t n_embd_head = hparams.n_embd_head_v;
  6291. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6292. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6293. struct ggml_tensor * cur;
  6294. struct ggml_tensor * inpL;
  6295. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6296. // multiply by embedding_multiplier_scale of 78.38367176906169
  6297. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  6298. // inp_pos - contains the positions
  6299. struct ggml_tensor * inp_pos = build_inp_pos();
  6300. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6301. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6302. for (int il = 0; il < n_layer; ++il) {
  6303. struct ggml_tensor * inpSA = inpL;
  6304. // norm
  6305. cur = llm_build_norm(ctx0, inpL, hparams,
  6306. model.layers[il].attn_norm, NULL,
  6307. LLM_NORM_RMS, cb, il);
  6308. cb(cur, "attn_norm", il);
  6309. // self-attention
  6310. {
  6311. // compute Q and K and RoPE them
  6312. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6313. cb(Qcur, "Qcur", il);
  6314. if (model.layers[il].bq) {
  6315. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6316. cb(Qcur, "Qcur", il);
  6317. }
  6318. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6319. cb(Kcur, "Kcur", il);
  6320. if (model.layers[il].bk) {
  6321. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6322. cb(Kcur, "Kcur", il);
  6323. }
  6324. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6325. cb(Vcur, "Vcur", il);
  6326. if (model.layers[il].bv) {
  6327. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6328. cb(Vcur, "Vcur", il);
  6329. }
  6330. Qcur = ggml_rope_custom(
  6331. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6332. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6333. ext_factor, attn_factor, beta_fast, beta_slow
  6334. );
  6335. cb(Qcur, "Qcur", il);
  6336. Kcur = ggml_rope_custom(
  6337. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6338. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6339. ext_factor, attn_factor, beta_fast, beta_slow
  6340. );
  6341. cb(Kcur, "Kcur", il);
  6342. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6343. model.layers[il].wo, model.layers[il].bo,
  6344. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  6345. }
  6346. if (il == n_layer - 1) {
  6347. // skip computing output for unused tokens
  6348. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6349. n_tokens = n_outputs;
  6350. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6351. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6352. }
  6353. // Grok
  6354. // if attn_out_norm is present then apply it before adding the input
  6355. if (model.layers[il].attn_out_norm) {
  6356. cur = llm_build_norm(ctx0, cur, hparams,
  6357. model.layers[il].attn_out_norm, NULL,
  6358. LLM_NORM_RMS, cb, il);
  6359. cb(cur, "attn_out_norm", il);
  6360. }
  6361. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6362. cb(ffn_inp, "ffn_inp", il);
  6363. // feed-forward network
  6364. // MoE branch
  6365. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6366. model.layers[il].ffn_norm, NULL,
  6367. LLM_NORM_RMS, cb, il);
  6368. cb(cur, "ffn_norm", il);
  6369. cur = llm_build_moe_ffn(ctx0, cur,
  6370. model.layers[il].ffn_gate_inp,
  6371. model.layers[il].ffn_up_exps,
  6372. model.layers[il].ffn_gate_exps,
  6373. model.layers[il].ffn_down_exps,
  6374. n_expert, n_expert_used,
  6375. LLM_FFN_GELU, true,
  6376. cb, il);
  6377. cb(cur, "ffn_moe_out", il);
  6378. // Grok
  6379. // if layer_out_norm is present then apply it before adding the input
  6380. // Idea: maybe ffn_out_norm is a better name
  6381. if (model.layers[il].layer_out_norm) {
  6382. cur = llm_build_norm(ctx0, cur, hparams,
  6383. model.layers[il].layer_out_norm, NULL,
  6384. LLM_NORM_RMS, cb, il);
  6385. cb(cur, "layer_out_norm", il);
  6386. }
  6387. cur = ggml_add(ctx0, cur, ffn_inp);
  6388. cb(cur, "ffn_out", il);
  6389. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6390. if (layer_dir != nullptr) {
  6391. cur = ggml_add(ctx0, cur, layer_dir);
  6392. }
  6393. cb(cur, "l_out", il);
  6394. // input for next layer
  6395. inpL = cur;
  6396. }
  6397. cur = inpL;
  6398. cur = llm_build_norm(ctx0, cur, hparams,
  6399. model.output_norm, NULL,
  6400. LLM_NORM_RMS, cb, -1);
  6401. cb(cur, "result_norm", -1);
  6402. // lm_head
  6403. cur = ggml_mul_mat(ctx0, model.output, cur);
  6404. // Grok
  6405. // multiply logits by output_multiplier_scale of 0.5773502691896257
  6406. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  6407. cb(cur, "result_output", -1);
  6408. ggml_build_forward_expand(gf, cur);
  6409. return gf;
  6410. }
  6411. struct ggml_cgraph * build_dbrx() {
  6412. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6413. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6414. int32_t n_tokens = this->n_tokens;
  6415. const int64_t n_embd_head = hparams.n_embd_head_v;
  6416. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6417. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6418. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6419. struct ggml_tensor * cur;
  6420. struct ggml_tensor * inpL;
  6421. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6422. // inp_pos - contains the positions
  6423. struct ggml_tensor * inp_pos = build_inp_pos();
  6424. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6425. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6426. for (int il = 0; il < n_layer; ++il) {
  6427. struct ggml_tensor * inpSA = inpL;
  6428. // norm
  6429. cur = llm_build_norm(ctx0, inpL, hparams,
  6430. model.layers[il].attn_norm, NULL,
  6431. LLM_NORM, cb, il);
  6432. cb(cur, "attn_norm", il);
  6433. // self-attention
  6434. {
  6435. struct ggml_tensor * Qcur = nullptr;
  6436. struct ggml_tensor * Kcur = nullptr;
  6437. struct ggml_tensor * Vcur = nullptr;
  6438. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6439. cb(cur, "wqkv", il);
  6440. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6441. cb(cur, "wqkv_clamped", il);
  6442. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6443. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6444. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6445. cb(Qcur, "Qcur", il);
  6446. cb(Kcur, "Kcur", il);
  6447. cb(Vcur, "Vcur", il);
  6448. Qcur = ggml_rope_custom(
  6449. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6450. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6451. ext_factor, attn_factor, beta_fast, beta_slow
  6452. );
  6453. cb(Qcur, "Qcur", il);
  6454. Kcur = ggml_rope_custom(
  6455. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6456. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6457. ext_factor, attn_factor, beta_fast, beta_slow
  6458. );
  6459. cb(Kcur, "Kcur", il);
  6460. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6461. model.layers[il].wo, NULL,
  6462. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6463. }
  6464. if (il == n_layer - 1) {
  6465. // skip computing output for unused tokens
  6466. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6467. n_tokens = n_outputs;
  6468. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6469. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6470. }
  6471. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6472. cb(ffn_inp, "ffn_inp", il);
  6473. // feed-forward network
  6474. // MoE branch
  6475. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6476. model.layers[il].attn_out_norm, NULL,
  6477. LLM_NORM, cb, il);
  6478. cb(cur, "attn_out_norm", il);
  6479. cur = llm_build_moe_ffn(ctx0, cur,
  6480. model.layers[il].ffn_gate_inp,
  6481. model.layers[il].ffn_up_exps,
  6482. model.layers[il].ffn_gate_exps,
  6483. model.layers[il].ffn_down_exps,
  6484. n_expert, n_expert_used,
  6485. LLM_FFN_SILU, true,
  6486. cb, il);
  6487. cb(cur, "ffn_moe_out", il);
  6488. cur = ggml_add(ctx0, cur, ffn_inp);
  6489. cb(cur, "ffn_out", il);
  6490. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6491. if (layer_dir != nullptr) {
  6492. cur = ggml_add(ctx0, cur, layer_dir);
  6493. }
  6494. cb(cur, "l_out", il);
  6495. // input for next layer
  6496. inpL = cur;
  6497. }
  6498. cur = inpL;
  6499. cur = llm_build_norm(ctx0, cur, hparams,
  6500. model.output_norm, NULL,
  6501. LLM_NORM, cb, -1);
  6502. cb(cur, "result_norm", -1);
  6503. // lm_head
  6504. cur = ggml_mul_mat(ctx0, model.output, cur);
  6505. cb(cur, "result_output", -1);
  6506. ggml_build_forward_expand(gf, cur);
  6507. return gf;
  6508. }
  6509. struct ggml_cgraph * build_starcoder() {
  6510. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6511. const int64_t n_embd_head = hparams.n_embd_head_v;
  6512. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6513. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6514. struct ggml_tensor * cur;
  6515. struct ggml_tensor * inpL;
  6516. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6517. // inp_pos - contains the positions
  6518. struct ggml_tensor * inp_pos = build_inp_pos();
  6519. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6520. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6521. struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6522. cb(pos, "pos_embd", -1);
  6523. inpL = ggml_add(ctx0, inpL, pos);
  6524. cb(inpL, "inpL", -1);
  6525. for (int il = 0; il < n_layer; ++il) {
  6526. cur = llm_build_norm(ctx0, inpL, hparams,
  6527. model.layers[il].attn_norm,
  6528. model.layers[il].attn_norm_b,
  6529. LLM_NORM, cb, il);
  6530. cb(cur, "attn_norm", il);
  6531. // self-attention
  6532. {
  6533. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6534. cb(cur, "wqkv", il);
  6535. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6536. cb(cur, "bqkv", il);
  6537. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6538. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6539. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6540. cb(Qcur, "Qcur", il);
  6541. cb(Kcur, "Kcur", il);
  6542. cb(Vcur, "Vcur", il);
  6543. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6544. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6545. model.layers[il].wo, model.layers[il].bo,
  6546. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6547. }
  6548. if (il == n_layer - 1) {
  6549. // skip computing output for unused tokens
  6550. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6551. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6552. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6553. }
  6554. // add the input
  6555. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6556. cb(ffn_inp, "ffn_inp", il);
  6557. // FF
  6558. {
  6559. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6560. model.layers[il].ffn_norm,
  6561. model.layers[il].ffn_norm_b,
  6562. LLM_NORM, cb, il);
  6563. cb(cur, "ffn_norm", il);
  6564. cur = llm_build_ffn(ctx0, cur,
  6565. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6566. NULL, NULL,
  6567. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6568. NULL,
  6569. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6570. cb(cur, "ffn_out", il);
  6571. }
  6572. inpL = ggml_add(ctx0, cur, ffn_inp);
  6573. cb(inpL, "l_out", il);
  6574. }
  6575. cur = llm_build_norm(ctx0, inpL, hparams,
  6576. model.output_norm,
  6577. model.output_norm_b,
  6578. LLM_NORM, cb, -1);
  6579. cb(cur, "result_norm", -1);
  6580. cur = ggml_mul_mat(ctx0, model.output, cur);
  6581. cb(cur, "result_output", -1);
  6582. ggml_build_forward_expand(gf, cur);
  6583. return gf;
  6584. }
  6585. struct ggml_cgraph * build_persimmon() {
  6586. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6587. const int64_t n_embd_head = hparams.n_embd_head_v;
  6588. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6589. GGML_ASSERT(n_embd_head/2 == hparams.n_rot);
  6590. struct ggml_tensor * cur;
  6591. struct ggml_tensor * inpL;
  6592. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6593. // inp_pos - contains the positions
  6594. struct ggml_tensor * inp_pos = build_inp_pos();
  6595. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6596. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6597. for (int il = 0; il < n_layer; ++il) {
  6598. struct ggml_tensor * residual = inpL;
  6599. cur = llm_build_norm(ctx0, inpL, hparams,
  6600. model.layers[il].attn_norm,
  6601. model.layers[il].attn_norm_b,
  6602. LLM_NORM, cb, il);
  6603. cb(cur, "attn_norm", il);
  6604. // self attention
  6605. {
  6606. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6607. cb(cur, "wqkv", il);
  6608. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6609. cb(cur, "bqkv", il);
  6610. // split qkv
  6611. GGML_ASSERT(n_head_kv == n_head);
  6612. struct ggml_tensor * tmpqkv = ggml_reshape_4d(ctx0, cur, n_embd_head, 3, n_head, n_tokens);
  6613. cb(tmpqkv, "tmpqkv", il);
  6614. struct ggml_tensor * tmpqkv_perm = ggml_cont(ctx0, ggml_permute(ctx0, tmpqkv, 0, 3, 1, 2));
  6615. cb(tmpqkv_perm, "tmpqkv", il);
  6616. struct ggml_tensor * tmpq = ggml_view_3d(
  6617. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6618. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6619. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6620. 0
  6621. );
  6622. cb(tmpq, "tmpq", il);
  6623. struct ggml_tensor * tmpk = ggml_view_3d(
  6624. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6625. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6626. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6627. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens
  6628. );
  6629. cb(tmpk, "tmpk", il);
  6630. // Q/K Layernorm
  6631. tmpq = llm_build_norm(ctx0, tmpq, hparams,
  6632. model.layers[il].attn_q_norm,
  6633. model.layers[il].attn_q_norm_b,
  6634. LLM_NORM, cb, il);
  6635. cb(tmpq, "tmpq", il);
  6636. tmpk = llm_build_norm(ctx0, tmpk, hparams,
  6637. model.layers[il].attn_k_norm,
  6638. model.layers[il].attn_k_norm_b,
  6639. LLM_NORM, cb, il);
  6640. cb(tmpk, "tmpk", il);
  6641. // RoPE the first n_rot of q/k, pass the other half, and concat.
  6642. struct ggml_tensor * qrot = ggml_view_3d(
  6643. ctx0, tmpq, n_rot, n_head, n_tokens,
  6644. ggml_element_size(tmpq) * n_embd_head,
  6645. ggml_element_size(tmpq) * n_embd_head * n_head,
  6646. 0
  6647. );
  6648. cb(qrot, "qrot", il);
  6649. struct ggml_tensor * krot = ggml_view_3d(
  6650. ctx0, tmpk, n_rot, n_head, n_tokens,
  6651. ggml_element_size(tmpk) * n_embd_head,
  6652. ggml_element_size(tmpk) * n_embd_head * n_head,
  6653. 0
  6654. );
  6655. cb(krot, "krot", il);
  6656. // get the second half of tmpq, e.g tmpq[n_rot:, :, :]
  6657. struct ggml_tensor * qpass = ggml_view_3d(
  6658. ctx0, tmpq, n_rot, n_head, n_tokens,
  6659. ggml_element_size(tmpq) * n_embd_head,
  6660. ggml_element_size(tmpq) * n_embd_head * n_head,
  6661. ggml_element_size(tmpq) * n_rot
  6662. );
  6663. cb(qpass, "qpass", il);
  6664. struct ggml_tensor * kpass = ggml_view_3d(
  6665. ctx0, tmpk, n_rot, n_head, n_tokens,
  6666. ggml_element_size(tmpk) * n_embd_head,
  6667. ggml_element_size(tmpk) * n_embd_head * n_head,
  6668. ggml_element_size(tmpk) * n_rot
  6669. );
  6670. cb(kpass, "kpass", il);
  6671. struct ggml_tensor * qrotated = ggml_rope_custom(
  6672. ctx0, qrot, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6673. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6674. );
  6675. cb(qrotated, "qrotated", il);
  6676. struct ggml_tensor * krotated = ggml_rope_custom(
  6677. ctx0, krot, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6678. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6679. );
  6680. cb(krotated, "krotated", il);
  6681. // ggml currently only supports concatenation on dim=2
  6682. // so we need to permute qrot, qpass, concat, then permute back.
  6683. qrotated = ggml_cont(ctx0, ggml_permute(ctx0, qrotated, 2, 1, 0, 3));
  6684. cb(qrotated, "qrotated", il);
  6685. krotated = ggml_cont(ctx0, ggml_permute(ctx0, krotated, 2, 1, 0, 3));
  6686. cb(krotated, "krotated", il);
  6687. qpass = ggml_cont(ctx0, ggml_permute(ctx0, qpass, 2, 1, 0, 3));
  6688. cb(qpass, "qpass", il);
  6689. kpass = ggml_cont(ctx0, ggml_permute(ctx0, kpass, 2, 1, 0, 3));
  6690. cb(kpass, "kpass", il);
  6691. struct ggml_tensor * Qcur = ggml_concat(ctx0, qrotated, qpass);
  6692. cb(Qcur, "Qcur", il);
  6693. struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass);
  6694. cb(Kcur, "Kcur", il);
  6695. struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 2, 1, 0, 3));
  6696. cb(Q, "Q", il);
  6697. Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3));
  6698. cb(Kcur, "Kcur", il);
  6699. struct ggml_tensor * Vcur = ggml_view_3d(
  6700. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6701. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6702. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6703. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens * 2
  6704. );
  6705. cb(Vcur, "Vcur", il);
  6706. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6707. model.layers[il].wo, model.layers[il].bo,
  6708. Kcur, Vcur, Q, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6709. }
  6710. if (il == n_layer - 1) {
  6711. // skip computing output for unused tokens
  6712. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6713. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6714. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  6715. }
  6716. struct ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
  6717. cb(ffn_inp, "ffn_inp", il);
  6718. // feed-forward network
  6719. {
  6720. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6721. model.layers[il].ffn_norm,
  6722. model.layers[il].ffn_norm_b,
  6723. LLM_NORM, cb, il);
  6724. cb(cur, "ffn_norm", il);
  6725. cur = llm_build_ffn(ctx0, cur,
  6726. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6727. NULL, NULL,
  6728. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6729. NULL,
  6730. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il);
  6731. cb(cur, "ffn_out", il);
  6732. }
  6733. cur = ggml_add(ctx0, cur, ffn_inp);
  6734. cb(cur, "l_out", il);
  6735. inpL = cur;
  6736. }
  6737. cur = inpL;
  6738. cur = llm_build_norm(ctx0, cur, hparams,
  6739. model.output_norm,
  6740. model.output_norm_b,
  6741. LLM_NORM, cb, -1);
  6742. cb(cur, "result_norm", -1);
  6743. cur = ggml_mul_mat(ctx0, model.output, cur);
  6744. cb(cur, "result_output", -1);
  6745. ggml_build_forward_expand(gf, cur);
  6746. return gf;
  6747. }
  6748. struct ggml_cgraph * build_refact() {
  6749. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6750. const int64_t n_embd_head = hparams.n_embd_head_v;
  6751. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6752. struct ggml_tensor * cur;
  6753. struct ggml_tensor * inpL;
  6754. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6755. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6756. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6757. // positions of the tokens in the KV cache
  6758. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  6759. for (int il = 0; il < n_layer; ++il) {
  6760. struct ggml_tensor * inpSA = inpL;
  6761. cur = llm_build_norm(ctx0, inpL, hparams,
  6762. model.layers[il].attn_norm, NULL,
  6763. LLM_NORM_RMS, cb, il);
  6764. cb(cur, "attn_norm", il);
  6765. // self-attention
  6766. {
  6767. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6768. cb(Qcur, "Qcur", il);
  6769. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6770. cb(Kcur, "Kcur", il);
  6771. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6772. cb(Vcur, "Vcur", il);
  6773. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6774. cb(Kcur, "Kcur", il);
  6775. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6776. cb(Qcur, "Qcur", il);
  6777. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6778. model.layers[il].wo, NULL,
  6779. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6780. }
  6781. if (il == n_layer - 1) {
  6782. // skip computing output for unused tokens
  6783. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6784. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6785. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6786. }
  6787. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6788. cb(ffn_inp, "ffn_inp", il);
  6789. // feed-forward network
  6790. {
  6791. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6792. model.layers[il].ffn_norm, NULL,
  6793. LLM_NORM_RMS, cb, il);
  6794. cb(cur, "ffn_norm", il);
  6795. cur = llm_build_ffn(ctx0, cur,
  6796. model.layers[il].ffn_up, NULL,
  6797. model.layers[il].ffn_gate, NULL,
  6798. model.layers[il].ffn_down, NULL,
  6799. NULL,
  6800. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6801. cb(cur, "ffn_out", il);
  6802. }
  6803. cur = ggml_add(ctx0, cur, ffn_inp);
  6804. cb(cur, "l_out", il);
  6805. // input for next layer
  6806. inpL = cur;
  6807. }
  6808. cur = inpL;
  6809. cur = llm_build_norm(ctx0, cur, hparams,
  6810. model.output_norm, NULL,
  6811. LLM_NORM_RMS, cb, -1);
  6812. cb(cur, "result_norm", -1);
  6813. // lm_head
  6814. cur = ggml_mul_mat(ctx0, model.output, cur);
  6815. cb(cur, "result_output", -1);
  6816. ggml_build_forward_expand(gf, cur);
  6817. return gf;
  6818. }
  6819. struct ggml_cgraph * build_bert() {
  6820. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6821. const int64_t n_embd_head = hparams.n_embd_head_v;
  6822. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6823. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6824. struct ggml_tensor * cur;
  6825. struct ggml_tensor * inpL;
  6826. struct ggml_tensor * inp_pos = build_inp_pos();
  6827. struct ggml_tensor * inp_mean = build_inp_mean();
  6828. struct ggml_tensor * inp_cls = build_inp_cls();
  6829. // construct input embeddings (token, type, position)
  6830. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6831. // token types are hardcoded to zero ("Sentence A")
  6832. struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  6833. inpL = ggml_add(ctx0, inpL, type_row0);
  6834. if (model.arch == LLM_ARCH_BERT) {
  6835. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  6836. }
  6837. cb(inpL, "inp_embd", -1);
  6838. // embed layer norm
  6839. inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
  6840. cb(inpL, "inp_norm", -1);
  6841. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6842. struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);
  6843. // iterate layers
  6844. for (int il = 0; il < n_layer; ++il) {
  6845. struct ggml_tensor * cur = inpL;
  6846. struct ggml_tensor * Qcur;
  6847. struct ggml_tensor * Kcur;
  6848. struct ggml_tensor * Vcur;
  6849. // self-attention
  6850. if (model.arch == LLM_ARCH_BERT) {
  6851. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq);
  6852. cb(Qcur, "Qcur", il);
  6853. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk);
  6854. cb(Kcur, "Kcur", il);
  6855. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv);
  6856. cb(Vcur, "Vcur", il);
  6857. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6858. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6859. } else {
  6860. // compute Q and K and RoPE them
  6861. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6862. cb(cur, "wqkv", il);
  6863. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6864. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6865. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6866. cb(Qcur, "Qcur", il);
  6867. cb(Kcur, "Kcur", il);
  6868. cb(Vcur, "Vcur", il);
  6869. Qcur = ggml_rope_custom(
  6870. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6871. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6872. ext_factor, attn_factor, beta_fast, beta_slow
  6873. );
  6874. cb(Qcur, "Qcur", il);
  6875. Kcur = ggml_rope_custom(
  6876. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6877. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6878. ext_factor, attn_factor, beta_fast, beta_slow
  6879. );
  6880. cb(Kcur, "Kcur", il);
  6881. }
  6882. struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  6883. struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  6884. struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  6885. cb(kq, "kq", il);
  6886. kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, nullptr, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
  6887. cb(kq, "kq_soft_max_ext", il);
  6888. struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
  6889. cb(v, "v", il);
  6890. struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
  6891. cb(kqv, "kqv", il);
  6892. struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  6893. cb(kqv_merged, "kqv_merged", il);
  6894. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  6895. cb(cur, "kqv_merged_cont", il);
  6896. ggml_build_forward_expand(gf, cur);
  6897. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  6898. if (model.layers[il].bo) {
  6899. cb(cur, "kqv_wo", il);
  6900. }
  6901. if (model.layers[il].bo) {
  6902. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  6903. }
  6904. cb(cur, "kqv_out", il);
  6905. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  6906. // skip computing output for unused tokens
  6907. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6908. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6909. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6910. }
  6911. // re-add the layer input
  6912. cur = ggml_add(ctx0, cur, inpL);
  6913. // attention layer norm
  6914. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
  6915. struct ggml_tensor * ffn_inp = cur;
  6916. cb(ffn_inp, "ffn_inp", il);
  6917. // feed-forward network
  6918. if (model.arch == LLM_ARCH_BERT) {
  6919. cur = llm_build_ffn(ctx0, cur,
  6920. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6921. NULL, NULL,
  6922. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6923. NULL,
  6924. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6925. } else {
  6926. cur = llm_build_ffn(ctx0, cur,
  6927. model.layers[il].ffn_up, NULL,
  6928. model.layers[il].ffn_gate, NULL,
  6929. model.layers[il].ffn_down, NULL,
  6930. NULL,
  6931. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6932. }
  6933. cb(cur, "ffn_out", il);
  6934. // attentions bypass the intermediate layer
  6935. cur = ggml_add(ctx0, cur, ffn_inp);
  6936. // output layer norm
  6937. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
  6938. // input for next layer
  6939. inpL = cur;
  6940. }
  6941. // final output
  6942. cur = inpL;
  6943. cb(cur, "result_embd", -1);
  6944. // pooling layer
  6945. switch (pooling_type) {
  6946. case LLAMA_POOLING_TYPE_NONE:
  6947. {
  6948. // nop
  6949. } break;
  6950. case LLAMA_POOLING_TYPE_MEAN:
  6951. {
  6952. cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
  6953. cb(cur, "result_embd_pooled", -1);
  6954. } break;
  6955. case LLAMA_POOLING_TYPE_CLS:
  6956. {
  6957. cur = ggml_get_rows(ctx0, cur, inp_cls);
  6958. cb(cur, "result_embd_pooled", -1);
  6959. } break;
  6960. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  6961. {
  6962. GGML_ASSERT(false && "Invalid pooling type");
  6963. } break;
  6964. }
  6965. ggml_build_forward_expand(gf, cur);
  6966. return gf;
  6967. }
  6968. struct ggml_cgraph * build_bloom() {
  6969. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6970. const int64_t n_embd_head = hparams.n_embd_head_v;
  6971. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6972. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6973. struct ggml_tensor * cur;
  6974. struct ggml_tensor * inpL;
  6975. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6976. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6977. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6978. // positions of the tokens in the KV cache
  6979. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  6980. inpL = llm_build_norm(ctx0, inpL, hparams,
  6981. model.tok_norm,
  6982. model.tok_norm_b,
  6983. LLM_NORM, cb, -1);
  6984. cb(inpL, "inp_norm", -1);
  6985. for (int il = 0; il < n_layer; ++il) {
  6986. cur = llm_build_norm(ctx0, inpL, hparams,
  6987. model.layers[il].attn_norm,
  6988. model.layers[il].attn_norm_b,
  6989. LLM_NORM, cb, il);
  6990. cb(cur, "attn_norm", il);
  6991. // self-attention
  6992. {
  6993. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6994. cb(cur, "wqkv", il);
  6995. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6996. cb(cur, "bqkv", il);
  6997. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6998. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6999. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7000. cb(Qcur, "Qcur", il);
  7001. cb(Kcur, "Kcur", il);
  7002. cb(Vcur, "Vcur", il);
  7003. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7004. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7005. model.layers[il].wo, model.layers[il].bo,
  7006. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7007. }
  7008. if (il == n_layer - 1) {
  7009. // skip computing output for unused tokens
  7010. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7011. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7012. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7013. }
  7014. // Add the input
  7015. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7016. cb(ffn_inp, "ffn_inp", il);
  7017. // FF
  7018. {
  7019. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7020. model.layers[il].ffn_norm,
  7021. model.layers[il].ffn_norm_b,
  7022. LLM_NORM, cb, il);
  7023. cb(cur, "ffn_norm", il);
  7024. cur = llm_build_ffn(ctx0, cur,
  7025. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7026. NULL, NULL,
  7027. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7028. NULL,
  7029. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7030. cb(cur, "ffn_out", il);
  7031. }
  7032. inpL = ggml_add(ctx0, cur, ffn_inp);
  7033. cb(inpL, "l_out", il);
  7034. }
  7035. cur = llm_build_norm(ctx0, inpL, hparams,
  7036. model.output_norm,
  7037. model.output_norm_b,
  7038. LLM_NORM, cb, -1);
  7039. cb(cur, "result_norm", -1);
  7040. cur = ggml_mul_mat(ctx0, model.output, cur);
  7041. cb(cur, "result_output", -1);
  7042. ggml_build_forward_expand(gf, cur);
  7043. return gf;
  7044. }
  7045. struct ggml_cgraph * build_mpt() {
  7046. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7047. const int64_t n_embd_head = hparams.n_embd_head_v;
  7048. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7049. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7050. struct ggml_tensor * cur;
  7051. struct ggml_tensor * pos;
  7052. struct ggml_tensor * inpL;
  7053. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7054. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7055. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7056. // positions of the tokens in the KV cache
  7057. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  7058. if (model.pos_embd) {
  7059. // inp_pos - contains the positions
  7060. struct ggml_tensor * inp_pos = build_inp_pos();
  7061. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7062. cb(pos, "pos_embd", -1);
  7063. inpL = ggml_add(ctx0, inpL, pos);
  7064. cb(inpL, "inpL", -1);
  7065. }
  7066. for (int il = 0; il < n_layer; ++il) {
  7067. struct ggml_tensor * attn_norm;
  7068. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  7069. model.layers[il].attn_norm,
  7070. model.layers[il].attn_norm_b,
  7071. LLM_NORM, cb, il);
  7072. cb(attn_norm, "attn_norm", il);
  7073. // self-attention
  7074. {
  7075. cur = attn_norm;
  7076. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7077. cb(cur, "wqkv", il);
  7078. if (model.layers[il].bqkv){
  7079. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7080. cb(cur, "bqkv", il);
  7081. }
  7082. if (hparams.f_clamp_kqv > 0.0f) {
  7083. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7084. cb(cur, "wqkv_clamped", il);
  7085. }
  7086. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7087. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7088. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7089. cb(Qcur, "Qcur", il);
  7090. cb(Kcur, "Kcur", il);
  7091. cb(Vcur, "Vcur", il);
  7092. // Q/K Layernorm
  7093. if (model.layers[il].attn_q_norm) {
  7094. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7095. model.layers[il].attn_q_norm,
  7096. model.layers[il].attn_q_norm_b,
  7097. LLM_NORM, cb, il);
  7098. cb(Qcur, "Qcur", il);
  7099. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7100. model.layers[il].attn_k_norm,
  7101. model.layers[il].attn_k_norm_b,
  7102. LLM_NORM, cb, il);
  7103. cb(Kcur, "Kcur", il);
  7104. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7105. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7106. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7107. model.layers[il].wo, model.layers[il].bo,
  7108. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7109. } else {
  7110. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7111. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7112. model.layers[il].wo, model.layers[il].bo,
  7113. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7114. }
  7115. }
  7116. if (il == n_layer - 1) {
  7117. // skip computing output for unused tokens
  7118. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7119. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7120. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7121. }
  7122. // Add the input
  7123. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7124. cb(ffn_inp, "ffn_inp", il);
  7125. // feed forward
  7126. {
  7127. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7128. model.layers[il].ffn_norm,
  7129. model.layers[il].ffn_norm_b,
  7130. LLM_NORM, cb, il);
  7131. cb(cur, "ffn_norm", il);
  7132. cur = llm_build_ffn(ctx0, cur,
  7133. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7134. NULL, NULL,
  7135. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7136. model.layers[il].ffn_act,
  7137. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7138. cb(cur, "ffn_out", il);
  7139. }
  7140. cur = ggml_add(ctx0, cur, ffn_inp);
  7141. cb(cur, "l_out", il);
  7142. // input for next layer
  7143. inpL = cur;
  7144. }
  7145. cur = inpL;
  7146. cur = llm_build_norm(ctx0, cur, hparams,
  7147. model.output_norm,
  7148. model.output_norm_b,
  7149. LLM_NORM, cb, -1);
  7150. cb(cur, "result_norm", -1);
  7151. cur = ggml_mul_mat(ctx0, model.output, cur);
  7152. cb(cur, "result_output", -1);
  7153. ggml_build_forward_expand(gf, cur);
  7154. return gf;
  7155. }
  7156. struct ggml_cgraph * build_stablelm() {
  7157. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7158. const int64_t n_embd_head = hparams.n_embd_head_v;
  7159. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7160. struct ggml_tensor * cur;
  7161. struct ggml_tensor * inpL;
  7162. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7163. // inp_pos - contains the positions
  7164. struct ggml_tensor * inp_pos = build_inp_pos();
  7165. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7166. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7167. for (int il = 0; il < n_layer; ++il) {
  7168. // norm
  7169. cur = llm_build_norm(ctx0, inpL, hparams,
  7170. model.layers[il].attn_norm,
  7171. model.layers[il].attn_norm_b,
  7172. LLM_NORM, cb, il);
  7173. cb(cur, "attn_norm", il);
  7174. struct ggml_tensor * inpSA = cur;
  7175. // self-attention
  7176. {
  7177. // compute Q and K and RoPE them
  7178. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7179. cb(Qcur, "Qcur", il);
  7180. if (model.layers[il].bq) {
  7181. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7182. cb(Qcur, "Qcur", il);
  7183. }
  7184. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7185. cb(Kcur, "Kcur", il);
  7186. if (model.layers[il].bk) {
  7187. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7188. cb(Kcur, "Kcur", il);
  7189. }
  7190. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7191. cb(Vcur, "Vcur", il);
  7192. if (model.layers[il].bv) {
  7193. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7194. cb(Vcur, "Vcur", il);
  7195. }
  7196. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7197. cb(Qcur, "Qcur", il);
  7198. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7199. cb(Kcur, "Kcur", il);
  7200. if (model.layers[il].attn_q_norm) {
  7201. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7202. model.layers[il].attn_q_norm,
  7203. NULL,
  7204. LLM_NORM, cb, il);
  7205. cb(Qcur, "Qcur", il);
  7206. }
  7207. if (model.layers[il].attn_k_norm) {
  7208. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7209. model.layers[il].attn_k_norm,
  7210. NULL,
  7211. LLM_NORM, cb, il);
  7212. cb(Kcur, "Kcur", il);
  7213. }
  7214. Qcur = ggml_rope_custom(
  7215. ctx0, Qcur, inp_pos,
  7216. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7217. ext_factor, attn_factor, beta_fast, beta_slow
  7218. );
  7219. cb(Qcur, "Qcur", il);
  7220. Kcur = ggml_rope_custom(
  7221. ctx0, Kcur, inp_pos,
  7222. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7223. ext_factor, attn_factor, beta_fast, beta_slow
  7224. );
  7225. cb(Kcur, "Kcur", il);
  7226. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7227. model.layers[il].wo, NULL,
  7228. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7229. }
  7230. if (il == n_layer - 1) {
  7231. // skip computing output for unused tokens
  7232. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7233. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7234. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7235. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7236. }
  7237. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7238. cb(ffn_inp, "ffn_inp", il);
  7239. // feed-forward network
  7240. {
  7241. if (model.layers[il].ffn_norm) {
  7242. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7243. model.layers[il].ffn_norm,
  7244. model.layers[il].ffn_norm_b,
  7245. LLM_NORM, cb, il);
  7246. cb(cur, "ffn_norm", il);
  7247. } else {
  7248. // parallel residual
  7249. cur = inpSA;
  7250. }
  7251. cur = llm_build_ffn(ctx0, cur,
  7252. model.layers[il].ffn_up, NULL,
  7253. model.layers[il].ffn_gate, NULL,
  7254. model.layers[il].ffn_down, NULL,
  7255. NULL,
  7256. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7257. cb(cur, "ffn_out", il);
  7258. }
  7259. cur = ggml_add(ctx0, cur, ffn_inp);
  7260. cb(cur, "l_out", il);
  7261. // input for next layer
  7262. inpL = cur;
  7263. }
  7264. cur = inpL;
  7265. cur = llm_build_norm(ctx0, cur, hparams,
  7266. model.output_norm,
  7267. model.output_norm_b,
  7268. LLM_NORM, cb, -1);
  7269. cb(cur, "result_norm", -1);
  7270. // lm_head
  7271. cur = ggml_mul_mat(ctx0, model.output, cur);
  7272. cb(cur, "result_output", -1);
  7273. ggml_build_forward_expand(gf, cur);
  7274. return gf;
  7275. }
  7276. struct ggml_cgraph * build_qwen() {
  7277. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7278. const int64_t n_embd_head = hparams.n_embd_head_v;
  7279. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7280. struct ggml_tensor * cur;
  7281. struct ggml_tensor * inpL;
  7282. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7283. // inp_pos - contains the positions
  7284. struct ggml_tensor * inp_pos = build_inp_pos();
  7285. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7286. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7287. for (int il = 0; il < n_layer; ++il) {
  7288. struct ggml_tensor * inpSA = inpL;
  7289. cur = llm_build_norm(ctx0, inpL, hparams,
  7290. model.layers[il].attn_norm, NULL,
  7291. LLM_NORM_RMS, cb, il);
  7292. cb(cur, "attn_norm", il);
  7293. // self-attention
  7294. {
  7295. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7296. cb(cur, "wqkv", il);
  7297. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7298. cb(cur, "bqkv", il);
  7299. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7300. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7301. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  7302. cb(Qcur, "Qcur", il);
  7303. cb(Kcur, "Kcur", il);
  7304. cb(Vcur, "Vcur", il);
  7305. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7306. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7307. // using mode = 2 for neox mode
  7308. Qcur = ggml_rope_custom(
  7309. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7310. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7311. );
  7312. cb(Qcur, "Qcur", il);
  7313. Kcur = ggml_rope_custom(
  7314. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7315. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7316. );
  7317. cb(Kcur, "Kcur", il);
  7318. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7319. model.layers[il].wo, NULL,
  7320. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7321. }
  7322. if (il == n_layer - 1) {
  7323. // skip computing output for unused tokens
  7324. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7325. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7326. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7327. }
  7328. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7329. cb(ffn_inp, "ffn_inp", il);
  7330. // feed-forward forward
  7331. {
  7332. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7333. model.layers[il].ffn_norm, NULL,
  7334. LLM_NORM_RMS, cb, il);
  7335. cb(cur, "ffn_norm", il);
  7336. cur = llm_build_ffn(ctx0, cur,
  7337. model.layers[il].ffn_up, NULL,
  7338. model.layers[il].ffn_gate, NULL,
  7339. model.layers[il].ffn_down, NULL,
  7340. NULL,
  7341. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7342. cb(cur, "ffn_out", il);
  7343. }
  7344. cur = ggml_add(ctx0, cur, ffn_inp);
  7345. cb(cur, "l_out", il);
  7346. // input for next layer
  7347. inpL = cur;
  7348. }
  7349. cur = inpL;
  7350. cur = llm_build_norm(ctx0, cur, hparams,
  7351. model.output_norm, NULL,
  7352. LLM_NORM_RMS, cb, -1);
  7353. cb(cur, "result_norm", -1);
  7354. // lm_head
  7355. cur = ggml_mul_mat(ctx0, model.output, cur);
  7356. cb(cur, "result_output", -1);
  7357. ggml_build_forward_expand(gf, cur);
  7358. return gf;
  7359. }
  7360. struct ggml_cgraph * build_qwen2() {
  7361. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7362. const int64_t n_embd_head = hparams.n_embd_head_v;
  7363. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7364. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7365. struct ggml_tensor * cur;
  7366. struct ggml_tensor * inpL;
  7367. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7368. // inp_pos - contains the positions
  7369. struct ggml_tensor * inp_pos = build_inp_pos();
  7370. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7371. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7372. for (int il = 0; il < n_layer; ++il) {
  7373. struct ggml_tensor * inpSA = inpL;
  7374. // norm
  7375. cur = llm_build_norm(ctx0, inpL, hparams,
  7376. model.layers[il].attn_norm, NULL,
  7377. LLM_NORM_RMS, cb, il);
  7378. cb(cur, "attn_norm", il);
  7379. // self-attention
  7380. {
  7381. // compute Q and K and RoPE them
  7382. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7383. cb(Qcur, "Qcur", il);
  7384. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7385. cb(Qcur, "Qcur", il);
  7386. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7387. cb(Kcur, "Kcur", il);
  7388. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7389. cb(Kcur, "Kcur", il);
  7390. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7391. cb(Vcur, "Vcur", il);
  7392. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7393. cb(Vcur, "Vcur", il);
  7394. Qcur = ggml_rope_custom(
  7395. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7396. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7397. ext_factor, attn_factor, beta_fast, beta_slow
  7398. );
  7399. cb(Qcur, "Qcur", il);
  7400. Kcur = ggml_rope_custom(
  7401. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7402. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7403. ext_factor, attn_factor, beta_fast, beta_slow
  7404. );
  7405. cb(Kcur, "Kcur", il);
  7406. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7407. model.layers[il].wo, model.layers[il].bo,
  7408. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7409. }
  7410. if (il == n_layer - 1) {
  7411. // skip computing output for unused tokens
  7412. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7413. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7414. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7415. }
  7416. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7417. cb(ffn_inp, "ffn_inp", il);
  7418. // feed-forward network
  7419. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7420. model.layers[il].ffn_norm, NULL,
  7421. LLM_NORM_RMS, cb, il);
  7422. cb(cur, "ffn_norm", il);
  7423. cur = llm_build_ffn(ctx0, cur,
  7424. model.layers[il].ffn_up, NULL,
  7425. model.layers[il].ffn_gate, NULL,
  7426. model.layers[il].ffn_down, NULL,
  7427. NULL,
  7428. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7429. cb(cur, "ffn_out", il);
  7430. cur = ggml_add(ctx0, cur, ffn_inp);
  7431. cb(cur, "l_out", il);
  7432. // input for next layer
  7433. inpL = cur;
  7434. }
  7435. cur = inpL;
  7436. cur = llm_build_norm(ctx0, cur, hparams,
  7437. model.output_norm, NULL,
  7438. LLM_NORM_RMS, cb, -1);
  7439. cb(cur, "result_norm", -1);
  7440. // lm_head
  7441. cur = ggml_mul_mat(ctx0, model.output, cur);
  7442. cb(cur, "result_output", -1);
  7443. ggml_build_forward_expand(gf, cur);
  7444. return gf;
  7445. }
  7446. struct ggml_cgraph * build_qwen2moe() {
  7447. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7448. // mutable variable, needed during the last layer of the computation to skip unused tokens
  7449. int32_t n_tokens = this->n_tokens;
  7450. const int64_t n_embd_head = hparams.n_embd_head_v;
  7451. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7452. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7453. struct ggml_tensor * cur;
  7454. struct ggml_tensor * inpL;
  7455. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7456. // inp_pos - contains the positions
  7457. struct ggml_tensor * inp_pos = build_inp_pos();
  7458. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7459. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7460. for (int il = 0; il < n_layer; ++il) {
  7461. struct ggml_tensor * inpSA = inpL;
  7462. // norm
  7463. cur = llm_build_norm(ctx0, inpL, hparams,
  7464. model.layers[il].attn_norm, NULL,
  7465. LLM_NORM_RMS, cb, il);
  7466. cb(cur, "attn_norm", il);
  7467. // self_attention
  7468. {
  7469. // compute Q and K and RoPE them
  7470. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7471. cb(Qcur, "Qcur", il);
  7472. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7473. cb(Qcur, "Qcur", il);
  7474. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7475. cb(Kcur, "Kcur", il);
  7476. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7477. cb(Kcur, "Kcur", il);
  7478. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7479. cb(Vcur, "Vcur", il);
  7480. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7481. cb(Vcur, "Vcur", il);
  7482. Qcur = ggml_rope_custom(
  7483. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7484. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7485. ext_factor, attn_factor, beta_fast, beta_slow
  7486. );
  7487. cb(Qcur, "Qcur", il);
  7488. Kcur = ggml_rope_custom(
  7489. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7490. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7491. ext_factor, attn_factor, beta_fast, beta_slow
  7492. );
  7493. cb(Kcur, "Kcur", il);
  7494. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7495. model.layers[il].wo, model.layers[il].bo,
  7496. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7497. }
  7498. if (il == n_layer - 1) {
  7499. // skip computing output for unused tokens
  7500. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7501. n_tokens = n_outputs;
  7502. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7503. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7504. }
  7505. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7506. cb(ffn_inp, "ffn_inp", il);
  7507. // MoE branch
  7508. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7509. model.layers[il].ffn_norm, NULL,
  7510. LLM_NORM_RMS, cb, il);
  7511. cb(cur, "ffn_norm", il);
  7512. ggml_tensor * moe_out =
  7513. llm_build_moe_ffn(ctx0, cur,
  7514. model.layers[il].ffn_gate_inp,
  7515. model.layers[il].ffn_up_exps,
  7516. model.layers[il].ffn_gate_exps,
  7517. model.layers[il].ffn_down_exps,
  7518. n_expert, n_expert_used,
  7519. LLM_FFN_SILU, false,
  7520. cb, il);
  7521. cb(cur, "ffn_moe_out", il);
  7522. // FFN shared expert
  7523. {
  7524. ggml_tensor * cur_gate_inp = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
  7525. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  7526. // sigmoid
  7527. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  7528. cb(cur_gate, "ffn_shexp_gate", il);
  7529. ggml_tensor * cur_ffn = llm_build_ffn(ctx0, cur,
  7530. model.layers[il].ffn_up_shexp, NULL,
  7531. model.layers[il].ffn_gate_shexp, NULL,
  7532. model.layers[il].ffn_down_shexp, NULL,
  7533. NULL,
  7534. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7535. cb(cur_ffn, "ffn_shexp", il);
  7536. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  7537. cb(ffn_shexp_out, "ffn_shexp_out", il);
  7538. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  7539. cb(moe_out, "ffn_out", il);
  7540. cur = moe_out;
  7541. }
  7542. cur = ggml_add(ctx0, cur, ffn_inp);
  7543. cb(cur, "l_out", il);
  7544. // input for next layer
  7545. inpL = cur;
  7546. }
  7547. cur = inpL;
  7548. cur = llm_build_norm(ctx0, cur, hparams,
  7549. model.output_norm, NULL,
  7550. LLM_NORM_RMS, cb, -1);
  7551. cb(cur, "result_norm", -1);
  7552. // lm_head
  7553. cur = ggml_mul_mat(ctx0, model.output, cur);
  7554. cb(cur, "result_output", -1);
  7555. ggml_build_forward_expand(gf, cur);
  7556. return gf;
  7557. }
  7558. struct ggml_cgraph * build_phi2() {
  7559. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7560. const int64_t n_embd_head = hparams.n_embd_head_v;
  7561. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7562. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7563. struct ggml_tensor * cur;
  7564. struct ggml_tensor * attn_norm_output;
  7565. struct ggml_tensor * ffn_output;
  7566. struct ggml_tensor * inpL;
  7567. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7568. // inp_pos - contains the positions
  7569. struct ggml_tensor * inp_pos = build_inp_pos();
  7570. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7571. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7572. for (int il = 0; il < n_layer; ++il) {
  7573. attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7574. model.layers[il].attn_norm,
  7575. model.layers[il].attn_norm_b,
  7576. LLM_NORM, cb, il);
  7577. cb(attn_norm_output, "attn_norm", il);
  7578. // self-attention
  7579. {
  7580. struct ggml_tensor * Qcur = nullptr;
  7581. struct ggml_tensor * Kcur = nullptr;
  7582. struct ggml_tensor * Vcur = nullptr;
  7583. if (model.layers[il].wqkv) {
  7584. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7585. cb(cur, "wqkv", il);
  7586. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7587. cb(cur, "bqkv", il);
  7588. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7589. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7590. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7591. } else {
  7592. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7593. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7594. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7595. }
  7596. cb(Qcur, "Qcur", il);
  7597. cb(Kcur, "Kcur", il);
  7598. cb(Vcur, "Vcur", il);
  7599. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7600. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7601. Qcur = ggml_rope_custom(
  7602. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7603. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7604. );
  7605. cb(Qcur, "Qcur", il);
  7606. // with phi2, we scale the Q to avoid precision issues
  7607. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  7608. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  7609. cb(Qcur, "Qcur", il);
  7610. Kcur = ggml_rope_custom(
  7611. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7612. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7613. );
  7614. cb(Kcur, "Kcur", il);
  7615. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7616. model.layers[il].wo, model.layers[il].bo,
  7617. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7618. }
  7619. if (il == n_layer - 1) {
  7620. // skip computing output for unused tokens
  7621. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7622. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7623. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7624. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  7625. }
  7626. // FF
  7627. {
  7628. ffn_output = llm_build_ffn(ctx0, attn_norm_output,
  7629. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7630. NULL, NULL,
  7631. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7632. NULL,
  7633. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7634. cb(ffn_output, "ffn_out", il);
  7635. }
  7636. cur = ggml_add(ctx0, cur, ffn_output);
  7637. cb(cur, "l_out", il);
  7638. cur = ggml_add(ctx0, cur, inpL);
  7639. cb(cur, "l_out", il);
  7640. inpL = cur;
  7641. }
  7642. cur = llm_build_norm(ctx0, inpL, hparams,
  7643. model.output_norm,
  7644. model.output_norm_b,
  7645. LLM_NORM, cb, -1);
  7646. cb(cur, "result_norm", -1);
  7647. cur = ggml_mul_mat(ctx0, model.output, cur);
  7648. cb(cur, "result_output_no_bias", -1);
  7649. cur = ggml_add(ctx0, cur, model.output_b);
  7650. cb(cur, "result_output", -1);
  7651. ggml_build_forward_expand(gf, cur);
  7652. return gf;
  7653. }
  7654. struct ggml_cgraph * build_phi3() {
  7655. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7656. const int64_t n_embd_head = hparams.n_embd_head_v;
  7657. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7658. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7659. struct ggml_tensor * cur;
  7660. struct ggml_tensor * inpL;
  7661. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7662. // inp_pos - contains the positions
  7663. struct ggml_tensor * inp_pos = build_inp_pos();
  7664. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7665. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7666. for (int il = 0; il < n_layer; ++il) {
  7667. auto residual = inpL;
  7668. // self-attention
  7669. {
  7670. struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7671. model.layers[il].attn_norm,
  7672. NULL,
  7673. LLM_NORM_RMS, cb, il);
  7674. cb(attn_norm_output, "attn_norm", il);
  7675. struct ggml_tensor * Qcur = nullptr;
  7676. struct ggml_tensor * Kcur = nullptr;
  7677. struct ggml_tensor * Vcur = nullptr;
  7678. if (model.layers[il].wqkv) {
  7679. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7680. cb(cur, "wqkv", il);
  7681. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
  7682. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
  7683. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
  7684. }
  7685. else {
  7686. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7687. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7688. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7689. }
  7690. cb(Qcur, "Qcur", il);
  7691. cb(Kcur, "Kcur", il);
  7692. cb(Vcur, "Vcur", il);
  7693. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7694. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7695. Qcur = ggml_rope_custom(
  7696. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7697. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7698. );
  7699. cb(Qcur, "Qcur", il);
  7700. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  7701. cb(Qcur, "Qcur", il);
  7702. Kcur = ggml_rope_custom(
  7703. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7704. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7705. );
  7706. cb(Kcur, "Kcur", il);
  7707. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7708. model.layers[il].wo, NULL,
  7709. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7710. }
  7711. if (il == n_layer - 1) {
  7712. // skip computing output for unused tokens
  7713. struct ggml_tensor* inp_out_ids = build_inp_out_ids();
  7714. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7715. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  7716. }
  7717. cur = ggml_add(ctx0, cur, residual);
  7718. residual = cur;
  7719. cur = llm_build_norm(ctx0, cur, hparams,
  7720. model.layers[il].ffn_norm, NULL,
  7721. LLM_NORM_RMS, cb, il);
  7722. cb(cur, "ffn_norm", il);
  7723. // FF
  7724. // special-case: the up and gate tensors are merged into a single tensor
  7725. // TOOD: support into llm_build_ffn
  7726. {
  7727. struct ggml_tensor* up = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur);
  7728. cb(up, "ffn_up", il);
  7729. auto g = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), 0));
  7730. auto y = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), up->nb[1] / 2));
  7731. y = ggml_mul(ctx0, y, ggml_silu(ctx0, g));
  7732. cb(y, "ffn_gate", il);
  7733. auto down = ggml_mul_mat(ctx0, model.layers[il].ffn_down, y);
  7734. cb(down, "ffn_down", il);
  7735. cur = down;
  7736. cb(cur, "ffn_out", il);
  7737. }
  7738. cur = ggml_add(ctx0, residual, cur);
  7739. cb(cur, "l_out", il);
  7740. inpL = cur;
  7741. }
  7742. cur = llm_build_norm(ctx0, inpL, hparams,
  7743. model.output_norm,
  7744. NULL,
  7745. LLM_NORM_RMS, cb, -1);
  7746. cb(cur, "result_norm", -1);
  7747. cur = ggml_mul_mat(ctx0, model.output, cur);
  7748. cb(cur, "result_output", -1);
  7749. ggml_build_forward_expand(gf, cur);
  7750. return gf;
  7751. }
  7752. struct ggml_cgraph * build_plamo() {
  7753. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7754. const int64_t n_embd_head = hparams.n_embd_head_v;
  7755. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7756. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7757. struct ggml_tensor * cur;
  7758. struct ggml_tensor * inpL;
  7759. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7760. // inp_pos - contains the positions
  7761. struct ggml_tensor * inp_pos = build_inp_pos();
  7762. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7763. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7764. for (int il = 0; il < n_layer; ++il) {
  7765. // norm
  7766. cur = llm_build_norm(ctx0, inpL, hparams,
  7767. model.layers[il].attn_norm, NULL,
  7768. LLM_NORM_RMS, cb, il);
  7769. cb(cur, "attn_norm", il);
  7770. struct ggml_tensor * attention_norm = cur;
  7771. // self-attention
  7772. {
  7773. // compute Q and K and RoPE them
  7774. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7775. cb(Qcur, "Qcur", il);
  7776. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7777. cb(Kcur, "Kcur", il);
  7778. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7779. cb(Vcur, "Vcur", il);
  7780. Qcur = ggml_rope_custom(
  7781. ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos,
  7782. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7783. ext_factor, attn_factor, beta_fast, beta_slow);
  7784. cb(Qcur, "Qcur", il);
  7785. Kcur = ggml_rope_custom(
  7786. ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos,
  7787. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7788. ext_factor, attn_factor, beta_fast, beta_slow);
  7789. cb(Kcur, "Kcur", il);
  7790. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7791. model.layers[il].wo, NULL,
  7792. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7793. }
  7794. struct ggml_tensor * sa_out = cur;
  7795. cur = attention_norm;
  7796. if (il == n_layer - 1) {
  7797. // skip computing output for unused tokens
  7798. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7799. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7800. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  7801. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7802. }
  7803. // feed-forward network
  7804. {
  7805. cur = llm_build_ffn(ctx0, cur,
  7806. model.layers[il].ffn_up, NULL,
  7807. model.layers[il].ffn_gate, NULL,
  7808. model.layers[il].ffn_down, NULL,
  7809. NULL,
  7810. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7811. cb(cur, "ffn_out", il);
  7812. }
  7813. cur = ggml_add(ctx0, cur, sa_out);
  7814. cb(cur, "l_out", il);
  7815. cur = ggml_add(ctx0, cur, inpL);
  7816. cb(cur, "l_out", il);
  7817. // input for next layer
  7818. inpL = cur;
  7819. }
  7820. cur = inpL;
  7821. cur = llm_build_norm(ctx0, cur, hparams,
  7822. model.output_norm, NULL,
  7823. LLM_NORM_RMS, cb, -1);
  7824. cb(cur, "result_norm", -1);
  7825. // lm_head
  7826. cur = ggml_mul_mat(ctx0, model.output, cur);
  7827. cb(cur, "result_output", -1);
  7828. ggml_build_forward_expand(gf, cur);
  7829. return gf;
  7830. }
  7831. struct ggml_cgraph * build_gpt2() {
  7832. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7833. const int64_t n_embd_head = hparams.n_embd_head_v;
  7834. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7835. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7836. struct ggml_tensor * cur;
  7837. struct ggml_tensor * pos;
  7838. struct ggml_tensor * inpL;
  7839. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7840. // inp_pos - contains the positions
  7841. struct ggml_tensor * inp_pos = build_inp_pos();
  7842. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7843. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7844. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7845. cb(pos, "pos_embd", -1);
  7846. inpL = ggml_add(ctx0, inpL, pos);
  7847. cb(inpL, "inpL", -1);
  7848. for (int il = 0; il < n_layer; ++il) {
  7849. cur = llm_build_norm(ctx0, inpL, hparams,
  7850. model.layers[il].attn_norm,
  7851. model.layers[il].attn_norm_b,
  7852. LLM_NORM, cb, il);
  7853. cb(cur, "attn_norm", il);
  7854. // self-attention
  7855. {
  7856. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7857. cb(cur, "wqkv", il);
  7858. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7859. cb(cur, "bqkv", il);
  7860. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7861. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7862. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7863. cb(Qcur, "Qcur", il);
  7864. cb(Kcur, "Kcur", il);
  7865. cb(Vcur, "Vcur", il);
  7866. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7867. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7868. model.layers[il].wo, model.layers[il].bo,
  7869. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7870. }
  7871. if (il == n_layer - 1) {
  7872. // skip computing output for unused tokens
  7873. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7874. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7875. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7876. }
  7877. // add the input
  7878. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7879. cb(ffn_inp, "ffn_inp", il);
  7880. // FF
  7881. {
  7882. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7883. model.layers[il].ffn_norm,
  7884. model.layers[il].ffn_norm_b,
  7885. LLM_NORM, cb, il);
  7886. cb(cur, "ffn_norm", il);
  7887. cur = llm_build_ffn(ctx0, cur,
  7888. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7889. NULL, NULL,
  7890. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7891. NULL,
  7892. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7893. cb(cur, "ffn_out", il);
  7894. }
  7895. inpL = ggml_add(ctx0, cur, ffn_inp);
  7896. cb(inpL, "l_out", il);
  7897. }
  7898. cur = llm_build_norm(ctx0, inpL, hparams,
  7899. model.output_norm,
  7900. model.output_norm_b,
  7901. LLM_NORM, cb, -1);
  7902. cb(cur, "result_norm", -1);
  7903. cur = ggml_mul_mat(ctx0, model.output, cur);
  7904. cb(cur, "result_output", -1);
  7905. ggml_build_forward_expand(gf, cur);
  7906. return gf;
  7907. }
  7908. struct ggml_cgraph * build_codeshell() {
  7909. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7910. const int64_t n_embd_head = hparams.n_embd_head_v;
  7911. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7912. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7913. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7914. struct ggml_tensor * cur;
  7915. struct ggml_tensor * inpL;
  7916. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7917. // inp_pos - contains the positions
  7918. struct ggml_tensor * inp_pos = build_inp_pos();
  7919. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7920. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7921. for (int il = 0; il < n_layer; ++il) {
  7922. cur = llm_build_norm(ctx0, inpL, hparams,
  7923. model.layers[il].attn_norm,
  7924. model.layers[il].attn_norm_b,
  7925. LLM_NORM, cb, il);
  7926. cb(cur, "attn_norm", il);
  7927. // self-attention
  7928. {
  7929. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7930. cb(cur, "wqkv", il);
  7931. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7932. cb(cur, "bqkv", il);
  7933. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7934. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7935. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7936. cb(tmpq, "tmpq", il);
  7937. cb(tmpk, "tmpk", il);
  7938. cb(Vcur, "Vcur", il);
  7939. struct ggml_tensor * Qcur = ggml_rope_custom(
  7940. ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos,
  7941. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7942. ext_factor, attn_factor, beta_fast, beta_slow
  7943. );
  7944. cb(Qcur, "Qcur", il);
  7945. struct ggml_tensor * Kcur = ggml_rope_custom(
  7946. ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7947. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7948. ext_factor, attn_factor, beta_fast, beta_slow
  7949. );
  7950. cb(Kcur, "Kcur", il);
  7951. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7952. model.layers[il].wo, model.layers[il].bo,
  7953. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7954. }
  7955. if (il == n_layer - 1) {
  7956. // skip computing output for unused tokens
  7957. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7958. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7959. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7960. }
  7961. // add the input
  7962. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7963. cb(ffn_inp, "ffn_inp", il);
  7964. // FF
  7965. {
  7966. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7967. model.layers[il].ffn_norm,
  7968. model.layers[il].ffn_norm_b,
  7969. LLM_NORM, cb, il);
  7970. cb(cur, "ffn_norm", il);
  7971. cur = llm_build_ffn(ctx0, cur,
  7972. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7973. NULL, NULL,
  7974. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7975. NULL,
  7976. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7977. cb(cur, "ffn_out", il);
  7978. }
  7979. inpL = ggml_add(ctx0, cur, ffn_inp);
  7980. cb(inpL, "l_out", il);
  7981. }
  7982. cur = llm_build_norm(ctx0, inpL, hparams,
  7983. model.output_norm,
  7984. model.output_norm_b,
  7985. LLM_NORM, cb, -1);
  7986. cb(cur, "result_norm", -1);
  7987. cur = ggml_mul_mat(ctx0, model.output, cur);
  7988. cb(cur, "result_output", -1);
  7989. ggml_build_forward_expand(gf, cur);
  7990. return gf;
  7991. }
  7992. struct ggml_cgraph * build_orion() {
  7993. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7994. const int64_t n_embd_head = hparams.n_embd_head_v;
  7995. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7996. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7997. struct ggml_tensor * cur;
  7998. struct ggml_tensor * inpL;
  7999. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8000. // inp_pos - contains the positions
  8001. struct ggml_tensor * inp_pos = build_inp_pos();
  8002. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8003. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8004. for (int il = 0; il < n_layer; ++il) {
  8005. struct ggml_tensor * inpSA = inpL;
  8006. // norm
  8007. cur = llm_build_norm(ctx0, inpL, hparams,
  8008. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8009. LLM_NORM, cb, il);
  8010. cb(cur, "attn_norm", il);
  8011. // self-attention
  8012. {
  8013. // compute Q and K and RoPE them
  8014. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8015. cb(Qcur, "Qcur", il);
  8016. // if (model.layers[il].bq) {
  8017. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8018. // cb(Qcur, "Qcur", il);
  8019. // }
  8020. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8021. cb(Kcur, "Kcur", il);
  8022. // if (model.layers[il].bk) {
  8023. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8024. // cb(Kcur, "Kcur", il);
  8025. // }
  8026. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8027. cb(Vcur, "Vcur", il);
  8028. // if (model.layers[il].bv) {
  8029. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8030. // cb(Vcur, "Vcur", il);
  8031. // }
  8032. Qcur = ggml_rope_custom(
  8033. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8034. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8035. ext_factor, attn_factor, beta_fast, beta_slow
  8036. );
  8037. cb(Qcur, "Qcur", il);
  8038. Kcur = ggml_rope_custom(
  8039. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8040. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8041. ext_factor, attn_factor, beta_fast, beta_slow
  8042. );
  8043. cb(Kcur, "Kcur", il);
  8044. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8045. model.layers[il].wo, NULL,
  8046. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8047. }
  8048. if (il == n_layer - 1) {
  8049. // skip computing output for unused tokens
  8050. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8051. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8052. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8053. }
  8054. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8055. cb(ffn_inp, "ffn_inp", il);
  8056. // feed-forward network
  8057. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8058. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8059. LLM_NORM, cb, il);
  8060. cb(cur, "ffn_norm", il);
  8061. cur = llm_build_ffn(ctx0, cur,
  8062. model.layers[il].ffn_up, NULL,
  8063. model.layers[il].ffn_gate, NULL,
  8064. model.layers[il].ffn_down, NULL,
  8065. NULL,
  8066. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8067. cb(cur, "ffn_out", il);
  8068. cur = ggml_add(ctx0, cur, ffn_inp);
  8069. cb(cur, "l_out", il);
  8070. // input for next layer
  8071. inpL = cur;
  8072. }
  8073. cur = inpL;
  8074. cur = llm_build_norm(ctx0, cur, hparams,
  8075. model.output_norm, model.output_norm_b,
  8076. LLM_NORM, cb, -1);
  8077. cb(cur, "result_norm", -1);
  8078. // lm_head
  8079. cur = ggml_mul_mat(ctx0, model.output, cur);
  8080. cb(cur, "result_output", -1);
  8081. ggml_build_forward_expand(gf, cur);
  8082. return gf;
  8083. }
  8084. struct ggml_cgraph * build_internlm2() {
  8085. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8086. const int64_t n_embd_head = hparams.n_embd_head_v;
  8087. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8088. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8089. struct ggml_tensor * cur;
  8090. struct ggml_tensor * inpL;
  8091. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8092. // inp_pos - contains the positions
  8093. struct ggml_tensor * inp_pos = build_inp_pos();
  8094. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8095. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8096. for (int il = 0; il < n_layer; ++il) {
  8097. struct ggml_tensor * inpSA = inpL;
  8098. // norm
  8099. cur = llm_build_norm(ctx0, inpL, hparams,
  8100. model.layers[il].attn_norm, NULL,
  8101. LLM_NORM_RMS, cb, il);
  8102. cb(cur, "attn_norm", il);
  8103. // self-attention
  8104. {
  8105. // compute Q and K and RoPE them
  8106. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8107. cb(Qcur, "Qcur", il);
  8108. if (model.layers[il].bq) {
  8109. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8110. cb(Qcur, "Qcur", il);
  8111. }
  8112. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8113. cb(Kcur, "Kcur", il);
  8114. if (model.layers[il].bk) {
  8115. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8116. cb(Kcur, "Kcur", il);
  8117. }
  8118. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8119. cb(Vcur, "Vcur", il);
  8120. if (model.layers[il].bv) {
  8121. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8122. cb(Vcur, "Vcur", il);
  8123. }
  8124. Qcur = ggml_rope_custom(
  8125. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8126. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8127. ext_factor, attn_factor, beta_fast, beta_slow
  8128. );
  8129. cb(Qcur, "Qcur", il);
  8130. Kcur = ggml_rope_custom(
  8131. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8132. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8133. ext_factor, attn_factor, beta_fast, beta_slow
  8134. );
  8135. cb(Kcur, "Kcur", il);
  8136. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8137. model.layers[il].wo, model.layers[il].bo,
  8138. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8139. }
  8140. if (il == n_layer - 1) {
  8141. // skip computing output for unused tokens
  8142. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8143. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8144. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8145. }
  8146. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8147. cb(ffn_inp, "ffn_inp", il);
  8148. // feed-forward network
  8149. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8150. model.layers[il].ffn_norm, NULL,
  8151. LLM_NORM_RMS, cb, il);
  8152. cb(cur, "ffn_norm", il);
  8153. cur = llm_build_ffn(ctx0, cur,
  8154. model.layers[il].ffn_up, NULL,
  8155. model.layers[il].ffn_gate, NULL,
  8156. model.layers[il].ffn_down, NULL,
  8157. NULL,
  8158. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8159. cb(cur, "ffn_out", il);
  8160. cur = ggml_add(ctx0, cur, ffn_inp);
  8161. cb(cur, "l_out", il);
  8162. // input for next layer
  8163. inpL = cur;
  8164. }
  8165. cur = inpL;
  8166. cur = llm_build_norm(ctx0, cur, hparams,
  8167. model.output_norm, NULL,
  8168. LLM_NORM_RMS, cb, -1);
  8169. cb(cur, "result_norm", -1);
  8170. // lm_head
  8171. cur = ggml_mul_mat(ctx0, model.output, cur);
  8172. cb(cur, "result_output", -1);
  8173. ggml_build_forward_expand(gf, cur);
  8174. return gf;
  8175. }
  8176. // ref: https://arxiv.org/abs/2203.03466
  8177. // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
  8178. // based on the original build_llama() function
  8179. struct ggml_cgraph * build_minicpm() {
  8180. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8181. const int64_t n_embd_head = hparams.n_embd_head_v;
  8182. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8183. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8184. const int64_t n_embd = hparams.n_embd;
  8185. //TODO: if the model varies, these parameters need to be read from the model
  8186. const int64_t n_embd_base = 256;
  8187. const float scale_embd = 12.0f;
  8188. const float scale_depth = 1.4f;
  8189. struct ggml_tensor * cur;
  8190. struct ggml_tensor * inpL;
  8191. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8192. // scale the input embeddings
  8193. inpL = ggml_scale(ctx0, inpL, scale_embd);
  8194. cb(inpL, "inp_scaled", -1);
  8195. // inp_pos - contains the positions
  8196. struct ggml_tensor * inp_pos = build_inp_pos();
  8197. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8198. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8199. for (int il = 0; il < n_layer; ++il) {
  8200. struct ggml_tensor * inpSA = inpL;
  8201. // norm
  8202. cur = llm_build_norm(ctx0, inpL, hparams,
  8203. model.layers[il].attn_norm, NULL,
  8204. LLM_NORM_RMS, cb, il);
  8205. cb(cur, "attn_norm", il);
  8206. // self-attention
  8207. {
  8208. // compute Q and K and RoPE them
  8209. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8210. cb(Qcur, "Qcur", il);
  8211. if (model.layers[il].bq) {
  8212. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8213. cb(Qcur, "Qcur", il);
  8214. }
  8215. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8216. cb(Kcur, "Kcur", il);
  8217. if (model.layers[il].bk) {
  8218. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8219. cb(Kcur, "Kcur", il);
  8220. }
  8221. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8222. cb(Vcur, "Vcur", il);
  8223. if (model.layers[il].bv) {
  8224. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8225. cb(Vcur, "Vcur", il);
  8226. }
  8227. Qcur = ggml_rope_custom(
  8228. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8229. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8230. ext_factor, attn_factor, beta_fast, beta_slow
  8231. );
  8232. cb(Qcur, "Qcur", il);
  8233. Kcur = ggml_rope_custom(
  8234. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8235. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8236. ext_factor, attn_factor, beta_fast, beta_slow
  8237. );
  8238. cb(Kcur, "Kcur", il);
  8239. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8240. model.layers[il].wo, model.layers[il].bo,
  8241. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8242. }
  8243. if (il == n_layer - 1) {
  8244. // skip computing output for unused tokens
  8245. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8246. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8247. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8248. }
  8249. // scale_res - scale the hidden states for residual connection
  8250. const float scale_res = scale_depth/sqrtf(float(n_layer));
  8251. cur = ggml_scale(ctx0, cur, scale_res);
  8252. cb(cur, "hidden_scaled", -1);
  8253. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8254. cb(ffn_inp, "ffn_inp", il);
  8255. // feed-forward network
  8256. {
  8257. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8258. model.layers[il].ffn_norm, NULL,
  8259. LLM_NORM_RMS, cb, il);
  8260. cb(cur, "ffn_norm", il);
  8261. cur = llm_build_ffn(ctx0, cur,
  8262. model.layers[il].ffn_up, NULL,
  8263. model.layers[il].ffn_gate, NULL,
  8264. model.layers[il].ffn_down, NULL,
  8265. NULL,
  8266. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8267. cb(cur, "ffn_out", il);
  8268. }
  8269. // scale the hidden states for residual connection
  8270. cur = ggml_scale(ctx0, cur, scale_res);
  8271. cb(cur, "hidden_scaled_ffn", -1);
  8272. cur = ggml_add(ctx0, cur, ffn_inp);
  8273. cb(cur, "l_out", il);
  8274. // input for next layer
  8275. inpL = cur;
  8276. }
  8277. cur = inpL;
  8278. cur = llm_build_norm(ctx0, cur, hparams,
  8279. model.output_norm, NULL,
  8280. LLM_NORM_RMS, cb, -1);
  8281. cb(cur, "result_norm", -1);
  8282. // lm_head scaling
  8283. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  8284. cur = ggml_scale(ctx0, cur, scale_lmhead);
  8285. cb(cur, "lmhead_scaling", -1);
  8286. // lm_head
  8287. cur = ggml_mul_mat(ctx0, model.tok_embd, cur);
  8288. cb(cur, "result_output", -1);
  8289. ggml_build_forward_expand(gf, cur);
  8290. return gf;
  8291. }
  8292. struct ggml_cgraph * build_gemma() {
  8293. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8294. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  8295. struct ggml_tensor * cur;
  8296. struct ggml_tensor * inpL;
  8297. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8298. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  8299. cb(inpL, "inp_scaled", -1);
  8300. // inp_pos - contains the positions
  8301. struct ggml_tensor * inp_pos = build_inp_pos();
  8302. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8303. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8304. for (int il = 0; il < n_layer; ++il) {
  8305. // norm
  8306. cur = llm_build_norm(ctx0, inpL, hparams,
  8307. model.layers[il].attn_norm, NULL,
  8308. LLM_NORM_RMS, cb, il);
  8309. cb(cur, "attn_norm", il);
  8310. // self-attention
  8311. {
  8312. // compute Q and K and RoPE them
  8313. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8314. cb(Qcur, "Qcur", il);
  8315. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8316. cb(Kcur, "Kcur", il);
  8317. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8318. cb(Vcur, "Vcur", il);
  8319. Qcur = ggml_rope_custom(
  8320. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos,
  8321. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8322. ext_factor, attn_factor, beta_fast, beta_slow);
  8323. cb(Qcur, "Qcur", il);
  8324. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
  8325. cb(Qcur, "Qcur_scaled", il);
  8326. Kcur = ggml_rope_custom(
  8327. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos,
  8328. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8329. ext_factor, attn_factor, beta_fast, beta_slow);
  8330. cb(Kcur, "Kcur", il);
  8331. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8332. model.layers[il].wo, NULL,
  8333. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  8334. }
  8335. if (il == n_layer - 1) {
  8336. // skip computing output for unused tokens
  8337. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8338. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8339. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8340. }
  8341. struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  8342. cb(sa_out, "sa_out", il);
  8343. cur = llm_build_norm(ctx0, sa_out, hparams,
  8344. model.layers[il].ffn_norm, NULL,
  8345. LLM_NORM_RMS, cb, il);
  8346. cb(cur, "ffn_norm", il);
  8347. // feed-forward network
  8348. {
  8349. cur = llm_build_ffn(ctx0, cur,
  8350. model.layers[il].ffn_up, NULL,
  8351. model.layers[il].ffn_gate, NULL,
  8352. model.layers[il].ffn_down, NULL,
  8353. NULL,
  8354. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  8355. cb(cur, "ffn_out", il);
  8356. }
  8357. cur = ggml_add(ctx0, cur, sa_out);
  8358. cb(cur, "l_out", il);
  8359. // input for next layer
  8360. inpL = cur;
  8361. }
  8362. cur = inpL;
  8363. cur = llm_build_norm(ctx0, cur, hparams,
  8364. model.output_norm, NULL,
  8365. LLM_NORM_RMS, cb, -1);
  8366. cb(cur, "result_norm", -1);
  8367. // lm_head
  8368. cur = ggml_mul_mat(ctx0, model.output, cur);
  8369. cb(cur, "result_output", -1);
  8370. ggml_build_forward_expand(gf, cur);
  8371. return gf;
  8372. }
  8373. struct ggml_cgraph * build_starcoder2() {
  8374. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8375. const int64_t n_embd_head = hparams.n_embd_head_v;
  8376. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8377. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8378. struct ggml_tensor * cur;
  8379. struct ggml_tensor * inpL;
  8380. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8381. // inp_pos - contains the positions
  8382. struct ggml_tensor * inp_pos = build_inp_pos();
  8383. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8384. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8385. for (int il = 0; il < n_layer; ++il) {
  8386. struct ggml_tensor * inpSA = inpL;
  8387. // norm
  8388. cur = llm_build_norm(ctx0, inpL, hparams,
  8389. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8390. LLM_NORM, cb, il);
  8391. cb(cur, "attn_norm", il);
  8392. // self-attention
  8393. {
  8394. // compute Q and K and RoPE them
  8395. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8396. cb(Qcur, "Qcur", il);
  8397. if (model.layers[il].bq) {
  8398. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8399. cb(Qcur, "Qcur", il);
  8400. }
  8401. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8402. cb(Kcur, "Kcur", il);
  8403. if (model.layers[il].bk) {
  8404. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8405. cb(Kcur, "Kcur", il);
  8406. }
  8407. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8408. cb(Vcur, "Vcur", il);
  8409. if (model.layers[il].bv) {
  8410. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8411. cb(Vcur, "Vcur", il);
  8412. }
  8413. Qcur = ggml_rope_custom(
  8414. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8415. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8416. ext_factor, attn_factor, beta_fast, beta_slow
  8417. );
  8418. cb(Qcur, "Qcur", il);
  8419. Kcur = ggml_rope_custom(
  8420. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8421. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8422. ext_factor, attn_factor, beta_fast, beta_slow
  8423. );
  8424. cb(Kcur, "Kcur", il);
  8425. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8426. model.layers[il].wo, model.layers[il].bo,
  8427. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8428. }
  8429. if (il == n_layer - 1) {
  8430. // skip computing output for unused tokens
  8431. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8432. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8433. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8434. }
  8435. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8436. cb(ffn_inp, "ffn_inp", il);
  8437. // feed-forward network
  8438. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8439. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8440. LLM_NORM, cb, il);
  8441. cb(cur, "ffn_norm", il);
  8442. cur = llm_build_ffn(ctx0, cur,
  8443. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8444. NULL, NULL,
  8445. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8446. NULL,
  8447. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8448. cb(cur, "ffn_out", il);
  8449. cur = ggml_add(ctx0, cur, ffn_inp);
  8450. cb(cur, "l_out", il);
  8451. // input for next layer
  8452. inpL = cur;
  8453. }
  8454. cur = inpL;
  8455. cur = llm_build_norm(ctx0, cur, hparams,
  8456. model.output_norm, model.output_norm_b,
  8457. LLM_NORM, cb, -1);
  8458. cb(cur, "result_norm", -1);
  8459. // lm_head
  8460. cur = ggml_mul_mat(ctx0, model.output, cur);
  8461. cb(cur, "result_output", -1);
  8462. ggml_build_forward_expand(gf, cur);
  8463. return gf;
  8464. }
  8465. struct ggml_cgraph * build_mamba() {
  8466. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8467. const int64_t d_model = n_embd;
  8468. const int64_t d_conv = hparams.ssm_d_conv;
  8469. const int64_t d_inner = hparams.ssm_d_inner;
  8470. GGML_ASSERT(2 * d_model == d_inner);
  8471. const int64_t d_state = hparams.ssm_d_state;
  8472. const int64_t dt_rank = hparams.ssm_dt_rank;
  8473. struct ggml_tensor * cur;
  8474. struct ggml_tensor * inpL;
  8475. // {n_embd, n_tokens}
  8476. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8477. struct ggml_tensor * state_mask = build_inp_s_mask();
  8478. struct ggml_tensor * state_seq = build_inp_s_seq();
  8479. for (int il = 0; il < n_layer; ++il) {
  8480. // (ab)using the KV cache to store the states
  8481. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  8482. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  8483. // clear states of sequences which are starting at the beginning of this batch
  8484. {
  8485. conv_states = ggml_mul(ctx0,
  8486. ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]),
  8487. state_mask);
  8488. ssm_states = ggml_mul(ctx0,
  8489. ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]),
  8490. state_mask);
  8491. }
  8492. conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv);
  8493. ssm_states = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_kv);
  8494. // norm
  8495. cur = llm_build_norm(ctx0, inpL, hparams,
  8496. model.layers[il].attn_norm, NULL,
  8497. LLM_NORM_RMS, cb, il);
  8498. cb(cur, "attn_norm", il);
  8499. // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
  8500. struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur);
  8501. // split the above in two
  8502. // => {d_inner, n_tokens}
  8503. struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
  8504. struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
  8505. // conv
  8506. {
  8507. // Custom operator which is needed only to ease simultaneous sequence processing.
  8508. // For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
  8509. // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
  8510. // then element-wise multiply that with the conv1d weigth,
  8511. // then sum the elements of each row,
  8512. // (the last two steps are a dot product over rows (also doable with mul_mat))
  8513. // then permute away the ne[0] dimension,
  8514. // and then you're left with the resulting x tensor.
  8515. // The new conv_states is the last (d_conv - 1) columns
  8516. // of the last 3rd dimensional "layer" of the self-overlapping view.
  8517. // For simultaneous sequences, it's more complicated.
  8518. struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
  8519. // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
  8520. ggml_build_forward_expand(gf,
  8521. ggml_cpy(ctx0,
  8522. ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
  8523. ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
  8524. // extract x from x_conv
  8525. x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
  8526. // bias
  8527. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  8528. x = ggml_silu(ctx0, x);
  8529. }
  8530. // ssm
  8531. {
  8532. // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
  8533. struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x);
  8534. // split
  8535. struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
  8536. struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
  8537. struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
  8538. // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
  8539. dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
  8540. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  8541. // Custom operator to optimize the parallel associative scan
  8542. // as described in the Annex D of the Mamba paper.
  8543. // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined,
  8544. // because only a single tensor can be returned.
  8545. struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
  8546. // store last states (the second part of y_ssm_states)
  8547. ggml_build_forward_expand(gf,
  8548. ggml_cpy(ctx0,
  8549. ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
  8550. ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states))));
  8551. struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
  8552. if (il == n_layer - 1) {
  8553. // skip computing output for unused tokens
  8554. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8555. x = ggml_get_rows(ctx0, x, inp_out_ids);
  8556. y = ggml_get_rows(ctx0, y, inp_out_ids);
  8557. z = ggml_get_rows(ctx0, z, inp_out_ids);
  8558. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8559. }
  8560. // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
  8561. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  8562. y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));
  8563. // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
  8564. cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y);
  8565. }
  8566. // residual
  8567. cur = ggml_add(ctx0, cur, inpL);
  8568. cb(cur, "l_out", il);
  8569. // input for next layer
  8570. inpL = cur;
  8571. }
  8572. // final rmsnorm
  8573. cur = llm_build_norm(ctx0, inpL, hparams,
  8574. model.output_norm, NULL,
  8575. LLM_NORM_RMS, cb, -1);
  8576. cb(cur, "result_norm", -1);
  8577. // lm_head
  8578. cur = ggml_mul_mat(ctx0, model.output, cur);
  8579. cb(cur, "result_output", -1);
  8580. ggml_build_forward_expand(gf, cur);
  8581. return gf;
  8582. }
  8583. struct ggml_cgraph * build_command_r() {
  8584. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8585. const int64_t n_embd_head = hparams.n_embd_head_v;
  8586. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8587. const float f_logit_scale = hparams.f_logit_scale;
  8588. struct ggml_tensor * cur;
  8589. struct ggml_tensor * inpL;
  8590. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8591. // inp_pos - contains the positions
  8592. struct ggml_tensor * inp_pos = build_inp_pos();
  8593. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8594. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8595. for (int il = 0; il < n_layer; ++il) {
  8596. // norm
  8597. cur = llm_build_norm(ctx0, inpL, hparams,
  8598. model.layers[il].attn_norm, NULL,
  8599. LLM_NORM, cb, il);
  8600. cb(cur, "attn_norm", il);
  8601. struct ggml_tensor * ffn_inp = cur;
  8602. // self-attention
  8603. {
  8604. // compute Q and K and RoPE them
  8605. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8606. cb(Qcur, "Qcur", il);
  8607. if (model.layers[il].bq) {
  8608. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8609. cb(Qcur, "Qcur", il);
  8610. }
  8611. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8612. cb(Kcur, "Kcur", il);
  8613. if (model.layers[il].bk) {
  8614. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8615. cb(Kcur, "Kcur", il);
  8616. }
  8617. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8618. cb(Vcur, "Vcur", il);
  8619. if (model.layers[il].bv) {
  8620. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8621. cb(Vcur, "Vcur", il);
  8622. }
  8623. if (model.layers[il].attn_q_norm) {
  8624. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  8625. ggml_element_size(Qcur) * n_embd_head,
  8626. ggml_element_size(Qcur) * n_embd_head * n_head,
  8627. 0);
  8628. cb(Qcur, "Qcur", il);
  8629. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  8630. ggml_element_size(Kcur) * n_embd_head,
  8631. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  8632. 0);
  8633. cb(Kcur, "Kcur", il);
  8634. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  8635. model.layers[il].attn_q_norm,
  8636. NULL,
  8637. LLM_NORM, cb, il);
  8638. cb(Qcur, "Qcur", il);
  8639. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  8640. model.layers[il].attn_k_norm,
  8641. NULL,
  8642. LLM_NORM, cb, il);
  8643. cb(Kcur, "Kcur", il);
  8644. }
  8645. Qcur = ggml_rope_custom(
  8646. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8647. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8648. ext_factor, attn_factor, beta_fast, beta_slow
  8649. );
  8650. cb(Qcur, "Qcur", il);
  8651. Kcur = ggml_rope_custom(
  8652. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8653. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8654. ext_factor, attn_factor, beta_fast, beta_slow
  8655. );
  8656. cb(Kcur, "Kcur", il);
  8657. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8658. model.layers[il].wo, model.layers[il].bo,
  8659. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8660. }
  8661. if (il == n_layer - 1) {
  8662. // skip computing output for unused tokens
  8663. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8664. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8665. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8666. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  8667. }
  8668. struct ggml_tensor * attn_out = cur;
  8669. // feed-forward network
  8670. {
  8671. cur = llm_build_ffn(ctx0, ffn_inp,
  8672. model.layers[il].ffn_up, NULL,
  8673. model.layers[il].ffn_gate, NULL,
  8674. model.layers[il].ffn_down, NULL,
  8675. NULL,
  8676. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8677. cb(cur, "ffn_out", il);
  8678. }
  8679. // add together residual + FFN + self-attention
  8680. cur = ggml_add(ctx0, cur, inpL);
  8681. cur = ggml_add(ctx0, cur, attn_out);
  8682. cb(cur, "l_out", il);
  8683. // input for next layer
  8684. inpL = cur;
  8685. }
  8686. cur = inpL;
  8687. cur = llm_build_norm(ctx0, cur, hparams,
  8688. model.output_norm, NULL,
  8689. LLM_NORM, cb, -1);
  8690. cb(cur, "result_norm", -1);
  8691. // lm_head
  8692. cur = ggml_mul_mat(ctx0, model.output, cur);
  8693. if (f_logit_scale) {
  8694. cur = ggml_scale(ctx0, cur, f_logit_scale);
  8695. }
  8696. cb(cur, "result_output", -1);
  8697. ggml_build_forward_expand(gf, cur);
  8698. return gf;
  8699. }
  8700. // ref: https://allenai.org/olmo
  8701. // based on the original build_llama() function, changes:
  8702. // * non-parametric layer norm
  8703. // * clamp qkv
  8704. // * removed bias
  8705. // * removed MoE
  8706. struct ggml_cgraph * build_olmo() {
  8707. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8708. // mutable variable, needed during the last layer of the computation to skip unused tokens
  8709. int32_t n_tokens = this->n_tokens;
  8710. const int64_t n_embd_head = hparams.n_embd_head_v;
  8711. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8712. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8713. struct ggml_tensor * cur;
  8714. struct ggml_tensor * inpL;
  8715. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8716. // inp_pos - contains the positions
  8717. struct ggml_tensor * inp_pos = build_inp_pos();
  8718. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8719. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8720. for (int il = 0; il < n_layer; ++il) {
  8721. struct ggml_tensor * inpSA = inpL;
  8722. // norm
  8723. cur = llm_build_norm(ctx0, inpL, hparams,
  8724. NULL, NULL,
  8725. LLM_NORM, cb, il);
  8726. cb(cur, "attn_norm", il);
  8727. // self-attention
  8728. {
  8729. // compute Q and K and RoPE them
  8730. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8731. cb(Qcur, "Qcur", il);
  8732. if (hparams.f_clamp_kqv > 0.0f) {
  8733. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8734. cb(Qcur, "Qcur", il);
  8735. }
  8736. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8737. cb(Kcur, "Kcur", il);
  8738. if (hparams.f_clamp_kqv > 0.0f) {
  8739. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8740. cb(Kcur, "Kcur", il);
  8741. }
  8742. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8743. cb(Vcur, "Vcur", il);
  8744. if (hparams.f_clamp_kqv > 0.0f) {
  8745. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8746. cb(Vcur, "Vcur", il);
  8747. }
  8748. Qcur = ggml_rope_custom(
  8749. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8750. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8751. ext_factor, attn_factor, beta_fast, beta_slow
  8752. );
  8753. cb(Qcur, "Qcur", il);
  8754. Kcur = ggml_rope_custom(
  8755. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8756. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8757. ext_factor, attn_factor, beta_fast, beta_slow
  8758. );
  8759. cb(Kcur, "Kcur", il);
  8760. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8761. model.layers[il].wo, nullptr,
  8762. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8763. }
  8764. if (il == n_layer - 1) {
  8765. // skip computing output for unused tokens
  8766. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8767. n_tokens = n_outputs;
  8768. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8769. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8770. }
  8771. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8772. cb(ffn_inp, "ffn_inp", il);
  8773. // feed-forward network
  8774. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8775. NULL, NULL,
  8776. LLM_NORM, cb, il);
  8777. cb(cur, "ffn_norm", il);
  8778. cur = llm_build_ffn(ctx0, cur,
  8779. model.layers[il].ffn_up, NULL,
  8780. model.layers[il].ffn_gate, NULL,
  8781. model.layers[il].ffn_down, NULL,
  8782. NULL,
  8783. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8784. cb(cur, "ffn_out", il);
  8785. cur = ggml_add(ctx0, cur, ffn_inp);
  8786. cb(cur, "ffn_out", il);
  8787. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  8788. if (layer_dir != nullptr) {
  8789. cur = ggml_add(ctx0, cur, layer_dir);
  8790. }
  8791. cb(cur, "l_out", il);
  8792. // input for next layer
  8793. inpL = cur;
  8794. }
  8795. cur = inpL;
  8796. cur = llm_build_norm(ctx0, cur, hparams,
  8797. NULL, NULL,
  8798. LLM_NORM, cb, -1);
  8799. cb(cur, "result_norm", -1);
  8800. // lm_head
  8801. cur = ggml_mul_mat(ctx0, model.output, cur);
  8802. cb(cur, "result_output", -1);
  8803. ggml_build_forward_expand(gf, cur);
  8804. return gf;
  8805. }
  8806. };
  8807. static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
  8808. llama_batch dummy;
  8809. dummy.n_tokens = 0;
  8810. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8811. struct llm_build_context llm(lctx, dummy, cb, false);
  8812. llm.init();
  8813. struct ggml_cgraph * result = llm.build_defrag(ids);
  8814. llm.free();
  8815. return result;
  8816. }
  8817. static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
  8818. llama_batch dummy;
  8819. dummy.n_tokens = 0;
  8820. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8821. struct llm_build_context llm(lctx, dummy, cb, false);
  8822. llm.init();
  8823. struct ggml_cgraph * result = llm.build_k_shift();
  8824. llm.free();
  8825. return result;
  8826. }
  8827. static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
  8828. llama_batch dummy;
  8829. dummy.n_tokens = 0;
  8830. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8831. struct llm_build_context llm(lctx, dummy, cb, false);
  8832. llm.init();
  8833. struct ggml_cgraph * result = llm.build_s_copy();
  8834. llm.free();
  8835. return result;
  8836. }
  8837. static struct ggml_cgraph * llama_build_graph(
  8838. llama_context & lctx,
  8839. const llama_batch & batch,
  8840. bool worst_case) {
  8841. const auto & model = lctx.model;
  8842. // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
  8843. llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
  8844. if (il >= 0) {
  8845. ggml_format_name(cur, "%s-%d", name, il);
  8846. } else {
  8847. ggml_set_name(cur, name);
  8848. }
  8849. if (!lctx.cparams.offload_kqv) {
  8850. if (strcmp(name, "kqv_merged_cont") == 0) {
  8851. // all nodes between the KV store and the attention output are run on the CPU
  8852. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
  8853. }
  8854. }
  8855. // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
  8856. // FIXME: fix in ggml_backend_sched
  8857. const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
  8858. if (batch.n_tokens < 32 || full_offload) {
  8859. if (il != -1 && strcmp(name, "norm") == 0) {
  8860. for (auto * backend : lctx.backends) {
  8861. if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) {
  8862. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
  8863. break;
  8864. }
  8865. }
  8866. }
  8867. }
  8868. };
  8869. struct ggml_cgraph * result = NULL;
  8870. struct llm_build_context llm(lctx, batch, cb, worst_case);
  8871. llm.init();
  8872. switch (model.arch) {
  8873. case LLM_ARCH_LLAMA:
  8874. {
  8875. result = llm.build_llama();
  8876. } break;
  8877. case LLM_ARCH_BAICHUAN:
  8878. {
  8879. result = llm.build_baichuan();
  8880. } break;
  8881. case LLM_ARCH_FALCON:
  8882. {
  8883. result = llm.build_falcon();
  8884. } break;
  8885. case LLM_ARCH_GROK:
  8886. {
  8887. result = llm.build_grok();
  8888. } break;
  8889. case LLM_ARCH_STARCODER:
  8890. {
  8891. result = llm.build_starcoder();
  8892. } break;
  8893. case LLM_ARCH_PERSIMMON:
  8894. {
  8895. result = llm.build_persimmon();
  8896. } break;
  8897. case LLM_ARCH_REFACT:
  8898. {
  8899. result = llm.build_refact();
  8900. } break;
  8901. case LLM_ARCH_BERT:
  8902. case LLM_ARCH_NOMIC_BERT:
  8903. {
  8904. result = llm.build_bert();
  8905. } break;
  8906. case LLM_ARCH_BLOOM:
  8907. {
  8908. result = llm.build_bloom();
  8909. } break;
  8910. case LLM_ARCH_MPT:
  8911. {
  8912. result = llm.build_mpt();
  8913. } break;
  8914. case LLM_ARCH_STABLELM:
  8915. {
  8916. result = llm.build_stablelm();
  8917. } break;
  8918. case LLM_ARCH_QWEN:
  8919. {
  8920. result = llm.build_qwen();
  8921. } break;
  8922. case LLM_ARCH_QWEN2:
  8923. {
  8924. result = llm.build_qwen2();
  8925. } break;
  8926. case LLM_ARCH_QWEN2MOE:
  8927. {
  8928. result = llm.build_qwen2moe();
  8929. } break;
  8930. case LLM_ARCH_PHI2:
  8931. {
  8932. result = llm.build_phi2();
  8933. } break;
  8934. case LLM_ARCH_PHI3:
  8935. {
  8936. result = llm.build_phi3();
  8937. } break;
  8938. case LLM_ARCH_PLAMO:
  8939. {
  8940. result = llm.build_plamo();
  8941. } break;
  8942. case LLM_ARCH_GPT2:
  8943. {
  8944. result = llm.build_gpt2();
  8945. } break;
  8946. case LLM_ARCH_CODESHELL:
  8947. {
  8948. result = llm.build_codeshell();
  8949. } break;
  8950. case LLM_ARCH_ORION:
  8951. {
  8952. result = llm.build_orion();
  8953. } break;
  8954. case LLM_ARCH_INTERNLM2:
  8955. {
  8956. result = llm.build_internlm2();
  8957. } break;
  8958. case LLM_ARCH_MINICPM:
  8959. {
  8960. result = llm.build_minicpm();
  8961. } break;
  8962. case LLM_ARCH_GEMMA:
  8963. {
  8964. result = llm.build_gemma();
  8965. } break;
  8966. case LLM_ARCH_STARCODER2:
  8967. {
  8968. result = llm.build_starcoder2();
  8969. } break;
  8970. case LLM_ARCH_MAMBA:
  8971. {
  8972. result = llm.build_mamba();
  8973. } break;
  8974. case LLM_ARCH_XVERSE:
  8975. {
  8976. result = llm.build_xverse();
  8977. } break;
  8978. case LLM_ARCH_COMMAND_R:
  8979. {
  8980. result = llm.build_command_r();
  8981. } break;
  8982. case LLM_ARCH_DBRX:
  8983. {
  8984. result = llm.build_dbrx();
  8985. } break;
  8986. case LLM_ARCH_OLMO:
  8987. {
  8988. result = llm.build_olmo();
  8989. } break;
  8990. default:
  8991. GGML_ASSERT(false);
  8992. }
  8993. llm.free();
  8994. return result;
  8995. }
  8996. static void llama_set_k_shift(llama_context & lctx) {
  8997. const int64_t kv_size = lctx.kv_self.size;
  8998. assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
  8999. int32_t * data = (int32_t *) lctx.inp_K_shift->data;
  9000. for (int i = 0; i < kv_size; ++i) {
  9001. data[i] = lctx.kv_self.cells[i].delta;
  9002. }
  9003. }
  9004. static void llama_set_s_copy(llama_context & lctx) {
  9005. const int64_t kv_size = lctx.kv_self.size;
  9006. assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
  9007. int32_t * data = (int32_t *) lctx.inp_s_copy->data;
  9008. for (int i = 0; i < kv_size; ++i) {
  9009. data[i] = lctx.kv_self.cells[i].src;
  9010. }
  9011. }
  9012. static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
  9013. //
  9014. // set input data
  9015. //
  9016. const auto & hparams = lctx.model.hparams;
  9017. const auto & cparams = lctx.cparams;
  9018. const auto & kv_self = lctx.kv_self;
  9019. if (batch.token) {
  9020. const int64_t n_tokens = batch.n_tokens;
  9021. ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
  9022. }
  9023. if (batch.embd) {
  9024. const int64_t n_embd = hparams.n_embd;
  9025. const int64_t n_tokens = batch.n_tokens;
  9026. ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
  9027. }
  9028. if (batch.pos && lctx.inp_pos) {
  9029. const int64_t n_tokens = batch.n_tokens;
  9030. ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
  9031. }
  9032. if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
  9033. GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
  9034. const int64_t n_tokens = batch.n_tokens;
  9035. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
  9036. int32_t * data = (int32_t *) lctx.inp_out_ids->data;
  9037. if (lctx.n_outputs == n_tokens) {
  9038. for (int i = 0; i < n_tokens; ++i) {
  9039. data[i] = i;
  9040. }
  9041. } else if (batch.logits) {
  9042. int32_t n_outputs = 0;
  9043. for (int i = 0; i < n_tokens; ++i) {
  9044. if (batch.logits[i]) {
  9045. data[n_outputs++] = i;
  9046. }
  9047. }
  9048. // the graph needs to have been passed the correct number of outputs
  9049. GGML_ASSERT(lctx.n_outputs == n_outputs);
  9050. } else if (lctx.n_outputs == 1) {
  9051. // only keep last output
  9052. data[0] = n_tokens - 1;
  9053. } else {
  9054. GGML_ASSERT(lctx.n_outputs == 0);
  9055. }
  9056. }
  9057. GGML_ASSERT(
  9058. // (!a || b) is a logical implication (a -> b)
  9059. // !hparams.causal_attn -> !cparams.causal_attn
  9060. (hparams.causal_attn || !cparams.causal_attn) &&
  9061. "causal attention with embedding models is not supported"
  9062. );
  9063. if (lctx.inp_KQ_mask) {
  9064. // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
  9065. if (cparams.causal_attn) {
  9066. const int64_t n_kv = kv_self.n;
  9067. const int64_t n_tokens = batch.n_tokens;
  9068. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  9069. float * data = (float *) lctx.inp_KQ_mask->data;
  9070. // For causal attention, use only the previous KV cells
  9071. // of the correct sequence for each token of the batch.
  9072. // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
  9073. for (int h = 0; h < 1; ++h) {
  9074. for (int j = 0; j < n_tokens; ++j) {
  9075. const llama_pos pos = batch.pos[j];
  9076. const llama_seq_id seq_id = batch.seq_id[j][0];
  9077. for (int i = 0; i < n_kv; ++i) {
  9078. float f;
  9079. if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
  9080. f = -INFINITY;
  9081. } else {
  9082. f = 0.0f;
  9083. }
  9084. data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
  9085. }
  9086. }
  9087. }
  9088. } else {
  9089. // when using kv cache, the mask needs to match the kv cache size
  9090. const int64_t n_tokens = batch.n_tokens;
  9091. const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens;
  9092. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  9093. float * data = (float *) lctx.inp_KQ_mask->data;
  9094. for (int h = 0; h < 1; ++h) {
  9095. for (int j = 0; j < n_tokens; ++j) {
  9096. const llama_seq_id seq_id = batch.seq_id[j][0];
  9097. for (int i = 0; i < n_tokens; ++i) {
  9098. float f = -INFINITY;
  9099. for (int s = 0; s < batch.n_seq_id[i]; ++s) {
  9100. if (batch.seq_id[i][s] == seq_id) {
  9101. f = 0.0f;
  9102. break;
  9103. }
  9104. }
  9105. data[h*(n_tokens*n_tokens) + j*n_stride + i] = f;
  9106. }
  9107. for (int i = n_tokens; i < n_stride; ++i) {
  9108. data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY;
  9109. }
  9110. }
  9111. }
  9112. }
  9113. }
  9114. if (hparams.need_kq_pos) {
  9115. const int64_t n_kv = kv_self.n;
  9116. GGML_ASSERT(lctx.inp_KQ_pos);
  9117. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_pos->buffer));
  9118. float * data = (float *) lctx.inp_KQ_pos->data;
  9119. for (int i = 0; i < n_kv; ++i) {
  9120. data[i] = float(lctx.kv_self.cells[i].pos);
  9121. }
  9122. }
  9123. if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
  9124. const int64_t n_tokens = batch.n_tokens;
  9125. GGML_ASSERT(lctx.inp_mean);
  9126. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
  9127. float * data = (float *) lctx.inp_mean->data;
  9128. memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
  9129. std::vector<uint64_t> sum(n_tokens, 0);
  9130. for (int i = 0; i < n_tokens; ++i) {
  9131. const llama_seq_id seq_id = batch.seq_id[i][0];
  9132. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
  9133. sum[seq_id] += 1;
  9134. }
  9135. std::vector<float> div(n_tokens, 0.0f);
  9136. for (int i = 0; i < n_tokens; ++i) {
  9137. const uint64_t s = sum[i];
  9138. if (s > 0) {
  9139. div[i] = 1.0f/float(s);
  9140. }
  9141. }
  9142. for (int i = 0; i < n_tokens; ++i) {
  9143. const llama_seq_id seq_id = batch.seq_id[i][0];
  9144. data[seq_id*n_tokens + i] = div[seq_id];
  9145. }
  9146. }
  9147. if (cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
  9148. const int64_t n_tokens = batch.n_tokens;
  9149. GGML_ASSERT(lctx.inp_cls);
  9150. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
  9151. uint32_t * data = (uint32_t *) lctx.inp_cls->data;
  9152. memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
  9153. for (int i = 0; i < n_tokens; ++i) {
  9154. const llama_seq_id seq_id = batch.seq_id[i][0];
  9155. const llama_pos pos = batch.pos[i];
  9156. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
  9157. if (pos == 0) {
  9158. data[seq_id] = i;
  9159. }
  9160. }
  9161. }
  9162. if (kv_self.recurrent) {
  9163. const int64_t n_kv = kv_self.n;
  9164. if (lctx.inp_s_mask) {
  9165. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
  9166. float * data = (float *) lctx.inp_s_mask->data;
  9167. // states which are not affected by the current batch are left untouched
  9168. for (int i = 0; i < n_kv; ++i) {
  9169. llama_seq_id seq_id = i + lctx.kv_self.head;
  9170. llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id];
  9171. bool has_self_seq = kv_cell.has_seq_id(seq_id);
  9172. data[i] = (float) has_self_seq;
  9173. // ensure current sequences will be kept
  9174. if (!has_self_seq && kv_cell.pos >= 0) {
  9175. kv_cell.seq_id.insert(seq_id);
  9176. }
  9177. }
  9178. }
  9179. // For Mamba (and other recurrent architectures),
  9180. // update the correct state(s)/sequence(s) for each token of the batch.
  9181. // Like with the KQ_mask, if a token in the batch has multiple sequences,
  9182. // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv).
  9183. if (lctx.inp_s_seq) {
  9184. const int64_t n_tokens = batch.n_tokens;
  9185. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer));
  9186. int32_t * data = (int32_t *) lctx.inp_s_seq->data;
  9187. for (int j = 0; j < n_tokens; ++j) {
  9188. const int32_t n_seq = batch.n_seq_id[j];
  9189. GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence
  9190. for (int i = 0; i < n_kv; ++i) {
  9191. if (i < n_seq) {
  9192. // for this type of model, the head is the minimum seq_id of the batch
  9193. data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head;
  9194. } else {
  9195. data[j*n_kv + i] = -1;
  9196. }
  9197. }
  9198. }
  9199. }
  9200. }
  9201. }
  9202. // Make sure enough space is available for outputs.
  9203. // Returns max number of outputs for which space was reserved.
  9204. static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
  9205. const auto & cparams = lctx.cparams;
  9206. const auto & hparams = lctx.model.hparams;
  9207. const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
  9208. const auto n_batch = cparams.n_batch;
  9209. const auto n_vocab = hparams.n_vocab;
  9210. const auto n_embd = hparams.n_embd;
  9211. // TODO: use a per-batch flag for logits presence instead
  9212. const bool has_logits = cparams.causal_attn;
  9213. const bool has_embd = cparams.embeddings && (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
  9214. const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
  9215. const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
  9216. if (lctx.output_ids.empty()) {
  9217. // init, never resized afterwards
  9218. lctx.output_ids.resize(n_batch);
  9219. }
  9220. const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
  9221. const size_t new_size = (logits_size + embd_size) * sizeof(float);
  9222. // alloc only when more than the current capacity is required
  9223. // TODO: also consider shrinking the buffer
  9224. if (!lctx.buf_output || prev_size < new_size) {
  9225. if (lctx.buf_output) {
  9226. #ifndef NDEBUG
  9227. // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
  9228. LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  9229. #endif
  9230. ggml_backend_buffer_free(lctx.buf_output);
  9231. lctx.buf_output = nullptr;
  9232. lctx.logits = nullptr;
  9233. lctx.embd = nullptr;
  9234. }
  9235. lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
  9236. if (lctx.buf_output == nullptr) {
  9237. LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
  9238. return 0;
  9239. }
  9240. }
  9241. float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);
  9242. lctx.logits = has_logits ? output_base : nullptr;
  9243. lctx.embd = has_embd ? output_base + logits_size : nullptr;
  9244. lctx.output_size = n_outputs_max;
  9245. lctx.logits_size = logits_size;
  9246. lctx.embd_size = embd_size;
  9247. // set all ids as invalid (negative)
  9248. std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
  9249. ggml_backend_buffer_clear(lctx.buf_output, 0);
  9250. lctx.n_outputs = 0;
  9251. return n_outputs_max;
  9252. }
  9253. static void llama_graph_compute(
  9254. llama_context & lctx,
  9255. ggml_cgraph * gf,
  9256. int n_threads) {
  9257. #ifdef GGML_USE_MPI
  9258. const int64_t n_layer = lctx.model.hparams.n_layer;
  9259. ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
  9260. #endif
  9261. #ifdef GGML_USE_METAL
  9262. if (ggml_backend_is_metal(lctx.backend_metal)) {
  9263. ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
  9264. }
  9265. #endif
  9266. if (lctx.backend_cpu != nullptr) {
  9267. ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
  9268. ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
  9269. }
  9270. ggml_backend_sched_graph_compute_async(lctx.sched, gf);
  9271. // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
  9272. #ifdef GGML_USE_MPI
  9273. ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer);
  9274. #endif
  9275. }
  9276. // decode a batch of tokens by evaluating the transformer
  9277. //
  9278. // - lctx: llama context
  9279. // - batch: batch to evaluate
  9280. //
  9281. // return 0 on success
  9282. // return positive int on warning
  9283. // return negative int on error
  9284. //
  9285. static int llama_decode_internal(
  9286. llama_context & lctx,
  9287. llama_batch batch_all) { // TODO: rename back to batch
  9288. const uint32_t n_tokens_all = batch_all.n_tokens;
  9289. if (n_tokens_all == 0) {
  9290. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  9291. return -1;
  9292. }
  9293. const auto & model = lctx.model;
  9294. const auto & hparams = model.hparams;
  9295. const auto & cparams = lctx.cparams;
  9296. GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
  9297. GGML_ASSERT(n_tokens_all <= cparams.n_batch);
  9298. GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
  9299. if (lctx.t_compute_start_us == 0) {
  9300. lctx.t_compute_start_us = ggml_time_us();
  9301. }
  9302. lctx.n_queued_tokens += n_tokens_all;
  9303. #ifdef GGML_USE_MPI
  9304. // TODO: needs fix after #3228
  9305. GGML_ASSERT(false && "not implemented");
  9306. //ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
  9307. #endif
  9308. auto & kv_self = lctx.kv_self;
  9309. const int64_t n_embd = hparams.n_embd;
  9310. const int64_t n_vocab = hparams.n_vocab;
  9311. uint32_t n_outputs = 0;
  9312. uint32_t n_outputs_prev = 0;
  9313. const auto n_ubatch = cparams.n_ubatch;
  9314. std::vector<llama_pos> pos;
  9315. std::vector<int32_t> n_seq_id;
  9316. std::vector<llama_seq_id *> seq_id_arr;
  9317. std::vector<std::vector<llama_seq_id>> seq_id;
  9318. // count outputs
  9319. if (batch_all.logits) {
  9320. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  9321. n_outputs += batch_all.logits[i] != 0;
  9322. }
  9323. } else if (lctx.logits_all || (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE)) {
  9324. n_outputs = n_tokens_all;
  9325. } else {
  9326. // keep last output only
  9327. n_outputs = 1;
  9328. }
  9329. // reserve output buffer
  9330. if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
  9331. LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
  9332. return -2;
  9333. };
  9334. // set output mappings
  9335. if (batch_all.logits) {
  9336. int32_t i_logits = 0;
  9337. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  9338. if (batch_all.logits[i]) {
  9339. lctx.output_ids[i] = i_logits++;
  9340. }
  9341. }
  9342. } else {
  9343. for (uint32_t i = 0; i < n_outputs; ++i) {
  9344. lctx.output_ids[i] = i;
  9345. }
  9346. }
  9347. for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) {
  9348. const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token);
  9349. llama_batch u_batch = {
  9350. /* .n_tokens = */ (int32_t) n_tokens,
  9351. /* .token = */ batch_all.token ? batch_all.token + cur_token : nullptr,
  9352. /* .embd = */ batch_all.embd ? batch_all.embd + cur_token*n_embd : nullptr,
  9353. /* .pos = */ batch_all.pos ? batch_all.pos + cur_token : nullptr,
  9354. /* .n_seq_id = */ batch_all.n_seq_id ? batch_all.n_seq_id + cur_token : nullptr,
  9355. /* .seq_id = */ batch_all.seq_id ? batch_all.seq_id + cur_token : nullptr,
  9356. /* .logits = */ batch_all.logits ? batch_all.logits + cur_token : nullptr,
  9357. /* .all_pos_0 = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1,
  9358. /* .all_pos_1 = */ batch_all.all_pos_1,
  9359. /* .all_seq_id = */ batch_all.all_seq_id,
  9360. };
  9361. // count the outputs in this u_batch
  9362. {
  9363. int32_t n_outputs_new = 0;
  9364. if (u_batch.logits) {
  9365. for (uint32_t i = 0; i < n_tokens; i++) {
  9366. n_outputs_new += u_batch.logits[i] != 0;
  9367. }
  9368. } else if (n_outputs == n_tokens_all) {
  9369. n_outputs_new = n_tokens;
  9370. } else {
  9371. // keep last output only
  9372. if (cur_token + n_tokens >= n_tokens_all) {
  9373. n_outputs_new = 1;
  9374. }
  9375. }
  9376. // needs to happen before the graph is built
  9377. lctx.n_outputs = n_outputs_new;
  9378. }
  9379. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  9380. GGML_ASSERT(n_threads > 0);
  9381. // helpers for smoother batch API transition
  9382. // after deprecating the llama_eval calls, these will be removed
  9383. if (u_batch.pos == nullptr) {
  9384. pos.resize(n_tokens);
  9385. for (uint32_t i = 0; i < n_tokens; i++) {
  9386. pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
  9387. }
  9388. u_batch.pos = pos.data();
  9389. }
  9390. if (u_batch.seq_id == nullptr) {
  9391. n_seq_id.resize(n_tokens);
  9392. seq_id.resize(n_tokens);
  9393. seq_id_arr.resize(n_tokens);
  9394. for (uint32_t i = 0; i < n_tokens; i++) {
  9395. n_seq_id[i] = 1;
  9396. seq_id[i].resize(1);
  9397. seq_id[i][0] = u_batch.all_seq_id;
  9398. seq_id_arr[i] = seq_id[i].data();
  9399. }
  9400. u_batch.n_seq_id = n_seq_id.data();
  9401. u_batch.seq_id = seq_id_arr.data();
  9402. }
  9403. // non-causal masks do not use the KV cache
  9404. if (hparams.causal_attn) {
  9405. llama_kv_cache_update(&lctx);
  9406. // if we have enough unused cells before the current head ->
  9407. // better to start searching from the beginning of the cache, hoping to fill it
  9408. if (kv_self.head > kv_self.used + 2*n_tokens) {
  9409. kv_self.head = 0;
  9410. }
  9411. if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
  9412. return 1;
  9413. }
  9414. if (!kv_self.recurrent) {
  9415. // a heuristic, to avoid attending the full cache if it is not yet utilized
  9416. // after enough generations, the benefit from this heuristic disappears
  9417. // if we start defragmenting the cache, the benefit from this will be more important
  9418. kv_self.n = std::min(kv_self.size, std::max(32u, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32)));
  9419. //kv_self.n = llama_kv_cache_cell_max(kv_self);
  9420. }
  9421. }
  9422. //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
  9423. ggml_backend_sched_reset(lctx.sched);
  9424. ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
  9425. ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false);
  9426. // the output is always the last tensor in the graph
  9427. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  9428. struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
  9429. if (lctx.n_outputs == 0) {
  9430. // no output
  9431. res = nullptr;
  9432. embd = nullptr;
  9433. } else if (!hparams.causal_attn) {
  9434. res = nullptr; // do not extract logits for embedding models such as BERT
  9435. // token or sequence embeddings
  9436. embd = gf->nodes[gf->n_nodes - 1];
  9437. GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0);
  9438. } else if (cparams.embeddings) {
  9439. // the embeddings could be in the second to last tensor, or any of the previous tensors
  9440. int i_embd = gf->n_nodes - 2;
  9441. for (int i = 3; strcmp(embd->name, "result_norm") != 0; ++i) {
  9442. i_embd = gf->n_nodes - i;
  9443. if (i_embd < 0) { break; }
  9444. embd = gf->nodes[i_embd];
  9445. }
  9446. GGML_ASSERT(i_embd >= 0 && "missing result_norm tensor");
  9447. // TODO: use a per-batch flag to know when to skip logits while keeping embeddings
  9448. if (!cparams.causal_attn) {
  9449. res = nullptr; // do not extract logits when not needed
  9450. // skip computing logits
  9451. // TODO: is this safe?
  9452. gf->n_nodes = i_embd + 1;
  9453. }
  9454. } else {
  9455. embd = nullptr; // do not extract embeddings when not needed
  9456. GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
  9457. }
  9458. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  9459. // for big prompts, if BLAS is enabled, it is better to use only one thread
  9460. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  9461. // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
  9462. // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
  9463. // with the BLAS calls. need a better solution
  9464. // MoE Special Case: This logic applies when hparams.n_expert == 0, i.e. the model is NOT an MoE model. When an MoE is
  9465. // being processed then Accelerate/BLAS will not be involved, so capping would limit performance.
  9466. if (n_tokens >= 32 && hparams.n_expert == 0 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
  9467. n_threads = std::min(4, n_threads);
  9468. }
  9469. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9470. llama_set_inputs(lctx, u_batch);
  9471. llama_graph_compute(lctx, gf, n_threads);
  9472. // update the kv ring buffer
  9473. {
  9474. kv_self.head += n_tokens;
  9475. // Ensure kv cache head points to a valid index.
  9476. if (kv_self.head >= kv_self.size) {
  9477. kv_self.head = 0;
  9478. }
  9479. }
  9480. #ifdef GGML_PERF
  9481. // print timing information per ggml operation (for debugging purposes)
  9482. // requires GGML_PERF to be defined
  9483. ggml_graph_print(gf);
  9484. #endif
  9485. // plot the computation graph in dot format (for debugging purposes)
  9486. //if (n_past%100 == 0) {
  9487. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  9488. //}
  9489. // extract logits
  9490. if (res) {
  9491. ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
  9492. GGML_ASSERT(backend_res != nullptr);
  9493. GGML_ASSERT(lctx.logits != nullptr);
  9494. float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
  9495. const int32_t n_outputs_new = lctx.n_outputs;
  9496. if (n_outputs_new) {
  9497. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  9498. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
  9499. ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
  9500. }
  9501. }
  9502. // extract embeddings
  9503. if (embd) {
  9504. ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
  9505. GGML_ASSERT(backend_embd != nullptr);
  9506. switch (cparams.pooling_type) {
  9507. case LLAMA_POOLING_TYPE_NONE:
  9508. {
  9509. // extract token embeddings
  9510. GGML_ASSERT(lctx.embd != nullptr);
  9511. float * embd_out = lctx.embd + n_outputs_prev*n_embd;
  9512. const int32_t n_outputs_new = lctx.n_outputs;
  9513. if (n_outputs_new) {
  9514. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  9515. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
  9516. ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
  9517. }
  9518. } break;
  9519. case LLAMA_POOLING_TYPE_CLS:
  9520. case LLAMA_POOLING_TYPE_MEAN:
  9521. {
  9522. GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0);
  9523. // extract sequence embeddings
  9524. auto & embd_seq_out = lctx.embd_seq;
  9525. embd_seq_out.clear();
  9526. for (uint32_t i = 0; i < n_tokens; i++) {
  9527. const llama_seq_id seq_id = u_batch.seq_id[i][0];
  9528. if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
  9529. continue;
  9530. }
  9531. embd_seq_out[seq_id].resize(n_embd);
  9532. ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
  9533. }
  9534. } break;
  9535. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  9536. {
  9537. GGML_ASSERT(false && "unknown pooling type");
  9538. } break;
  9539. }
  9540. }
  9541. n_outputs_prev += lctx.n_outputs;
  9542. }
  9543. // set to total number of outputs in the batch, for use in llama_get_logits_ith
  9544. lctx.n_outputs = n_outputs;
  9545. // wait for the computation to finish (automatically done when obtaining the model output)
  9546. //llama_synchronize(&lctx);
  9547. // decide if we need to defrag the kv cache
  9548. if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
  9549. const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;
  9550. // queue defragmentation for next llama_kv_cache_update
  9551. if (fragmentation > cparams.defrag_thold) {
  9552. //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
  9553. llama_kv_cache_defrag(kv_self);
  9554. }
  9555. }
  9556. // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
  9557. // overlap with device computation.
  9558. ggml_backend_sched_reset(lctx.sched);
  9559. return 0;
  9560. }
  9561. // find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
  9562. static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
  9563. auto & kv_self = lctx.kv_self;
  9564. const auto & hparams = lctx.model.hparams;
  9565. const uint32_t n_layer = hparams.n_layer;
  9566. const uint32_t n_kv = llama_kv_cache_cell_max(kv_self);
  9567. const uint32_t n_used = kv_self.used;
  9568. assert(n_used <= n_kv);
  9569. //const int64_t t_start = ggml_time_us();
  9570. // number of cells moved
  9571. uint32_t n_moves = 0;
  9572. // each move requires 6*n_layer tensors (see build_defrag)
  9573. // - source view, destination view, copy operation
  9574. // - x2 for keys and values
  9575. const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer);
  9576. // determine which KV cells to move where
  9577. //
  9578. // cell i moves to ids[i]
  9579. //
  9580. // if ids[i] == i || ids[i] == n_kv, then cell i is not moved
  9581. //
  9582. std::vector<uint32_t> ids(n_kv, n_kv);
  9583. for (uint32_t i0 = 0; i0 < n_used; ++i0) {
  9584. const auto & cell0 = kv_self.cells[i0];
  9585. if (!cell0.is_empty()) {
  9586. ids[i0] = i0;
  9587. continue;
  9588. }
  9589. // found a hole - fill it with data from the end of the cache
  9590. uint32_t nh = 1;
  9591. // determine the size of the hole
  9592. while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
  9593. nh++;
  9594. }
  9595. uint32_t nf = 0;
  9596. uint32_t is = n_kv - 1;
  9597. // starting from the end, find nh non-empty cells
  9598. for (; is > i0; --is) {
  9599. const auto & cell1 = kv_self.cells[is];
  9600. if (cell1.is_empty() || ids[is] != n_kv) {
  9601. continue;
  9602. }
  9603. // non-empty cell which is not yet moved
  9604. nf++;
  9605. if (nf == nh) {
  9606. break;
  9607. }
  9608. }
  9609. // this can only happen if `n_used` is not accurate, which would be a bug
  9610. GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
  9611. nf = 0;
  9612. uint32_t i1 = is;
  9613. // are we moving a continuous block of memory?
  9614. bool cont = false;
  9615. // should we stop searching for the next move?
  9616. bool stop = false;
  9617. // go back and move the nf cells to the hole
  9618. for (; i1 < n_kv; ++i1) {
  9619. auto & cell1 = kv_self.cells[i1];
  9620. if (cell1.is_empty() || ids[i1] != n_kv) {
  9621. if (n_moves == max_moves) {
  9622. stop = true;
  9623. break;
  9624. }
  9625. cont = false;
  9626. continue;
  9627. }
  9628. // this cell goes to (i0 + nf)
  9629. ids[i1] = i0 + nf;
  9630. // move the cell meta data
  9631. kv_self.cells[i0 + nf] = cell1;
  9632. // clear the old cell and move the head there
  9633. cell1 = llama_kv_cell();
  9634. kv_self.head = n_used;
  9635. if (!cont) {
  9636. n_moves++;
  9637. cont = true;
  9638. }
  9639. nf++;
  9640. if (nf == nh) {
  9641. break;
  9642. }
  9643. }
  9644. if (stop || n_moves == max_moves) {
  9645. break;
  9646. }
  9647. //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
  9648. i0 += nh - 1;
  9649. }
  9650. if (n_moves == 0) {
  9651. return;
  9652. }
  9653. //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
  9654. //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
  9655. #if 0
  9656. // CPU defrag
  9657. //
  9658. // TODO: optimizations are possible:
  9659. // - multiple threads
  9660. // - avoid copying to the host memory when already there
  9661. //
  9662. // likely not worth the effort, as we have ggml_graph based defrag
  9663. //
  9664. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  9665. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  9666. const uint32_t kv_size = kv_self.size;
  9667. std::vector<uint8_t> buf_k;
  9668. std::vector<uint8_t> buf_v;
  9669. for (uint32_t il = 0; il < n_layer; ++il) {
  9670. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  9671. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
  9672. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  9673. const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
  9674. buf_k.resize(k_size);
  9675. buf_v.resize(v_size);
  9676. ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  9677. ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  9678. // batch move [i, i+nm) to [id, id+nm)
  9679. // note: cells can move only to a lower index
  9680. for (uint32_t i = 0; i < n_kv; ++i) {
  9681. const uint32_t id = ids[i];
  9682. if (i == id || id == n_kv) {
  9683. continue;
  9684. }
  9685. uint32_t nm = 1;
  9686. while (i + nm < n_kv && ids[i + nm] == id + nm) {
  9687. nm++;
  9688. }
  9689. // move keys
  9690. {
  9691. const int64_t os = i*k_size_row;
  9692. const int64_t od = id*k_size_row;
  9693. memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
  9694. }
  9695. // move values (note: they are transposed)
  9696. {
  9697. const int64_t os = i;
  9698. const int64_t od = id;
  9699. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  9700. memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
  9701. }
  9702. }
  9703. i += nm - 1;
  9704. }
  9705. ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  9706. ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  9707. }
  9708. #else
  9709. // ggml_graph defrag
  9710. ggml_backend_sched_reset(lctx.sched);
  9711. ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
  9712. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9713. #endif
  9714. //const int64_t t_end = ggml_time_us();
  9715. //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
  9716. }
  9717. static void llama_kv_cache_update_internal(struct llama_context & lctx) {
  9718. bool need_reserve = false;
  9719. // apply K-shift if needed
  9720. if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
  9721. {
  9722. ggml_backend_sched_reset(lctx.sched);
  9723. ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
  9724. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9725. llama_set_k_shift(lctx);
  9726. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9727. need_reserve = true;
  9728. }
  9729. {
  9730. auto & kv_self = lctx.kv_self;
  9731. kv_self.has_shift = false;
  9732. for (uint32_t i = 0; i < kv_self.size; ++i) {
  9733. kv_self.cells[i].delta = 0;
  9734. }
  9735. }
  9736. }
  9737. if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) {
  9738. {
  9739. ggml_backend_sched_reset(lctx.sched);
  9740. ggml_cgraph * gf = llama_build_graph_s_copy(lctx);
  9741. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9742. llama_set_s_copy(lctx);
  9743. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9744. need_reserve = true;
  9745. }
  9746. {
  9747. auto & kv_self = lctx.kv_self;
  9748. kv_self.do_copy = false;
  9749. for (uint32_t i = 0; i < kv_self.size; ++i) {
  9750. kv_self.cells[i].src = i;
  9751. }
  9752. }
  9753. }
  9754. // defragment the KV cache if needed
  9755. if (lctx.kv_self.do_defrag) {
  9756. llama_kv_cache_defrag_internal(lctx);
  9757. need_reserve = true;
  9758. lctx.kv_self.do_defrag = false;
  9759. }
  9760. // reserve a worst case graph again
  9761. if (need_reserve) {
  9762. // TODO: extract to a function
  9763. // build worst-case graph
  9764. int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
  9765. int n_past = lctx.cparams.n_ctx - n_tokens;
  9766. llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  9767. ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  9768. // initialize scheduler with the worst-case graph
  9769. ggml_backend_sched_reset(lctx.sched);
  9770. if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
  9771. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  9772. }
  9773. }
  9774. }
  9775. //
  9776. // tokenizer
  9777. //
  9778. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  9779. return vocab.type;
  9780. }
  9781. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  9782. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9783. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
  9784. }
  9785. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  9786. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9787. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
  9788. }
  9789. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  9790. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9791. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
  9792. }
  9793. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  9794. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9795. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
  9796. }
  9797. static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
  9798. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9799. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
  9800. }
  9801. static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
  9802. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  9803. GGML_ASSERT(llama_is_byte_token(vocab, id));
  9804. const auto& token_data = vocab.id_to_token.at(id);
  9805. switch (llama_vocab_get_type(vocab)) {
  9806. case LLAMA_VOCAB_TYPE_SPM: {
  9807. auto buf = token_data.text.substr(3, 2);
  9808. return strtol(buf.c_str(), NULL, 16);
  9809. }
  9810. case LLAMA_VOCAB_TYPE_BPE: {
  9811. GGML_ASSERT(false);
  9812. return unicode_utf8_to_byte(token_data.text); // TODO: why is this here after GGML_ASSERT?
  9813. }
  9814. case LLAMA_VOCAB_TYPE_WPM: {
  9815. GGML_ASSERT(false);
  9816. }
  9817. default:
  9818. GGML_ASSERT(false);
  9819. }
  9820. }
  9821. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  9822. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  9823. static const char * hex = "0123456789ABCDEF";
  9824. switch (llama_vocab_get_type(vocab)) {
  9825. case LLAMA_VOCAB_TYPE_SPM: {
  9826. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  9827. auto token = vocab.token_to_id.find(buf);
  9828. if (token != vocab.token_to_id.end()) {
  9829. return (*token).second;
  9830. }
  9831. // Try to fall back to just the byte as a string
  9832. const char buf2[2] = { (char)ch, 0 };
  9833. return vocab.token_to_id.at(buf2);
  9834. }
  9835. case LLAMA_VOCAB_TYPE_WPM:
  9836. case LLAMA_VOCAB_TYPE_BPE: {
  9837. return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
  9838. }
  9839. default:
  9840. GGML_ASSERT(false);
  9841. }
  9842. }
  9843. static void llama_escape_whitespace(std::string & text) {
  9844. replace_all(text, " ", "\xe2\x96\x81");
  9845. }
  9846. static void llama_unescape_whitespace(std::string & word) {
  9847. replace_all(word, "\xe2\x96\x81", " ");
  9848. }
  9849. struct llm_symbol {
  9850. using index = int;
  9851. index prev;
  9852. index next;
  9853. const char * text;
  9854. size_t n;
  9855. };
  9856. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  9857. // SPM tokenizer
  9858. // original implementation:
  9859. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  9860. struct llm_bigram_spm {
  9861. struct comparator {
  9862. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  9863. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  9864. }
  9865. };
  9866. using queue_storage = std::vector<llm_bigram_spm>;
  9867. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  9868. llm_symbol::index left;
  9869. llm_symbol::index right;
  9870. float score;
  9871. size_t size;
  9872. };
  9873. struct llm_tokenizer_spm {
  9874. llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
  9875. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  9876. // split string into utf8 chars
  9877. int index = 0;
  9878. size_t offs = 0;
  9879. while (offs < text.size()) {
  9880. llm_symbol sym;
  9881. size_t len = utf8_len(text[offs]);
  9882. sym.text = text.c_str() + offs;
  9883. sym.n = std::min(len, text.size() - offs);
  9884. offs += sym.n;
  9885. sym.prev = index - 1;
  9886. sym.next = offs == text.size() ? -1 : index + 1;
  9887. index++;
  9888. symbols.emplace_back(sym);
  9889. }
  9890. // seed the work queue with all possible 2-character tokens.
  9891. for (size_t i = 1; i < symbols.size(); ++i) {
  9892. try_add_bigram(i - 1, i);
  9893. }
  9894. // keep substituting the highest frequency pairs for as long as we can.
  9895. while (!work_queue.empty()) {
  9896. auto bigram = work_queue.top();
  9897. work_queue.pop();
  9898. auto & left_sym = symbols[bigram.left];
  9899. auto & right_sym = symbols[bigram.right];
  9900. // if one of the symbols already got merged, skip it.
  9901. if (left_sym.n == 0 || right_sym.n == 0 ||
  9902. left_sym.n + right_sym.n != bigram.size) {
  9903. continue;
  9904. }
  9905. // merge the right sym into the left one
  9906. left_sym.n += right_sym.n;
  9907. right_sym.n = 0;
  9908. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  9909. // remove the right sym from the chain
  9910. left_sym.next = right_sym.next;
  9911. if (right_sym.next >= 0) {
  9912. symbols[right_sym.next].prev = bigram.left;
  9913. }
  9914. // find more substitutions
  9915. try_add_bigram(left_sym.prev, bigram.left);
  9916. try_add_bigram(bigram.left, left_sym.next);
  9917. }
  9918. for (int i = 0; i != -1; i = symbols[i].next) {
  9919. auto & symbol = symbols[i];
  9920. resegment(symbol, output);
  9921. }
  9922. }
  9923. private:
  9924. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  9925. auto text = std::string(symbol.text, symbol.n);
  9926. auto token = vocab.token_to_id.find(text);
  9927. // Do we need to support is_unused?
  9928. if (token != vocab.token_to_id.end()) {
  9929. output.push_back((*token).second);
  9930. return;
  9931. }
  9932. const auto p = rev_merge.find(text);
  9933. if (p == rev_merge.end()) {
  9934. // output any symbols that did not form tokens as bytes.
  9935. output.reserve(output.size() + symbol.n);
  9936. for (int j = 0; j < (int)symbol.n; ++j) {
  9937. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  9938. output.push_back(token_id);
  9939. }
  9940. return;
  9941. }
  9942. resegment(symbols[p->second.first], output);
  9943. resegment(symbols[p->second.second], output);
  9944. }
  9945. void try_add_bigram(int left, int right) {
  9946. if (left == -1 || right == -1) {
  9947. return;
  9948. }
  9949. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  9950. auto token = vocab.token_to_id.find(text);
  9951. if (token == vocab.token_to_id.end()) {
  9952. return;
  9953. }
  9954. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  9955. return;
  9956. }
  9957. const auto & tok_data = vocab.id_to_token[(*token).second];
  9958. llm_bigram_spm bigram;
  9959. bigram.left = left;
  9960. bigram.right = right;
  9961. bigram.score = tok_data.score;
  9962. bigram.size = text.size();
  9963. work_queue.push(bigram);
  9964. // Do we need to support is_unused?
  9965. rev_merge[text] = std::make_pair(left, right);
  9966. }
  9967. const llama_vocab & vocab;
  9968. std::vector<llm_symbol> symbols;
  9969. llm_bigram_spm::queue work_queue;
  9970. std::map<std::string, std::pair<int, int>> rev_merge;
  9971. };
  9972. // BPE tokenizer
  9973. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  9974. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  9975. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  9976. struct llm_bigram_bpe {
  9977. struct comparator {
  9978. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  9979. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  9980. }
  9981. };
  9982. using queue_storage = std::vector<llm_bigram_bpe>;
  9983. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  9984. llm_symbol::index left;
  9985. llm_symbol::index right;
  9986. std::string text;
  9987. int rank;
  9988. size_t size;
  9989. };
  9990. struct llm_tokenizer_bpe {
  9991. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
  9992. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  9993. int final_prev_index = -1;
  9994. std::vector<std::string> word_collection;
  9995. switch (vocab.type) {
  9996. case LLAMA_VOCAB_TYPE_BPE:
  9997. switch (vocab.type_pre) {
  9998. case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
  9999. word_collection = unicode_regex_split(text, {
  10000. // original regex from tokenizer.json
  10001. //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10002. // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
  10003. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10004. });
  10005. break;
  10006. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
  10007. word_collection = unicode_regex_split(text, {
  10008. "[\r\n]",
  10009. "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
  10010. "\\s?[!-/:-~!-/:-~‘-‟ -。]+",
  10011. "\\s+$",
  10012. "[一-龥ࠀ-一가-퟿]+",
  10013. "\\p{N}+",
  10014. });
  10015. break;
  10016. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
  10017. word_collection = unicode_regex_split(text, {
  10018. "[\r\n]",
  10019. "\\s?\\p{L}+",
  10020. "\\s?\\p{P}+",
  10021. "[一-龥ࠀ-一가-퟿]+",
  10022. "\\p{N}+",
  10023. });
  10024. break;
  10025. case LLAMA_VOCAB_PRE_TYPE_FALCON:
  10026. word_collection = unicode_regex_split(text, {
  10027. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  10028. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10029. "\\p{N}+",
  10030. "[0-9][0-9][0-9]",
  10031. });
  10032. break;
  10033. case LLAMA_VOCAB_PRE_TYPE_MPT:
  10034. // TODO: MPT pre-tokenization regexes are unknown
  10035. // the following are close, but not exact. run the following:
  10036. // ./bin/test-tokenizer-0 ../models/ggml-vocab-mpt.gguf
  10037. GGML_ASSERT("MPT pre-tokenization regexes are unknown - fixes needed");
  10038. word_collection = unicode_regex_split(text, {
  10039. "\\s?\\p{L}+",
  10040. "\\s?\\p{P}+",
  10041. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10042. });
  10043. break;
  10044. case LLAMA_VOCAB_PRE_TYPE_STARCODER:
  10045. case LLAMA_VOCAB_PRE_TYPE_GPT2:
  10046. word_collection = unicode_regex_split(text, {
  10047. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10048. });
  10049. break;
  10050. default:
  10051. // default regex for BPE tokenization pre-processing
  10052. word_collection = unicode_regex_split(text, {
  10053. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  10054. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10055. "\\p{N}+",
  10056. "[0-9][0-9][0-9]",
  10057. });
  10058. break;
  10059. }
  10060. break;
  10061. default:
  10062. GGML_ASSERT(false);
  10063. break;
  10064. }
  10065. symbols_final.clear();
  10066. for (auto & word : word_collection) {
  10067. work_queue = llm_bigram_bpe::queue();
  10068. symbols.clear();
  10069. int index = 0;
  10070. size_t offset = 0;
  10071. while (offset < word.size()) {
  10072. llm_symbol sym;
  10073. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  10074. sym.text = word.c_str() + offset;
  10075. sym.n = char_len;
  10076. offset += sym.n;
  10077. sym.prev = index - 1;
  10078. sym.next = offset == word.size() ? -1 : index + 1;
  10079. index++;
  10080. symbols.emplace_back(sym);
  10081. }
  10082. for (size_t i = 1; i < symbols.size(); ++i) {
  10083. add_new_bigram(i - 1, i);
  10084. }
  10085. // build token(s)
  10086. while (!work_queue.empty()) {
  10087. auto bigram = work_queue.top();
  10088. work_queue.pop();
  10089. auto & left_symbol = symbols[bigram.left];
  10090. auto & right_symbol = symbols[bigram.right];
  10091. if (left_symbol.n == 0 || right_symbol.n == 0) {
  10092. continue;
  10093. }
  10094. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  10095. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  10096. if (left_token + right_token != bigram.text) {
  10097. continue; // Skip this bigram if it's outdated
  10098. }
  10099. // merge the right sym into the left one
  10100. left_symbol.n += right_symbol.n;
  10101. right_symbol.n = 0;
  10102. // remove the right sym from the chain
  10103. left_symbol.next = right_symbol.next;
  10104. if (right_symbol.next >= 0) {
  10105. symbols[right_symbol.next].prev = bigram.left;
  10106. }
  10107. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  10108. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  10109. }
  10110. // add the finished tokens to the final list keeping correct order for next and prev
  10111. for (auto & sym : symbols) {
  10112. if (sym.n > 0) {
  10113. sym.prev = final_prev_index;
  10114. sym.next = -1;
  10115. if (final_prev_index != -1) {
  10116. symbols_final[final_prev_index].next = symbols_final.size();
  10117. }
  10118. symbols_final.emplace_back(sym);
  10119. final_prev_index = symbols_final.size() - 1;
  10120. }
  10121. }
  10122. }
  10123. symbols = symbols_final;
  10124. if (!symbols.empty()) {
  10125. for (int i = 0; i != -1; i = symbols[i].next) {
  10126. auto & symbol = symbols[i];
  10127. if (symbol.n == 0) {
  10128. continue;
  10129. }
  10130. const std::string str = std::string(symbol.text, symbol.n);
  10131. const auto token = vocab.token_to_id.find(str);
  10132. if (token == vocab.token_to_id.end()) {
  10133. for (auto j = str.begin(); j != str.end(); ++j) {
  10134. std::string byte_str(1, *j);
  10135. auto token_multibyte = vocab.token_to_id.find(byte_str);
  10136. if (token_multibyte == vocab.token_to_id.end()) {
  10137. throw std::runtime_error("ERROR: byte not found in vocab");
  10138. }
  10139. output.push_back((*token_multibyte).second);
  10140. }
  10141. } else {
  10142. output.push_back((*token).second);
  10143. }
  10144. }
  10145. }
  10146. }
  10147. private:
  10148. void add_new_bigram(int left, int right) {
  10149. if (left == -1 || right == -1) {
  10150. return;
  10151. }
  10152. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  10153. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  10154. int rank_found = -1;
  10155. rank_found = vocab.find_bpe_rank(left_token, right_token);
  10156. if (rank_found < 0) {
  10157. return;
  10158. }
  10159. llm_bigram_bpe bigram;
  10160. bigram.left = left;
  10161. bigram.right = right;
  10162. bigram.text = left_token + right_token;
  10163. bigram.size = left_token.size() + right_token.size();
  10164. bigram.rank = rank_found;
  10165. work_queue.push(bigram);
  10166. }
  10167. const llama_vocab & vocab;
  10168. std::vector<llm_symbol> symbols;
  10169. std::vector<llm_symbol> symbols_final;
  10170. llm_bigram_bpe::queue work_queue;
  10171. };
  10172. struct llm_tokenizer_wpm {
  10173. llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
  10174. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10175. auto * token_map = &vocab.token_to_id;
  10176. // normalize and split by whitespace
  10177. std::vector<std::string> words = preprocess(text);
  10178. // bos token prepended already
  10179. // find the longest tokens that form the words
  10180. for (const std::string &word : words) {
  10181. // skip empty words
  10182. if (word.size() == 0) {
  10183. continue;
  10184. }
  10185. // prepend phantom space
  10186. std::string word1 = "\xe2\x96\x81" + word;
  10187. int n = word1.size();
  10188. // we're at the start of a new word
  10189. int i = 0;
  10190. bool match_any = false;
  10191. // move through character position in word
  10192. while (i < n) {
  10193. // loop through possible match length
  10194. bool match = false;
  10195. for (int j = n; j > i; j--) {
  10196. auto it = token_map->find(word1.substr(i, j - i));
  10197. if (it != token_map->end()) {
  10198. output.push_back(it->second);
  10199. match = true;
  10200. match_any = true;
  10201. i = j;
  10202. break;
  10203. }
  10204. }
  10205. // must be an unknown character
  10206. if (!match) {
  10207. i++;
  10208. }
  10209. }
  10210. // we didn't find any matches for this word
  10211. if (!match_any) {
  10212. output.push_back(vocab.special_unk_id);
  10213. }
  10214. }
  10215. }
  10216. std::vector<std::string> preprocess(const std::string & text) {
  10217. std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
  10218. // strip accents, strip control, uniformize whitespace,
  10219. // to lowercase, pad chinese characters, pad punctuation
  10220. std::string new_str = "";
  10221. for (uint32_t code : cpts_nfd) {
  10222. int type = unicode_cpt_type(code);
  10223. if (type == CODEPOINT_TYPE_ACCENT_MARK || type == CODEPOINT_TYPE_CONTROL) {
  10224. continue;
  10225. }
  10226. code = unicode_tolower(code);
  10227. if (type == CODEPOINT_TYPE_WHITESPACE) {
  10228. code = ' ';
  10229. }
  10230. std::string s = unicode_cpt_to_utf8(code);
  10231. if (type == CODEPOINT_TYPE_PUNCTUATION || is_ascii_punct(code) || is_chinese_char(code)) {
  10232. new_str += " ";
  10233. new_str += s;
  10234. new_str += " ";
  10235. } else {
  10236. new_str += s;
  10237. }
  10238. }
  10239. // split by whitespace
  10240. uint64_t l = 0;
  10241. uint64_t r = 0;
  10242. std::vector<std::string> words;
  10243. while (r < new_str.size()) {
  10244. // if is whitespace
  10245. if (isspace(new_str[r], std::locale::classic())) {
  10246. if (r > l) words.push_back(new_str.substr(l, (r - l)));
  10247. l = r + 1;
  10248. r = l;
  10249. } else {
  10250. r += 1;
  10251. }
  10252. }
  10253. if (r > l) {
  10254. words.push_back(new_str.substr(l, (r - l)));
  10255. }
  10256. return words;
  10257. }
  10258. bool is_ascii_punct(uint32_t code) {
  10259. if (code > 0xFF) {
  10260. return false;
  10261. }
  10262. auto c = char(static_cast<unsigned char>(code));
  10263. return ispunct(c, std::locale::classic());
  10264. }
  10265. bool is_chinese_char(uint32_t cpt) {
  10266. if ((cpt >= 0x4E00 && cpt <= 0x9FFF) ||
  10267. (cpt >= 0x3400 && cpt <= 0x4DBF) ||
  10268. (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
  10269. (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
  10270. (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
  10271. (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
  10272. (cpt >= 0xF900 && cpt <= 0xFAFF) ||
  10273. (cpt >= 0x2F800 && cpt <= 0x2FA1F) ||
  10274. (cpt >= 0x3000 && cpt <= 0x303F) ||
  10275. (cpt >= 0xFF00 && cpt <= 0xFFEF)) {
  10276. return true; // NOLINT
  10277. }
  10278. return false;
  10279. }
  10280. const llama_vocab & vocab;
  10281. };
  10282. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
  10283. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  10284. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  10285. } FRAGMENT_BUFFER_VARIANT_TYPE;
  10286. struct fragment_buffer_variant {
  10287. fragment_buffer_variant(llama_vocab::id _token)
  10288. :
  10289. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  10290. token(_token),
  10291. raw_text(_dummy),
  10292. offset(0),
  10293. length(0) {}
  10294. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  10295. :
  10296. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  10297. token((llama_vocab::id) - 1),
  10298. raw_text(_raw_text),
  10299. offset(_offset),
  10300. length(_length){
  10301. GGML_ASSERT(_offset >= 0);
  10302. GGML_ASSERT(_length >= 1);
  10303. GGML_ASSERT(offset + length <= raw_text.length());
  10304. }
  10305. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  10306. const llama_vocab::id token;
  10307. const std::string _dummy;
  10308. const std::string & raw_text;
  10309. const uint64_t offset;
  10310. const uint64_t length;
  10311. };
  10312. // #define PRETOKENIZERDEBUG
  10313. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
  10314. // for each special token
  10315. for (const auto & st: vocab.special_tokens_cache) {
  10316. const auto & special_token = st.first;
  10317. const auto & special_id = st.second;
  10318. // for each text fragment
  10319. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  10320. while (it != buffer.end()) {
  10321. auto & fragment = (*it);
  10322. // if a fragment is text ( not yet processed )
  10323. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10324. auto * raw_text = &(fragment.raw_text);
  10325. auto raw_text_base_offset = fragment.offset;
  10326. auto raw_text_base_length = fragment.length;
  10327. // loop over the text
  10328. while (true) {
  10329. // find the first occurrence of a given special token in this fragment
  10330. // passing offset argument only limit the "search area" but match coordinates
  10331. // are still relative to the source full raw_text
  10332. auto match = raw_text->find(special_token, raw_text_base_offset);
  10333. // no occurrences found, stop processing this fragment for a given special token
  10334. if (match == std::string::npos) break;
  10335. // check if match is within bounds of offset <-> length
  10336. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  10337. #ifdef PRETOKENIZERDEBUG
  10338. LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  10339. #endif
  10340. auto source = std::distance(buffer.begin(), it);
  10341. // if match is further than base offset
  10342. // then we have some text to the left of it
  10343. if (match > raw_text_base_offset) {
  10344. // left
  10345. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  10346. const int64_t left_reminder_length = match - raw_text_base_offset;
  10347. buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length);
  10348. #ifdef PRETOKENIZERDEBUG
  10349. LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  10350. #endif
  10351. it++;
  10352. }
  10353. // special token
  10354. buffer.emplace_after(it, special_id);
  10355. it++;
  10356. // right
  10357. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  10358. const int64_t right_reminder_offset = match + special_token.length();
  10359. const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  10360. buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length);
  10361. #ifdef PRETOKENIZERDEBUG
  10362. LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  10363. #endif
  10364. it++;
  10365. if (source == 0) {
  10366. buffer.erase_after(buffer.before_begin());
  10367. } else {
  10368. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  10369. }
  10370. // repeat for the right side
  10371. raw_text_base_offset = right_reminder_offset;
  10372. raw_text_base_length = right_reminder_length;
  10373. #ifdef PRETOKENIZERDEBUG
  10374. LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  10375. #endif
  10376. } else {
  10377. if (source == 0) {
  10378. buffer.erase_after(buffer.before_begin());
  10379. } else {
  10380. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  10381. }
  10382. break;
  10383. }
  10384. }
  10385. }
  10386. it++;
  10387. }
  10388. }
  10389. }
  10390. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) {
  10391. std::vector<llama_vocab::id> output;
  10392. std::forward_list<fragment_buffer_variant> fragment_buffer;
  10393. if (!raw_text.empty()) {
  10394. fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
  10395. if (parse_special) tokenizer_st_partition(vocab, fragment_buffer);
  10396. }
  10397. switch (vocab.type) {
  10398. case LLAMA_VOCAB_TYPE_SPM:
  10399. {
  10400. // OG tokenizer behavior:
  10401. //
  10402. // tokenizer.encode('', add_special_tokens=True) returns [1]
  10403. // tokenizer.encode('', add_special_tokens=False) returns []
  10404. if (add_special && vocab.special_add_bos != 0) {
  10405. GGML_ASSERT(vocab.special_bos_id != -1);
  10406. output.push_back(vocab.special_bos_id);
  10407. }
  10408. for (const auto & fragment : fragment_buffer) {
  10409. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10410. // without adding this leading whitespace, we do not get the same results as the original tokenizer
  10411. // TODO: It's likely possible to get rid of this string copy entirely
  10412. // by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer
  10413. // and passing 'add space prefix' as bool argument
  10414. //
  10415. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10416. if (&fragment == &fragment_buffer.front()) {
  10417. if (vocab.add_space_prefix) {
  10418. raw_text = " " + raw_text; // prefix with space if the first token is not special
  10419. }
  10420. }
  10421. #ifdef PRETOKENIZERDEBUG
  10422. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10423. #endif
  10424. llm_tokenizer_spm tokenizer(vocab);
  10425. llama_escape_whitespace(raw_text);
  10426. tokenizer.tokenize(raw_text, output);
  10427. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10428. output.push_back(fragment.token);
  10429. }
  10430. }
  10431. if (add_special && vocab.special_add_eos == 1) {
  10432. GGML_ASSERT(vocab.special_eos_id != -1);
  10433. output.push_back(vocab.special_eos_id);
  10434. }
  10435. } break;
  10436. case LLAMA_VOCAB_TYPE_BPE:
  10437. {
  10438. if (add_special && vocab.special_add_bos != 0) {
  10439. GGML_ASSERT(vocab.special_bos_id != -1);
  10440. output.push_back(vocab.special_bos_id);
  10441. }
  10442. for (const auto & fragment : fragment_buffer) {
  10443. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10444. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10445. #ifdef PRETOKENIZERDEBUG
  10446. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10447. #endif
  10448. llm_tokenizer_bpe tokenizer(vocab);
  10449. tokenizer.tokenize(raw_text, output);
  10450. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10451. output.push_back(fragment.token);
  10452. }
  10453. }
  10454. GGML_ASSERT(vocab.special_add_eos != 1);
  10455. } break;
  10456. case LLAMA_VOCAB_TYPE_WPM:
  10457. {
  10458. if (add_special) {
  10459. GGML_ASSERT(vocab.special_cls_id != -1);
  10460. output.push_back(vocab.special_cls_id);
  10461. }
  10462. for (const auto & fragment : fragment_buffer) {
  10463. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10464. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10465. #ifdef PRETOKENIZERDEBUG
  10466. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10467. #endif
  10468. llm_tokenizer_wpm tokenizer(vocab);
  10469. tokenizer.tokenize(raw_text, output);
  10470. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10471. output.push_back(fragment.token);
  10472. }
  10473. }
  10474. if (add_special) {
  10475. GGML_ASSERT(vocab.special_sep_id != -1);
  10476. output.push_back(vocab.special_sep_id);
  10477. }
  10478. } break;
  10479. case LLAMA_VOCAB_TYPE_NONE:
  10480. GGML_ASSERT(false);
  10481. }
  10482. return output;
  10483. }
  10484. //
  10485. // grammar - internal
  10486. //
  10487. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  10488. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  10489. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  10490. const std::string & src,
  10491. llama_partial_utf8 partial_start) {
  10492. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  10493. const char * pos = src.c_str();
  10494. std::vector<uint32_t> code_points;
  10495. // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
  10496. code_points.reserve(src.size() + 1);
  10497. uint32_t value = partial_start.value;
  10498. int n_remain = partial_start.n_remain;
  10499. // continue previous decode, if applicable
  10500. while (*pos != 0 && n_remain > 0) {
  10501. uint8_t next_byte = static_cast<uint8_t>(*pos);
  10502. if ((next_byte >> 6) != 2) {
  10503. // invalid sequence, abort
  10504. code_points.push_back(0);
  10505. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  10506. }
  10507. value = (value << 6) + (next_byte & 0x3F);
  10508. ++pos;
  10509. --n_remain;
  10510. }
  10511. if (partial_start.n_remain > 0 && n_remain == 0) {
  10512. code_points.push_back(value);
  10513. }
  10514. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  10515. while (*pos != 0) {
  10516. uint8_t first_byte = static_cast<uint8_t>(*pos);
  10517. uint8_t highbits = first_byte >> 4;
  10518. n_remain = lookup[highbits] - 1;
  10519. if (n_remain < 0) {
  10520. // invalid sequence, abort
  10521. code_points.clear();
  10522. code_points.push_back(0);
  10523. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  10524. }
  10525. uint8_t mask = (1 << (7 - n_remain)) - 1;
  10526. value = first_byte & mask;
  10527. ++pos;
  10528. while (*pos != 0 && n_remain > 0) {
  10529. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  10530. ++pos;
  10531. --n_remain;
  10532. }
  10533. if (n_remain == 0) {
  10534. code_points.push_back(value);
  10535. }
  10536. }
  10537. code_points.push_back(0);
  10538. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  10539. }
  10540. // returns true iff pos points to the end of one of the definitions of a rule
  10541. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  10542. switch (pos->type) {
  10543. case LLAMA_GRETYPE_END: return true; // NOLINT
  10544. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  10545. default: return false;
  10546. }
  10547. }
  10548. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  10549. // asserts that pos is pointing to a char range element
  10550. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  10551. const llama_grammar_element * pos,
  10552. const uint32_t chr) {
  10553. bool found = false;
  10554. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  10555. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  10556. do {
  10557. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  10558. // inclusive range, e.g. [a-z]
  10559. found = found || (pos->value <= chr && chr <= pos[1].value);
  10560. pos += 2;
  10561. } else {
  10562. // exact char match, e.g. [a] or "a"
  10563. found = found || pos->value == chr;
  10564. pos += 1;
  10565. }
  10566. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  10567. return std::make_pair(found == is_positive_char, pos);
  10568. }
  10569. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  10570. // range at pos (regular or inverse range)
  10571. // asserts that pos is pointing to a char range element
  10572. static bool llama_grammar_match_partial_char(
  10573. const llama_grammar_element * pos,
  10574. const llama_partial_utf8 partial_utf8) {
  10575. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  10576. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  10577. uint32_t partial_value = partial_utf8.value;
  10578. int n_remain = partial_utf8.n_remain;
  10579. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  10580. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  10581. return false;
  10582. }
  10583. // range of possible code points this partial UTF-8 sequence could complete to
  10584. uint32_t low = partial_value << (n_remain * 6);
  10585. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  10586. if (low == 0) {
  10587. if (n_remain == 2) {
  10588. low = 1 << 11;
  10589. } else if (n_remain == 3) {
  10590. low = 1 << 16;
  10591. }
  10592. }
  10593. do {
  10594. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  10595. // inclusive range, e.g. [a-z]
  10596. if (pos->value <= high && low <= pos[1].value) {
  10597. return is_positive_char;
  10598. }
  10599. pos += 2;
  10600. } else {
  10601. // exact char match, e.g. [a] or "a"
  10602. if (low <= pos->value && pos->value <= high) {
  10603. return is_positive_char;
  10604. }
  10605. pos += 1;
  10606. }
  10607. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  10608. return !is_positive_char;
  10609. }
  10610. // transforms a grammar pushdown stack into N possible stacks, all ending
  10611. // at a character range (terminal element)
  10612. static void llama_grammar_advance_stack(
  10613. const std::vector<std::vector<llama_grammar_element>> & rules,
  10614. const std::vector<const llama_grammar_element *> & stack,
  10615. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  10616. if (stack.empty()) {
  10617. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  10618. new_stacks.emplace_back(stack);
  10619. }
  10620. return;
  10621. }
  10622. const llama_grammar_element * pos = stack.back();
  10623. switch (pos->type) {
  10624. case LLAMA_GRETYPE_RULE_REF: {
  10625. const size_t rule_id = static_cast<size_t>(pos->value);
  10626. const llama_grammar_element * subpos = rules[rule_id].data();
  10627. do {
  10628. // init new stack without the top (pos)
  10629. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  10630. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  10631. // if this rule ref is followed by another element, add that to stack
  10632. new_stack.push_back(pos + 1);
  10633. }
  10634. if (!llama_grammar_is_end_of_sequence(subpos)) {
  10635. // if alternate is nonempty, add to stack
  10636. new_stack.push_back(subpos);
  10637. }
  10638. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  10639. while (!llama_grammar_is_end_of_sequence(subpos)) {
  10640. // scan to end of alternate def
  10641. subpos++;
  10642. }
  10643. if (subpos->type == LLAMA_GRETYPE_ALT) {
  10644. // there's another alternate def of this rule to process
  10645. subpos++;
  10646. } else {
  10647. break;
  10648. }
  10649. } while (true);
  10650. break;
  10651. }
  10652. case LLAMA_GRETYPE_CHAR:
  10653. case LLAMA_GRETYPE_CHAR_NOT:
  10654. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  10655. // only add the stack if it's not a duplicate of one we already have
  10656. new_stacks.emplace_back(stack);
  10657. }
  10658. break;
  10659. default:
  10660. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  10661. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  10662. // those
  10663. GGML_ASSERT(false);
  10664. }
  10665. }
  10666. // takes a set of possible pushdown stacks on a grammar, which are required to
  10667. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  10668. // produces the N possible stacks if the given char is accepted at those
  10669. // positions
  10670. void llama_grammar_accept(
  10671. const std::vector<std::vector<llama_grammar_element>> & rules,
  10672. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10673. const uint32_t chr,
  10674. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  10675. new_stacks.clear();
  10676. for (const auto & stack : stacks) {
  10677. if (stack.empty()) {
  10678. continue;
  10679. }
  10680. auto match = llama_grammar_match_char(stack.back(), chr);
  10681. if (match.first) {
  10682. const llama_grammar_element * pos = match.second;
  10683. // update top of stack to next element, if any
  10684. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  10685. if (!llama_grammar_is_end_of_sequence(pos)) {
  10686. new_stack.push_back(pos);
  10687. }
  10688. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  10689. }
  10690. }
  10691. }
  10692. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  10693. const std::vector<std::vector<llama_grammar_element>> & rules,
  10694. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10695. const std::vector<llama_grammar_candidate> & candidates);
  10696. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  10697. const std::vector<std::vector<llama_grammar_element>> & rules,
  10698. const std::vector<const llama_grammar_element *> & stack,
  10699. const std::vector<llama_grammar_candidate> & candidates) {
  10700. std::vector<llama_grammar_candidate> rejects;
  10701. rejects.reserve(candidates.size());
  10702. if (stack.empty()) {
  10703. for (const auto & tok : candidates) {
  10704. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  10705. rejects.push_back(tok);
  10706. }
  10707. }
  10708. return rejects;
  10709. }
  10710. const llama_grammar_element * stack_pos = stack.back();
  10711. std::vector<llama_grammar_candidate> next_candidates;
  10712. next_candidates.reserve(candidates.size());
  10713. for (const auto & tok : candidates) {
  10714. if (*tok.code_points == 0) {
  10715. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  10716. // that cannot satisfy this position in grammar
  10717. if (tok.partial_utf8.n_remain != 0 &&
  10718. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  10719. rejects.push_back(tok);
  10720. }
  10721. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  10722. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  10723. } else {
  10724. rejects.push_back(tok);
  10725. }
  10726. }
  10727. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  10728. // update top of stack to next element, if any
  10729. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  10730. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  10731. stack_after.push_back(stack_pos_after);
  10732. }
  10733. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  10734. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  10735. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  10736. for (const auto & tok : next_rejects) {
  10737. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  10738. }
  10739. return rejects;
  10740. }
  10741. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  10742. const std::vector<std::vector<llama_grammar_element>> & rules,
  10743. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10744. const std::vector<llama_grammar_candidate> & candidates) {
  10745. GGML_ASSERT(!stacks.empty()); // REVIEW
  10746. if (candidates.empty()) {
  10747. return std::vector<llama_grammar_candidate>();
  10748. }
  10749. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  10750. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  10751. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  10752. }
  10753. return rejects;
  10754. }
  10755. //
  10756. // grammar - external
  10757. //
  10758. struct llama_grammar * llama_grammar_init(
  10759. const llama_grammar_element ** rules,
  10760. size_t n_rules,
  10761. size_t start_rule_index) {
  10762. const llama_grammar_element * pos;
  10763. // copy rule definitions into vectors
  10764. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  10765. for (size_t i = 0; i < n_rules; i++) {
  10766. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  10767. vec_rules[i].push_back(*pos);
  10768. }
  10769. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  10770. }
  10771. // loop over alternates of start rule to build initial stacks
  10772. std::vector<std::vector<const llama_grammar_element *>> stacks;
  10773. pos = vec_rules[start_rule_index].data();
  10774. do {
  10775. std::vector<const llama_grammar_element *> stack;
  10776. if (!llama_grammar_is_end_of_sequence(pos)) {
  10777. // if alternate is nonempty, add to stack
  10778. stack.push_back(pos);
  10779. }
  10780. llama_grammar_advance_stack(vec_rules, stack, stacks);
  10781. while (!llama_grammar_is_end_of_sequence(pos)) {
  10782. // scan to end of alternate def
  10783. pos++;
  10784. }
  10785. if (pos->type == LLAMA_GRETYPE_ALT) {
  10786. // there's another alternate def of this rule to process
  10787. pos++;
  10788. } else {
  10789. break;
  10790. }
  10791. } while (true);
  10792. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  10793. }
  10794. void llama_grammar_free(struct llama_grammar * grammar) {
  10795. delete grammar;
  10796. }
  10797. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  10798. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  10799. // redirect elements in stacks to point to new rules
  10800. for (size_t is = 0; is < result->stacks.size(); is++) {
  10801. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  10802. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  10803. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  10804. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  10805. result->stacks[is][ie] = &result->rules[ir0][ir1];
  10806. }
  10807. }
  10808. }
  10809. }
  10810. }
  10811. return result;
  10812. }
  10813. //
  10814. // sampling
  10815. //
  10816. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  10817. if (seed == LLAMA_DEFAULT_SEED) {
  10818. seed = time(NULL);
  10819. }
  10820. ctx->rng.seed(seed);
  10821. }
  10822. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  10823. GGML_ASSERT(candidates->size > 0);
  10824. const int64_t t_start_sample_us = ggml_time_us();
  10825. // Sort the logits in descending order
  10826. if (!candidates->sorted) {
  10827. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  10828. return a.logit > b.logit;
  10829. });
  10830. candidates->sorted = true;
  10831. }
  10832. float max_l = candidates->data[0].logit;
  10833. float cum_sum = 0.0f;
  10834. for (size_t i = 0; i < candidates->size; ++i) {
  10835. float p = expf(candidates->data[i].logit - max_l);
  10836. candidates->data[i].p = p;
  10837. cum_sum += p;
  10838. }
  10839. for (size_t i = 0; i < candidates->size; ++i) {
  10840. candidates->data[i].p /= cum_sum;
  10841. }
  10842. if (ctx) {
  10843. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10844. }
  10845. }
  10846. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
  10847. // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
  10848. // if (k >= (int32_t)candidates->size) {
  10849. // return;
  10850. // }
  10851. const int64_t t_start_sample_us = ggml_time_us();
  10852. if (k <= 0) {
  10853. k = candidates->size;
  10854. }
  10855. k = std::max(k, (int) min_keep);
  10856. k = std::min(k, (int) candidates->size);
  10857. // Sort scores in descending order
  10858. if (!candidates->sorted) {
  10859. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  10860. return a.logit > b.logit;
  10861. };
  10862. if (k <= 128) {
  10863. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  10864. } else {
  10865. constexpr int nbuckets = 128;
  10866. constexpr float bucket_low = -10.0f;
  10867. constexpr float bucket_high = 10.0f;
  10868. constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
  10869. constexpr float bucker_inter = -bucket_low * bucket_scale;
  10870. std::vector<int> bucket_idx(candidates->size);
  10871. std::vector<int> histo(nbuckets, 0);
  10872. for (int i = 0; i < (int)candidates->size; ++i) {
  10873. const float val = candidates->data[i].logit;
  10874. int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
  10875. ib = std::max(0, std::min(nbuckets-1, ib));
  10876. bucket_idx[i] = ib;
  10877. ++histo[ib];
  10878. }
  10879. int nhave = 0;
  10880. int ib = nbuckets - 1;
  10881. for ( ; ib >= 0; --ib) {
  10882. nhave += histo[ib];
  10883. if (nhave >= k) break;
  10884. }
  10885. std::vector<llama_token_data> tmp_tokens(nhave);
  10886. auto ptr = tmp_tokens.data();
  10887. std::vector<llama_token_data*> bucket_ptrs;
  10888. bucket_ptrs.reserve(nbuckets - ib);
  10889. for (int j = nbuckets - 1; j >= ib; --j) {
  10890. bucket_ptrs.push_back(ptr);
  10891. ptr += histo[j];
  10892. }
  10893. for (int i = 0; i < (int)candidates->size; ++i) {
  10894. int j = bucket_idx[i];
  10895. if (j >= ib) {
  10896. *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
  10897. }
  10898. }
  10899. ptr = tmp_tokens.data();
  10900. int ndone = 0;
  10901. for (int j = nbuckets-1; j > ib; --j) {
  10902. std::sort(ptr, ptr + histo[j], comp);
  10903. ptr += histo[j];
  10904. ndone += histo[j];
  10905. }
  10906. std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
  10907. std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
  10908. }
  10909. candidates->sorted = true;
  10910. }
  10911. candidates->size = k;
  10912. if (ctx) {
  10913. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10914. }
  10915. }
  10916. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  10917. if (p >= 1.0f) {
  10918. return;
  10919. }
  10920. llama_sample_softmax(ctx, candidates);
  10921. const int64_t t_start_sample_us = ggml_time_us();
  10922. // Compute the cumulative probabilities
  10923. float cum_sum = 0.0f;
  10924. size_t last_idx = candidates->size;
  10925. for (size_t i = 0; i < candidates->size; ++i) {
  10926. cum_sum += candidates->data[i].p;
  10927. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  10928. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  10929. if (cum_sum >= p && i + 1 >= min_keep) {
  10930. last_idx = i + 1;
  10931. break;
  10932. }
  10933. }
  10934. // Resize the output vector to keep only the top-p tokens
  10935. candidates->size = last_idx;
  10936. if (ctx) {
  10937. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10938. }
  10939. }
  10940. void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  10941. if (p <= 0.0f || !candidates->size) {
  10942. return;
  10943. }
  10944. const int64_t t_start_sample_us = ggml_time_us();
  10945. bool min_p_applied = false;
  10946. // if the candidates aren't sorted, try the unsorted implementation first
  10947. if (!candidates->sorted) {
  10948. std::vector<llama_token_data> filtered_tokens;
  10949. float max_logit = -FLT_MAX;
  10950. for (size_t i = 0; i < candidates->size; ++i) {
  10951. max_logit = std::max(max_logit, candidates->data[i].logit);
  10952. }
  10953. const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
  10954. for (size_t i = 0; i < candidates->size; ++i) {
  10955. if (candidates->data[i].logit >= min_logit) {
  10956. filtered_tokens.push_back(candidates->data[i]);
  10957. }
  10958. }
  10959. // if we have enough values the operation was a success
  10960. if (filtered_tokens.size() >= min_keep) {
  10961. memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
  10962. candidates->size = filtered_tokens.size();
  10963. min_p_applied = true;
  10964. }
  10965. }
  10966. // if the candidates are sorted or the unsorted implementation failed, use this implementation
  10967. if (!min_p_applied) {
  10968. // Sort the logits in descending order
  10969. if (!candidates->sorted) {
  10970. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  10971. return a.logit > b.logit;
  10972. });
  10973. candidates->sorted = true;
  10974. }
  10975. const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
  10976. size_t i = 1; // first token always matches
  10977. for (; i < candidates->size; ++i) {
  10978. if (candidates->data[i].logit < min_logit && i >= min_keep) {
  10979. break; // prob too small
  10980. }
  10981. }
  10982. // Resize the output vector to keep only the matching tokens
  10983. candidates->size = i;
  10984. }
  10985. if (ctx) {
  10986. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10987. }
  10988. }
  10989. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  10990. if (z >= 1.0f || candidates->size <= 2) {
  10991. return;
  10992. }
  10993. llama_sample_softmax(nullptr, candidates);
  10994. const int64_t t_start_sample_us = ggml_time_us();
  10995. // Compute the first and second derivatives
  10996. std::vector<float> first_derivatives(candidates->size - 1);
  10997. std::vector<float> second_derivatives(candidates->size - 2);
  10998. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  10999. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  11000. }
  11001. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11002. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  11003. }
  11004. // Calculate absolute value of second derivatives
  11005. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11006. second_derivatives[i] = std::abs(second_derivatives[i]);
  11007. }
  11008. // Normalize the second derivatives
  11009. {
  11010. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  11011. if (second_derivatives_sum > 1e-6f) {
  11012. for (float & value : second_derivatives) {
  11013. value /= second_derivatives_sum;
  11014. }
  11015. } else {
  11016. for (float & value : second_derivatives) {
  11017. value = 1.0f / second_derivatives.size();
  11018. }
  11019. }
  11020. }
  11021. float cum_sum = 0.0f;
  11022. size_t last_idx = candidates->size;
  11023. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11024. cum_sum += second_derivatives[i];
  11025. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  11026. if (cum_sum > z && i >= min_keep) {
  11027. last_idx = i;
  11028. break;
  11029. }
  11030. }
  11031. // Resize the output vector to keep only the tokens above the tail location
  11032. candidates->size = last_idx;
  11033. if (ctx) {
  11034. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11035. }
  11036. }
  11037. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11038. // Reference implementation:
  11039. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  11040. if (p >= 1.0f) {
  11041. return;
  11042. }
  11043. // Compute the softmax of logits and calculate entropy
  11044. llama_sample_softmax(nullptr, candidates);
  11045. const int64_t t_start_sample_us = ggml_time_us();
  11046. float entropy = 0.0f;
  11047. for (size_t i = 0; i < candidates->size; ++i) {
  11048. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  11049. }
  11050. // Compute the absolute difference between negative log probability and entropy for each candidate
  11051. std::vector<float> shifted_scores;
  11052. for (size_t i = 0; i < candidates->size; ++i) {
  11053. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  11054. shifted_scores.push_back(shifted_score);
  11055. }
  11056. // Sort tokens based on the shifted_scores and their corresponding indices
  11057. std::vector<size_t> indices(candidates->size);
  11058. std::iota(indices.begin(), indices.end(), 0);
  11059. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  11060. return shifted_scores[a] < shifted_scores[b];
  11061. });
  11062. // Compute the cumulative probabilities
  11063. float cum_sum = 0.0f;
  11064. size_t last_idx = indices.size();
  11065. for (size_t i = 0; i < indices.size(); ++i) {
  11066. size_t idx = indices[i];
  11067. cum_sum += candidates->data[idx].p;
  11068. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  11069. if (cum_sum > p && i >= min_keep - 1) {
  11070. last_idx = i + 1;
  11071. break;
  11072. }
  11073. }
  11074. // Resize the output vector to keep only the locally typical tokens
  11075. std::vector<llama_token_data> new_candidates;
  11076. for (size_t i = 0; i < last_idx; ++i) {
  11077. size_t idx = indices[i];
  11078. new_candidates.push_back(candidates->data[idx]);
  11079. }
  11080. // Replace the data in candidates with the new_candidates data
  11081. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  11082. candidates->size = new_candidates.size();
  11083. candidates->sorted = false;
  11084. if (ctx) {
  11085. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11086. }
  11087. }
  11088. void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
  11089. const int64_t t_start_sample_us = ggml_time_us();
  11090. // no need to do anything if there is only one (or zero) candidates
  11091. if(candidates_p->size <= 1) {
  11092. return;
  11093. }
  11094. // Calculate maximum possible entropy
  11095. float max_entropy = -logf(1.0f / candidates_p->size);
  11096. llama_sample_softmax(nullptr, candidates_p);
  11097. // Calculate entropy of the softmax probabilities
  11098. float entropy = 0.0f;
  11099. for (size_t i = 0; i < candidates_p->size; ++i) {
  11100. float prob = candidates_p->data[i].p;
  11101. if (prob > 0.0f) { // Ensure no log(0)
  11102. entropy -= prob * logf(prob);
  11103. }
  11104. }
  11105. // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
  11106. float normalized_entropy = entropy / max_entropy;
  11107. // Map the normalized entropy to the desired temperature range using the power function
  11108. float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
  11109. #ifdef DEBUG
  11110. LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
  11111. LLAMA_LOG_INFO("Entropy: %f\n", entropy);
  11112. LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
  11113. LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
  11114. LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
  11115. LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
  11116. #endif
  11117. // Apply the dynamically calculated temperature scaling
  11118. for (size_t i = 0; i < candidates_p->size; ++i) {
  11119. candidates_p->data[i].logit /= dyn_temp;
  11120. }
  11121. // Re-compute softmax probabilities after scaling logits with dynamic temperature
  11122. double max_l_double = candidates_p->data[0].logit;
  11123. double cum_sum_double = 0.0;
  11124. for (size_t i = 0; i < candidates_p->size; ++i) {
  11125. double p = exp(candidates_p->data[i].logit - max_l_double);
  11126. candidates_p->data[i].p = p; // Store the scaled probability
  11127. cum_sum_double += p;
  11128. }
  11129. for (size_t i = 0; i < candidates_p->size; ++i) {
  11130. candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
  11131. }
  11132. #ifdef DEBUG
  11133. // Print the updated top 25 probabilities after temperature scaling
  11134. LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
  11135. for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
  11136. LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
  11137. }
  11138. #endif
  11139. if (ctx) {
  11140. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11141. }
  11142. }
  11143. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  11144. const int64_t t_start_sample_us = ggml_time_us();
  11145. for (size_t i = 0; i < candidates_p->size; ++i) {
  11146. candidates_p->data[i].logit /= temp;
  11147. }
  11148. if (ctx) {
  11149. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11150. }
  11151. }
  11152. void llama_sample_repetition_penalties(
  11153. struct llama_context * ctx,
  11154. llama_token_data_array * candidates,
  11155. const llama_token * last_tokens,
  11156. size_t penalty_last_n,
  11157. float penalty_repeat,
  11158. float penalty_freq,
  11159. float penalty_present) {
  11160. if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
  11161. return;
  11162. }
  11163. const int64_t t_start_sample_us = ggml_time_us();
  11164. // Create a frequency map to count occurrences of each token in last_tokens
  11165. std::unordered_map<llama_token, int> token_count;
  11166. for (size_t i = 0; i < penalty_last_n; ++i) {
  11167. token_count[last_tokens[i]]++;
  11168. }
  11169. // Apply frequency and presence penalties to the candidates
  11170. for (size_t i = 0; i < candidates->size; ++i) {
  11171. const auto token_iter = token_count.find(candidates->data[i].id);
  11172. if (token_iter == token_count.end()) {
  11173. continue;
  11174. }
  11175. const int count = token_iter->second;
  11176. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  11177. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  11178. if (candidates->data[i].logit <= 0) {
  11179. candidates->data[i].logit *= penalty_repeat;
  11180. } else {
  11181. candidates->data[i].logit /= penalty_repeat;
  11182. }
  11183. candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
  11184. }
  11185. candidates->sorted = false;
  11186. if (ctx) {
  11187. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11188. }
  11189. }
  11190. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  11191. GGML_ASSERT(ctx);
  11192. const int64_t t_start_sample_us = ggml_time_us();
  11193. bool allow_eog = false;
  11194. for (const auto & stack : grammar->stacks) {
  11195. if (stack.empty()) {
  11196. allow_eog = true;
  11197. break;
  11198. }
  11199. }
  11200. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  11201. candidates_decoded.reserve(candidates->size);
  11202. std::vector<llama_grammar_candidate> candidates_grammar;
  11203. candidates_grammar.reserve(candidates->size);
  11204. for (size_t i = 0; i < candidates->size; ++i) {
  11205. const llama_token id = candidates->data[i].id;
  11206. const std::string piece = llama_token_to_piece(ctx, id, false);
  11207. if (llama_token_is_eog(&ctx->model, id)) {
  11208. if (!allow_eog) {
  11209. candidates->data[i].logit = -INFINITY;
  11210. }
  11211. } else if (piece.empty() || piece[0] == 0) {
  11212. candidates->data[i].logit = -INFINITY;
  11213. } else {
  11214. candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
  11215. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  11216. }
  11217. }
  11218. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  11219. for (const auto & reject : rejects) {
  11220. candidates->data[reject.index].logit = -INFINITY;
  11221. }
  11222. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11223. }
  11224. static void llama_log_softmax(float * array, size_t size) {
  11225. float max_l = *std::max_element(array, array + size);
  11226. float sum = 0.f;
  11227. for (size_t i = 0; i < size; ++i) {
  11228. float p = expf(array[i] - max_l);
  11229. sum += p;
  11230. array[i] = p;
  11231. }
  11232. for (size_t i = 0; i < size; ++i) {
  11233. array[i] = logf(array[i] / sum);
  11234. }
  11235. }
  11236. void llama_sample_apply_guidance(
  11237. struct llama_context * ctx,
  11238. float * logits,
  11239. float * logits_guidance,
  11240. float scale) {
  11241. GGML_ASSERT(ctx);
  11242. const auto t_start_sample_us = ggml_time_us();
  11243. const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
  11244. llama_log_softmax(logits, n_vocab);
  11245. llama_log_softmax(logits_guidance, n_vocab);
  11246. for (int i = 0; i < n_vocab; ++i) {
  11247. auto & l = logits[i];
  11248. const auto & g = logits_guidance[i];
  11249. l = scale * (l - g) + g;
  11250. }
  11251. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11252. }
  11253. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
  11254. GGML_ASSERT(ctx);
  11255. auto N = float(llama_n_vocab(llama_get_model(ctx)));
  11256. int64_t t_start_sample_us;
  11257. t_start_sample_us = ggml_time_us();
  11258. llama_sample_softmax(nullptr, candidates);
  11259. // Estimate s_hat using the most probable m tokens
  11260. float s_hat = 0.0;
  11261. float sum_ti_bi = 0.0;
  11262. float sum_ti_sq = 0.0;
  11263. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  11264. float t_i = logf(float(i + 2) / float(i + 1));
  11265. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  11266. sum_ti_bi += t_i * b_i;
  11267. sum_ti_sq += t_i * t_i;
  11268. }
  11269. s_hat = sum_ti_bi / sum_ti_sq;
  11270. // Compute k from the estimated s_hat and target surprise value
  11271. float epsilon_hat = s_hat - 1;
  11272. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  11273. // Sample the next word X using top-k sampling
  11274. llama_sample_top_k(nullptr, candidates, int(k), 1);
  11275. if (ctx) {
  11276. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11277. }
  11278. llama_token X = llama_sample_token(ctx, candidates);
  11279. t_start_sample_us = ggml_time_us();
  11280. // Compute error as the difference between observed surprise and target surprise value
  11281. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11282. return candidate.id == X;
  11283. }));
  11284. float observed_surprise = -log2f(candidates->data[X_idx].p);
  11285. float e = observed_surprise - tau;
  11286. // Update mu using the learning rate and error
  11287. *mu = *mu - eta * e;
  11288. if (ctx) {
  11289. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11290. }
  11291. return X;
  11292. }
  11293. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  11294. int64_t t_start_sample_us;
  11295. t_start_sample_us = ggml_time_us();
  11296. llama_sample_softmax(ctx, candidates);
  11297. // Truncate the words with surprise values greater than mu
  11298. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11299. return -log2f(candidate.p) > *mu;
  11300. }));
  11301. if (candidates->size == 0) {
  11302. candidates->size = 1;
  11303. }
  11304. if (ctx) {
  11305. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11306. }
  11307. // Normalize the probabilities of the remaining words
  11308. llama_sample_softmax(ctx, candidates);
  11309. // Sample the next word X from the remaining words
  11310. llama_token X = llama_sample_token(ctx, candidates);
  11311. t_start_sample_us = ggml_time_us();
  11312. // Compute error as the difference between observed surprise and target surprise value
  11313. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11314. return candidate.id == X;
  11315. }));
  11316. float observed_surprise = -log2f(candidates->data[X_idx].p);
  11317. float e = observed_surprise - tau;
  11318. // Update mu using the learning rate and error
  11319. *mu = *mu - eta * e;
  11320. if (ctx) {
  11321. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11322. }
  11323. return X;
  11324. }
  11325. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  11326. const int64_t t_start_sample_us = ggml_time_us();
  11327. // Find max element
  11328. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11329. return a.logit < b.logit;
  11330. });
  11331. llama_token result = max_iter->id;
  11332. if (ctx) {
  11333. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11334. ctx->n_sample++;
  11335. }
  11336. return result;
  11337. }
  11338. llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) {
  11339. GGML_ASSERT(ctx);
  11340. const int64_t t_start_sample_us = ggml_time_us();
  11341. llama_sample_softmax(nullptr, candidates);
  11342. std::vector<float> probs;
  11343. probs.reserve(candidates->size);
  11344. for (size_t i = 0; i < candidates->size; ++i) {
  11345. probs.push_back(candidates->data[i].p);
  11346. }
  11347. std::discrete_distribution<> dist(probs.begin(), probs.end());
  11348. int idx = dist(rng);
  11349. llama_token result = candidates->data[idx].id;
  11350. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11351. ctx->n_sample++;
  11352. return result;
  11353. }
  11354. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  11355. return llama_sample_token_with_rng(ctx, candidates, ctx->rng);
  11356. }
  11357. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  11358. const int64_t t_start_sample_us = ggml_time_us();
  11359. if (llama_token_is_eog(&ctx->model, token)) {
  11360. for (const auto & stack : grammar->stacks) {
  11361. if (stack.empty()) {
  11362. return;
  11363. }
  11364. }
  11365. GGML_ASSERT(false);
  11366. }
  11367. const std::string piece = llama_token_to_piece(ctx, token, false);
  11368. // Note terminating 0 in decoded string
  11369. const auto decoded = decode_utf8(piece, grammar->partial_utf8);
  11370. const auto & code_points = decoded.first;
  11371. std::vector<std::vector<const llama_grammar_element *>> tmp_new_stacks;
  11372. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  11373. llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks);
  11374. grammar->stacks = tmp_new_stacks;
  11375. }
  11376. grammar->partial_utf8 = decoded.second;
  11377. GGML_ASSERT(!grammar->stacks.empty());
  11378. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11379. }
  11380. //
  11381. // Beam search
  11382. //
  11383. struct llama_beam {
  11384. std::vector<llama_token> tokens;
  11385. float p; // Cumulative beam probability (renormalized relative to all beams)
  11386. bool eob; // Initialize end-of-beam to false. Callback sets this to true.
  11387. // Sort beams by probability. In case of ties, prefer beams at eob.
  11388. bool operator<(const llama_beam & rhs) const {
  11389. return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
  11390. }
  11391. // Shift off first n tokens and discard them.
  11392. void shift_tokens(const size_t n) {
  11393. if (n) {
  11394. std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
  11395. tokens.resize(tokens.size() - n);
  11396. }
  11397. }
  11398. llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
  11399. };
  11400. // A struct for calculating logit-related info.
  11401. struct llama_logit_info {
  11402. const float * const logits;
  11403. const int n_vocab;
  11404. const float max_l;
  11405. const float normalizer;
  11406. struct sum_exp {
  11407. float max_l;
  11408. float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
  11409. };
  11410. llama_logit_info(llama_context * ctx)
  11411. : logits(llama_get_logits(ctx))
  11412. , n_vocab(llama_n_vocab(llama_get_model(ctx)))
  11413. , max_l(*std::max_element(logits, logits + n_vocab))
  11414. , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
  11415. { }
  11416. llama_token_data get_token_data(const llama_token token_id) const {
  11417. constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
  11418. return {token_id, logits[token_id], p};
  11419. }
  11420. // Return top k token_data by logit.
  11421. std::vector<llama_token_data> top_k(size_t k) {
  11422. std::vector<llama_token_data> min_heap; // min-heap by logit
  11423. const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
  11424. min_heap.reserve(k_min);
  11425. for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
  11426. min_heap.push_back(get_token_data(token_id));
  11427. }
  11428. auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
  11429. std::make_heap(min_heap.begin(), min_heap.end(), comp);
  11430. for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
  11431. if (min_heap.front().logit < logits[token_id]) {
  11432. std::pop_heap(min_heap.begin(), min_heap.end(), comp);
  11433. min_heap.back().id = token_id;
  11434. min_heap.back().logit = logits[token_id];
  11435. std::push_heap(min_heap.begin(), min_heap.end(), comp);
  11436. }
  11437. }
  11438. return min_heap;
  11439. }
  11440. float probability_from_logit(float logit) const {
  11441. return normalizer * std::exp(logit - max_l);
  11442. }
  11443. };
  11444. struct llama_beam_search_data {
  11445. llama_context * ctx;
  11446. size_t n_beams;
  11447. int n_past;
  11448. int n_predict;
  11449. std::vector<llama_beam> beams;
  11450. std::vector<llama_beam> next_beams;
  11451. // Re-calculated on each loop iteration
  11452. size_t common_prefix_length;
  11453. // Used to communicate to/from callback on beams state.
  11454. std::vector<llama_beam_view> beam_views;
  11455. llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict)
  11456. : ctx(ctx)
  11457. , n_beams(n_beams)
  11458. , n_past(n_past)
  11459. , n_predict(n_predict)
  11460. , beam_views(n_beams) {
  11461. beams.reserve(n_beams);
  11462. next_beams.reserve(n_beams);
  11463. }
  11464. // Collapse beams to a single beam given by index.
  11465. void collapse_beams(const size_t beam_idx) {
  11466. if (0u < beam_idx) {
  11467. std::swap(beams[0], beams[beam_idx]);
  11468. }
  11469. beams.resize(1);
  11470. }
  11471. // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
  11472. // The repetitive patterns below reflect the 2 stages of heaps:
  11473. // * Gather elements until the vector is full, then call std::make_heap() on it.
  11474. // * If the heap is full and a new element is found that should be included, pop the
  11475. // least element to the back(), replace it with the new, then push it into the heap.
  11476. void fill_next_beams_by_top_probabilities(llama_beam & beam) {
  11477. // Min-heaps use a greater-than comparator.
  11478. const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
  11479. if (beam.eob) {
  11480. // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
  11481. if (next_beams.size() < n_beams) {
  11482. next_beams.push_back(std::move(beam));
  11483. if (next_beams.size() == n_beams) {
  11484. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  11485. }
  11486. } else if (next_beams.front().p < beam.p) {
  11487. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11488. next_beams.back() = std::move(beam);
  11489. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11490. }
  11491. } else {
  11492. // beam is not at end-of-sentence, so branch with next top_k tokens.
  11493. if (!beam.tokens.empty()) {
  11494. llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0));
  11495. }
  11496. llama_logit_info logit_info(ctx);
  11497. std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
  11498. // Clear the kv slot so that other beams may try different tokens at this position. The llama_decode()
  11499. // call in loop() will conclusively fill in the kv slot once the beams converge at this position.
  11500. llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
  11501. size_t i=0;
  11502. if (next_beams.size() < n_beams) {
  11503. for (; next_beams.size() < n_beams ; ++i) {
  11504. llama_beam next_beam = beam;
  11505. next_beam.tokens.push_back(next_tokens[i].id);
  11506. next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
  11507. next_beams.push_back(std::move(next_beam));
  11508. }
  11509. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  11510. } else {
  11511. for (; next_beams.front().p == 0.0f ; ++i) {
  11512. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11513. next_beams.back() = beam;
  11514. next_beams.back().tokens.push_back(next_tokens[i].id);
  11515. next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
  11516. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11517. }
  11518. }
  11519. for (; i < n_beams ; ++i) {
  11520. const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
  11521. if (next_beams.front().p < next_p) {
  11522. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11523. next_beams.back() = beam;
  11524. next_beams.back().tokens.push_back(next_tokens[i].id);
  11525. next_beams.back().p = next_p;
  11526. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11527. }
  11528. }
  11529. }
  11530. }
  11531. // Find common_prefix_length based on beams.
  11532. // Requires beams is not empty.
  11533. size_t find_common_prefix_length() {
  11534. size_t common_prefix_length = beams[0].tokens.size();
  11535. for (size_t i = 1 ; i < beams.size() ; ++i) {
  11536. common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
  11537. for (size_t j = 0 ; j < common_prefix_length ; ++j) {
  11538. if (beams[0].tokens[j] != beams[i].tokens[j]) {
  11539. common_prefix_length = j;
  11540. break;
  11541. }
  11542. }
  11543. }
  11544. return common_prefix_length;
  11545. }
  11546. // Construct beams_state to send back to caller via the callback function.
  11547. // Side effect: set common_prefix_length = find_common_prefix_length();
  11548. llama_beams_state get_beams_state(const bool last_call) {
  11549. for (size_t i = 0 ; i < beams.size() ; ++i) {
  11550. beam_views[i] = beams[i].view();
  11551. }
  11552. common_prefix_length = find_common_prefix_length();
  11553. return {beam_views.data(), beams.size(), common_prefix_length, last_call};
  11554. }
  11555. // Loop:
  11556. // * while i < n_predict, AND
  11557. // * any of the beams have not yet reached end-of-beam (eob), AND
  11558. // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
  11559. // (since all other beam probabilities can only decrease)
  11560. void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
  11561. beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
  11562. const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
  11563. for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
  11564. !beams[top_beam_index()].eob ; ++i) {
  11565. callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
  11566. update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
  11567. if (common_prefix_length) {
  11568. llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0));
  11569. n_past += common_prefix_length;
  11570. }
  11571. // Zero-out next_beam probabilities to place them last in following min-heap.
  11572. std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
  11573. for (llama_beam & beam : beams) {
  11574. beam.shift_tokens(common_prefix_length);
  11575. fill_next_beams_by_top_probabilities(beam);
  11576. }
  11577. // next_beams become the beams of next/final iteration. Swap them to re-use memory.
  11578. beams.swap(next_beams);
  11579. renormalize_beam_probabilities(beams);
  11580. }
  11581. collapse_beams(top_beam_index());
  11582. callback(callback_data, get_beams_state(true));
  11583. }
  11584. // As beams grow, the cumulative probabilities decrease.
  11585. // Renormalize them to avoid floating point underflow.
  11586. static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
  11587. const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
  11588. const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
  11589. std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
  11590. }
  11591. // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
  11592. size_t top_beam_index() {
  11593. return std::max_element(beams.begin(), beams.end()) - beams.begin();
  11594. }
  11595. // Copy (p,eob) for each beam which may have been changed by the callback.
  11596. void update_beams_from_beam_views() {
  11597. for (size_t i = 0 ; i < beams.size() ; ++i) {
  11598. beams[i].p = beam_views[i].p;
  11599. beams[i].eob = beam_views[i].eob;
  11600. }
  11601. }
  11602. };
  11603. void llama_beam_search(llama_context * ctx,
  11604. llama_beam_search_callback_fn_t callback, void * callback_data,
  11605. size_t n_beams, int n_past, int n_predict) {
  11606. assert(ctx);
  11607. const int64_t t_start_sample_us = ggml_time_us();
  11608. llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict);
  11609. beam_search_data.loop(callback, callback_data);
  11610. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11611. ctx->n_sample++;
  11612. }
  11613. //
  11614. // quantization
  11615. //
  11616. struct quantize_state_internal {
  11617. const llama_model & model;
  11618. const llama_model_quantize_params * params;
  11619. int n_attention_wv = 0;
  11620. int n_ffn_down = 0;
  11621. int n_ffn_gate = 0;
  11622. int n_ffn_up = 0;
  11623. int i_attention_wv = 0;
  11624. int i_ffn_down = 0;
  11625. int i_ffn_gate = 0;
  11626. int i_ffn_up = 0;
  11627. int n_k_quantized = 0;
  11628. int n_fallback = 0;
  11629. bool has_imatrix = false;
  11630. // used to figure out if a model shares tok_embd with the output weight
  11631. bool has_output = false;
  11632. quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
  11633. : model(model)
  11634. , params(params)
  11635. {}
  11636. };
  11637. static void llama_tensor_dequantize_internal(
  11638. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  11639. const size_t nelements, const int nthread
  11640. ) {
  11641. if (output.size() < nelements) {
  11642. output.resize(nelements);
  11643. }
  11644. float * f32_output = (float *) output.data();
  11645. ggml_type_traits_t qtype;
  11646. if (ggml_is_quantized(tensor->type)) {
  11647. qtype = ggml_internal_get_type_traits(tensor->type);
  11648. if (qtype.to_float == NULL) {
  11649. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  11650. }
  11651. } else if (tensor->type != GGML_TYPE_F16) {
  11652. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  11653. }
  11654. if (nthread < 2) {
  11655. if (tensor->type == GGML_TYPE_F16) {
  11656. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  11657. } else if (ggml_is_quantized(tensor->type)) {
  11658. qtype.to_float(tensor->data, f32_output, nelements);
  11659. } else {
  11660. GGML_ASSERT(false); // unreachable
  11661. }
  11662. return;
  11663. }
  11664. size_t block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type);
  11665. size_t block_size_bytes = ggml_type_size(tensor->type);
  11666. GGML_ASSERT(nelements % block_size == 0);
  11667. size_t nblocks = nelements / block_size;
  11668. size_t blocks_per_thread = nblocks / nthread;
  11669. size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  11670. size_t in_buff_offs = 0;
  11671. size_t out_buff_offs = 0;
  11672. for (int tnum = 0; tnum < nthread; tnum++) {
  11673. size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  11674. size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
  11675. size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  11676. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  11677. if (typ == GGML_TYPE_F16) {
  11678. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  11679. } else {
  11680. qtype.to_float(inbuf, outbuf, nels);
  11681. }
  11682. };
  11683. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  11684. in_buff_offs += thr_block_bytes;
  11685. out_buff_offs += thr_elems;
  11686. }
  11687. for (auto & w : workers) { w.join(); }
  11688. workers.clear();
  11689. }
  11690. static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
  11691. const std::string name = ggml_get_name(tensor);
  11692. // TODO: avoid hardcoded tensor names - use the TN_* constants
  11693. const llm_arch arch = qs.model.arch;
  11694. const auto tn = LLM_TN(arch);
  11695. auto use_more_bits = [](int i_layer, int num_layers) -> bool {
  11696. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  11697. };
  11698. const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
  11699. auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
  11700. if (n_expert > 1) {
  11701. // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
  11702. // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
  11703. // for getting the current layer as I initially thought, and we need to resort to parsing the
  11704. // tensor name.
  11705. if (sscanf(name, "blk.%d.", &i_layer) != 1) {
  11706. throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
  11707. }
  11708. if (i_layer < 0 || i_layer >= n_layer) {
  11709. throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
  11710. }
  11711. }
  11712. return std::make_pair(i_layer, n_layer);
  11713. };
  11714. // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
  11715. // with the quantization of the output tensor
  11716. if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
  11717. if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
  11718. new_type = qs.params->output_tensor_type;
  11719. } else {
  11720. int nx = tensor->ne[0];
  11721. if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  11722. new_type = GGML_TYPE_Q8_0;
  11723. }
  11724. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  11725. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
  11726. ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  11727. new_type = GGML_TYPE_Q5_K;
  11728. }
  11729. else if (new_type != GGML_TYPE_Q8_0) {
  11730. new_type = GGML_TYPE_Q6_K;
  11731. }
  11732. }
  11733. } else if (name == "token_embd.weight") {
  11734. if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
  11735. new_type = qs.params->token_embedding_type;
  11736. } else {
  11737. if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
  11738. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  11739. new_type = GGML_TYPE_Q2_K;
  11740. }
  11741. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
  11742. new_type = GGML_TYPE_IQ3_S;
  11743. }
  11744. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11745. new_type = GGML_TYPE_IQ3_S;
  11746. }
  11747. }
  11748. } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
  11749. ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  11750. if (name.find("attn_v.weight") != std::string::npos) {
  11751. if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
  11752. else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  11753. ++qs.i_attention_wv;
  11754. }
  11755. else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
  11756. new_type = GGML_TYPE_Q4_K;
  11757. }
  11758. else if (name.find("ffn_down") != std::string::npos) {
  11759. if (qs.i_ffn_down < qs.n_ffn_down/8) {
  11760. new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  11761. }
  11762. ++qs.i_ffn_down;
  11763. }
  11764. else if (name.find("attn_output.weight") != std::string::npos) {
  11765. if (qs.model.hparams.n_expert == 8) {
  11766. new_type = GGML_TYPE_Q5_K;
  11767. } else {
  11768. if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
  11769. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
  11770. }
  11771. }
  11772. } else if (name.find("attn_v.weight") != std::string::npos) {
  11773. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
  11774. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  11775. }
  11776. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
  11777. new_type = GGML_TYPE_Q4_K;
  11778. }
  11779. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11780. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
  11781. }
  11782. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
  11783. new_type = GGML_TYPE_Q4_K;
  11784. }
  11785. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  11786. new_type = GGML_TYPE_Q4_K;
  11787. }
  11788. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  11789. new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  11790. }
  11791. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  11792. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
  11793. new_type = GGML_TYPE_Q5_K;
  11794. }
  11795. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  11796. use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  11797. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  11798. else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
  11799. (qs.i_attention_wv < qs.n_attention_wv/8 || qs.i_attention_wv >= 7*qs.n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
  11800. if (qs.model.type == MODEL_70B) {
  11801. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  11802. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  11803. // nearly negligible increase in model size by quantizing this tensor with more bits:
  11804. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  11805. }
  11806. if (qs.model.hparams.n_expert == 8) {
  11807. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  11808. // TODO: explore better strategies
  11809. new_type = GGML_TYPE_Q8_0;
  11810. }
  11811. ++qs.i_attention_wv;
  11812. } else if (name.find("attn_k.weight") != std::string::npos) {
  11813. if (qs.model.hparams.n_expert == 8) {
  11814. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  11815. // TODO: explore better strategies
  11816. new_type = GGML_TYPE_Q8_0;
  11817. }
  11818. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  11819. new_type = GGML_TYPE_IQ3_XXS;
  11820. }
  11821. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11822. new_type = GGML_TYPE_IQ2_S;
  11823. }
  11824. } else if (name.find("attn_q.weight") != std::string::npos) {
  11825. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  11826. new_type = GGML_TYPE_IQ3_XXS;
  11827. }
  11828. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11829. new_type = GGML_TYPE_IQ2_S;
  11830. }
  11831. } else if (name.find("ffn_down") != std::string::npos) {
  11832. auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
  11833. int i_layer = info.first, n_layer = info.second;
  11834. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  11835. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
  11836. if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
  11837. }
  11838. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
  11839. new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  11840. }
  11841. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  11842. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
  11843. : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
  11844. : GGML_TYPE_Q3_K;
  11845. }
  11846. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
  11847. (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
  11848. new_type = GGML_TYPE_Q4_K;
  11849. }
  11850. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  11851. new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  11852. }
  11853. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  11854. if (arch == LLM_ARCH_FALCON) {
  11855. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
  11856. use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  11857. } else {
  11858. if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  11859. }
  11860. }
  11861. else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
  11862. new_type = GGML_TYPE_Q5_K;
  11863. }
  11864. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  11865. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
  11866. new_type = GGML_TYPE_Q5_K;
  11867. }
  11868. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
  11869. && qs.has_imatrix && i_layer < n_layer/8) {
  11870. // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
  11871. // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
  11872. // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
  11873. new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
  11874. }
  11875. ++qs.i_ffn_down;
  11876. } else if (name.find("attn_output.weight") != std::string::npos) {
  11877. if (arch != LLM_ARCH_FALCON) {
  11878. if (qs.model.hparams.n_expert == 8) {
  11879. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  11880. ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
  11881. ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
  11882. ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
  11883. new_type = GGML_TYPE_Q5_K;
  11884. }
  11885. } else {
  11886. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  11887. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
  11888. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
  11889. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
  11890. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
  11891. }
  11892. } else {
  11893. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  11894. }
  11895. }
  11896. else if (name.find("attn_qkv.weight") != std::string::npos) {
  11897. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  11898. new_type = GGML_TYPE_Q4_K;
  11899. }
  11900. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  11901. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  11902. }
  11903. else if (name.find("ffn_gate") != std::string::npos) {
  11904. auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
  11905. int i_layer = info.first, n_layer = info.second;
  11906. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  11907. new_type = GGML_TYPE_IQ3_XXS;
  11908. }
  11909. ++qs.i_ffn_gate;
  11910. }
  11911. else if (name.find("ffn_up") != std::string::npos) {
  11912. auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
  11913. int i_layer = info.first, n_layer = info.second;
  11914. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  11915. new_type = GGML_TYPE_IQ3_XXS;
  11916. }
  11917. ++qs.i_ffn_up;
  11918. }
  11919. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  11920. //}
  11921. // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
  11922. //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
  11923. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  11924. //}
  11925. // This can be used to reduce the size of the Q5_K_S model.
  11926. // The associated PPL increase is fully in line with the size reduction
  11927. //else {
  11928. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  11929. //}
  11930. bool convert_incompatible_tensor = false;
  11931. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  11932. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
  11933. new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
  11934. new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
  11935. new_type == GGML_TYPE_IQ1_M) {
  11936. int nx = tensor->ne[0];
  11937. int ny = tensor->ne[1];
  11938. if (nx % QK_K != 0) {
  11939. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
  11940. convert_incompatible_tensor = true;
  11941. } else {
  11942. ++qs.n_k_quantized;
  11943. }
  11944. }
  11945. if (convert_incompatible_tensor) {
  11946. switch (new_type) {
  11947. case GGML_TYPE_IQ2_XXS:
  11948. case GGML_TYPE_IQ2_XS:
  11949. case GGML_TYPE_IQ2_S:
  11950. case GGML_TYPE_IQ3_XXS:
  11951. case GGML_TYPE_IQ3_S:
  11952. case GGML_TYPE_IQ1_S:
  11953. case GGML_TYPE_IQ1_M:
  11954. case GGML_TYPE_Q2_K:
  11955. case GGML_TYPE_Q3_K:
  11956. case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
  11957. case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
  11958. case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
  11959. case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
  11960. default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
  11961. }
  11962. LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
  11963. ++qs.n_fallback;
  11964. }
  11965. return new_type;
  11966. }
  11967. static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
  11968. if (nthread < 2) {
  11969. // single-thread
  11970. size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
  11971. if (!ggml_validate_row_data(new_type, new_data, new_size)) {
  11972. throw std::runtime_error("quantized data validation failed");
  11973. }
  11974. return new_size;
  11975. }
  11976. std::mutex mutex;
  11977. int64_t counter = 0;
  11978. size_t new_size = 0;
  11979. bool valid = true;
  11980. auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
  11981. nrows, n_per_row, imatrix]() {
  11982. const int64_t nrows_per_chunk = chunk_size / n_per_row;
  11983. size_t local_size = 0;
  11984. while (true) {
  11985. std::unique_lock<std::mutex> lock(mutex);
  11986. int64_t first_row = counter; counter += nrows_per_chunk;
  11987. if (first_row >= nrows) {
  11988. if (local_size > 0) {
  11989. new_size += local_size;
  11990. }
  11991. break;
  11992. }
  11993. lock.unlock();
  11994. const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
  11995. size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
  11996. local_size += this_size;
  11997. // validate the quantized data
  11998. const size_t row_size = ggml_row_size(new_type, n_per_row);
  11999. void * this_data = (char *) new_data + first_row * row_size;
  12000. if (!ggml_validate_row_data(new_type, this_data, this_size)) {
  12001. std::unique_lock<std::mutex> lock(mutex);
  12002. valid = false;
  12003. break;
  12004. }
  12005. }
  12006. };
  12007. for (int it = 0; it < nthread - 1; ++it) {
  12008. workers.emplace_back(compute);
  12009. }
  12010. compute();
  12011. for (auto & w : workers) { w.join(); }
  12012. workers.clear();
  12013. if (!valid) {
  12014. throw std::runtime_error("quantized data validation failed");
  12015. }
  12016. return new_size;
  12017. }
  12018. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  12019. ggml_type default_type;
  12020. llama_ftype ftype = params->ftype;
  12021. switch (params->ftype) {
  12022. case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
  12023. case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
  12024. case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
  12025. case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
  12026. case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
  12027. case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
  12028. case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
  12029. // K-quants
  12030. case LLAMA_FTYPE_MOSTLY_Q2_K_S:
  12031. case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
  12032. case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
  12033. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  12034. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  12035. case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
  12036. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  12037. case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
  12038. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  12039. case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
  12040. case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
  12041. case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
  12042. case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
  12043. case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
  12044. case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
  12045. case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
  12046. case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
  12047. case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
  12048. case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
  12049. case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
  12050. case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
  12051. case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
  12052. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  12053. }
  12054. int nthread = params->nthread;
  12055. if (nthread <= 0) {
  12056. nthread = std::thread::hardware_concurrency();
  12057. }
  12058. // mmap consistently increases speed Linux, and also increases speed on Windows with
  12059. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  12060. #if defined(__linux__) || defined(_WIN32)
  12061. constexpr bool use_mmap = true;
  12062. #else
  12063. constexpr bool use_mmap = false;
  12064. #endif
  12065. llama_model_kv_override * kv_overrides = nullptr;
  12066. if (params->kv_overrides) {
  12067. auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
  12068. kv_overrides = v->data();
  12069. }
  12070. llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
  12071. ml.init_mappings(false); // no prefetching
  12072. llama_model model;
  12073. llm_load_arch(ml, model);
  12074. llm_load_hparams(ml, model);
  12075. struct quantize_state_internal qs(model, params);
  12076. if (params->only_copy) {
  12077. ftype = model.ftype;
  12078. }
  12079. const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
  12080. if (params->imatrix) {
  12081. imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
  12082. if (imatrix_data) {
  12083. LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
  12084. qs.has_imatrix = true;
  12085. }
  12086. }
  12087. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  12088. struct gguf_context * ctx_out = gguf_init_empty();
  12089. // copy the KV pairs from the input file
  12090. gguf_set_kv (ctx_out, ml.meta);
  12091. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  12092. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  12093. // Remove split metadata
  12094. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
  12095. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
  12096. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
  12097. if (params->kv_overrides) {
  12098. const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
  12099. for (auto & o : overrides) {
  12100. if (o.key[0] == 0) break;
  12101. if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
  12102. gguf_set_val_f32(ctx_out, o.key, o.val_f64);
  12103. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
  12104. gguf_set_val_i32(ctx_out, o.key, o.val_i64);
  12105. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
  12106. gguf_set_val_bool(ctx_out, o.key, o.val_bool);
  12107. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
  12108. gguf_set_val_str(ctx_out, o.key, o.val_str);
  12109. } else {
  12110. LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
  12111. }
  12112. }
  12113. }
  12114. for (int i = 0; i < ml.n_tensors; ++i) {
  12115. const struct ggml_tensor * meta = ml.get_tensor_meta(i);
  12116. const std::string name = ggml_get_name(meta);
  12117. // TODO: avoid hardcoded tensor names - use the TN_* constants
  12118. if (name.find("attn_v.weight") != std::string::npos ||
  12119. name.find("attn_qkv.weight") != std::string::npos) {
  12120. ++qs.n_attention_wv;
  12121. } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
  12122. qs.has_output = true;
  12123. }
  12124. }
  12125. qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
  12126. // sanity checks
  12127. //
  12128. // - qs.n_attention_wv == 0 for Mamba models
  12129. // - qs.n_attention_wv == model.hparams.n_layer for Transformer models
  12130. //
  12131. GGML_ASSERT((qs.n_attention_wv == 0 || qs.n_attention_wv == (int)model.hparams.n_layer) && "n_attention_wv is unexpected");
  12132. size_t total_size_org = 0;
  12133. size_t total_size_new = 0;
  12134. std::vector<std::thread> workers;
  12135. workers.reserve(nthread);
  12136. int idx = 0;
  12137. std::vector<no_init<uint8_t>> read_data;
  12138. std::vector<no_init<uint8_t>> work;
  12139. std::vector<no_init<float>> f32_conv_buf;
  12140. uint16_t n_split = 1;
  12141. // Assume split index is continuous
  12142. if (params->keep_split) {
  12143. for (int i = 0; i < ml.n_tensors; ++i) {
  12144. n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split);
  12145. }
  12146. }
  12147. std::vector<gguf_context*> ctx_outs(n_split, NULL);
  12148. ctx_outs[0] = ctx_out;
  12149. // populate the original tensors so we get an initial meta data
  12150. for (int i = 0; i < ml.n_tensors; ++i) {
  12151. auto weight = ml.get_weight(i);
  12152. uint16_t i_split = params->keep_split ? weight->idx : 0;
  12153. struct ggml_tensor * tensor = weight->tensor;
  12154. if (ctx_outs[i_split] == NULL) {
  12155. ctx_outs[i_split] = gguf_init_empty();
  12156. }
  12157. gguf_add_tensor(ctx_outs[i_split], tensor);
  12158. }
  12159. // Set split info if needed
  12160. if (n_split > 1) {
  12161. for (size_t i = 0; i < ctx_outs.size(); ++i) {
  12162. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
  12163. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
  12164. gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
  12165. }
  12166. }
  12167. int cur_split = -1;
  12168. std::ofstream fout;
  12169. auto close_ofstream = [&]() {
  12170. // Write metadata and close file handler
  12171. if (fout.is_open()) {
  12172. fout.seekp(0);
  12173. std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split]));
  12174. gguf_get_meta_data(ctx_outs[cur_split], data.data());
  12175. fout.write((const char *) data.data(), data.size());
  12176. fout.close();
  12177. }
  12178. };
  12179. auto new_ofstream = [&](int index) {
  12180. cur_split = index;
  12181. GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
  12182. std::string fname = fname_out;
  12183. if (params->keep_split) {
  12184. char split_path[PATH_MAX] = {0};
  12185. llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split);
  12186. fname = std::string(split_path);
  12187. }
  12188. fout = std::ofstream(fname, std::ios::binary);
  12189. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  12190. const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]);
  12191. // placeholder for the meta data
  12192. ::zeros(fout, meta_size);
  12193. };
  12194. const auto tn = LLM_TN(model.arch);
  12195. new_ofstream(0);
  12196. for (int i = 0; i < ml.n_tensors; ++i) {
  12197. auto weight = ml.get_weight(i);
  12198. struct ggml_tensor * tensor = weight->tensor;
  12199. if (weight->idx != cur_split && params->keep_split) {
  12200. close_ofstream();
  12201. new_ofstream(weight->idx);
  12202. }
  12203. const std::string name = ggml_get_name(tensor);
  12204. if (!ml.use_mmap) {
  12205. if (read_data.size() < ggml_nbytes(tensor)) {
  12206. read_data.resize(ggml_nbytes(tensor));
  12207. }
  12208. tensor->data = read_data.data();
  12209. }
  12210. ml.load_data_for(tensor);
  12211. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  12212. ++idx, ml.n_tensors,
  12213. ggml_get_name(tensor),
  12214. llama_format_tensor_shape(tensor).c_str(),
  12215. ggml_type_name(tensor->type));
  12216. // This used to be a regex, but <regex> has an extreme cost to compile times.
  12217. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  12218. // quantize only 2D and 3D tensors (experts)
  12219. quantize &= (ggml_n_dims(tensor) >= 2);
  12220. // do not quantize norm tensors
  12221. quantize &= name.find("_norm.weight") == std::string::npos;
  12222. quantize &= params->quantize_output_tensor || name != "output.weight";
  12223. quantize &= !params->only_copy;
  12224. // do not quantize expert gating tensors
  12225. // NOTE: can't use LLM_TN here because the layer number is not known
  12226. quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
  12227. // do not quantize positional embeddings and token types (BERT)
  12228. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
  12229. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
  12230. // do not quantize Mamba's small yet 2D weights
  12231. // NOTE: can't use LLM_TN here because the layer number is not known
  12232. quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
  12233. quantize &= name.find("ssm_x.weight") == std::string::npos;
  12234. quantize &= name.find("ssm_dt.weight") == std::string::npos;
  12235. enum ggml_type new_type;
  12236. void * new_data;
  12237. size_t new_size;
  12238. if (quantize) {
  12239. new_type = default_type;
  12240. // get more optimal quantization type based on the tensor shape, layer, etc.
  12241. if (!params->pure && ggml_is_quantized(default_type)) {
  12242. new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
  12243. }
  12244. if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
  12245. new_type = params->token_embedding_type;
  12246. }
  12247. if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
  12248. new_type = params->output_tensor_type;
  12249. }
  12250. // If we've decided to quantize to the same type the tensor is already
  12251. // in then there's nothing to do.
  12252. quantize = tensor->type != new_type;
  12253. }
  12254. if (!quantize) {
  12255. new_type = tensor->type;
  12256. new_data = tensor->data;
  12257. new_size = ggml_nbytes(tensor);
  12258. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  12259. } else {
  12260. const int64_t nelements = ggml_nelements(tensor);
  12261. const float * imatrix = nullptr;
  12262. if (imatrix_data) {
  12263. auto it = imatrix_data->find(tensor->name);
  12264. if (it == imatrix_data->end()) {
  12265. LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
  12266. } else {
  12267. if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
  12268. imatrix = it->second.data();
  12269. } else {
  12270. LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
  12271. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
  12272. // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
  12273. // this is a significant error and it may be good idea to abort the process if this happens,
  12274. // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
  12275. // tok_embd should be ignored in this case, since it always causes this warning
  12276. if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
  12277. throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
  12278. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
  12279. }
  12280. }
  12281. }
  12282. }
  12283. if ((new_type == GGML_TYPE_IQ2_XXS ||
  12284. new_type == GGML_TYPE_IQ2_XS ||
  12285. new_type == GGML_TYPE_IQ2_S ||
  12286. new_type == GGML_TYPE_IQ1_S ||
  12287. (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
  12288. (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
  12289. LLAMA_LOG_ERROR("\n\n============================================================\n");
  12290. LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
  12291. LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
  12292. LLAMA_LOG_ERROR("============================================================\n\n");
  12293. throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
  12294. }
  12295. float * f32_data;
  12296. if (tensor->type == GGML_TYPE_F32) {
  12297. f32_data = (float *) tensor->data;
  12298. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  12299. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  12300. } else {
  12301. llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  12302. f32_data = (float *) f32_conv_buf.data();
  12303. }
  12304. LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
  12305. fflush(stdout);
  12306. if (work.size() < (size_t)nelements * 4) {
  12307. work.resize(nelements * 4); // upper bound on size
  12308. }
  12309. new_data = work.data();
  12310. const int64_t n_per_row = tensor->ne[0];
  12311. const int64_t nrows = tensor->ne[1];
  12312. static const int64_t min_chunk_size = 32 * 512;
  12313. const int64_t chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
  12314. const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
  12315. const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
  12316. const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
  12317. // quantize each expert separately since they have different importance matrices
  12318. new_size = 0;
  12319. for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
  12320. const float * f32_data_03 = f32_data + i03 * nelements_matrix;
  12321. void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
  12322. const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
  12323. new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
  12324. }
  12325. LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  12326. }
  12327. total_size_org += ggml_nbytes(tensor);
  12328. total_size_new += new_size;
  12329. // update the gguf meta data as we go
  12330. gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type);
  12331. gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size);
  12332. // write tensor data + padding
  12333. fout.write((const char *) new_data, new_size);
  12334. zeros(fout, GGML_PAD(new_size, align) - new_size);
  12335. }
  12336. close_ofstream();
  12337. for (auto & c:ctx_outs) {
  12338. gguf_free(c);
  12339. }
  12340. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  12341. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  12342. if (qs.n_fallback > 0) {
  12343. LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
  12344. __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
  12345. }
  12346. }
  12347. static int llama_apply_lora_from_file_internal(
  12348. const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
  12349. ) {
  12350. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  12351. const int64_t t_start_lora_us = ggml_time_us();
  12352. llama_file fin(path_lora, "rb");
  12353. // verify magic and version
  12354. {
  12355. uint32_t magic = fin.read_u32();
  12356. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  12357. LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
  12358. return 1;
  12359. }
  12360. uint32_t format_version = fin.read_u32();
  12361. if (format_version != 1) {
  12362. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  12363. return 1;
  12364. }
  12365. }
  12366. int32_t lora_r = fin.read_u32();
  12367. int32_t lora_alpha = fin.read_u32();
  12368. float scaling = scale * (float)lora_alpha / (float)lora_r;
  12369. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  12370. // load base model
  12371. std::unique_ptr<llama_model_loader> ml;
  12372. if (path_base_model) {
  12373. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  12374. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr));
  12375. ml->init_mappings(/*prefetch*/ false); // no prefetching
  12376. }
  12377. struct tensor_meta {
  12378. std::string name;
  12379. ggml_type type;
  12380. int32_t ne[2];
  12381. size_t offset;
  12382. };
  12383. std::map<std::string, tensor_meta> tensor_meta_map;
  12384. // load all tensor meta
  12385. while (true) {
  12386. if (fin.tell() == fin.size) {
  12387. // eof
  12388. break;
  12389. }
  12390. int32_t n_dims;
  12391. int32_t name_len;
  12392. int32_t ftype;
  12393. fin.read_raw(&n_dims, sizeof(n_dims));
  12394. fin.read_raw(&name_len, sizeof(name_len));
  12395. fin.read_raw(&ftype, sizeof(ftype));
  12396. if (n_dims != 1 && n_dims != 2) {
  12397. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  12398. return 1;
  12399. }
  12400. int32_t ne[2] = { 1, 1 };
  12401. for (int i = 0; i < n_dims; ++i) {
  12402. fin.read_raw(&ne[i], sizeof(ne[i]));
  12403. }
  12404. std::string name;
  12405. {
  12406. GGML_ASSERT(name_len < GGML_MAX_NAME);
  12407. char buf[GGML_MAX_NAME];
  12408. fin.read_raw(buf, name_len);
  12409. name = std::string(buf, name_len);
  12410. }
  12411. // check for lora suffix
  12412. std::string lora_suffix;
  12413. if (name.length() > 6) {
  12414. lora_suffix = name.substr(name.length() - 6);
  12415. }
  12416. if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
  12417. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  12418. return 1;
  12419. }
  12420. // tensor type
  12421. ggml_type wtype;
  12422. switch (ftype) {
  12423. case 0: wtype = GGML_TYPE_F32; break;
  12424. case 1: wtype = GGML_TYPE_F16; break;
  12425. default:
  12426. {
  12427. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  12428. __func__, ftype);
  12429. return 1;
  12430. }
  12431. }
  12432. // data offset
  12433. size_t offset = fin.tell();
  12434. offset = (offset + 31) & -32;
  12435. // skip tensor data
  12436. fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
  12437. tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
  12438. }
  12439. bool warned = false;
  12440. int n_tensors = 0;
  12441. // apply
  12442. ggml_backend_t backend_cpu = ggml_backend_cpu_init();
  12443. if (backend_cpu == nullptr) {
  12444. LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
  12445. return 1;
  12446. }
  12447. ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
  12448. std::vector<no_init<uint8_t>> read_buf;
  12449. for (const auto & it : model.tensors_by_name) {
  12450. const std::string & base_name = it.first;
  12451. ggml_tensor * model_t = it.second;
  12452. if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
  12453. tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
  12454. continue;
  12455. }
  12456. tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
  12457. tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
  12458. ggml_init_params lora_init_params = {
  12459. /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  12460. /* .mem_buffer */ nullptr,
  12461. /* .no_alloc */ true,
  12462. };
  12463. ggml_context * lora_ctx = ggml_init(lora_init_params);
  12464. if (lora_ctx == nullptr) {
  12465. LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
  12466. ggml_backend_free(backend_cpu);
  12467. return 1;
  12468. }
  12469. // create tensors
  12470. ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
  12471. ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
  12472. ggml_set_name(loraA, metaA.name.c_str());
  12473. ggml_set_name(loraB, metaB.name.c_str());
  12474. ggml_tensor * base_t;
  12475. if (ml) {
  12476. if (!ml->get_tensor_meta(base_name.c_str())) {
  12477. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  12478. return 1;
  12479. }
  12480. base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
  12481. } else {
  12482. base_t = ggml_dup_tensor(lora_ctx, model_t);
  12483. }
  12484. ggml_set_name(base_t, base_name.c_str());
  12485. // allocate in backend buffer
  12486. ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  12487. if (lora_buf == nullptr) {
  12488. LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
  12489. return 1;
  12490. }
  12491. // load tensor data
  12492. auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
  12493. read_buf.resize(ggml_nbytes(tensor));
  12494. fin.seek(tensor_meta.offset, SEEK_SET);
  12495. fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
  12496. ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
  12497. };
  12498. load_tensor(metaA, loraA);
  12499. load_tensor(metaB, loraB);
  12500. // load base model tensor data
  12501. if (ml) {
  12502. ml->load_data_for(base_t);
  12503. } else {
  12504. ggml_backend_tensor_copy(model_t, base_t);
  12505. }
  12506. if (ggml_is_quantized(base_t->type) && !warned) {
  12507. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  12508. "use a f16 or f32 base model with --lora-base\n", __func__);
  12509. warned = true;
  12510. }
  12511. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  12512. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  12513. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  12514. ggml_free(lora_ctx);
  12515. ggml_backend_buffer_free(lora_buf);
  12516. ggml_backend_free(backend_cpu);
  12517. return 1;
  12518. }
  12519. auto build_lora_graph = [&]() {
  12520. // w = w + BA*s
  12521. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  12522. ggml_set_name(BA, "BA");
  12523. if (scaling != 1.0f) {
  12524. BA = ggml_scale(lora_ctx, BA, scaling);
  12525. ggml_set_name(BA, "BA_scaled");
  12526. }
  12527. ggml_tensor * r;
  12528. r = ggml_add_inplace(lora_ctx, base_t, BA);
  12529. ggml_set_name(r, "r_add");
  12530. if (base_t->type != model_t->type) {
  12531. // convert the result to the model type
  12532. r = ggml_cast(lora_ctx, r, model_t->type);
  12533. ggml_set_name(r, "r_cast");
  12534. }
  12535. return r;
  12536. };
  12537. ggml_cgraph * gf = ggml_new_graph(lora_ctx);
  12538. ggml_tensor * r = build_lora_graph();
  12539. ggml_build_forward_expand(gf, r);
  12540. ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  12541. if (graph_buf == nullptr) {
  12542. LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
  12543. ggml_free(lora_ctx);
  12544. ggml_backend_buffer_free(lora_buf);
  12545. ggml_backend_free(backend_cpu);
  12546. return 1;
  12547. }
  12548. ggml_backend_graph_compute(backend_cpu, gf);
  12549. ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
  12550. #if 0
  12551. // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
  12552. //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
  12553. // sched compute
  12554. ggml_build_forward_expand(gf, build_graph());
  12555. ggml_backend_sched_init_measure(sched, gf);
  12556. // create the graph again, since the previous one was destroyed by the measure
  12557. ggml_graph_clear(gf);
  12558. ggml_build_forward_expand(gf, build_graph());
  12559. ggml_backend_sched_graph_compute(sched, gf);
  12560. ggml_backend_sched_free(sched);
  12561. #endif
  12562. ggml_backend_buffer_free(lora_buf);
  12563. ggml_backend_buffer_free(graph_buf);
  12564. ggml_free(lora_ctx);
  12565. n_tensors++;
  12566. if (n_tensors % 4 == 0) {
  12567. LLAMA_LOG_INFO(".");
  12568. }
  12569. }
  12570. ggml_backend_free(backend_cpu);
  12571. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  12572. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  12573. return 0;
  12574. }
  12575. //
  12576. // interface implementation
  12577. //
  12578. struct llama_model_params llama_model_default_params() {
  12579. struct llama_model_params result = {
  12580. /*.n_gpu_layers =*/ 0,
  12581. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  12582. /*.main_gpu =*/ 0,
  12583. /*.tensor_split =*/ nullptr,
  12584. /*.progress_callback =*/ nullptr,
  12585. /*.progress_callback_user_data =*/ nullptr,
  12586. /*.kv_overrides =*/ nullptr,
  12587. /*.vocab_only =*/ false,
  12588. /*.use_mmap =*/ true,
  12589. /*.use_mlock =*/ false,
  12590. /*.check_tensors =*/ false,
  12591. };
  12592. #ifdef GGML_USE_METAL
  12593. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  12594. result.n_gpu_layers = 999;
  12595. #endif
  12596. return result;
  12597. }
  12598. struct llama_context_params llama_context_default_params() {
  12599. struct llama_context_params result = {
  12600. /*.seed =*/ LLAMA_DEFAULT_SEED,
  12601. /*.n_ctx =*/ 512,
  12602. /*.n_batch =*/ 2048,
  12603. /*.n_ubatch =*/ 512,
  12604. /*.n_seq_max =*/ 1,
  12605. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  12606. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  12607. /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
  12608. /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
  12609. /*.rope_freq_base =*/ 0.0f,
  12610. /*.rope_freq_scale =*/ 0.0f,
  12611. /*.yarn_ext_factor =*/ -1.0f,
  12612. /*.yarn_attn_factor =*/ 1.0f,
  12613. /*.yarn_beta_fast =*/ 32.0f,
  12614. /*.yarn_beta_slow =*/ 1.0f,
  12615. /*.yarn_orig_ctx =*/ 0,
  12616. /*.defrag_thold =*/ -1.0f,
  12617. /*.cb_eval =*/ nullptr,
  12618. /*.cb_eval_user_data =*/ nullptr,
  12619. /*.type_k =*/ GGML_TYPE_F16,
  12620. /*.type_v =*/ GGML_TYPE_F16,
  12621. /*.logits_all =*/ false,
  12622. /*.embeddings =*/ false,
  12623. /*.offload_kqv =*/ true,
  12624. /*.abort_callback =*/ nullptr,
  12625. /*.abort_callback_data =*/ nullptr,
  12626. };
  12627. return result;
  12628. }
  12629. struct llama_model_quantize_params llama_model_quantize_default_params() {
  12630. struct llama_model_quantize_params result = {
  12631. /*.nthread =*/ 0,
  12632. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  12633. /*.output_tensor_type =*/ GGML_TYPE_COUNT,
  12634. /*.token_embedding_type =*/ GGML_TYPE_COUNT,
  12635. /*.allow_requantize =*/ false,
  12636. /*.quantize_output_tensor =*/ true,
  12637. /*.only_copy =*/ false,
  12638. /*.pure =*/ false,
  12639. /*.keep_split =*/ false,
  12640. /*.imatrix =*/ nullptr,
  12641. /*.kv_overrides =*/ nullptr,
  12642. };
  12643. return result;
  12644. }
  12645. size_t llama_max_devices(void) {
  12646. #if defined(GGML_USE_METAL)
  12647. return 1;
  12648. #elif defined(GGML_USE_CUDA)
  12649. return GGML_CUDA_MAX_DEVICES;
  12650. #elif defined(GGML_USE_SYCL)
  12651. return GGML_SYCL_MAX_DEVICES;
  12652. #elif defined(GGML_USE_VULKAN)
  12653. return GGML_VK_MAX_DEVICES;
  12654. #else
  12655. return 1;
  12656. #endif
  12657. }
  12658. bool llama_supports_mmap(void) {
  12659. return llama_mmap::SUPPORTED;
  12660. }
  12661. bool llama_supports_mlock(void) {
  12662. return llama_mlock::SUPPORTED;
  12663. }
  12664. bool llama_supports_gpu_offload(void) {
  12665. #if defined(GGML_USE_CUDA) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
  12666. defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE)
  12667. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  12668. return true;
  12669. #else
  12670. return false;
  12671. #endif
  12672. }
  12673. void llama_backend_init(void) {
  12674. ggml_time_init();
  12675. // needed to initialize f16 tables
  12676. {
  12677. struct ggml_init_params params = { 0, NULL, false };
  12678. struct ggml_context * ctx = ggml_init(params);
  12679. ggml_free(ctx);
  12680. }
  12681. #ifdef GGML_USE_MPI
  12682. ggml_mpi_backend_init();
  12683. #endif
  12684. }
  12685. void llama_numa_init(enum ggml_numa_strategy numa) {
  12686. if (numa != GGML_NUMA_STRATEGY_DISABLED) {
  12687. ggml_numa_init(numa);
  12688. }
  12689. }
  12690. void llama_backend_free(void) {
  12691. #ifdef GGML_USE_MPI
  12692. ggml_mpi_backend_free();
  12693. #endif
  12694. ggml_quantize_free();
  12695. }
  12696. int64_t llama_time_us(void) {
  12697. return ggml_time_us();
  12698. }
  12699. struct llama_model * llama_load_model_from_file(
  12700. const char * path_model,
  12701. struct llama_model_params params) {
  12702. ggml_time_init();
  12703. llama_model * model = new llama_model;
  12704. unsigned cur_percentage = 0;
  12705. if (params.progress_callback == NULL) {
  12706. params.progress_callback_user_data = &cur_percentage;
  12707. params.progress_callback = [](float progress, void * ctx) {
  12708. unsigned * cur_percentage_p = (unsigned *) ctx;
  12709. unsigned percentage = (unsigned) (100 * progress);
  12710. while (percentage > *cur_percentage_p) {
  12711. *cur_percentage_p = percentage;
  12712. LLAMA_LOG_INFO(".");
  12713. if (percentage >= 100) {
  12714. LLAMA_LOG_INFO("\n");
  12715. }
  12716. }
  12717. return true;
  12718. };
  12719. }
  12720. int status = llama_model_load(path_model, *model, params);
  12721. GGML_ASSERT(status <= 0);
  12722. if (status < 0) {
  12723. if (status == -1) {
  12724. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  12725. } else if (status == -2) {
  12726. LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
  12727. }
  12728. delete model;
  12729. return nullptr;
  12730. }
  12731. return model;
  12732. }
  12733. void llama_free_model(struct llama_model * model) {
  12734. delete model;
  12735. }
  12736. struct llama_context * llama_new_context_with_model(
  12737. struct llama_model * model,
  12738. struct llama_context_params params) {
  12739. if (!model) {
  12740. LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
  12741. return nullptr;
  12742. }
  12743. if (params.n_batch == 0 && params.n_ubatch == 0) {
  12744. LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
  12745. return nullptr;
  12746. }
  12747. if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
  12748. LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
  12749. return nullptr;
  12750. }
  12751. llama_context * ctx = new llama_context(*model);
  12752. const auto & hparams = model->hparams;
  12753. auto & cparams = ctx->cparams;
  12754. cparams.n_seq_max = std::max(1u, params.n_seq_max);
  12755. cparams.n_threads = params.n_threads;
  12756. cparams.n_threads_batch = params.n_threads_batch;
  12757. cparams.yarn_ext_factor = params.yarn_ext_factor;
  12758. cparams.yarn_attn_factor = params.yarn_attn_factor;
  12759. cparams.yarn_beta_fast = params.yarn_beta_fast;
  12760. cparams.yarn_beta_slow = params.yarn_beta_slow;
  12761. cparams.defrag_thold = params.defrag_thold;
  12762. cparams.embeddings = params.embeddings;
  12763. cparams.offload_kqv = params.offload_kqv;
  12764. cparams.pooling_type = params.pooling_type;
  12765. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  12766. cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
  12767. cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  12768. // this is necessary due to kv_self.n being padded later during inference
  12769. cparams.n_ctx = GGML_PAD(cparams.n_ctx, 32);
  12770. // with causal attention, the batch size is limited by the context size
  12771. cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
  12772. cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
  12773. cparams.n_yarn_orig_ctx = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
  12774. hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx :
  12775. hparams.n_ctx_train;
  12776. cparams.cb_eval = params.cb_eval;
  12777. cparams.cb_eval_user_data = params.cb_eval_user_data;
  12778. auto rope_scaling_type = params.rope_scaling_type;
  12779. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
  12780. rope_scaling_type = hparams.rope_scaling_type_train;
  12781. }
  12782. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
  12783. cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
  12784. }
  12785. if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
  12786. cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
  12787. }
  12788. cparams.causal_attn = hparams.causal_attn;
  12789. if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  12790. if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  12791. cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
  12792. } else {
  12793. cparams.pooling_type = hparams.pooling_type;
  12794. }
  12795. }
  12796. if (params.seed == LLAMA_DEFAULT_SEED) {
  12797. params.seed = time(NULL);
  12798. }
  12799. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  12800. LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
  12801. LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
  12802. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  12803. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  12804. ctx->abort_callback = params.abort_callback;
  12805. ctx->abort_callback_data = params.abort_callback_data;
  12806. ctx->rng = std::mt19937(params.seed);
  12807. ctx->logits_all = params.logits_all;
  12808. uint32_t kv_size = cparams.n_ctx;
  12809. ggml_type type_k = params.type_k;
  12810. ggml_type type_v = params.type_v;
  12811. // Mamba only needs a constant number of KV cache cells per sequence
  12812. if (model->arch == LLM_ARCH_MAMBA) {
  12813. // Mamba needs at least as many KV cells as there are sequences kept at any time
  12814. kv_size = std::max((uint32_t) 1, params.n_seq_max);
  12815. // it's probably best to keep as much precision as possible for the states
  12816. type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
  12817. type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
  12818. }
  12819. GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
  12820. GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
  12821. if (!hparams.vocab_only) {
  12822. // initialize backends
  12823. #ifdef GGML_USE_METAL
  12824. if (model->n_gpu_layers > 0) {
  12825. ctx->backend_metal = ggml_backend_metal_init();
  12826. if (ctx->backend_metal == nullptr) {
  12827. LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
  12828. llama_free(ctx);
  12829. return nullptr;
  12830. }
  12831. ctx->backends.push_back(ctx->backend_metal);
  12832. }
  12833. #elif defined(GGML_USE_CUDA)
  12834. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  12835. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  12836. ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
  12837. if (backend == nullptr) {
  12838. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
  12839. llama_free(ctx);
  12840. return nullptr;
  12841. }
  12842. ctx->backends.push_back(backend);
  12843. } else {
  12844. // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
  12845. for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
  12846. ggml_backend_t backend = ggml_backend_cuda_init(device);
  12847. if (backend == nullptr) {
  12848. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
  12849. llama_free(ctx);
  12850. return nullptr;
  12851. }
  12852. ctx->backends.push_back(backend);
  12853. }
  12854. }
  12855. #elif defined(GGML_USE_VULKAN)
  12856. if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  12857. LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
  12858. llama_free(ctx);
  12859. return nullptr;
  12860. }
  12861. if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
  12862. ggml_backend_t backend = ggml_backend_vk_init(0);
  12863. if (backend == nullptr) {
  12864. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
  12865. llama_free(ctx);
  12866. return nullptr;
  12867. }
  12868. ctx->backends.push_back(backend);
  12869. } else {
  12870. for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
  12871. ggml_backend_t backend = ggml_backend_vk_init(device);
  12872. if (backend == nullptr) {
  12873. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
  12874. llama_free(ctx);
  12875. return nullptr;
  12876. }
  12877. ctx->backends.push_back(backend);
  12878. }
  12879. }
  12880. #elif defined(GGML_USE_SYCL)
  12881. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  12882. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  12883. ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
  12884. if (backend == nullptr) {
  12885. int main_gpu_id = ggml_backend_sycl_get_device_id(model->main_gpu);
  12886. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, main_gpu_id, model->main_gpu);
  12887. llama_free(ctx);
  12888. return nullptr;
  12889. }
  12890. ctx->backends.push_back(backend);
  12891. } else {
  12892. // LLAMA_SPLIT_LAYER requires a backend for each GPU
  12893. for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
  12894. ggml_backend_t backend = ggml_backend_sycl_init(i);
  12895. if (backend == nullptr) {
  12896. int id_list[GGML_SYCL_MAX_DEVICES];
  12897. ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
  12898. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i);
  12899. llama_free(ctx);
  12900. return nullptr;
  12901. }
  12902. ctx->backends.push_back(backend);
  12903. }
  12904. }
  12905. #elif defined(GGML_USE_KOMPUTE)
  12906. if (model->n_gpu_layers > 0) {
  12907. auto * backend = ggml_backend_kompute_init(model->main_gpu);
  12908. if (backend == nullptr) {
  12909. LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
  12910. llama_free(ctx);
  12911. return nullptr;
  12912. }
  12913. ctx->backends.push_back(backend);
  12914. }
  12915. #endif
  12916. ctx->backend_cpu = ggml_backend_cpu_init();
  12917. if (ctx->backend_cpu == nullptr) {
  12918. LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
  12919. llama_free(ctx);
  12920. return nullptr;
  12921. }
  12922. ctx->backends.push_back(ctx->backend_cpu);
  12923. if (!llama_kv_cache_init(ctx->kv_self, ctx->model, type_k, type_v, kv_size, cparams.offload_kqv)) {
  12924. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  12925. llama_free(ctx);
  12926. return nullptr;
  12927. }
  12928. {
  12929. size_t memory_size_k = 0;
  12930. size_t memory_size_v = 0;
  12931. for (auto & k : ctx->kv_self.k_l) {
  12932. memory_size_k += ggml_nbytes(k);
  12933. }
  12934. for (auto & v : ctx->kv_self.v_l) {
  12935. memory_size_v += ggml_nbytes(v);
  12936. }
  12937. LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
  12938. (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
  12939. ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
  12940. ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
  12941. }
  12942. // graph outputs buffer
  12943. {
  12944. // resized during inference when a batch uses more outputs
  12945. if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
  12946. LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
  12947. llama_free(ctx);
  12948. return nullptr;
  12949. }
  12950. LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__,
  12951. ggml_backend_buffer_name(ctx->buf_output),
  12952. ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
  12953. }
  12954. // scheduler and compute buffers
  12955. {
  12956. // buffer types used for the compute buffer of each backend
  12957. std::vector<ggml_backend_buffer_type_t> backend_buft;
  12958. for (auto * backend : ctx->backends) {
  12959. if (ggml_backend_is_cpu(backend)) {
  12960. // use host buffers for the CPU backend compute buffer
  12961. backend_buft.push_back(llama_default_buffer_type_cpu(true));
  12962. } else {
  12963. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  12964. }
  12965. }
  12966. // buffer used to store the computation graph and the tensor meta data
  12967. ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false));
  12968. // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
  12969. bool pipeline_parallel = llama_get_device_count() > 1 && model->n_gpu_layers > (int)model->hparams.n_layer && model->split_mode == LLAMA_SPLIT_MODE_LAYER;
  12970. #ifndef GGML_USE_CUDA
  12971. // pipeline parallelism requires support for async compute and events
  12972. // currently this is only implemented in the CUDA backend
  12973. pipeline_parallel = false;
  12974. #endif
  12975. ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel);
  12976. if (pipeline_parallel) {
  12977. LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
  12978. }
  12979. // build worst-case graph
  12980. int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch);
  12981. int n_past = cparams.n_ctx - n_tokens;
  12982. llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  12983. ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  12984. // initialize scheduler with the worst-case graph
  12985. if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
  12986. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  12987. llama_free(ctx);
  12988. return nullptr;
  12989. }
  12990. for (size_t i = 0; i < ctx->backends.size(); i++) {
  12991. ggml_backend_t backend = ctx->backends[i];
  12992. ggml_backend_buffer_type_t buft = backend_buft[i];
  12993. size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
  12994. if (size > 1) {
  12995. LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  12996. ggml_backend_buft_name(buft),
  12997. size / 1024.0 / 1024.0);
  12998. }
  12999. }
  13000. // note: the number of splits during measure is higher than during inference due to the kv shift
  13001. int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
  13002. LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes);
  13003. LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
  13004. }
  13005. }
  13006. #ifdef GGML_USE_MPI
  13007. ctx->ctx_mpi = ggml_mpi_init();
  13008. if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
  13009. // Enter a blocking eval loop with dummy input, letting rank=0 drive the process
  13010. // TODO: needs fix after #3228
  13011. GGML_ASSERT(false && "not implemented");
  13012. //const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx));
  13013. //while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
  13014. llama_backend_free();
  13015. exit(1);
  13016. }
  13017. #endif
  13018. return ctx;
  13019. }
  13020. void llama_free(struct llama_context * ctx) {
  13021. delete ctx;
  13022. }
  13023. const llama_model * llama_get_model(const struct llama_context * ctx) {
  13024. return &ctx->model;
  13025. }
  13026. uint32_t llama_n_ctx(const struct llama_context * ctx) {
  13027. return ctx->cparams.n_ctx;
  13028. }
  13029. uint32_t llama_n_batch(const struct llama_context * ctx) {
  13030. return ctx->cparams.n_batch;
  13031. }
  13032. uint32_t llama_n_ubatch(const struct llama_context * ctx) {
  13033. return ctx->cparams.n_ubatch;
  13034. }
  13035. uint32_t llama_n_seq_max(const struct llama_context * ctx) {
  13036. return ctx->kv_self.size;
  13037. }
  13038. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  13039. return model->vocab.type;
  13040. }
  13041. enum llama_rope_type llama_rope_type(const struct llama_model * model) {
  13042. switch (model->arch) {
  13043. // these models do not use RoPE
  13044. case LLM_ARCH_GPT2:
  13045. case LLM_ARCH_GPTJ:
  13046. case LLM_ARCH_GPTNEOX:
  13047. case LLM_ARCH_MPT:
  13048. case LLM_ARCH_REFACT:
  13049. case LLM_ARCH_BLOOM:
  13050. case LLM_ARCH_MAMBA:
  13051. return LLAMA_ROPE_TYPE_NONE;
  13052. // use what we call a normal RoPE, operating on pairs of consecutive head values
  13053. case LLM_ARCH_LLAMA:
  13054. case LLM_ARCH_BAICHUAN:
  13055. case LLM_ARCH_STARCODER:
  13056. case LLM_ARCH_PLAMO:
  13057. case LLM_ARCH_CODESHELL:
  13058. case LLM_ARCH_ORION:
  13059. case LLM_ARCH_INTERNLM2:
  13060. case LLM_ARCH_MINICPM:
  13061. case LLM_ARCH_XVERSE:
  13062. case LLM_ARCH_COMMAND_R:
  13063. case LLM_ARCH_OLMO:
  13064. return LLAMA_ROPE_TYPE_NORM;
  13065. // the pairs of head values are offset by n_rot/2
  13066. case LLM_ARCH_FALCON:
  13067. case LLM_ARCH_GROK:
  13068. case LLM_ARCH_DBRX:
  13069. case LLM_ARCH_PERSIMMON:
  13070. case LLM_ARCH_BERT:
  13071. case LLM_ARCH_NOMIC_BERT:
  13072. case LLM_ARCH_STABLELM:
  13073. case LLM_ARCH_QWEN:
  13074. case LLM_ARCH_QWEN2:
  13075. case LLM_ARCH_QWEN2MOE:
  13076. case LLM_ARCH_PHI2:
  13077. case LLM_ARCH_PHI3:
  13078. case LLM_ARCH_GEMMA:
  13079. case LLM_ARCH_STARCODER2:
  13080. return LLAMA_ROPE_TYPE_NEOX;
  13081. // all model arches should be listed explicitly here
  13082. case LLM_ARCH_UNKNOWN:
  13083. GGML_ASSERT(false && "unknown architecture");
  13084. break;
  13085. }
  13086. return LLAMA_ROPE_TYPE_NONE;
  13087. }
  13088. enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
  13089. return ctx->cparams.pooling_type;
  13090. }
  13091. int32_t llama_n_vocab(const struct llama_model * model) {
  13092. return model->hparams.n_vocab;
  13093. }
  13094. int32_t llama_n_ctx_train(const struct llama_model * model) {
  13095. return model->hparams.n_ctx_train;
  13096. }
  13097. int32_t llama_n_embd(const struct llama_model * model) {
  13098. return model->hparams.n_embd;
  13099. }
  13100. int32_t llama_n_layer(const struct llama_model * model) {
  13101. return model->hparams.n_layer;
  13102. }
  13103. float llama_rope_freq_scale_train(const struct llama_model * model) {
  13104. return model->hparams.rope_freq_scale_train;
  13105. }
  13106. int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
  13107. const auto & it = model->gguf_kv.find(key);
  13108. if (it == model->gguf_kv.end()) {
  13109. if (buf_size > 0) {
  13110. buf[0] = '\0';
  13111. }
  13112. return -1;
  13113. }
  13114. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13115. }
  13116. int32_t llama_model_meta_count(const struct llama_model * model) {
  13117. return (int)model->gguf_kv.size();
  13118. }
  13119. int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
  13120. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13121. if (buf_size > 0) {
  13122. buf[0] = '\0';
  13123. }
  13124. return -1;
  13125. }
  13126. auto it = model->gguf_kv.begin();
  13127. std::advance(it, i);
  13128. return snprintf(buf, buf_size, "%s", it->first.c_str());
  13129. }
  13130. int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
  13131. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13132. if (buf_size > 0) {
  13133. buf[0] = '\0';
  13134. }
  13135. return -1;
  13136. }
  13137. auto it = model->gguf_kv.begin();
  13138. std::advance(it, i);
  13139. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13140. }
  13141. int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  13142. return snprintf(buf, buf_size, "%s %s %s",
  13143. llama_model_arch_name(model->arch),
  13144. llama_model_type_name(model->type),
  13145. llama_model_ftype_name(model->ftype).c_str());
  13146. }
  13147. uint64_t llama_model_size(const struct llama_model * model) {
  13148. uint64_t size = 0;
  13149. for (const auto & it : model->tensors_by_name) {
  13150. size += ggml_nbytes(it.second);
  13151. }
  13152. return size;
  13153. }
  13154. uint64_t llama_model_n_params(const struct llama_model * model) {
  13155. uint64_t nparams = 0;
  13156. for (const auto & it : model->tensors_by_name) {
  13157. nparams += ggml_nelements(it.second);
  13158. }
  13159. return nparams;
  13160. }
  13161. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  13162. auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
  13163. [name](const std::pair<std::string, struct ggml_tensor *> & it) {
  13164. return it.first == name;
  13165. });
  13166. if (it == model->tensors_by_name.end()) {
  13167. return nullptr;
  13168. }
  13169. return it->second;
  13170. }
  13171. uint32_t llama_model_quantize(
  13172. const char * fname_inp,
  13173. const char * fname_out,
  13174. const llama_model_quantize_params * params) {
  13175. try {
  13176. llama_model_quantize_internal(fname_inp, fname_out, params);
  13177. return 0;
  13178. } catch (const std::exception & err) {
  13179. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  13180. return 1;
  13181. }
  13182. }
  13183. int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
  13184. try {
  13185. return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
  13186. } catch (const std::exception & err) {
  13187. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  13188. return 1;
  13189. }
  13190. }
  13191. static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
  13192. GGML_ASSERT(cvec.tensors.empty());
  13193. GGML_ASSERT(cvec.ctxs.empty());
  13194. GGML_ASSERT(cvec.bufs.empty());
  13195. // count layer buffer types
  13196. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  13197. for (int64_t i = 0; i < model.hparams.n_layer; i++) {
  13198. buft_layer_count[model.buft_layer[i].buft]++;
  13199. }
  13200. // allocate contexts
  13201. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  13202. for (auto & it : buft_layer_count) {
  13203. int n_layers = it.second;
  13204. struct ggml_init_params params = {
  13205. /*.mem_size =*/ n_layers * ggml_tensor_overhead(),
  13206. /*.mem_buffer =*/ NULL,
  13207. /*.no_alloc =*/ true,
  13208. };
  13209. ggml_context * ctx = ggml_init(params);
  13210. if (!ctx) {
  13211. LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
  13212. return 1;
  13213. }
  13214. ctx_map[it.first] = ctx;
  13215. }
  13216. // make tensors
  13217. cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
  13218. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  13219. struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
  13220. ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
  13221. cvec.tensors.push_back(tensor);
  13222. }
  13223. // allocate tensors / buffers and zero
  13224. for (auto it : ctx_map) {
  13225. ggml_backend_buffer_type_t buft = it.first;
  13226. ggml_context * ctx = it.second;
  13227. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  13228. if (!buf) {
  13229. LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
  13230. return false;
  13231. }
  13232. ggml_backend_buffer_clear(buf, 0);
  13233. cvec.ctxs.push_back(ctx);
  13234. cvec.bufs.push_back(buf);
  13235. }
  13236. return true;
  13237. }
  13238. int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
  13239. const llama_model & model = lctx->model;
  13240. llama_control_vector & cvec = lctx->cvec;
  13241. if (data == nullptr) {
  13242. // disable the current control vector (but leave allocated for later)
  13243. cvec.layer_start = -1;
  13244. cvec.layer_end = -1;
  13245. return 0;
  13246. }
  13247. if (n_embd != (int) model.hparams.n_embd) {
  13248. LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
  13249. return 1;
  13250. }
  13251. if (cvec.tensors.empty()) {
  13252. if (!llama_control_vector_init(cvec, model)) {
  13253. return 1;
  13254. }
  13255. }
  13256. cvec.layer_start = il_start;
  13257. cvec.layer_end = il_end;
  13258. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  13259. assert(cvec.tensors[il] != nullptr);
  13260. const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
  13261. if (off + n_embd <= len) {
  13262. ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
  13263. }
  13264. }
  13265. return 0;
  13266. }
  13267. struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
  13268. struct llama_kv_cache_view result = {
  13269. /*.n_cells = */ 0,
  13270. /*.n_seq_max = */ n_seq_max,
  13271. /*.token_count = */ 0,
  13272. /*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
  13273. /*.max_contiguous = */ 0,
  13274. /*.max_contiguous_idx = */ -1,
  13275. /*.cells = */ nullptr,
  13276. /*.cells_sequences = */ nullptr,
  13277. };
  13278. return result;
  13279. }
  13280. void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
  13281. if (view->cells != nullptr) {
  13282. free(view->cells);
  13283. view->cells = nullptr;
  13284. }
  13285. if (view->cells_sequences != nullptr) {
  13286. free(view->cells_sequences);
  13287. view->cells_sequences = nullptr;
  13288. }
  13289. }
  13290. void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
  13291. if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
  13292. view->n_cells = int32_t(ctx->kv_self.size);
  13293. void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
  13294. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
  13295. view->cells = (struct llama_kv_cache_view_cell *)p;
  13296. p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
  13297. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
  13298. view->cells_sequences = (llama_seq_id *)p;
  13299. }
  13300. const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
  13301. llama_kv_cache_view_cell * c_curr = view->cells;
  13302. llama_seq_id * cs_curr = view->cells_sequences;
  13303. int32_t used_cells = 0;
  13304. int32_t token_count = 0;
  13305. int32_t curr_contig_idx = -1;
  13306. uint32_t max_contig = 0;
  13307. int32_t max_contig_idx = -1;
  13308. for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
  13309. const size_t curr_size = kv_cells[i].seq_id.size();
  13310. token_count += curr_size;
  13311. c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
  13312. if (curr_size > 0) {
  13313. if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
  13314. max_contig = i - curr_contig_idx;
  13315. max_contig_idx = curr_contig_idx;
  13316. }
  13317. curr_contig_idx = -1;
  13318. } else if (curr_contig_idx < 0) {
  13319. curr_contig_idx = i;
  13320. }
  13321. int seq_idx = 0;
  13322. for (const llama_seq_id it : kv_cells[i].seq_id) {
  13323. if (seq_idx >= view->n_seq_max) {
  13324. break;
  13325. }
  13326. cs_curr[seq_idx] = it;
  13327. seq_idx++;
  13328. }
  13329. if (seq_idx != 0) {
  13330. used_cells++;
  13331. }
  13332. for (; seq_idx < view->n_seq_max; seq_idx++) {
  13333. cs_curr[seq_idx] = -1;
  13334. }
  13335. }
  13336. if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
  13337. max_contig_idx = curr_contig_idx;
  13338. max_contig = kv_cells.size() - curr_contig_idx;
  13339. }
  13340. view->max_contiguous = max_contig;
  13341. view->max_contiguous_idx = max_contig_idx;
  13342. view->token_count = token_count;
  13343. view->used_cells = used_cells;
  13344. if (uint32_t(used_cells) != ctx->kv_self.used) {
  13345. LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
  13346. __func__, ctx->kv_self.used, used_cells);
  13347. }
  13348. }
  13349. int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  13350. int result = 0;
  13351. for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
  13352. result += ctx->kv_self.cells[i].seq_id.size();
  13353. }
  13354. return result;
  13355. }
  13356. int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
  13357. return ctx->kv_self.used;
  13358. }
  13359. void llama_kv_cache_clear(struct llama_context * ctx) {
  13360. llama_kv_cache_clear(ctx->kv_self);
  13361. }
  13362. bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  13363. return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  13364. }
  13365. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  13366. if (seq_id_src == seq_id_dst) {
  13367. return;
  13368. }
  13369. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  13370. }
  13371. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  13372. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  13373. }
  13374. void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  13375. if (delta == 0) {
  13376. return;
  13377. }
  13378. llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
  13379. }
  13380. void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
  13381. if (d == 1) {
  13382. return;
  13383. }
  13384. llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
  13385. }
  13386. llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
  13387. return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
  13388. }
  13389. void llama_kv_cache_defrag(struct llama_context * ctx) {
  13390. llama_kv_cache_defrag(ctx->kv_self);
  13391. }
  13392. void llama_kv_cache_update(struct llama_context * ctx) {
  13393. llama_kv_cache_update_internal(*ctx);
  13394. }
  13395. // deprecated
  13396. size_t llama_get_state_size(const struct llama_context * ctx) {
  13397. return llama_state_get_size(ctx);
  13398. }
  13399. // deprecated
  13400. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  13401. return llama_state_get_data(ctx, dst);
  13402. }
  13403. // deprecated
  13404. size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
  13405. return llama_state_set_data(ctx, src);
  13406. }
  13407. // deprecated
  13408. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13409. return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  13410. }
  13411. // deprecated
  13412. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  13413. return llama_state_save_file(ctx, path_session, tokens, n_token_count);
  13414. }
  13415. // Returns the *maximum* size of the state
  13416. size_t llama_state_get_size(const struct llama_context * ctx) {
  13417. const auto & cparams = ctx->cparams;
  13418. const auto & hparams = ctx->model.hparams;
  13419. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  13420. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  13421. const size_t s_rng_size = sizeof(size_t);
  13422. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  13423. const size_t s_n_outputs = sizeof(size_t);
  13424. // assume worst case for outputs although only currently set ones are serialized
  13425. const size_t s_output_pos = ctx->cparams.n_batch * sizeof(int32_t);
  13426. const size_t s_logits_size = sizeof(size_t);
  13427. const size_t s_logits = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0;
  13428. const size_t s_embedding_size = sizeof(size_t);
  13429. const size_t s_embedding = ctx->embd_size ? cparams.n_batch * hparams.n_embd * sizeof(float) : 0;
  13430. const size_t s_kv_buf_size = sizeof(size_t);
  13431. const size_t s_kv_head = sizeof(uint32_t);
  13432. const size_t s_kv_size = sizeof(uint32_t);
  13433. const size_t s_kv_used = sizeof(uint32_t);
  13434. const size_t s_kv = ctx->kv_self.total_size();
  13435. const size_t s_kv_cell = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id);
  13436. const size_t s_kv_cells = ctx->kv_self.size * s_kv_cell;
  13437. const size_t s_total = (
  13438. + s_rng_size
  13439. + s_rng
  13440. + s_n_outputs
  13441. + s_output_pos
  13442. + s_logits_size
  13443. + s_logits
  13444. + s_embedding_size
  13445. + s_embedding
  13446. + s_kv_buf_size
  13447. + s_kv_head
  13448. + s_kv_size
  13449. + s_kv_used
  13450. + s_kv
  13451. + s_kv_cells
  13452. );
  13453. return s_total;
  13454. }
  13455. // llama_context_data
  13456. struct llama_data_context {
  13457. virtual void write(const void * src, size_t size) = 0;
  13458. virtual size_t get_size_written() = 0;
  13459. virtual ~llama_data_context() = default;
  13460. };
  13461. struct llama_data_buffer_context : llama_data_context {
  13462. uint8_t * ptr;
  13463. size_t size_written = 0;
  13464. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  13465. void write(const void * src, size_t size) override {
  13466. memcpy(ptr, src, size);
  13467. ptr += size;
  13468. size_written += size;
  13469. }
  13470. size_t get_size_written() override {
  13471. return size_written;
  13472. }
  13473. };
  13474. struct llama_data_file_context : llama_data_context {
  13475. llama_file * file;
  13476. size_t size_written = 0;
  13477. llama_data_file_context(llama_file * f) : file(f) {}
  13478. void write(const void * src, size_t size) override {
  13479. file->write_raw(src, size);
  13480. size_written += size;
  13481. }
  13482. size_t get_size_written() override {
  13483. return size_written;
  13484. }
  13485. };
  13486. /** copy state data into either a buffer or file depending on the passed in context
  13487. *
  13488. * file context:
  13489. * llama_file file("/path", "wb");
  13490. * llama_data_file_context data_ctx(&file);
  13491. * llama_state_get_data(ctx, &data_ctx);
  13492. *
  13493. * buffer context:
  13494. * std::vector<uint8_t> buf(max_size, 0);
  13495. * llama_data_buffer_context data_ctx(&buf.data());
  13496. * llama_state_get_data(ctx, &data_ctx);
  13497. *
  13498. */
  13499. static void llama_state_get_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  13500. llama_synchronize(ctx);
  13501. // copy rng
  13502. {
  13503. std::ostringstream rng_ss;
  13504. rng_ss << ctx->rng;
  13505. const std::string & rng_str = rng_ss.str();
  13506. const size_t rng_size = rng_str.size();
  13507. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  13508. data_ctx->write(&rng_size, sizeof(rng_size));
  13509. data_ctx->write(rng_str.data(), rng_size);
  13510. }
  13511. // copy outputs
  13512. {
  13513. // Can't use ctx->n_outputs because it's not for the
  13514. // entire last batch when n_ubatch is smaller than n_batch
  13515. size_t n_outputs = 0;
  13516. // copy output ids
  13517. {
  13518. std::vector<int32_t> output_pos;
  13519. const size_t n_batch = ctx->cparams.n_batch;
  13520. const auto & output_ids = ctx->output_ids;
  13521. output_pos.resize(ctx->output_size);
  13522. // build a more compact representation of the output ids
  13523. for (size_t i = 0; i < n_batch; ++i) {
  13524. // map an output id to a position in the batch
  13525. int32_t pos = output_ids[i];
  13526. if (pos >= 0) {
  13527. if ((size_t) pos >= n_outputs) {
  13528. n_outputs = pos + 1;
  13529. }
  13530. GGML_ASSERT((size_t) pos < ctx->output_size);
  13531. output_pos[pos] = i;
  13532. }
  13533. }
  13534. data_ctx->write(&n_outputs, sizeof(n_outputs));
  13535. if (n_outputs) {
  13536. data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t));
  13537. }
  13538. }
  13539. // copy logits
  13540. {
  13541. const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab);
  13542. data_ctx->write(&logits_size, sizeof(logits_size));
  13543. if (logits_size) {
  13544. data_ctx->write(ctx->logits, logits_size * sizeof(float));
  13545. }
  13546. }
  13547. // copy embeddings
  13548. {
  13549. const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd);
  13550. data_ctx->write(&embeddings_size, sizeof(embeddings_size));
  13551. if (embeddings_size) {
  13552. data_ctx->write(ctx->embd, embeddings_size * sizeof(float));
  13553. }
  13554. }
  13555. }
  13556. // copy kv cache
  13557. {
  13558. const auto & kv_self = ctx->kv_self;
  13559. const auto & hparams = ctx->model.hparams;
  13560. const uint32_t n_layer = hparams.n_layer;
  13561. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13562. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13563. // NOTE: kv_size and kv_buf_size are mostly used for sanity checks
  13564. const uint32_t kv_head = llama_kv_cache_cell_max(kv_self);
  13565. const uint32_t kv_size = kv_self.size;
  13566. const size_t kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head;
  13567. const uint32_t kv_used = kv_self.used;
  13568. data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
  13569. data_ctx->write(&kv_head, sizeof(kv_head));
  13570. data_ctx->write(&kv_size, sizeof(kv_size));
  13571. data_ctx->write(&kv_used, sizeof(kv_used));
  13572. if (kv_buf_size) {
  13573. const size_t pre_kv_buf_size = data_ctx->get_size_written();
  13574. std::vector<uint8_t> tmp_buf;
  13575. for (int il = 0; il < (int) n_layer; ++il) {
  13576. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  13577. tmp_buf.resize(k_size);
  13578. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
  13579. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13580. if (kv_self.recurrent) {
  13581. // v is contiguous for recurrent models
  13582. // TODO: use other tensors for state models than k and v
  13583. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  13584. tmp_buf.resize(v_size);
  13585. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size());
  13586. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13587. continue;
  13588. }
  13589. // v is not contiguous, copy row by row
  13590. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  13591. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size);
  13592. tmp_buf.resize(v_row_size);
  13593. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  13594. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size());
  13595. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13596. }
  13597. }
  13598. GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size);
  13599. }
  13600. for (uint32_t i = 0; i < kv_head; ++i) {
  13601. const auto & cell = kv_self.cells[i];
  13602. const llama_pos pos = cell.pos;
  13603. const size_t seq_id_size = cell.seq_id.size();
  13604. data_ctx->write(&pos, sizeof(pos));
  13605. data_ctx->write(&seq_id_size, sizeof(seq_id_size));
  13606. for (auto seq_id : cell.seq_id) {
  13607. data_ctx->write(&seq_id, sizeof(seq_id));
  13608. }
  13609. }
  13610. }
  13611. }
  13612. size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst) {
  13613. llama_data_buffer_context data_ctx(dst);
  13614. llama_state_get_data_internal(ctx, &data_ctx);
  13615. return data_ctx.get_size_written();
  13616. }
  13617. // Sets the state reading from the specified source address
  13618. size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) {
  13619. llama_synchronize(ctx);
  13620. const uint8_t * inp = src;
  13621. // set rng
  13622. {
  13623. size_t rng_size;
  13624. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  13625. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  13626. std::string rng_str((const char *)inp, rng_size); inp += rng_size;
  13627. std::istringstream rng_ss(rng_str);
  13628. rng_ss >> ctx->rng;
  13629. GGML_ASSERT(!rng_ss.fail());
  13630. }
  13631. // set output ids
  13632. {
  13633. size_t n_outputs;
  13634. std::vector<int32_t> output_pos;
  13635. memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs);
  13636. GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs));
  13637. if (n_outputs) {
  13638. output_pos.resize(n_outputs);
  13639. memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t));
  13640. inp += n_outputs * sizeof(int32_t);
  13641. for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
  13642. int32_t id = output_pos[i];
  13643. GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch);
  13644. ctx->output_ids[id] = i;
  13645. }
  13646. ctx->n_outputs = n_outputs;
  13647. }
  13648. }
  13649. // set logits
  13650. {
  13651. size_t logits_size;
  13652. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  13653. GGML_ASSERT(ctx->logits_size >= logits_size);
  13654. if (logits_size) {
  13655. memcpy(ctx->logits, inp, logits_size * sizeof(float));
  13656. inp += logits_size * sizeof(float);
  13657. }
  13658. }
  13659. // set embeddings
  13660. {
  13661. size_t embeddings_size;
  13662. memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size);
  13663. GGML_ASSERT(ctx->embd_size >= embeddings_size);
  13664. if (embeddings_size) {
  13665. memcpy(ctx->embd, inp, embeddings_size * sizeof(float));
  13666. inp += embeddings_size * sizeof(float);
  13667. }
  13668. }
  13669. // set kv cache
  13670. {
  13671. const auto & kv_self = ctx->kv_self;
  13672. const auto & hparams = ctx->model.hparams;
  13673. const uint32_t n_layer = hparams.n_layer;
  13674. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13675. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13676. size_t kv_buf_size;
  13677. uint32_t kv_head;
  13678. uint32_t kv_size;
  13679. uint32_t kv_used;
  13680. memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
  13681. memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
  13682. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  13683. memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
  13684. if (kv_self.size != kv_size) {
  13685. // the KV cache needs to be big enough to load all the KV cells from the saved state
  13686. GGML_ASSERT(kv_self.size >= kv_head);
  13687. LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n",
  13688. __func__, kv_head, kv_size, kv_self.size);
  13689. }
  13690. if (kv_buf_size) {
  13691. const size_t pre_kv_buf_size = inp - src;
  13692. GGML_ASSERT(kv_self.total_size() >= kv_buf_size);
  13693. for (int il = 0; il < (int) n_layer; ++il) {
  13694. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  13695. ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
  13696. inp += k_size;
  13697. if (kv_self.recurrent) {
  13698. // v is contiguous for recurrent models
  13699. // TODO: use other tensors for state models than k and v
  13700. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  13701. ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size);
  13702. inp += v_size;
  13703. continue;
  13704. }
  13705. // v is not contiguous, copy row by row
  13706. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  13707. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size);
  13708. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  13709. ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
  13710. inp += v_row_size;
  13711. }
  13712. }
  13713. GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size);
  13714. }
  13715. llama_kv_cache_clear(ctx);
  13716. ctx->kv_self.head = kv_head;
  13717. ctx->kv_self.used = kv_used;
  13718. for (uint32_t i = 0; i < kv_head; ++i) {
  13719. llama_pos pos;
  13720. size_t seq_id_size;
  13721. memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
  13722. memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
  13723. ctx->kv_self.cells[i].pos = pos;
  13724. llama_seq_id seq_id;
  13725. for (size_t j = 0; j < seq_id_size; ++j) {
  13726. memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
  13727. ctx->kv_self.cells[i].seq_id.insert(seq_id);
  13728. }
  13729. }
  13730. }
  13731. const size_t nread = inp - src;
  13732. const size_t max_size = llama_state_get_size(ctx);
  13733. GGML_ASSERT(nread <= max_size);
  13734. return nread;
  13735. }
  13736. static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13737. llama_file file(path_session, "rb");
  13738. // sanity checks
  13739. {
  13740. const uint32_t magic = file.read_u32();
  13741. const uint32_t version = file.read_u32();
  13742. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  13743. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  13744. return false;
  13745. }
  13746. llama_hparams session_hparams;
  13747. file.read_raw(&session_hparams, sizeof(llama_hparams));
  13748. if (session_hparams != ctx->model.hparams) {
  13749. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  13750. return false;
  13751. }
  13752. }
  13753. // load the prompt
  13754. {
  13755. const uint32_t n_token_count = file.read_u32();
  13756. if (n_token_count > n_token_capacity) {
  13757. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  13758. return false;
  13759. }
  13760. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  13761. *n_token_count_out = n_token_count;
  13762. }
  13763. // restore the context state
  13764. {
  13765. const size_t n_state_size_cur = file.size - file.tell();
  13766. const size_t n_state_size_max = llama_state_get_size(ctx);
  13767. if (n_state_size_cur > n_state_size_max) {
  13768. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  13769. return false;
  13770. }
  13771. std::vector<uint8_t> state_data(n_state_size_max);
  13772. file.read_raw(state_data.data(), n_state_size_cur);
  13773. llama_state_set_data(ctx, state_data.data());
  13774. }
  13775. return true;
  13776. }
  13777. bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13778. try {
  13779. return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  13780. } catch (const std::exception & err) {
  13781. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  13782. return false;
  13783. }
  13784. }
  13785. static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  13786. llama_file file(path_session, "wb");
  13787. file.write_u32(LLAMA_SESSION_MAGIC);
  13788. file.write_u32(LLAMA_SESSION_VERSION);
  13789. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  13790. // save the prompt
  13791. file.write_u32((uint32_t) n_token_count);
  13792. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  13793. // save the context state using stream saving
  13794. llama_data_file_context data_ctx(&file);
  13795. llama_state_get_data_internal(ctx, &data_ctx);
  13796. return true;
  13797. }
  13798. bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  13799. try {
  13800. return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
  13801. } catch (const std::exception & err) {
  13802. LLAMA_LOG_ERROR("error saving session file: %s\n", err.what());
  13803. return false;
  13804. }
  13805. }
  13806. size_t llama_state_seq_get_size(struct llama_context* ctx, llama_seq_id seq_id) {
  13807. // save the size of size_t as a uint32_t for safety check
  13808. const size_t size_t_size_size = sizeof(uint32_t);
  13809. // other values
  13810. const size_t s_cell_count_size = sizeof(uint32_t);
  13811. const size_t s_layer_count_size = sizeof(uint32_t);
  13812. const size_t n_embd_v_gqa_size = sizeof(uint32_t);
  13813. size_t s_cell_count = 0;
  13814. size_t s_cell_data_size = 0;
  13815. const auto & kv_self = ctx->kv_self;
  13816. const auto & hparams = ctx->model.hparams;
  13817. const uint32_t n_layer = hparams.n_layer;
  13818. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13819. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13820. for (uint32_t i = 0; i < kv_self.size; ++i) {
  13821. const auto & cell = kv_self.cells[i];
  13822. if (cell.seq_id.count(seq_id) > 0) {
  13823. ++s_cell_count;
  13824. s_cell_data_size += sizeof(llama_pos);
  13825. }
  13826. }
  13827. for (int il = 0; il < (int)n_layer; ++il) {
  13828. // types of keys and values
  13829. s_cell_data_size += sizeof(int32_t) * 2;
  13830. // k_size_row and v_size_el values of layer
  13831. s_cell_data_size += sizeof(size_t) * 2;
  13832. // keys
  13833. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  13834. s_cell_data_size += k_size_row * s_cell_count;
  13835. // values (transposed)
  13836. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  13837. s_cell_data_size += v_size_el * s_cell_count * n_embd_v_gqa;
  13838. }
  13839. const size_t s_total = (
  13840. size_t_size_size +
  13841. s_cell_count_size +
  13842. s_layer_count_size +
  13843. n_embd_v_gqa_size +
  13844. s_cell_data_size
  13845. );
  13846. return s_total;
  13847. }
  13848. static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_context & data_ctx, llama_seq_id seq_id) {
  13849. llama_synchronize(ctx);
  13850. const auto & kv_self = ctx->kv_self;
  13851. GGML_ASSERT(!kv_self.recurrent); // not implemented
  13852. // Save the size of size_t as a uint32_t for safety check
  13853. const uint32_t size_t_size = sizeof(size_t);
  13854. data_ctx.write(&size_t_size, sizeof(size_t_size));
  13855. std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
  13856. uint32_t cell_count = 0;
  13857. // Count the number of cells with the specified seq_id
  13858. // Find all the ranges of cells with this seq id
  13859. {
  13860. uint32_t cell_range_begin = kv_self.size;
  13861. for (uint32_t i = 0; i < kv_self.size; ++i) {
  13862. const auto & cell = kv_self.cells[i];
  13863. if (cell.has_seq_id(seq_id)) {
  13864. ++cell_count;
  13865. if (cell_range_begin == kv_self.size) {
  13866. cell_range_begin = i;
  13867. }
  13868. }
  13869. else {
  13870. if (cell_range_begin != kv_self.size) {
  13871. cell_ranges.push_back({ cell_range_begin, i });
  13872. cell_range_begin = kv_self.size;
  13873. }
  13874. }
  13875. }
  13876. if (cell_range_begin != kv_self.size) {
  13877. cell_ranges.push_back({ cell_range_begin, kv_self.size });
  13878. }
  13879. // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
  13880. uint32_t cell_count_check = 0;
  13881. for (const auto & range : cell_ranges) {
  13882. cell_count_check += range.second - range.first;
  13883. }
  13884. GGML_ASSERT(cell_count == cell_count_check);
  13885. }
  13886. // Write the cell count
  13887. data_ctx.write(&cell_count, sizeof(cell_count));
  13888. const auto & hparams = ctx->model.hparams;
  13889. const uint32_t n_layer = hparams.n_layer;
  13890. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13891. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13892. // Write the layer count
  13893. data_ctx.write(&n_layer, sizeof(n_layer));
  13894. // Write n_embd_v_gqa
  13895. data_ctx.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
  13896. // Iterate the ranges and write all the pos (this is the token position in the prompt)
  13897. for (const auto & range : cell_ranges) {
  13898. for (uint32_t i = range.first; i < range.second; ++i) {
  13899. const auto & cell = kv_self.cells[i];
  13900. data_ctx.write(&cell.pos, sizeof(cell.pos));
  13901. }
  13902. }
  13903. // Iterate and write all the keys first, each row is a cell
  13904. // Get whole range at a time
  13905. std::vector<uint8_t> tmp_buf;
  13906. for (int il = 0; il < (int)n_layer; ++il) {
  13907. // Write key type
  13908. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  13909. data_ctx.write(&k_type_i, sizeof(k_type_i));
  13910. // Write row size of key
  13911. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  13912. data_ctx.write(&k_size_row, sizeof(k_size_row));
  13913. // Read each range of cells of k_size length each into tmp_buf and write out
  13914. for (const auto & range : cell_ranges) {
  13915. const size_t range_size = range.second - range.first;
  13916. tmp_buf.resize(range_size * k_size_row);
  13917. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), range.first * k_size_row, range_size * k_size_row);
  13918. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  13919. }
  13920. }
  13921. // For the values, they are transposed, so we also need the element size and get the element ranges from each row
  13922. const uint32_t kv_size = kv_self.size;
  13923. for (int il = 0; il < (int)n_layer; ++il) {
  13924. // Write value type
  13925. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  13926. data_ctx.write(&v_type_i, sizeof(v_type_i));
  13927. // Write element size
  13928. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  13929. data_ctx.write(&v_size_el, sizeof(v_size_el));
  13930. // For each row, we get the element values of each cell
  13931. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  13932. // Read each range of cells of v_size_el length each into tmp_buf and write out
  13933. for (const auto & range : cell_ranges) {
  13934. const size_t range_size = range.second - range.first;
  13935. const size_t src_offset = (range.first + j * kv_size) * v_size_el;
  13936. tmp_buf.resize(range_size * v_size_el);
  13937. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size());
  13938. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  13939. }
  13940. }
  13941. }
  13942. return data_ctx.get_size_written();
  13943. }
  13944. size_t llama_state_seq_get_data(struct llama_context* ctx, uint8_t* dst, llama_seq_id seq_id) {
  13945. llama_data_buffer_context data_ctx(dst);
  13946. return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  13947. }
  13948. size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, llama_seq_id dest_seq_id) {
  13949. llama_synchronize(ctx);
  13950. auto & kv_self = ctx->kv_self;
  13951. GGML_ASSERT(!kv_self.recurrent); // not implemented
  13952. // Wipe the slot
  13953. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  13954. const uint8_t * inp = src;
  13955. // Read size of size_t
  13956. uint32_t size_t_size;
  13957. memcpy(&size_t_size, inp, sizeof(size_t_size));
  13958. inp += sizeof(size_t_size);
  13959. if (size_t_size != sizeof(size_t)) {
  13960. LLAMA_LOG_ERROR("%s: size_t size mismatch\n", __func__);
  13961. return 0;
  13962. }
  13963. // Read the cell count
  13964. uint32_t cell_count;
  13965. memcpy(&cell_count, inp, sizeof(cell_count));
  13966. inp += sizeof(cell_count);
  13967. // Read the layer count
  13968. uint32_t n_layer_ref;
  13969. memcpy(&n_layer_ref, inp, sizeof(n_layer_ref));
  13970. inp += sizeof(n_layer_ref);
  13971. // Read n_embd_v_gqa
  13972. uint32_t n_embd_v_gqa_ref;
  13973. memcpy(&n_embd_v_gqa_ref, inp, sizeof(n_embd_v_gqa_ref));
  13974. inp += sizeof(n_embd_v_gqa_ref);
  13975. // Sanity check model compatibility
  13976. const auto & hparams = ctx->model.hparams;
  13977. const uint32_t n_layer = hparams.n_layer;
  13978. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13979. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13980. if (n_layer != n_layer_ref) {
  13981. LLAMA_LOG_ERROR("%s: mismatched n_layer (%d != %d)\n", __func__, n_layer, n_layer_ref);
  13982. return 0;
  13983. }
  13984. if (n_embd_v_gqa != n_embd_v_gqa_ref) {
  13985. LLAMA_LOG_ERROR("%s: mismatched n_embd_v_gqa (%d != %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref);
  13986. return 0;
  13987. }
  13988. // Allocate the new cells for the slot
  13989. if (cell_count) {
  13990. llama_batch batch = llama_batch_init(cell_count, 0, 1);
  13991. batch.n_tokens = cell_count;
  13992. for (uint32_t i = 0; i < cell_count; ++i) {
  13993. llama_pos pos;
  13994. memcpy(&pos, inp, sizeof(pos));
  13995. inp += sizeof(pos);
  13996. batch.pos[i] = pos;
  13997. batch.n_seq_id[i] = 1;
  13998. batch.seq_id[i][0] = dest_seq_id;
  13999. }
  14000. if (!llama_kv_cache_find_slot(kv_self, batch)) {
  14001. llama_batch_free(batch);
  14002. LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
  14003. return 0;
  14004. }
  14005. // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
  14006. // Assume that this is one contiguous block of cells
  14007. GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
  14008. GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
  14009. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
  14010. GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
  14011. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
  14012. // Cleanup
  14013. llama_batch_free(batch);
  14014. }
  14015. const uint32_t kv_size = kv_self.size;
  14016. const uint32_t kv_head = kv_self.head;
  14017. // For each layer, read the keys for each cell, one row is one cell, read as one contiguous blo
  14018. for (int il = 0; il < (int)n_layer; ++il) {
  14019. // Read type of key
  14020. int32_t k_type_i_ref;
  14021. memcpy(&k_type_i_ref, inp, sizeof(k_type_i_ref));
  14022. inp += sizeof(k_type_i_ref);
  14023. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  14024. if (k_type_i != k_type_i_ref) {
  14025. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14026. LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
  14027. return 0;
  14028. }
  14029. // Read row size of key
  14030. size_t k_size_row_ref;
  14031. memcpy(&k_size_row_ref, inp, sizeof(k_size_row_ref));
  14032. inp += sizeof(k_size_row_ref);
  14033. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14034. if (k_size_row != k_size_row_ref) {
  14035. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14036. LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, k_size_row_ref, il);
  14037. return 0;
  14038. }
  14039. if (cell_count) {
  14040. // Read and set the keys for the whole cell range
  14041. ggml_backend_tensor_set(kv_self.k_l[il], inp, kv_head * k_size_row, cell_count * k_size_row);
  14042. inp += cell_count * k_size_row;
  14043. }
  14044. }
  14045. // For each layer, read the values for each cell (transposed)
  14046. for (int il = 0; il < (int)n_layer; ++il) {
  14047. // Read type of value
  14048. int32_t v_type_i_ref;
  14049. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  14050. inp += sizeof(v_type_i_ref);
  14051. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14052. if (v_type_i != v_type_i_ref) {
  14053. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14054. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  14055. return 0;
  14056. }
  14057. // Read element size of value
  14058. size_t v_size_el_ref;
  14059. memcpy(&v_size_el_ref, inp, sizeof(v_size_el_ref));
  14060. inp += sizeof(v_size_el_ref);
  14061. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14062. if (v_size_el != v_size_el_ref) {
  14063. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14064. LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, v_size_el_ref, il);
  14065. return 0;
  14066. }
  14067. if (cell_count) {
  14068. // For each row in the transposed matrix, read the values for the whole cell range
  14069. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  14070. const size_t dst_offset = (kv_head + j * kv_size) * v_size_el;
  14071. ggml_backend_tensor_set(kv_self.v_l[il], inp, dst_offset, cell_count * v_size_el);
  14072. inp += cell_count * v_size_el;
  14073. }
  14074. }
  14075. }
  14076. const size_t nread = inp - src;
  14077. return nread;
  14078. }
  14079. static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  14080. llama_file file(filepath, "wb");
  14081. file.write_u32(LLAMA_STATE_SEQ_MAGIC);
  14082. file.write_u32(LLAMA_STATE_SEQ_VERSION);
  14083. // save the prompt
  14084. file.write_u32((uint32_t)n_token_count);
  14085. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  14086. // save the context state using stream saving
  14087. llama_data_file_context data_ctx(&file);
  14088. llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  14089. const size_t res = file.tell();
  14090. GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
  14091. return res;
  14092. }
  14093. static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14094. llama_file file(filepath, "rb");
  14095. // version checks
  14096. {
  14097. const uint32_t magic = file.read_u32();
  14098. const uint32_t version = file.read_u32();
  14099. if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
  14100. LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
  14101. return 0;
  14102. }
  14103. }
  14104. // load the prompt
  14105. {
  14106. const uint32_t n_token_count = file.read_u32();
  14107. if (n_token_count > n_token_capacity) {
  14108. LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  14109. return 0;
  14110. }
  14111. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  14112. *n_token_count_out = n_token_count;
  14113. }
  14114. // restore the context state
  14115. {
  14116. const size_t state_size = file.size - file.tell();
  14117. std::vector<uint8_t> state_data(state_size);
  14118. file.read_raw(state_data.data(), state_size);
  14119. const size_t nread = llama_state_seq_set_data(ctx, state_data.data(), dest_seq_id);
  14120. if (!nread) {
  14121. LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
  14122. return 0;
  14123. }
  14124. GGML_ASSERT(nread <= state_size);
  14125. GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
  14126. }
  14127. return file.tell();
  14128. }
  14129. size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  14130. try {
  14131. return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
  14132. } catch (const std::exception & err) {
  14133. LLAMA_LOG_ERROR("error saving sequence state file: %s\n", err.what());
  14134. return 0;
  14135. }
  14136. }
  14137. size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14138. try {
  14139. return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
  14140. } catch (const std::exception & err) {
  14141. LLAMA_LOG_ERROR("error loading sequence state file: %s\n", err.what());
  14142. return 0;
  14143. }
  14144. }
  14145. void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
  14146. ctx->cparams.n_threads = n_threads;
  14147. ctx->cparams.n_threads_batch = n_threads_batch;
  14148. }
  14149. void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
  14150. ctx->abort_callback = abort_callback;
  14151. ctx->abort_callback_data = abort_callback_data;
  14152. }
  14153. void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
  14154. ctx->cparams.causal_attn = causal_attn;
  14155. }
  14156. struct llama_batch llama_batch_get_one(
  14157. llama_token * tokens,
  14158. int32_t n_tokens,
  14159. llama_pos pos_0,
  14160. llama_seq_id seq_id) {
  14161. return {
  14162. /*n_tokens =*/ n_tokens,
  14163. /*tokens =*/ tokens,
  14164. /*embd =*/ nullptr,
  14165. /*pos =*/ nullptr,
  14166. /*n_seq_id =*/ nullptr,
  14167. /*seq_id =*/ nullptr,
  14168. /*logits =*/ nullptr,
  14169. /*all_pos_0 =*/ pos_0,
  14170. /*all_pos_1 =*/ 1,
  14171. /*all_seq_id =*/ seq_id,
  14172. };
  14173. }
  14174. struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
  14175. llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
  14176. if (embd) {
  14177. batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
  14178. } else {
  14179. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
  14180. }
  14181. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
  14182. batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
  14183. batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
  14184. for (int i = 0; i < n_tokens_alloc; ++i) {
  14185. batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
  14186. }
  14187. batch.seq_id[n_tokens_alloc] = nullptr;
  14188. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
  14189. return batch;
  14190. }
  14191. void llama_batch_free(struct llama_batch batch) {
  14192. if (batch.token) free(batch.token);
  14193. if (batch.embd) free(batch.embd);
  14194. if (batch.pos) free(batch.pos);
  14195. if (batch.n_seq_id) free(batch.n_seq_id);
  14196. if (batch.seq_id) {
  14197. for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
  14198. free(batch.seq_id[i]);
  14199. }
  14200. free(batch.seq_id);
  14201. }
  14202. if (batch.logits) free(batch.logits);
  14203. }
  14204. int32_t llama_decode(
  14205. struct llama_context * ctx,
  14206. struct llama_batch batch) {
  14207. const int ret = llama_decode_internal(*ctx, batch);
  14208. if (ret < 0) {
  14209. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  14210. }
  14211. return ret;
  14212. }
  14213. void llama_synchronize(struct llama_context * ctx) {
  14214. ggml_backend_sched_synchronize(ctx->sched);
  14215. // FIXME: if multiple single tokens are evaluated without a synchronization,
  14216. // the stats will be added to the prompt evaluation stats
  14217. // this should only happen when using batch size 1 to evaluate a batch
  14218. // add the evaluation to the stats
  14219. if (ctx->n_queued_tokens == 1) {
  14220. ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  14221. ctx->n_eval++;
  14222. } else if (ctx->n_queued_tokens > 1) {
  14223. ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  14224. ctx->n_p_eval += ctx->n_queued_tokens;
  14225. }
  14226. // get a more accurate load time, upon first eval
  14227. if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
  14228. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  14229. ctx->has_evaluated_once = true;
  14230. }
  14231. ctx->n_queued_tokens = 0;
  14232. ctx->t_compute_start_us = 0;
  14233. }
  14234. float * llama_get_logits(struct llama_context * ctx) {
  14235. llama_synchronize(ctx);
  14236. return ctx->logits;
  14237. }
  14238. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  14239. int32_t j = -1;
  14240. llama_synchronize(ctx);
  14241. try {
  14242. if (ctx->logits == nullptr) {
  14243. throw std::runtime_error("no logits");
  14244. }
  14245. if (i < 0) {
  14246. j = ctx->n_outputs + i;
  14247. if (j < 0) {
  14248. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  14249. }
  14250. } else if ((size_t) i >= ctx->output_ids.size()) {
  14251. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  14252. } else {
  14253. j = ctx->output_ids[i];
  14254. }
  14255. if (j < 0) {
  14256. throw std::runtime_error(format("batch.logits[%d] != true", i));
  14257. }
  14258. if (j >= ctx->n_outputs) {
  14259. // This should not happen
  14260. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  14261. }
  14262. return ctx->logits + j*ctx->model.hparams.n_vocab;
  14263. } catch (const std::exception & err) {
  14264. LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
  14265. #ifndef NDEBUG
  14266. GGML_ASSERT(false);
  14267. #endif
  14268. return nullptr;
  14269. }
  14270. }
  14271. float * llama_get_embeddings(struct llama_context * ctx) {
  14272. llama_synchronize(ctx);
  14273. return ctx->embd;
  14274. }
  14275. float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
  14276. int32_t j = -1;
  14277. llama_synchronize(ctx);
  14278. try {
  14279. if (ctx->embd == nullptr) {
  14280. throw std::runtime_error("no embeddings");
  14281. }
  14282. if (i < 0) {
  14283. j = ctx->n_outputs + i;
  14284. if (j < 0) {
  14285. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  14286. }
  14287. } else if ((size_t) i >= ctx->output_ids.size()) {
  14288. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  14289. } else {
  14290. j = ctx->output_ids[i];
  14291. }
  14292. if (j < 0) {
  14293. throw std::runtime_error(format("batch.logits[%d] != true", i));
  14294. }
  14295. if (j >= ctx->n_outputs) {
  14296. // This should not happen
  14297. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  14298. }
  14299. return ctx->embd + j*ctx->model.hparams.n_embd;
  14300. } catch (const std::exception & err) {
  14301. LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
  14302. #ifndef NDEBUG
  14303. GGML_ASSERT(false);
  14304. #endif
  14305. return nullptr;
  14306. }
  14307. }
  14308. float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
  14309. llama_synchronize(ctx);
  14310. auto it = ctx->embd_seq.find(seq_id);
  14311. if (it == ctx->embd_seq.end()) {
  14312. return nullptr;
  14313. }
  14314. return it->second.data();
  14315. }
  14316. const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
  14317. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14318. return model->vocab.id_to_token[token].text.c_str();
  14319. }
  14320. float llama_token_get_score(const struct llama_model * model, llama_token token) {
  14321. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14322. return model->vocab.id_to_token[token].score;
  14323. }
  14324. llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token) {
  14325. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14326. return model->vocab.id_to_token[token].type;
  14327. }
  14328. bool llama_token_is_eog(const struct llama_model * model, llama_token token) {
  14329. return token != -1 && (
  14330. token == llama_token_eos(model) ||
  14331. token == llama_token_eot(model)
  14332. );
  14333. }
  14334. llama_token llama_token_bos(const struct llama_model * model) {
  14335. return model->vocab.special_bos_id;
  14336. }
  14337. llama_token llama_token_eos(const struct llama_model * model) {
  14338. return model->vocab.special_eos_id;
  14339. }
  14340. llama_token llama_token_cls(const struct llama_model * model) {
  14341. return model->vocab.special_cls_id;
  14342. }
  14343. llama_token llama_token_sep(const struct llama_model * model) {
  14344. return model->vocab.special_sep_id;
  14345. }
  14346. llama_token llama_token_nl(const struct llama_model * model) {
  14347. return model->vocab.linefeed_id;
  14348. }
  14349. int32_t llama_add_bos_token(const struct llama_model * model) {
  14350. return model->vocab.special_add_bos;
  14351. }
  14352. int32_t llama_add_eos_token(const struct llama_model * model) {
  14353. return model->vocab.special_add_eos;
  14354. }
  14355. llama_token llama_token_prefix(const struct llama_model * model) {
  14356. return model->vocab.special_prefix_id;
  14357. }
  14358. llama_token llama_token_middle(const struct llama_model * model) {
  14359. return model->vocab.special_middle_id;
  14360. }
  14361. llama_token llama_token_suffix(const struct llama_model * model) {
  14362. return model->vocab.special_suffix_id;
  14363. }
  14364. llama_token llama_token_eot(const struct llama_model * model) {
  14365. return model->vocab.special_eot_id;
  14366. }
  14367. int32_t llama_tokenize(
  14368. const struct llama_model * model,
  14369. const char * text,
  14370. int32_t text_len,
  14371. llama_token * tokens,
  14372. int32_t n_tokens_max,
  14373. bool add_special,
  14374. bool parse_special) {
  14375. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_special, parse_special);
  14376. if (n_tokens_max < (int) res.size()) {
  14377. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  14378. return -((int) res.size());
  14379. }
  14380. for (size_t i = 0; i < res.size(); i++) {
  14381. tokens[i] = res[i];
  14382. }
  14383. return res.size();
  14384. }
  14385. static std::string llama_decode_text(const std::string & text) {
  14386. std::string decoded_text;
  14387. auto unicode_sequences = unicode_cpts_from_utf8(text);
  14388. for (auto & unicode_sequence : unicode_sequences) {
  14389. decoded_text += unicode_utf8_to_byte(unicode_cpt_to_utf8(unicode_sequence));
  14390. }
  14391. return decoded_text;
  14392. }
  14393. // does not write null-terminator to buf
  14394. int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, bool special) {
  14395. if (0 <= token && token < llama_n_vocab(model)) {
  14396. switch (llama_vocab_get_type(model->vocab)) {
  14397. case LLAMA_VOCAB_TYPE_WPM:
  14398. case LLAMA_VOCAB_TYPE_SPM: {
  14399. // NOTE: we accept all unsupported token types,
  14400. // suppressing them like CONTROL tokens.
  14401. if (llama_is_normal_token(model->vocab, token)) {
  14402. std::string result = model->vocab.id_to_token[token].text;
  14403. llama_unescape_whitespace(result);
  14404. if (length < (int) result.length()) {
  14405. return -(int) result.length();
  14406. }
  14407. memcpy(buf, result.c_str(), result.length());
  14408. return result.length();
  14409. } else if (
  14410. (llama_is_user_defined_token(model->vocab, token)) ||
  14411. (llama_is_control_token (model->vocab, token) && special)) {
  14412. std::string result = model->vocab.id_to_token[token].text;
  14413. if (length < (int) result.length()) {
  14414. return -(int) result.length();
  14415. }
  14416. memcpy(buf, result.c_str(), result.length());
  14417. return result.length();
  14418. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  14419. if (length < 3) {
  14420. return -3;
  14421. }
  14422. memcpy(buf, "\xe2\x96\x85", 3);
  14423. return 3;
  14424. } else if (llama_is_byte_token(model->vocab, token)) {
  14425. if (length < 1) {
  14426. return -1;
  14427. }
  14428. buf[0] = llama_token_to_byte(model->vocab, token);
  14429. return 1;
  14430. }
  14431. break;
  14432. }
  14433. case LLAMA_VOCAB_TYPE_BPE: {
  14434. // NOTE: we accept all unsupported token types,
  14435. // suppressing them like CONTROL tokens.
  14436. if (llama_is_normal_token(model->vocab, token)) {
  14437. std::string result = model->vocab.id_to_token[token].text;
  14438. result = llama_decode_text(result);
  14439. if (length < (int) result.length()) {
  14440. return -(int) result.length();
  14441. }
  14442. memcpy(buf, result.c_str(), result.length());
  14443. return result.length();
  14444. } else if (
  14445. (llama_is_user_defined_token(model->vocab, token)) ||
  14446. (llama_is_control_token (model->vocab, token) && special)) {
  14447. std::string result = model->vocab.id_to_token[token].text;
  14448. if (length < (int) result.length()) {
  14449. return -(int) result.length();
  14450. }
  14451. memcpy(buf, result.c_str(), result.length());
  14452. return result.length();
  14453. }
  14454. break;
  14455. }
  14456. default:
  14457. GGML_ASSERT(false);
  14458. }
  14459. }
  14460. return 0;
  14461. }
  14462. // trim whitespace from the beginning and end of a string
  14463. static std::string trim(const std::string & str) {
  14464. size_t start = 0;
  14465. size_t end = str.size();
  14466. while (start < end && isspace(str[start])) {
  14467. start += 1;
  14468. }
  14469. while (end > start && isspace(str[end - 1])) {
  14470. end -= 1;
  14471. }
  14472. return str.substr(start, end - start);
  14473. }
  14474. // Simple version of "llama_apply_chat_template" that only works with strings
  14475. // This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
  14476. static int32_t llama_chat_apply_template_internal(
  14477. const std::string & tmpl,
  14478. const std::vector<const llama_chat_message *> & chat,
  14479. std::string & dest, bool add_ass) {
  14480. // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
  14481. std::stringstream ss;
  14482. if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) {
  14483. // chatml template
  14484. for (auto message : chat) {
  14485. ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
  14486. }
  14487. if (add_ass) {
  14488. ss << "<|im_start|>assistant\n";
  14489. }
  14490. } else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) {
  14491. // llama2 template and its variants
  14492. // [variant] support system message
  14493. bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos;
  14494. // [variant] space before + after response
  14495. bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos;
  14496. // [variant] add BOS inside history
  14497. bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos;
  14498. // [variant] trim spaces from the input message
  14499. bool strip_message = tmpl.find("content.strip()") != std::string::npos;
  14500. // construct the prompt
  14501. bool is_inside_turn = true; // skip BOS at the beginning
  14502. ss << "[INST] ";
  14503. for (auto message : chat) {
  14504. std::string content = strip_message ? trim(message->content) : message->content;
  14505. std::string role(message->role);
  14506. if (!is_inside_turn) {
  14507. is_inside_turn = true;
  14508. ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
  14509. }
  14510. if (role == "system") {
  14511. if (support_system_message) {
  14512. ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
  14513. } else {
  14514. // if the model does not support system message, we still include it in the first message, but without <<SYS>>
  14515. ss << content << "\n";
  14516. }
  14517. } else if (role == "user") {
  14518. ss << content << " [/INST]";
  14519. } else {
  14520. ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
  14521. is_inside_turn = false;
  14522. }
  14523. }
  14524. // llama2 templates seem to not care about "add_generation_prompt"
  14525. } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) {
  14526. // zephyr template
  14527. for (auto message : chat) {
  14528. ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
  14529. }
  14530. if (add_ass) {
  14531. ss << "<|assistant|>\n";
  14532. }
  14533. } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) {
  14534. // mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
  14535. for (auto message : chat) {
  14536. std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
  14537. ss << bos << message->role << "\n" << message->content << "</s>\n";
  14538. }
  14539. if (add_ass) {
  14540. ss << "<s>assistant\n";
  14541. }
  14542. } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
  14543. // google/gemma-7b-it
  14544. std::string system_prompt = "";
  14545. for (auto message : chat) {
  14546. std::string role(message->role);
  14547. if (role == "system") {
  14548. // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
  14549. system_prompt = trim(message->content);
  14550. continue;
  14551. }
  14552. // in gemma, "assistant" is "model"
  14553. role = role == "assistant" ? "model" : message->role;
  14554. ss << "<start_of_turn>" << role << "\n";
  14555. if (!system_prompt.empty() && role != "model") {
  14556. ss << system_prompt << "\n\n";
  14557. system_prompt = "";
  14558. }
  14559. ss << trim(message->content) << "<end_of_turn>\n";
  14560. }
  14561. if (add_ass) {
  14562. ss << "<start_of_turn>model\n";
  14563. }
  14564. } else if (tmpl == "orion" || tmpl.find("'\\n\\nAssistant: ' + eos_token") != std::string::npos) {
  14565. // OrionStarAI/Orion-14B-Chat
  14566. std::string system_prompt = "";
  14567. for (auto message : chat) {
  14568. std::string role(message->role);
  14569. if (role == "system") {
  14570. // there is no system message support, we will merge it with user prompt
  14571. system_prompt = message->content;
  14572. continue;
  14573. } else if (role == "user") {
  14574. ss << "Human: ";
  14575. if (!system_prompt.empty()) {
  14576. ss << system_prompt << "\n\n";
  14577. system_prompt = "";
  14578. }
  14579. ss << message->content << "\n\nAssistant: </s>";
  14580. } else {
  14581. ss << message->content << "</s>";
  14582. }
  14583. }
  14584. } else if (tmpl == "openchat" || tmpl.find("GPT4 Correct ") != std::string::npos) {
  14585. // openchat/openchat-3.5-0106,
  14586. for (auto message : chat) {
  14587. std::string role(message->role);
  14588. if (role == "system") {
  14589. ss << message->content << "<|end_of_turn|>";
  14590. } else {
  14591. role[0] = toupper(role[0]);
  14592. ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
  14593. }
  14594. }
  14595. if (add_ass) {
  14596. ss << "GPT4 Correct Assistant:";
  14597. }
  14598. } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl.find("USER: ") != std::string::npos && tmpl.find("ASSISTANT: ") != std::string::npos)) {
  14599. // eachadea/vicuna-13b-1.1 (and Orca variant)
  14600. for (auto message : chat) {
  14601. std::string role(message->role);
  14602. if (role == "system") {
  14603. // Orca-Vicuna variant uses a system prefix
  14604. if (tmpl == "vicuna-orca" || tmpl.find("SYSTEM: ") != std::string::npos) {
  14605. ss << "SYSTEM: " << message->content << "\n";
  14606. } else {
  14607. ss << message->content << "\n\n";
  14608. }
  14609. } else if (role == "user") {
  14610. ss << "USER: " << message->content << "\n";
  14611. } else if (role == "assistant") {
  14612. ss << "ASSISTANT: " << message->content << "</s>\n";
  14613. }
  14614. }
  14615. if (add_ass) {
  14616. ss << "ASSISTANT:";
  14617. }
  14618. } else if (tmpl == "deepseek" || (tmpl.find("### Instruction:") != std::string::npos && tmpl.find("<|EOT|>") != std::string::npos)) {
  14619. // deepseek-ai/deepseek-coder-33b-instruct
  14620. for (auto message : chat) {
  14621. std::string role(message->role);
  14622. if (role == "system") {
  14623. ss << message->content;
  14624. } else if (role == "user") {
  14625. ss << "### Instruction:\n" << message->content << "\n";
  14626. } else if (role == "assistant") {
  14627. ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
  14628. }
  14629. }
  14630. if (add_ass) {
  14631. ss << "### Response:\n";
  14632. }
  14633. } else if (tmpl == "command-r" || (tmpl.find("<|START_OF_TURN_TOKEN|>") != std::string::npos && tmpl.find("<|USER_TOKEN|>") != std::string::npos)) {
  14634. // CohereForAI/c4ai-command-r-plus
  14635. for (auto message : chat) {
  14636. std::string role(message->role);
  14637. if (role == "system") {
  14638. ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  14639. } else if (role == "user") {
  14640. ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  14641. } else if (role == "assistant") {
  14642. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  14643. }
  14644. }
  14645. if (add_ass) {
  14646. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
  14647. }
  14648. } else if (tmpl == "llama3" || (tmpl.find("<|start_header_id|>") != std::string::npos && tmpl.find("<|end_header_id|>") != std::string::npos)) {
  14649. // Llama 3
  14650. for (auto message : chat) {
  14651. std::string role(message->role);
  14652. ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
  14653. }
  14654. if (add_ass) {
  14655. ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
  14656. }
  14657. } else if (tmpl == "phi3" || (tmpl.find("<|assistant|>") != std::string::npos && tmpl.find("<|end|>") != std::string::npos )) {
  14658. // Phi 3
  14659. for (auto message : chat) {
  14660. std::string role(message->role);
  14661. ss << "<|" << role << "|>\n" << trim(message->content) << "<|end|>\n";
  14662. }
  14663. if (add_ass) {
  14664. ss << "<|assistant|>\n";
  14665. }
  14666. } else {
  14667. // template not supported
  14668. return -1;
  14669. }
  14670. dest = ss.str();
  14671. return dest.size();
  14672. }
  14673. LLAMA_API int32_t llama_chat_apply_template(
  14674. const struct llama_model * model,
  14675. const char * tmpl,
  14676. const struct llama_chat_message * chat,
  14677. size_t n_msg,
  14678. bool add_ass,
  14679. char * buf,
  14680. int32_t length) {
  14681. std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
  14682. if (tmpl == nullptr) {
  14683. GGML_ASSERT(model != nullptr);
  14684. // load template from model
  14685. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  14686. std::string template_key = "tokenizer.chat_template";
  14687. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  14688. if (res < 0) {
  14689. // worst case: there is no information about template, we will use chatml by default
  14690. curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
  14691. } else {
  14692. curr_tmpl = std::string(model_template.data(), model_template.size());
  14693. }
  14694. }
  14695. // format the chat to string
  14696. std::vector<const llama_chat_message *> chat_vec;
  14697. chat_vec.resize(n_msg);
  14698. for (size_t i = 0; i < n_msg; i++) {
  14699. chat_vec[i] = &chat[i];
  14700. }
  14701. std::string formatted_chat;
  14702. int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
  14703. if (res < 0) {
  14704. return res;
  14705. }
  14706. if (buf && length > 0) {
  14707. strncpy(buf, formatted_chat.c_str(), length);
  14708. }
  14709. return res;
  14710. }
  14711. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
  14712. static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
  14713. if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
  14714. return strlen(split_path);
  14715. }
  14716. return 0;
  14717. }
  14718. int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
  14719. std::string str_split_path(split_path);
  14720. char postfix[32];
  14721. snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
  14722. std::string str_postfix(postfix);
  14723. // check if dest ends with postfix
  14724. int size_prefix = str_split_path.size() - str_postfix.size();
  14725. if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
  14726. snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
  14727. return size_prefix;
  14728. }
  14729. return 0;
  14730. }
  14731. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  14732. struct llama_timings result = {
  14733. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  14734. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  14735. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  14736. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  14737. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  14738. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  14739. /*.n_sample =*/ std::max(1, ctx->n_sample),
  14740. /*.n_p_eval =*/ std::max(1, ctx->n_p_eval),
  14741. /*.n_eval =*/ std::max(1, ctx->n_eval),
  14742. };
  14743. return result;
  14744. }
  14745. void llama_print_timings(struct llama_context * ctx) {
  14746. const llama_timings timings = llama_get_timings(ctx);
  14747. LLAMA_LOG_INFO("\n");
  14748. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  14749. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  14750. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  14751. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  14752. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  14753. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  14754. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  14755. LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
  14756. }
  14757. void llama_reset_timings(struct llama_context * ctx) {
  14758. ctx->t_start_us = ggml_time_us();
  14759. ctx->t_sample_us = ctx->n_sample = 0;
  14760. ctx->t_eval_us = ctx->n_eval = 0;
  14761. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  14762. }
  14763. const char * llama_print_system_info(void) {
  14764. static std::string s;
  14765. s = "";
  14766. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  14767. s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
  14768. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  14769. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  14770. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  14771. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  14772. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  14773. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  14774. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  14775. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  14776. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  14777. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  14778. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  14779. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  14780. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  14781. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  14782. s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
  14783. #ifdef GGML_USE_LLAMAFILE
  14784. s += "LLAMAFILE = 1 | ";
  14785. #else
  14786. s += "LLAMAFILE = 0 | ";
  14787. #endif
  14788. return s.c_str();
  14789. }
  14790. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  14791. fprintf(stream, "\n");
  14792. fprintf(stream, "###########\n");
  14793. fprintf(stream, "# Timings #\n");
  14794. fprintf(stream, "###########\n");
  14795. fprintf(stream, "\n");
  14796. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  14797. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  14798. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  14799. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  14800. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  14801. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  14802. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  14803. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  14804. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  14805. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  14806. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  14807. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  14808. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  14809. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  14810. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  14811. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  14812. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  14813. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  14814. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  14815. }
  14816. // For internal test use
  14817. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  14818. struct llama_context * ctx
  14819. ) {
  14820. return ctx->model.tensors_by_name;
  14821. }
  14822. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  14823. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  14824. g_state.log_callback_user_data = user_data;
  14825. #ifdef GGML_USE_METAL
  14826. ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  14827. #endif
  14828. }
  14829. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  14830. va_list args_copy;
  14831. va_copy(args_copy, args);
  14832. char buffer[128];
  14833. int len = vsnprintf(buffer, 128, format, args);
  14834. if (len < 128) {
  14835. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  14836. } else {
  14837. char* buffer2 = new char[len+1];
  14838. vsnprintf(buffer2, len+1, format, args_copy);
  14839. buffer2[len] = 0;
  14840. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  14841. delete[] buffer2;
  14842. }
  14843. va_end(args_copy);
  14844. }
  14845. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  14846. va_list args;
  14847. va_start(args, format);
  14848. llama_log_internal_v(level, format, args);
  14849. va_end(args);
  14850. }
  14851. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  14852. (void) level;
  14853. (void) user_data;
  14854. fputs(text, stderr);
  14855. fflush(stderr);
  14856. }