llama.h 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142
  1. #ifndef LLAMA_H
  2. #define LLAMA_H
  3. #include "ggml.h"
  4. #include "ggml-backend.h"
  5. #include <stddef.h>
  6. #include <stdint.h>
  7. #include <stdio.h>
  8. #include <stdbool.h>
  9. #ifdef LLAMA_SHARED
  10. # if defined(_WIN32) && !defined(__MINGW32__)
  11. # ifdef LLAMA_BUILD
  12. # define LLAMA_API __declspec(dllexport)
  13. # else
  14. # define LLAMA_API __declspec(dllimport)
  15. # endif
  16. # else
  17. # define LLAMA_API __attribute__ ((visibility ("default")))
  18. # endif
  19. #else
  20. # define LLAMA_API
  21. #endif
  22. #ifdef __GNUC__
  23. # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  24. #elif defined(_MSC_VER)
  25. # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  26. #else
  27. # define DEPRECATED(func, hint) func
  28. #endif
  29. #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
  30. #define LLAMA_MAX_RNG_STATE (64*1024)
  31. #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
  32. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  33. #define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'
  34. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  35. #define LLAMA_SESSION_VERSION 5
  36. #define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ
  37. #define LLAMA_STATE_SEQ_VERSION 1
  38. #ifdef __cplusplus
  39. extern "C" {
  40. #endif
  41. //
  42. // C interface
  43. //
  44. // TODO: show sample usage
  45. //
  46. struct llama_model;
  47. struct llama_context;
  48. typedef int32_t llama_pos;
  49. typedef int32_t llama_token;
  50. typedef int32_t llama_seq_id;
  51. enum llama_vocab_type {
  52. LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
  53. LLAMA_VOCAB_TYPE_SPM = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback
  54. LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE
  55. LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece
  56. };
  57. // pre-tokenization types
  58. enum llama_vocab_pre_type {
  59. LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0,
  60. LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1,
  61. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2,
  62. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3,
  63. LLAMA_VOCAB_PRE_TYPE_FALCON = 4,
  64. LLAMA_VOCAB_PRE_TYPE_MPT = 5,
  65. LLAMA_VOCAB_PRE_TYPE_STARCODER = 6,
  66. LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
  67. };
  68. // note: these values should be synchronized with ggml_rope
  69. // TODO: maybe move this enum to ggml.h (ggml_rope_type)
  70. enum llama_rope_type {
  71. LLAMA_ROPE_TYPE_NONE = -1,
  72. LLAMA_ROPE_TYPE_NORM = 0,
  73. LLAMA_ROPE_TYPE_NEOX = 2,
  74. LLAMA_ROPE_TYPE_GLM = 4,
  75. };
  76. enum llama_token_type {
  77. LLAMA_TOKEN_TYPE_UNDEFINED = 0,
  78. LLAMA_TOKEN_TYPE_NORMAL = 1,
  79. LLAMA_TOKEN_TYPE_UNKNOWN = 2,
  80. LLAMA_TOKEN_TYPE_CONTROL = 3,
  81. LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
  82. LLAMA_TOKEN_TYPE_UNUSED = 5,
  83. LLAMA_TOKEN_TYPE_BYTE = 6,
  84. };
  85. // model file types
  86. enum llama_ftype {
  87. LLAMA_FTYPE_ALL_F32 = 0,
  88. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  89. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  90. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  91. LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  92. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  93. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  94. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  95. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  96. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  97. LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  98. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
  99. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
  100. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
  101. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
  102. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
  103. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
  104. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
  105. LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
  106. LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
  107. LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
  108. LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
  109. LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors
  110. LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
  111. LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
  112. LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
  113. LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors
  114. LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors
  115. LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
  116. LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
  117. LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
  118. LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
  119. LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
  120. };
  121. enum llama_rope_scaling_type {
  122. LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
  123. LLAMA_ROPE_SCALING_TYPE_NONE = 0,
  124. LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
  125. LLAMA_ROPE_SCALING_TYPE_YARN = 2,
  126. LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN,
  127. };
  128. enum llama_pooling_type {
  129. LLAMA_POOLING_TYPE_UNSPECIFIED = -1,
  130. LLAMA_POOLING_TYPE_NONE = 0,
  131. LLAMA_POOLING_TYPE_MEAN = 1,
  132. LLAMA_POOLING_TYPE_CLS = 2,
  133. };
  134. enum llama_split_mode {
  135. LLAMA_SPLIT_MODE_NONE = 0, // single GPU
  136. LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
  137. LLAMA_SPLIT_MODE_ROW = 2, // split rows across GPUs
  138. };
  139. typedef struct llama_token_data {
  140. llama_token id; // token id
  141. float logit; // log-odds of the token
  142. float p; // probability of the token
  143. } llama_token_data;
  144. typedef struct llama_token_data_array {
  145. llama_token_data * data;
  146. size_t size;
  147. bool sorted;
  148. } llama_token_data_array;
  149. typedef bool (*llama_progress_callback)(float progress, void *ctx);
  150. // Input data for llama_decode
  151. // A llama_batch object can contain input about one or many sequences
  152. // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
  153. //
  154. // - token : the token ids of the input (used when embd is NULL)
  155. // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
  156. // - pos : the positions of the respective token in the sequence
  157. // - seq_id : the sequence to which the respective token belongs
  158. // - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
  159. //
  160. typedef struct llama_batch {
  161. int32_t n_tokens;
  162. llama_token * token;
  163. float * embd;
  164. llama_pos * pos;
  165. int32_t * n_seq_id;
  166. llama_seq_id ** seq_id;
  167. int8_t * logits; // TODO: rename this to "output"
  168. // NOTE: helpers for smooth API transition - can be deprecated in the future
  169. // for future-proof code, use the above fields instead and ignore everything below
  170. //
  171. // pos[i] = all_pos_0 + i*all_pos_1
  172. //
  173. llama_pos all_pos_0; // used if pos == NULL
  174. llama_pos all_pos_1; // used if pos == NULL
  175. llama_seq_id all_seq_id; // used if seq_id == NULL
  176. } llama_batch;
  177. enum llama_model_kv_override_type {
  178. LLAMA_KV_OVERRIDE_TYPE_INT,
  179. LLAMA_KV_OVERRIDE_TYPE_FLOAT,
  180. LLAMA_KV_OVERRIDE_TYPE_BOOL,
  181. LLAMA_KV_OVERRIDE_TYPE_STR,
  182. };
  183. struct llama_model_kv_override {
  184. enum llama_model_kv_override_type tag;
  185. char key[128];
  186. union {
  187. int64_t val_i64;
  188. double val_f64;
  189. bool val_bool;
  190. char val_str[128];
  191. };
  192. };
  193. struct llama_model_params {
  194. int32_t n_gpu_layers; // number of layers to store in VRAM
  195. enum llama_split_mode split_mode; // how to split the model across multiple GPUs
  196. // main_gpu interpretation depends on split_mode:
  197. // LLAMA_SPLIT_NONE: the GPU that is used for the entire model
  198. // LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results
  199. // LLAMA_SPLIT_LAYER: ignored
  200. int32_t main_gpu;
  201. // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
  202. const float * tensor_split;
  203. // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
  204. // If the provided progress_callback returns true, model loading continues.
  205. // If it returns false, model loading is immediately aborted.
  206. llama_progress_callback progress_callback;
  207. // context pointer passed to the progress callback
  208. void * progress_callback_user_data;
  209. // override key-value pairs of the model meta data
  210. const struct llama_model_kv_override * kv_overrides;
  211. // Keep the booleans together to avoid misalignment during copy-by-value.
  212. bool vocab_only; // only load the vocabulary, no weights
  213. bool use_mmap; // use mmap if possible
  214. bool use_mlock; // force system to keep model in RAM
  215. bool check_tensors; // validate model tensor data
  216. };
  217. struct llama_context_params {
  218. uint32_t seed; // RNG seed, -1 for random
  219. uint32_t n_ctx; // text context, 0 = from model
  220. uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode
  221. uint32_t n_ubatch; // physical maximum batch size
  222. uint32_t n_seq_max; // max number of sequences (i.e. distinct states for recurrent models)
  223. uint32_t n_threads; // number of threads to use for generation
  224. uint32_t n_threads_batch; // number of threads to use for batch processing
  225. enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
  226. enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
  227. // (ignored if no pooling layer)
  228. // ref: https://github.com/ggerganov/llama.cpp/pull/2054
  229. float rope_freq_base; // RoPE base frequency, 0 = from model
  230. float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
  231. float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
  232. float yarn_attn_factor; // YaRN magnitude scaling factor
  233. float yarn_beta_fast; // YaRN low correction dim
  234. float yarn_beta_slow; // YaRN high correction dim
  235. uint32_t yarn_orig_ctx; // YaRN original context size
  236. float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default)
  237. ggml_backend_sched_eval_callback cb_eval;
  238. void * cb_eval_user_data;
  239. enum ggml_type type_k; // data type for K cache
  240. enum ggml_type type_v; // data type for V cache
  241. // Keep the booleans together to avoid misalignment during copy-by-value.
  242. bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
  243. bool embeddings; // if true, extract embeddings (together with logits)
  244. bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
  245. // Abort callback
  246. // if it returns true, execution of llama_decode() will be aborted
  247. // currently works only with CPU execution
  248. ggml_abort_callback abort_callback;
  249. void * abort_callback_data;
  250. };
  251. // model quantization parameters
  252. typedef struct llama_model_quantize_params {
  253. int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
  254. enum llama_ftype ftype; // quantize to this llama_ftype
  255. enum ggml_type output_tensor_type; // output tensor type
  256. enum ggml_type token_embedding_type; // itoken embeddings tensor type
  257. bool allow_requantize; // allow quantizing non-f32/f16 tensors
  258. bool quantize_output_tensor; // quantize output.weight
  259. bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
  260. bool pure; // quantize all tensors to the default type
  261. bool keep_split; // quantize to the same number of shards
  262. void * imatrix; // pointer to importance matrix data
  263. void * kv_overrides; // pointer to vector containing overrides
  264. } llama_model_quantize_params;
  265. // grammar types
  266. struct llama_grammar;
  267. // grammar element type
  268. enum llama_gretype {
  269. // end of rule definition
  270. LLAMA_GRETYPE_END = 0,
  271. // start of alternate definition for rule
  272. LLAMA_GRETYPE_ALT = 1,
  273. // non-terminal element: reference to rule
  274. LLAMA_GRETYPE_RULE_REF = 2,
  275. // terminal element: character (code point)
  276. LLAMA_GRETYPE_CHAR = 3,
  277. // inverse char(s) ([^a], [^a-b] [^abc])
  278. LLAMA_GRETYPE_CHAR_NOT = 4,
  279. // modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
  280. // be an inclusive range ([a-z])
  281. LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
  282. // modifies a preceding LLAMA_GRETYPE_CHAR or
  283. // LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
  284. LLAMA_GRETYPE_CHAR_ALT = 6,
  285. };
  286. typedef struct llama_grammar_element {
  287. enum llama_gretype type;
  288. uint32_t value; // Unicode code point or rule ID
  289. } llama_grammar_element;
  290. // performance timing information
  291. struct llama_timings {
  292. double t_start_ms;
  293. double t_end_ms;
  294. double t_load_ms;
  295. double t_sample_ms;
  296. double t_p_eval_ms;
  297. double t_eval_ms;
  298. int32_t n_sample;
  299. int32_t n_p_eval;
  300. int32_t n_eval;
  301. };
  302. // used in chat template
  303. typedef struct llama_chat_message {
  304. const char * role;
  305. const char * content;
  306. } llama_chat_message;
  307. // Helpers for getting default parameters
  308. LLAMA_API struct llama_model_params llama_model_default_params(void);
  309. LLAMA_API struct llama_context_params llama_context_default_params(void);
  310. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
  311. // Initialize the llama + ggml backend
  312. // If numa is true, use NUMA optimizations
  313. // Call once at the start of the program
  314. LLAMA_API void llama_backend_init(void);
  315. //optional:
  316. LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
  317. // Call once at the end of the program - currently only used for MPI
  318. LLAMA_API void llama_backend_free(void);
  319. LLAMA_API struct llama_model * llama_load_model_from_file(
  320. const char * path_model,
  321. struct llama_model_params params);
  322. LLAMA_API void llama_free_model(struct llama_model * model);
  323. LLAMA_API struct llama_context * llama_new_context_with_model(
  324. struct llama_model * model,
  325. struct llama_context_params params);
  326. // Frees all allocated memory
  327. LLAMA_API void llama_free(struct llama_context * ctx);
  328. LLAMA_API int64_t llama_time_us(void);
  329. LLAMA_API size_t llama_max_devices(void);
  330. LLAMA_API bool llama_supports_mmap (void);
  331. LLAMA_API bool llama_supports_mlock (void);
  332. LLAMA_API bool llama_supports_gpu_offload(void);
  333. LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
  334. LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
  335. LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
  336. LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
  337. LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
  338. LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
  339. LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
  340. LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
  341. LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
  342. LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
  343. LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
  344. LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
  345. // Get the model's RoPE frequency scaling factor
  346. LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
  347. // Functions to access the model's GGUF metadata scalar values
  348. // - The functions return the length of the string on success, or -1 on failure
  349. // - The output string is always null-terminated and cleared on failure
  350. // - GGUF array values are not supported by these functions
  351. // Get metadata value as a string by key name
  352. LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
  353. // Get the number of metadata key/value pairs
  354. LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
  355. // Get metadata key name by index
  356. LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  357. // Get metadata value as a string by index
  358. LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  359. // Get a string describing the model type
  360. LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
  361. // Returns the total size of all the tensors in the model in bytes
  362. LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
  363. // Returns the total number of parameters in the model
  364. LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
  365. // Get a llama model tensor
  366. LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
  367. // Returns 0 on success
  368. LLAMA_API uint32_t llama_model_quantize(
  369. const char * fname_inp,
  370. const char * fname_out,
  371. const llama_model_quantize_params * params);
  372. // Apply a LoRA adapter to a loaded model
  373. // path_base_model is the path to a higher quality model to use as a base for
  374. // the layers modified by the adapter. Can be NULL to use the current loaded model.
  375. // The model needs to be reloaded before applying a new adapter, otherwise the adapter
  376. // will be applied on top of the previous one
  377. // Returns 0 on success
  378. LLAMA_API int32_t llama_model_apply_lora_from_file(
  379. const struct llama_model * model,
  380. const char * path_lora,
  381. float scale,
  382. const char * path_base_model,
  383. int32_t n_threads);
  384. // Apply a loaded control vector to a llama_context, or if data is NULL, clear
  385. // the currently loaded vector.
  386. // n_embd should be the size of a single layer's control, and data should point
  387. // to an n_embd x n_layers buffer starting from layer 1.
  388. // il_start and il_end are the layer range the vector should apply to (both inclusive)
  389. // See llama_control_vector_load in common to load a control vector.
  390. LLAMA_API int32_t llama_control_vector_apply(
  391. struct llama_context * lctx,
  392. const float * data,
  393. size_t len,
  394. int32_t n_embd,
  395. int32_t il_start,
  396. int32_t il_end);
  397. //
  398. // KV cache
  399. //
  400. // Information associated with an individual cell in the KV cache view.
  401. struct llama_kv_cache_view_cell {
  402. // The position for this cell. Takes KV cache shifts into account.
  403. // May be negative if the cell is not populated.
  404. llama_pos pos;
  405. };
  406. // An updateable view of the KV cache.
  407. struct llama_kv_cache_view {
  408. // Number of KV cache cells. This will be the same as the context size.
  409. int32_t n_cells;
  410. // Maximum number of sequences that can exist in a cell. It's not an error
  411. // if there are more sequences in a cell than this value, however they will
  412. // not be visible in the view cells_sequences.
  413. int32_t n_seq_max;
  414. // Number of tokens in the cache. For example, if there are two populated
  415. // cells, the first with 1 sequence id in it and the second with 2 sequence
  416. // ids then you'll have 3 tokens.
  417. int32_t token_count;
  418. // Number of populated cache cells.
  419. int32_t used_cells;
  420. // Maximum contiguous empty slots in the cache.
  421. int32_t max_contiguous;
  422. // Index to the start of the max_contiguous slot range. Can be negative
  423. // when cache is full.
  424. int32_t max_contiguous_idx;
  425. // Information for an individual cell.
  426. struct llama_kv_cache_view_cell * cells;
  427. // The sequences for each cell. There will be n_seq_max items per cell.
  428. llama_seq_id * cells_sequences;
  429. };
  430. // Create an empty KV cache view. (use only for debugging purposes)
  431. LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max);
  432. // Free a KV cache view. (use only for debugging purposes)
  433. LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
  434. // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
  435. LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
  436. // Returns the number of tokens in the KV cache (slow, use only for debug)
  437. // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
  438. LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
  439. // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
  440. LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
  441. // Clear the KV cache
  442. LLAMA_API void llama_kv_cache_clear(
  443. struct llama_context * ctx);
  444. // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
  445. // Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
  446. // seq_id < 0 : match any sequence
  447. // p0 < 0 : [0, p1]
  448. // p1 < 0 : [p0, inf)
  449. LLAMA_API bool llama_kv_cache_seq_rm(
  450. struct llama_context * ctx,
  451. llama_seq_id seq_id,
  452. llama_pos p0,
  453. llama_pos p1);
  454. // Copy all tokens that belong to the specified sequence to another sequence
  455. // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
  456. // p0 < 0 : [0, p1]
  457. // p1 < 0 : [p0, inf)
  458. LLAMA_API void llama_kv_cache_seq_cp(
  459. struct llama_context * ctx,
  460. llama_seq_id seq_id_src,
  461. llama_seq_id seq_id_dst,
  462. llama_pos p0,
  463. llama_pos p1);
  464. // Removes all tokens that do not belong to the specified sequence
  465. LLAMA_API void llama_kv_cache_seq_keep(
  466. struct llama_context * ctx,
  467. llama_seq_id seq_id);
  468. // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
  469. // If the KV cache is RoPEd, the KV data is updated accordingly:
  470. // - lazily on next llama_decode()
  471. // - explicitly with llama_kv_cache_update()
  472. // p0 < 0 : [0, p1]
  473. // p1 < 0 : [p0, inf)
  474. LLAMA_API void llama_kv_cache_seq_add(
  475. struct llama_context * ctx,
  476. llama_seq_id seq_id,
  477. llama_pos p0,
  478. llama_pos p1,
  479. llama_pos delta);
  480. // Integer division of the positions by factor of `d > 1`
  481. // If the KV cache is RoPEd, the KV data is updated accordingly:
  482. // - lazily on next llama_decode()
  483. // - explicitly with llama_kv_cache_update()
  484. // p0 < 0 : [0, p1]
  485. // p1 < 0 : [p0, inf)
  486. LLAMA_API void llama_kv_cache_seq_div(
  487. struct llama_context * ctx,
  488. llama_seq_id seq_id,
  489. llama_pos p0,
  490. llama_pos p1,
  491. int d);
  492. // Returns the largest position present in the KV cache for the specified sequence
  493. LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
  494. struct llama_context * ctx,
  495. llama_seq_id seq_id);
  496. // Defragment the KV cache
  497. // This will be applied:
  498. // - lazily on next llama_decode()
  499. // - explicitly with llama_kv_cache_update()
  500. LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
  501. // Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
  502. LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
  503. //
  504. // State / sessions
  505. //
  506. // Returns the maximum size in bytes of the state (rng, logits, embedding
  507. // and kv_cache) - will often be smaller after compacting tokens
  508. LLAMA_API size_t llama_state_get_size(const struct llama_context * ctx);
  509. LLAMA_API DEPRECATED(size_t llama_get_state_size(const struct llama_context * ctx),
  510. "use llama_state_get_size instead");
  511. // Copies the state to the specified destination address.
  512. // Destination needs to have allocated enough memory.
  513. // Returns the number of bytes copied
  514. LLAMA_API size_t llama_state_get_data(
  515. struct llama_context * ctx,
  516. uint8_t * dst);
  517. LLAMA_API DEPRECATED(size_t llama_copy_state_data(
  518. struct llama_context * ctx,
  519. uint8_t * dst),
  520. "use llama_state_get_data instead");
  521. // Set the state reading from the specified address
  522. // Returns the number of bytes read
  523. LLAMA_API size_t llama_state_set_data(
  524. struct llama_context * ctx,
  525. const uint8_t * src);
  526. LLAMA_API DEPRECATED(size_t llama_set_state_data(
  527. struct llama_context * ctx,
  528. const uint8_t * src),
  529. "use llama_state_set_data instead");
  530. // Save/load session file
  531. LLAMA_API bool llama_state_load_file(
  532. struct llama_context * ctx,
  533. const char * path_session,
  534. llama_token * tokens_out,
  535. size_t n_token_capacity,
  536. size_t * n_token_count_out);
  537. LLAMA_API DEPRECATED(bool llama_load_session_file(
  538. struct llama_context * ctx,
  539. const char * path_session,
  540. llama_token * tokens_out,
  541. size_t n_token_capacity,
  542. size_t * n_token_count_out),
  543. "use llama_state_load_file instead");
  544. LLAMA_API bool llama_state_save_file(
  545. struct llama_context * ctx,
  546. const char * path_session,
  547. const llama_token * tokens,
  548. size_t n_token_count);
  549. LLAMA_API DEPRECATED(bool llama_save_session_file(
  550. struct llama_context * ctx,
  551. const char * path_session,
  552. const llama_token * tokens,
  553. size_t n_token_count),
  554. "use llama_state_save_file instead");
  555. // Get the exact size needed to copy the KV cache of a single sequence
  556. LLAMA_API size_t llama_state_seq_get_size(
  557. struct llama_context * ctx,
  558. llama_seq_id seq_id);
  559. // Copy the KV cache of a single sequence into the specified buffer
  560. LLAMA_API size_t llama_state_seq_get_data(
  561. struct llama_context * ctx,
  562. uint8_t * dst,
  563. llama_seq_id seq_id);
  564. // Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence
  565. // Returns:
  566. // - Positive: Ok
  567. // - Zero: Failed to load
  568. LLAMA_API size_t llama_state_seq_set_data(
  569. struct llama_context * ctx,
  570. const uint8_t * src,
  571. llama_seq_id dest_seq_id);
  572. LLAMA_API size_t llama_state_seq_save_file(
  573. struct llama_context * ctx,
  574. const char * filepath,
  575. llama_seq_id seq_id,
  576. const llama_token * tokens,
  577. size_t n_token_count);
  578. LLAMA_API size_t llama_state_seq_load_file(
  579. struct llama_context * ctx,
  580. const char * filepath,
  581. llama_seq_id dest_seq_id,
  582. llama_token * tokens_out,
  583. size_t n_token_capacity,
  584. size_t * n_token_count_out);
  585. //
  586. // Decoding
  587. //
  588. // Return batch for single sequence of tokens starting at pos_0
  589. //
  590. // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
  591. //
  592. LLAMA_API struct llama_batch llama_batch_get_one(
  593. llama_token * tokens,
  594. int32_t n_tokens,
  595. llama_pos pos_0,
  596. llama_seq_id seq_id);
  597. // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
  598. // Each token can be assigned up to n_seq_max sequence ids
  599. // The batch has to be freed with llama_batch_free()
  600. // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
  601. // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
  602. // The rest of the llama_batch members are allocated with size n_tokens
  603. // All members are left uninitialized
  604. LLAMA_API struct llama_batch llama_batch_init(
  605. int32_t n_tokens,
  606. int32_t embd,
  607. int32_t n_seq_max);
  608. // Frees a batch of tokens allocated with llama_batch_init()
  609. LLAMA_API void llama_batch_free(struct llama_batch batch);
  610. // Positive return values does not mean a fatal error, but rather a warning.
  611. // 0 - success
  612. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  613. // < 0 - error
  614. LLAMA_API int32_t llama_decode(
  615. struct llama_context * ctx,
  616. struct llama_batch batch);
  617. // Set the number of threads used for decoding
  618. // n_threads is the number of threads used for generation (single token)
  619. // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
  620. LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
  621. // Set whether to use causal attention or not
  622. // If set to true, the model will only attend to the past tokens
  623. LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
  624. // Set abort callback
  625. LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
  626. // Wait until all computations are finished
  627. // This is automatically done when using one of the functions below to obtain the computation results
  628. // and is not necessary to call it explicitly in most cases
  629. LLAMA_API void llama_synchronize(struct llama_context * ctx);
  630. // Token logits obtained from the last call to llama_decode()
  631. // The logits for which llama_batch.logits[i] != 0 are stored contiguously
  632. // in the order they have appeared in the batch.
  633. // Rows: number of tokens for which llama_batch.logits[i] != 0
  634. // Cols: n_vocab
  635. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  636. // Logits for the ith token. For positive indices, Equivalent to:
  637. // llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab
  638. // Negative indicies can be used to access logits in reverse order, -1 is the last logit.
  639. // returns NULL for invalid ids.
  640. LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
  641. // Get all output token embeddings.
  642. // when pooling_type == LLAMA_POOLING_TYPE_NONE or when using a generative model,
  643. // the embeddings for which llama_batch.logits[i] != 0 are stored contiguously
  644. // in the order they have appeared in the batch.
  645. // shape: [n_outputs*n_embd]
  646. // Otherwise, returns NULL.
  647. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  648. // Get the embeddings for the ith token. For positive indices, Equivalent to:
  649. // llama_get_embeddings(ctx) + ctx->output_ids[i]*n_embd
  650. // Negative indicies can be used to access embeddings in reverse order, -1 is the last embedding.
  651. // shape: [n_embd] (1-dimensional)
  652. // returns NULL for invalid ids.
  653. LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
  654. // Get the embeddings for a sequence id
  655. // Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
  656. // shape: [n_embd] (1-dimensional)
  657. LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
  658. //
  659. // Vocab
  660. //
  661. LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
  662. LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
  663. LLAMA_API enum llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token);
  664. // Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
  665. LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);
  666. // Special tokens
  667. LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
  668. LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
  669. LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification
  670. LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator
  671. LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
  672. // Returns -1 if unknown, 1 for true or 0 for false.
  673. LLAMA_API int32_t llama_add_bos_token(const struct llama_model * model);
  674. // Returns -1 if unknown, 1 for true or 0 for false.
  675. LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model);
  676. // Codellama infill tokens
  677. LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
  678. LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
  679. LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
  680. LLAMA_API llama_token llama_token_eot (const struct llama_model * model); // End of infill middle
  681. //
  682. // Tokenization
  683. //
  684. /// @details Convert the provided text into tokens.
  685. /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
  686. /// @return Returns the number of tokens on success, no more than n_tokens_max
  687. /// @return Returns a negative number on failure - the number of tokens that would have been returned
  688. /// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
  689. /// as plaintext. Does not insert a leading space.
  690. LLAMA_API int32_t llama_tokenize(
  691. const struct llama_model * model,
  692. const char * text,
  693. int32_t text_len,
  694. llama_token * tokens,
  695. int32_t n_tokens_max,
  696. bool add_special,
  697. bool parse_special);
  698. // Token Id -> Piece.
  699. // Uses the vocabulary in the provided context.
  700. // Does not write null terminator to the buffer.
  701. // User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
  702. // @param special If true, special tokens are rendered in the output.
  703. LLAMA_API int32_t llama_token_to_piece(
  704. const struct llama_model * model,
  705. llama_token token,
  706. char * buf,
  707. int32_t length,
  708. bool special);
  709. /// Apply chat template. Inspired by hf apply_chat_template() on python.
  710. /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
  711. /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
  712. /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead.
  713. /// @param chat Pointer to a list of multiple llama_chat_message
  714. /// @param n_msg Number of llama_chat_message in this chat
  715. /// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
  716. /// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
  717. /// @param length The size of the allocated buffer
  718. /// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
  719. LLAMA_API int32_t llama_chat_apply_template(
  720. const struct llama_model * model,
  721. const char * tmpl,
  722. const struct llama_chat_message * chat,
  723. size_t n_msg,
  724. bool add_ass,
  725. char * buf,
  726. int32_t length);
  727. //
  728. // Grammar
  729. //
  730. LLAMA_API struct llama_grammar * llama_grammar_init(
  731. const llama_grammar_element ** rules,
  732. size_t n_rules,
  733. size_t start_rule_index);
  734. LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
  735. LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
  736. //
  737. // Sampling functions
  738. //
  739. // Sets the current rng seed.
  740. LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
  741. /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
  742. /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
  743. LLAMA_API void llama_sample_repetition_penalties(
  744. struct llama_context * ctx,
  745. llama_token_data_array * candidates,
  746. const llama_token * last_tokens,
  747. size_t penalty_last_n,
  748. float penalty_repeat,
  749. float penalty_freq,
  750. float penalty_present);
  751. /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
  752. /// @param logits Logits extracted from the original generation context.
  753. /// @param logits_guidance Logits extracted from a separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
  754. /// @param scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
  755. LLAMA_API void llama_sample_apply_guidance(
  756. struct llama_context * ctx,
  757. float * logits,
  758. float * logits_guidance,
  759. float scale);
  760. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  761. LLAMA_API void llama_sample_softmax(
  762. struct llama_context * ctx,
  763. llama_token_data_array * candidates);
  764. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  765. LLAMA_API void llama_sample_top_k(
  766. struct llama_context * ctx,
  767. llama_token_data_array * candidates,
  768. int32_t k,
  769. size_t min_keep);
  770. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  771. LLAMA_API void llama_sample_top_p(
  772. struct llama_context * ctx,
  773. llama_token_data_array * candidates,
  774. float p,
  775. size_t min_keep);
  776. /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
  777. LLAMA_API void llama_sample_min_p(
  778. struct llama_context * ctx,
  779. llama_token_data_array * candidates,
  780. float p,
  781. size_t min_keep);
  782. /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
  783. LLAMA_API void llama_sample_tail_free(
  784. struct llama_context * ctx,
  785. llama_token_data_array * candidates,
  786. float z,
  787. size_t min_keep);
  788. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  789. LLAMA_API void llama_sample_typical(
  790. struct llama_context * ctx,
  791. llama_token_data_array * candidates,
  792. float p,
  793. size_t min_keep);
  794. /// @details Dynamic temperature implementation described in the paper https://arxiv.org/abs/2309.02772.
  795. LLAMA_API void llama_sample_entropy(
  796. struct llama_context * ctx,
  797. llama_token_data_array * candidates_p,
  798. float min_temp,
  799. float max_temp,
  800. float exponent_val);
  801. LLAMA_API void llama_sample_temp(
  802. struct llama_context * ctx,
  803. llama_token_data_array * candidates,
  804. float temp);
  805. /// @details Apply constraints from grammar
  806. LLAMA_API void llama_sample_grammar(
  807. struct llama_context * ctx,
  808. llama_token_data_array * candidates,
  809. const struct llama_grammar * grammar);
  810. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  811. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  812. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  813. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  814. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  815. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  816. LLAMA_API llama_token llama_sample_token_mirostat(
  817. struct llama_context * ctx,
  818. llama_token_data_array * candidates,
  819. float tau,
  820. float eta,
  821. int32_t m,
  822. float * mu);
  823. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  824. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  825. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  826. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  827. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  828. LLAMA_API llama_token llama_sample_token_mirostat_v2(
  829. struct llama_context * ctx,
  830. llama_token_data_array * candidates,
  831. float tau,
  832. float eta,
  833. float * mu);
  834. /// @details Selects the token with the highest probability.
  835. /// Does not compute the token probabilities. Use llama_sample_softmax() instead.
  836. LLAMA_API llama_token llama_sample_token_greedy(
  837. struct llama_context * ctx,
  838. llama_token_data_array * candidates);
  839. /// @details Randomly selects a token from the candidates based on their probabilities using the RNG of ctx.
  840. LLAMA_API llama_token llama_sample_token(
  841. struct llama_context * ctx,
  842. llama_token_data_array * candidates);
  843. /// @details Accepts the sampled token into the grammar
  844. LLAMA_API void llama_grammar_accept_token(
  845. struct llama_context * ctx,
  846. struct llama_grammar * grammar,
  847. llama_token token);
  848. //
  849. // Beam search
  850. //
  851. struct llama_beam_view {
  852. const llama_token * tokens;
  853. size_t n_tokens;
  854. float p; // Cumulative beam probability (renormalized relative to all beams)
  855. bool eob; // Callback should set this to true when a beam is at end-of-beam.
  856. };
  857. // Passed to beam_search_callback function.
  858. // Whenever 0 < common_prefix_length, this number of tokens should be copied from any of the beams
  859. // (e.g. beams[0]) as they will be removed (shifted) from all beams in all subsequent callbacks.
  860. // These pointers are valid only during the synchronous callback, so should not be saved.
  861. struct llama_beams_state {
  862. struct llama_beam_view * beam_views;
  863. size_t n_beams; // Number of elements in beam_views[].
  864. size_t common_prefix_length; // Current max length of prefix tokens shared by all beams.
  865. bool last_call; // True iff this is the last callback invocation.
  866. };
  867. // Type of pointer to the beam_search_callback function.
  868. // void* callback_data is any custom data passed to llama_beam_search, that is subsequently
  869. // passed back to beam_search_callback. This avoids having to use global variables in the callback.
  870. typedef void (*llama_beam_search_callback_fn_t)(void * callback_data, struct llama_beams_state);
  871. /// @details Deterministically returns entire sentence constructed by a beam search.
  872. /// @param ctx Pointer to the llama_context.
  873. /// @param callback Invoked for each iteration of the beam_search loop, passing in beams_state.
  874. /// @param callback_data A pointer that is simply passed back to callback.
  875. /// @param n_beams Number of beams to use.
  876. /// @param n_past Number of tokens already evaluated.
  877. /// @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
  878. LLAMA_API void llama_beam_search(
  879. struct llama_context * ctx,
  880. llama_beam_search_callback_fn_t callback,
  881. void * callback_data,
  882. size_t n_beams,
  883. int32_t n_past,
  884. int32_t n_predict);
  885. /// @details Build a split GGUF final path for this chunk.
  886. /// llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
  887. // Returns the split_path length.
  888. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
  889. /// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
  890. /// llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
  891. // Returns the split_prefix length.
  892. LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
  893. // Performance information
  894. LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
  895. LLAMA_API void llama_print_timings(struct llama_context * ctx);
  896. LLAMA_API void llama_reset_timings(struct llama_context * ctx);
  897. // Print system information
  898. LLAMA_API const char * llama_print_system_info(void);
  899. // Set callback for all future logging events.
  900. // If this is not called, or NULL is supplied, everything is output on stderr.
  901. LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
  902. LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
  903. #ifdef __cplusplus
  904. }
  905. #endif
  906. // Internal API to be implemented by llama.cpp and used by tests/benchmarks only
  907. #ifdef LLAMA_API_INTERNAL
  908. #include <random>
  909. #include <string>
  910. #include <vector>
  911. struct ggml_tensor;
  912. struct llama_partial_utf8 {
  913. uint32_t value; // bit value so far (unshifted)
  914. int n_remain; // num bytes remaining; -1 indicates invalid sequence
  915. };
  916. struct llama_grammar {
  917. const std::vector<std::vector<llama_grammar_element>> rules;
  918. std::vector<std::vector<const llama_grammar_element *>> stacks;
  919. // buffer for partially generated UTF-8 sequence from accepted tokens
  920. llama_partial_utf8 partial_utf8;
  921. };
  922. struct llama_grammar_candidate {
  923. size_t index;
  924. const uint32_t * code_points;
  925. llama_partial_utf8 partial_utf8;
  926. };
  927. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  928. struct llama_context * ctx
  929. );
  930. void llama_grammar_accept(
  931. const std::vector<std::vector<llama_grammar_element>> & rules,
  932. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  933. const uint32_t chr,
  934. std::vector<std::vector<const llama_grammar_element *>> & new_stacks);
  935. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  936. const std::string & src,
  937. llama_partial_utf8 partial_start);
  938. // Randomly selects a token from the candidates based on their probabilities using given std::mt19937.
  939. // This is a temporary workaround in order to fix race conditions when sampling with multiple sequences.
  940. llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng);
  941. #endif // LLAMA_API_INTERNAL
  942. #endif // LLAMA_H