ggml.c 411 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #if defined(GGML_USE_ACCELERATE)
  116. #include <Accelerate/Accelerate.h>
  117. #elif defined(GGML_USE_OPENBLAS)
  118. #include <cblas.h>
  119. #elif defined(GGML_USE_CUBLAS)
  120. #include "ggml-cuda.h"
  121. #elif defined(GGML_USE_CLBLAST)
  122. #include "ggml-opencl.h"
  123. #endif
  124. #undef MIN
  125. #undef MAX
  126. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  127. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  128. // floating point type used to accumulate sums
  129. typedef double ggml_float;
  130. // 16-bit float
  131. // on Arm, we use __fp16
  132. // on x86, we use uint16_t
  133. #ifdef __ARM_NEON
  134. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  135. //
  136. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  137. //
  138. #include <arm_neon.h>
  139. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  140. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  141. #define GGML_FP16_TO_FP32(x) ((float) (x))
  142. #define GGML_FP32_TO_FP16(x) (x)
  143. #else
  144. #ifdef __wasm_simd128__
  145. #include <wasm_simd128.h>
  146. #else
  147. #ifdef __POWER9_VECTOR__
  148. #include <altivec.h>
  149. #undef bool
  150. #define bool _Bool
  151. #else
  152. #include <immintrin.h>
  153. #endif
  154. #endif
  155. #ifdef __F16C__
  156. #ifdef _MSC_VER
  157. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  158. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  159. #else
  160. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  161. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  162. #endif
  163. #elif defined(__POWER9_VECTOR__)
  164. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  165. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  166. /* the inline asm below is about 12% faster than the lookup method */
  167. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  168. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  169. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  170. register float f;
  171. register double d;
  172. __asm__(
  173. "mtfprd %0,%2\n"
  174. "xscvhpdp %0,%0\n"
  175. "frsp %1,%0\n" :
  176. /* temp */ "=d"(d),
  177. /* out */ "=f"(f):
  178. /* in */ "r"(h));
  179. return f;
  180. }
  181. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  182. register double d;
  183. register ggml_fp16_t r;
  184. __asm__( /* xscvdphp can work on double or single precision */
  185. "xscvdphp %0,%2\n"
  186. "mffprd %1,%0\n" :
  187. /* temp */ "=d"(d),
  188. /* out */ "=r"(r):
  189. /* in */ "f"(f));
  190. return r;
  191. }
  192. #else
  193. // FP16 <-> FP32
  194. // ref: https://github.com/Maratyszcza/FP16
  195. static inline float fp32_from_bits(uint32_t w) {
  196. union {
  197. uint32_t as_bits;
  198. float as_value;
  199. } fp32;
  200. fp32.as_bits = w;
  201. return fp32.as_value;
  202. }
  203. static inline uint32_t fp32_to_bits(float f) {
  204. union {
  205. float as_value;
  206. uint32_t as_bits;
  207. } fp32;
  208. fp32.as_value = f;
  209. return fp32.as_bits;
  210. }
  211. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  212. const uint32_t w = (uint32_t) h << 16;
  213. const uint32_t sign = w & UINT32_C(0x80000000);
  214. const uint32_t two_w = w + w;
  215. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  216. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  217. const float exp_scale = 0x1.0p-112f;
  218. #else
  219. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  220. #endif
  221. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  222. const uint32_t magic_mask = UINT32_C(126) << 23;
  223. const float magic_bias = 0.5f;
  224. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  225. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  226. const uint32_t result = sign |
  227. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  228. return fp32_from_bits(result);
  229. }
  230. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  231. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  232. const float scale_to_inf = 0x1.0p+112f;
  233. const float scale_to_zero = 0x1.0p-110f;
  234. #else
  235. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  236. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  237. #endif
  238. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  239. const uint32_t w = fp32_to_bits(f);
  240. const uint32_t shl1_w = w + w;
  241. const uint32_t sign = w & UINT32_C(0x80000000);
  242. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  243. if (bias < UINT32_C(0x71000000)) {
  244. bias = UINT32_C(0x71000000);
  245. }
  246. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  247. const uint32_t bits = fp32_to_bits(base);
  248. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  249. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  250. const uint32_t nonsign = exp_bits + mantissa_bits;
  251. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  252. }
  253. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  254. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  255. #endif // __F16C__
  256. #endif // __ARM_NEON
  257. //
  258. // global data
  259. //
  260. // precomputed gelu table for f16 (128 KB)
  261. static ggml_fp16_t table_gelu_f16[1 << 16];
  262. // precomputed silu table for f16 (128 KB)
  263. static ggml_fp16_t table_silu_f16[1 << 16];
  264. // precomputed exp table for f16 (128 KB)
  265. static ggml_fp16_t table_exp_f16[1 << 16];
  266. // precomputed f32 table for f16 (256 KB)
  267. static float table_f32_f16[1 << 16];
  268. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  269. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  270. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  271. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  272. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  273. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  274. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  275. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  276. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  277. // precomputed tables for expanding 8bits to 8 bytes (shl 4)
  278. static const uint64_t table_b2b_u[1 << 8] = { B8(00, 10) };
  279. #endif
  280. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  281. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  282. // This is also true for POWER9.
  283. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  284. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  285. uint16_t s;
  286. memcpy(&s, &f, sizeof(uint16_t));
  287. return table_f32_f16[s];
  288. }
  289. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  290. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  291. #endif
  292. // note: do not use these inside ggml.c
  293. // these are meant to be used via the ggml.h API
  294. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  295. return (float) GGML_FP16_TO_FP32(x);
  296. }
  297. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  298. return GGML_FP32_TO_FP16(x);
  299. }
  300. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  301. for (size_t i = 0; i < n; i++) {
  302. y[i] = GGML_FP16_TO_FP32(x[i]);
  303. }
  304. }
  305. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  306. size_t i = 0;
  307. #if defined(__F16C__)
  308. for (; i + 7 < n; i += 8) {
  309. __m256 x_vec = _mm256_loadu_ps(x + i);
  310. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  311. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  312. }
  313. for(; i + 3 < n; i += 4) {
  314. __m128 x_vec = _mm_loadu_ps(x + i);
  315. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  316. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  317. }
  318. #endif
  319. for (; i < n; i++) {
  320. y[i] = GGML_FP32_TO_FP16(x[i]);
  321. }
  322. }
  323. //
  324. // timing
  325. //
  326. #if defined(_MSC_VER) || defined(__MINGW32__)
  327. static int64_t timer_freq;
  328. void ggml_time_init(void) {
  329. LARGE_INTEGER frequency;
  330. QueryPerformanceFrequency(&frequency);
  331. timer_freq = frequency.QuadPart;
  332. }
  333. int64_t ggml_time_ms(void) {
  334. LARGE_INTEGER t;
  335. QueryPerformanceCounter(&t);
  336. return (t.QuadPart * 1000) / timer_freq;
  337. }
  338. int64_t ggml_time_us(void) {
  339. LARGE_INTEGER t;
  340. QueryPerformanceCounter(&t);
  341. return (t.QuadPart * 1000000) / timer_freq;
  342. }
  343. #else
  344. void ggml_time_init(void) {}
  345. int64_t ggml_time_ms(void) {
  346. struct timespec ts;
  347. clock_gettime(CLOCK_MONOTONIC, &ts);
  348. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  349. }
  350. int64_t ggml_time_us(void) {
  351. struct timespec ts;
  352. clock_gettime(CLOCK_MONOTONIC, &ts);
  353. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  354. }
  355. #endif
  356. int64_t ggml_cycles(void) {
  357. return clock();
  358. }
  359. int64_t ggml_cycles_per_ms(void) {
  360. return CLOCKS_PER_SEC/1000;
  361. }
  362. #ifdef GGML_PERF
  363. #define ggml_perf_time_ms() ggml_time_ms()
  364. #define ggml_perf_time_us() ggml_time_us()
  365. #define ggml_perf_cycles() ggml_cycles()
  366. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  367. #else
  368. #define ggml_perf_time_ms() 0
  369. #define ggml_perf_time_us() 0
  370. #define ggml_perf_cycles() 0
  371. #define ggml_perf_cycles_per_ms() 0
  372. #endif
  373. //
  374. // cache line
  375. //
  376. #if defined(__cpp_lib_hardware_interference_size)
  377. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  378. #else
  379. #if defined(__POWER9_VECTOR__)
  380. #define CACHE_LINE_SIZE 128
  381. #else
  382. #define CACHE_LINE_SIZE 64
  383. #endif
  384. #endif
  385. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  386. //
  387. // quantization
  388. //
  389. #if __AVX__ || __AVX2__ || __AVX512F__
  390. // Unpack 16 4-bit fields into 16 bytes
  391. // The output vector contains 16 bytes, each one in [ 0 .. 15 ] interval
  392. static inline __m128i bytes_from_nibbles_16(const uint8_t * rsi)
  393. {
  394. // Load 8 bytes from memory
  395. __m128i tmp = _mm_loadl_epi64( ( const __m128i* )rsi );
  396. // Expand bytes into uint16_t values
  397. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  398. // Unpack values into individual bytes
  399. const __m128i lowMask = _mm_set1_epi8( 0xF );
  400. __m128i high = _mm_andnot_si128( lowMask, bytes );
  401. __m128i low = _mm_and_si128( lowMask, bytes );
  402. high = _mm_slli_epi16( high, 4 );
  403. bytes = _mm_or_si128( low, high );
  404. return bytes;
  405. }
  406. // horizontally add 8 floats
  407. static inline float hsum_float_8(const __m256 x) {
  408. __m128 res = _mm256_extractf128_ps(x, 1);
  409. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  410. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  411. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  412. return _mm_cvtss_f32(res);
  413. }
  414. // horizontally add 8 int32_t
  415. static inline int hsum_i32_8(const __m256i a) {
  416. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  417. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  418. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  419. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  420. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  421. }
  422. // horizontally add 4 int32_t
  423. static inline int hsum_i32_4(const __m128i a) {
  424. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  425. const __m128i sum64 = _mm_add_epi32(hi64, a);
  426. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  427. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  428. }
  429. #if __AVX2__ || __AVX512F__
  430. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  431. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  432. uint32_t x32;
  433. memcpy(&x32, x, sizeof(uint32_t));
  434. const __m256i shuf_mask = _mm256_set_epi64x(
  435. 0x0303030303030303, 0x0202020202020202,
  436. 0x0101010101010101, 0x0000000000000000);
  437. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  438. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  439. bytes = _mm256_or_si256(bytes, bit_mask);
  440. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  441. }
  442. // Unpack 32 4-bit fields into 32 bytes
  443. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  444. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  445. {
  446. // Load 16 bytes from memory
  447. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  448. // Expand bytes into uint16_t values
  449. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  450. // Unpack values into individual bytes
  451. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  452. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  453. __m256i low = _mm256_and_si256( lowMask, bytes );
  454. high = _mm256_slli_epi16( high, 4 );
  455. bytes = _mm256_or_si256( low, high );
  456. return bytes;
  457. }
  458. // add int16_t pairwise and return as float vector
  459. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  460. const __m256i ones = _mm256_set1_epi16(1);
  461. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  462. return _mm256_cvtepi32_ps(summed_pairs);
  463. }
  464. // multiply int8_t, add results pairwise twice and return as float vector
  465. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  466. // Get absolute values of x vectors
  467. const __m256i ax = _mm256_sign_epi8(x, x);
  468. // Sign the values of the y vectors
  469. const __m256i sy = _mm256_sign_epi8(y, x);
  470. #if __AVXVNNI__
  471. const __m256i zero = _mm256_setzero_si256();
  472. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  473. return _mm256_cvtepi32_ps(summed_pairs);
  474. #else
  475. // Perform multiplication and create 16-bit values
  476. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  477. return sum_i16_pairs_float(dot);
  478. #endif
  479. }
  480. static inline __m128i packNibbles( __m256i bytes )
  481. {
  482. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  483. #if __AVX512F__
  484. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  485. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  486. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  487. #else
  488. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  489. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  490. __m256i low = _mm256_and_si256( lowByte, bytes );
  491. high = _mm256_srli_epi16( high, 4 );
  492. bytes = _mm256_or_si256( low, high );
  493. // Compress uint16_t lanes into bytes
  494. __m128i r0 = _mm256_castsi256_si128( bytes );
  495. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  496. return _mm_packus_epi16( r0, r1 );
  497. #endif
  498. }
  499. #else
  500. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  501. {
  502. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  503. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  504. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  505. __m128i low = _mm_and_si128( lowByte, bytes1 );
  506. high = _mm_srli_epi16( high, 4 );
  507. bytes1 = _mm_or_si128( low, high );
  508. high = _mm_andnot_si128( lowByte, bytes2 );
  509. low = _mm_and_si128( lowByte, bytes2 );
  510. high = _mm_srli_epi16( high, 4 );
  511. bytes2 = _mm_or_si128( low, high );
  512. return _mm_packus_epi16( bytes1, bytes2);
  513. }
  514. #endif
  515. #endif // __AVX__ || __AVX2__ || __AVX512F__
  516. #if __ARM_NEON
  517. #if !defined(__aarch64__)
  518. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  519. return
  520. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  521. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  522. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  523. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  524. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  525. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  526. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  527. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  528. }
  529. inline static int16_t vaddvq_s8(int8x16_t v) {
  530. return
  531. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  532. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  533. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  534. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  535. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  536. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  537. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  538. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  539. }
  540. inline static int32_t vaddvq_s16(int16x8_t v) {
  541. return
  542. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  543. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  544. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  545. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  546. }
  547. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  548. return
  549. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  550. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  551. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  552. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  553. }
  554. inline static int32_t vaddvq_s32(int32x4_t v) {
  555. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  556. }
  557. inline static float vaddvq_f32(float32x4_t v) {
  558. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  559. }
  560. float vminvq_f32(float32x4_t v) {
  561. return
  562. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  563. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  564. }
  565. float vmaxvq_f32(float32x4_t v) {
  566. return
  567. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  568. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  569. }
  570. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  571. return vget_low_s8(vcombine_s8(a, b));
  572. }
  573. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  574. return vget_high_s8(vcombine_s8(a, b));
  575. }
  576. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  577. return vget_low_u8(vcombine_u8(a, b));
  578. }
  579. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  580. return vget_high_u8(vcombine_u8(a, b));
  581. }
  582. int8x16_t vzip1q_s8(int8x16_t a, int8x16_t b) {
  583. return vcombine_s8(vget_low_s8(a), vget_low_s8(b));
  584. }
  585. int8x16_t vzip2q_s8(int8x16_t a, int8x16_t b) {
  586. return vcombine_s8(vget_high_s8(a), vget_high_s8(b));
  587. }
  588. uint8x16_t vzip1q_u8(uint8x16_t a, uint8x16_t b) {
  589. return vcombine_u8(vget_low_u8(a), vget_low_u8(b));
  590. }
  591. uint8x16_t vzip2q_u8(uint8x16_t a, uint8x16_t b) {
  592. return vcombine_u8(vget_high_u8(a), vget_high_u8(b));
  593. }
  594. int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  595. int32x4_t res;
  596. res[0] = roundf(vgetq_lane_f32(v, 0));
  597. res[1] = roundf(vgetq_lane_f32(v, 1));
  598. res[2] = roundf(vgetq_lane_f32(v, 2));
  599. res[3] = roundf(vgetq_lane_f32(v, 3));
  600. return res;
  601. }
  602. #endif
  603. #endif
  604. #define QK4_0 32
  605. typedef struct {
  606. float d; // delta
  607. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  608. } block_q4_0;
  609. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  610. #define QK4_1 32
  611. typedef struct {
  612. float d; // delta
  613. float m; // min
  614. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  615. } block_q4_1;
  616. static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
  617. #define QK4_2 16
  618. typedef struct {
  619. ggml_fp16_t d; // delta
  620. uint8_t qs[QK4_2 / 2]; // nibbles / quants
  621. } block_q4_2;
  622. static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
  623. #define QK5_0 32
  624. typedef struct {
  625. ggml_fp16_t d; // delta
  626. uint8_t qh[4]; // 5-th bit of quants
  627. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  628. } block_q5_0;
  629. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  630. #define QK5_1 32
  631. typedef struct {
  632. ggml_fp16_t d; // delta
  633. ggml_fp16_t m; // min
  634. uint8_t qh[4]; // 5-th bit of quants
  635. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  636. } block_q5_1;
  637. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  638. #define QK8_0 32
  639. typedef struct {
  640. float d; // delta
  641. int8_t qs[QK8_0]; // quants
  642. } block_q8_0;
  643. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  644. #define QK8_1 32
  645. typedef struct {
  646. float d; // delta
  647. float s0; // d * sum(qs[i]) low
  648. float s1; // d * sum(qs[i]) high
  649. int8_t qs[QK8_1]; // quants
  650. } block_q8_1;
  651. static_assert(sizeof(block_q8_1) == 3*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  652. // reference implementation for deterministic creation of model files
  653. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  654. assert(k % QK4_0 == 0);
  655. const int nb = k / QK4_0;
  656. uint8_t pp[QK4_0/2];
  657. for (int i = 0; i < nb; i++) {
  658. float amax = 0.0f; // absolute max
  659. float max = 0.0f;
  660. for (int l = 0; l < QK4_0; l++) {
  661. const float v = x[i*QK4_0 + l];
  662. if (amax < fabsf(v)) {
  663. amax = fabsf(v);
  664. max = v;
  665. }
  666. }
  667. const float d = max / -8;
  668. const float id = d ? 1.0f/d : 0.0f;
  669. y[i].d = d;
  670. for (int l = 0; l < QK4_0; l += 2) {
  671. const float v0 = x[i*QK4_0 + l + 0]*id;
  672. const float v1 = x[i*QK4_0 + l + 1]*id;
  673. const uint8_t vi0 = MIN(15, (int8_t)roundf(v0) + 8);
  674. const uint8_t vi1 = MIN(15, (int8_t)roundf(v1) + 8);
  675. assert(vi0 < 16);
  676. assert(vi1 < 16);
  677. pp[l/2] = vi0 | (vi1 << 4);
  678. }
  679. memcpy(y[i].qs, pp, sizeof(pp));
  680. }
  681. }
  682. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  683. assert(k % QK4_0 == 0);
  684. const int nb = k / QK4_0;
  685. block_q4_0 * restrict y = vy;
  686. #if defined(__POWER9_VECTOR__)
  687. const vector float v85 = vec_splats(8.5f);
  688. const vector signed int v15 = vec_splats(15);
  689. for (int i = 0; i < nb; i++) {
  690. float max = 0.0f;
  691. float min = 0.0f;
  692. vector float srcv [8];
  693. vector float maxv[8];
  694. vector float minv[8];
  695. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  696. //for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  697. for (int l = 0; l < 4; l++) maxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  698. //for (int l = 0; l < 2; l++) maxv[4*l] = vec_max(maxv[4*l], maxv[4*l+2]);
  699. maxv[0] = vec_max(maxv[0], maxv[2]);
  700. maxv[4] = vec_max(maxv[4], maxv[6]);
  701. //for (int l = 0; l < 1; l++) maxv[8*l] = vec_max(maxv[8*l], maxv[8*l+4]);
  702. maxv[0] = vec_max(maxv[0], maxv[4]);
  703. for (int l = 0; l < 4; l++) minv[2*l] = vec_min(asrcv[2*l], asrcv[2*l+1]);
  704. //for (int l = 0; l < 2; l++) minv[4*l] = vec_min(minv[4*l], minv[4*l+2]);
  705. minv[0] = vec_min(minv[0], minv[2]);
  706. minv[4] = vec_min(minv[4], minv[6]);
  707. //for (int l = 0; l < 1; l++) minv[8*l] = vec_min(minv[8*l], minv[8*l+4]);
  708. minv[0] = vec_min(minv[0], minv[4]);
  709. max = MAX(
  710. MAX(vec_extract(maxv[0], 0), vec_extract(maxv[0], 1)),
  711. MAX(vec_extract(maxv[0], 2), vec_extract(maxv[0], 3)));
  712. min = MIN(
  713. MIN(vec_extract(minv[0], 0), vec_extract(minv[0], 1)),
  714. MIN(vec_extract(minv[0], 2), vec_extract(minv[0], 3)));
  715. const float magnitude = max >= fabsf(min) ? max : min;
  716. const float d = magnitude / -8;
  717. const float id = d ? 1.0/d : 0.0;
  718. y[i].d = d;
  719. const vector float vid = vec_splats(id);
  720. uint8_t * restrict pb = y[i].qs;
  721. for (int l = 0; l < 8; l++) {
  722. const vector float vf = vec_madd(srcv[l], vid, v85);
  723. const vector signed int vi = vec_signed(vf);
  724. const vector signed int vc = vec_min(vi, v15);
  725. pb[2*l + 0] = vec_extract(vc, 0) | (vec_extract(vc, 1) << 4);
  726. pb[2*l + 1] = vec_extract(vc, 2) | (vec_extract(vc, 3) << 4);
  727. }
  728. }
  729. #elif __ARM_NEON
  730. for (int i = 0; i < nb; i++) {
  731. float32x4_t srcv [8];
  732. float32x4_t maxv[8];
  733. float32x4_t minv[8];
  734. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  735. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l+1]);
  736. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l+2]);
  737. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l+4]);
  738. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l+1]);
  739. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l+2]);
  740. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l+4]);
  741. const float max = vmaxvq_f32(maxv[0]);
  742. const float min = vminvq_f32(minv[0]);
  743. const float magnitude = max >= fabsf(min) ? max : min;
  744. const float d = magnitude / -8;
  745. const float id = d ? 1.0f/d : 0.0f;
  746. y[i].d = d;
  747. for (int l = 0; l < 8; l++) {
  748. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  749. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  750. const int32x4_t vi = vcvtq_s32_f32(vf);
  751. const int32x4_t vc = vminq_s32(vi, vdupq_n_s32(15));
  752. y[i].qs[2*l + 0] = vgetq_lane_s32(vc, 0) | (vgetq_lane_s32(vc, 1) << 4);
  753. y[i].qs[2*l + 1] = vgetq_lane_s32(vc, 2) | (vgetq_lane_s32(vc, 3) << 4);
  754. }
  755. }
  756. #elif defined(__AVX2__)
  757. for (int i = 0; i < nb; i++) {
  758. // Load elements into 4 AVX vectors
  759. __m256 v0 = _mm256_loadu_ps( x );
  760. __m256 v1 = _mm256_loadu_ps( x + 8 );
  761. __m256 v2 = _mm256_loadu_ps( x + 16 );
  762. __m256 v3 = _mm256_loadu_ps( x + 24 );
  763. x += 32;
  764. // Compute max for the block
  765. __m256 max = _mm256_max_ps( v0, v1 );
  766. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  767. max = _mm256_max_ps( max, maxTmp );
  768. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  769. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  770. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  771. const float maxScalar = _mm_cvtss_f32( max4 );
  772. // Compute min for the block
  773. __m256 min = _mm256_min_ps( v0, v1 );
  774. __m256 minTmp = _mm256_min_ps( v2, v3 );
  775. min = _mm256_min_ps( min, minTmp );
  776. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  777. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  778. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  779. const float minScalar = _mm_cvtss_f32( min4 );
  780. // Quantize these floats
  781. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  782. const float d = magnitude / -8.0f;
  783. y[i].d = d;
  784. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  785. const __m256 mul = _mm256_set1_ps( id );
  786. // Apply the multiplier
  787. v0 = _mm256_mul_ps( v0, mul );
  788. v1 = _mm256_mul_ps( v1, mul );
  789. v2 = _mm256_mul_ps( v2, mul );
  790. v3 = _mm256_mul_ps( v3, mul );
  791. // Round to nearest integer
  792. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  793. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  794. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  795. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  796. // Convert floats to integers
  797. __m256i i0 = _mm256_cvtps_epi32( v0 );
  798. __m256i i1 = _mm256_cvtps_epi32( v1 );
  799. __m256i i2 = _mm256_cvtps_epi32( v2 );
  800. __m256i i3 = _mm256_cvtps_epi32( v3 );
  801. // Convert int32 to int16
  802. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  803. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  804. // Convert int16 to int8
  805. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  806. // We got our precious signed bytes, but the order is now wrong
  807. // These AVX2 pack instructions process 16-byte pieces independently
  808. // The following instruction is fixing the order
  809. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  810. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  811. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  812. const __m256i off = _mm256_set1_epi8( 8 );
  813. i0 = _mm256_add_epi8( i0, off );
  814. const __m256i maxNibble = _mm256_set1_epi8( 15 );
  815. i0 = _mm256_min_epi8( i0, maxNibble );
  816. // Compress the vector into 4 bit/value, and store
  817. __m128i res = packNibbles( i0 );
  818. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  819. }
  820. #elif defined(__AVX__)
  821. for (int i = 0; i < nb; i++) {
  822. // Load elements into 4 AVX vectors
  823. __m256 v0 = _mm256_loadu_ps( x );
  824. __m256 v1 = _mm256_loadu_ps( x + 8 );
  825. __m256 v2 = _mm256_loadu_ps( x + 16 );
  826. __m256 v3 = _mm256_loadu_ps( x + 24 );
  827. x += 32;
  828. // Compute max for the block
  829. __m256 max = _mm256_max_ps( v0, v1 );
  830. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  831. max = _mm256_max_ps( max, maxTmp );
  832. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  833. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  834. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  835. const float maxScalar = _mm_cvtss_f32( max4 );
  836. // Compute min for the block
  837. __m256 min = _mm256_min_ps( v0, v1 );
  838. __m256 minTmp = _mm256_min_ps( v2, v3 );
  839. min = _mm256_min_ps( min, minTmp );
  840. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  841. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  842. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  843. const float minScalar = _mm_cvtss_f32( min4 );
  844. // Quantize these floats
  845. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  846. const float d = magnitude / -8.0f;
  847. y[i].d = d;
  848. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  849. const __m256 mul = _mm256_set1_ps( id );
  850. // Apply the multiplier
  851. v0 = _mm256_mul_ps( v0, mul );
  852. v1 = _mm256_mul_ps( v1, mul );
  853. v2 = _mm256_mul_ps( v2, mul );
  854. v3 = _mm256_mul_ps( v3, mul );
  855. // Round to nearest integer
  856. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  857. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  858. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  859. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  860. // Convert floats to integers
  861. __m256i i0 = _mm256_cvtps_epi32( v0 );
  862. __m256i i1 = _mm256_cvtps_epi32( v1 );
  863. __m256i i2 = _mm256_cvtps_epi32( v2 );
  864. __m256i i3 = _mm256_cvtps_epi32( v3 );
  865. // Since we don't have in AVX some necessary functions,
  866. // we split the registers in half and call AVX2 analogs from SSE
  867. __m128i ni0 = _mm256_castsi256_si128( i0 );
  868. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  869. __m128i ni2 = _mm256_castsi256_si128( i1 );
  870. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  871. __m128i ni4 = _mm256_castsi256_si128( i2 );
  872. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  873. __m128i ni6 = _mm256_castsi256_si128( i3 );
  874. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  875. // Convert int32 to int16
  876. ni0 = _mm_packs_epi32( ni0, ni1 );
  877. ni2 = _mm_packs_epi32( ni2, ni3 );
  878. ni4 = _mm_packs_epi32( ni4, ni5 );
  879. ni6 = _mm_packs_epi32( ni6, ni7 );
  880. // Convert int16 to int8
  881. ni0 = _mm_packs_epi16( ni0, ni2 );
  882. ni4 = _mm_packs_epi16( ni4, ni6 );
  883. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  884. const __m128i off = _mm_set1_epi8( 8 );
  885. ni0 = _mm_add_epi8( ni0, off );
  886. ni4 = _mm_add_epi8( ni4, off );
  887. const __m128i maxNibble = _mm_set1_epi8( 15 );
  888. ni0 = _mm_min_epi8( ni0, maxNibble );
  889. ni4 = _mm_min_epi8( ni4, maxNibble );
  890. // Compress the vector into 4 bit/value, and store
  891. __m128i res = packNibbles( ni0, ni4 );
  892. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  893. }
  894. #elif defined(__wasm_simd128__)
  895. for (int i = 0; i < nb; i++) {
  896. float max = 0.0f;
  897. float min = 0.0f;
  898. v128_t srcv [8];
  899. v128_t maxv[8];
  900. v128_t minv[8];
  901. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  902. for (int l = 0; l < 4; l++) maxv[2*l] = wasm_f32x4_max(srcv[2*l], srcv[2*l+1]);
  903. for (int l = 0; l < 2; l++) maxv[4*l] = wasm_f32x4_max(maxv[4*l], maxv[4*l+2]);
  904. for (int l = 0; l < 1; l++) maxv[8*l] = wasm_f32x4_max(maxv[8*l], maxv[8*l+4]);
  905. for (int l = 0; l < 4; l++) minv[2*l] = wasm_f32x4_min(srcv[2*l], srcv[2*l+1]);
  906. for (int l = 0; l < 2; l++) minv[4*l] = wasm_f32x4_min(minv[4*l], minv[4*l+2]);
  907. for (int l = 0; l < 1; l++) minv[8*l] = wasm_f32x4_min(minv[8*l], minv[8*l+4]);
  908. max = MAX(
  909. MAX(wasm_f32x4_extract_lane(maxv[0], 0), wasm_f32x4_extract_lane(maxv[0], 1)),
  910. MAX(wasm_f32x4_extract_lane(maxv[0], 2), wasm_f32x4_extract_lane(maxv[0], 3)));
  911. min = MIN(
  912. MIN(wasm_f32x4_extract_lane(minv[0], 0), wasm_f32x4_extract_lane(minv[0], 1)),
  913. MIN(wasm_f32x4_extract_lane(minv[0], 2), wasm_f32x4_extract_lane(minv[0], 3)));
  914. const float magnitude = max >= fabsf(min) ? max : min;
  915. const float d = magnitude / -8;
  916. const float id = d ? 1.0/d : 0.0;
  917. y[i].d = d;
  918. for (int l = 0; l < 8; l++) {
  919. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  920. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  921. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  922. const v128_t vc = wasm_i32x4_min(vi, wasm_i32x4_splat(15));
  923. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vc, 0) | (wasm_i32x4_extract_lane(vc, 1) << 4);
  924. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vc, 2) | (wasm_i32x4_extract_lane(vc, 3) << 4);
  925. }
  926. }
  927. #else
  928. // scalar
  929. quantize_row_q4_0_reference(x, y, k);
  930. #endif
  931. }
  932. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  933. assert(k % QK4_1 == 0);
  934. const int nb = k / QK4_1;
  935. block_q4_1 * restrict y = vy;
  936. uint8_t pp[QK4_1/2];
  937. for (int i = 0; i < nb; i++) {
  938. float min = FLT_MAX;
  939. float max = -FLT_MAX;
  940. for (int l = 0; l < QK4_1; l++) {
  941. const float v = x[i*QK4_1 + l];
  942. if (v < min) min = v;
  943. if (v > max) max = v;
  944. }
  945. const float d = (max - min) / ((1 << 4) - 1);
  946. const float id = d ? 1.0f/d : 0.0f;
  947. y[i].d = d;
  948. y[i].m = min;
  949. for (int l = 0; l < QK4_1; l += 2) {
  950. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  951. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  952. const uint8_t vi0 = roundf(v0);
  953. const uint8_t vi1 = roundf(v1);
  954. assert(vi0 < 16);
  955. assert(vi1 < 16);
  956. pp[l/2] = vi0 | (vi1 << 4);
  957. }
  958. memcpy(y[i].qs, pp, sizeof(pp));
  959. }
  960. }
  961. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  962. assert(k % QK4_1 == 0);
  963. const int nb = k / QK4_1;
  964. block_q4_1 * restrict y = vy;
  965. #if defined(__AVX2__)
  966. for (int i = 0; i < nb; i++) {
  967. // Load elements into 4 AVX vectors
  968. __m256 v0 = _mm256_loadu_ps( x );
  969. __m256 v1 = _mm256_loadu_ps( x + 8 );
  970. __m256 v2 = _mm256_loadu_ps( x + 16 );
  971. __m256 v3 = _mm256_loadu_ps( x + 24 );
  972. x += 32;
  973. // Compute max for the block
  974. __m256 vmax;
  975. vmax = _mm256_max_ps( v0, v1 );
  976. vmax = _mm256_max_ps( vmax, v2 );
  977. vmax = _mm256_max_ps( vmax, v3 );
  978. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  979. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  980. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  981. const float maxScalar = _mm_cvtss_f32( max4 );
  982. // Compute min for the block
  983. __m256 vmin;
  984. vmin = _mm256_min_ps( v0, v1 );
  985. vmin = _mm256_min_ps( vmin, v2 );
  986. vmin = _mm256_min_ps( vmin, v3 );
  987. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  988. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  989. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  990. const float minScalar = _mm_cvtss_f32( min4 );
  991. // Quantize these floats
  992. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  993. const float id = d ? 1.0f/d : 0.0f;
  994. y[i].m = minScalar;
  995. y[i].d = d;
  996. // x = (x-min)*id
  997. const __m256 mul = _mm256_set1_ps( id );
  998. const __m256 off = _mm256_set1_ps( minScalar );
  999. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  1000. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  1001. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  1002. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  1003. // Round to nearest integer
  1004. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1005. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1006. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1007. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1008. // Convert floats to integers
  1009. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1010. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1011. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1012. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1013. // Convert int32 to int16
  1014. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1015. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1016. // Convert int16 to int8
  1017. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1018. // We got our precious signed bytes, but the order is now wrong
  1019. // These AVX2 pack instructions process 16-byte pieces independently
  1020. // The following instruction is fixing the order
  1021. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1022. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1023. // Compress the vector into 4 bit/value, and store
  1024. __m128i res = packNibbles( i0 );
  1025. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  1026. }
  1027. #elif __ARM_NEON
  1028. for (int i = 0; i < nb; i++) {
  1029. float32x4_t srcv[8];
  1030. float32x4_t minv[8];
  1031. float32x4_t maxv[8];
  1032. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  1033. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  1034. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  1035. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  1036. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  1037. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  1038. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  1039. const float min = vminvq_f32(minv[0]);
  1040. const float max = vmaxvq_f32(maxv[0]);
  1041. const float d = (max - min) / ((1 << 4) - 1);
  1042. const float id = d ? 1.0f/d : 0.0f;
  1043. y[i].d = d;
  1044. y[i].m = min;
  1045. const float32x4_t minv0 = vdupq_n_f32(min);
  1046. for (int l = 0; l < 8; l++) {
  1047. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  1048. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  1049. const int32x4_t vi = vcvtq_s32_f32(vf);
  1050. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  1051. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  1052. }
  1053. }
  1054. #else
  1055. // scalar
  1056. quantize_row_q4_1_reference(x, vy, k);
  1057. #endif
  1058. }
  1059. // reference implementation for deterministic creation of model files
  1060. static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * restrict y, int k) {
  1061. assert(k % QK4_2 == 0);
  1062. const int nb = k / QK4_2;
  1063. for (int i = 0; i < nb; i++) {
  1064. float amax = 0.0f; // absolute max
  1065. float max = 0.0f;
  1066. for (int l = 0; l < QK4_2; l++) {
  1067. const float v = x[i*QK4_2 + l];
  1068. if (amax < fabsf(v)) {
  1069. amax = fabsf(v);
  1070. max = v;
  1071. }
  1072. }
  1073. const float d = max / -8;
  1074. const float id = d ? 1.0f/d : 0.0f;
  1075. y[i].d = GGML_FP32_TO_FP16(d);
  1076. for (int l = 0; l < QK4_2; l += 2) {
  1077. const float v0 = x[i*QK4_2 + l + 0]*id;
  1078. const float v1 = x[i*QK4_2 + l + 1]*id;
  1079. const uint8_t vi0 = MIN(15, (uint8_t)(v0 + 8.5f));
  1080. const uint8_t vi1 = MIN(15, (uint8_t)(v1 + 8.5f));
  1081. assert(vi0 < 16);
  1082. assert(vi1 < 16);
  1083. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1084. }
  1085. }
  1086. }
  1087. static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int k) {
  1088. assert(k % QK4_2 == 0);
  1089. block_q4_2 * restrict y = vy;
  1090. quantize_row_q4_2_reference(x, y, k);
  1091. }
  1092. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  1093. assert(k % QK5_0 == 0);
  1094. const int nb = k / QK5_0;
  1095. for (int i = 0; i < nb; i++) {
  1096. float amax = 0.0f; // absolute max
  1097. float max = 0.0f;
  1098. for (int l = 0; l < QK5_0; l++) {
  1099. const float v = x[i*QK5_0 + l];
  1100. if (amax < fabsf(v)) {
  1101. amax = fabsf(v);
  1102. max = v;
  1103. }
  1104. }
  1105. const float d = max / -16;
  1106. const float id = d ? 1.0f/d : 0.0f;
  1107. y[i].d = GGML_FP32_TO_FP16(d);
  1108. uint32_t qh = 0;
  1109. for (int l = 0; l < QK5_0; l += 2) {
  1110. const float v0 = x[i*QK5_0 + l + 0]*id;
  1111. const float v1 = x[i*QK5_0 + l + 1]*id;
  1112. const uint32_t vi0 = MIN(31, (int) (v0 + 16.5f));
  1113. const uint32_t vi1 = MIN(31, (int) (v1 + 16.5f));
  1114. y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4);
  1115. // get the 5-th bit and store it in qh at the right position
  1116. qh |= ((vi0 & 0x10) >> 4) << (l + 0);
  1117. qh |= ((vi1 & 0x10) >> 4) << (l + 1);
  1118. }
  1119. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  1120. }
  1121. }
  1122. static void quantize_row_q5_0(const float * restrict x, void * restrict vy, int k) {
  1123. assert(k % QK5_0 == 0);
  1124. block_q5_0 * restrict y = vy;
  1125. quantize_row_q5_0_reference(x, y, k);
  1126. }
  1127. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  1128. assert(k % QK5_1 == 0);
  1129. const int nb = k / QK5_1;
  1130. for (int i = 0; i < nb; i++) {
  1131. float min = FLT_MAX;
  1132. float max = -FLT_MAX;
  1133. for (int l = 0; l < QK5_1; l++) {
  1134. const float v = x[i*QK5_1 + l];
  1135. if (v < min) min = v;
  1136. if (v > max) max = v;
  1137. }
  1138. const float d = (max - min) / ((1 << 5) - 1);
  1139. const float id = d ? 1.0f/d : 0.0f;
  1140. y[i].d = GGML_FP32_TO_FP16(d);
  1141. y[i].m = GGML_FP32_TO_FP16(min);
  1142. uint32_t qh = 0;
  1143. for (int l = 0; l < QK5_1; l += 2) {
  1144. const float v0 = (x[i*QK5_1 + l + 0] - min)*id;
  1145. const float v1 = (x[i*QK5_1 + l + 1] - min)*id;
  1146. const uint32_t vi0 = (int) (v0 + 0.5f);
  1147. const uint32_t vi1 = (int) (v1 + 0.5f);
  1148. y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4);
  1149. // get the 5-th bit and store it in qh at the right position
  1150. qh |= ((vi0 & 0x10) >> 4) << (l + 0);
  1151. qh |= ((vi1 & 0x10) >> 4) << (l + 1);
  1152. }
  1153. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  1154. }
  1155. }
  1156. static void quantize_row_q5_1(const float * restrict x, void * restrict vy, int k) {
  1157. assert(k % QK5_1 == 0);
  1158. block_q5_1 * restrict y = vy;
  1159. quantize_row_q5_1_reference(x, y, k);
  1160. }
  1161. // reference implementation for deterministic creation of model files
  1162. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  1163. assert(k % QK8_0 == 0);
  1164. const int nb = k / QK8_0;
  1165. for (int i = 0; i < nb; i++) {
  1166. float amax = 0.0f; // absolute max
  1167. for (int l = 0; l < QK8_0; l++) {
  1168. const float v = x[i*QK8_0 + l];
  1169. amax = MAX(amax, fabsf(v));
  1170. }
  1171. const float d = amax / ((1 << 7) - 1);
  1172. const float id = d ? 1.0f/d : 0.0f;
  1173. y[i].d = d;
  1174. for (int l = 0; l < QK8_0; ++l) {
  1175. const float v0 = x[i*QK8_0 + l]*id;
  1176. y[i].qs[l] = roundf(v0);
  1177. }
  1178. }
  1179. }
  1180. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  1181. assert(k % QK8_0 == 0);
  1182. block_q8_0 * restrict y = vy;
  1183. quantize_row_q8_0_reference(x, y, k);
  1184. }
  1185. // reference implementation for deterministic creation of model files
  1186. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1187. assert(k % QK8_1 == 0);
  1188. const int nb = k / QK8_1;
  1189. for (int i = 0; i < nb; i++) {
  1190. float amax = 0.0f; // absolute max
  1191. for (int l = 0; l < QK8_1; l++) {
  1192. const float v = x[i*QK8_1 + l];
  1193. amax = MAX(amax, fabsf(v));
  1194. }
  1195. const float d = amax / ((1 << 7) - 1);
  1196. const float id = d ? 1.0f/d : 0.0f;
  1197. y[i].d = d;
  1198. int sum0 = 0;
  1199. int sum1 = 0;
  1200. for (int l = 0; l < QK8_1/2; ++l) {
  1201. const float v0 = x[i*QK8_1 + l]*id;
  1202. const float v1 = x[i*QK8_1 + QK8_1/2 + l]*id;
  1203. y[i].qs[ l] = roundf(v0);
  1204. y[i].qs[QK8_1/2 + l] = roundf(v1);
  1205. sum0 += y[i].qs[ l];
  1206. sum1 += y[i].qs[QK8_1/2 + l];
  1207. }
  1208. y[i].s0 = d * sum0;
  1209. y[i].s1 = d * sum1;
  1210. }
  1211. }
  1212. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1213. assert(k % QK8_1 == 0);
  1214. const int nb = k / QK8_1;
  1215. block_q8_1 * restrict y = vy;
  1216. #if defined(__ARM_NEON)
  1217. for (int i = 0; i < nb; i++) {
  1218. float32x4_t srcv [8];
  1219. float32x4_t asrcv[8];
  1220. float32x4_t amaxv[8];
  1221. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  1222. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  1223. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  1224. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  1225. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  1226. const float amax = vmaxvq_f32(amaxv[0]);
  1227. const float d = amax / ((1 << 7) - 1);
  1228. const float id = d ? 1.0f/d : 0.0f;
  1229. y[i].d = d;
  1230. int32x4_t accv0 = vdupq_n_s32(0);
  1231. int32x4_t accv1 = vdupq_n_s32(0);
  1232. // low half
  1233. for (int l = 0; l < 4; l++) {
  1234. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1235. const int32x4_t vi = vcvtnq_s32_f32(v);
  1236. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1237. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1238. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1239. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1240. accv0 = vaddq_s32(accv0, vi);
  1241. }
  1242. // high half
  1243. for (int l = 4; l < 8; l++) {
  1244. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1245. const int32x4_t vi = vcvtnq_s32_f32(v);
  1246. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1247. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1248. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1249. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1250. accv1 = vaddq_s32(accv1, vi);
  1251. }
  1252. const int32_t sum0 = vaddvq_s32(accv0);
  1253. const int32_t sum1 = vaddvq_s32(accv1);
  1254. y[i].s0 = d * sum0;
  1255. y[i].s1 = d * sum1;
  1256. }
  1257. #elif defined(__AVX2__) || defined(__AVX__)
  1258. for (int i = 0; i < nb; i++) {
  1259. // Load elements into 4 AVX vectors
  1260. __m256 v0 = _mm256_loadu_ps( x );
  1261. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1262. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1263. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1264. x += 32;
  1265. // Compute max(abs(e)) for the block
  1266. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1267. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1268. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1269. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1270. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1271. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1272. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1273. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1274. const float maxScalar = _mm_cvtss_f32( max4 );
  1275. // Quantize these floats
  1276. const float d = maxScalar / 127.f;
  1277. y[i].d = d;
  1278. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1279. const __m256 mul = _mm256_set1_ps( id );
  1280. // Apply the multiplier
  1281. v0 = _mm256_mul_ps( v0, mul );
  1282. v1 = _mm256_mul_ps( v1, mul );
  1283. v2 = _mm256_mul_ps( v2, mul );
  1284. v3 = _mm256_mul_ps( v3, mul );
  1285. // Round to nearest integer
  1286. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1287. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1288. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1289. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1290. // Convert floats to integers
  1291. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1292. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1293. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1294. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1295. #if defined(__AVX2__)
  1296. // Compute the sum of the quants and set y[i].s
  1297. //y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1298. y[i].s0 = d * hsum_i32_8(_mm256_add_epi32(i0, i1));
  1299. y[i].s1 = d * hsum_i32_8(_mm256_add_epi32(i2, i3));
  1300. // Convert int32 to int16
  1301. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1302. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1303. // Convert int16 to int8
  1304. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1305. // We got our precious signed bytes, but the order is now wrong
  1306. // These AVX2 pack instructions process 16-byte pieces independently
  1307. // The following instruction is fixing the order
  1308. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1309. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1310. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1311. #else
  1312. // Since we don't have in AVX some necessary functions,
  1313. // we split the registers in half and call AVX2 analogs from SSE
  1314. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1315. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1316. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1317. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1318. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1319. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1320. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1321. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1322. // Compute the sum of the quants and set y[i].s
  1323. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1324. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1325. y[i].s0 = d * hsum_i32_4(s0);
  1326. y[i].s1 = d * hsum_i32_4(s1);
  1327. // Convert int32 to int16
  1328. ni0 = _mm_packs_epi32( ni0, ni1 );
  1329. ni2 = _mm_packs_epi32( ni2, ni3 );
  1330. ni4 = _mm_packs_epi32( ni4, ni5 );
  1331. ni6 = _mm_packs_epi32( ni6, ni7 );
  1332. // Convert int16 to int8
  1333. ni0 = _mm_packs_epi16( ni0, ni2 );
  1334. ni4 = _mm_packs_epi16( ni4, ni6 );
  1335. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1336. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1337. #endif
  1338. }
  1339. #else
  1340. // scalar
  1341. quantize_row_q8_1_reference(x, y, k);
  1342. #endif
  1343. }
  1344. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  1345. assert(k % QK4_0 == 0);
  1346. const int nb = k / QK4_0;
  1347. const block_q4_0 * restrict x = vx;
  1348. #if defined(__AVX2__)
  1349. for (int i = 0; i < nb; i++) {
  1350. // scale factor
  1351. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1352. const uint8_t * restrict pp = x[i].qs;
  1353. for (int l = 0; l < QK4_0; l += 32) {
  1354. // Load 32x4-bit integers into 32x8-bit integers
  1355. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1356. // Subtract 8 from the integers
  1357. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  1358. // Convert to 16-bit int
  1359. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1360. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1361. // Convert to 32-bit int -> float 32
  1362. const __m256 vf[4] = {
  1363. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1364. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1365. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1366. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1367. };
  1368. // Scale and store
  1369. for (int j = 0; j < 4; j++) {
  1370. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1371. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1372. }
  1373. }
  1374. }
  1375. #elif defined(__ARM_NEON)
  1376. for (int i = 0; i < nb; i++) {
  1377. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1378. const uint8_t * restrict pp = x[i].qs;
  1379. for (int l = 0; l < QK4_0; l += 16) {
  1380. // Load 16x4-bit integers into 8x8-bit integers
  1381. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1382. // Expand 4-bit qs to 8-bit bytes
  1383. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F));
  1384. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1385. // Convert to signed 8-bit integers
  1386. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1387. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1388. // Subtract 8 from each byte
  1389. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1390. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1391. // Interleave and combine
  1392. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1393. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1394. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1395. // convert to 2x int16x8_t
  1396. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1397. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1398. // convert to 4x float32x4_t
  1399. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1400. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1401. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1402. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1403. // Multiply by d
  1404. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1405. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1406. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1407. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1408. // Store
  1409. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1410. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1411. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1412. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1413. }
  1414. }
  1415. #else
  1416. // scalar
  1417. for (int i = 0; i < nb; i++) {
  1418. const float d = x[i].d;
  1419. const uint8_t * restrict pp = x[i].qs;
  1420. for (int l = 0; l < QK4_0; l += 2) {
  1421. const uint8_t vi = pp[l/2];
  1422. const int8_t vi0 = vi & 0x0F;
  1423. const int8_t vi1 = vi >> 4;
  1424. const float v0 = (vi0 - 8)*d;
  1425. const float v1 = (vi1 - 8)*d;
  1426. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1427. y[i*QK4_0 + l + 0] = v0;
  1428. y[i*QK4_0 + l + 1] = v1;
  1429. assert(!isnan(y[i*QK4_0 + l + 0]));
  1430. assert(!isnan(y[i*QK4_0 + l + 1]));
  1431. }
  1432. }
  1433. #endif
  1434. }
  1435. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1436. assert(k % QK4_1 == 0);
  1437. const int nb = k / QK4_1;
  1438. const block_q4_1 * restrict x = vx;
  1439. #if defined(__AVX2__)
  1440. for (int i = 0; i < nb; i++) {
  1441. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1442. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1443. const uint8_t * restrict pp = x[i].qs;
  1444. for (int l = 0; l < QK4_1; l += 32) {
  1445. // Load 32x4-bit integers into 32x8-bit integers
  1446. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1447. // Convert to 16-bit int
  1448. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1449. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1450. // Convert to 32-bit int -> float 32
  1451. const __m256 vf[4] = {
  1452. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1453. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1454. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1455. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1456. };
  1457. // Scale, add m and store
  1458. for (int j = 0; j < 4; j++) {
  1459. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1460. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1461. }
  1462. }
  1463. }
  1464. #elif defined(__ARM_NEON)
  1465. for (int i = 0; i < nb; i++) {
  1466. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1467. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1468. const uint8_t * restrict pp = x[i].qs;
  1469. for (int l = 0; l < QK4_1; l += 16) {
  1470. // Load 16x4-bit integers into 8x8-bit integers
  1471. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1472. // Expand 4-bit qs to 8-bit bytes
  1473. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F));
  1474. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1475. // Interleave and combine
  1476. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1477. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1478. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1479. // convert to 2x uint16x8_t
  1480. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1481. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1482. // convert to 4x float32x4_t
  1483. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1484. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1485. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1486. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1487. // multiply by d and add m
  1488. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1489. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1490. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1491. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1492. // Store
  1493. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1494. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1495. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1496. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1497. }
  1498. }
  1499. #else
  1500. for (int i = 0; i < nb; i++) {
  1501. const float d = x[i].d;
  1502. const float m = x[i].m;
  1503. const uint8_t * restrict pp = x[i].qs;
  1504. for (int l = 0; l < QK4_1; l += 2) {
  1505. const uint8_t vi = pp[l/2];
  1506. const int8_t vi0 = vi & 0x0F;
  1507. const int8_t vi1 = vi >> 4;
  1508. const float v0 = vi0*d + m;
  1509. const float v1 = vi1*d + m;
  1510. y[i*QK4_1 + l + 0] = v0;
  1511. y[i*QK4_1 + l + 1] = v1;
  1512. assert(!isnan(y[i*QK4_1 + l + 0]));
  1513. assert(!isnan(y[i*QK4_1 + l + 1]));
  1514. }
  1515. }
  1516. #endif
  1517. }
  1518. static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, int k) {
  1519. assert(k % QK4_2 == 0);
  1520. const int nb = k / QK4_2;
  1521. const block_q4_2 * restrict x = vx;
  1522. for (int i = 0; i < nb; i++) {
  1523. const float d = GGML_FP16_TO_FP32(x[i].d);
  1524. const uint8_t * restrict pp = x[i].qs;
  1525. for (int l = 0; l < QK4_2; l += 2) {
  1526. const uint8_t vi = pp[l/2];
  1527. const int8_t vi0 = vi & 0x0F;
  1528. const int8_t vi1 = vi >> 4;
  1529. const float v0 = (vi0 - 8)*d;
  1530. const float v1 = (vi1 - 8)*d;
  1531. y[i*QK4_2 + l + 0] = v0;
  1532. y[i*QK4_2 + l + 1] = v1;
  1533. assert(!isnan(y[i*QK4_2 + l + 0]));
  1534. assert(!isnan(y[i*QK4_2 + l + 1]));
  1535. }
  1536. }
  1537. }
  1538. static void dequantize_row_q5_0(const void * restrict vx, float * restrict y, int k) {
  1539. assert(k % QK5_0 == 0);
  1540. const int nb = k / QK5_0;
  1541. const block_q5_0 * restrict x = vx;
  1542. for (int i = 0; i < nb; i++) {
  1543. const float d = GGML_FP16_TO_FP32(x[i].d);
  1544. const uint8_t * restrict pp = x[i].qs;
  1545. uint32_t qh;
  1546. memcpy(&qh, x[i].qh, sizeof(qh));
  1547. for (int l = 0; l < QK5_0; l += 2) {
  1548. const uint8_t vi = pp[l/2];
  1549. // extract the 5-th bit from qh
  1550. const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4;
  1551. const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4;
  1552. const int8_t vi0 = (vi & 0x0F) | vh0;
  1553. const int8_t vi1 = (vi >> 4) | vh1;
  1554. const float v0 = (vi0 - 16)*d;
  1555. const float v1 = (vi1 - 16)*d;
  1556. y[i*QK5_0 + l + 0] = v0;
  1557. y[i*QK5_0 + l + 1] = v1;
  1558. assert(!isnan(y[i*QK5_0 + l + 0]));
  1559. assert(!isnan(y[i*QK5_0 + l + 1]));
  1560. }
  1561. }
  1562. }
  1563. static void dequantize_row_q5_1(const void * restrict vx, float * restrict y, int k) {
  1564. assert(k % QK5_1 == 0);
  1565. const int nb = k / QK5_1;
  1566. const block_q5_1 * restrict x = vx;
  1567. for (int i = 0; i < nb; i++) {
  1568. const float d = GGML_FP16_TO_FP32(x[i].d);
  1569. const float m = GGML_FP16_TO_FP32(x[i].m);
  1570. const uint8_t * restrict pp = x[i].qs;
  1571. uint32_t qh;
  1572. memcpy(&qh, x[i].qh, sizeof(qh));
  1573. for (int l = 0; l < QK5_1; l += 2) {
  1574. const uint8_t vi = pp[l/2];
  1575. // extract the 5-th bit from qh
  1576. const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4;
  1577. const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4;
  1578. const uint8_t vi0 = (vi & 0x0F) | vh0;
  1579. const uint8_t vi1 = (vi >> 4) | vh1;
  1580. const float v0 = vi0*d + m;
  1581. const float v1 = vi1*d + m;
  1582. y[i*QK5_1 + l + 0] = v0;
  1583. y[i*QK5_1 + l + 1] = v1;
  1584. assert(!isnan(y[i*QK5_1 + l + 0]));
  1585. assert(!isnan(y[i*QK5_1 + l + 1]));
  1586. }
  1587. }
  1588. }
  1589. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1590. assert(k % QK8_0 == 0);
  1591. const int nb = k / QK8_0;
  1592. const block_q8_0 * restrict x = vx;
  1593. for (int i = 0; i < nb; i++) {
  1594. const float d = x[i].d;
  1595. const int8_t * restrict pp = x[i].qs;
  1596. for (int l = 0; l < QK8_0; ++l) {
  1597. y[i*QK8_0 + l] = pp[l]*d;
  1598. }
  1599. }
  1600. }
  1601. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1602. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1603. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1604. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1605. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1606. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1607. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1608. [GGML_TYPE_Q4_0] = {
  1609. .dequantize_row_q = dequantize_row_q4_0,
  1610. .quantize_row_q = quantize_row_q4_0,
  1611. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1612. .quantize_row_q_dot = quantize_row_q8_0,
  1613. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1614. .vec_dot_type = GGML_TYPE_Q8_0,
  1615. },
  1616. [GGML_TYPE_Q4_1] = {
  1617. .dequantize_row_q = dequantize_row_q4_1,
  1618. .quantize_row_q = quantize_row_q4_1,
  1619. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1620. .quantize_row_q_dot = quantize_row_q8_1,
  1621. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1622. .vec_dot_type = GGML_TYPE_Q8_1,
  1623. },
  1624. [GGML_TYPE_Q4_2] = {
  1625. .dequantize_row_q = dequantize_row_q4_2,
  1626. .quantize_row_q = quantize_row_q4_2,
  1627. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_reference,
  1628. .quantize_row_q_dot = quantize_row_q8_0,
  1629. .vec_dot_q = ggml_vec_dot_q4_2_q8_0,
  1630. .vec_dot_type = GGML_TYPE_Q8_0,
  1631. },
  1632. [GGML_TYPE_Q5_0] = {
  1633. .dequantize_row_q = dequantize_row_q5_0,
  1634. .quantize_row_q = quantize_row_q5_0,
  1635. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1636. .quantize_row_q_dot = quantize_row_q8_0,
  1637. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1638. .vec_dot_type = GGML_TYPE_Q8_0,
  1639. },
  1640. [GGML_TYPE_Q5_1] = {
  1641. .dequantize_row_q = dequantize_row_q5_1,
  1642. .quantize_row_q = quantize_row_q5_1,
  1643. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1644. .quantize_row_q_dot = quantize_row_q8_1,
  1645. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1646. .vec_dot_type = GGML_TYPE_Q8_1,
  1647. },
  1648. [GGML_TYPE_Q8_0] = {
  1649. .dequantize_row_q = dequantize_row_q8_0,
  1650. .quantize_row_q = quantize_row_q8_0,
  1651. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1652. .quantize_row_q_dot = quantize_row_q8_0,
  1653. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1654. .vec_dot_type = GGML_TYPE_Q8_0,
  1655. },
  1656. [GGML_TYPE_Q8_1] = {
  1657. .dequantize_row_q = NULL, // TODO
  1658. .quantize_row_q = quantize_row_q8_1,
  1659. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1660. .quantize_row_q_dot = quantize_row_q8_1,
  1661. .vec_dot_q = NULL, // TODO
  1662. .vec_dot_type = GGML_TYPE_Q8_1,
  1663. },
  1664. };
  1665. // For internal test use
  1666. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1667. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1668. return quantize_fns[i];
  1669. }
  1670. //
  1671. // simd mappings
  1672. //
  1673. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1674. // we then implement the fundamental computation operations below using only these macros
  1675. // adding support for new architectures requires to define the corresponding SIMD macros
  1676. //
  1677. // GGML_F32_STEP / GGML_F16_STEP
  1678. // number of elements to process in a single step
  1679. //
  1680. // GGML_F32_EPR / GGML_F16_EPR
  1681. // number of elements to fit in a single register
  1682. //
  1683. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1684. #define GGML_SIMD
  1685. // F32 NEON
  1686. #define GGML_F32_STEP 16
  1687. #define GGML_F32_EPR 4
  1688. #define GGML_F32x4 float32x4_t
  1689. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1690. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1691. #define GGML_F32x4_LOAD vld1q_f32
  1692. #define GGML_F32x4_STORE vst1q_f32
  1693. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1694. #define GGML_F32x4_ADD vaddq_f32
  1695. #define GGML_F32x4_MUL vmulq_f32
  1696. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1697. #define GGML_F32x4_REDUCE(res, x) \
  1698. { \
  1699. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1700. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1701. } \
  1702. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1703. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1704. } \
  1705. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1706. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1707. } \
  1708. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1709. }
  1710. #define GGML_F32_VEC GGML_F32x4
  1711. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1712. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1713. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1714. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1715. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1716. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1717. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1718. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1719. // F16 NEON
  1720. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1721. #define GGML_F16_STEP 32
  1722. #define GGML_F16_EPR 8
  1723. #define GGML_F16x8 float16x8_t
  1724. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1725. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1726. #define GGML_F16x8_LOAD vld1q_f16
  1727. #define GGML_F16x8_STORE vst1q_f16
  1728. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1729. #define GGML_F16x8_ADD vaddq_f16
  1730. #define GGML_F16x8_MUL vmulq_f16
  1731. #define GGML_F16x8_REDUCE(res, x) \
  1732. { \
  1733. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1734. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1735. } \
  1736. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1737. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1738. } \
  1739. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1740. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1741. } \
  1742. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1743. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1744. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1745. }
  1746. #define GGML_F16_VEC GGML_F16x8
  1747. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1748. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1749. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1750. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1751. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1752. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1753. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1754. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1755. #else
  1756. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1757. // and take advantage of the vcvt_ functions to convert to/from FP16
  1758. #define GGML_F16_STEP 16
  1759. #define GGML_F16_EPR 4
  1760. #define GGML_F32Cx4 float32x4_t
  1761. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1762. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1763. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1764. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1765. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1766. #define GGML_F32Cx4_ADD vaddq_f32
  1767. #define GGML_F32Cx4_MUL vmulq_f32
  1768. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1769. #define GGML_F16_VEC GGML_F32Cx4
  1770. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1771. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1772. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1773. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1774. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1775. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1776. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1777. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1778. #endif
  1779. #elif defined(__AVX__)
  1780. #define GGML_SIMD
  1781. // F32 AVX
  1782. #define GGML_F32_STEP 32
  1783. #define GGML_F32_EPR 8
  1784. #define GGML_F32x8 __m256
  1785. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1786. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1787. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1788. #define GGML_F32x8_STORE _mm256_storeu_ps
  1789. #if defined(__FMA__)
  1790. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1791. #else
  1792. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1793. #endif
  1794. #define GGML_F32x8_ADD _mm256_add_ps
  1795. #define GGML_F32x8_MUL _mm256_mul_ps
  1796. #define GGML_F32x8_REDUCE(res, x) \
  1797. { \
  1798. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1799. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1800. } \
  1801. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1802. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1803. } \
  1804. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1805. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1806. } \
  1807. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1808. _mm256_extractf128_ps(x[0], 1)); \
  1809. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1810. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1811. }
  1812. // TODO: is this optimal ?
  1813. #define GGML_F32_VEC GGML_F32x8
  1814. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1815. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1816. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1817. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1818. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1819. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1820. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1821. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1822. // F16 AVX
  1823. #define GGML_F16_STEP 32
  1824. #define GGML_F16_EPR 8
  1825. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1826. #define GGML_F32Cx8 __m256
  1827. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1828. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1829. #if defined(__F16C__)
  1830. // the _mm256_cvt intrinsics require F16C
  1831. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1832. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1833. #else
  1834. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1835. float tmp[8];
  1836. for (int i = 0; i < 8; i++)
  1837. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1838. return _mm256_loadu_ps(tmp);
  1839. }
  1840. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1841. float arr[8];
  1842. _mm256_storeu_ps(arr, y);
  1843. for (int i = 0; i < 8; i++)
  1844. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1845. }
  1846. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1847. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1848. #endif
  1849. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1850. #define GGML_F32Cx8_ADD _mm256_add_ps
  1851. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1852. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1853. #define GGML_F16_VEC GGML_F32Cx8
  1854. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1855. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1856. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1857. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1858. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1859. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1860. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1861. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1862. #elif defined(__POWER9_VECTOR__)
  1863. #define GGML_SIMD
  1864. // F32 POWER9
  1865. #define GGML_F32_STEP 32
  1866. #define GGML_F32_EPR 4
  1867. #define GGML_F32x4 vector float
  1868. #define GGML_F32x4_ZERO 0.0f
  1869. #define GGML_F32x4_SET1 vec_splats
  1870. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1871. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1872. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1873. #define GGML_F32x4_ADD vec_add
  1874. #define GGML_F32x4_MUL vec_mul
  1875. #define GGML_F32x4_REDUCE(res, x) \
  1876. { \
  1877. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1878. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1879. } \
  1880. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1881. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1882. } \
  1883. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1884. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1885. } \
  1886. res = vec_extract(x[0], 0) + \
  1887. vec_extract(x[0], 1) + \
  1888. vec_extract(x[0], 2) + \
  1889. vec_extract(x[0], 3); \
  1890. }
  1891. #define GGML_F32_VEC GGML_F32x4
  1892. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1893. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1894. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1895. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1896. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1897. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1898. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1899. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1900. // F16 POWER9
  1901. #define GGML_F16_STEP GGML_F32_STEP
  1902. #define GGML_F16_EPR GGML_F32_EPR
  1903. #define GGML_F16_VEC GGML_F32x4
  1904. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1905. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1906. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1907. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1908. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1909. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1910. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1911. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1912. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1913. #define GGML_F16_VEC_STORE(p, r, i) \
  1914. if (i & 0x1) \
  1915. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1916. r[i - GGML_ENDIAN_BYTE(0)]), \
  1917. 0, p - GGML_F16_EPR)
  1918. #elif defined(__wasm_simd128__)
  1919. #define GGML_SIMD
  1920. // F32 WASM
  1921. #define GGML_F32_STEP 16
  1922. #define GGML_F32_EPR 4
  1923. #define GGML_F32x4 v128_t
  1924. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1925. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1926. #define GGML_F32x4_LOAD wasm_v128_load
  1927. #define GGML_F32x4_STORE wasm_v128_store
  1928. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1929. #define GGML_F32x4_ADD wasm_f32x4_add
  1930. #define GGML_F32x4_MUL wasm_f32x4_mul
  1931. #define GGML_F32x4_REDUCE(res, x) \
  1932. { \
  1933. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1934. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1935. } \
  1936. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1937. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1938. } \
  1939. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1940. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1941. } \
  1942. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1943. wasm_f32x4_extract_lane(x[0], 1) + \
  1944. wasm_f32x4_extract_lane(x[0], 2) + \
  1945. wasm_f32x4_extract_lane(x[0], 3); \
  1946. }
  1947. #define GGML_F32_VEC GGML_F32x4
  1948. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1949. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1950. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1951. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1952. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1953. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1954. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1955. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1956. // F16 WASM
  1957. #define GGML_F16_STEP 16
  1958. #define GGML_F16_EPR 4
  1959. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1960. float tmp[4];
  1961. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1962. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1963. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1964. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1965. return wasm_v128_load(tmp);
  1966. }
  1967. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1968. float tmp[4];
  1969. wasm_v128_store(tmp, x);
  1970. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1971. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1972. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1973. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1974. }
  1975. #define GGML_F16x4 v128_t
  1976. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1977. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1978. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1979. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1980. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1981. #define GGML_F16x4_ADD wasm_f32x4_add
  1982. #define GGML_F16x4_MUL wasm_f32x4_mul
  1983. #define GGML_F16x4_REDUCE(res, x) \
  1984. { \
  1985. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1986. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1987. } \
  1988. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1989. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1990. } \
  1991. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1992. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1993. } \
  1994. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1995. wasm_f32x4_extract_lane(x[0], 1) + \
  1996. wasm_f32x4_extract_lane(x[0], 2) + \
  1997. wasm_f32x4_extract_lane(x[0], 3); \
  1998. }
  1999. #define GGML_F16_VEC GGML_F16x4
  2000. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  2001. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  2002. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  2003. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  2004. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  2005. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  2006. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  2007. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  2008. #elif defined(__SSE3__)
  2009. #define GGML_SIMD
  2010. // F32 SSE
  2011. #define GGML_F32_STEP 32
  2012. #define GGML_F32_EPR 4
  2013. #define GGML_F32x4 __m128
  2014. #define GGML_F32x4_ZERO _mm_setzero_ps()
  2015. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  2016. #define GGML_F32x4_LOAD _mm_loadu_ps
  2017. #define GGML_F32x4_STORE _mm_storeu_ps
  2018. #if defined(__FMA__)
  2019. // TODO: Does this work?
  2020. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  2021. #else
  2022. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  2023. #endif
  2024. #define GGML_F32x4_ADD _mm_add_ps
  2025. #define GGML_F32x4_MUL _mm_mul_ps
  2026. #define GGML_F32x4_REDUCE(res, x) \
  2027. { \
  2028. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  2029. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  2030. } \
  2031. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  2032. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  2033. } \
  2034. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  2035. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  2036. } \
  2037. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  2038. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  2039. }
  2040. // TODO: is this optimal ?
  2041. #define GGML_F32_VEC GGML_F32x4
  2042. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  2043. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  2044. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  2045. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  2046. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  2047. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  2048. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  2049. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  2050. // F16 SSE
  2051. #define GGML_F16_STEP 32
  2052. #define GGML_F16_EPR 4
  2053. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  2054. float tmp[4];
  2055. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  2056. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  2057. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  2058. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  2059. return _mm_loadu_ps(tmp);
  2060. }
  2061. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  2062. float arr[4];
  2063. _mm_storeu_ps(arr, y);
  2064. x[0] = GGML_FP32_TO_FP16(arr[0]);
  2065. x[1] = GGML_FP32_TO_FP16(arr[1]);
  2066. x[2] = GGML_FP32_TO_FP16(arr[2]);
  2067. x[3] = GGML_FP32_TO_FP16(arr[3]);
  2068. }
  2069. #define GGML_F32Cx4 __m128
  2070. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  2071. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  2072. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  2073. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  2074. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  2075. #define GGML_F32Cx4_ADD _mm_add_ps
  2076. #define GGML_F32Cx4_MUL _mm_mul_ps
  2077. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  2078. #define GGML_F16_VEC GGML_F32Cx4
  2079. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  2080. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  2081. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  2082. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  2083. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  2084. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  2085. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  2086. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  2087. #endif
  2088. // GGML_F32_ARR / GGML_F16_ARR
  2089. // number of registers to use per step
  2090. #ifdef GGML_SIMD
  2091. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  2092. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  2093. #endif
  2094. //
  2095. // fundamental operations
  2096. //
  2097. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2098. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2099. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2100. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2101. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  2102. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  2103. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  2104. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  2105. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2106. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  2107. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  2108. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  2109. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  2110. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  2111. #ifdef GGML_SIMD
  2112. float sumf = 0.0f;
  2113. const int np = (n & ~(GGML_F32_STEP - 1));
  2114. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  2115. GGML_F32_VEC ax[GGML_F32_ARR];
  2116. GGML_F32_VEC ay[GGML_F32_ARR];
  2117. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2118. for (int j = 0; j < GGML_F32_ARR; j++) {
  2119. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2120. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2121. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  2122. }
  2123. }
  2124. // reduce sum0..sum3 to sum0
  2125. GGML_F32_VEC_REDUCE(sumf, sum);
  2126. // leftovers
  2127. for (int i = np; i < n; ++i) {
  2128. sumf += x[i]*y[i];
  2129. }
  2130. #else
  2131. // scalar
  2132. ggml_float sumf = 0.0;
  2133. for (int i = 0; i < n; ++i) {
  2134. sumf += (ggml_float)(x[i]*y[i]);
  2135. }
  2136. #endif
  2137. *s = sumf;
  2138. }
  2139. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  2140. ggml_float sumf = 0.0;
  2141. #if defined(GGML_SIMD)
  2142. const int np = (n & ~(GGML_F16_STEP - 1));
  2143. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  2144. GGML_F16_VEC ax[GGML_F16_ARR];
  2145. GGML_F16_VEC ay[GGML_F16_ARR];
  2146. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2147. for (int j = 0; j < GGML_F16_ARR; j++) {
  2148. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  2149. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2150. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  2151. }
  2152. }
  2153. // reduce sum0..sum3 to sum0
  2154. GGML_F16_VEC_REDUCE(sumf, sum);
  2155. // leftovers
  2156. for (int i = np; i < n; ++i) {
  2157. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2158. }
  2159. #else
  2160. for (int i = 0; i < n; ++i) {
  2161. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2162. }
  2163. #endif
  2164. *s = sumf;
  2165. }
  2166. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2167. const int nb = n / QK8_0;
  2168. assert(n % QK8_0 == 0);
  2169. assert(nb % 2 == 0);
  2170. const block_q4_0 * restrict x = vx;
  2171. const block_q8_0 * restrict y = vy;
  2172. #if defined(__ARM_NEON)
  2173. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2174. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2175. for (int i = 0; i < nb; i += 2) {
  2176. const block_q4_0 * restrict x0 = &x[i + 0];
  2177. const block_q4_0 * restrict x1 = &x[i + 1];
  2178. const block_q8_0 * restrict y0 = &y[i + 0];
  2179. const block_q8_0 * restrict y1 = &y[i + 1];
  2180. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2181. const int8x16_t s8b = vdupq_n_s8(0x8);
  2182. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2183. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2184. // 4-bit -> 8-bit
  2185. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2186. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2187. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2188. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2189. // sub 8
  2190. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2191. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2192. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2193. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2194. // interleave
  2195. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2196. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2197. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2198. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2199. // load y
  2200. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2201. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2202. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2203. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2204. #if defined(__ARM_FEATURE_DOTPROD)
  2205. // dot product into int32x4_t
  2206. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h);
  2207. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h);
  2208. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2209. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2210. #else
  2211. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2212. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2213. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2214. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2215. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2216. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2217. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2218. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2219. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2220. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2221. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2222. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2223. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2224. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2225. #endif
  2226. }
  2227. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2228. #elif defined(__AVX2__)
  2229. // Initialize accumulator with zeros
  2230. __m256 acc = _mm256_setzero_ps();
  2231. // Main loop
  2232. for (int i = 0; i < nb; ++i) {
  2233. /* Compute combined scale for the block */
  2234. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2235. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2236. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2237. const __m256i off = _mm256_set1_epi8( 8 );
  2238. bx = _mm256_sub_epi8( bx, off );
  2239. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2240. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2241. /* Multiply q with scale and accumulate */
  2242. acc = _mm256_fmadd_ps( d, q, acc );
  2243. }
  2244. *s = hsum_float_8(acc);
  2245. #elif defined(__AVX__)
  2246. // Initialize accumulator with zeros
  2247. __m256 acc = _mm256_setzero_ps();
  2248. // Main loop
  2249. for (int i = 0; i < nb; ++i) {
  2250. // Compute combined scale for the block
  2251. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2252. __m128i i32[2];
  2253. for (int j = 0; j < 2; ++j) {
  2254. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2255. __m128i bx = bytes_from_nibbles_16(x[i].qs + 8*j);
  2256. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  2257. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2258. const __m128i off = _mm_set1_epi8( 8 );
  2259. bx = _mm_sub_epi8( bx, off );
  2260. // Get absolute values of x vectors
  2261. const __m128i ax = _mm_sign_epi8(bx, bx);
  2262. // Sign the values of the y vectors
  2263. const __m128i sy = _mm_sign_epi8(by, bx);
  2264. // Perform multiplication and create 16-bit values
  2265. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2266. const __m128i ones = _mm_set1_epi16(1);
  2267. i32[j] = _mm_madd_epi16(ones, dot);
  2268. }
  2269. // Convert int32_t to float
  2270. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2271. // Apply the scale, and accumulate
  2272. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2273. }
  2274. *s = hsum_float_8(acc);
  2275. #else
  2276. // scalar
  2277. float sumf = 0.0;
  2278. for (int i = 0; i < nb; i++) {
  2279. const float d0 = x[i].d;
  2280. const float d1 = y[i].d;
  2281. const uint8_t * restrict p0 = x[i].qs;
  2282. const int8_t * restrict p1 = y[i].qs;
  2283. int sumi = 0;
  2284. for (int j = 0; j < QK8_0/2; j++) {
  2285. const uint8_t v0 = p0[j];
  2286. const int i0 = (int8_t) (v0 & 0x0F) - 8;
  2287. const int i1 = (int8_t) (v0 >> 4) - 8;
  2288. const int i2 = p1[2*j + 0];
  2289. const int i3 = p1[2*j + 1];
  2290. sumi += i0*i2 + i1*i3;
  2291. }
  2292. sumf += d0*d1*sumi;
  2293. }
  2294. *s = sumf;
  2295. #endif
  2296. }
  2297. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2298. const int nb = n / QK8_1;
  2299. assert(n % QK8_1 == 0);
  2300. assert(nb % 2 == 0);
  2301. const block_q4_1 * restrict x = vx;
  2302. const block_q8_1 * restrict y = vy;
  2303. // TODO: add AVX / WASM SIMD / etc
  2304. #if defined(__ARM_NEON)
  2305. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2306. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2307. float summs = 0;
  2308. for (int i = 0; i < nb; i += 2) {
  2309. const block_q4_1 * restrict x0 = &x[i + 0];
  2310. const block_q4_1 * restrict x1 = &x[i + 1];
  2311. const block_q8_1 * restrict y0 = &y[i + 0];
  2312. const block_q8_1 * restrict y1 = &y[i + 1];
  2313. summs += x0->m * (y0->s0 + y0->s1) + x1->m * (y1->s0 + y1->s1);
  2314. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2315. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2316. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2317. // 4-bit -> 8-bit
  2318. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2319. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2320. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2321. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2322. // interleave
  2323. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2324. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2325. const int8x16_t v0_1lz = vzip1q_s8(v0_1l, v0_1h);
  2326. const int8x16_t v0_1hz = vzip2q_s8(v0_1l, v0_1h);
  2327. // load y
  2328. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2329. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2330. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2331. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2332. #if defined(__ARM_FEATURE_DOTPROD)
  2333. // dot product into int32x4_t
  2334. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h);
  2335. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h);
  2336. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2337. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2338. #else
  2339. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2340. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2341. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2342. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2343. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2344. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2345. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2346. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2347. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2348. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2349. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2350. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2351. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2352. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2353. #endif
  2354. }
  2355. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2356. #elif defined(__AVX2__)
  2357. // Initialize accumulator with zeros
  2358. __m256 acc = _mm256_setzero_ps();
  2359. float summs = 0;
  2360. // Main loop
  2361. for (int i = 0; i < nb; ++i) {
  2362. const float * d0 = &x[i].d;
  2363. const float * d1 = &y[i].d;
  2364. summs += x[i].m * (y[i].s0 + y[i].s1);
  2365. const __m256 d0v = _mm256_broadcast_ss( d0 );
  2366. const __m256 d1v = _mm256_broadcast_ss( d1 );
  2367. // Compute combined scales
  2368. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2369. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2370. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2371. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2372. const __m256 xy = mul_sum_i8_pairs_float(bx, by);
  2373. // Accumulate d0*d1*x*y
  2374. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2375. }
  2376. *s = hsum_float_8(acc) + summs;
  2377. #else
  2378. // scalar
  2379. float sumf = 0.0;
  2380. for (int i = 0; i < nb; i++) {
  2381. const float d0 = x[i].d;
  2382. const float m0 = x[i].m;
  2383. const float d1 = y[i].d;
  2384. const uint8_t * restrict p0 = x[i].qs;
  2385. const int8_t * restrict p1 = y[i].qs;
  2386. // TODO: this is very slow ..
  2387. for (int j = 0; j < QK8_1/2; j++) {
  2388. const uint8_t v0 = p0[j];
  2389. const float f0 = d0*(v0 & 0x0F) + m0;
  2390. const float f1 = d0*(v0 >> 4) + m0;
  2391. const float f2 = d1*p1[2*j + 0];
  2392. const float f3 = d1*p1[2*j + 1];
  2393. sumf += f0*f2 + f1*f3;
  2394. }
  2395. }
  2396. *s = sumf;
  2397. #endif
  2398. }
  2399. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2400. const int nb = n / QK8_0;
  2401. assert(n % QK8_0 == 0);
  2402. assert(nb % 2 == 0);
  2403. assert(QK8_0 == 2*QK4_2);
  2404. const block_q4_2 * restrict x = vx;
  2405. const block_q8_0 * restrict y = vy;
  2406. #if defined(__ARM_NEON)
  2407. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2408. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2409. for (int i = 0; i < nb; i += 2) {
  2410. const block_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0];
  2411. const block_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1];
  2412. const block_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0];
  2413. const block_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1];
  2414. const block_q8_0 * restrict y0 = &y[i + 0];
  2415. const block_q8_0 * restrict y1 = &y[i + 1];
  2416. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2417. const int8x16_t s8b = vdupq_n_s8(0x8);
  2418. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2419. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2420. // 4-bit -> 8-bit
  2421. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2422. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2423. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2424. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2425. // sub 8
  2426. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2427. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2428. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2429. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2430. // interleave
  2431. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2432. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2433. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2434. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2435. // load y
  2436. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2437. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2438. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2439. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2440. #if defined(__ARM_FEATURE_DOTPROD)
  2441. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2442. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)),
  2443. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2444. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2445. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)),
  2446. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2447. #else
  2448. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2449. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2450. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2451. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2452. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2453. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2454. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2455. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2456. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2457. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2458. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2459. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2460. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2461. vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)),
  2462. vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2463. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2464. vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)),
  2465. vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2466. #endif
  2467. }
  2468. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2469. #elif defined(__AVX2__)
  2470. // Initialize accumulator with zeros
  2471. __m256 acc = _mm256_setzero_ps();
  2472. // Main loop
  2473. for (int i = 0; i < nb; i++) {
  2474. /* Compute combined scale for the block */
  2475. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2476. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2477. const __m256 d = _mm256_mul_ps(_mm256_set_m128(d1, d0), _mm256_broadcast_ss(&y[i].d));
  2478. __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2479. __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2480. __m256i bx = _mm256_set_m128i(bx1, bx0);
  2481. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2482. const __m256i off = _mm256_set1_epi8(8);
  2483. bx = _mm256_sub_epi8(bx, off);
  2484. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2485. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2486. /* Multiply q with scale and accumulate */
  2487. acc = _mm256_fmadd_ps(d, q, acc);
  2488. }
  2489. *s = hsum_float_8(acc);
  2490. #else
  2491. // scalar
  2492. float sumf = 0.0;
  2493. for (int i = 0; i < nb; i++) {
  2494. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2495. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2496. const int8_t * restrict y0 = y[i].qs;
  2497. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2498. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2499. int sumi_0 = 0;
  2500. int sumi_1 = 0;
  2501. for (int j = 0; j < QK8_0/4; j++) {
  2502. const uint8_t v0 = x0[j];
  2503. const uint8_t v1 = x1[j];
  2504. const int i0_0 = (int8_t) (v0 & 0x0F) - 8;
  2505. const int i1_0 = (int8_t) (v0 >> 4) - 8;
  2506. const int i0_1 = (int8_t) (v1 & 0x0F) - 8;
  2507. const int i1_1 = (int8_t) (v1 >> 4) - 8;
  2508. const int i2_0 = y0[2*j + 0];
  2509. const int i3_0 = y0[2*j + 1];
  2510. const int i2_1 = y0[2*(j + QK8_0/4) + 0];
  2511. const int i3_1 = y0[2*(j + QK8_0/4) + 1];
  2512. sumi_0 += i0_0*i2_0 + i1_0*i3_0;
  2513. sumi_1 += i0_1*i2_1 + i1_1*i3_1;
  2514. }
  2515. sumf += (d0 * y[i].d) * sumi_0;
  2516. sumf += (d1 * y[i].d) * sumi_1;
  2517. }
  2518. *s = sumf;
  2519. #endif
  2520. }
  2521. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2522. const int nb = n / QK8_0;
  2523. assert(n % QK8_0 == 0);
  2524. assert(nb % 2 == 0);
  2525. assert(QK8_0 == QK5_0);
  2526. const block_q5_0 * restrict x = vx;
  2527. const block_q8_0 * restrict y = vy;
  2528. #if defined(__ARM_NEON)
  2529. float32x4_t sumv = vdupq_n_f32(0.0f);
  2530. uint64_t tmp[4];
  2531. for (int i = 0; i < nb; ++i) {
  2532. const block_q5_0 * restrict x0 = &x[i];
  2533. const block_q8_0 * restrict y0 = &y[i];
  2534. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2535. const int8x16_t s16b = vdupq_n_s8(0x10);
  2536. // extract the 5th bit
  2537. uint32_t qh;
  2538. memcpy(&qh, x0->qh, sizeof(qh));
  2539. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2540. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2541. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2542. tmp[3] = table_b2b_u[(qh >> 24) ];
  2543. const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0));
  2544. const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2));
  2545. const uint8x16_t v0 = vld1q_u8(x0->qs);
  2546. // 4-bit -> 8-bit
  2547. const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, m4b));
  2548. const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4));
  2549. // interleave
  2550. const int8x16_t v0lz = vzip1q_s8(v0l, v0h);
  2551. const int8x16_t v0hz = vzip2q_s8(v0l, v0h);
  2552. // add high bit and sub 16
  2553. const int8x16_t v0lf = vsubq_s8(vorrq_s8(v0lz, qhl), s16b);
  2554. const int8x16_t v0hf = vsubq_s8(vorrq_s8(v0hz, qhh), s16b);
  2555. // load y
  2556. const int8x16_t v1l = vld1q_s8(y0->qs);
  2557. const int8x16_t v1h = vld1q_s8(y0->qs + 16);
  2558. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2559. #if defined(__ARM_FEATURE_DOTPROD)
  2560. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(
  2561. vdotq_s32(vdupq_n_s32(0), v0lf, v1l),
  2562. vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d);
  2563. #else
  2564. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l));
  2565. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l));
  2566. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h));
  2567. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h));
  2568. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2569. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2570. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2571. #endif
  2572. }
  2573. *s = vaddvq_f32(sumv);
  2574. #elif defined(__wasm_simd128__)
  2575. v128_t sumv = wasm_f32x4_splat(0.0f);
  2576. uint64_t tmp[4];
  2577. for (int i = 0; i < nb; ++i) {
  2578. const block_q5_0 * restrict x0 = &x[i];
  2579. const block_q8_0 * restrict y0 = &y[i];
  2580. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2581. const v128_t s16b = wasm_i8x16_splat(0x10);
  2582. // extract the 5th bit
  2583. uint32_t qh;
  2584. memcpy(&qh, x0->qh, sizeof(qh));
  2585. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2586. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2587. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2588. tmp[3] = table_b2b_u[(qh >> 24) ];
  2589. const v128_t qhl = wasm_v128_load(tmp + 0);
  2590. const v128_t qhh = wasm_v128_load(tmp + 2);
  2591. const v128_t v0 = wasm_v128_load(x0->qs);
  2592. // 4-bit -> 8-bit
  2593. const v128_t v0l = wasm_v128_and (v0, m4b);
  2594. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2595. // interleave
  2596. const v128_t v0lz = wasm_v8x16_shuffle(v0l, v0h, 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23);
  2597. const v128_t v0hz = wasm_v8x16_shuffle(v0l, v0h, 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31);
  2598. // add high bit and sub 16
  2599. const v128_t v0lf = wasm_i8x16_sub(wasm_v128_or(v0lz, qhl), s16b);
  2600. const v128_t v0hf = wasm_i8x16_sub(wasm_v128_or(v0hz, qhh), s16b);
  2601. // load y
  2602. const v128_t v1l = wasm_v128_load(y0->qs);
  2603. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2604. // int8x16 -> int16x8
  2605. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2606. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2607. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2608. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2609. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2610. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2611. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2612. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2613. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2614. // dot product
  2615. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2616. wasm_i32x4_add(
  2617. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2618. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2619. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2620. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d)));
  2621. }
  2622. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2623. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2624. #elif defined(__AVX2__)
  2625. // Initialize accumulator with zeros
  2626. __m256 acc = _mm256_setzero_ps();
  2627. // Main loop
  2628. for (int i = 0; i < nb; i++) {
  2629. /* Compute combined scale for the block */
  2630. const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d));
  2631. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2632. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2633. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2634. bx = _mm256_or_si256(bx, bxhi);
  2635. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2636. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2637. /* Multiply q with scale and accumulate */
  2638. acc = _mm256_fmadd_ps(d, q, acc);
  2639. }
  2640. *s = hsum_float_8(acc);
  2641. #else
  2642. // scalar
  2643. float sumf = 0.0;
  2644. for (int i = 0; i < nb; i++) {
  2645. const uint8_t * restrict x0 = x[i].qs;
  2646. const int8_t * restrict y0 = y[i].qs;
  2647. uint32_t qh;
  2648. memcpy(&qh, x[i].qh, sizeof(qh));
  2649. const float d = GGML_FP16_TO_FP32(x[i].d);
  2650. int sxy = 0;
  2651. for (int j = 0; j < QK8_0/2; j++) {
  2652. const uint8_t v0 = x0[j];
  2653. const int x0_0h = ((qh & (1u << (2*j + 0))) >> (2*j + 0)) << 4;
  2654. const int x1_0h = ((qh & (1u << (2*j + 1))) >> (2*j + 1)) << 4;
  2655. const int x0_0 = ((v0 & 0x0F) | x0_0h) - 16;
  2656. const int x1_0 = ((v0 >> 4) | x1_0h) - 16;
  2657. const int y0_0 = y0[2*j + 0];
  2658. const int y1_0 = y0[2*j + 1];
  2659. sxy += x0_0*y0_0 + x1_0*y1_0;
  2660. }
  2661. sumf += (d*sxy)*y[i].d;
  2662. }
  2663. *s = sumf;
  2664. #endif
  2665. }
  2666. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2667. const int nb = n / QK8_1;
  2668. assert(n % QK8_1 == 0);
  2669. assert(nb % 2 == 0);
  2670. assert(QK8_1 == QK5_1);
  2671. const block_q5_1 * restrict x = vx;
  2672. const block_q8_1 * restrict y = vy;
  2673. #if defined(__ARM_NEON)
  2674. float32x4_t sumv = vdupq_n_f32(0.0f);
  2675. float summs = 0.0f;
  2676. uint64_t tmp[4];
  2677. for (int i = 0; i < nb; ++i) {
  2678. const block_q5_1 * restrict x0 = &x[i];
  2679. const block_q8_1 * restrict y0 = &y[i];
  2680. summs += GGML_FP16_TO_FP32(x0->m) * (y0->s0 + y0->s1);
  2681. // extract the 5th bit
  2682. uint32_t qh;
  2683. memcpy(&qh, x0->qh, sizeof(qh));
  2684. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2685. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2686. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2687. tmp[3] = table_b2b_u[(qh >> 24) ];
  2688. const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0));
  2689. const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2));
  2690. const uint8x16_t v0 = vld1q_u8(x0->qs);
  2691. // 4-bit -> 8-bit
  2692. const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, vdupq_n_u8(0x0F)));
  2693. const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4));
  2694. // interleave
  2695. const int8x16_t v0lz = vzip1q_s8(v0l, v0h);
  2696. const int8x16_t v0hz = vzip2q_s8(v0l, v0h);
  2697. // add
  2698. const int8x16_t v0lf = vorrq_s8(v0lz, qhl);
  2699. const int8x16_t v0hf = vorrq_s8(v0hz, qhh);
  2700. // load y
  2701. const int8x16_t v1l = vld1q_s8(y0->qs);
  2702. const int8x16_t v1h = vld1q_s8(y0->qs + 16);
  2703. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2704. #if defined(__ARM_FEATURE_DOTPROD)
  2705. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(
  2706. vdotq_s32(vdupq_n_s32(0), v0lf, v1l),
  2707. vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d);
  2708. #else
  2709. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l));
  2710. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l));
  2711. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h));
  2712. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h));
  2713. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2714. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2715. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2716. #endif
  2717. }
  2718. *s = vaddvq_f32(sumv) + summs;
  2719. #elif defined(__wasm_simd128__)
  2720. v128_t sumv = wasm_f32x4_splat(0.0f);
  2721. float summs = 0.0f;
  2722. uint64_t tmp[4];
  2723. for (int i = 0; i < nb; ++i) {
  2724. const block_q5_1 * restrict x0 = &x[i];
  2725. const block_q8_1 * restrict y0 = &y[i];
  2726. summs += GGML_FP16_TO_FP32(x0->m) * (y0->s0 + y0->s1);
  2727. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2728. // extract the 5th bit
  2729. uint32_t qh;
  2730. memcpy(&qh, x0->qh, sizeof(qh));
  2731. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2732. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2733. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2734. tmp[3] = table_b2b_u[(qh >> 24) ];
  2735. const v128_t qhl = wasm_v128_load(tmp + 0);
  2736. const v128_t qhh = wasm_v128_load(tmp + 2);
  2737. const v128_t v0 = wasm_v128_load(x0->qs);
  2738. // 4-bit -> 8-bit
  2739. const v128_t v0l = wasm_v128_and (v0, m4b);
  2740. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2741. static bool x = true;
  2742. // interleave
  2743. const v128_t v0lz = wasm_v8x16_shuffle(v0l, v0h, 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23);
  2744. const v128_t v0hz = wasm_v8x16_shuffle(v0l, v0h, 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31);
  2745. // add high bit
  2746. const v128_t v0lf = wasm_v128_or(v0lz, qhl);
  2747. const v128_t v0hf = wasm_v128_or(v0hz, qhh);
  2748. // load y
  2749. const v128_t v1l = wasm_v128_load(y0->qs);
  2750. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2751. // int8x16 -> int16x8
  2752. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2753. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2754. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2755. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2756. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2757. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2758. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2759. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2760. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2761. // dot product
  2762. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2763. wasm_i32x4_add(
  2764. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2765. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2766. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2767. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d)));
  2768. }
  2769. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2770. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2771. #elif defined(__AVX2__)
  2772. // Initialize accumulator with zeros
  2773. __m256 acc = _mm256_setzero_ps();
  2774. float summs = 0.0f;
  2775. // Main loop
  2776. for (int i = 0; i < nb; i++) {
  2777. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2778. summs += GGML_FP16_TO_FP32(x[i].m) * (y[i].s0 + y[i].s1);
  2779. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2780. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2781. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2782. bx = _mm256_or_si256(bx, bxhi);
  2783. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2784. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2785. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2786. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2787. }
  2788. *s = hsum_float_8(acc) + summs;
  2789. #else
  2790. float sumf = 0.0;
  2791. for (int i = 0; i < nb; i++) {
  2792. const uint8_t * restrict x0 = x[i].qs;
  2793. const int8_t * restrict y0 = y[i].qs;
  2794. uint32_t qh;
  2795. memcpy(&qh, x[i].qh, sizeof(qh));
  2796. const float d = GGML_FP16_TO_FP32(x[i].d);
  2797. const float m = GGML_FP16_TO_FP32(x[i].m);
  2798. int sxy = 0;
  2799. for (int j = 0; j < QK8_1/2; j++) {
  2800. const uint8_t v0 = x0[j];
  2801. const int x0_0h = ((qh & (1u << (2*j + 0))) >> (2*j + 0)) << 4;
  2802. const int x1_0h = ((qh & (1u << (2*j + 1))) >> (2*j + 1)) << 4;
  2803. const int x0_0 = (v0 & 0x0F) | x0_0h;
  2804. const int x1_0 = (v0 >> 4) | x1_0h;
  2805. const int y0_0 = y0[2*j + 0];
  2806. const int y1_0 = y0[2*j + 1];
  2807. sxy += x0_0*y0_0 + x1_0*y1_0;
  2808. }
  2809. sumf += (d*sxy)*y[i].d + m*(y[i].s0 + y[i].s1);
  2810. }
  2811. *s = sumf;
  2812. #endif
  2813. }
  2814. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2815. const int nb = n / QK8_0;
  2816. assert(n % QK8_0 == 0);
  2817. assert(nb % 2 == 0);
  2818. assert(QK8_0 == QK8_0);
  2819. const block_q8_0 * restrict x = vx;
  2820. const block_q8_0 * restrict y = vy;
  2821. #if defined(__ARM_NEON)
  2822. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2823. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2824. for (int i = 0; i < nb; i += 2) {
  2825. const block_q8_0 * restrict x0 = &x[i + 0];
  2826. const block_q8_0 * restrict x1 = &x[i + 1];
  2827. const block_q8_0 * restrict y0 = &y[i + 0];
  2828. const block_q8_0 * restrict y1 = &y[i + 1];
  2829. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2830. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2831. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2832. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2833. // load y
  2834. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2835. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2836. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2837. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2838. #if defined(__ARM_FEATURE_DOTPROD)
  2839. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2840. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2841. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), x0->d*y0->d);
  2842. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2843. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2844. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), x1->d*y1->d);
  2845. #else
  2846. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2847. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2848. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2849. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2850. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2851. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2852. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2853. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2854. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2855. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2856. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2857. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2858. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), x0->d*y0->d);
  2859. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), x1->d*y1->d);
  2860. #endif
  2861. }
  2862. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2863. #elif defined(__AVX2__)
  2864. // Initialize accumulator with zeros
  2865. __m256 acc = _mm256_setzero_ps();
  2866. // Main loop
  2867. for (int i = 0; i < nb; ++i) {
  2868. // Compute combined scale for the block
  2869. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2870. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2871. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2872. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2873. // Multiply q with scale and accumulate
  2874. acc = _mm256_fmadd_ps( d, q, acc );
  2875. }
  2876. *s = hsum_float_8(acc);
  2877. #else
  2878. // scalar
  2879. float sumf = 0.0;
  2880. for (int i = 0; i < nb; i++) {
  2881. const int8_t * restrict x0 = x[i].qs;
  2882. const int8_t * restrict y0 = y[i].qs;
  2883. int sumi = 0;
  2884. for (int j = 0; j < QK8_0; j++) {
  2885. const int v0 = x0[j];
  2886. const int v1 = y0[j];
  2887. sumi += v0*v1;
  2888. }
  2889. sumf += (x[i].d*y[i].d)*sumi;
  2890. }
  2891. *s = sumf;
  2892. #endif
  2893. }
  2894. // compute GGML_VEC_DOT_UNROLL dot products at once
  2895. // xs - x row stride in bytes
  2896. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2897. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2898. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2899. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2900. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2901. }
  2902. #if defined(GGML_SIMD)
  2903. const int np = (n & ~(GGML_F16_STEP - 1));
  2904. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2905. GGML_F16_VEC ax[GGML_F16_ARR];
  2906. GGML_F16_VEC ay[GGML_F16_ARR];
  2907. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2908. for (int j = 0; j < GGML_F16_ARR; j++) {
  2909. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2910. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2911. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2912. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2913. }
  2914. }
  2915. }
  2916. // reduce sum0..sum3 to sum0
  2917. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2918. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2919. }
  2920. // leftovers
  2921. for (int i = np; i < n; ++i) {
  2922. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2923. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2924. }
  2925. }
  2926. #else
  2927. for (int i = 0; i < n; ++i) {
  2928. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2929. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2930. }
  2931. }
  2932. #endif
  2933. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2934. s[i] = sumf[i];
  2935. }
  2936. }
  2937. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2938. #if defined(GGML_SIMD)
  2939. const int np = (n & ~(GGML_F32_STEP - 1));
  2940. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2941. GGML_F32_VEC ax[GGML_F32_ARR];
  2942. GGML_F32_VEC ay[GGML_F32_ARR];
  2943. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2944. for (int j = 0; j < GGML_F32_ARR; j++) {
  2945. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2946. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2947. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2948. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2949. }
  2950. }
  2951. // leftovers
  2952. for (int i = np; i < n; ++i) {
  2953. y[i] += x[i]*v;
  2954. }
  2955. #else
  2956. // scalar
  2957. for (int i = 0; i < n; ++i) {
  2958. y[i] += x[i]*v;
  2959. }
  2960. #endif
  2961. }
  2962. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2963. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2964. #if defined(GGML_SIMD)
  2965. const int np = (n & ~(GGML_F32_STEP - 1));
  2966. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2967. GGML_F32_VEC ay[GGML_F32_ARR];
  2968. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2969. for (int j = 0; j < GGML_F32_ARR; j++) {
  2970. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2971. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2972. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2973. }
  2974. }
  2975. // leftovers
  2976. for (int i = np; i < n; ++i) {
  2977. y[i] *= v;
  2978. }
  2979. #else
  2980. // scalar
  2981. for (int i = 0; i < n; ++i) {
  2982. y[i] *= v;
  2983. }
  2984. #endif
  2985. }
  2986. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2987. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2988. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2989. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2990. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2991. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2992. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2993. static const float GELU_COEF_A = 0.044715f;
  2994. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2995. inline static float ggml_gelu_f32(float x) {
  2996. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2997. }
  2998. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2999. const uint16_t * i16 = (const uint16_t *) x;
  3000. for (int i = 0; i < n; ++i) {
  3001. y[i] = table_gelu_f16[i16[i]];
  3002. }
  3003. }
  3004. #ifdef GGML_GELU_FP16
  3005. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3006. uint16_t t;
  3007. for (int i = 0; i < n; ++i) {
  3008. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3009. memcpy(&t, &fp16, sizeof(uint16_t));
  3010. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  3011. }
  3012. }
  3013. #else
  3014. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3015. for (int i = 0; i < n; ++i) {
  3016. y[i] = ggml_gelu_f32(x[i]);
  3017. }
  3018. }
  3019. #endif
  3020. // Sigmoid Linear Unit (SiLU) function
  3021. inline static float ggml_silu_f32(float x) {
  3022. return x/(1.0f + expf(-x));
  3023. }
  3024. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3025. const uint16_t * i16 = (const uint16_t *) x;
  3026. for (int i = 0; i < n; ++i) {
  3027. y[i] = table_silu_f16[i16[i]];
  3028. }
  3029. }
  3030. #ifdef GGML_SILU_FP16
  3031. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3032. uint16_t t;
  3033. for (int i = 0; i < n; ++i) {
  3034. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3035. memcpy(&t, &fp16, sizeof(uint16_t));
  3036. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  3037. }
  3038. }
  3039. #else
  3040. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3041. for (int i = 0; i < n; ++i) {
  3042. y[i] = ggml_silu_f32(x[i]);
  3043. }
  3044. }
  3045. #endif
  3046. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  3047. #ifndef GGML_USE_ACCELERATE
  3048. ggml_float sum = 0.0;
  3049. for (int i = 0; i < n; ++i) {
  3050. sum += (ggml_float)x[i];
  3051. }
  3052. *s = sum;
  3053. #else
  3054. vDSP_sve(x, 1, s, n);
  3055. #endif
  3056. }
  3057. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  3058. ggml_float sum = 0.0;
  3059. for (int i = 0; i < n; ++i) {
  3060. sum += (ggml_float)x[i];
  3061. }
  3062. *s = sum;
  3063. }
  3064. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  3065. #ifndef GGML_USE_ACCELERATE
  3066. float max = -INFINITY;
  3067. for (int i = 0; i < n; ++i) {
  3068. max = MAX(max, x[i]);
  3069. }
  3070. *s = max;
  3071. #else
  3072. vDSP_maxv(x, 1, s, n);
  3073. #endif
  3074. }
  3075. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  3076. ggml_vec_norm_f32(n, s, x);
  3077. *s = 1.f/(*s);
  3078. }
  3079. //
  3080. // logging
  3081. //
  3082. #if (GGML_DEBUG >= 1)
  3083. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  3084. #else
  3085. #define GGML_PRINT_DEBUG(...)
  3086. #endif
  3087. #if (GGML_DEBUG >= 5)
  3088. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  3089. #else
  3090. #define GGML_PRINT_DEBUG_5(...)
  3091. #endif
  3092. #if (GGML_DEBUG >= 10)
  3093. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  3094. #else
  3095. #define GGML_PRINT_DEBUG_10(...)
  3096. #endif
  3097. #define GGML_PRINT(...) printf(__VA_ARGS__)
  3098. //
  3099. // data types
  3100. //
  3101. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  3102. [GGML_TYPE_F32] = 1,
  3103. [GGML_TYPE_F16] = 1,
  3104. [GGML_TYPE_Q4_0] = QK4_0,
  3105. [GGML_TYPE_Q4_1] = QK4_1,
  3106. [GGML_TYPE_Q4_2] = QK4_2,
  3107. [GGML_TYPE_Q5_0] = QK5_0,
  3108. [GGML_TYPE_Q5_1] = QK5_1,
  3109. [GGML_TYPE_Q8_0] = QK8_0,
  3110. [GGML_TYPE_Q8_1] = QK8_1,
  3111. [GGML_TYPE_I8] = 1,
  3112. [GGML_TYPE_I16] = 1,
  3113. [GGML_TYPE_I32] = 1,
  3114. };
  3115. static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated");
  3116. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  3117. [GGML_TYPE_F32] = sizeof(float),
  3118. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  3119. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  3120. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  3121. [GGML_TYPE_Q4_2] = sizeof(block_q4_2),
  3122. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  3123. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  3124. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  3125. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  3126. [GGML_TYPE_I8] = sizeof(int8_t),
  3127. [GGML_TYPE_I16] = sizeof(int16_t),
  3128. [GGML_TYPE_I32] = sizeof(int32_t),
  3129. };
  3130. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated");
  3131. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  3132. [GGML_TYPE_F32] = "f32",
  3133. [GGML_TYPE_F16] = "f16",
  3134. [GGML_TYPE_Q4_0] = "q4_0",
  3135. [GGML_TYPE_Q4_1] = "q4_1",
  3136. [GGML_TYPE_Q4_2] = "q4_2",
  3137. [GGML_TYPE_Q5_0] = "q5_0",
  3138. [GGML_TYPE_Q5_1] = "q5_1",
  3139. [GGML_TYPE_Q8_0] = "q8_0",
  3140. [GGML_TYPE_Q8_1] = "q8_1",
  3141. [GGML_TYPE_I8] = "i8",
  3142. [GGML_TYPE_I16] = "i16",
  3143. [GGML_TYPE_I32] = "i32",
  3144. };
  3145. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated");
  3146. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  3147. [GGML_TYPE_F32] = false,
  3148. [GGML_TYPE_F16] = false,
  3149. [GGML_TYPE_Q4_0] = true,
  3150. [GGML_TYPE_Q4_1] = true,
  3151. [GGML_TYPE_Q4_2] = true,
  3152. [GGML_TYPE_Q5_0] = true,
  3153. [GGML_TYPE_Q5_1] = true,
  3154. [GGML_TYPE_Q8_0] = true,
  3155. [GGML_TYPE_Q8_1] = true,
  3156. [GGML_TYPE_I8] = false,
  3157. [GGML_TYPE_I16] = false,
  3158. [GGML_TYPE_I32] = false,
  3159. };
  3160. static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated");
  3161. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  3162. "NONE",
  3163. "DUP",
  3164. "ADD",
  3165. "SUB",
  3166. "MUL",
  3167. "DIV",
  3168. "SQR",
  3169. "SQRT",
  3170. "SUM",
  3171. "MEAN",
  3172. "REPEAT",
  3173. "ABS",
  3174. "SGN",
  3175. "NEG",
  3176. "STEP",
  3177. "RELU",
  3178. "GELU",
  3179. "SILU",
  3180. "NORM",
  3181. "RMS_NORM",
  3182. "MUL_MAT",
  3183. "SCALE",
  3184. "CPY",
  3185. "CONT",
  3186. "RESHAPE",
  3187. "VIEW",
  3188. "PERMUTE",
  3189. "TRANSPOSE",
  3190. "GET_ROWS",
  3191. "DIAG_MASK_INF",
  3192. "SOFT_MAX",
  3193. "ROPE",
  3194. "ALIBI",
  3195. "CONV_1D_1S",
  3196. "CONV_1D_2S",
  3197. "FLASH_ATTN",
  3198. "FLASH_FF",
  3199. "MAP_UNARY",
  3200. "MAP_BINARY",
  3201. };
  3202. static_assert(GGML_OP_COUNT == 39, "GGML_OP_COUNT != 39");
  3203. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3204. "none",
  3205. "x",
  3206. "x+y",
  3207. "x-y",
  3208. "x*y",
  3209. "x/y",
  3210. "x^2",
  3211. "√x",
  3212. "Σx",
  3213. "Σx/n",
  3214. "repeat(x)",
  3215. "abs(x)",
  3216. "sgn(x)",
  3217. "-x",
  3218. "step(x)",
  3219. "relu(x)",
  3220. "gelu(x)",
  3221. "silu(x)",
  3222. "norm(x)",
  3223. "rms_norm(x)",
  3224. "X*Y",
  3225. "x*v",
  3226. "x-\\>y",
  3227. "cont(x)",
  3228. "reshape(x)",
  3229. "view(x)",
  3230. "permute(x)",
  3231. "transpose(x)",
  3232. "get_rows(x)",
  3233. "diag_mask_inf(x)",
  3234. "soft_max(x)",
  3235. "rope(x)",
  3236. "alibi(x)",
  3237. "conv_1d_1s(x)",
  3238. "conv_1d_2s(x)",
  3239. "flash_attn(x)",
  3240. "flash_ff(x)",
  3241. "f(x)",
  3242. "f(x,y)",
  3243. };
  3244. static_assert(GGML_OP_COUNT == 39, "GGML_OP_COUNT != 39");
  3245. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3246. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3247. //
  3248. // ggml context
  3249. //
  3250. struct ggml_context {
  3251. size_t mem_size;
  3252. void * mem_buffer;
  3253. bool mem_buffer_owned;
  3254. bool no_alloc;
  3255. int n_objects;
  3256. struct ggml_object * objects_begin;
  3257. struct ggml_object * objects_end;
  3258. struct ggml_scratch scratch;
  3259. struct ggml_scratch scratch_save;
  3260. };
  3261. struct ggml_context_container {
  3262. bool used;
  3263. struct ggml_context context;
  3264. };
  3265. //
  3266. // compute types
  3267. //
  3268. enum ggml_task_type {
  3269. GGML_TASK_INIT = 0,
  3270. GGML_TASK_COMPUTE,
  3271. GGML_TASK_FINALIZE,
  3272. };
  3273. struct ggml_compute_params {
  3274. enum ggml_task_type type;
  3275. int ith, nth;
  3276. // work buffer for all threads
  3277. size_t wsize;
  3278. void * wdata;
  3279. };
  3280. //
  3281. // ggml state
  3282. //
  3283. struct ggml_state {
  3284. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3285. };
  3286. // global state
  3287. static struct ggml_state g_state;
  3288. static atomic_int g_state_barrier = 0;
  3289. // barrier via spin lock
  3290. inline static void ggml_critical_section_start(void) {
  3291. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3292. while (processing > 0) {
  3293. // wait for other threads to finish
  3294. atomic_fetch_sub(&g_state_barrier, 1);
  3295. sched_yield(); // TODO: reconsider this
  3296. processing = atomic_fetch_add(&g_state_barrier, 1);
  3297. }
  3298. }
  3299. // TODO: make this somehow automatically executed
  3300. // some sort of "sentry" mechanism
  3301. inline static void ggml_critical_section_end(void) {
  3302. atomic_fetch_sub(&g_state_barrier, 1);
  3303. }
  3304. ////////////////////////////////////////////////////////////////////////////////
  3305. void ggml_print_object(const struct ggml_object * obj) {
  3306. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3307. obj->offs, obj->size, (const void *) obj->next);
  3308. }
  3309. void ggml_print_objects(const struct ggml_context * ctx) {
  3310. struct ggml_object * obj = ctx->objects_begin;
  3311. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3312. while (obj != NULL) {
  3313. ggml_print_object(obj);
  3314. obj = obj->next;
  3315. }
  3316. GGML_PRINT("%s: --- end ---\n", __func__);
  3317. }
  3318. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3319. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3320. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3321. }
  3322. int ggml_nrows(const struct ggml_tensor * tensor) {
  3323. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3324. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3325. }
  3326. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3327. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3328. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3329. }
  3330. int ggml_blck_size(enum ggml_type type) {
  3331. return GGML_BLCK_SIZE[type];
  3332. }
  3333. size_t ggml_type_size(enum ggml_type type) {
  3334. return GGML_TYPE_SIZE[type];
  3335. }
  3336. float ggml_type_sizef(enum ggml_type type) {
  3337. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3338. }
  3339. const char * ggml_type_name(enum ggml_type type) {
  3340. return GGML_TYPE_NAME[type];
  3341. }
  3342. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3343. return GGML_TYPE_SIZE[tensor->type];
  3344. }
  3345. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3346. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3347. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3348. }
  3349. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3350. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3351. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3352. }
  3353. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3354. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3355. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3356. }
  3357. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3358. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3359. return
  3360. (t0->ne[0] == t1->ne[0]) &&
  3361. (t0->ne[2] == t1->ne[2]) &&
  3362. (t0->ne[3] == t1->ne[3]);
  3363. }
  3364. bool ggml_is_quantized(enum ggml_type type) {
  3365. return GGML_IS_QUANTIZED[type];
  3366. }
  3367. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3368. enum ggml_type wtype = GGML_TYPE_COUNT;
  3369. switch (ftype) {
  3370. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3371. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3372. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3373. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3374. case GGML_FTYPE_MOSTLY_Q4_2: wtype = GGML_TYPE_Q4_2; break;
  3375. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3376. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3377. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3378. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3379. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3380. }
  3381. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3382. return wtype;
  3383. }
  3384. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3385. return tensor->nb[0] > tensor->nb[1];
  3386. }
  3387. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3388. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3389. return
  3390. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3391. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3392. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3393. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3394. }
  3395. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3396. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3397. return
  3398. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3399. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3400. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3401. }
  3402. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3403. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3404. return
  3405. (t0->ne[0] == t1->ne[0] ) &&
  3406. (t0->ne[1] == t1->ne[1] ) &&
  3407. (t0->ne[2] == t1->ne[2] ) &&
  3408. (t0->ne[3] == t1->ne[3] );
  3409. }
  3410. // check if t1 can be represented as a repeatition of t0
  3411. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3412. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3413. return
  3414. (t1->ne[0]%t0->ne[0] == 0) &&
  3415. (t1->ne[1]%t0->ne[1] == 0) &&
  3416. (t1->ne[2]%t0->ne[2] == 0) &&
  3417. (t1->ne[3]%t0->ne[3] == 0);
  3418. }
  3419. static inline int ggml_up32(int n) {
  3420. return (n + 31) & ~31;
  3421. }
  3422. static inline int ggml_up64(int n) {
  3423. return (n + 63) & ~63;
  3424. }
  3425. static inline int ggml_up(int n, int m) {
  3426. // assert m is a power of 2
  3427. GGML_ASSERT((m & (m - 1)) == 0);
  3428. return (n + m - 1) & ~(m - 1);
  3429. }
  3430. // assert that pointer is aligned to GGML_MEM_ALIGN
  3431. #define ggml_assert_aligned(ptr) \
  3432. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3433. ////////////////////////////////////////////////////////////////////////////////
  3434. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3435. // make this function thread safe
  3436. ggml_critical_section_start();
  3437. static bool is_first_call = true;
  3438. if (is_first_call) {
  3439. // initialize time system (required on Windows)
  3440. ggml_time_init();
  3441. // initialize GELU, SILU and EXP F32 tables
  3442. {
  3443. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3444. ggml_fp16_t ii;
  3445. for (int i = 0; i < (1 << 16); ++i) {
  3446. uint16_t ui = i;
  3447. memcpy(&ii, &ui, sizeof(ii));
  3448. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3449. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3450. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3451. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3452. }
  3453. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3454. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3455. }
  3456. // initialize g_state
  3457. {
  3458. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3459. g_state = (struct ggml_state) {
  3460. /*.contexts =*/ { { 0 } },
  3461. };
  3462. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3463. g_state.contexts[i].used = false;
  3464. }
  3465. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3466. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3467. }
  3468. #if defined(GGML_USE_CUBLAS)
  3469. ggml_init_cublas();
  3470. #elif defined(GGML_USE_CLBLAST)
  3471. ggml_cl_init();
  3472. #endif
  3473. is_first_call = false;
  3474. }
  3475. // find non-used context in g_state
  3476. struct ggml_context * ctx = NULL;
  3477. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3478. if (!g_state.contexts[i].used) {
  3479. g_state.contexts[i].used = true;
  3480. ctx = &g_state.contexts[i].context;
  3481. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3482. break;
  3483. }
  3484. }
  3485. if (ctx == NULL) {
  3486. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3487. ggml_critical_section_end();
  3488. return NULL;
  3489. }
  3490. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3491. *ctx = (struct ggml_context) {
  3492. /*.mem_size =*/ mem_size,
  3493. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3494. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3495. /*.no_alloc =*/ params.no_alloc,
  3496. /*.n_objects =*/ 0,
  3497. /*.objects_begin =*/ NULL,
  3498. /*.objects_end =*/ NULL,
  3499. /*.scratch =*/ { 0, 0, NULL, },
  3500. /*.scratch_save =*/ { 0, 0, NULL, },
  3501. };
  3502. GGML_ASSERT(ctx->mem_buffer != NULL);
  3503. ggml_assert_aligned(ctx->mem_buffer);
  3504. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3505. ggml_critical_section_end();
  3506. return ctx;
  3507. }
  3508. void ggml_free(struct ggml_context * ctx) {
  3509. // make this function thread safe
  3510. ggml_critical_section_start();
  3511. bool found = false;
  3512. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3513. if (&g_state.contexts[i].context == ctx) {
  3514. g_state.contexts[i].used = false;
  3515. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3516. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3517. if (ctx->mem_buffer_owned) {
  3518. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3519. }
  3520. found = true;
  3521. break;
  3522. }
  3523. }
  3524. if (!found) {
  3525. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3526. }
  3527. ggml_critical_section_end();
  3528. }
  3529. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3530. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3531. }
  3532. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3533. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3534. ctx->scratch = scratch;
  3535. return result;
  3536. }
  3537. ////////////////////////////////////////////////////////////////////////////////
  3538. struct ggml_tensor * ggml_new_tensor_impl(
  3539. struct ggml_context * ctx,
  3540. enum ggml_type type,
  3541. int n_dims,
  3542. const int64_t* ne,
  3543. void* data) {
  3544. // always insert objects at the end of the context's memory pool
  3545. struct ggml_object * obj_cur = ctx->objects_end;
  3546. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3547. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3548. const size_t cur_end = cur_offs + cur_size;
  3549. size_t size_needed = 0;
  3550. if (data == NULL && !ctx->no_alloc) {
  3551. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3552. for (int i = 1; i < n_dims; i++) {
  3553. size_needed *= ne[i];
  3554. }
  3555. // align to GGML_MEM_ALIGN
  3556. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3557. }
  3558. char * const mem_buffer = ctx->mem_buffer;
  3559. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3560. if (ctx->scratch.data == NULL || data != NULL) {
  3561. size_needed += sizeof(struct ggml_tensor);
  3562. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3563. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3564. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3565. assert(false);
  3566. return NULL;
  3567. }
  3568. *obj_new = (struct ggml_object) {
  3569. .offs = cur_end + GGML_OBJECT_SIZE,
  3570. .size = size_needed,
  3571. .next = NULL,
  3572. };
  3573. } else {
  3574. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3575. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3576. assert(false);
  3577. return NULL;
  3578. }
  3579. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3580. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3581. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3582. assert(false);
  3583. return NULL;
  3584. }
  3585. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3586. *obj_new = (struct ggml_object) {
  3587. .offs = cur_end + GGML_OBJECT_SIZE,
  3588. .size = sizeof(struct ggml_tensor),
  3589. .next = NULL,
  3590. };
  3591. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3592. ctx->scratch.offs += size_needed;
  3593. }
  3594. if (obj_cur != NULL) {
  3595. obj_cur->next = obj_new;
  3596. } else {
  3597. // this is the first object in this context
  3598. ctx->objects_begin = obj_new;
  3599. }
  3600. ctx->objects_end = obj_new;
  3601. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3602. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3603. ggml_assert_aligned(result);
  3604. *result = (struct ggml_tensor) {
  3605. /*.type =*/ type,
  3606. /*.n_dims =*/ n_dims,
  3607. /*.ne =*/ { 1, 1, 1, 1 },
  3608. /*.nb =*/ { 0, 0, 0, 0 },
  3609. /*.op =*/ GGML_OP_NONE,
  3610. /*.is_param =*/ false,
  3611. /*.grad =*/ NULL,
  3612. /*.src0 =*/ NULL,
  3613. /*.src1 =*/ NULL,
  3614. /*.opt =*/ { NULL },
  3615. /*.n_tasks =*/ 0,
  3616. /*.perf_runs =*/ 0,
  3617. /*.perf_cycles =*/ 0,
  3618. /*.perf_time_us =*/ 0,
  3619. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3620. /*.pad =*/ { 0 },
  3621. };
  3622. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3623. //ggml_assert_aligned(result->data);
  3624. for (int i = 0; i < n_dims; i++) {
  3625. result->ne[i] = ne[i];
  3626. }
  3627. result->nb[0] = GGML_TYPE_SIZE[type];
  3628. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3629. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3630. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3631. }
  3632. ctx->n_objects++;
  3633. return result;
  3634. }
  3635. struct ggml_tensor * ggml_new_tensor(
  3636. struct ggml_context * ctx,
  3637. enum ggml_type type,
  3638. int n_dims,
  3639. const int64_t * ne) {
  3640. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3641. }
  3642. struct ggml_tensor * ggml_new_tensor_1d(
  3643. struct ggml_context * ctx,
  3644. enum ggml_type type,
  3645. int64_t ne0) {
  3646. return ggml_new_tensor(ctx, type, 1, &ne0);
  3647. }
  3648. struct ggml_tensor * ggml_new_tensor_2d(
  3649. struct ggml_context * ctx,
  3650. enum ggml_type type,
  3651. int64_t ne0,
  3652. int64_t ne1) {
  3653. const int64_t ne[2] = { ne0, ne1 };
  3654. return ggml_new_tensor(ctx, type, 2, ne);
  3655. }
  3656. struct ggml_tensor * ggml_new_tensor_3d(
  3657. struct ggml_context * ctx,
  3658. enum ggml_type type,
  3659. int64_t ne0,
  3660. int64_t ne1,
  3661. int64_t ne2) {
  3662. const int64_t ne[3] = { ne0, ne1, ne2 };
  3663. return ggml_new_tensor(ctx, type, 3, ne);
  3664. }
  3665. struct ggml_tensor * ggml_new_tensor_4d(
  3666. struct ggml_context * ctx,
  3667. enum ggml_type type,
  3668. int64_t ne0,
  3669. int64_t ne1,
  3670. int64_t ne2,
  3671. int64_t ne3) {
  3672. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3673. return ggml_new_tensor(ctx, type, 4, ne);
  3674. }
  3675. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3676. ctx->scratch_save = ctx->scratch;
  3677. ctx->scratch.data = NULL;
  3678. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3679. ctx->scratch = ctx->scratch_save;
  3680. ggml_set_i32(result, value);
  3681. return result;
  3682. }
  3683. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3684. ctx->scratch_save = ctx->scratch;
  3685. ctx->scratch.data = NULL;
  3686. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3687. ctx->scratch = ctx->scratch_save;
  3688. ggml_set_f32(result, value);
  3689. return result;
  3690. }
  3691. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3692. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3693. }
  3694. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3695. memset(tensor->data, 0, ggml_nbytes(tensor));
  3696. return tensor;
  3697. }
  3698. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3699. const int n = ggml_nrows(tensor);
  3700. const int nc = tensor->ne[0];
  3701. const size_t n1 = tensor->nb[1];
  3702. char * const data = tensor->data;
  3703. switch (tensor->type) {
  3704. case GGML_TYPE_I8:
  3705. {
  3706. assert(tensor->nb[0] == sizeof(int8_t));
  3707. for (int i = 0; i < n; i++) {
  3708. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3709. }
  3710. } break;
  3711. case GGML_TYPE_I16:
  3712. {
  3713. assert(tensor->nb[0] == sizeof(int16_t));
  3714. for (int i = 0; i < n; i++) {
  3715. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3716. }
  3717. } break;
  3718. case GGML_TYPE_I32:
  3719. {
  3720. assert(tensor->nb[0] == sizeof(int32_t));
  3721. for (int i = 0; i < n; i++) {
  3722. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3723. }
  3724. } break;
  3725. case GGML_TYPE_F16:
  3726. {
  3727. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3728. for (int i = 0; i < n; i++) {
  3729. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3730. }
  3731. } break;
  3732. case GGML_TYPE_F32:
  3733. {
  3734. assert(tensor->nb[0] == sizeof(float));
  3735. for (int i = 0; i < n; i++) {
  3736. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3737. }
  3738. } break;
  3739. default:
  3740. {
  3741. GGML_ASSERT(false);
  3742. } break;
  3743. }
  3744. return tensor;
  3745. }
  3746. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3747. const int n = ggml_nrows(tensor);
  3748. const int nc = tensor->ne[0];
  3749. const size_t n1 = tensor->nb[1];
  3750. char * const data = tensor->data;
  3751. switch (tensor->type) {
  3752. case GGML_TYPE_I8:
  3753. {
  3754. assert(tensor->nb[0] == sizeof(int8_t));
  3755. for (int i = 0; i < n; i++) {
  3756. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3757. }
  3758. } break;
  3759. case GGML_TYPE_I16:
  3760. {
  3761. assert(tensor->nb[0] == sizeof(int16_t));
  3762. for (int i = 0; i < n; i++) {
  3763. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3764. }
  3765. } break;
  3766. case GGML_TYPE_I32:
  3767. {
  3768. assert(tensor->nb[0] == sizeof(int32_t));
  3769. for (int i = 0; i < n; i++) {
  3770. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3771. }
  3772. } break;
  3773. case GGML_TYPE_F16:
  3774. {
  3775. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3776. for (int i = 0; i < n; i++) {
  3777. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3778. }
  3779. } break;
  3780. case GGML_TYPE_F32:
  3781. {
  3782. assert(tensor->nb[0] == sizeof(float));
  3783. for (int i = 0; i < n; i++) {
  3784. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3785. }
  3786. } break;
  3787. default:
  3788. {
  3789. GGML_ASSERT(false);
  3790. } break;
  3791. }
  3792. return tensor;
  3793. }
  3794. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3795. switch (tensor->type) {
  3796. case GGML_TYPE_I8:
  3797. {
  3798. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3799. return ((int8_t *)(tensor->data))[i];
  3800. } break;
  3801. case GGML_TYPE_I16:
  3802. {
  3803. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3804. return ((int16_t *)(tensor->data))[i];
  3805. } break;
  3806. case GGML_TYPE_I32:
  3807. {
  3808. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3809. return ((int32_t *)(tensor->data))[i];
  3810. } break;
  3811. case GGML_TYPE_F16:
  3812. {
  3813. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3814. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3815. } break;
  3816. case GGML_TYPE_F32:
  3817. {
  3818. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3819. return ((float *)(tensor->data))[i];
  3820. } break;
  3821. default:
  3822. {
  3823. GGML_ASSERT(false);
  3824. } break;
  3825. }
  3826. return 0.0f;
  3827. }
  3828. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3829. switch (tensor->type) {
  3830. case GGML_TYPE_I8:
  3831. {
  3832. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3833. ((int8_t *)(tensor->data))[i] = value;
  3834. } break;
  3835. case GGML_TYPE_I16:
  3836. {
  3837. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3838. ((int16_t *)(tensor->data))[i] = value;
  3839. } break;
  3840. case GGML_TYPE_I32:
  3841. {
  3842. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3843. ((int32_t *)(tensor->data))[i] = value;
  3844. } break;
  3845. case GGML_TYPE_F16:
  3846. {
  3847. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3848. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3849. } break;
  3850. case GGML_TYPE_F32:
  3851. {
  3852. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3853. ((float *)(tensor->data))[i] = value;
  3854. } break;
  3855. default:
  3856. {
  3857. GGML_ASSERT(false);
  3858. } break;
  3859. }
  3860. }
  3861. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3862. switch (tensor->type) {
  3863. case GGML_TYPE_I8:
  3864. {
  3865. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3866. return ((int8_t *)(tensor->data))[i];
  3867. } break;
  3868. case GGML_TYPE_I16:
  3869. {
  3870. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3871. return ((int16_t *)(tensor->data))[i];
  3872. } break;
  3873. case GGML_TYPE_I32:
  3874. {
  3875. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3876. return ((int32_t *)(tensor->data))[i];
  3877. } break;
  3878. case GGML_TYPE_F16:
  3879. {
  3880. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3881. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3882. } break;
  3883. case GGML_TYPE_F32:
  3884. {
  3885. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3886. return ((float *)(tensor->data))[i];
  3887. } break;
  3888. default:
  3889. {
  3890. GGML_ASSERT(false);
  3891. } break;
  3892. }
  3893. return 0.0f;
  3894. }
  3895. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3896. switch (tensor->type) {
  3897. case GGML_TYPE_I8:
  3898. {
  3899. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3900. ((int8_t *)(tensor->data))[i] = value;
  3901. } break;
  3902. case GGML_TYPE_I16:
  3903. {
  3904. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3905. ((int16_t *)(tensor->data))[i] = value;
  3906. } break;
  3907. case GGML_TYPE_I32:
  3908. {
  3909. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3910. ((int32_t *)(tensor->data))[i] = value;
  3911. } break;
  3912. case GGML_TYPE_F16:
  3913. {
  3914. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3915. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3916. } break;
  3917. case GGML_TYPE_F32:
  3918. {
  3919. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3920. ((float *)(tensor->data))[i] = value;
  3921. } break;
  3922. default:
  3923. {
  3924. GGML_ASSERT(false);
  3925. } break;
  3926. }
  3927. }
  3928. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3929. return tensor->data;
  3930. }
  3931. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3932. assert(tensor->type == GGML_TYPE_F32);
  3933. return (float *)(tensor->data);
  3934. }
  3935. struct ggml_tensor * ggml_view_tensor(
  3936. struct ggml_context * ctx,
  3937. const struct ggml_tensor * src) {
  3938. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3939. result->nb[0] = src->nb[0];
  3940. result->nb[1] = src->nb[1];
  3941. result->nb[2] = src->nb[2];
  3942. result->nb[3] = src->nb[3];
  3943. return result;
  3944. }
  3945. ////////////////////////////////////////////////////////////////////////////////
  3946. // ggml_dup
  3947. struct ggml_tensor * ggml_dup_impl(
  3948. struct ggml_context * ctx,
  3949. struct ggml_tensor * a,
  3950. bool inplace) {
  3951. bool is_node = false;
  3952. if (!inplace && (a->grad)) {
  3953. is_node = true;
  3954. }
  3955. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3956. result->op = GGML_OP_DUP;
  3957. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3958. result->src0 = a;
  3959. result->src1 = NULL;
  3960. return result;
  3961. }
  3962. struct ggml_tensor * ggml_dup(
  3963. struct ggml_context * ctx,
  3964. struct ggml_tensor * a) {
  3965. return ggml_dup_impl(ctx, a, false);
  3966. }
  3967. struct ggml_tensor * ggml_dup_inplace(
  3968. struct ggml_context * ctx,
  3969. struct ggml_tensor * a) {
  3970. return ggml_dup_impl(ctx, a, true);
  3971. }
  3972. // ggml_add
  3973. struct ggml_tensor * ggml_add_impl(
  3974. struct ggml_context * ctx,
  3975. struct ggml_tensor * a,
  3976. struct ggml_tensor * b,
  3977. bool inplace) {
  3978. GGML_ASSERT(ggml_are_same_shape(a, b));
  3979. bool is_node = false;
  3980. if (!inplace && (a->grad || b->grad)) {
  3981. is_node = true;
  3982. }
  3983. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3984. result->op = GGML_OP_ADD;
  3985. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3986. result->src0 = a;
  3987. result->src1 = b;
  3988. return result;
  3989. }
  3990. struct ggml_tensor * ggml_add(
  3991. struct ggml_context * ctx,
  3992. struct ggml_tensor * a,
  3993. struct ggml_tensor * b) {
  3994. return ggml_add_impl(ctx, a, b, false);
  3995. }
  3996. struct ggml_tensor * ggml_add_inplace(
  3997. struct ggml_context * ctx,
  3998. struct ggml_tensor * a,
  3999. struct ggml_tensor * b) {
  4000. return ggml_add_impl(ctx, a, b, true);
  4001. }
  4002. // ggml_sub
  4003. struct ggml_tensor * ggml_sub_impl(
  4004. struct ggml_context * ctx,
  4005. struct ggml_tensor * a,
  4006. struct ggml_tensor * b,
  4007. bool inplace) {
  4008. GGML_ASSERT(ggml_are_same_shape(a, b));
  4009. bool is_node = false;
  4010. if (!inplace && (a->grad || b->grad)) {
  4011. is_node = true;
  4012. }
  4013. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4014. result->op = GGML_OP_SUB;
  4015. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4016. result->src0 = a;
  4017. result->src1 = b;
  4018. return result;
  4019. }
  4020. struct ggml_tensor * ggml_sub(
  4021. struct ggml_context * ctx,
  4022. struct ggml_tensor * a,
  4023. struct ggml_tensor * b) {
  4024. return ggml_sub_impl(ctx, a, b, false);
  4025. }
  4026. struct ggml_tensor * ggml_sub_inplace(
  4027. struct ggml_context * ctx,
  4028. struct ggml_tensor * a,
  4029. struct ggml_tensor * b) {
  4030. return ggml_sub_impl(ctx, a, b, true);
  4031. }
  4032. // ggml_mul
  4033. struct ggml_tensor * ggml_mul_impl(
  4034. struct ggml_context * ctx,
  4035. struct ggml_tensor * a,
  4036. struct ggml_tensor * b,
  4037. bool inplace) {
  4038. GGML_ASSERT(ggml_are_same_shape(a, b));
  4039. bool is_node = false;
  4040. if (!inplace && (a->grad || b->grad)) {
  4041. is_node = true;
  4042. }
  4043. if (inplace) {
  4044. GGML_ASSERT(is_node == false);
  4045. }
  4046. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4047. result->op = GGML_OP_MUL;
  4048. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4049. result->src0 = a;
  4050. result->src1 = b;
  4051. return result;
  4052. }
  4053. struct ggml_tensor * ggml_mul(
  4054. struct ggml_context * ctx,
  4055. struct ggml_tensor * a,
  4056. struct ggml_tensor * b) {
  4057. return ggml_mul_impl(ctx, a, b, false);
  4058. }
  4059. struct ggml_tensor * ggml_mul_inplace(
  4060. struct ggml_context * ctx,
  4061. struct ggml_tensor * a,
  4062. struct ggml_tensor * b) {
  4063. return ggml_mul_impl(ctx, a, b, true);
  4064. }
  4065. // ggml_div
  4066. struct ggml_tensor * ggml_div_impl(
  4067. struct ggml_context * ctx,
  4068. struct ggml_tensor * a,
  4069. struct ggml_tensor * b,
  4070. bool inplace) {
  4071. GGML_ASSERT(ggml_are_same_shape(a, b));
  4072. bool is_node = false;
  4073. if (!inplace && (a->grad || b->grad)) {
  4074. is_node = true;
  4075. }
  4076. if (inplace) {
  4077. GGML_ASSERT(is_node == false);
  4078. }
  4079. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4080. result->op = GGML_OP_DIV;
  4081. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4082. result->src0 = a;
  4083. result->src1 = b;
  4084. return result;
  4085. }
  4086. struct ggml_tensor * ggml_div(
  4087. struct ggml_context * ctx,
  4088. struct ggml_tensor * a,
  4089. struct ggml_tensor * b) {
  4090. return ggml_div_impl(ctx, a, b, false);
  4091. }
  4092. struct ggml_tensor * ggml_div_inplace(
  4093. struct ggml_context * ctx,
  4094. struct ggml_tensor * a,
  4095. struct ggml_tensor * b) {
  4096. return ggml_div_impl(ctx, a, b, true);
  4097. }
  4098. // ggml_sqr
  4099. struct ggml_tensor * ggml_sqr_impl(
  4100. struct ggml_context * ctx,
  4101. struct ggml_tensor * a,
  4102. bool inplace) {
  4103. bool is_node = false;
  4104. if (!inplace && (a->grad)) {
  4105. is_node = true;
  4106. }
  4107. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4108. result->op = GGML_OP_SQR;
  4109. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4110. result->src0 = a;
  4111. result->src1 = NULL;
  4112. return result;
  4113. }
  4114. struct ggml_tensor * ggml_sqr(
  4115. struct ggml_context * ctx,
  4116. struct ggml_tensor * a) {
  4117. return ggml_sqr_impl(ctx, a, false);
  4118. }
  4119. struct ggml_tensor * ggml_sqr_inplace(
  4120. struct ggml_context * ctx,
  4121. struct ggml_tensor * a) {
  4122. return ggml_sqr_impl(ctx, a, true);
  4123. }
  4124. // ggml_sqrt
  4125. struct ggml_tensor * ggml_sqrt_impl(
  4126. struct ggml_context * ctx,
  4127. struct ggml_tensor * a,
  4128. bool inplace) {
  4129. bool is_node = false;
  4130. if (!inplace && (a->grad)) {
  4131. is_node = true;
  4132. }
  4133. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4134. result->op = GGML_OP_SQRT;
  4135. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4136. result->src0 = a;
  4137. result->src1 = NULL;
  4138. return result;
  4139. }
  4140. struct ggml_tensor * ggml_sqrt(
  4141. struct ggml_context * ctx,
  4142. struct ggml_tensor * a) {
  4143. return ggml_sqrt_impl(ctx, a, false);
  4144. }
  4145. struct ggml_tensor * ggml_sqrt_inplace(
  4146. struct ggml_context * ctx,
  4147. struct ggml_tensor * a) {
  4148. return ggml_sqrt_impl(ctx, a, true);
  4149. }
  4150. // ggml_sum
  4151. struct ggml_tensor * ggml_sum(
  4152. struct ggml_context * ctx,
  4153. struct ggml_tensor * a) {
  4154. bool is_node = false;
  4155. if (a->grad) {
  4156. is_node = true;
  4157. }
  4158. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4159. result->op = GGML_OP_SUM;
  4160. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4161. result->src0 = a;
  4162. result->src1 = NULL;
  4163. return result;
  4164. }
  4165. // ggml_mean
  4166. struct ggml_tensor * ggml_mean(
  4167. struct ggml_context * ctx,
  4168. struct ggml_tensor * a) {
  4169. bool is_node = false;
  4170. if (a->grad) {
  4171. GGML_ASSERT(false); // TODO: implement
  4172. is_node = true;
  4173. }
  4174. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4175. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4176. result->op = GGML_OP_MEAN;
  4177. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4178. result->src0 = a;
  4179. result->src1 = NULL;
  4180. return result;
  4181. }
  4182. // ggml_repeat
  4183. struct ggml_tensor * ggml_repeat(
  4184. struct ggml_context * ctx,
  4185. struct ggml_tensor * a,
  4186. struct ggml_tensor * b) {
  4187. GGML_ASSERT(ggml_can_repeat(a, b));
  4188. bool is_node = false;
  4189. if (a->grad) {
  4190. is_node = true;
  4191. }
  4192. if (ggml_are_same_shape(a, b) && !is_node) {
  4193. return a;
  4194. }
  4195. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4196. result->op = GGML_OP_REPEAT;
  4197. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4198. result->src0 = a;
  4199. result->src1 = b;
  4200. return result;
  4201. }
  4202. // ggml_abs
  4203. struct ggml_tensor * ggml_abs_impl(
  4204. struct ggml_context * ctx,
  4205. struct ggml_tensor * a,
  4206. bool inplace) {
  4207. bool is_node = false;
  4208. if (!inplace && (a->grad)) {
  4209. is_node = true;
  4210. }
  4211. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4212. result->op = GGML_OP_ABS;
  4213. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4214. result->src0 = a;
  4215. result->src1 = NULL;
  4216. return result;
  4217. }
  4218. struct ggml_tensor * ggml_abs(
  4219. struct ggml_context * ctx,
  4220. struct ggml_tensor * a) {
  4221. return ggml_abs_impl(ctx, a, false);
  4222. }
  4223. struct ggml_tensor * ggml_abs_inplace(
  4224. struct ggml_context * ctx,
  4225. struct ggml_tensor * a) {
  4226. return ggml_abs_impl(ctx, a, true);
  4227. }
  4228. // ggml_sgn
  4229. struct ggml_tensor * ggml_sgn_impl(
  4230. struct ggml_context * ctx,
  4231. struct ggml_tensor * a,
  4232. bool inplace) {
  4233. bool is_node = false;
  4234. if (!inplace && (a->grad)) {
  4235. is_node = true;
  4236. }
  4237. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4238. result->op = GGML_OP_SGN;
  4239. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4240. result->src0 = a;
  4241. result->src1 = NULL;
  4242. return result;
  4243. }
  4244. struct ggml_tensor * ggml_sgn(
  4245. struct ggml_context * ctx,
  4246. struct ggml_tensor * a) {
  4247. return ggml_sgn_impl(ctx, a, false);
  4248. }
  4249. struct ggml_tensor * ggml_sgn_inplace(
  4250. struct ggml_context * ctx,
  4251. struct ggml_tensor * a) {
  4252. return ggml_sgn_impl(ctx, a, true);
  4253. }
  4254. // ggml_neg
  4255. struct ggml_tensor * ggml_neg_impl(
  4256. struct ggml_context * ctx,
  4257. struct ggml_tensor * a,
  4258. bool inplace) {
  4259. bool is_node = false;
  4260. if (!inplace && (a->grad)) {
  4261. is_node = true;
  4262. }
  4263. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4264. result->op = GGML_OP_NEG;
  4265. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4266. result->src0 = a;
  4267. result->src1 = NULL;
  4268. return result;
  4269. }
  4270. struct ggml_tensor * ggml_neg(
  4271. struct ggml_context * ctx,
  4272. struct ggml_tensor * a) {
  4273. return ggml_neg_impl(ctx, a, false);
  4274. }
  4275. struct ggml_tensor * ggml_neg_inplace(
  4276. struct ggml_context * ctx,
  4277. struct ggml_tensor * a) {
  4278. return ggml_neg_impl(ctx, a, true);
  4279. }
  4280. // ggml_step
  4281. struct ggml_tensor * ggml_step_impl(
  4282. struct ggml_context * ctx,
  4283. struct ggml_tensor * a,
  4284. bool inplace) {
  4285. bool is_node = false;
  4286. if (!inplace && (a->grad)) {
  4287. is_node = true;
  4288. }
  4289. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4290. result->op = GGML_OP_STEP;
  4291. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4292. result->src0 = a;
  4293. result->src1 = NULL;
  4294. return result;
  4295. }
  4296. struct ggml_tensor * ggml_step(
  4297. struct ggml_context * ctx,
  4298. struct ggml_tensor * a) {
  4299. return ggml_step_impl(ctx, a, false);
  4300. }
  4301. struct ggml_tensor * ggml_step_inplace(
  4302. struct ggml_context * ctx,
  4303. struct ggml_tensor * a) {
  4304. return ggml_step_impl(ctx, a, true);
  4305. }
  4306. // ggml_relu
  4307. struct ggml_tensor * ggml_relu_impl(
  4308. struct ggml_context * ctx,
  4309. struct ggml_tensor * a,
  4310. bool inplace) {
  4311. bool is_node = false;
  4312. if (!inplace && (a->grad)) {
  4313. is_node = true;
  4314. }
  4315. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4316. result->op = GGML_OP_RELU;
  4317. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4318. result->src0 = a;
  4319. result->src1 = NULL;
  4320. return result;
  4321. }
  4322. struct ggml_tensor * ggml_relu(
  4323. struct ggml_context * ctx,
  4324. struct ggml_tensor * a) {
  4325. return ggml_relu_impl(ctx, a, false);
  4326. }
  4327. struct ggml_tensor * ggml_relu_inplace(
  4328. struct ggml_context * ctx,
  4329. struct ggml_tensor * a) {
  4330. return ggml_relu_impl(ctx, a, true);
  4331. }
  4332. // ggml_gelu
  4333. struct ggml_tensor * ggml_gelu_impl(
  4334. struct ggml_context * ctx,
  4335. struct ggml_tensor * a,
  4336. bool inplace) {
  4337. bool is_node = false;
  4338. if (!inplace && (a->grad)) {
  4339. is_node = true;
  4340. }
  4341. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4342. result->op = GGML_OP_GELU;
  4343. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4344. result->src0 = a;
  4345. result->src1 = NULL;
  4346. return result;
  4347. }
  4348. struct ggml_tensor * ggml_gelu(
  4349. struct ggml_context * ctx,
  4350. struct ggml_tensor * a) {
  4351. return ggml_gelu_impl(ctx, a, false);
  4352. }
  4353. struct ggml_tensor * ggml_gelu_inplace(
  4354. struct ggml_context * ctx,
  4355. struct ggml_tensor * a) {
  4356. return ggml_gelu_impl(ctx, a, true);
  4357. }
  4358. // ggml_silu
  4359. struct ggml_tensor * ggml_silu_impl(
  4360. struct ggml_context * ctx,
  4361. struct ggml_tensor * a,
  4362. bool inplace) {
  4363. bool is_node = false;
  4364. if (!inplace && (a->grad)) {
  4365. is_node = true;
  4366. }
  4367. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4368. result->op = GGML_OP_SILU;
  4369. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4370. result->src0 = a;
  4371. result->src1 = NULL;
  4372. return result;
  4373. }
  4374. struct ggml_tensor * ggml_silu(
  4375. struct ggml_context * ctx,
  4376. struct ggml_tensor * a) {
  4377. return ggml_silu_impl(ctx, a, false);
  4378. }
  4379. struct ggml_tensor * ggml_silu_inplace(
  4380. struct ggml_context * ctx,
  4381. struct ggml_tensor * a) {
  4382. return ggml_silu_impl(ctx, a, true);
  4383. }
  4384. // ggml_norm
  4385. struct ggml_tensor * ggml_norm_impl(
  4386. struct ggml_context * ctx,
  4387. struct ggml_tensor * a,
  4388. bool inplace) {
  4389. bool is_node = false;
  4390. if (!inplace && (a->grad)) {
  4391. GGML_ASSERT(false); // TODO: implement backward
  4392. is_node = true;
  4393. }
  4394. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4395. result->op = GGML_OP_NORM;
  4396. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4397. result->src0 = a;
  4398. result->src1 = NULL; // TODO: maybe store epsilon here?
  4399. return result;
  4400. }
  4401. struct ggml_tensor * ggml_norm(
  4402. struct ggml_context * ctx,
  4403. struct ggml_tensor * a) {
  4404. return ggml_norm_impl(ctx, a, false);
  4405. }
  4406. struct ggml_tensor * ggml_norm_inplace(
  4407. struct ggml_context * ctx,
  4408. struct ggml_tensor * a) {
  4409. return ggml_norm_impl(ctx, a, true);
  4410. }
  4411. struct ggml_tensor * ggml_rms_norm_impl(
  4412. struct ggml_context * ctx,
  4413. struct ggml_tensor * a,
  4414. bool inplace) {
  4415. bool is_node = false;
  4416. if (!inplace && (a->grad)) {
  4417. GGML_ASSERT(false); // TODO: implement backward
  4418. is_node = true;
  4419. }
  4420. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4421. result->op = GGML_OP_RMS_NORM;
  4422. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4423. result->src0 = a;
  4424. result->src1 = NULL; // TODO: maybe store epsilon here?
  4425. return result;
  4426. }
  4427. struct ggml_tensor * ggml_rms_norm(
  4428. struct ggml_context * ctx,
  4429. struct ggml_tensor * a) {
  4430. return ggml_rms_norm_impl(ctx, a, false);
  4431. }
  4432. struct ggml_tensor * ggml_rms_norm_inplace(
  4433. struct ggml_context * ctx,
  4434. struct ggml_tensor * a) {
  4435. return ggml_rms_norm_impl(ctx, a, true);
  4436. }
  4437. // ggml_mul_mat
  4438. struct ggml_tensor * ggml_mul_mat(
  4439. struct ggml_context * ctx,
  4440. struct ggml_tensor * a,
  4441. struct ggml_tensor * b) {
  4442. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4443. GGML_ASSERT(!ggml_is_transposed(a));
  4444. bool is_node = false;
  4445. if (a->grad || b->grad) {
  4446. is_node = true;
  4447. }
  4448. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4449. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4450. result->op = GGML_OP_MUL_MAT;
  4451. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4452. result->src0 = a;
  4453. result->src1 = b;
  4454. return result;
  4455. }
  4456. // ggml_scale
  4457. struct ggml_tensor * ggml_scale_impl(
  4458. struct ggml_context * ctx,
  4459. struct ggml_tensor * a,
  4460. struct ggml_tensor * b,
  4461. bool inplace) {
  4462. GGML_ASSERT(ggml_is_scalar(b));
  4463. GGML_ASSERT(ggml_is_padded_1d(a));
  4464. bool is_node = false;
  4465. if (!inplace && (a->grad || b->grad)) {
  4466. GGML_ASSERT(false); // TODO: implement backward
  4467. is_node = true;
  4468. }
  4469. // TODO: when implement backward, fix this:
  4470. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4471. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4472. result->op = GGML_OP_SCALE;
  4473. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4474. result->src0 = a;
  4475. result->src1 = b;
  4476. return result;
  4477. }
  4478. struct ggml_tensor * ggml_scale(
  4479. struct ggml_context * ctx,
  4480. struct ggml_tensor * a,
  4481. struct ggml_tensor * b) {
  4482. return ggml_scale_impl(ctx, a, b, false);
  4483. }
  4484. struct ggml_tensor * ggml_scale_inplace(
  4485. struct ggml_context * ctx,
  4486. struct ggml_tensor * a,
  4487. struct ggml_tensor * b) {
  4488. return ggml_scale_impl(ctx, a, b, true);
  4489. }
  4490. // ggml_cpy
  4491. struct ggml_tensor * ggml_cpy_impl(
  4492. struct ggml_context * ctx,
  4493. struct ggml_tensor * a,
  4494. struct ggml_tensor * b,
  4495. bool inplace) {
  4496. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4497. bool is_node = false;
  4498. if (!inplace && (a->grad || b->grad)) {
  4499. GGML_ASSERT(false); // TODO: implement backward
  4500. is_node = true;
  4501. }
  4502. // make a view of the destination
  4503. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4504. result->op = GGML_OP_CPY;
  4505. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4506. result->src0 = a;
  4507. result->src1 = b;
  4508. return result;
  4509. }
  4510. struct ggml_tensor * ggml_cpy(
  4511. struct ggml_context * ctx,
  4512. struct ggml_tensor * a,
  4513. struct ggml_tensor * b) {
  4514. return ggml_cpy_impl(ctx, a, b, false);
  4515. }
  4516. struct ggml_tensor * ggml_cpy_inplace(
  4517. struct ggml_context * ctx,
  4518. struct ggml_tensor * a,
  4519. struct ggml_tensor * b) {
  4520. return ggml_cpy_impl(ctx, a, b, true);
  4521. }
  4522. // ggml_cont
  4523. struct ggml_tensor * ggml_cont_impl(
  4524. struct ggml_context * ctx,
  4525. struct ggml_tensor * a,
  4526. bool inplace) {
  4527. bool is_node = false;
  4528. if (!inplace && a->grad) {
  4529. GGML_ASSERT(false); // TODO: implement backward
  4530. is_node = true;
  4531. }
  4532. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4533. result->op = GGML_OP_CONT;
  4534. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4535. result->src0 = a;
  4536. result->src1 = NULL;
  4537. return result;
  4538. }
  4539. struct ggml_tensor * ggml_cont(
  4540. struct ggml_context * ctx,
  4541. struct ggml_tensor * a) {
  4542. return ggml_cont_impl(ctx, a, false);
  4543. }
  4544. struct ggml_tensor * ggml_cont_inplace(
  4545. struct ggml_context * ctx,
  4546. struct ggml_tensor * a) {
  4547. return ggml_cont_impl(ctx, a, true);
  4548. }
  4549. // ggml_reshape
  4550. struct ggml_tensor * ggml_reshape(
  4551. struct ggml_context * ctx,
  4552. struct ggml_tensor * a,
  4553. struct ggml_tensor * b) {
  4554. GGML_ASSERT(ggml_is_contiguous(a));
  4555. GGML_ASSERT(ggml_is_contiguous(b));
  4556. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4557. bool is_node = false;
  4558. if (a->grad || b->grad) {
  4559. GGML_ASSERT(false); // TODO: implement backward
  4560. is_node = true;
  4561. }
  4562. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4563. result->op = GGML_OP_RESHAPE;
  4564. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4565. result->src0 = a;
  4566. result->src1 = NULL;
  4567. return result;
  4568. }
  4569. struct ggml_tensor * ggml_reshape_2d(
  4570. struct ggml_context * ctx,
  4571. struct ggml_tensor * a,
  4572. int64_t ne0,
  4573. int64_t ne1) {
  4574. GGML_ASSERT(ggml_is_contiguous(a));
  4575. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4576. bool is_node = false;
  4577. if (a->grad) {
  4578. GGML_ASSERT(false); // TODO: implement backward
  4579. is_node = true;
  4580. }
  4581. const int64_t ne[2] = { ne0, ne1 };
  4582. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4583. result->op = GGML_OP_RESHAPE;
  4584. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4585. result->src0 = a;
  4586. result->src1 = NULL;
  4587. return result;
  4588. }
  4589. struct ggml_tensor * ggml_reshape_3d(
  4590. struct ggml_context * ctx,
  4591. struct ggml_tensor * a,
  4592. int64_t ne0,
  4593. int64_t ne1,
  4594. int64_t ne2) {
  4595. GGML_ASSERT(ggml_is_contiguous(a));
  4596. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4597. bool is_node = false;
  4598. if (a->grad) {
  4599. GGML_ASSERT(false); // TODO: implement backward
  4600. is_node = true;
  4601. }
  4602. const int64_t ne[3] = { ne0, ne1, ne2 };
  4603. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4604. result->op = GGML_OP_RESHAPE;
  4605. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4606. result->src0 = a;
  4607. result->src1 = NULL;
  4608. return result;
  4609. }
  4610. // ggml_view_1d
  4611. struct ggml_tensor * ggml_view_1d(
  4612. struct ggml_context * ctx,
  4613. struct ggml_tensor * a,
  4614. int64_t ne0,
  4615. size_t offset) {
  4616. if (a->grad) {
  4617. GGML_ASSERT(false); // gradient propagation is not supported
  4618. }
  4619. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4620. result->op = GGML_OP_VIEW;
  4621. result->grad = NULL;
  4622. result->src0 = a;
  4623. result->src1 = NULL; // TODO: maybe store the offset here?
  4624. return result;
  4625. }
  4626. // ggml_view_2d
  4627. struct ggml_tensor * ggml_view_2d(
  4628. struct ggml_context * ctx,
  4629. struct ggml_tensor * a,
  4630. int64_t ne0,
  4631. int64_t ne1,
  4632. size_t nb1,
  4633. size_t offset) {
  4634. if (a->grad) {
  4635. GGML_ASSERT(false); // gradient propagation is not supported
  4636. }
  4637. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4638. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4639. result->nb[1] = nb1;
  4640. result->nb[2] = result->nb[1]*ne1;
  4641. result->nb[3] = result->nb[2];
  4642. result->op = GGML_OP_VIEW;
  4643. result->grad = NULL;
  4644. result->src0 = a;
  4645. result->src1 = NULL; // TODO: maybe store the offset here?
  4646. return result;
  4647. }
  4648. // ggml_view_3d
  4649. struct ggml_tensor * ggml_view_3d(
  4650. struct ggml_context * ctx,
  4651. struct ggml_tensor * a,
  4652. int64_t ne0,
  4653. int64_t ne1,
  4654. int64_t ne2,
  4655. size_t nb1,
  4656. size_t nb2,
  4657. size_t offset) {
  4658. if (a->grad) {
  4659. GGML_ASSERT(false); // gradient propagation is not supported
  4660. }
  4661. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4662. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4663. result->nb[1] = nb1;
  4664. result->nb[2] = nb2;
  4665. result->nb[3] = result->nb[2]*ne2;
  4666. result->op = GGML_OP_VIEW;
  4667. result->grad = NULL;
  4668. result->src0 = a;
  4669. result->src1 = NULL; // TODO: maybe store the offset here?
  4670. return result;
  4671. }
  4672. // ggml_permute
  4673. struct ggml_tensor * ggml_permute(
  4674. struct ggml_context * ctx,
  4675. struct ggml_tensor * a,
  4676. int axis0,
  4677. int axis1,
  4678. int axis2,
  4679. int axis3) {
  4680. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4681. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4682. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4683. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4684. GGML_ASSERT(axis0 != axis1);
  4685. GGML_ASSERT(axis0 != axis2);
  4686. GGML_ASSERT(axis0 != axis3);
  4687. GGML_ASSERT(axis1 != axis2);
  4688. GGML_ASSERT(axis1 != axis3);
  4689. GGML_ASSERT(axis2 != axis3);
  4690. bool is_node = false;
  4691. if (a->grad) {
  4692. GGML_ASSERT(false); // TODO: implement backward
  4693. is_node = true;
  4694. }
  4695. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4696. int ne[GGML_MAX_DIMS];
  4697. int nb[GGML_MAX_DIMS];
  4698. ne[axis0] = a->ne[0];
  4699. ne[axis1] = a->ne[1];
  4700. ne[axis2] = a->ne[2];
  4701. ne[axis3] = a->ne[3];
  4702. nb[axis0] = a->nb[0];
  4703. nb[axis1] = a->nb[1];
  4704. nb[axis2] = a->nb[2];
  4705. nb[axis3] = a->nb[3];
  4706. result->ne[0] = ne[0];
  4707. result->ne[1] = ne[1];
  4708. result->ne[2] = ne[2];
  4709. result->ne[3] = ne[3];
  4710. result->nb[0] = nb[0];
  4711. result->nb[1] = nb[1];
  4712. result->nb[2] = nb[2];
  4713. result->nb[3] = nb[3];
  4714. result->op = GGML_OP_PERMUTE;
  4715. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4716. result->src0 = a;
  4717. result->src1 = NULL; // TODO: maybe store the permutation here?
  4718. return result;
  4719. }
  4720. // ggml_transpose
  4721. struct ggml_tensor * ggml_transpose(
  4722. struct ggml_context * ctx,
  4723. struct ggml_tensor * a) {
  4724. bool is_node = false;
  4725. if (a->grad) {
  4726. GGML_ASSERT(false); // TODO: implement backward
  4727. is_node = true;
  4728. }
  4729. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4730. result->ne[0] = a->ne[1];
  4731. result->ne[1] = a->ne[0];
  4732. result->nb[0] = a->nb[1];
  4733. result->nb[1] = a->nb[0];
  4734. result->op = GGML_OP_TRANSPOSE;
  4735. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4736. result->src0 = a;
  4737. result->src1 = NULL;
  4738. return result;
  4739. }
  4740. // ggml_get_rows
  4741. struct ggml_tensor * ggml_get_rows(
  4742. struct ggml_context * ctx,
  4743. struct ggml_tensor * a,
  4744. struct ggml_tensor * b) {
  4745. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4746. bool is_node = false;
  4747. if (a->grad || b->grad) {
  4748. GGML_ASSERT(false); // TODO: implement backward
  4749. is_node = true;
  4750. }
  4751. // TODO: implement non F32 return
  4752. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4753. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4754. result->op = GGML_OP_GET_ROWS;
  4755. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4756. result->src0 = a;
  4757. result->src1 = b;
  4758. return result;
  4759. }
  4760. // ggml_diag_mask_inf
  4761. struct ggml_tensor * ggml_diag_mask_inf(
  4762. struct ggml_context * ctx,
  4763. struct ggml_tensor * a,
  4764. int n_past) {
  4765. bool is_node = false;
  4766. if (a->grad) {
  4767. GGML_ASSERT(false); // TODO: implement backward
  4768. is_node = true;
  4769. }
  4770. // TODO: when implement backward, fix this:
  4771. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4772. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4773. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4774. result->op = GGML_OP_DIAG_MASK_INF;
  4775. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4776. result->src0 = a;
  4777. result->src1 = b;
  4778. return result;
  4779. }
  4780. // ggml_soft_max
  4781. struct ggml_tensor * ggml_soft_max(
  4782. struct ggml_context * ctx,
  4783. struct ggml_tensor * a) {
  4784. bool is_node = false;
  4785. if (a->grad) {
  4786. GGML_ASSERT(false); // TODO: implement backward
  4787. is_node = true;
  4788. }
  4789. // TODO: when implement backward, fix this:
  4790. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4791. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4792. result->op = GGML_OP_SOFT_MAX;
  4793. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4794. result->src0 = a;
  4795. result->src1 = NULL;
  4796. return result;
  4797. }
  4798. // ggml_rope
  4799. struct ggml_tensor * ggml_rope(
  4800. struct ggml_context * ctx,
  4801. struct ggml_tensor * a,
  4802. int n_past,
  4803. int n_dims,
  4804. int mode) {
  4805. GGML_ASSERT(n_past >= 0);
  4806. bool is_node = false;
  4807. if (a->grad) {
  4808. GGML_ASSERT(false); // TODO: implement backward
  4809. is_node = true;
  4810. }
  4811. // TODO: when implement backward, fix this:
  4812. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4813. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4814. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4815. ((int32_t *) b->data)[0] = n_past;
  4816. ((int32_t *) b->data)[1] = n_dims;
  4817. ((int32_t *) b->data)[2] = mode;
  4818. result->op = GGML_OP_ROPE;
  4819. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4820. result->src0 = a;
  4821. result->src1 = b;
  4822. return result;
  4823. }
  4824. // ggml_alibi
  4825. struct ggml_tensor * ggml_alibi(
  4826. struct ggml_context * ctx,
  4827. struct ggml_tensor * a,
  4828. int n_past,
  4829. int n_head) {
  4830. GGML_ASSERT(n_past >= 0);
  4831. bool is_node = false;
  4832. if (a->grad) {
  4833. GGML_ASSERT(false); // TODO: implement backward
  4834. is_node = true;
  4835. }
  4836. // TODO: when implement backward, fix this:
  4837. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4838. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4839. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4840. ((int32_t *) b->data)[0] = n_past;
  4841. ((int32_t *) b->data)[1] = n_head;
  4842. result->op = GGML_OP_ALIBI;
  4843. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4844. result->src0 = a;
  4845. result->src1 = b;
  4846. return result;
  4847. }
  4848. // ggml_conv_1d_1s
  4849. struct ggml_tensor * ggml_conv_1d_1s(
  4850. struct ggml_context * ctx,
  4851. struct ggml_tensor * a,
  4852. struct ggml_tensor * b) {
  4853. GGML_ASSERT(ggml_is_matrix(b));
  4854. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4855. GGML_ASSERT(a->ne[3] == 1);
  4856. bool is_node = false;
  4857. if (a->grad || b->grad) {
  4858. GGML_ASSERT(false); // TODO: implement backward
  4859. is_node = true;
  4860. }
  4861. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4862. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4863. result->op = GGML_OP_CONV_1D_1S;
  4864. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4865. result->src0 = a;
  4866. result->src1 = b;
  4867. return result;
  4868. }
  4869. // ggml_conv_1d_2s
  4870. struct ggml_tensor * ggml_conv_1d_2s(
  4871. struct ggml_context * ctx,
  4872. struct ggml_tensor * a,
  4873. struct ggml_tensor * b) {
  4874. GGML_ASSERT(ggml_is_matrix(b));
  4875. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4876. GGML_ASSERT(a->ne[3] == 1);
  4877. bool is_node = false;
  4878. if (a->grad || b->grad) {
  4879. GGML_ASSERT(false); // TODO: implement backward
  4880. is_node = true;
  4881. }
  4882. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4883. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4884. result->op = GGML_OP_CONV_1D_2S;
  4885. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4886. result->src0 = a;
  4887. result->src1 = b;
  4888. return result;
  4889. }
  4890. // ggml_flash_attn
  4891. struct ggml_tensor * ggml_flash_attn(
  4892. struct ggml_context * ctx,
  4893. struct ggml_tensor * q,
  4894. struct ggml_tensor * k,
  4895. struct ggml_tensor * v,
  4896. bool masked) {
  4897. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4898. // TODO: check if vT can be multiplied by (k*qT)
  4899. bool is_node = false;
  4900. if (q->grad || k->grad || v->grad) {
  4901. GGML_ASSERT(false); // TODO: implement backward
  4902. is_node = true;
  4903. }
  4904. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4905. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4906. result->op = GGML_OP_FLASH_ATTN;
  4907. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4908. result->src0 = q;
  4909. result->src1 = k;
  4910. result->opt[0] = v;
  4911. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4912. return result;
  4913. }
  4914. // ggml_flash_ff
  4915. struct ggml_tensor * ggml_flash_ff(
  4916. struct ggml_context * ctx,
  4917. struct ggml_tensor * a,
  4918. struct ggml_tensor * b0,
  4919. struct ggml_tensor * b1,
  4920. struct ggml_tensor * c0,
  4921. struct ggml_tensor * c1) {
  4922. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4923. // TODO: more checks
  4924. bool is_node = false;
  4925. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4926. GGML_ASSERT(false); // TODO: implement backward
  4927. is_node = true;
  4928. }
  4929. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4930. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4931. result->op = GGML_OP_FLASH_FF;
  4932. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4933. result->src0 = a;
  4934. result->src1 = b0;
  4935. result->opt[0] = b1;
  4936. result->opt[1] = c0;
  4937. result->opt[2] = c1;
  4938. return result;
  4939. }
  4940. // ggml_map_unary
  4941. struct ggml_tensor * ggml_map_unary_impl_f32(
  4942. struct ggml_context * ctx,
  4943. struct ggml_tensor * a,
  4944. const ggml_unary_op_f32_t fun,
  4945. bool inplace) {
  4946. bool is_node = false;
  4947. if (!inplace && a->grad) {
  4948. is_node = true;
  4949. }
  4950. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4951. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4952. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4953. result->op = GGML_OP_MAP_UNARY;
  4954. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4955. result->src0 = a;
  4956. result->opt[0] = addr_tensor;
  4957. return result;
  4958. }
  4959. struct ggml_tensor * ggml_map_unary_f32(
  4960. struct ggml_context * ctx,
  4961. struct ggml_tensor * a,
  4962. const ggml_unary_op_f32_t fun) {
  4963. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4964. }
  4965. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4966. struct ggml_context * ctx,
  4967. struct ggml_tensor * a,
  4968. const ggml_unary_op_f32_t fun) {
  4969. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4970. }
  4971. // ggml_map_binary
  4972. struct ggml_tensor * ggml_map_binary_impl_f32(
  4973. struct ggml_context * ctx,
  4974. struct ggml_tensor * a,
  4975. struct ggml_tensor * b,
  4976. const ggml_binary_op_f32_t fun,
  4977. bool inplace) {
  4978. GGML_ASSERT(ggml_are_same_shape(a, b));
  4979. bool is_node = false;
  4980. if (!inplace && (a->grad || b->grad)) {
  4981. is_node = true;
  4982. }
  4983. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4984. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4985. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4986. result->op = GGML_OP_MAP_BINARY;
  4987. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4988. result->src0 = a;
  4989. result->src1 = b;
  4990. result->opt[0] = addr_tensor;
  4991. return result;
  4992. }
  4993. struct ggml_tensor * ggml_map_binary_f32(
  4994. struct ggml_context * ctx,
  4995. struct ggml_tensor * a,
  4996. struct ggml_tensor * b,
  4997. const ggml_binary_op_f32_t fun) {
  4998. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4999. }
  5000. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5001. struct ggml_context * ctx,
  5002. struct ggml_tensor * a,
  5003. struct ggml_tensor * b,
  5004. const ggml_binary_op_f32_t fun) {
  5005. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5006. }
  5007. ////////////////////////////////////////////////////////////////////////////////
  5008. void ggml_set_param(
  5009. struct ggml_context * ctx,
  5010. struct ggml_tensor * tensor) {
  5011. tensor->is_param = true;
  5012. GGML_ASSERT(tensor->grad == NULL);
  5013. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5014. }
  5015. // ggml_compute_forward_dup
  5016. static void ggml_compute_forward_dup_f16(
  5017. const struct ggml_compute_params * params,
  5018. const struct ggml_tensor * src0,
  5019. struct ggml_tensor * dst) {
  5020. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5021. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5022. return;
  5023. }
  5024. const int64_t ne00 = src0->ne[0];
  5025. const int64_t ne01 = src0->ne[1];
  5026. const int64_t ne02 = src0->ne[2];
  5027. const int64_t ne03 = src0->ne[3];
  5028. const int64_t ne0 = dst->ne[0];
  5029. const int64_t ne1 = dst->ne[1];
  5030. const int64_t ne2 = dst->ne[2];
  5031. const int64_t ne3 = dst->ne[3];
  5032. const size_t nb00 = src0->nb[0];
  5033. const size_t nb01 = src0->nb[1];
  5034. const size_t nb02 = src0->nb[2];
  5035. const size_t nb03 = src0->nb[3];
  5036. const size_t nb0 = dst->nb[0];
  5037. const size_t nb1 = dst->nb[1];
  5038. const size_t nb2 = dst->nb[2];
  5039. const size_t nb3 = dst->nb[3];
  5040. const int ith = params->ith; // thread index
  5041. const int nth = params->nth; // number of threads
  5042. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5043. // parallelize by elements
  5044. const int ne = ggml_nelements(dst);
  5045. const int dr = (ne + nth - 1) / nth;
  5046. const int ie0 = dr * ith;
  5047. const int ie1 = MIN(ie0 + dr, ne);
  5048. memcpy(
  5049. ((char *) dst->data + ie0*nb0),
  5050. ((char *) src0->data + ie0*nb00),
  5051. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5052. return;
  5053. }
  5054. // parallelize by rows
  5055. const int nr = ne01;
  5056. // number of rows per thread
  5057. const int dr = (nr + nth - 1) / nth;
  5058. // row range for this thread
  5059. const int ir0 = dr * ith;
  5060. const int ir1 = MIN(ir0 + dr, nr);
  5061. if (src0->type == dst->type &&
  5062. ne00 == ne0 &&
  5063. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5064. // copy by rows
  5065. const size_t rs = ne00*nb00;
  5066. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5067. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5068. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5069. memcpy(
  5070. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5071. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5072. rs);
  5073. }
  5074. }
  5075. }
  5076. return;
  5077. }
  5078. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5079. if (ggml_is_contiguous(dst)) {
  5080. if (nb00 == sizeof(ggml_fp16_t)) {
  5081. if (dst->type == GGML_TYPE_F16) {
  5082. size_t id = 0;
  5083. const size_t rs = ne00 * nb00;
  5084. char * dst_ptr = (char *) dst->data;
  5085. for (int i03 = 0; i03 < ne03; i03++) {
  5086. for (int i02 = 0; i02 < ne02; i02++) {
  5087. id += rs * ir0;
  5088. for (int i01 = ir0; i01 < ir1; i01++) {
  5089. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5090. memcpy(dst_ptr + id, src0_ptr, rs);
  5091. id += rs;
  5092. }
  5093. id += rs * (ne01 - ir1);
  5094. }
  5095. }
  5096. } else if (dst->type == GGML_TYPE_F32) {
  5097. size_t id = 0;
  5098. float * dst_ptr = (float *) dst->data;
  5099. for (int i03 = 0; i03 < ne03; i03++) {
  5100. for (int i02 = 0; i02 < ne02; i02++) {
  5101. id += ne00 * ir0;
  5102. for (int i01 = ir0; i01 < ir1; i01++) {
  5103. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5104. for (int i00 = 0; i00 < ne00; i00++) {
  5105. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5106. id++;
  5107. }
  5108. }
  5109. id += ne00 * (ne01 - ir1);
  5110. }
  5111. }
  5112. } else if (ggml_is_quantized(dst->type)) {
  5113. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5114. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5115. size_t id = 0;
  5116. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5117. char * dst_ptr = (char *) dst->data;
  5118. for (int i03 = 0; i03 < ne03; i03++) {
  5119. for (int i02 = 0; i02 < ne02; i02++) {
  5120. id += rs * ir0;
  5121. for (int i01 = ir0; i01 < ir1; i01++) {
  5122. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5123. for (int i00 = 0; i00 < ne00; i00++) {
  5124. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5125. }
  5126. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5127. id += rs;
  5128. }
  5129. id += rs * (ne01 - ir1);
  5130. }
  5131. }
  5132. } else {
  5133. GGML_ASSERT(false); // TODO: implement
  5134. }
  5135. } else {
  5136. //printf("%s: this is not optimal - fix me\n", __func__);
  5137. if (dst->type == GGML_TYPE_F32) {
  5138. size_t id = 0;
  5139. float * dst_ptr = (float *) dst->data;
  5140. for (int i03 = 0; i03 < ne03; i03++) {
  5141. for (int i02 = 0; i02 < ne02; i02++) {
  5142. id += ne00 * ir0;
  5143. for (int i01 = ir0; i01 < ir1; i01++) {
  5144. for (int i00 = 0; i00 < ne00; i00++) {
  5145. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5146. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5147. id++;
  5148. }
  5149. }
  5150. id += ne00 * (ne01 - ir1);
  5151. }
  5152. }
  5153. } else if (dst->type == GGML_TYPE_F16) {
  5154. size_t id = 0;
  5155. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5156. for (int i03 = 0; i03 < ne03; i03++) {
  5157. for (int i02 = 0; i02 < ne02; i02++) {
  5158. id += ne00 * ir0;
  5159. for (int i01 = ir0; i01 < ir1; i01++) {
  5160. for (int i00 = 0; i00 < ne00; i00++) {
  5161. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5162. dst_ptr[id] = *src0_ptr;
  5163. id++;
  5164. }
  5165. }
  5166. id += ne00 * (ne01 - ir1);
  5167. }
  5168. }
  5169. } else {
  5170. GGML_ASSERT(false); // TODO: implement
  5171. }
  5172. }
  5173. return;
  5174. }
  5175. // dst counters
  5176. int64_t i10 = 0;
  5177. int64_t i11 = 0;
  5178. int64_t i12 = 0;
  5179. int64_t i13 = 0;
  5180. if (dst->type == GGML_TYPE_F16) {
  5181. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5182. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5183. i10 += ne00 * ir0;
  5184. while (i10 >= ne0) {
  5185. i10 -= ne0;
  5186. if (++i11 == ne1) {
  5187. i11 = 0;
  5188. if (++i12 == ne2) {
  5189. i12 = 0;
  5190. if (++i13 == ne3) {
  5191. i13 = 0;
  5192. }
  5193. }
  5194. }
  5195. }
  5196. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5197. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5198. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5199. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5200. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5201. if (++i10 == ne00) {
  5202. i10 = 0;
  5203. if (++i11 == ne01) {
  5204. i11 = 0;
  5205. if (++i12 == ne02) {
  5206. i12 = 0;
  5207. if (++i13 == ne03) {
  5208. i13 = 0;
  5209. }
  5210. }
  5211. }
  5212. }
  5213. }
  5214. }
  5215. i10 += ne00 * (ne01 - ir1);
  5216. while (i10 >= ne0) {
  5217. i10 -= ne0;
  5218. if (++i11 == ne1) {
  5219. i11 = 0;
  5220. if (++i12 == ne2) {
  5221. i12 = 0;
  5222. if (++i13 == ne3) {
  5223. i13 = 0;
  5224. }
  5225. }
  5226. }
  5227. }
  5228. }
  5229. }
  5230. } else if (dst->type == GGML_TYPE_F32) {
  5231. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5232. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5233. i10 += ne00 * ir0;
  5234. while (i10 >= ne0) {
  5235. i10 -= ne0;
  5236. if (++i11 == ne1) {
  5237. i11 = 0;
  5238. if (++i12 == ne2) {
  5239. i12 = 0;
  5240. if (++i13 == ne3) {
  5241. i13 = 0;
  5242. }
  5243. }
  5244. }
  5245. }
  5246. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5247. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5248. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5249. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5250. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5251. if (++i10 == ne0) {
  5252. i10 = 0;
  5253. if (++i11 == ne1) {
  5254. i11 = 0;
  5255. if (++i12 == ne2) {
  5256. i12 = 0;
  5257. if (++i13 == ne3) {
  5258. i13 = 0;
  5259. }
  5260. }
  5261. }
  5262. }
  5263. }
  5264. }
  5265. i10 += ne00 * (ne01 - ir1);
  5266. while (i10 >= ne0) {
  5267. i10 -= ne0;
  5268. if (++i11 == ne1) {
  5269. i11 = 0;
  5270. if (++i12 == ne2) {
  5271. i12 = 0;
  5272. if (++i13 == ne3) {
  5273. i13 = 0;
  5274. }
  5275. }
  5276. }
  5277. }
  5278. }
  5279. }
  5280. } else {
  5281. GGML_ASSERT(false); // TODO: implement
  5282. }
  5283. }
  5284. static void ggml_compute_forward_dup_f32(
  5285. const struct ggml_compute_params * params,
  5286. const struct ggml_tensor * src0,
  5287. struct ggml_tensor * dst) {
  5288. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5289. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5290. return;
  5291. }
  5292. const int64_t ne00 = src0->ne[0];
  5293. const int64_t ne01 = src0->ne[1];
  5294. const int64_t ne02 = src0->ne[2];
  5295. const int64_t ne03 = src0->ne[3];
  5296. const int64_t ne0 = dst->ne[0];
  5297. const int64_t ne1 = dst->ne[1];
  5298. const int64_t ne2 = dst->ne[2];
  5299. const int64_t ne3 = dst->ne[3];
  5300. const size_t nb00 = src0->nb[0];
  5301. const size_t nb01 = src0->nb[1];
  5302. const size_t nb02 = src0->nb[2];
  5303. const size_t nb03 = src0->nb[3];
  5304. const size_t nb0 = dst->nb[0];
  5305. const size_t nb1 = dst->nb[1];
  5306. const size_t nb2 = dst->nb[2];
  5307. const size_t nb3 = dst->nb[3];
  5308. const int ith = params->ith; // thread index
  5309. const int nth = params->nth; // number of threads
  5310. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5311. // parallelize by elements
  5312. const int ne = ggml_nelements(dst);
  5313. const int dr = (ne + nth - 1) / nth;
  5314. const int ie0 = dr * ith;
  5315. const int ie1 = MIN(ie0 + dr, ne);
  5316. memcpy(
  5317. ((char *) dst->data + ie0*nb0),
  5318. ((char *) src0->data + ie0*nb00),
  5319. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5320. return;
  5321. }
  5322. // parallelize by rows
  5323. const int nr = ne01;
  5324. // number of rows per thread
  5325. const int dr = (nr + nth - 1) / nth;
  5326. // row range for this thread
  5327. const int ir0 = dr * ith;
  5328. const int ir1 = MIN(ir0 + dr, nr);
  5329. if (src0->type == dst->type &&
  5330. ne00 == ne0 &&
  5331. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5332. // copy by rows
  5333. const size_t rs = ne00*nb00;
  5334. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5335. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5336. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5337. memcpy(
  5338. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5339. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5340. rs);
  5341. }
  5342. }
  5343. }
  5344. return;
  5345. }
  5346. if (ggml_is_contiguous(dst)) {
  5347. // TODO: simplify
  5348. if (nb00 == sizeof(float)) {
  5349. if (dst->type == GGML_TYPE_F32) {
  5350. size_t id = 0;
  5351. const size_t rs = ne00 * nb00;
  5352. char * dst_ptr = (char *) dst->data;
  5353. for (int i03 = 0; i03 < ne03; i03++) {
  5354. for (int i02 = 0; i02 < ne02; i02++) {
  5355. id += rs * ir0;
  5356. for (int i01 = ir0; i01 < ir1; i01++) {
  5357. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5358. memcpy(dst_ptr + id, src0_ptr, rs);
  5359. id += rs;
  5360. }
  5361. id += rs * (ne01 - ir1);
  5362. }
  5363. }
  5364. } else if (dst->type == GGML_TYPE_F16) {
  5365. size_t id = 0;
  5366. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5367. for (int i03 = 0; i03 < ne03; i03++) {
  5368. for (int i02 = 0; i02 < ne02; i02++) {
  5369. id += ne00 * ir0;
  5370. for (int i01 = ir0; i01 < ir1; i01++) {
  5371. for (int i00 = 0; i00 < ne00; i00++) {
  5372. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5373. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5374. id++;
  5375. }
  5376. }
  5377. id += ne00 * (ne01 - ir1);
  5378. }
  5379. }
  5380. } else if (ggml_is_quantized(dst->type)) {
  5381. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5382. size_t id = 0;
  5383. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5384. char * dst_ptr = (char *) dst->data;
  5385. for (int i03 = 0; i03 < ne03; i03++) {
  5386. for (int i02 = 0; i02 < ne02; i02++) {
  5387. id += rs * ir0;
  5388. for (int i01 = ir0; i01 < ir1; i01++) {
  5389. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5390. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5391. id += rs;
  5392. }
  5393. id += rs * (ne01 - ir1);
  5394. }
  5395. }
  5396. } else {
  5397. GGML_ASSERT(false); // TODO: implement
  5398. }
  5399. } else {
  5400. //printf("%s: this is not optimal - fix me\n", __func__);
  5401. if (dst->type == GGML_TYPE_F32) {
  5402. size_t id = 0;
  5403. float * dst_ptr = (float *) dst->data;
  5404. for (int i03 = 0; i03 < ne03; i03++) {
  5405. for (int i02 = 0; i02 < ne02; i02++) {
  5406. id += ne00 * ir0;
  5407. for (int i01 = ir0; i01 < ir1; i01++) {
  5408. for (int i00 = 0; i00 < ne00; i00++) {
  5409. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5410. dst_ptr[id] = *src0_ptr;
  5411. id++;
  5412. }
  5413. }
  5414. id += ne00 * (ne01 - ir1);
  5415. }
  5416. }
  5417. } else if (dst->type == GGML_TYPE_F16) {
  5418. size_t id = 0;
  5419. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5420. for (int i03 = 0; i03 < ne03; i03++) {
  5421. for (int i02 = 0; i02 < ne02; i02++) {
  5422. id += ne00 * ir0;
  5423. for (int i01 = ir0; i01 < ir1; i01++) {
  5424. for (int i00 = 0; i00 < ne00; i00++) {
  5425. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5426. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5427. id++;
  5428. }
  5429. }
  5430. id += ne00 * (ne01 - ir1);
  5431. }
  5432. }
  5433. } else {
  5434. GGML_ASSERT(false); // TODO: implement
  5435. }
  5436. }
  5437. return;
  5438. }
  5439. // dst counters
  5440. int64_t i10 = 0;
  5441. int64_t i11 = 0;
  5442. int64_t i12 = 0;
  5443. int64_t i13 = 0;
  5444. if (dst->type == GGML_TYPE_F32) {
  5445. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5446. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5447. i10 += ne00 * ir0;
  5448. while (i10 >= ne0) {
  5449. i10 -= ne0;
  5450. if (++i11 == ne1) {
  5451. i11 = 0;
  5452. if (++i12 == ne2) {
  5453. i12 = 0;
  5454. if (++i13 == ne3) {
  5455. i13 = 0;
  5456. }
  5457. }
  5458. }
  5459. }
  5460. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5461. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5462. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5463. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5464. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5465. if (++i10 == ne0) {
  5466. i10 = 0;
  5467. if (++i11 == ne1) {
  5468. i11 = 0;
  5469. if (++i12 == ne2) {
  5470. i12 = 0;
  5471. if (++i13 == ne3) {
  5472. i13 = 0;
  5473. }
  5474. }
  5475. }
  5476. }
  5477. }
  5478. }
  5479. i10 += ne00 * (ne01 - ir1);
  5480. while (i10 >= ne0) {
  5481. i10 -= ne0;
  5482. if (++i11 == ne1) {
  5483. i11 = 0;
  5484. if (++i12 == ne2) {
  5485. i12 = 0;
  5486. if (++i13 == ne3) {
  5487. i13 = 0;
  5488. }
  5489. }
  5490. }
  5491. }
  5492. }
  5493. }
  5494. } else if (dst->type == GGML_TYPE_F16) {
  5495. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5496. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5497. i10 += ne00 * ir0;
  5498. while (i10 >= ne0) {
  5499. i10 -= ne0;
  5500. if (++i11 == ne1) {
  5501. i11 = 0;
  5502. if (++i12 == ne2) {
  5503. i12 = 0;
  5504. if (++i13 == ne3) {
  5505. i13 = 0;
  5506. }
  5507. }
  5508. }
  5509. }
  5510. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5511. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5512. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5513. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5514. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5515. if (++i10 == ne0) {
  5516. i10 = 0;
  5517. if (++i11 == ne1) {
  5518. i11 = 0;
  5519. if (++i12 == ne2) {
  5520. i12 = 0;
  5521. if (++i13 == ne3) {
  5522. i13 = 0;
  5523. }
  5524. }
  5525. }
  5526. }
  5527. }
  5528. }
  5529. i10 += ne00 * (ne01 - ir1);
  5530. while (i10 >= ne0) {
  5531. i10 -= ne0;
  5532. if (++i11 == ne1) {
  5533. i11 = 0;
  5534. if (++i12 == ne2) {
  5535. i12 = 0;
  5536. if (++i13 == ne3) {
  5537. i13 = 0;
  5538. }
  5539. }
  5540. }
  5541. }
  5542. }
  5543. }
  5544. } else {
  5545. GGML_ASSERT(false); // TODO: implement
  5546. }
  5547. }
  5548. static void ggml_compute_forward_dup(
  5549. const struct ggml_compute_params * params,
  5550. const struct ggml_tensor * src0,
  5551. struct ggml_tensor * dst) {
  5552. switch (src0->type) {
  5553. case GGML_TYPE_F16:
  5554. {
  5555. ggml_compute_forward_dup_f16(params, src0, dst);
  5556. } break;
  5557. case GGML_TYPE_F32:
  5558. {
  5559. ggml_compute_forward_dup_f32(params, src0, dst);
  5560. } break;
  5561. default:
  5562. {
  5563. GGML_ASSERT(false);
  5564. } break;
  5565. }
  5566. }
  5567. // ggml_compute_forward_add
  5568. static void ggml_compute_forward_add_f32(
  5569. const struct ggml_compute_params * params,
  5570. const struct ggml_tensor * src0,
  5571. const struct ggml_tensor * src1,
  5572. struct ggml_tensor * dst) {
  5573. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5574. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5575. return;
  5576. }
  5577. const int ith = params->ith;
  5578. const int nth = params->nth;
  5579. const int n = ggml_nrows(src0);
  5580. const int nc = src0->ne[0];
  5581. const size_t nb00 = src0->nb[0];
  5582. const size_t nb01 = src0->nb[1];
  5583. const size_t nb10 = src1->nb[0];
  5584. const size_t nb11 = src1->nb[1];
  5585. const size_t nb0 = dst->nb[0];
  5586. const size_t nb1 = dst->nb[1];
  5587. GGML_ASSERT( nb0 == sizeof(float));
  5588. GGML_ASSERT(nb00 == sizeof(float));
  5589. if (nb10 == sizeof(float)) {
  5590. for (int j = ith; j < n; j += nth) {
  5591. #ifdef GGML_USE_ACCELERATE
  5592. vDSP_vadd(
  5593. (float *) ((char *) src0->data + j*nb01), 1,
  5594. (float *) ((char *) src1->data + j*nb11), 1,
  5595. (float *) ((char *) dst->data + j*nb1), 1, nc);
  5596. #else
  5597. ggml_vec_add_f32(nc,
  5598. (float *) ((char *) dst->data + j*nb1),
  5599. (float *) ((char *) src0->data + j*nb01),
  5600. (float *) ((char *) src1->data + j*nb11));
  5601. #endif
  5602. }
  5603. } else {
  5604. // src1 is not contiguous
  5605. for (int j = ith; j < n; j += nth) {
  5606. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  5607. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  5608. for (int i = 0; i < nc; i++) {
  5609. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5610. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  5611. }
  5612. }
  5613. }
  5614. }
  5615. static void ggml_compute_forward_add_f16_f32(
  5616. const struct ggml_compute_params * params,
  5617. const struct ggml_tensor * src0,
  5618. const struct ggml_tensor * src1,
  5619. struct ggml_tensor * dst) {
  5620. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5621. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5622. return;
  5623. }
  5624. const int ith = params->ith;
  5625. const int nth = params->nth;
  5626. const int n = ggml_nrows(src0);
  5627. const int nc = src0->ne[0];
  5628. const size_t nb00 = src0->nb[0];
  5629. const size_t nb01 = src0->nb[1];
  5630. const size_t nb10 = src1->nb[0];
  5631. const size_t nb11 = src1->nb[1];
  5632. const size_t nb0 = dst->nb[0];
  5633. const size_t nb1 = dst->nb[1];
  5634. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5635. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5636. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5637. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5638. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5639. if (nb10 == sizeof(float)) {
  5640. for (int j = ith; j < n; j += nth) {
  5641. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5642. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5643. for (int i = 0; i < nc; i++) {
  5644. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5645. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  5646. }
  5647. }
  5648. }
  5649. else {
  5650. // src1 is not contiguous
  5651. GGML_ASSERT(false);
  5652. }
  5653. }
  5654. static void ggml_compute_forward_add_f16_f16(
  5655. const struct ggml_compute_params * params,
  5656. const struct ggml_tensor * src0,
  5657. const struct ggml_tensor * src1,
  5658. struct ggml_tensor * dst) {
  5659. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5660. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5661. return;
  5662. }
  5663. const int ith = params->ith;
  5664. const int nth = params->nth;
  5665. const int n = ggml_nrows(src0);
  5666. const int nc = src0->ne[0];
  5667. const size_t nb00 = src0->nb[0];
  5668. const size_t nb01 = src0->nb[1];
  5669. const size_t nb10 = src1->nb[0];
  5670. const size_t nb11 = src1->nb[1];
  5671. const size_t nb0 = dst->nb[0];
  5672. const size_t nb1 = dst->nb[1];
  5673. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5674. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5675. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5676. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5677. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5678. if (nb10 == sizeof(ggml_fp16_t)) {
  5679. for (int j = ith; j < n; j += nth) {
  5680. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5681. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5682. for (int i = 0; i < nc; i++) {
  5683. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  5684. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  5685. }
  5686. }
  5687. }
  5688. else {
  5689. // src1 is not contiguous
  5690. GGML_ASSERT(false);
  5691. }
  5692. }
  5693. static void ggml_compute_forward_add_q_f32(
  5694. const struct ggml_compute_params * params,
  5695. const struct ggml_tensor * src0,
  5696. const struct ggml_tensor * src1,
  5697. struct ggml_tensor * dst) {
  5698. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5699. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5700. return;
  5701. }
  5702. const int64_t ne00 = src0->ne[0];
  5703. const int64_t ne01 = src0->ne[1];
  5704. const int64_t ne02 = src0->ne[2];
  5705. const int64_t ne03 = src0->ne[3];
  5706. //const int64_t ne10 = src1->ne[0];
  5707. //const int64_t ne11 = src1->ne[1];
  5708. const int64_t ne12 = src1->ne[2];
  5709. const int64_t ne13 = src1->ne[3];
  5710. //const int64_t ne0 = dst->ne[0];
  5711. //const int64_t ne1 = dst->ne[1];
  5712. const int64_t ne2 = dst->ne[2];
  5713. const int64_t ne3 = dst->ne[3];
  5714. const int nb00 = src0->nb[0];
  5715. const int nb01 = src0->nb[1];
  5716. const int nb02 = src0->nb[2];
  5717. const int nb03 = src0->nb[3];
  5718. const int nb10 = src1->nb[0];
  5719. const int nb11 = src1->nb[1];
  5720. const int nb12 = src1->nb[2];
  5721. const int nb13 = src1->nb[3];
  5722. const int nb0 = dst->nb[0];
  5723. const int nb1 = dst->nb[1];
  5724. const int nb2 = dst->nb[2];
  5725. const int nb3 = dst->nb[3];
  5726. const int ith = params->ith;
  5727. const int nth = params->nth;
  5728. GGML_ASSERT(ne02 == ne12);
  5729. GGML_ASSERT(ne03 == ne13);
  5730. GGML_ASSERT(ne2 == ne12);
  5731. GGML_ASSERT(ne3 == ne13);
  5732. const enum ggml_type type = src0->type;
  5733. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5734. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5735. // we don't support permuted src0 or src1
  5736. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5737. GGML_ASSERT(nb10 == sizeof(float));
  5738. // dst cannot be transposed or permuted
  5739. GGML_ASSERT(nb0 <= nb1);
  5740. GGML_ASSERT(nb1 <= nb2);
  5741. GGML_ASSERT(nb2 <= nb3);
  5742. GGML_ASSERT(ggml_is_quantized(src0->type));
  5743. GGML_ASSERT(dst->type == src0->type);
  5744. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5745. // total rows in src0
  5746. const int nr = ne01*ne02*ne03;
  5747. // rows per thread
  5748. const int dr = (nr + nth - 1)/nth;
  5749. // row range for this thread
  5750. const int ir0 = dr*ith;
  5751. const int ir1 = MIN(ir0 + dr, nr);
  5752. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5753. for (int ir = ir0; ir < ir1; ++ir) {
  5754. // src0 indices
  5755. const int i03 = ir/(ne02*ne01);
  5756. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5757. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5758. // src1 and dst are same shape as src0 => same indices
  5759. const int i13 = i03;
  5760. const int i12 = i02;
  5761. const int i11 = i01;
  5762. const int i3 = i03;
  5763. const int i2 = i02;
  5764. const int i1 = i01;
  5765. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5766. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5767. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5768. assert(ne00 % 32 == 0);
  5769. // unquantize row from src0 to temp buffer
  5770. dequantize_row_q(src0_row, wdata, ne00);
  5771. // add src1
  5772. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5773. // quantize row to dst
  5774. quantize_row_q(wdata, dst_row, ne00);
  5775. }
  5776. }
  5777. static void ggml_compute_forward_add(
  5778. const struct ggml_compute_params * params,
  5779. const struct ggml_tensor * src0,
  5780. const struct ggml_tensor * src1,
  5781. struct ggml_tensor * dst) {
  5782. switch (src0->type) {
  5783. case GGML_TYPE_F32:
  5784. {
  5785. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5786. } break;
  5787. case GGML_TYPE_F16:
  5788. {
  5789. if (src1->type == GGML_TYPE_F16) {
  5790. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5791. }
  5792. else if (src1->type == GGML_TYPE_F32) {
  5793. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5794. }
  5795. else {
  5796. GGML_ASSERT(false);
  5797. }
  5798. } break;
  5799. case GGML_TYPE_Q4_0:
  5800. case GGML_TYPE_Q4_1:
  5801. case GGML_TYPE_Q4_2:
  5802. case GGML_TYPE_Q5_0:
  5803. case GGML_TYPE_Q5_1:
  5804. case GGML_TYPE_Q8_0:
  5805. {
  5806. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5807. } break;
  5808. default:
  5809. {
  5810. GGML_ASSERT(false);
  5811. } break;
  5812. }
  5813. }
  5814. // ggml_compute_forward_sub
  5815. static void ggml_compute_forward_sub_f32(
  5816. const struct ggml_compute_params * params,
  5817. const struct ggml_tensor * src0,
  5818. const struct ggml_tensor * src1,
  5819. struct ggml_tensor * dst) {
  5820. assert(params->ith == 0);
  5821. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5822. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5823. return;
  5824. }
  5825. const int n = ggml_nrows(src0);
  5826. const int nc = src0->ne[0];
  5827. assert( dst->nb[0] == sizeof(float));
  5828. assert(src0->nb[0] == sizeof(float));
  5829. assert(src1->nb[0] == sizeof(float));
  5830. for (int i = 0; i < n; i++) {
  5831. ggml_vec_sub_f32(nc,
  5832. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5833. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5834. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5835. }
  5836. }
  5837. static void ggml_compute_forward_sub(
  5838. const struct ggml_compute_params * params,
  5839. const struct ggml_tensor * src0,
  5840. const struct ggml_tensor * src1,
  5841. struct ggml_tensor * dst) {
  5842. switch (src0->type) {
  5843. case GGML_TYPE_F32:
  5844. {
  5845. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  5846. } break;
  5847. default:
  5848. {
  5849. GGML_ASSERT(false);
  5850. } break;
  5851. }
  5852. }
  5853. // ggml_compute_forward_mul
  5854. static void ggml_compute_forward_mul_f32(
  5855. const struct ggml_compute_params * params,
  5856. const struct ggml_tensor * src0,
  5857. const struct ggml_tensor * src1,
  5858. struct ggml_tensor * dst) {
  5859. assert(params->ith == 0);
  5860. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5861. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5862. return;
  5863. }
  5864. const int n = ggml_nrows(src0);
  5865. const int nc = src0->ne[0];
  5866. assert( dst->nb[0] == sizeof(float));
  5867. assert(src0->nb[0] == sizeof(float));
  5868. assert(src1->nb[0] == sizeof(float));
  5869. for (int i = 0; i < n; i++) {
  5870. ggml_vec_mul_f32(nc,
  5871. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5872. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5873. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5874. }
  5875. }
  5876. static void ggml_compute_forward_mul(
  5877. const struct ggml_compute_params * params,
  5878. const struct ggml_tensor * src0,
  5879. const struct ggml_tensor * src1,
  5880. struct ggml_tensor * dst) {
  5881. switch (src0->type) {
  5882. case GGML_TYPE_F32:
  5883. {
  5884. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  5885. } break;
  5886. default:
  5887. {
  5888. GGML_ASSERT(false);
  5889. } break;
  5890. }
  5891. }
  5892. // ggml_compute_forward_div
  5893. static void ggml_compute_forward_div_f32(
  5894. const struct ggml_compute_params * params,
  5895. const struct ggml_tensor * src0,
  5896. const struct ggml_tensor * src1,
  5897. struct ggml_tensor * dst) {
  5898. assert(params->ith == 0);
  5899. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5900. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5901. return;
  5902. }
  5903. const int n = ggml_nrows(src0);
  5904. const int nc = src0->ne[0];
  5905. assert( dst->nb[0] == sizeof(float));
  5906. assert(src0->nb[0] == sizeof(float));
  5907. assert(src1->nb[0] == sizeof(float));
  5908. for (int i = 0; i < n; i++) {
  5909. ggml_vec_div_f32(nc,
  5910. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5911. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5912. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5913. }
  5914. }
  5915. static void ggml_compute_forward_div(
  5916. const struct ggml_compute_params * params,
  5917. const struct ggml_tensor * src0,
  5918. const struct ggml_tensor * src1,
  5919. struct ggml_tensor * dst) {
  5920. switch (src0->type) {
  5921. case GGML_TYPE_F32:
  5922. {
  5923. ggml_compute_forward_div_f32(params, src0, src1, dst);
  5924. } break;
  5925. default:
  5926. {
  5927. GGML_ASSERT(false);
  5928. } break;
  5929. }
  5930. }
  5931. // ggml_compute_forward_sqr
  5932. static void ggml_compute_forward_sqr_f32(
  5933. const struct ggml_compute_params * params,
  5934. const struct ggml_tensor * src0,
  5935. struct ggml_tensor * dst) {
  5936. assert(params->ith == 0);
  5937. assert(ggml_are_same_shape(src0, dst));
  5938. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5939. return;
  5940. }
  5941. const int n = ggml_nrows(src0);
  5942. const int nc = src0->ne[0];
  5943. assert( dst->nb[0] == sizeof(float));
  5944. assert(src0->nb[0] == sizeof(float));
  5945. for (int i = 0; i < n; i++) {
  5946. ggml_vec_sqr_f32(nc,
  5947. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5948. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5949. }
  5950. }
  5951. static void ggml_compute_forward_sqr(
  5952. const struct ggml_compute_params * params,
  5953. const struct ggml_tensor * src0,
  5954. struct ggml_tensor * dst) {
  5955. switch (src0->type) {
  5956. case GGML_TYPE_F32:
  5957. {
  5958. ggml_compute_forward_sqr_f32(params, src0, dst);
  5959. } break;
  5960. default:
  5961. {
  5962. GGML_ASSERT(false);
  5963. } break;
  5964. }
  5965. }
  5966. // ggml_compute_forward_sqrt
  5967. static void ggml_compute_forward_sqrt_f32(
  5968. const struct ggml_compute_params * params,
  5969. const struct ggml_tensor * src0,
  5970. struct ggml_tensor * dst) {
  5971. assert(params->ith == 0);
  5972. assert(ggml_are_same_shape(src0, dst));
  5973. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5974. return;
  5975. }
  5976. const int n = ggml_nrows(src0);
  5977. const int nc = src0->ne[0];
  5978. assert( dst->nb[0] == sizeof(float));
  5979. assert(src0->nb[0] == sizeof(float));
  5980. for (int i = 0; i < n; i++) {
  5981. ggml_vec_sqrt_f32(nc,
  5982. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5983. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5984. }
  5985. }
  5986. static void ggml_compute_forward_sqrt(
  5987. const struct ggml_compute_params * params,
  5988. const struct ggml_tensor * src0,
  5989. struct ggml_tensor * dst) {
  5990. switch (src0->type) {
  5991. case GGML_TYPE_F32:
  5992. {
  5993. ggml_compute_forward_sqrt_f32(params, src0, dst);
  5994. } break;
  5995. default:
  5996. {
  5997. GGML_ASSERT(false);
  5998. } break;
  5999. }
  6000. }
  6001. // ggml_compute_forward_sum
  6002. static void ggml_compute_forward_sum_f32(
  6003. const struct ggml_compute_params * params,
  6004. const struct ggml_tensor * src0,
  6005. struct ggml_tensor * dst) {
  6006. assert(params->ith == 0);
  6007. assert(ggml_is_scalar(dst));
  6008. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6009. return;
  6010. }
  6011. assert(ggml_is_scalar(dst));
  6012. assert(src0->nb[0] == sizeof(float));
  6013. const int64_t ne00 = src0->ne[0];
  6014. const int64_t ne01 = src0->ne[1];
  6015. const int64_t ne02 = src0->ne[2];
  6016. const int64_t ne03 = src0->ne[3];
  6017. const size_t nb01 = src0->nb[1];
  6018. const size_t nb02 = src0->nb[2];
  6019. const size_t nb03 = src0->nb[3];
  6020. ggml_float sum = 0;
  6021. ggml_float row_sum = 0;
  6022. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6023. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6024. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6025. ggml_vec_sum_ggf(ne00,
  6026. &row_sum,
  6027. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6028. sum += row_sum;
  6029. }
  6030. }
  6031. }
  6032. ((float *) dst->data)[0] = sum;
  6033. }
  6034. static void ggml_compute_forward_sum(
  6035. const struct ggml_compute_params * params,
  6036. const struct ggml_tensor * src0,
  6037. struct ggml_tensor * dst) {
  6038. switch (src0->type) {
  6039. case GGML_TYPE_F32:
  6040. {
  6041. ggml_compute_forward_sum_f32(params, src0, dst);
  6042. } break;
  6043. default:
  6044. {
  6045. GGML_ASSERT(false);
  6046. } break;
  6047. }
  6048. }
  6049. // ggml_compute_forward_mean
  6050. static void ggml_compute_forward_mean_f32(
  6051. const struct ggml_compute_params * params,
  6052. const struct ggml_tensor * src0,
  6053. struct ggml_tensor * dst) {
  6054. assert(params->ith == 0);
  6055. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6056. return;
  6057. }
  6058. assert(src0->nb[0] == sizeof(float));
  6059. const int64_t ne00 = src0->ne[0];
  6060. const int64_t ne01 = src0->ne[1];
  6061. const int64_t ne02 = src0->ne[2];
  6062. const int64_t ne03 = src0->ne[3];
  6063. const size_t nb01 = src0->nb[1];
  6064. const size_t nb02 = src0->nb[2];
  6065. const size_t nb03 = src0->nb[3];
  6066. const int64_t ne0 = dst->ne[0];
  6067. const int64_t ne1 = dst->ne[1];
  6068. const int64_t ne2 = dst->ne[2];
  6069. const int64_t ne3 = dst->ne[3];
  6070. assert(ne0 == 1);
  6071. assert(ne1 == ne01);
  6072. assert(ne2 == ne02);
  6073. assert(ne3 == ne03);
  6074. UNUSED(ne0);
  6075. UNUSED(ne1);
  6076. UNUSED(ne2);
  6077. UNUSED(ne3);
  6078. const size_t nb1 = dst->nb[1];
  6079. const size_t nb2 = dst->nb[2];
  6080. const size_t nb3 = dst->nb[3];
  6081. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6082. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6083. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6084. ggml_vec_sum_f32(ne00,
  6085. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6086. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6087. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6088. }
  6089. }
  6090. }
  6091. }
  6092. static void ggml_compute_forward_mean(
  6093. const struct ggml_compute_params * params,
  6094. const struct ggml_tensor * src0,
  6095. struct ggml_tensor * dst) {
  6096. switch (src0->type) {
  6097. case GGML_TYPE_F32:
  6098. {
  6099. ggml_compute_forward_mean_f32(params, src0, dst);
  6100. } break;
  6101. default:
  6102. {
  6103. GGML_ASSERT(false);
  6104. } break;
  6105. }
  6106. }
  6107. // ggml_compute_forward_repeat
  6108. static void ggml_compute_forward_repeat_f32(
  6109. const struct ggml_compute_params * params,
  6110. const struct ggml_tensor * src0,
  6111. struct ggml_tensor * dst) {
  6112. assert(params->ith == 0);
  6113. assert(ggml_can_repeat(src0, dst));
  6114. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6115. return;
  6116. }
  6117. // TODO: implement support for rank > 2 tensors
  6118. assert(src0->ne[2] == 1);
  6119. assert(src0->ne[3] == 1);
  6120. assert( dst->ne[2] == 1);
  6121. assert( dst->ne[3] == 1);
  6122. const int nc = dst->ne[0];
  6123. const int nr = dst->ne[1];
  6124. const int nc0 = src0->ne[0];
  6125. const int nr0 = src0->ne[1];
  6126. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  6127. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  6128. // TODO: support for transposed / permuted tensors
  6129. assert( dst->nb[0] == sizeof(float));
  6130. assert(src0->nb[0] == sizeof(float));
  6131. // TODO: maybe this is not optimal?
  6132. for (int i = 0; i < nrr; i++) {
  6133. for (int j = 0; j < ncr; j++) {
  6134. for (int k = 0; k < nr0; k++) {
  6135. ggml_vec_cpy_f32(nc0,
  6136. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  6137. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  6138. }
  6139. }
  6140. }
  6141. }
  6142. static void ggml_compute_forward_repeat(
  6143. const struct ggml_compute_params * params,
  6144. const struct ggml_tensor * src0,
  6145. struct ggml_tensor * dst) {
  6146. switch (src0->type) {
  6147. case GGML_TYPE_F32:
  6148. {
  6149. ggml_compute_forward_repeat_f32(params, src0, dst);
  6150. } break;
  6151. default:
  6152. {
  6153. GGML_ASSERT(false);
  6154. } break;
  6155. }
  6156. }
  6157. // ggml_compute_forward_abs
  6158. static void ggml_compute_forward_abs_f32(
  6159. const struct ggml_compute_params * params,
  6160. const struct ggml_tensor * src0,
  6161. struct ggml_tensor * dst) {
  6162. assert(params->ith == 0);
  6163. assert(ggml_are_same_shape(src0, dst));
  6164. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6165. return;
  6166. }
  6167. const int n = ggml_nrows(src0);
  6168. const int nc = src0->ne[0];
  6169. assert(dst->nb[0] == sizeof(float));
  6170. assert(src0->nb[0] == sizeof(float));
  6171. for (int i = 0; i < n; i++) {
  6172. ggml_vec_abs_f32(nc,
  6173. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6174. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6175. }
  6176. }
  6177. static void ggml_compute_forward_abs(
  6178. const struct ggml_compute_params * params,
  6179. const struct ggml_tensor * src0,
  6180. struct ggml_tensor * dst) {
  6181. switch (src0->type) {
  6182. case GGML_TYPE_F32:
  6183. {
  6184. ggml_compute_forward_abs_f32(params, src0, dst);
  6185. } break;
  6186. default:
  6187. {
  6188. GGML_ASSERT(false);
  6189. } break;
  6190. }
  6191. }
  6192. // ggml_compute_forward_sgn
  6193. static void ggml_compute_forward_sgn_f32(
  6194. const struct ggml_compute_params * params,
  6195. const struct ggml_tensor * src0,
  6196. struct ggml_tensor * dst) {
  6197. assert(params->ith == 0);
  6198. assert(ggml_are_same_shape(src0, dst));
  6199. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6200. return;
  6201. }
  6202. const int n = ggml_nrows(src0);
  6203. const int nc = src0->ne[0];
  6204. assert(dst->nb[0] == sizeof(float));
  6205. assert(src0->nb[0] == sizeof(float));
  6206. for (int i = 0; i < n; i++) {
  6207. ggml_vec_sgn_f32(nc,
  6208. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6209. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6210. }
  6211. }
  6212. static void ggml_compute_forward_sgn(
  6213. const struct ggml_compute_params * params,
  6214. const struct ggml_tensor * src0,
  6215. struct ggml_tensor * dst) {
  6216. switch (src0->type) {
  6217. case GGML_TYPE_F32:
  6218. {
  6219. ggml_compute_forward_sgn_f32(params, src0, dst);
  6220. } break;
  6221. default:
  6222. {
  6223. GGML_ASSERT(false);
  6224. } break;
  6225. }
  6226. }
  6227. // ggml_compute_forward_neg
  6228. static void ggml_compute_forward_neg_f32(
  6229. const struct ggml_compute_params * params,
  6230. const struct ggml_tensor * src0,
  6231. struct ggml_tensor * dst) {
  6232. assert(params->ith == 0);
  6233. assert(ggml_are_same_shape(src0, dst));
  6234. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6235. return;
  6236. }
  6237. const int n = ggml_nrows(src0);
  6238. const int nc = src0->ne[0];
  6239. assert(dst->nb[0] == sizeof(float));
  6240. assert(src0->nb[0] == sizeof(float));
  6241. for (int i = 0; i < n; i++) {
  6242. ggml_vec_neg_f32(nc,
  6243. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6244. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6245. }
  6246. }
  6247. static void ggml_compute_forward_neg(
  6248. const struct ggml_compute_params * params,
  6249. const struct ggml_tensor * src0,
  6250. struct ggml_tensor * dst) {
  6251. switch (src0->type) {
  6252. case GGML_TYPE_F32:
  6253. {
  6254. ggml_compute_forward_neg_f32(params, src0, dst);
  6255. } break;
  6256. default:
  6257. {
  6258. GGML_ASSERT(false);
  6259. } break;
  6260. }
  6261. }
  6262. // ggml_compute_forward_step
  6263. static void ggml_compute_forward_step_f32(
  6264. const struct ggml_compute_params * params,
  6265. const struct ggml_tensor * src0,
  6266. struct ggml_tensor * dst) {
  6267. assert(params->ith == 0);
  6268. assert(ggml_are_same_shape(src0, dst));
  6269. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6270. return;
  6271. }
  6272. const int n = ggml_nrows(src0);
  6273. const int nc = src0->ne[0];
  6274. assert(dst->nb[0] == sizeof(float));
  6275. assert(src0->nb[0] == sizeof(float));
  6276. for (int i = 0; i < n; i++) {
  6277. ggml_vec_step_f32(nc,
  6278. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6279. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6280. }
  6281. }
  6282. static void ggml_compute_forward_step(
  6283. const struct ggml_compute_params * params,
  6284. const struct ggml_tensor * src0,
  6285. struct ggml_tensor * dst) {
  6286. switch (src0->type) {
  6287. case GGML_TYPE_F32:
  6288. {
  6289. ggml_compute_forward_step_f32(params, src0, dst);
  6290. } break;
  6291. default:
  6292. {
  6293. GGML_ASSERT(false);
  6294. } break;
  6295. }
  6296. }
  6297. // ggml_compute_forward_relu
  6298. static void ggml_compute_forward_relu_f32(
  6299. const struct ggml_compute_params * params,
  6300. const struct ggml_tensor * src0,
  6301. struct ggml_tensor * dst) {
  6302. assert(params->ith == 0);
  6303. assert(ggml_are_same_shape(src0, dst));
  6304. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6305. return;
  6306. }
  6307. const int n = ggml_nrows(src0);
  6308. const int nc = src0->ne[0];
  6309. assert(dst->nb[0] == sizeof(float));
  6310. assert(src0->nb[0] == sizeof(float));
  6311. for (int i = 0; i < n; i++) {
  6312. ggml_vec_relu_f32(nc,
  6313. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6314. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6315. }
  6316. }
  6317. static void ggml_compute_forward_relu(
  6318. const struct ggml_compute_params * params,
  6319. const struct ggml_tensor * src0,
  6320. struct ggml_tensor * dst) {
  6321. switch (src0->type) {
  6322. case GGML_TYPE_F32:
  6323. {
  6324. ggml_compute_forward_relu_f32(params, src0, dst);
  6325. } break;
  6326. default:
  6327. {
  6328. GGML_ASSERT(false);
  6329. } break;
  6330. }
  6331. }
  6332. // ggml_compute_forward_gelu
  6333. static void ggml_compute_forward_gelu_f32(
  6334. const struct ggml_compute_params * params,
  6335. const struct ggml_tensor * src0,
  6336. struct ggml_tensor * dst) {
  6337. GGML_ASSERT(ggml_is_contiguous(src0));
  6338. GGML_ASSERT(ggml_is_contiguous(dst));
  6339. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6340. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6341. return;
  6342. }
  6343. const int ith = params->ith;
  6344. const int nth = params->nth;
  6345. const int nc = src0->ne[0];
  6346. const int nr = ggml_nrows(src0);
  6347. // rows per thread
  6348. const int dr = (nr + nth - 1)/nth;
  6349. // row range for this thread
  6350. const int ir0 = dr*ith;
  6351. const int ir1 = MIN(ir0 + dr, nr);
  6352. for (int i1 = ir0; i1 < ir1; i1++) {
  6353. ggml_vec_gelu_f32(nc,
  6354. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6355. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6356. #ifndef NDEBUG
  6357. for (int k = 0; k < nc; k++) {
  6358. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6359. UNUSED(x);
  6360. assert(!isnan(x));
  6361. assert(!isinf(x));
  6362. }
  6363. #endif
  6364. }
  6365. }
  6366. static void ggml_compute_forward_gelu(
  6367. const struct ggml_compute_params * params,
  6368. const struct ggml_tensor * src0,
  6369. struct ggml_tensor * dst) {
  6370. switch (src0->type) {
  6371. case GGML_TYPE_F32:
  6372. {
  6373. ggml_compute_forward_gelu_f32(params, src0, dst);
  6374. } break;
  6375. default:
  6376. {
  6377. GGML_ASSERT(false);
  6378. } break;
  6379. }
  6380. //printf("XXXXXXXX gelu\n");
  6381. }
  6382. // ggml_compute_forward_silu
  6383. static void ggml_compute_forward_silu_f32(
  6384. const struct ggml_compute_params * params,
  6385. const struct ggml_tensor * src0,
  6386. struct ggml_tensor * dst) {
  6387. GGML_ASSERT(ggml_is_contiguous(src0));
  6388. GGML_ASSERT(ggml_is_contiguous(dst));
  6389. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6390. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6391. return;
  6392. }
  6393. const int ith = params->ith;
  6394. const int nth = params->nth;
  6395. const int nc = src0->ne[0];
  6396. const int nr = ggml_nrows(src0);
  6397. // rows per thread
  6398. const int dr = (nr + nth - 1)/nth;
  6399. // row range for this thread
  6400. const int ir0 = dr*ith;
  6401. const int ir1 = MIN(ir0 + dr, nr);
  6402. for (int i1 = ir0; i1 < ir1; i1++) {
  6403. ggml_vec_silu_f32(nc,
  6404. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6405. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6406. #ifndef NDEBUG
  6407. for (int k = 0; k < nc; k++) {
  6408. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6409. UNUSED(x);
  6410. assert(!isnan(x));
  6411. assert(!isinf(x));
  6412. }
  6413. #endif
  6414. }
  6415. }
  6416. static void ggml_compute_forward_silu(
  6417. const struct ggml_compute_params * params,
  6418. const struct ggml_tensor * src0,
  6419. struct ggml_tensor * dst) {
  6420. switch (src0->type) {
  6421. case GGML_TYPE_F32:
  6422. {
  6423. ggml_compute_forward_silu_f32(params, src0, dst);
  6424. } break;
  6425. default:
  6426. {
  6427. GGML_ASSERT(false);
  6428. } break;
  6429. }
  6430. }
  6431. // ggml_compute_forward_norm
  6432. static void ggml_compute_forward_norm_f32(
  6433. const struct ggml_compute_params * params,
  6434. const struct ggml_tensor * src0,
  6435. struct ggml_tensor * dst) {
  6436. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6437. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6438. return;
  6439. }
  6440. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6441. const int ith = params->ith;
  6442. const int nth = params->nth;
  6443. const int64_t ne00 = src0->ne[0];
  6444. const int64_t ne01 = src0->ne[1];
  6445. const int64_t ne02 = src0->ne[2];
  6446. const int64_t ne03 = src0->ne[3];
  6447. const size_t nb01 = src0->nb[1];
  6448. const size_t nb02 = src0->nb[2];
  6449. const size_t nb03 = src0->nb[3];
  6450. const size_t nb1 = dst->nb[1];
  6451. const size_t nb2 = dst->nb[2];
  6452. const size_t nb3 = dst->nb[3];
  6453. const float eps = 1e-5f; // TODO: make this a parameter
  6454. // TODO: optimize
  6455. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6456. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6457. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6458. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6459. ggml_float sum = 0.0;
  6460. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6461. sum += (ggml_float)x[i00];
  6462. }
  6463. float mean = sum/ne00;
  6464. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6465. ggml_float sum2 = 0.0;
  6466. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6467. float v = x[i00] - mean;
  6468. y[i00] = v;
  6469. sum2 += (ggml_float)(v*v);
  6470. }
  6471. float variance = sum2/ne00;
  6472. const float scale = 1.0f/sqrtf(variance + eps);
  6473. ggml_vec_scale_f32(ne00, y, scale);
  6474. }
  6475. }
  6476. }
  6477. }
  6478. static void ggml_compute_forward_norm(
  6479. const struct ggml_compute_params * params,
  6480. const struct ggml_tensor * src0,
  6481. struct ggml_tensor * dst) {
  6482. switch (src0->type) {
  6483. case GGML_TYPE_F32:
  6484. {
  6485. ggml_compute_forward_norm_f32(params, src0, dst);
  6486. } break;
  6487. default:
  6488. {
  6489. GGML_ASSERT(false);
  6490. } break;
  6491. }
  6492. }
  6493. static void ggml_compute_forward_rms_norm_f32(
  6494. const struct ggml_compute_params * params,
  6495. const struct ggml_tensor * src0,
  6496. struct ggml_tensor * dst) {
  6497. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6498. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6499. return;
  6500. }
  6501. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6502. const int ith = params->ith;
  6503. const int nth = params->nth;
  6504. const int64_t ne00 = src0->ne[0];
  6505. const int64_t ne01 = src0->ne[1];
  6506. const int64_t ne02 = src0->ne[2];
  6507. const int64_t ne03 = src0->ne[3];
  6508. const size_t nb01 = src0->nb[1];
  6509. const size_t nb02 = src0->nb[2];
  6510. const size_t nb03 = src0->nb[3];
  6511. const size_t nb1 = dst->nb[1];
  6512. const size_t nb2 = dst->nb[2];
  6513. const size_t nb3 = dst->nb[3];
  6514. const float eps = 1e-6f; // TODO: make this a parameter
  6515. // TODO: optimize
  6516. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6517. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6518. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6519. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6520. ggml_float sum = 0.0;
  6521. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6522. sum += (ggml_float)(x[i00] * x[i00]);
  6523. }
  6524. float mean = sum/ne00;
  6525. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6526. memcpy(y, x, ne00 * sizeof(float));
  6527. // for (int i00 = 0; i00 < ne00; i00++) {
  6528. // y[i00] = x[i00];
  6529. // }
  6530. const float scale = 1.0f/sqrtf(mean + eps);
  6531. ggml_vec_scale_f32(ne00, y, scale);
  6532. }
  6533. }
  6534. }
  6535. }
  6536. static void ggml_compute_forward_rms_norm(
  6537. const struct ggml_compute_params * params,
  6538. const struct ggml_tensor * src0,
  6539. struct ggml_tensor * dst) {
  6540. switch (src0->type) {
  6541. case GGML_TYPE_F32:
  6542. {
  6543. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  6544. } break;
  6545. default:
  6546. {
  6547. GGML_ASSERT(false);
  6548. } break;
  6549. }
  6550. }
  6551. // ggml_compute_forward_mul_mat
  6552. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6553. // helper function to determine if it is better to use BLAS or not
  6554. // for large matrices, BLAS is faster
  6555. static bool ggml_compute_forward_mul_mat_use_blas(
  6556. const struct ggml_tensor * src0,
  6557. const struct ggml_tensor * src1,
  6558. struct ggml_tensor * dst) {
  6559. //const int64_t ne00 = src0->ne[0];
  6560. //const int64_t ne01 = src0->ne[1];
  6561. const int64_t ne10 = src1->ne[0];
  6562. const int64_t ne0 = dst->ne[0];
  6563. const int64_t ne1 = dst->ne[1];
  6564. // TODO: find the optimal values for these
  6565. if (ggml_is_contiguous(src0) &&
  6566. ggml_is_contiguous(src1) &&
  6567. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  6568. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  6569. return true;
  6570. }
  6571. return false;
  6572. }
  6573. #endif
  6574. static void ggml_compute_forward_mul_mat_f32(
  6575. const struct ggml_compute_params * params,
  6576. const struct ggml_tensor * src0,
  6577. const struct ggml_tensor * src1,
  6578. struct ggml_tensor * dst) {
  6579. int64_t t0 = ggml_perf_time_us();
  6580. UNUSED(t0);
  6581. const int64_t ne00 = src0->ne[0];
  6582. const int64_t ne01 = src0->ne[1];
  6583. const int64_t ne02 = src0->ne[2];
  6584. const int64_t ne03 = src0->ne[3];
  6585. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6586. const int64_t ne10 = src1->ne[0];
  6587. #endif
  6588. const int64_t ne11 = src1->ne[1];
  6589. #ifndef NDEBUG
  6590. const int64_t ne12 = src1->ne[2];
  6591. const int64_t ne13 = src1->ne[3];
  6592. const int64_t ne0 = dst->ne[0];
  6593. const int64_t ne1 = dst->ne[1];
  6594. const int64_t ne2 = dst->ne[2];
  6595. const int64_t ne3 = dst->ne[3];
  6596. const int nb00 = src0->nb[0];
  6597. #endif
  6598. const int nb01 = src0->nb[1];
  6599. const int nb02 = src0->nb[2];
  6600. const int nb03 = src0->nb[3];
  6601. #ifndef NDEBUG
  6602. const int nb10 = src1->nb[0];
  6603. #endif
  6604. const int nb11 = src1->nb[1];
  6605. const int nb12 = src1->nb[2];
  6606. const int nb13 = src1->nb[3];
  6607. const int nb0 = dst->nb[0];
  6608. const int nb1 = dst->nb[1];
  6609. const int nb2 = dst->nb[2];
  6610. const int nb3 = dst->nb[3];
  6611. const int ith = params->ith;
  6612. const int nth = params->nth;
  6613. assert(ne02 == ne12);
  6614. assert(ne03 == ne13);
  6615. assert(ne2 == ne12);
  6616. assert(ne3 == ne13);
  6617. // we don't support permuted src0 or src1
  6618. assert(nb00 == sizeof(float));
  6619. assert(nb10 == sizeof(float));
  6620. // dst cannot be transposed or permuted
  6621. assert(nb0 == sizeof(float));
  6622. assert(nb0 <= nb1);
  6623. assert(nb1 <= nb2);
  6624. assert(nb2 <= nb3);
  6625. assert(ne0 == ne01);
  6626. assert(ne1 == ne11);
  6627. assert(ne2 == ne02);
  6628. assert(ne3 == ne03);
  6629. // nb01 >= nb00 - src0 is not transposed
  6630. // compute by src0 rows
  6631. #if defined(GGML_USE_CUBLAS)
  6632. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  6633. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  6634. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  6635. }
  6636. return;
  6637. }
  6638. #endif
  6639. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6640. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6641. if (params->ith != 0) {
  6642. return;
  6643. }
  6644. if (params->type == GGML_TASK_INIT) {
  6645. return;
  6646. }
  6647. if (params->type == GGML_TASK_FINALIZE) {
  6648. return;
  6649. }
  6650. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6651. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6652. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6653. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6654. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6655. #if defined(GGML_USE_CLBLAST)
  6656. // zT = y * xT
  6657. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6658. ne11, ne01, ne10,
  6659. 1.0f, y, ne10,
  6660. x, ne10,
  6661. 0.0f, d, ne01,
  6662. GGML_TYPE_F32);
  6663. #else
  6664. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6665. ne11, ne01, ne10,
  6666. 1.0f, y, ne10,
  6667. x, ne00,
  6668. 0.0f, d, ne01);
  6669. #endif
  6670. }
  6671. }
  6672. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6673. return;
  6674. }
  6675. #endif
  6676. if (params->type == GGML_TASK_INIT) {
  6677. return;
  6678. }
  6679. if (params->type == GGML_TASK_FINALIZE) {
  6680. return;
  6681. }
  6682. // parallelize by src0 rows using ggml_vec_dot_f32
  6683. // total rows in src0
  6684. const int nr = ne01*ne02*ne03;
  6685. // rows per thread
  6686. const int dr = (nr + nth - 1)/nth;
  6687. // row range for this thread
  6688. const int ir0 = dr*ith;
  6689. const int ir1 = MIN(ir0 + dr, nr);
  6690. for (int ir = ir0; ir < ir1; ++ir) {
  6691. // src0 indices
  6692. const int i03 = ir/(ne02*ne01);
  6693. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6694. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6695. for (int64_t ic = 0; ic < ne11; ++ic) {
  6696. // src1 indices
  6697. const int i13 = i03;
  6698. const int i12 = i02;
  6699. const int i11 = ic;
  6700. // dst indices
  6701. const int i0 = i01;
  6702. const int i1 = i11;
  6703. const int i2 = i02;
  6704. const int i3 = i03;
  6705. ggml_vec_dot_f32(ne00,
  6706. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6707. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  6708. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  6709. }
  6710. }
  6711. //int64_t t1 = ggml_perf_time_us();
  6712. //static int64_t acc = 0;
  6713. //acc += t1 - t0;
  6714. //if (t1 - t0 > 10) {
  6715. // printf("\n");
  6716. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6717. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6718. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6719. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  6720. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6721. //}
  6722. }
  6723. static void ggml_compute_forward_mul_mat_f16_f32(
  6724. const struct ggml_compute_params * params,
  6725. const struct ggml_tensor * src0,
  6726. const struct ggml_tensor * src1,
  6727. struct ggml_tensor * dst) {
  6728. int64_t t0 = ggml_perf_time_us();
  6729. UNUSED(t0);
  6730. const int64_t ne00 = src0->ne[0];
  6731. const int64_t ne01 = src0->ne[1];
  6732. const int64_t ne02 = src0->ne[2];
  6733. const int64_t ne03 = src0->ne[3];
  6734. const int64_t ne10 = src1->ne[0];
  6735. const int64_t ne11 = src1->ne[1];
  6736. const int64_t ne12 = src1->ne[2];
  6737. const int64_t ne13 = src1->ne[3];
  6738. const int64_t ne0 = dst->ne[0];
  6739. const int64_t ne1 = dst->ne[1];
  6740. const int64_t ne2 = dst->ne[2];
  6741. const int64_t ne3 = dst->ne[3];
  6742. //const int64_t ne = ne0*ne1*ne2*ne3;
  6743. const int nb00 = src0->nb[0];
  6744. const int nb01 = src0->nb[1];
  6745. const int nb02 = src0->nb[2];
  6746. const int nb03 = src0->nb[3];
  6747. const int nb10 = src1->nb[0];
  6748. const int nb11 = src1->nb[1];
  6749. const int nb12 = src1->nb[2];
  6750. const int nb13 = src1->nb[3];
  6751. const int nb0 = dst->nb[0];
  6752. const int nb1 = dst->nb[1];
  6753. const int nb2 = dst->nb[2];
  6754. const int nb3 = dst->nb[3];
  6755. const int ith = params->ith;
  6756. const int nth = params->nth;
  6757. GGML_ASSERT(ne02 == ne12);
  6758. GGML_ASSERT(ne03 == ne13);
  6759. GGML_ASSERT(ne2 == ne12);
  6760. GGML_ASSERT(ne3 == ne13);
  6761. // TODO: we don't support permuted src0
  6762. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6763. // dst cannot be transposed or permuted
  6764. GGML_ASSERT(nb0 == sizeof(float));
  6765. GGML_ASSERT(nb0 <= nb1);
  6766. GGML_ASSERT(nb1 <= nb2);
  6767. GGML_ASSERT(nb2 <= nb3);
  6768. GGML_ASSERT(ne0 == ne01);
  6769. GGML_ASSERT(ne1 == ne11);
  6770. GGML_ASSERT(ne2 == ne02);
  6771. GGML_ASSERT(ne3 == ne03);
  6772. // nb01 >= nb00 - src0 is not transposed
  6773. // compute by src0 rows
  6774. #if defined(GGML_USE_CUBLAS)
  6775. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  6776. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  6777. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  6778. }
  6779. return;
  6780. }
  6781. #endif
  6782. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6783. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6784. GGML_ASSERT(nb10 == sizeof(float));
  6785. if (params->ith != 0) {
  6786. return;
  6787. }
  6788. if (params->type == GGML_TASK_INIT) {
  6789. return;
  6790. }
  6791. if (params->type == GGML_TASK_FINALIZE) {
  6792. return;
  6793. }
  6794. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6795. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6796. float * const wdata = params->wdata;
  6797. {
  6798. size_t id = 0;
  6799. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6800. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6801. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6802. }
  6803. }
  6804. assert(id*sizeof(float) <= params->wsize);
  6805. }
  6806. #if defined(GGML_USE_CLBLAST)
  6807. const float * x = wdata;
  6808. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6809. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6810. // zT = y * xT
  6811. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6812. ne11, ne01, ne10,
  6813. 1.0f, y, ne10,
  6814. x, ne10,
  6815. 0.0f, d, ne01,
  6816. GGML_TYPE_F32);
  6817. #else
  6818. const float * x = wdata;
  6819. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6820. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6821. // zT = y * xT
  6822. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6823. ne11, ne01, ne10,
  6824. 1.0f, y, ne10,
  6825. x, ne00,
  6826. 0.0f, d, ne01);
  6827. #endif
  6828. }
  6829. }
  6830. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6831. return;
  6832. }
  6833. #endif
  6834. if (params->type == GGML_TASK_INIT) {
  6835. ggml_fp16_t * const wdata = params->wdata;
  6836. size_t id = 0;
  6837. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6838. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6839. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6840. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  6841. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  6842. }
  6843. }
  6844. }
  6845. }
  6846. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  6847. return;
  6848. }
  6849. if (params->type == GGML_TASK_FINALIZE) {
  6850. return;
  6851. }
  6852. // fp16 -> half the size, so divide by 2
  6853. // TODO: do not support transposed src1
  6854. assert(nb10/2 == sizeof(ggml_fp16_t));
  6855. // parallelize by src0 rows using ggml_vec_dot_f16
  6856. // total rows in src0
  6857. const int nr = ne01*ne02*ne03;
  6858. // rows per thread
  6859. const int dr = (nr + nth - 1)/nth;
  6860. // row range for this thread
  6861. const int ir0 = dr*ith;
  6862. const int ir1 = MIN(ir0 + dr, nr);
  6863. ggml_fp16_t * wdata = params->wdata;
  6864. for (int ir = ir0; ir < ir1; ++ir) {
  6865. // src0 indices
  6866. const int i03 = ir/(ne02*ne01);
  6867. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6868. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6869. const int i13 = i03;
  6870. const int i12 = i02;
  6871. const int i0 = i01;
  6872. const int i2 = i02;
  6873. const int i3 = i03;
  6874. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6875. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  6876. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6877. for (int64_t ic = 0; ic < ne11; ++ic) {
  6878. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  6879. }
  6880. }
  6881. //int64_t t1 = ggml_time_us();
  6882. //static int64_t acc = 0;
  6883. //acc += t1 - t0;
  6884. //if (t1 - t0 > 10) {
  6885. // printf("\n");
  6886. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6887. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6888. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6889. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6890. //}
  6891. }
  6892. static void ggml_compute_forward_mul_mat_q_f32(
  6893. const struct ggml_compute_params * params,
  6894. const struct ggml_tensor * src0,
  6895. const struct ggml_tensor * src1,
  6896. struct ggml_tensor * dst) {
  6897. int64_t t0 = ggml_perf_time_us();
  6898. UNUSED(t0);
  6899. const int64_t ne00 = src0->ne[0];
  6900. const int64_t ne01 = src0->ne[1];
  6901. const int64_t ne02 = src0->ne[2];
  6902. const int64_t ne03 = src0->ne[3];
  6903. const int64_t ne10 = src1->ne[0];
  6904. const int64_t ne11 = src1->ne[1];
  6905. const int64_t ne12 = src1->ne[2];
  6906. const int64_t ne13 = src1->ne[3];
  6907. const int64_t ne0 = dst->ne[0];
  6908. const int64_t ne1 = dst->ne[1];
  6909. const int64_t ne2 = dst->ne[2];
  6910. const int64_t ne3 = dst->ne[3];
  6911. const int nb00 = src0->nb[0];
  6912. const int nb01 = src0->nb[1];
  6913. const int nb02 = src0->nb[2];
  6914. const int nb03 = src0->nb[3];
  6915. const int nb10 = src1->nb[0];
  6916. const int nb11 = src1->nb[1];
  6917. const int nb12 = src1->nb[2];
  6918. const int nb13 = src1->nb[3];
  6919. const int nb0 = dst->nb[0];
  6920. const int nb1 = dst->nb[1];
  6921. const int nb2 = dst->nb[2];
  6922. const int nb3 = dst->nb[3];
  6923. const int ith = params->ith;
  6924. const int nth = params->nth;
  6925. GGML_ASSERT(ne02 == ne12);
  6926. GGML_ASSERT(ne03 == ne13);
  6927. GGML_ASSERT(ne2 == ne12);
  6928. GGML_ASSERT(ne3 == ne13);
  6929. const enum ggml_type type = src0->type;
  6930. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  6931. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  6932. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  6933. // we don't support permuted src0 or src1
  6934. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  6935. GGML_ASSERT(nb10 == sizeof(float));
  6936. // dst cannot be transposed or permuted
  6937. GGML_ASSERT(nb0 == sizeof(float));
  6938. GGML_ASSERT(nb0 <= nb1);
  6939. GGML_ASSERT(nb1 <= nb2);
  6940. GGML_ASSERT(nb2 <= nb3);
  6941. GGML_ASSERT(ne0 == ne01);
  6942. GGML_ASSERT(ne1 == ne11);
  6943. GGML_ASSERT(ne2 == ne02);
  6944. GGML_ASSERT(ne3 == ne03);
  6945. // nb01 >= nb00 - src0 is not transposed
  6946. // compute by src0 rows
  6947. #if defined(GGML_USE_CUBLAS)
  6948. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  6949. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  6950. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  6951. }
  6952. return;
  6953. }
  6954. #endif
  6955. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6956. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6957. if (params->ith != 0) {
  6958. return;
  6959. }
  6960. if (params->type == GGML_TASK_INIT) {
  6961. return;
  6962. }
  6963. if (params->type == GGML_TASK_FINALIZE) {
  6964. return;
  6965. }
  6966. float * const wdata = params->wdata;
  6967. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6968. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6969. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6970. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6971. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6972. #if defined(GGML_USE_CLBLAST)
  6973. const void* x = (char *) src0->data + i03*nb03 + i02*nb02;
  6974. #else
  6975. {
  6976. size_t id = 0;
  6977. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6978. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  6979. id += ne00;
  6980. }
  6981. assert(id*sizeof(float) <= params->wsize);
  6982. }
  6983. const float * x = wdata;
  6984. #endif
  6985. #if defined(GGML_USE_CLBLAST)
  6986. // zT = y * xT
  6987. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6988. ne11, ne01, ne10,
  6989. 1.0f, y, ne10,
  6990. x, ne10,
  6991. 0.0f, d, ne01,
  6992. type);
  6993. #else
  6994. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6995. ne11, ne01, ne10,
  6996. 1.0f, y, ne10,
  6997. x, ne00,
  6998. 0.0f, d, ne01);
  6999. #endif
  7000. }
  7001. }
  7002. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7003. return;
  7004. }
  7005. #endif
  7006. if (params->type == GGML_TASK_INIT) {
  7007. char * wdata = params->wdata;
  7008. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  7009. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7010. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7011. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7012. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  7013. wdata += row_size;
  7014. }
  7015. }
  7016. }
  7017. return;
  7018. }
  7019. if (params->type == GGML_TASK_FINALIZE) {
  7020. return;
  7021. }
  7022. // parallelize by src0 rows using ggml_vec_dot_q
  7023. // total rows in src0
  7024. const int nr = ne01*ne02*ne03;
  7025. // rows per thread
  7026. const int dr = (nr + nth - 1)/nth;
  7027. // row range for this thread
  7028. const int ir0 = dr*ith;
  7029. const int ir1 = MIN(ir0 + dr, nr);
  7030. void * wdata = params->wdata;
  7031. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  7032. for (int ir = ir0; ir < ir1; ++ir) {
  7033. // src0 indices
  7034. const int i03 = ir/(ne02*ne01);
  7035. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7036. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7037. const int i13 = i03;
  7038. const int i12 = i02;
  7039. const int i0 = i01;
  7040. const int i2 = i02;
  7041. const int i3 = i03;
  7042. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7043. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  7044. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  7045. assert(ne00 % 32 == 0);
  7046. for (int64_t ic = 0; ic < ne11; ++ic) {
  7047. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  7048. }
  7049. }
  7050. //int64_t t1 = ggml_time_us();
  7051. //static int64_t acc = 0;
  7052. //acc += t1 - t0;
  7053. //if (t1 - t0 > 10) {
  7054. // printf("\n");
  7055. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7056. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7057. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7058. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7059. //}
  7060. }
  7061. static void ggml_compute_forward_mul_mat(
  7062. const struct ggml_compute_params * params,
  7063. const struct ggml_tensor * src0,
  7064. const struct ggml_tensor * src1,
  7065. struct ggml_tensor * dst) {
  7066. switch (src0->type) {
  7067. case GGML_TYPE_Q4_0:
  7068. case GGML_TYPE_Q4_1:
  7069. case GGML_TYPE_Q4_2:
  7070. case GGML_TYPE_Q5_0:
  7071. case GGML_TYPE_Q5_1:
  7072. case GGML_TYPE_Q8_0:
  7073. case GGML_TYPE_Q8_1:
  7074. {
  7075. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  7076. } break;
  7077. case GGML_TYPE_F16:
  7078. {
  7079. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  7080. } break;
  7081. case GGML_TYPE_F32:
  7082. {
  7083. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  7084. } break;
  7085. default:
  7086. {
  7087. GGML_ASSERT(false);
  7088. } break;
  7089. }
  7090. }
  7091. // ggml_compute_forward_scale
  7092. static void ggml_compute_forward_scale_f32(
  7093. const struct ggml_compute_params * params,
  7094. const struct ggml_tensor * src0,
  7095. const struct ggml_tensor * src1,
  7096. struct ggml_tensor * dst) {
  7097. GGML_ASSERT(ggml_is_contiguous(src0));
  7098. GGML_ASSERT(ggml_is_contiguous(dst));
  7099. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7100. GGML_ASSERT(ggml_is_scalar(src1));
  7101. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7102. return;
  7103. }
  7104. // scale factor
  7105. const float v = *(float *) src1->data;
  7106. const int ith = params->ith;
  7107. const int nth = params->nth;
  7108. const int nc = src0->ne[0];
  7109. const int nr = ggml_nrows(src0);
  7110. // rows per thread
  7111. const int dr = (nr + nth - 1)/nth;
  7112. // row range for this thread
  7113. const int ir0 = dr*ith;
  7114. const int ir1 = MIN(ir0 + dr, nr);
  7115. for (int i1 = ir0; i1 < ir1; i1++) {
  7116. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  7117. }
  7118. }
  7119. static void ggml_compute_forward_scale(
  7120. const struct ggml_compute_params * params,
  7121. const struct ggml_tensor * src0,
  7122. const struct ggml_tensor * src1,
  7123. struct ggml_tensor * dst) {
  7124. switch (src0->type) {
  7125. case GGML_TYPE_F32:
  7126. {
  7127. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  7128. } break;
  7129. default:
  7130. {
  7131. GGML_ASSERT(false);
  7132. } break;
  7133. }
  7134. }
  7135. // ggml_compute_forward_cpy
  7136. static void ggml_compute_forward_cpy(
  7137. const struct ggml_compute_params * params,
  7138. const struct ggml_tensor * src0,
  7139. struct ggml_tensor * dst) {
  7140. ggml_compute_forward_dup(params, src0, dst);
  7141. }
  7142. // ggml_compute_forward_cont
  7143. static void ggml_compute_forward_cont(
  7144. const struct ggml_compute_params * params,
  7145. const struct ggml_tensor * src0,
  7146. struct ggml_tensor * dst) {
  7147. ggml_compute_forward_dup(params, src0, dst);
  7148. }
  7149. // ggml_compute_forward_reshape
  7150. static void ggml_compute_forward_reshape(
  7151. const struct ggml_compute_params * params,
  7152. const struct ggml_tensor * src0,
  7153. struct ggml_tensor * dst) {
  7154. // NOP
  7155. UNUSED(params);
  7156. UNUSED(src0);
  7157. UNUSED(dst);
  7158. }
  7159. // ggml_compute_forward_view
  7160. static void ggml_compute_forward_view(
  7161. const struct ggml_compute_params * params,
  7162. const struct ggml_tensor * src0) {
  7163. // NOP
  7164. UNUSED(params);
  7165. UNUSED(src0);
  7166. }
  7167. // ggml_compute_forward_permute
  7168. static void ggml_compute_forward_permute(
  7169. const struct ggml_compute_params * params,
  7170. const struct ggml_tensor * src0) {
  7171. // NOP
  7172. UNUSED(params);
  7173. UNUSED(src0);
  7174. }
  7175. // ggml_compute_forward_transpose
  7176. static void ggml_compute_forward_transpose(
  7177. const struct ggml_compute_params * params,
  7178. const struct ggml_tensor * src0) {
  7179. // NOP
  7180. UNUSED(params);
  7181. UNUSED(src0);
  7182. }
  7183. // ggml_compute_forward_get_rows
  7184. static void ggml_compute_forward_get_rows_q(
  7185. const struct ggml_compute_params * params,
  7186. const struct ggml_tensor * src0,
  7187. const struct ggml_tensor * src1,
  7188. struct ggml_tensor * dst) {
  7189. assert(params->ith == 0);
  7190. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7191. return;
  7192. }
  7193. const int nc = src0->ne[0];
  7194. const int nr = ggml_nelements(src1);
  7195. const enum ggml_type type = src0->type;
  7196. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  7197. assert( dst->ne[0] == nc);
  7198. assert( dst->ne[1] == nr);
  7199. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  7200. for (int i = 0; i < nr; ++i) {
  7201. const int r = ((int32_t *) src1->data)[i];
  7202. dequantize_row_q(
  7203. (const void *) ((char *) src0->data + r*src0->nb[1]),
  7204. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  7205. }
  7206. }
  7207. static void ggml_compute_forward_get_rows_f16(
  7208. const struct ggml_compute_params * params,
  7209. const struct ggml_tensor * src0,
  7210. const struct ggml_tensor * src1,
  7211. struct ggml_tensor * dst) {
  7212. assert(params->ith == 0);
  7213. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7214. return;
  7215. }
  7216. const int nc = src0->ne[0];
  7217. const int nr = ggml_nelements(src1);
  7218. assert( dst->ne[0] == nc);
  7219. assert( dst->ne[1] == nr);
  7220. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7221. for (int i = 0; i < nr; ++i) {
  7222. const int r = ((int32_t *) src1->data)[i];
  7223. for (int j = 0; j < nc; ++j) {
  7224. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  7225. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  7226. }
  7227. }
  7228. }
  7229. static void ggml_compute_forward_get_rows_f32(
  7230. const struct ggml_compute_params * params,
  7231. const struct ggml_tensor * src0,
  7232. const struct ggml_tensor * src1,
  7233. struct ggml_tensor * dst) {
  7234. assert(params->ith == 0);
  7235. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7236. return;
  7237. }
  7238. const int nc = src0->ne[0];
  7239. const int nr = ggml_nelements(src1);
  7240. assert( dst->ne[0] == nc);
  7241. assert( dst->ne[1] == nr);
  7242. assert(src0->nb[0] == sizeof(float));
  7243. for (int i = 0; i < nr; ++i) {
  7244. const int r = ((int32_t *) src1->data)[i];
  7245. ggml_vec_cpy_f32(nc,
  7246. (float *) ((char *) dst->data + i*dst->nb[1]),
  7247. (float *) ((char *) src0->data + r*src0->nb[1]));
  7248. }
  7249. }
  7250. static void ggml_compute_forward_get_rows(
  7251. const struct ggml_compute_params * params,
  7252. const struct ggml_tensor * src0,
  7253. const struct ggml_tensor * src1,
  7254. struct ggml_tensor * dst) {
  7255. switch (src0->type) {
  7256. case GGML_TYPE_Q4_0:
  7257. case GGML_TYPE_Q4_1:
  7258. case GGML_TYPE_Q4_2:
  7259. case GGML_TYPE_Q5_0:
  7260. case GGML_TYPE_Q5_1:
  7261. case GGML_TYPE_Q8_0:
  7262. case GGML_TYPE_Q8_1:
  7263. {
  7264. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  7265. } break;
  7266. case GGML_TYPE_F16:
  7267. {
  7268. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  7269. } break;
  7270. case GGML_TYPE_F32:
  7271. {
  7272. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  7273. } break;
  7274. default:
  7275. {
  7276. GGML_ASSERT(false);
  7277. } break;
  7278. }
  7279. //static bool first = true;
  7280. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  7281. //if (first) {
  7282. // first = false;
  7283. //} else {
  7284. // for (int k = 0; k < dst->ne[1]; ++k) {
  7285. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  7286. // for (int i = 0; i < 16; ++i) {
  7287. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  7288. // }
  7289. // printf("\n");
  7290. // }
  7291. // printf("\n");
  7292. // }
  7293. // printf("\n");
  7294. // exit(0);
  7295. //}
  7296. }
  7297. // ggml_compute_forward_diag_mask_inf
  7298. static void ggml_compute_forward_diag_mask_inf_f32(
  7299. const struct ggml_compute_params * params,
  7300. const struct ggml_tensor * src0,
  7301. const struct ggml_tensor * src1,
  7302. struct ggml_tensor * dst) {
  7303. assert(params->ith == 0);
  7304. assert(src1->type == GGML_TYPE_I32);
  7305. assert(ggml_nelements(src1) == 1);
  7306. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7307. return;
  7308. }
  7309. const int n_past = ((int32_t *) src1->data)[0];
  7310. // TODO: handle transposed/permuted matrices
  7311. const int n = ggml_nrows(src0);
  7312. const int nc = src0->ne[0];
  7313. const int nr = src0->ne[1];
  7314. const int nz = n/nr;
  7315. assert( dst->nb[0] == sizeof(float));
  7316. assert(src0->nb[0] == sizeof(float));
  7317. for (int k = 0; k < nz; k++) {
  7318. for (int j = 0; j < nr; j++) {
  7319. for (int i = n_past; i < nc; i++) {
  7320. if (i > n_past + j) {
  7321. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  7322. }
  7323. }
  7324. }
  7325. }
  7326. }
  7327. static void ggml_compute_forward_diag_mask_inf(
  7328. const struct ggml_compute_params * params,
  7329. const struct ggml_tensor * src0,
  7330. const struct ggml_tensor * src1,
  7331. struct ggml_tensor * dst) {
  7332. switch (src0->type) {
  7333. case GGML_TYPE_F32:
  7334. {
  7335. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  7336. } break;
  7337. default:
  7338. {
  7339. GGML_ASSERT(false);
  7340. } break;
  7341. }
  7342. }
  7343. // ggml_compute_forward_soft_max
  7344. static void ggml_compute_forward_soft_max_f32(
  7345. const struct ggml_compute_params * params,
  7346. const struct ggml_tensor * src0,
  7347. struct ggml_tensor * dst) {
  7348. GGML_ASSERT(ggml_is_contiguous(src0));
  7349. GGML_ASSERT(ggml_is_contiguous(dst));
  7350. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7351. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7352. return;
  7353. }
  7354. // TODO: handle transposed/permuted matrices
  7355. const int ith = params->ith;
  7356. const int nth = params->nth;
  7357. const int nc = src0->ne[0];
  7358. const int nr = ggml_nrows(src0);
  7359. // rows per thread
  7360. const int dr = (nr + nth - 1)/nth;
  7361. // row range for this thread
  7362. const int ir0 = dr*ith;
  7363. const int ir1 = MIN(ir0 + dr, nr);
  7364. for (int i1 = ir0; i1 < ir1; i1++) {
  7365. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  7366. #ifndef NDEBUG
  7367. for (int i = 0; i < nc; ++i) {
  7368. //printf("p[%d] = %f\n", i, p[i]);
  7369. assert(!isnan(p[i]));
  7370. }
  7371. #endif
  7372. float max = -INFINITY;
  7373. ggml_vec_max_f32(nc, &max, p);
  7374. ggml_float sum = 0.0;
  7375. uint16_t scvt;
  7376. for (int i = 0; i < nc; i++) {
  7377. //printf("p[%3d] = %8.4f\n", i, p[i]);
  7378. if (p[i] == -INFINITY) {
  7379. p[i] = 0.0f;
  7380. } else {
  7381. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  7382. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  7383. memcpy(&scvt, &s, sizeof(scvt));
  7384. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  7385. sum += (ggml_float)val;
  7386. p[i] = val;
  7387. }
  7388. }
  7389. assert(sum > 0.0);
  7390. sum = 1.0/sum;
  7391. ggml_vec_scale_f32(nc, p, sum);
  7392. #ifndef NDEBUG
  7393. for (int i = 0; i < nc; ++i) {
  7394. assert(!isnan(p[i]));
  7395. assert(!isinf(p[i]));
  7396. }
  7397. #endif
  7398. }
  7399. }
  7400. static void ggml_compute_forward_soft_max(
  7401. const struct ggml_compute_params * params,
  7402. const struct ggml_tensor * src0,
  7403. struct ggml_tensor * dst) {
  7404. switch (src0->type) {
  7405. case GGML_TYPE_F32:
  7406. {
  7407. ggml_compute_forward_soft_max_f32(params, src0, dst);
  7408. } break;
  7409. default:
  7410. {
  7411. GGML_ASSERT(false);
  7412. } break;
  7413. }
  7414. }
  7415. // ggml_compute_forward_alibi
  7416. static void ggml_compute_forward_alibi_f32(
  7417. const struct ggml_compute_params * params,
  7418. const struct ggml_tensor * src0,
  7419. const struct ggml_tensor * src1,
  7420. struct ggml_tensor * dst) {
  7421. assert(params->ith == 0);
  7422. assert(src1->type == GGML_TYPE_I32);
  7423. assert(ggml_nelements(src1) == 2);
  7424. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7425. return;
  7426. }
  7427. const int n_past = ((int32_t *) src1->data)[0];
  7428. const int n_head = ((int32_t *) src1->data)[1];
  7429. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  7430. const int ne1 = src0->ne[1]; // seq_len_without_past
  7431. //const int ne2 = src0->ne[2]; // n_head -> this is k
  7432. //const int ne3 = src0->ne[3]; // 1 -> bsz
  7433. const int n = ggml_nrows(src0);
  7434. const int ne2_ne3 = n/ne1; // ne2*ne3
  7435. const int nb0 = src0->nb[0];
  7436. const int nb1 = src0->nb[1];
  7437. const int nb2 = src0->nb[2];
  7438. //const int nb3 = src0->nb[3];
  7439. assert(nb0 == sizeof(float));
  7440. assert(ne1 + n_past == ne0); (void) n_past;
  7441. // add alibi to src0 (KQ_scaled)
  7442. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  7443. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  7444. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  7445. for (int i = 0; i < ne0; i++) {
  7446. for (int j = 0; j < ne1; j++) {
  7447. for (int k = 0; k < ne2_ne3; k++) {
  7448. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  7449. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  7450. // TODO: k*nb2 or k*nb3
  7451. float m_k;
  7452. if (k < n_heads_log2_floor) {
  7453. m_k = powf(m0, k + 1);
  7454. } else {
  7455. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  7456. }
  7457. pdst[0] = (j+1) * m_k + src[0];
  7458. }
  7459. }
  7460. }
  7461. }
  7462. static void ggml_compute_forward_alibi_f16(
  7463. const struct ggml_compute_params * params,
  7464. const struct ggml_tensor * src0,
  7465. const struct ggml_tensor * src1,
  7466. struct ggml_tensor * dst) {
  7467. assert(params->ith == 0);
  7468. assert(src1->type == GGML_TYPE_I32);
  7469. assert(ggml_nelements(src1) == 2);
  7470. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7471. return;
  7472. }
  7473. const int n_past = ((int32_t *) src1->data)[0];
  7474. const int n_head = ((int32_t *) src1->data)[1];
  7475. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  7476. const int ne1 = src0->ne[1]; // seq_len_without_past
  7477. //const int ne2 = src0->ne[2]; // n_head -> this is k
  7478. //const int ne3 = src0->ne[3]; // 1 -> bsz
  7479. const int n = ggml_nrows(src0);
  7480. const int ne2_ne3 = n/ne1; // ne2*ne3
  7481. const int nb0 = src0->nb[0];
  7482. const int nb1 = src0->nb[1];
  7483. const int nb2 = src0->nb[2];
  7484. //const int nb3 = src0->nb[3];
  7485. assert(nb0 == sizeof(ggml_fp16_t));
  7486. assert(ne1 + n_past == ne0); (void) n_past;
  7487. // add alibi to src0 (KQ_scaled)
  7488. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  7489. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  7490. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  7491. for (int i = 0; i < ne0; i++) {
  7492. for (int j = 0; j < ne1; j++) {
  7493. for (int k = 0; k < ne2_ne3; k++) {
  7494. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  7495. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  7496. // TODO: k*nb2 or k*nb3
  7497. float m_k;
  7498. if (k < n_heads_log2_floor) {
  7499. m_k = powf(m0, k + 1);
  7500. } else {
  7501. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  7502. }
  7503. // we return F32
  7504. pdst[0] = (j+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  7505. }
  7506. }
  7507. }
  7508. }
  7509. static void ggml_compute_forward_alibi(
  7510. const struct ggml_compute_params * params,
  7511. const struct ggml_tensor * src0,
  7512. const struct ggml_tensor * src1,
  7513. struct ggml_tensor * dst) {
  7514. switch (src0->type) {
  7515. case GGML_TYPE_F16:
  7516. {
  7517. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  7518. } break;
  7519. case GGML_TYPE_F32:
  7520. {
  7521. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  7522. } break;
  7523. case GGML_TYPE_Q4_0:
  7524. case GGML_TYPE_Q4_1:
  7525. case GGML_TYPE_Q4_2:
  7526. case GGML_TYPE_Q5_0:
  7527. case GGML_TYPE_Q5_1:
  7528. case GGML_TYPE_Q8_0:
  7529. case GGML_TYPE_Q8_1:
  7530. case GGML_TYPE_I8:
  7531. case GGML_TYPE_I16:
  7532. case GGML_TYPE_I32:
  7533. case GGML_TYPE_COUNT:
  7534. {
  7535. GGML_ASSERT(false);
  7536. } break;
  7537. }
  7538. }
  7539. // ggml_compute_forward_rope
  7540. static void ggml_compute_forward_rope_f32(
  7541. const struct ggml_compute_params * params,
  7542. const struct ggml_tensor * src0,
  7543. const struct ggml_tensor * src1,
  7544. struct ggml_tensor * dst) {
  7545. assert(src1->type == GGML_TYPE_I32);
  7546. assert(ggml_nelements(src1) == 3);
  7547. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7548. return;
  7549. }
  7550. const int n_past = ((int32_t *) src1->data)[0];
  7551. const int n_dims = ((int32_t *) src1->data)[1];
  7552. const int mode = ((int32_t *) src1->data)[2];
  7553. //const int64_t ne0 = src0->ne[0];
  7554. const int64_t ne1 = src0->ne[1];
  7555. const int64_t ne2 = src0->ne[2];
  7556. const int64_t ne3 = src0->ne[3];
  7557. const int nb0 = src0->nb[0];
  7558. const int nb1 = src0->nb[1];
  7559. const int nb2 = src0->nb[2];
  7560. const int nb3 = src0->nb[3];
  7561. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7562. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7563. assert(nb0 == sizeof(float));
  7564. const int ith = params->ith;
  7565. const int nth = params->nth;
  7566. const int nr = ggml_nrows(src0);
  7567. // rows per thread
  7568. const int dr = (nr + nth - 1)/nth;
  7569. // row range for this thread
  7570. const int ir0 = dr*ith;
  7571. const int ir1 = MIN(ir0 + dr, nr);
  7572. // row index used to determine which thread to use
  7573. int ir = 0;
  7574. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7575. const bool is_neox = mode & 2;
  7576. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7577. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7578. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7579. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7580. if (ir++ < ir0) continue;
  7581. if (ir > ir1) break;
  7582. float theta = (float)p;
  7583. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7584. const float cos_theta = cosf(theta);
  7585. const float sin_theta = sinf(theta);
  7586. theta *= theta_scale;
  7587. if (!is_neox) {
  7588. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7589. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7590. const float x0 = src[0];
  7591. const float x1 = src[1];
  7592. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7593. dst_data[1] = x0*sin_theta + x1*cos_theta;
  7594. } else {
  7595. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7596. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7597. const float x0 = src[0];
  7598. const float x1 = src[n_dims/2];
  7599. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7600. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  7601. }
  7602. }
  7603. }
  7604. }
  7605. }
  7606. }
  7607. static void ggml_compute_forward_rope_f16(
  7608. const struct ggml_compute_params * params,
  7609. const struct ggml_tensor * src0,
  7610. const struct ggml_tensor * src1,
  7611. struct ggml_tensor * dst) {
  7612. assert(src1->type == GGML_TYPE_I32);
  7613. assert(ggml_nelements(src1) == 3);
  7614. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7615. return;
  7616. }
  7617. const int n_past = ((int32_t *) src1->data)[0];
  7618. const int n_dims = ((int32_t *) src1->data)[1];
  7619. const int mode = ((int32_t *) src1->data)[2];
  7620. //const int64_t ne0 = src0->ne[0];
  7621. const int64_t ne1 = src0->ne[1];
  7622. const int64_t ne2 = src0->ne[2];
  7623. const int64_t ne3 = src0->ne[3];
  7624. const int nb0 = src0->nb[0];
  7625. const int nb1 = src0->nb[1];
  7626. const int nb2 = src0->nb[2];
  7627. const int nb3 = src0->nb[3];
  7628. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7629. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7630. assert(nb0 == sizeof(ggml_fp16_t));
  7631. const int ith = params->ith;
  7632. const int nth = params->nth;
  7633. const int nr = ggml_nrows(src0);
  7634. // rows per thread
  7635. const int dr = (nr + nth - 1)/nth;
  7636. // row range for this thread
  7637. const int ir0 = dr*ith;
  7638. const int ir1 = MIN(ir0 + dr, nr);
  7639. // row index used to determine which thread to use
  7640. int ir = 0;
  7641. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7642. const bool is_neox = mode & 2;
  7643. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7644. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7645. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7646. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7647. if (ir++ < ir0) continue;
  7648. if (ir > ir1) break;
  7649. float theta = (float)p;
  7650. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7651. const float cos_theta = cosf(theta);
  7652. const float sin_theta = sinf(theta);
  7653. theta *= theta_scale;
  7654. if (!is_neox) {
  7655. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7656. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7657. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7658. const float x1 = GGML_FP16_TO_FP32(src[1]);
  7659. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7660. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7661. } else {
  7662. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7663. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7664. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7665. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  7666. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7667. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7668. }
  7669. }
  7670. }
  7671. }
  7672. }
  7673. }
  7674. static void ggml_compute_forward_rope(
  7675. const struct ggml_compute_params * params,
  7676. const struct ggml_tensor * src0,
  7677. const struct ggml_tensor * src1,
  7678. struct ggml_tensor * dst) {
  7679. switch (src0->type) {
  7680. case GGML_TYPE_F16:
  7681. {
  7682. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  7683. } break;
  7684. case GGML_TYPE_F32:
  7685. {
  7686. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  7687. } break;
  7688. default:
  7689. {
  7690. GGML_ASSERT(false);
  7691. } break;
  7692. }
  7693. }
  7694. // ggml_compute_forward_conv_1d_1s
  7695. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  7696. const struct ggml_compute_params * params,
  7697. const struct ggml_tensor * src0,
  7698. const struct ggml_tensor * src1,
  7699. struct ggml_tensor * dst) {
  7700. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7701. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7702. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7703. int64_t t0 = ggml_perf_time_us();
  7704. UNUSED(t0);
  7705. const int64_t ne00 = src0->ne[0];
  7706. const int64_t ne01 = src0->ne[1];
  7707. const int64_t ne02 = src0->ne[2];
  7708. //const int64_t ne03 = src0->ne[3];
  7709. const int64_t ne10 = src1->ne[0];
  7710. const int64_t ne11 = src1->ne[1];
  7711. //const int64_t ne12 = src1->ne[2];
  7712. //const int64_t ne13 = src1->ne[3];
  7713. //const int64_t ne0 = dst->ne[0];
  7714. //const int64_t ne1 = dst->ne[1];
  7715. //const int64_t ne2 = dst->ne[2];
  7716. //const int64_t ne3 = dst->ne[3];
  7717. //const int64_t ne = ne0*ne1*ne2*ne3;
  7718. const int nb00 = src0->nb[0];
  7719. const int nb01 = src0->nb[1];
  7720. const int nb02 = src0->nb[2];
  7721. //const int nb03 = src0->nb[3];
  7722. const int nb10 = src1->nb[0];
  7723. const int nb11 = src1->nb[1];
  7724. //const int nb12 = src1->nb[2];
  7725. //const int nb13 = src1->nb[3];
  7726. //const int nb0 = dst->nb[0];
  7727. const int nb1 = dst->nb[1];
  7728. //const int nb2 = dst->nb[2];
  7729. //const int nb3 = dst->nb[3];
  7730. const int ith = params->ith;
  7731. const int nth = params->nth;
  7732. const int nk = ne00;
  7733. const int nh = nk/2;
  7734. const int ew0 = ggml_up32(ne01);
  7735. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7736. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7737. GGML_ASSERT(nb10 == sizeof(float));
  7738. if (params->type == GGML_TASK_INIT) {
  7739. // TODO: fix this memset (wsize is overestimated)
  7740. memset(params->wdata, 0, params->wsize);
  7741. // prepare kernel data (src0)
  7742. {
  7743. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7744. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7745. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7746. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7747. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7748. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7749. dst_data[i00*ew0 + i01] = src[i00];
  7750. }
  7751. }
  7752. }
  7753. }
  7754. // prepare source data (src1)
  7755. {
  7756. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7757. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7758. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7759. ggml_fp16_t * dst_data = wdata;
  7760. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7761. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7762. }
  7763. }
  7764. }
  7765. return;
  7766. }
  7767. if (params->type == GGML_TASK_FINALIZE) {
  7768. return;
  7769. }
  7770. // total rows in dst
  7771. const int nr = ne02;
  7772. // rows per thread
  7773. const int dr = (nr + nth - 1)/nth;
  7774. // row range for this thread
  7775. const int ir0 = dr*ith;
  7776. const int ir1 = MIN(ir0 + dr, nr);
  7777. for (int i1 = ir0; i1 < ir1; i1++) {
  7778. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7779. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7780. dst_data[i0] = 0;
  7781. for (int k = -nh; k <= nh; k++) {
  7782. float v = 0.0f;
  7783. ggml_vec_dot_f16(ew0, &v,
  7784. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7785. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7786. dst_data[i0] += v;
  7787. }
  7788. }
  7789. }
  7790. }
  7791. static void ggml_compute_forward_conv_1d_1s_f32(
  7792. const struct ggml_compute_params * params,
  7793. const struct ggml_tensor * src0,
  7794. const struct ggml_tensor * src1,
  7795. struct ggml_tensor * dst) {
  7796. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7797. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7798. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7799. int64_t t0 = ggml_perf_time_us();
  7800. UNUSED(t0);
  7801. const int64_t ne00 = src0->ne[0];
  7802. const int64_t ne01 = src0->ne[1];
  7803. const int64_t ne02 = src0->ne[2];
  7804. //const int64_t ne03 = src0->ne[3];
  7805. const int64_t ne10 = src1->ne[0];
  7806. const int64_t ne11 = src1->ne[1];
  7807. //const int64_t ne12 = src1->ne[2];
  7808. //const int64_t ne13 = src1->ne[3];
  7809. //const int64_t ne0 = dst->ne[0];
  7810. //const int64_t ne1 = dst->ne[1];
  7811. //const int64_t ne2 = dst->ne[2];
  7812. //const int64_t ne3 = dst->ne[3];
  7813. //const int64_t ne = ne0*ne1*ne2*ne3;
  7814. const int nb00 = src0->nb[0];
  7815. const int nb01 = src0->nb[1];
  7816. const int nb02 = src0->nb[2];
  7817. //const int nb03 = src0->nb[3];
  7818. const int nb10 = src1->nb[0];
  7819. const int nb11 = src1->nb[1];
  7820. //const int nb12 = src1->nb[2];
  7821. //const int nb13 = src1->nb[3];
  7822. //const int nb0 = dst->nb[0];
  7823. const int nb1 = dst->nb[1];
  7824. //const int nb2 = dst->nb[2];
  7825. //const int nb3 = dst->nb[3];
  7826. const int ith = params->ith;
  7827. const int nth = params->nth;
  7828. const int nk = ne00;
  7829. const int nh = nk/2;
  7830. const int ew0 = ggml_up32(ne01);
  7831. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7832. GGML_ASSERT(nb00 == sizeof(float));
  7833. GGML_ASSERT(nb10 == sizeof(float));
  7834. if (params->type == GGML_TASK_INIT) {
  7835. // TODO: fix this memset (wsize is overestimated)
  7836. memset(params->wdata, 0, params->wsize);
  7837. // prepare kernel data (src0)
  7838. {
  7839. float * const wdata = (float *) params->wdata + 0;
  7840. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7841. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7842. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7843. float * dst_data = wdata + i02*ew0*ne00;
  7844. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7845. dst_data[i00*ew0 + i01] = src[i00];
  7846. }
  7847. }
  7848. }
  7849. }
  7850. // prepare source data (src1)
  7851. {
  7852. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7853. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7854. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7855. float * dst_data = wdata;
  7856. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7857. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7858. }
  7859. }
  7860. }
  7861. return;
  7862. }
  7863. if (params->type == GGML_TASK_FINALIZE) {
  7864. return;
  7865. }
  7866. // total rows in dst
  7867. const int nr = ne02;
  7868. // rows per thread
  7869. const int dr = (nr + nth - 1)/nth;
  7870. // row range for this thread
  7871. const int ir0 = dr*ith;
  7872. const int ir1 = MIN(ir0 + dr, nr);
  7873. for (int i1 = ir0; i1 < ir1; i1++) {
  7874. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7875. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7876. dst_data[i0] = 0;
  7877. for (int k = -nh; k <= nh; k++) {
  7878. float v = 0.0f;
  7879. ggml_vec_dot_f32(ew0, &v,
  7880. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7881. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7882. dst_data[i0] += v;
  7883. }
  7884. }
  7885. }
  7886. }
  7887. static void ggml_compute_forward_conv_1d_1s(
  7888. const struct ggml_compute_params * params,
  7889. const struct ggml_tensor * src0,
  7890. const struct ggml_tensor * src1,
  7891. struct ggml_tensor * dst) {
  7892. switch (src0->type) {
  7893. case GGML_TYPE_F16:
  7894. {
  7895. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  7896. } break;
  7897. case GGML_TYPE_F32:
  7898. {
  7899. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  7900. } break;
  7901. default:
  7902. {
  7903. GGML_ASSERT(false);
  7904. } break;
  7905. }
  7906. }
  7907. // ggml_compute_forward_conv_1d_2s
  7908. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  7909. const struct ggml_compute_params * params,
  7910. const struct ggml_tensor * src0,
  7911. const struct ggml_tensor * src1,
  7912. struct ggml_tensor * dst) {
  7913. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7914. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7915. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7916. int64_t t0 = ggml_perf_time_us();
  7917. UNUSED(t0);
  7918. const int64_t ne00 = src0->ne[0];
  7919. const int64_t ne01 = src0->ne[1];
  7920. const int64_t ne02 = src0->ne[2];
  7921. //const int64_t ne03 = src0->ne[3];
  7922. const int64_t ne10 = src1->ne[0];
  7923. const int64_t ne11 = src1->ne[1];
  7924. //const int64_t ne12 = src1->ne[2];
  7925. //const int64_t ne13 = src1->ne[3];
  7926. //const int64_t ne0 = dst->ne[0];
  7927. //const int64_t ne1 = dst->ne[1];
  7928. //const int64_t ne2 = dst->ne[2];
  7929. //const int64_t ne3 = dst->ne[3];
  7930. //const int64_t ne = ne0*ne1*ne2*ne3;
  7931. const int nb00 = src0->nb[0];
  7932. const int nb01 = src0->nb[1];
  7933. const int nb02 = src0->nb[2];
  7934. //const int nb03 = src0->nb[3];
  7935. const int nb10 = src1->nb[0];
  7936. const int nb11 = src1->nb[1];
  7937. //const int nb12 = src1->nb[2];
  7938. //const int nb13 = src1->nb[3];
  7939. //const int nb0 = dst->nb[0];
  7940. const int nb1 = dst->nb[1];
  7941. //const int nb2 = dst->nb[2];
  7942. //const int nb3 = dst->nb[3];
  7943. const int ith = params->ith;
  7944. const int nth = params->nth;
  7945. const int nk = ne00;
  7946. const int nh = nk/2;
  7947. const int ew0 = ggml_up32(ne01);
  7948. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7949. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7950. GGML_ASSERT(nb10 == sizeof(float));
  7951. if (params->type == GGML_TASK_INIT) {
  7952. // TODO: fix this memset (wsize is overestimated)
  7953. memset(params->wdata, 0, params->wsize);
  7954. // prepare kernel data (src0)
  7955. {
  7956. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7957. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7958. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7959. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7960. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7961. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7962. dst_data[i00*ew0 + i01] = src[i00];
  7963. }
  7964. }
  7965. }
  7966. }
  7967. // prepare source data (src1)
  7968. {
  7969. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7970. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7971. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7972. ggml_fp16_t * dst_data = wdata;
  7973. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7974. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7975. }
  7976. }
  7977. }
  7978. return;
  7979. }
  7980. if (params->type == GGML_TASK_FINALIZE) {
  7981. return;
  7982. }
  7983. // total rows in dst
  7984. const int nr = ne02;
  7985. // rows per thread
  7986. const int dr = (nr + nth - 1)/nth;
  7987. // row range for this thread
  7988. const int ir0 = dr*ith;
  7989. const int ir1 = MIN(ir0 + dr, nr);
  7990. for (int i1 = ir0; i1 < ir1; i1++) {
  7991. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7992. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7993. dst_data[i0/2] = 0;
  7994. for (int k = -nh; k <= nh; k++) {
  7995. float v = 0.0f;
  7996. ggml_vec_dot_f16(ew0, &v,
  7997. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7998. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7999. dst_data[i0/2] += v;
  8000. }
  8001. }
  8002. }
  8003. }
  8004. static void ggml_compute_forward_conv_1d_2s_f32(
  8005. const struct ggml_compute_params * params,
  8006. const struct ggml_tensor * src0,
  8007. const struct ggml_tensor * src1,
  8008. struct ggml_tensor * dst) {
  8009. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  8010. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8011. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  8012. int64_t t0 = ggml_perf_time_us();
  8013. UNUSED(t0);
  8014. const int64_t ne00 = src0->ne[0];
  8015. const int64_t ne01 = src0->ne[1];
  8016. const int64_t ne02 = src0->ne[2];
  8017. //const int64_t ne03 = src0->ne[3];
  8018. const int64_t ne10 = src1->ne[0];
  8019. const int64_t ne11 = src1->ne[1];
  8020. //const int64_t ne12 = src1->ne[2];
  8021. //const int64_t ne13 = src1->ne[3];
  8022. //const int64_t ne0 = dst->ne[0];
  8023. //const int64_t ne1 = dst->ne[1];
  8024. //const int64_t ne2 = dst->ne[2];
  8025. //const int64_t ne3 = dst->ne[3];
  8026. //const int64_t ne = ne0*ne1*ne2*ne3;
  8027. const int nb00 = src0->nb[0];
  8028. const int nb01 = src0->nb[1];
  8029. const int nb02 = src0->nb[2];
  8030. //const int nb03 = src0->nb[3];
  8031. const int nb10 = src1->nb[0];
  8032. const int nb11 = src1->nb[1];
  8033. //const int nb12 = src1->nb[2];
  8034. //const int nb13 = src1->nb[3];
  8035. //const int nb0 = dst->nb[0];
  8036. const int nb1 = dst->nb[1];
  8037. //const int nb2 = dst->nb[2];
  8038. //const int nb3 = dst->nb[3];
  8039. const int ith = params->ith;
  8040. const int nth = params->nth;
  8041. const int nk = ne00;
  8042. const int nh = nk/2;
  8043. const int ew0 = ggml_up32(ne01);
  8044. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  8045. GGML_ASSERT(nb00 == sizeof(float));
  8046. GGML_ASSERT(nb10 == sizeof(float));
  8047. if (params->type == GGML_TASK_INIT) {
  8048. // TODO: fix this memset (wsize is overestimated)
  8049. memset(params->wdata, 0, params->wsize);
  8050. // prepare kernel data (src0)
  8051. {
  8052. float * const wdata = (float *) params->wdata + 0;
  8053. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8054. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8055. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  8056. float * dst_data = wdata + i02*ew0*ne00;
  8057. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8058. dst_data[i00*ew0 + i01] = src[i00];
  8059. }
  8060. }
  8061. }
  8062. }
  8063. // prepare source data (src1)
  8064. {
  8065. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  8066. for (int64_t i11 = 0; i11 < ne11; i11++) {
  8067. const float * const src = (float *)((char *) src1->data + i11*nb11);
  8068. float * dst_data = wdata;
  8069. for (int64_t i10 = 0; i10 < ne10; i10++) {
  8070. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  8071. }
  8072. }
  8073. }
  8074. return;
  8075. }
  8076. if (params->type == GGML_TASK_FINALIZE) {
  8077. return;
  8078. }
  8079. // total rows in dst
  8080. const int nr = ne02;
  8081. // rows per thread
  8082. const int dr = (nr + nth - 1)/nth;
  8083. // row range for this thread
  8084. const int ir0 = dr*ith;
  8085. const int ir1 = MIN(ir0 + dr, nr);
  8086. for (int i1 = ir0; i1 < ir1; i1++) {
  8087. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  8088. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  8089. dst_data[i0/2] = 0;
  8090. for (int k = -nh; k <= nh; k++) {
  8091. float v = 0.0f;
  8092. ggml_vec_dot_f32(ew0, &v,
  8093. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  8094. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  8095. dst_data[i0/2] += v;
  8096. }
  8097. }
  8098. }
  8099. }
  8100. static void ggml_compute_forward_conv_1d_2s(
  8101. const struct ggml_compute_params * params,
  8102. const struct ggml_tensor * src0,
  8103. const struct ggml_tensor * src1,
  8104. struct ggml_tensor * dst) {
  8105. switch (src0->type) {
  8106. case GGML_TYPE_F16:
  8107. {
  8108. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  8109. } break;
  8110. case GGML_TYPE_F32:
  8111. {
  8112. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  8113. } break;
  8114. default:
  8115. {
  8116. GGML_ASSERT(false);
  8117. } break;
  8118. }
  8119. }
  8120. // ggml_compute_forward_flash_attn
  8121. static void ggml_compute_forward_flash_attn_f32(
  8122. const struct ggml_compute_params * params,
  8123. const struct ggml_tensor * q,
  8124. const struct ggml_tensor * k,
  8125. const struct ggml_tensor * v,
  8126. const bool masked,
  8127. struct ggml_tensor * dst) {
  8128. int64_t t0 = ggml_perf_time_us();
  8129. UNUSED(t0);
  8130. const int64_t neq0 = q->ne[0];
  8131. const int64_t neq1 = q->ne[1];
  8132. const int64_t neq2 = q->ne[2];
  8133. const int64_t neq3 = q->ne[3];
  8134. const int64_t nek0 = k->ne[0];
  8135. const int64_t nek1 = k->ne[1];
  8136. //const int64_t nek2 = k->ne[2];
  8137. //const int64_t nek3 = k->ne[3];
  8138. //const int64_t nev0 = v->ne[0];
  8139. const int64_t nev1 = v->ne[1];
  8140. //const int64_t nev2 = v->ne[2];
  8141. //const int64_t nev3 = v->ne[3];
  8142. const int64_t ne0 = dst->ne[0];
  8143. const int64_t ne1 = dst->ne[1];
  8144. //const int64_t ne2 = dst->ne[2];
  8145. //const int64_t ne3 = dst->ne[3];
  8146. const int nbk0 = k->nb[0];
  8147. const int nbk1 = k->nb[1];
  8148. const int nbk2 = k->nb[2];
  8149. const int nbk3 = k->nb[3];
  8150. const int nbq0 = q->nb[0];
  8151. const int nbq1 = q->nb[1];
  8152. const int nbq2 = q->nb[2];
  8153. const int nbq3 = q->nb[3];
  8154. const int nbv0 = v->nb[0];
  8155. const int nbv1 = v->nb[1];
  8156. const int nbv2 = v->nb[2];
  8157. const int nbv3 = v->nb[3];
  8158. const int nb0 = dst->nb[0];
  8159. const int nb1 = dst->nb[1];
  8160. const int nb2 = dst->nb[2];
  8161. const int nb3 = dst->nb[3];
  8162. const int ith = params->ith;
  8163. const int nth = params->nth;
  8164. const int64_t D = neq0;
  8165. const int64_t N = neq1;
  8166. const int64_t P = nek1 - N;
  8167. const int64_t M = P + N;
  8168. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8169. GGML_ASSERT(ne0 == D);
  8170. GGML_ASSERT(ne1 == N);
  8171. GGML_ASSERT(P >= 0);
  8172. GGML_ASSERT(nbq0 == sizeof(float));
  8173. GGML_ASSERT(nbk0 == sizeof(float));
  8174. GGML_ASSERT(nbv0 == sizeof(float));
  8175. GGML_ASSERT(neq0 == D);
  8176. GGML_ASSERT(nek0 == D);
  8177. GGML_ASSERT(nev1 == D);
  8178. GGML_ASSERT(neq1 == N);
  8179. GGML_ASSERT(nek1 == N + P);
  8180. GGML_ASSERT(nev1 == D);
  8181. // dst cannot be transposed or permuted
  8182. GGML_ASSERT(nb0 == sizeof(float));
  8183. GGML_ASSERT(nb0 <= nb1);
  8184. GGML_ASSERT(nb1 <= nb2);
  8185. GGML_ASSERT(nb2 <= nb3);
  8186. if (params->type == GGML_TASK_INIT) {
  8187. return;
  8188. }
  8189. if (params->type == GGML_TASK_FINALIZE) {
  8190. return;
  8191. }
  8192. // parallelize by q rows using ggml_vec_dot_f32
  8193. // total rows in q
  8194. const int nr = neq1*neq2*neq3;
  8195. // rows per thread
  8196. const int dr = (nr + nth - 1)/nth;
  8197. // row range for this thread
  8198. const int ir0 = dr*ith;
  8199. const int ir1 = MIN(ir0 + dr, nr);
  8200. const float scale = 1.0f/sqrtf(D);
  8201. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  8202. for (int ir = ir0; ir < ir1; ++ir) {
  8203. // q indices
  8204. const int iq3 = ir/(neq2*neq1);
  8205. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8206. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8207. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  8208. for (int i = M; i < Mup; ++i) {
  8209. S[i] = -INFINITY;
  8210. }
  8211. for (int64_t ic = 0; ic < nek1; ++ic) {
  8212. // k indices
  8213. const int ik3 = iq3;
  8214. const int ik2 = iq2;
  8215. const int ik1 = ic;
  8216. // S indices
  8217. const int i1 = ik1;
  8218. ggml_vec_dot_f32(neq0,
  8219. S + i1,
  8220. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8221. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8222. }
  8223. // scale
  8224. ggml_vec_scale_f32(nek1, S, scale);
  8225. if (masked) {
  8226. for (int64_t i = P; i < M; i++) {
  8227. if (i > P + iq1) {
  8228. S[i] = -INFINITY;
  8229. }
  8230. }
  8231. }
  8232. // softmax
  8233. {
  8234. float max = -INFINITY;
  8235. ggml_vec_max_f32(M, &max, S);
  8236. ggml_float sum = 0.0;
  8237. {
  8238. #ifdef GGML_SOFT_MAX_ACCELERATE
  8239. max = -max;
  8240. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  8241. vvexpf(S, S, &Mup);
  8242. ggml_vec_sum_f32(Mup, &sum, S);
  8243. #else
  8244. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  8245. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  8246. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  8247. float * SS = S + i;
  8248. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  8249. if (SS[j] == -INFINITY) {
  8250. SS[j] = 0.0f;
  8251. } else {
  8252. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  8253. memcpy(&scvt[j], &s, sizeof(uint16_t));
  8254. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  8255. sump[j] += (ggml_float)val;
  8256. SS[j] = val;
  8257. }
  8258. }
  8259. }
  8260. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  8261. sum += sump[i];
  8262. }
  8263. #endif
  8264. }
  8265. assert(sum > 0.0);
  8266. sum = 1.0/sum;
  8267. ggml_vec_scale_f32(M, S, sum);
  8268. #ifndef NDEBUG
  8269. for (int i = 0; i < M; ++i) {
  8270. assert(!isnan(S[i]));
  8271. assert(!isinf(S[i]));
  8272. }
  8273. #endif
  8274. }
  8275. for (int64_t ic = 0; ic < nev1; ++ic) {
  8276. // dst indices
  8277. const int i1 = iq1;
  8278. const int i2 = iq2;
  8279. const int i3 = iq3;
  8280. ggml_vec_dot_f32(nek1,
  8281. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8282. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8283. S);
  8284. }
  8285. }
  8286. }
  8287. static void ggml_compute_forward_flash_attn_f16(
  8288. const struct ggml_compute_params * params,
  8289. const struct ggml_tensor * q,
  8290. const struct ggml_tensor * k,
  8291. const struct ggml_tensor * v,
  8292. const bool masked,
  8293. struct ggml_tensor * dst) {
  8294. int64_t t0 = ggml_perf_time_us();
  8295. UNUSED(t0);
  8296. const int64_t neq0 = q->ne[0];
  8297. const int64_t neq1 = q->ne[1];
  8298. const int64_t neq2 = q->ne[2];
  8299. const int64_t neq3 = q->ne[3];
  8300. const int64_t nek0 = k->ne[0];
  8301. const int64_t nek1 = k->ne[1];
  8302. //const int64_t nek2 = k->ne[2];
  8303. //const int64_t nek3 = k->ne[3];
  8304. //const int64_t nev0 = v->ne[0];
  8305. const int64_t nev1 = v->ne[1];
  8306. //const int64_t nev2 = v->ne[2];
  8307. //const int64_t nev3 = v->ne[3];
  8308. const int64_t ne0 = dst->ne[0];
  8309. const int64_t ne1 = dst->ne[1];
  8310. //const int64_t ne2 = dst->ne[2];
  8311. //const int64_t ne3 = dst->ne[3];
  8312. const int nbk0 = k->nb[0];
  8313. const int nbk1 = k->nb[1];
  8314. const int nbk2 = k->nb[2];
  8315. const int nbk3 = k->nb[3];
  8316. const int nbq0 = q->nb[0];
  8317. const int nbq1 = q->nb[1];
  8318. const int nbq2 = q->nb[2];
  8319. const int nbq3 = q->nb[3];
  8320. const int nbv0 = v->nb[0];
  8321. const int nbv1 = v->nb[1];
  8322. const int nbv2 = v->nb[2];
  8323. const int nbv3 = v->nb[3];
  8324. const int nb0 = dst->nb[0];
  8325. const int nb1 = dst->nb[1];
  8326. const int nb2 = dst->nb[2];
  8327. const int nb3 = dst->nb[3];
  8328. const int ith = params->ith;
  8329. const int nth = params->nth;
  8330. const int64_t D = neq0;
  8331. const int64_t N = neq1;
  8332. const int64_t P = nek1 - N;
  8333. const int64_t M = P + N;
  8334. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8335. GGML_ASSERT(ne0 == D);
  8336. GGML_ASSERT(ne1 == N);
  8337. GGML_ASSERT(P >= 0);
  8338. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  8339. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  8340. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  8341. GGML_ASSERT(neq0 == D);
  8342. GGML_ASSERT(nek0 == D);
  8343. GGML_ASSERT(nev1 == D);
  8344. GGML_ASSERT(neq1 == N);
  8345. GGML_ASSERT(nek1 == N + P);
  8346. GGML_ASSERT(nev1 == D);
  8347. // dst cannot be transposed or permuted
  8348. GGML_ASSERT(nb0 == sizeof(float));
  8349. GGML_ASSERT(nb0 <= nb1);
  8350. GGML_ASSERT(nb1 <= nb2);
  8351. GGML_ASSERT(nb2 <= nb3);
  8352. if (params->type == GGML_TASK_INIT) {
  8353. return;
  8354. }
  8355. if (params->type == GGML_TASK_FINALIZE) {
  8356. return;
  8357. }
  8358. // parallelize by q rows using ggml_vec_dot_f32
  8359. // total rows in q
  8360. const int nr = neq1*neq2*neq3;
  8361. // rows per thread
  8362. const int dr = (nr + nth - 1)/nth;
  8363. // row range for this thread
  8364. const int ir0 = dr*ith;
  8365. const int ir1 = MIN(ir0 + dr, nr);
  8366. const float scale = 1.0f/sqrtf(D);
  8367. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  8368. for (int ir = ir0; ir < ir1; ++ir) {
  8369. // q indices
  8370. const int iq3 = ir/(neq2*neq1);
  8371. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8372. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8373. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  8374. for (int i = M; i < Mup; ++i) {
  8375. S[i] = -INFINITY;
  8376. }
  8377. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  8378. for (int64_t ic = 0; ic < nek1; ++ic) {
  8379. // k indices
  8380. const int ik3 = iq3;
  8381. const int ik2 = iq2;
  8382. const int ik1 = ic;
  8383. // S indices
  8384. const int i1 = ik1;
  8385. ggml_vec_dot_f16(neq0,
  8386. S + i1,
  8387. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8388. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8389. }
  8390. } else {
  8391. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  8392. // k indices
  8393. const int ik3 = iq3;
  8394. const int ik2 = iq2;
  8395. const int ik1 = ic;
  8396. // S indices
  8397. const int i1 = ik1;
  8398. ggml_vec_dot_f16_unroll(neq0, nbk1,
  8399. S + i1,
  8400. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8401. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8402. }
  8403. }
  8404. // scale
  8405. ggml_vec_scale_f32(nek1, S, scale);
  8406. if (masked) {
  8407. for (int64_t i = P; i < M; i++) {
  8408. if (i > P + iq1) {
  8409. S[i] = -INFINITY;
  8410. }
  8411. }
  8412. }
  8413. // softmax
  8414. {
  8415. float max = -INFINITY;
  8416. ggml_vec_max_f32(M, &max, S);
  8417. ggml_float sum = 0.0;
  8418. {
  8419. #ifdef GGML_SOFT_MAX_ACCELERATE
  8420. max = -max;
  8421. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  8422. vvexpf(S, S, &Mup);
  8423. ggml_vec_sum_f32(Mup, &sum, S);
  8424. #else
  8425. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  8426. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  8427. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  8428. float * SS = S + i;
  8429. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  8430. if (SS[j] == -INFINITY) {
  8431. SS[j] = 0.0f;
  8432. } else {
  8433. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  8434. memcpy(&scvt[j], &s, sizeof(uint16_t));
  8435. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  8436. sump[j] += (ggml_float)val;
  8437. SS[j] = val;
  8438. }
  8439. }
  8440. }
  8441. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  8442. sum += sump[i];
  8443. }
  8444. #endif
  8445. }
  8446. assert(sum > 0.0);
  8447. sum = 1.0/sum;
  8448. ggml_vec_scale_f32(M, S, sum);
  8449. #ifndef NDEBUG
  8450. for (int i = 0; i < M; ++i) {
  8451. assert(!isnan(S[i]));
  8452. assert(!isinf(S[i]));
  8453. }
  8454. #endif
  8455. }
  8456. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  8457. for (int64_t i = 0; i < M; i++) {
  8458. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8459. }
  8460. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  8461. for (int64_t ic = 0; ic < nev1; ++ic) {
  8462. // dst indices
  8463. const int i1 = iq1;
  8464. const int i2 = iq2;
  8465. const int i3 = iq3;
  8466. ggml_vec_dot_f16(nek1,
  8467. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8468. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8469. S16);
  8470. }
  8471. } else {
  8472. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  8473. // dst indices
  8474. const int i1 = iq1;
  8475. const int i2 = iq2;
  8476. const int i3 = iq3;
  8477. ggml_vec_dot_f16_unroll(nek1, nbv1,
  8478. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8479. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8480. S16);
  8481. }
  8482. }
  8483. }
  8484. }
  8485. static void ggml_compute_forward_flash_attn(
  8486. const struct ggml_compute_params * params,
  8487. const struct ggml_tensor * q,
  8488. const struct ggml_tensor * k,
  8489. const struct ggml_tensor * v,
  8490. const bool masked,
  8491. struct ggml_tensor * dst) {
  8492. switch (q->type) {
  8493. case GGML_TYPE_F16:
  8494. {
  8495. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  8496. } break;
  8497. case GGML_TYPE_F32:
  8498. {
  8499. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  8500. } break;
  8501. default:
  8502. {
  8503. GGML_ASSERT(false);
  8504. } break;
  8505. }
  8506. }
  8507. // ggml_compute_forward_flash_ff
  8508. static void ggml_compute_forward_flash_ff_f16(
  8509. const struct ggml_compute_params * params,
  8510. const struct ggml_tensor * a, // F16
  8511. const struct ggml_tensor * b0, // F16 fc_w
  8512. const struct ggml_tensor * b1, // F32 fc_b
  8513. const struct ggml_tensor * c0, // F16 proj_w
  8514. const struct ggml_tensor * c1, // F32 proj_b
  8515. struct ggml_tensor * dst) {
  8516. int64_t t0 = ggml_perf_time_us();
  8517. UNUSED(t0);
  8518. const int64_t nea0 = a->ne[0];
  8519. const int64_t nea1 = a->ne[1];
  8520. const int64_t nea2 = a->ne[2];
  8521. const int64_t nea3 = a->ne[3];
  8522. const int64_t neb00 = b0->ne[0];
  8523. const int64_t neb01 = b0->ne[1];
  8524. //const int64_t neb02 = b0->ne[2];
  8525. //const int64_t neb03 = b0->ne[3];
  8526. const int64_t neb10 = b1->ne[0];
  8527. const int64_t neb11 = b1->ne[1];
  8528. //const int64_t neb12 = b1->ne[2];
  8529. //const int64_t neb13 = b1->ne[3];
  8530. const int64_t nec00 = c0->ne[0];
  8531. const int64_t nec01 = c0->ne[1];
  8532. //const int64_t nec02 = c0->ne[2];
  8533. //const int64_t nec03 = c0->ne[3];
  8534. const int64_t nec10 = c1->ne[0];
  8535. const int64_t nec11 = c1->ne[1];
  8536. //const int64_t nec12 = c1->ne[2];
  8537. //const int64_t nec13 = c1->ne[3];
  8538. const int64_t ne0 = dst->ne[0];
  8539. const int64_t ne1 = dst->ne[1];
  8540. const int64_t ne2 = dst->ne[2];
  8541. //const int64_t ne3 = dst->ne[3];
  8542. const int nba0 = a->nb[0];
  8543. const int nba1 = a->nb[1];
  8544. const int nba2 = a->nb[2];
  8545. const int nba3 = a->nb[3];
  8546. const int nbb00 = b0->nb[0];
  8547. const int nbb01 = b0->nb[1];
  8548. const int nbb02 = b0->nb[2];
  8549. const int nbb03 = b0->nb[3];
  8550. const int nbb10 = b1->nb[0];
  8551. //const int nbb11 = b1->nb[1];
  8552. //const int nbb12 = b1->nb[2];
  8553. //const int nbb13 = b1->nb[3];
  8554. const int nbc00 = c0->nb[0];
  8555. const int nbc01 = c0->nb[1];
  8556. const int nbc02 = c0->nb[2];
  8557. const int nbc03 = c0->nb[3];
  8558. const int nbc10 = c1->nb[0];
  8559. //const int nbc11 = c1->nb[1];
  8560. //const int nbc12 = c1->nb[2];
  8561. //const int nbc13 = c1->nb[3];
  8562. const int nb0 = dst->nb[0];
  8563. const int nb1 = dst->nb[1];
  8564. const int nb2 = dst->nb[2];
  8565. const int nb3 = dst->nb[3];
  8566. const int ith = params->ith;
  8567. const int nth = params->nth;
  8568. const int64_t D = nea0;
  8569. //const int64_t N = nea1;
  8570. const int64_t M = neb01;
  8571. GGML_ASSERT(ne0 == nea0);
  8572. GGML_ASSERT(ne1 == nea1);
  8573. GGML_ASSERT(ne2 == nea2);
  8574. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  8575. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  8576. GGML_ASSERT(nbb10 == sizeof(float));
  8577. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  8578. GGML_ASSERT(nbc10 == sizeof(float));
  8579. GGML_ASSERT(neb00 == D);
  8580. GGML_ASSERT(neb01 == M);
  8581. GGML_ASSERT(neb10 == M);
  8582. GGML_ASSERT(neb11 == 1);
  8583. GGML_ASSERT(nec00 == M);
  8584. GGML_ASSERT(nec01 == D);
  8585. GGML_ASSERT(nec10 == D);
  8586. GGML_ASSERT(nec11 == 1);
  8587. // dst cannot be transposed or permuted
  8588. GGML_ASSERT(nb0 == sizeof(float));
  8589. GGML_ASSERT(nb0 <= nb1);
  8590. GGML_ASSERT(nb1 <= nb2);
  8591. GGML_ASSERT(nb2 <= nb3);
  8592. if (params->type == GGML_TASK_INIT) {
  8593. return;
  8594. }
  8595. if (params->type == GGML_TASK_FINALIZE) {
  8596. return;
  8597. }
  8598. // parallelize by a rows using ggml_vec_dot_f32
  8599. // total rows in a
  8600. const int nr = nea1*nea2*nea3;
  8601. // rows per thread
  8602. const int dr = (nr + nth - 1)/nth;
  8603. // row range for this thread
  8604. const int ir0 = dr*ith;
  8605. const int ir1 = MIN(ir0 + dr, nr);
  8606. for (int ir = ir0; ir < ir1; ++ir) {
  8607. // a indices
  8608. const int ia3 = ir/(nea2*nea1);
  8609. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  8610. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  8611. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  8612. for (int64_t ic = 0; ic < neb01; ++ic) {
  8613. // b0 indices
  8614. const int ib03 = ia3;
  8615. const int ib02 = ia2;
  8616. const int ib01 = ic;
  8617. // S indices
  8618. const int i1 = ib01;
  8619. ggml_vec_dot_f16(nea0,
  8620. S + i1,
  8621. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  8622. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  8623. }
  8624. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  8625. //ggml_vec_gelu_f32(neb01, S, S);
  8626. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  8627. for (int64_t i = 0; i < M; i++) {
  8628. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8629. }
  8630. ggml_vec_gelu_f16(neb01, S16, S16);
  8631. {
  8632. // dst indices
  8633. const int i1 = ia1;
  8634. const int i2 = ia2;
  8635. const int i3 = ia3;
  8636. for (int64_t ic = 0; ic < nec01; ++ic) {
  8637. ggml_vec_dot_f16(neb01,
  8638. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8639. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  8640. S16);
  8641. }
  8642. ggml_vec_add_f32(nec01,
  8643. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8644. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8645. (float *) c1->data);
  8646. }
  8647. }
  8648. }
  8649. static void ggml_compute_forward_flash_ff(
  8650. const struct ggml_compute_params * params,
  8651. const struct ggml_tensor * a,
  8652. const struct ggml_tensor * b0,
  8653. const struct ggml_tensor * b1,
  8654. const struct ggml_tensor * c0,
  8655. const struct ggml_tensor * c1,
  8656. struct ggml_tensor * dst) {
  8657. switch (b0->type) {
  8658. case GGML_TYPE_F16:
  8659. {
  8660. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  8661. } break;
  8662. case GGML_TYPE_F32:
  8663. {
  8664. GGML_ASSERT(false); // TODO
  8665. } break;
  8666. default:
  8667. {
  8668. GGML_ASSERT(false);
  8669. } break;
  8670. }
  8671. }
  8672. // ggml_compute_forward_map_unary
  8673. static void ggml_compute_forward_map_unary_f32(
  8674. const struct ggml_compute_params * params,
  8675. const struct ggml_tensor * src0,
  8676. struct ggml_tensor * dst,
  8677. const ggml_unary_op_f32_t fun) {
  8678. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8679. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8680. return;
  8681. }
  8682. const int n = ggml_nrows(src0);
  8683. const int nc = src0->ne[0];
  8684. assert( dst->nb[0] == sizeof(float));
  8685. assert(src0->nb[0] == sizeof(float));
  8686. for (int i = 0; i < n; i++) {
  8687. fun(nc,
  8688. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8689. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8690. }
  8691. }
  8692. static void ggml_compute_forward_map_unary(
  8693. const struct ggml_compute_params * params,
  8694. const struct ggml_tensor * src0,
  8695. struct ggml_tensor * dst,
  8696. const ggml_unary_op_f32_t fun) {
  8697. switch (src0->type) {
  8698. case GGML_TYPE_F32:
  8699. {
  8700. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  8701. } break;
  8702. default:
  8703. {
  8704. GGML_ASSERT(false);
  8705. } break;
  8706. }
  8707. }
  8708. // ggml_compute_forward_map_binary
  8709. static void ggml_compute_forward_map_binary_f32(
  8710. const struct ggml_compute_params * params,
  8711. const struct ggml_tensor * src0,
  8712. const struct ggml_tensor * src1,
  8713. struct ggml_tensor * dst,
  8714. const ggml_binary_op_f32_t fun) {
  8715. assert(params->ith == 0);
  8716. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8717. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8718. return;
  8719. }
  8720. const int n = ggml_nrows(src0);
  8721. const int nc = src0->ne[0];
  8722. assert( dst->nb[0] == sizeof(float));
  8723. assert(src0->nb[0] == sizeof(float));
  8724. assert(src1->nb[0] == sizeof(float));
  8725. for (int i = 0; i < n; i++) {
  8726. fun(nc,
  8727. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8728. (float *) ((char *) src0->data + i*(src0->nb[1])),
  8729. (float *) ((char *) src1->data + i*(src1->nb[1])));
  8730. }
  8731. }
  8732. static void ggml_compute_forward_map_binary(
  8733. const struct ggml_compute_params * params,
  8734. const struct ggml_tensor * src0,
  8735. const struct ggml_tensor * src1,
  8736. struct ggml_tensor * dst,
  8737. const ggml_binary_op_f32_t fun) {
  8738. switch (src0->type) {
  8739. case GGML_TYPE_F32:
  8740. {
  8741. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  8742. } break;
  8743. default:
  8744. {
  8745. GGML_ASSERT(false);
  8746. } break;
  8747. }
  8748. }
  8749. /////////////////////////////////
  8750. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  8751. GGML_ASSERT(params);
  8752. switch (tensor->op) {
  8753. case GGML_OP_DUP:
  8754. {
  8755. ggml_compute_forward_dup(params, tensor->src0, tensor);
  8756. } break;
  8757. case GGML_OP_ADD:
  8758. {
  8759. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  8760. } break;
  8761. case GGML_OP_SUB:
  8762. {
  8763. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  8764. } break;
  8765. case GGML_OP_MUL:
  8766. {
  8767. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  8768. } break;
  8769. case GGML_OP_DIV:
  8770. {
  8771. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  8772. } break;
  8773. case GGML_OP_SQR:
  8774. {
  8775. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  8776. } break;
  8777. case GGML_OP_SQRT:
  8778. {
  8779. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  8780. } break;
  8781. case GGML_OP_SUM:
  8782. {
  8783. ggml_compute_forward_sum(params, tensor->src0, tensor);
  8784. } break;
  8785. case GGML_OP_MEAN:
  8786. {
  8787. ggml_compute_forward_mean(params, tensor->src0, tensor);
  8788. } break;
  8789. case GGML_OP_REPEAT:
  8790. {
  8791. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  8792. } break;
  8793. case GGML_OP_ABS:
  8794. {
  8795. ggml_compute_forward_abs(params, tensor->src0, tensor);
  8796. } break;
  8797. case GGML_OP_SGN:
  8798. {
  8799. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  8800. } break;
  8801. case GGML_OP_NEG:
  8802. {
  8803. ggml_compute_forward_neg(params, tensor->src0, tensor);
  8804. } break;
  8805. case GGML_OP_STEP:
  8806. {
  8807. ggml_compute_forward_step(params, tensor->src0, tensor);
  8808. } break;
  8809. case GGML_OP_RELU:
  8810. {
  8811. ggml_compute_forward_relu(params, tensor->src0, tensor);
  8812. } break;
  8813. case GGML_OP_GELU:
  8814. {
  8815. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  8816. } break;
  8817. case GGML_OP_SILU:
  8818. {
  8819. ggml_compute_forward_silu(params, tensor->src0, tensor);
  8820. } break;
  8821. case GGML_OP_NORM:
  8822. {
  8823. ggml_compute_forward_norm(params, tensor->src0, tensor);
  8824. } break;
  8825. case GGML_OP_RMS_NORM:
  8826. {
  8827. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  8828. } break;
  8829. case GGML_OP_MUL_MAT:
  8830. {
  8831. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  8832. } break;
  8833. case GGML_OP_SCALE:
  8834. {
  8835. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  8836. } break;
  8837. case GGML_OP_CPY:
  8838. {
  8839. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  8840. } break;
  8841. case GGML_OP_CONT:
  8842. {
  8843. ggml_compute_forward_cont(params, tensor->src0, tensor);
  8844. } break;
  8845. case GGML_OP_RESHAPE:
  8846. {
  8847. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  8848. } break;
  8849. case GGML_OP_VIEW:
  8850. {
  8851. ggml_compute_forward_view(params, tensor->src0);
  8852. } break;
  8853. case GGML_OP_PERMUTE:
  8854. {
  8855. ggml_compute_forward_permute(params, tensor->src0);
  8856. } break;
  8857. case GGML_OP_TRANSPOSE:
  8858. {
  8859. ggml_compute_forward_transpose(params, tensor->src0);
  8860. } break;
  8861. case GGML_OP_GET_ROWS:
  8862. {
  8863. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  8864. } break;
  8865. case GGML_OP_DIAG_MASK_INF:
  8866. {
  8867. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  8868. } break;
  8869. case GGML_OP_SOFT_MAX:
  8870. {
  8871. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  8872. } break;
  8873. case GGML_OP_ROPE:
  8874. {
  8875. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  8876. } break;
  8877. case GGML_OP_ALIBI:
  8878. {
  8879. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  8880. } break;
  8881. case GGML_OP_CONV_1D_1S:
  8882. {
  8883. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  8884. } break;
  8885. case GGML_OP_CONV_1D_2S:
  8886. {
  8887. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  8888. } break;
  8889. case GGML_OP_FLASH_ATTN:
  8890. {
  8891. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  8892. GGML_ASSERT(t == 0 || t == 1);
  8893. bool masked = t != 0;
  8894. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  8895. } break;
  8896. case GGML_OP_FLASH_FF:
  8897. {
  8898. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  8899. } break;
  8900. case GGML_OP_MAP_UNARY:
  8901. {
  8902. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  8903. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  8904. }
  8905. break;
  8906. case GGML_OP_MAP_BINARY:
  8907. {
  8908. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  8909. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  8910. }
  8911. break;
  8912. case GGML_OP_NONE:
  8913. {
  8914. // nop
  8915. } break;
  8916. case GGML_OP_COUNT:
  8917. {
  8918. GGML_ASSERT(false);
  8919. } break;
  8920. }
  8921. }
  8922. ////////////////////////////////////////////////////////////////////////////////
  8923. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  8924. struct ggml_tensor * src0 = tensor->src0;
  8925. struct ggml_tensor * src1 = tensor->src1;
  8926. switch (tensor->op) {
  8927. case GGML_OP_DUP:
  8928. {
  8929. if (src0->grad) {
  8930. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8931. }
  8932. } break;
  8933. case GGML_OP_ADD:
  8934. {
  8935. if (src0->grad) {
  8936. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8937. }
  8938. if (src1->grad) {
  8939. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  8940. }
  8941. } break;
  8942. case GGML_OP_SUB:
  8943. {
  8944. if (src0->grad) {
  8945. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8946. }
  8947. if (src1->grad) {
  8948. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  8949. }
  8950. } break;
  8951. case GGML_OP_MUL:
  8952. {
  8953. if (src0->grad) {
  8954. src0->grad =
  8955. ggml_add_impl(ctx,
  8956. src0->grad,
  8957. ggml_mul(ctx, src1, tensor->grad),
  8958. inplace);
  8959. }
  8960. if (src1->grad) {
  8961. src1->grad =
  8962. ggml_add_impl(ctx,
  8963. src1->grad,
  8964. ggml_mul(ctx, src0, tensor->grad),
  8965. inplace);
  8966. }
  8967. } break;
  8968. case GGML_OP_DIV:
  8969. {
  8970. if (src0->grad) {
  8971. src0->grad =
  8972. ggml_add_impl(ctx,
  8973. src0->grad,
  8974. ggml_div(ctx, tensor->grad, src1),
  8975. inplace);
  8976. }
  8977. if (src1->grad) {
  8978. src1->grad =
  8979. ggml_sub_impl(ctx,
  8980. src1->grad,
  8981. ggml_mul(ctx,
  8982. tensor->grad,
  8983. ggml_div(ctx, tensor, src1)),
  8984. inplace);
  8985. }
  8986. } break;
  8987. case GGML_OP_SQR:
  8988. {
  8989. if (src0->grad) {
  8990. src0->grad =
  8991. ggml_add_impl(ctx,
  8992. src0->grad,
  8993. ggml_mul(ctx,
  8994. ggml_mul(ctx, src0, tensor->grad),
  8995. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  8996. inplace);
  8997. }
  8998. } break;
  8999. case GGML_OP_SQRT:
  9000. {
  9001. if (src0->grad) {
  9002. src0->grad =
  9003. ggml_add_impl(ctx,
  9004. src0->grad,
  9005. ggml_div(ctx,
  9006. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  9007. tensor),
  9008. inplace);
  9009. }
  9010. } break;
  9011. case GGML_OP_SUM:
  9012. {
  9013. if (src0->grad) {
  9014. src0->grad =
  9015. ggml_add_impl(ctx,
  9016. src0->grad,
  9017. ggml_repeat(ctx, tensor->grad, src0->grad),
  9018. inplace);
  9019. }
  9020. } break;
  9021. case GGML_OP_MEAN:
  9022. {
  9023. GGML_ASSERT(false); // TODO: implement
  9024. } break;
  9025. case GGML_OP_REPEAT:
  9026. {
  9027. if (src0->grad) {
  9028. src0->grad =
  9029. ggml_add_impl(ctx,
  9030. src0->grad,
  9031. ggml_sum(ctx, tensor->grad),
  9032. inplace);
  9033. }
  9034. } break;
  9035. case GGML_OP_ABS:
  9036. {
  9037. if (src0->grad) {
  9038. src0->grad =
  9039. ggml_add_impl(ctx,
  9040. src0->grad,
  9041. ggml_mul(ctx,
  9042. ggml_sgn(ctx, src0),
  9043. tensor->grad),
  9044. inplace);
  9045. }
  9046. } break;
  9047. case GGML_OP_SGN:
  9048. {
  9049. if (src0->grad) {
  9050. // noop
  9051. }
  9052. } break;
  9053. case GGML_OP_NEG:
  9054. {
  9055. if (src0->grad) {
  9056. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  9057. }
  9058. } break;
  9059. case GGML_OP_STEP:
  9060. {
  9061. if (src0->grad) {
  9062. // noop
  9063. }
  9064. } break;
  9065. case GGML_OP_RELU:
  9066. {
  9067. if (src0->grad) {
  9068. src0->grad = ggml_sub_impl(ctx,
  9069. src0->grad,
  9070. ggml_mul(ctx,
  9071. ggml_step(ctx, src0),
  9072. tensor->grad),
  9073. inplace);
  9074. }
  9075. } break;
  9076. case GGML_OP_GELU:
  9077. {
  9078. GGML_ASSERT(false); // TODO: not implemented
  9079. } break;
  9080. case GGML_OP_ALIBI:
  9081. {
  9082. GGML_ASSERT(false); // TODO: not implemented
  9083. } break;
  9084. case GGML_OP_SILU:
  9085. {
  9086. GGML_ASSERT(false); // TODO: not implemented
  9087. } break;
  9088. case GGML_OP_NORM:
  9089. {
  9090. GGML_ASSERT(false); // TODO: not implemented
  9091. } break;
  9092. case GGML_OP_RMS_NORM:
  9093. {
  9094. GGML_ASSERT(false); // TODO: not implemented
  9095. } break;
  9096. case GGML_OP_MUL_MAT:
  9097. {
  9098. if (src0->grad) {
  9099. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  9100. GGML_ASSERT(false);
  9101. }
  9102. if (src1->grad) {
  9103. src1->grad =
  9104. ggml_add_impl(ctx,
  9105. src1->grad,
  9106. ggml_mul_mat(ctx,
  9107. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  9108. tensor->grad),
  9109. inplace);
  9110. }
  9111. } break;
  9112. case GGML_OP_SCALE:
  9113. {
  9114. GGML_ASSERT(false); // TODO: not implemented
  9115. } break;
  9116. case GGML_OP_CPY:
  9117. {
  9118. GGML_ASSERT(false); // TODO: not implemented
  9119. } break;
  9120. case GGML_OP_CONT:
  9121. {
  9122. GGML_ASSERT(false); // TODO: not implemented
  9123. } break;
  9124. case GGML_OP_RESHAPE:
  9125. {
  9126. GGML_ASSERT(false); // TODO: not implemented
  9127. } break;
  9128. case GGML_OP_VIEW:
  9129. {
  9130. GGML_ASSERT(false); // not supported
  9131. } break;
  9132. case GGML_OP_PERMUTE:
  9133. {
  9134. GGML_ASSERT(false); // TODO: not implemented
  9135. } break;
  9136. case GGML_OP_TRANSPOSE:
  9137. {
  9138. GGML_ASSERT(false); // TODO: not implemented
  9139. } break;
  9140. case GGML_OP_GET_ROWS:
  9141. {
  9142. GGML_ASSERT(false); // TODO: not implemented
  9143. } break;
  9144. case GGML_OP_DIAG_MASK_INF:
  9145. {
  9146. GGML_ASSERT(false); // TODO: not implemented
  9147. } break;
  9148. case GGML_OP_SOFT_MAX:
  9149. {
  9150. GGML_ASSERT(false); // TODO: not implemented
  9151. } break;
  9152. case GGML_OP_ROPE:
  9153. {
  9154. GGML_ASSERT(false); // TODO: not implemented
  9155. } break;
  9156. case GGML_OP_CONV_1D_1S:
  9157. {
  9158. GGML_ASSERT(false); // TODO: not implemented
  9159. } break;
  9160. case GGML_OP_CONV_1D_2S:
  9161. {
  9162. GGML_ASSERT(false); // TODO: not implemented
  9163. } break;
  9164. case GGML_OP_FLASH_ATTN:
  9165. {
  9166. GGML_ASSERT(false); // not supported
  9167. } break;
  9168. case GGML_OP_FLASH_FF:
  9169. {
  9170. GGML_ASSERT(false); // not supported
  9171. } break;
  9172. case GGML_OP_MAP_UNARY:
  9173. case GGML_OP_MAP_BINARY:
  9174. {
  9175. GGML_ASSERT(false); // not supported
  9176. } break;
  9177. case GGML_OP_NONE:
  9178. {
  9179. // nop
  9180. } break;
  9181. case GGML_OP_COUNT:
  9182. {
  9183. GGML_ASSERT(false);
  9184. } break;
  9185. }
  9186. }
  9187. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  9188. if (node->grad == NULL) {
  9189. // this usually happens when we generate intermediate nodes from constants in the backward pass
  9190. // it can also happen during forward pass, if the user performs computations with constants
  9191. if (node->op != GGML_OP_NONE) {
  9192. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  9193. }
  9194. }
  9195. // check if already visited
  9196. for (int i = 0; i < cgraph->n_nodes; i++) {
  9197. if (cgraph->nodes[i] == node) {
  9198. return;
  9199. }
  9200. }
  9201. for (int i = 0; i < cgraph->n_leafs; i++) {
  9202. if (cgraph->leafs[i] == node) {
  9203. return;
  9204. }
  9205. }
  9206. if (node->src0) {
  9207. ggml_visit_parents(cgraph, node->src0);
  9208. }
  9209. if (node->src1) {
  9210. ggml_visit_parents(cgraph, node->src1);
  9211. }
  9212. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  9213. if (node->opt[i]) {
  9214. ggml_visit_parents(cgraph, node->opt[i]);
  9215. }
  9216. }
  9217. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  9218. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  9219. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  9220. cgraph->leafs[cgraph->n_leafs] = node;
  9221. cgraph->n_leafs++;
  9222. } else {
  9223. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  9224. cgraph->nodes[cgraph->n_nodes] = node;
  9225. cgraph->grads[cgraph->n_nodes] = node->grad;
  9226. cgraph->n_nodes++;
  9227. }
  9228. }
  9229. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  9230. if (!expand) {
  9231. cgraph->n_nodes = 0;
  9232. cgraph->n_leafs = 0;
  9233. }
  9234. const int n0 = cgraph->n_nodes;
  9235. UNUSED(n0);
  9236. ggml_visit_parents(cgraph, tensor);
  9237. const int n_new = cgraph->n_nodes - n0;
  9238. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  9239. if (n_new > 0) {
  9240. // the last added node should always be starting point
  9241. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  9242. }
  9243. }
  9244. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  9245. ggml_build_forward_impl(cgraph, tensor, true);
  9246. }
  9247. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  9248. struct ggml_cgraph result = {
  9249. /*.n_nodes =*/ 0,
  9250. /*.n_leafs =*/ 0,
  9251. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  9252. /*.work_size =*/ 0,
  9253. /*.work =*/ NULL,
  9254. /*.nodes =*/ { NULL },
  9255. /*.grads =*/ { NULL },
  9256. /*.leafs =*/ { NULL },
  9257. /*.perf_runs =*/ 0,
  9258. /*.perf_cycles =*/ 0,
  9259. /*.perf_time_us =*/ 0,
  9260. };
  9261. ggml_build_forward_impl(&result, tensor, false);
  9262. return result;
  9263. }
  9264. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  9265. struct ggml_cgraph result = *gf;
  9266. GGML_ASSERT(gf->n_nodes > 0);
  9267. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  9268. if (keep) {
  9269. for (int i = 0; i < gf->n_nodes; i++) {
  9270. struct ggml_tensor * node = gf->nodes[i];
  9271. if (node->grad) {
  9272. node->grad = ggml_dup_tensor(ctx, node);
  9273. gf->grads[i] = node->grad;
  9274. }
  9275. }
  9276. }
  9277. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  9278. struct ggml_tensor * node = gf->nodes[i];
  9279. // because we detached the grad nodes from the original graph, we can afford inplace operations
  9280. if (node->grad) {
  9281. ggml_compute_backward(ctx, node, keep);
  9282. }
  9283. }
  9284. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  9285. struct ggml_tensor * node = gf->nodes[i];
  9286. if (node->is_param) {
  9287. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  9288. ggml_build_forward_impl(&result, node->grad, true);
  9289. }
  9290. }
  9291. return result;
  9292. }
  9293. //
  9294. // thread data
  9295. //
  9296. // synchronization is done via busy loops
  9297. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  9298. //
  9299. #ifdef __APPLE__
  9300. //#include <os/lock.h>
  9301. //
  9302. //typedef os_unfair_lock ggml_lock_t;
  9303. //
  9304. //#define ggml_lock_init(x) UNUSED(x)
  9305. //#define ggml_lock_destroy(x) UNUSED(x)
  9306. //#define ggml_lock_lock os_unfair_lock_lock
  9307. //#define ggml_lock_unlock os_unfair_lock_unlock
  9308. //
  9309. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  9310. typedef int ggml_lock_t;
  9311. #define ggml_lock_init(x) UNUSED(x)
  9312. #define ggml_lock_destroy(x) UNUSED(x)
  9313. #define ggml_lock_lock(x) UNUSED(x)
  9314. #define ggml_lock_unlock(x) UNUSED(x)
  9315. #define GGML_LOCK_INITIALIZER 0
  9316. typedef pthread_t ggml_thread_t;
  9317. #define ggml_thread_create pthread_create
  9318. #define ggml_thread_join pthread_join
  9319. #else
  9320. //typedef pthread_spinlock_t ggml_lock_t;
  9321. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  9322. //#define ggml_lock_destroy pthread_spin_destroy
  9323. //#define ggml_lock_lock pthread_spin_lock
  9324. //#define ggml_lock_unlock pthread_spin_unlock
  9325. typedef int ggml_lock_t;
  9326. #define ggml_lock_init(x) UNUSED(x)
  9327. #define ggml_lock_destroy(x) UNUSED(x)
  9328. #define ggml_lock_lock(x) UNUSED(x)
  9329. #define ggml_lock_unlock(x) UNUSED(x)
  9330. #define GGML_LOCK_INITIALIZER 0
  9331. typedef pthread_t ggml_thread_t;
  9332. #define ggml_thread_create pthread_create
  9333. #define ggml_thread_join pthread_join
  9334. #endif
  9335. struct ggml_compute_state_shared {
  9336. ggml_lock_t spin;
  9337. int n_threads;
  9338. // synchronization primitives
  9339. atomic_int n_ready;
  9340. atomic_bool has_work;
  9341. atomic_bool stop; // stop all threads
  9342. };
  9343. struct ggml_compute_state {
  9344. ggml_thread_t thrd;
  9345. struct ggml_compute_params params;
  9346. struct ggml_tensor * node;
  9347. struct ggml_compute_state_shared * shared;
  9348. };
  9349. static thread_ret_t ggml_graph_compute_thread(void * data) {
  9350. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  9351. const int n_threads = state->shared->n_threads;
  9352. while (true) {
  9353. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  9354. atomic_store(&state->shared->has_work, false);
  9355. } else {
  9356. while (atomic_load(&state->shared->has_work)) {
  9357. if (atomic_load(&state->shared->stop)) {
  9358. return 0;
  9359. }
  9360. ggml_lock_lock (&state->shared->spin);
  9361. ggml_lock_unlock(&state->shared->spin);
  9362. }
  9363. }
  9364. atomic_fetch_sub(&state->shared->n_ready, 1);
  9365. // wait for work
  9366. while (!atomic_load(&state->shared->has_work)) {
  9367. if (atomic_load(&state->shared->stop)) {
  9368. return 0;
  9369. }
  9370. ggml_lock_lock (&state->shared->spin);
  9371. ggml_lock_unlock(&state->shared->spin);
  9372. }
  9373. // check if we should stop
  9374. if (atomic_load(&state->shared->stop)) {
  9375. break;
  9376. }
  9377. if (state->node) {
  9378. if (state->params.ith < state->params.nth) {
  9379. ggml_compute_forward(&state->params, state->node);
  9380. }
  9381. state->node = NULL;
  9382. } else {
  9383. break;
  9384. }
  9385. }
  9386. return 0;
  9387. }
  9388. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  9389. const int n_threads = cgraph->n_threads;
  9390. struct ggml_compute_state_shared state_shared = {
  9391. /*.spin =*/ GGML_LOCK_INITIALIZER,
  9392. /*.n_threads =*/ n_threads,
  9393. /*.n_ready =*/ 0,
  9394. /*.has_work =*/ false,
  9395. /*.stop =*/ false,
  9396. };
  9397. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  9398. // create thread pool
  9399. if (n_threads > 1) {
  9400. ggml_lock_init(&state_shared.spin);
  9401. atomic_store(&state_shared.has_work, true);
  9402. for (int j = 0; j < n_threads - 1; j++) {
  9403. workers[j] = (struct ggml_compute_state) {
  9404. .thrd = 0,
  9405. .params = {
  9406. .type = GGML_TASK_COMPUTE,
  9407. .ith = j + 1,
  9408. .nth = n_threads,
  9409. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9410. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9411. },
  9412. .node = NULL,
  9413. .shared = &state_shared,
  9414. };
  9415. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  9416. GGML_ASSERT(rc == 0);
  9417. UNUSED(rc);
  9418. }
  9419. }
  9420. // initialize tasks + work buffer
  9421. {
  9422. size_t work_size = 0;
  9423. // thread scheduling for the different operations
  9424. for (int i = 0; i < cgraph->n_nodes; i++) {
  9425. struct ggml_tensor * node = cgraph->nodes[i];
  9426. switch (node->op) {
  9427. case GGML_OP_CPY:
  9428. case GGML_OP_DUP:
  9429. {
  9430. node->n_tasks = n_threads;
  9431. size_t cur = 0;
  9432. if (ggml_is_quantized(node->type)) {
  9433. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  9434. }
  9435. work_size = MAX(work_size, cur);
  9436. } break;
  9437. case GGML_OP_ADD:
  9438. {
  9439. node->n_tasks = n_threads;
  9440. size_t cur = 0;
  9441. if (ggml_is_quantized(node->src0->type)) {
  9442. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  9443. }
  9444. work_size = MAX(work_size, cur);
  9445. } break;
  9446. case GGML_OP_SUB:
  9447. case GGML_OP_MUL:
  9448. case GGML_OP_DIV:
  9449. case GGML_OP_SQR:
  9450. case GGML_OP_SQRT:
  9451. case GGML_OP_SUM:
  9452. case GGML_OP_MEAN:
  9453. case GGML_OP_REPEAT:
  9454. case GGML_OP_ABS:
  9455. case GGML_OP_SGN:
  9456. case GGML_OP_NEG:
  9457. case GGML_OP_STEP:
  9458. case GGML_OP_RELU:
  9459. {
  9460. node->n_tasks = 1;
  9461. } break;
  9462. case GGML_OP_GELU:
  9463. {
  9464. node->n_tasks = n_threads;
  9465. } break;
  9466. case GGML_OP_SILU:
  9467. {
  9468. node->n_tasks = n_threads;
  9469. } break;
  9470. case GGML_OP_NORM:
  9471. case GGML_OP_RMS_NORM:
  9472. {
  9473. node->n_tasks = n_threads;
  9474. } break;
  9475. case GGML_OP_MUL_MAT:
  9476. {
  9477. node->n_tasks = n_threads;
  9478. // TODO: use different scheduling for different matrix sizes
  9479. //const int nr0 = ggml_nrows(node->src0);
  9480. //const int nr1 = ggml_nrows(node->src1);
  9481. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  9482. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  9483. size_t cur = 0;
  9484. #if defined(GGML_USE_CUBLAS)
  9485. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  9486. node->n_tasks = 1; // TODO: this actually is doing nothing
  9487. // the threads are still spinning
  9488. cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node);
  9489. }
  9490. else
  9491. #endif
  9492. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  9493. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9494. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9495. node->n_tasks = 1; // TODO: this actually is doing nothing
  9496. // the threads are still spinning
  9497. // here we need memory just for single 2D matrix from src0
  9498. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9499. } else {
  9500. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9501. }
  9502. #else
  9503. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9504. #endif
  9505. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  9506. cur = 0;
  9507. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9508. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9509. node->n_tasks = 1;
  9510. }
  9511. #endif
  9512. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  9513. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9514. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9515. node->n_tasks = 1;
  9516. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9517. } else
  9518. #endif
  9519. {
  9520. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  9521. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  9522. }
  9523. } else {
  9524. GGML_ASSERT(false);
  9525. }
  9526. work_size = MAX(work_size, cur);
  9527. } break;
  9528. case GGML_OP_SCALE:
  9529. {
  9530. node->n_tasks = n_threads;
  9531. } break;
  9532. case GGML_OP_CONT:
  9533. case GGML_OP_RESHAPE:
  9534. case GGML_OP_VIEW:
  9535. case GGML_OP_PERMUTE:
  9536. case GGML_OP_TRANSPOSE:
  9537. case GGML_OP_GET_ROWS:
  9538. case GGML_OP_DIAG_MASK_INF:
  9539. {
  9540. node->n_tasks = 1;
  9541. } break;
  9542. case GGML_OP_SOFT_MAX:
  9543. {
  9544. node->n_tasks = n_threads;
  9545. } break;
  9546. case GGML_OP_ROPE:
  9547. {
  9548. node->n_tasks = n_threads;
  9549. } break;
  9550. case GGML_OP_ALIBI:
  9551. {
  9552. node->n_tasks = 1; //TODO
  9553. } break;
  9554. case GGML_OP_CONV_1D_1S:
  9555. case GGML_OP_CONV_1D_2S:
  9556. {
  9557. node->n_tasks = n_threads;
  9558. GGML_ASSERT(node->src0->ne[3] == 1);
  9559. GGML_ASSERT(node->src1->ne[2] == 1);
  9560. GGML_ASSERT(node->src1->ne[3] == 1);
  9561. size_t cur = 0;
  9562. const int nk = node->src0->ne[0];
  9563. if (node->src0->type == GGML_TYPE_F16 &&
  9564. node->src1->type == GGML_TYPE_F32) {
  9565. cur = sizeof(ggml_fp16_t)*(
  9566. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9567. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9568. );
  9569. } else if (node->src0->type == GGML_TYPE_F32 &&
  9570. node->src1->type == GGML_TYPE_F32) {
  9571. cur = sizeof(float)*(
  9572. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9573. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9574. );
  9575. } else {
  9576. GGML_ASSERT(false);
  9577. }
  9578. work_size = MAX(work_size, cur);
  9579. } break;
  9580. case GGML_OP_FLASH_ATTN:
  9581. {
  9582. node->n_tasks = n_threads;
  9583. size_t cur = 0;
  9584. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  9585. if (node->src1->type == GGML_TYPE_F32) {
  9586. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9587. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9588. }
  9589. if (node->src1->type == GGML_TYPE_F16) {
  9590. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9591. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9592. }
  9593. work_size = MAX(work_size, cur);
  9594. } break;
  9595. case GGML_OP_FLASH_FF:
  9596. {
  9597. node->n_tasks = n_threads;
  9598. size_t cur = 0;
  9599. if (node->src1->type == GGML_TYPE_F32) {
  9600. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9601. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9602. }
  9603. if (node->src1->type == GGML_TYPE_F16) {
  9604. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9605. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9606. }
  9607. work_size = MAX(work_size, cur);
  9608. } break;
  9609. case GGML_OP_MAP_UNARY:
  9610. case GGML_OP_MAP_BINARY:
  9611. {
  9612. node->n_tasks = 1;
  9613. } break;
  9614. case GGML_OP_NONE:
  9615. {
  9616. node->n_tasks = 1;
  9617. } break;
  9618. case GGML_OP_COUNT:
  9619. {
  9620. GGML_ASSERT(false);
  9621. } break;
  9622. }
  9623. }
  9624. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  9625. GGML_ASSERT(false); // TODO: better handling
  9626. }
  9627. if (work_size > 0 && cgraph->work == NULL) {
  9628. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  9629. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  9630. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  9631. }
  9632. }
  9633. const int64_t perf_start_cycles = ggml_perf_cycles();
  9634. const int64_t perf_start_time_us = ggml_perf_time_us();
  9635. for (int i = 0; i < cgraph->n_nodes; i++) {
  9636. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  9637. struct ggml_tensor * node = cgraph->nodes[i];
  9638. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  9639. //if (node->grad == NULL && node->perf_runs > 0) {
  9640. // continue;
  9641. //}
  9642. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  9643. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  9644. // INIT
  9645. struct ggml_compute_params params = {
  9646. /*.type =*/ GGML_TASK_INIT,
  9647. /*.ith =*/ 0,
  9648. /*.nth =*/ node->n_tasks,
  9649. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9650. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  9651. };
  9652. ggml_compute_forward(&params, node);
  9653. // COMPUTE
  9654. if (node->n_tasks > 1) {
  9655. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9656. atomic_store(&state_shared.has_work, false);
  9657. }
  9658. while (atomic_load(&state_shared.has_work)) {
  9659. ggml_lock_lock (&state_shared.spin);
  9660. ggml_lock_unlock(&state_shared.spin);
  9661. }
  9662. // launch thread pool
  9663. for (int j = 0; j < n_threads - 1; j++) {
  9664. workers[j].params = (struct ggml_compute_params) {
  9665. .type = GGML_TASK_COMPUTE,
  9666. .ith = j + 1,
  9667. .nth = node->n_tasks,
  9668. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9669. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9670. };
  9671. workers[j].node = node;
  9672. }
  9673. atomic_fetch_sub(&state_shared.n_ready, 1);
  9674. while (atomic_load(&state_shared.n_ready) > 0) {
  9675. ggml_lock_lock (&state_shared.spin);
  9676. ggml_lock_unlock(&state_shared.spin);
  9677. }
  9678. atomic_store(&state_shared.has_work, true);
  9679. }
  9680. params.type = GGML_TASK_COMPUTE;
  9681. ggml_compute_forward(&params, node);
  9682. // wait for thread pool
  9683. if (node->n_tasks > 1) {
  9684. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9685. atomic_store(&state_shared.has_work, false);
  9686. }
  9687. while (atomic_load(&state_shared.has_work)) {
  9688. ggml_lock_lock (&state_shared.spin);
  9689. ggml_lock_unlock(&state_shared.spin);
  9690. }
  9691. atomic_fetch_sub(&state_shared.n_ready, 1);
  9692. while (atomic_load(&state_shared.n_ready) != 0) {
  9693. ggml_lock_lock (&state_shared.spin);
  9694. ggml_lock_unlock(&state_shared.spin);
  9695. }
  9696. }
  9697. // FINALIZE
  9698. if (node->n_tasks > 1) {
  9699. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9700. atomic_store(&state_shared.has_work, false);
  9701. }
  9702. while (atomic_load(&state_shared.has_work)) {
  9703. ggml_lock_lock (&state_shared.spin);
  9704. ggml_lock_unlock(&state_shared.spin);
  9705. }
  9706. // launch thread pool
  9707. for (int j = 0; j < n_threads - 1; j++) {
  9708. workers[j].params = (struct ggml_compute_params) {
  9709. .type = GGML_TASK_FINALIZE,
  9710. .ith = j + 1,
  9711. .nth = node->n_tasks,
  9712. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9713. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9714. };
  9715. workers[j].node = node;
  9716. }
  9717. atomic_fetch_sub(&state_shared.n_ready, 1);
  9718. while (atomic_load(&state_shared.n_ready) > 0) {
  9719. ggml_lock_lock (&state_shared.spin);
  9720. ggml_lock_unlock(&state_shared.spin);
  9721. }
  9722. atomic_store(&state_shared.has_work, true);
  9723. }
  9724. params.type = GGML_TASK_FINALIZE;
  9725. ggml_compute_forward(&params, node);
  9726. // wait for thread pool
  9727. if (node->n_tasks > 1) {
  9728. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9729. atomic_store(&state_shared.has_work, false);
  9730. }
  9731. while (atomic_load(&state_shared.has_work)) {
  9732. ggml_lock_lock (&state_shared.spin);
  9733. ggml_lock_unlock(&state_shared.spin);
  9734. }
  9735. atomic_fetch_sub(&state_shared.n_ready, 1);
  9736. while (atomic_load(&state_shared.n_ready) != 0) {
  9737. ggml_lock_lock (&state_shared.spin);
  9738. ggml_lock_unlock(&state_shared.spin);
  9739. }
  9740. }
  9741. // performance stats (node)
  9742. {
  9743. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  9744. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  9745. node->perf_runs++;
  9746. node->perf_cycles += perf_cycles_cur;
  9747. node->perf_time_us += perf_time_us_cur;
  9748. }
  9749. }
  9750. // join thread pool
  9751. if (n_threads > 1) {
  9752. atomic_store(&state_shared.stop, true);
  9753. atomic_store(&state_shared.has_work, true);
  9754. for (int j = 0; j < n_threads - 1; j++) {
  9755. int rc = ggml_thread_join(workers[j].thrd, NULL);
  9756. GGML_ASSERT(rc == 0);
  9757. UNUSED(rc);
  9758. }
  9759. ggml_lock_destroy(&state_shared.spin);
  9760. }
  9761. // performance stats (graph)
  9762. {
  9763. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  9764. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  9765. cgraph->perf_runs++;
  9766. cgraph->perf_cycles += perf_cycles_cur;
  9767. cgraph->perf_time_us += perf_time_us_cur;
  9768. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  9769. __func__, cgraph->perf_runs,
  9770. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  9771. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  9772. (double) perf_time_us_cur / 1000.0,
  9773. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  9774. }
  9775. }
  9776. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  9777. for (int i = 0; i < cgraph->n_nodes; i++) {
  9778. struct ggml_tensor * grad = cgraph->grads[i];
  9779. if (grad) {
  9780. ggml_set_zero(grad);
  9781. }
  9782. }
  9783. }
  9784. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  9785. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  9786. GGML_PRINT("=== GRAPH ===\n");
  9787. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  9788. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  9789. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  9790. for (int i = 0; i < cgraph->n_nodes; i++) {
  9791. struct ggml_tensor * node = cgraph->nodes[i];
  9792. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  9793. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  9794. i,
  9795. node->ne[0], node->ne[1], node->ne[2],
  9796. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  9797. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  9798. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  9799. (double) node->perf_time_us / 1000.0,
  9800. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  9801. }
  9802. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  9803. for (int i = 0; i < cgraph->n_leafs; i++) {
  9804. struct ggml_tensor * node = cgraph->leafs[i];
  9805. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  9806. i,
  9807. node->ne[0], node->ne[1],
  9808. GGML_OP_LABEL[node->op]);
  9809. }
  9810. for (int i = 0; i < GGML_OP_COUNT; i++) {
  9811. if (perf_total_per_op_us[i] == 0) {
  9812. continue;
  9813. }
  9814. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  9815. }
  9816. GGML_PRINT("========================================\n");
  9817. }
  9818. // check if node is part of the graph
  9819. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9820. if (cgraph == NULL) {
  9821. return true;
  9822. }
  9823. for (int i = 0; i < cgraph->n_nodes; i++) {
  9824. if (cgraph->nodes[i] == node) {
  9825. return true;
  9826. }
  9827. }
  9828. return false;
  9829. }
  9830. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9831. for (int i = 0; i < cgraph->n_nodes; i++) {
  9832. struct ggml_tensor * parent = cgraph->nodes[i];
  9833. if (parent->grad == node) {
  9834. return parent;
  9835. }
  9836. }
  9837. return NULL;
  9838. }
  9839. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  9840. char color[16];
  9841. FILE * fp = fopen(filename, "w");
  9842. GGML_ASSERT(fp);
  9843. fprintf(fp, "digraph G {\n");
  9844. fprintf(fp, " newrank = true;\n");
  9845. fprintf(fp, " rankdir = LR;\n");
  9846. for (int i = 0; i < gb->n_nodes; i++) {
  9847. struct ggml_tensor * node = gb->nodes[i];
  9848. if (ggml_graph_get_parent(gb, node) != NULL) {
  9849. continue;
  9850. }
  9851. if (node->is_param) {
  9852. snprintf(color, sizeof(color), "yellow");
  9853. } else if (node->grad) {
  9854. if (ggml_graph_find(gf, node)) {
  9855. snprintf(color, sizeof(color), "green");
  9856. } else {
  9857. snprintf(color, sizeof(color), "lightblue");
  9858. }
  9859. } else {
  9860. snprintf(color, sizeof(color), "white");
  9861. }
  9862. fprintf(fp, " \"%p\" [ \
  9863. style = filled; fillcolor = %s; shape = record; \
  9864. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  9865. (void *) node, color,
  9866. i, node->ne[0], node->ne[1],
  9867. GGML_OP_SYMBOL[node->op]);
  9868. if (node->grad) {
  9869. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  9870. } else {
  9871. fprintf(fp, "\"; ]\n");
  9872. }
  9873. }
  9874. for (int i = 0; i < gb->n_leafs; i++) {
  9875. struct ggml_tensor * node = gb->leafs[i];
  9876. snprintf(color, sizeof(color), "pink");
  9877. if (ggml_nelements(node) == 1) {
  9878. fprintf(fp, " \"%p\" [ \
  9879. style = filled; fillcolor = %s; shape = record; \
  9880. label=\"<x>%.1e\"; ]\n",
  9881. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  9882. } else {
  9883. fprintf(fp, " \"%p\" [ \
  9884. style = filled; fillcolor = %s; shape = record; \
  9885. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  9886. (void *) node, color,
  9887. i, node->ne[0], node->ne[1]);
  9888. }
  9889. }
  9890. for (int i = 0; i < gb->n_nodes; i++) {
  9891. struct ggml_tensor * node = gb->nodes[i];
  9892. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  9893. if (node->src0) {
  9894. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  9895. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  9896. parent0 ? (void *) parent0 : (void *) node->src0,
  9897. parent0 ? "g" : "x",
  9898. parent ? (void *) parent : (void *) node,
  9899. parent ? "g" : "x",
  9900. parent ? "empty" : "vee",
  9901. parent ? "dashed" : "solid");
  9902. }
  9903. if (node->src1) {
  9904. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  9905. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  9906. parent1 ? (void *) parent1 : (void *) node->src1,
  9907. parent1 ? "g" : "x",
  9908. parent ? (void *) parent : (void *) node,
  9909. parent ? "g" : "x",
  9910. parent ? "empty" : "vee",
  9911. parent ? "dashed" : "solid");
  9912. }
  9913. }
  9914. for (int i = 0; i < gb->n_leafs; i++) {
  9915. struct ggml_tensor * node = gb->leafs[i];
  9916. if (node->src0) {
  9917. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  9918. (void *) node->src0, "x",
  9919. (void *) node, "x");
  9920. }
  9921. if (node->src1) {
  9922. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  9923. (void *) node->src1, "x",
  9924. (void *) node, "x");
  9925. }
  9926. }
  9927. fprintf(fp, "}\n");
  9928. fclose(fp);
  9929. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  9930. }
  9931. ////////////////////////////////////////////////////////////////////////////////
  9932. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  9933. int i = 0;
  9934. for (int p = 0; p < np; ++p) {
  9935. const int64_t ne = ggml_nelements(ps[p]) ;
  9936. // TODO: add function to set tensor from array
  9937. for (int64_t j = 0; j < ne; ++j) {
  9938. ggml_set_f32_1d(ps[p], j, x[i++]);
  9939. }
  9940. }
  9941. }
  9942. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  9943. int i = 0;
  9944. for (int p = 0; p < np; ++p) {
  9945. const int64_t ne = ggml_nelements(ps[p]) ;
  9946. // TODO: add function to get all elements at once
  9947. for (int64_t j = 0; j < ne; ++j) {
  9948. x[i++] = ggml_get_f32_1d(ps[p], j);
  9949. }
  9950. }
  9951. }
  9952. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  9953. int i = 0;
  9954. for (int p = 0; p < np; ++p) {
  9955. const int64_t ne = ggml_nelements(ps[p]) ;
  9956. // TODO: add function to get all elements at once
  9957. for (int64_t j = 0; j < ne; ++j) {
  9958. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  9959. }
  9960. }
  9961. }
  9962. //
  9963. // ADAM
  9964. //
  9965. // ref: https://arxiv.org/pdf/1412.6980.pdf
  9966. //
  9967. static enum ggml_opt_result ggml_opt_adam(
  9968. struct ggml_context * ctx,
  9969. struct ggml_opt_params params,
  9970. struct ggml_tensor * f,
  9971. struct ggml_cgraph * gf,
  9972. struct ggml_cgraph * gb) {
  9973. GGML_ASSERT(ggml_is_scalar(f));
  9974. gf->n_threads = params.n_threads;
  9975. gb->n_threads = params.n_threads;
  9976. // these will store the parameters we want to optimize
  9977. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9978. int np = 0;
  9979. int nx = 0;
  9980. for (int i = 0; i < gf->n_nodes; ++i) {
  9981. if (gf->nodes[i]->is_param) {
  9982. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9983. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9984. ps[np++] = gf->nodes[i];
  9985. nx += ggml_nelements(gf->nodes[i]);
  9986. }
  9987. }
  9988. // constants
  9989. const float alpha = params.adam.alpha;
  9990. const float beta1 = params.adam.beta1;
  9991. const float beta2 = params.adam.beta2;
  9992. const float eps = params.adam.eps;
  9993. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  9994. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  9995. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  9996. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  9997. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  9998. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  9999. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  10000. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  10001. // initialize
  10002. ggml_vec_set_f32(nx, m, 0.0f);
  10003. ggml_vec_set_f32(nx, v, 0.0f);
  10004. // update view
  10005. ggml_opt_get_params(np, ps, x);
  10006. // compute the function value
  10007. ggml_graph_reset (gf);
  10008. ggml_set_f32 (f->grad, 1.0f);
  10009. ggml_graph_compute(ctx, gb);
  10010. float fx_prev = ggml_get_f32_1d(f, 0);
  10011. if (pf) {
  10012. pf[0] = fx_prev;
  10013. }
  10014. int n_no_improvement = 0;
  10015. float fx_best = fx_prev;
  10016. // run the optimizer
  10017. for (int t = 0; t < params.adam.n_iter; ++t) {
  10018. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  10019. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  10020. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  10021. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  10022. for (int i = 0; i < np; ++i) {
  10023. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  10024. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  10025. }
  10026. const int64_t t_start_wall = ggml_time_us();
  10027. const int64_t t_start_cpu = ggml_cycles();
  10028. UNUSED(t_start_wall);
  10029. UNUSED(t_start_cpu);
  10030. {
  10031. // update the gradient
  10032. ggml_opt_get_grad(np, ps, g1);
  10033. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  10034. ggml_vec_scale_f32(nx, m, beta1);
  10035. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  10036. // g2 = g1^2
  10037. ggml_vec_sqr_f32 (nx, g2, g1);
  10038. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  10039. ggml_vec_scale_f32(nx, v, beta2);
  10040. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  10041. // m^hat = m_t / (1 - beta1^t)
  10042. // v^hat = v_t / (1 - beta2^t)
  10043. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  10044. ggml_vec_cpy_f32 (nx, mh, m);
  10045. ggml_vec_cpy_f32 (nx, vh, v);
  10046. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  10047. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  10048. ggml_vec_sqrt_f32 (nx, vh, vh);
  10049. ggml_vec_acc1_f32 (nx, vh, eps);
  10050. ggml_vec_div_f32 (nx, mh, mh, vh);
  10051. ggml_vec_sub_f32 (nx, x, x, mh);
  10052. // update the parameters
  10053. ggml_opt_set_params(np, ps, x);
  10054. }
  10055. ggml_graph_reset (gf);
  10056. ggml_set_f32 (f->grad, 1.0f);
  10057. ggml_graph_compute(ctx, gb);
  10058. const float fx = ggml_get_f32_1d(f, 0);
  10059. // check convergence
  10060. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  10061. GGML_PRINT_DEBUG("converged\n");
  10062. return GGML_OPT_OK;
  10063. }
  10064. // delta-based convergence test
  10065. if (pf != NULL) {
  10066. // need at least params.past iterations to start checking for convergence
  10067. if (params.past <= t) {
  10068. const float rate = (pf[t%params.past] - fx)/fx;
  10069. if (fabsf(rate) < params.delta) {
  10070. return GGML_OPT_OK;
  10071. }
  10072. }
  10073. pf[t%params.past] = fx;
  10074. }
  10075. // check for improvement
  10076. if (params.max_no_improvement > 0) {
  10077. if (fx_best > fx) {
  10078. fx_best = fx;
  10079. n_no_improvement = 0;
  10080. } else {
  10081. ++n_no_improvement;
  10082. if (n_no_improvement >= params.max_no_improvement) {
  10083. return GGML_OPT_OK;
  10084. }
  10085. }
  10086. }
  10087. fx_prev = fx;
  10088. {
  10089. const int64_t t_end_cpu = ggml_cycles();
  10090. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  10091. UNUSED(t_end_cpu);
  10092. const int64_t t_end_wall = ggml_time_us();
  10093. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  10094. UNUSED(t_end_wall);
  10095. }
  10096. }
  10097. return GGML_OPT_DID_NOT_CONVERGE;
  10098. }
  10099. //
  10100. // L-BFGS
  10101. //
  10102. // the L-BFGS implementation below is based on the following implementation:
  10103. //
  10104. // https://github.com/chokkan/liblbfgs
  10105. //
  10106. struct ggml_lbfgs_iteration_data {
  10107. float alpha;
  10108. float ys;
  10109. float * s;
  10110. float * y;
  10111. };
  10112. static enum ggml_opt_result linesearch_backtracking(
  10113. struct ggml_context * ctx,
  10114. const struct ggml_opt_params * params,
  10115. int nx,
  10116. float * x,
  10117. float * fx,
  10118. float * g,
  10119. float * d,
  10120. float * step,
  10121. const float * xp,
  10122. struct ggml_tensor * f,
  10123. struct ggml_cgraph * gf,
  10124. struct ggml_cgraph * gb,
  10125. const int np,
  10126. struct ggml_tensor * ps[]) {
  10127. int count = 0;
  10128. float width = 0.0f;
  10129. float dg = 0.0f;
  10130. float finit = 0.0f;
  10131. float dginit = 0.0f;
  10132. float dgtest = 0.0f;
  10133. const float dec = 0.5f;
  10134. const float inc = 2.1f;
  10135. if (*step <= 0.f) {
  10136. return GGML_LINESEARCH_INVALID_PARAMETERS;
  10137. }
  10138. // compute the initial gradient in the search direction
  10139. ggml_vec_dot_f32(nx, &dginit, g, d);
  10140. // make sure that d points to a descent direction
  10141. if (0 < dginit) {
  10142. return GGML_LINESEARCH_FAIL;
  10143. }
  10144. // initialize local variables
  10145. finit = *fx;
  10146. dgtest = params->lbfgs.ftol*dginit;
  10147. while (true) {
  10148. ggml_vec_cpy_f32(nx, x, xp);
  10149. ggml_vec_mad_f32(nx, x, d, *step);
  10150. // evaluate the function and gradient values
  10151. {
  10152. ggml_opt_set_params(np, ps, x);
  10153. ggml_graph_reset (gf);
  10154. ggml_set_f32 (f->grad, 1.0f);
  10155. ggml_graph_compute(ctx, gb);
  10156. ggml_opt_get_grad(np, ps, g);
  10157. *fx = ggml_get_f32_1d(f, 0);
  10158. }
  10159. ++count;
  10160. if (*fx > finit + (*step)*dgtest) {
  10161. width = dec;
  10162. } else {
  10163. // Armijo condition is satisfied
  10164. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  10165. return count;
  10166. }
  10167. ggml_vec_dot_f32(nx, &dg, g, d);
  10168. // check the Wolfe condition
  10169. if (dg < params->lbfgs.wolfe * dginit) {
  10170. width = inc;
  10171. } else {
  10172. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  10173. // regular Wolfe conditions
  10174. return count;
  10175. }
  10176. if(dg > -params->lbfgs.wolfe*dginit) {
  10177. width = dec;
  10178. } else {
  10179. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  10180. return count;
  10181. }
  10182. return count;
  10183. }
  10184. }
  10185. if (*step < params->lbfgs.min_step) {
  10186. return GGML_LINESEARCH_MINIMUM_STEP;
  10187. }
  10188. if (*step > params->lbfgs.max_step) {
  10189. return GGML_LINESEARCH_MAXIMUM_STEP;
  10190. }
  10191. if (params->lbfgs.max_linesearch <= count) {
  10192. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  10193. }
  10194. (*step) *= width;
  10195. }
  10196. return GGML_LINESEARCH_FAIL;
  10197. }
  10198. static enum ggml_opt_result ggml_opt_lbfgs(
  10199. struct ggml_context * ctx,
  10200. struct ggml_opt_params params,
  10201. struct ggml_tensor * f,
  10202. struct ggml_cgraph * gf,
  10203. struct ggml_cgraph * gb) {
  10204. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  10205. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  10206. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  10207. return GGML_OPT_INVALID_WOLFE;
  10208. }
  10209. }
  10210. gf->n_threads = params.n_threads;
  10211. gb->n_threads = params.n_threads;
  10212. const int m = params.lbfgs.m;
  10213. // these will store the parameters we want to optimize
  10214. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  10215. int np = 0;
  10216. int nx = 0;
  10217. for (int i = 0; i < gf->n_nodes; ++i) {
  10218. if (gf->nodes[i]->is_param) {
  10219. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  10220. GGML_ASSERT(np < GGML_MAX_PARAMS);
  10221. ps[np++] = gf->nodes[i];
  10222. nx += ggml_nelements(gf->nodes[i]);
  10223. }
  10224. }
  10225. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  10226. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  10227. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  10228. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  10229. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  10230. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  10231. float fx = 0.0f; // cost function value
  10232. float xnorm = 0.0f; // ||x||
  10233. float gnorm = 0.0f; // ||g||
  10234. float step = 0.0f;
  10235. // initialize x from the graph nodes
  10236. ggml_opt_get_params(np, ps, x);
  10237. // the L-BFGS memory
  10238. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  10239. for (int i = 0; i < m; ++i) {
  10240. lm[i].alpha = 0.0f;
  10241. lm[i].ys = 0.0f;
  10242. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  10243. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  10244. }
  10245. // evaluate the function value and its gradient
  10246. {
  10247. ggml_opt_set_params(np, ps, x);
  10248. ggml_graph_reset (gf);
  10249. ggml_set_f32 (f->grad, 1.0f);
  10250. ggml_graph_compute(ctx, gb);
  10251. ggml_opt_get_grad(np, ps, g);
  10252. fx = ggml_get_f32_1d(f, 0);
  10253. }
  10254. if (pf) {
  10255. pf[0] = fx;
  10256. }
  10257. float fx_best = fx;
  10258. // search direction = -gradient
  10259. ggml_vec_neg_f32(nx, d, g);
  10260. // ||x||, ||g||
  10261. ggml_vec_norm_f32(nx, &xnorm, x);
  10262. ggml_vec_norm_f32(nx, &gnorm, g);
  10263. if (xnorm < 1.0f) {
  10264. xnorm = 1.0f;
  10265. }
  10266. // already optimized
  10267. if (gnorm/xnorm <= params.lbfgs.eps) {
  10268. return GGML_OPT_OK;
  10269. }
  10270. // initial step
  10271. ggml_vec_norm_inv_f32(nx, &step, d);
  10272. int j = 0;
  10273. int k = 1;
  10274. int ls = 0;
  10275. int end = 0;
  10276. int bound = 0;
  10277. int n_no_improvement = 0;
  10278. float ys = 0.0f;
  10279. float yy = 0.0f;
  10280. float beta = 0.0f;
  10281. while (true) {
  10282. // store the current position and gradient vectors
  10283. ggml_vec_cpy_f32(nx, xp, x);
  10284. ggml_vec_cpy_f32(nx, gp, g);
  10285. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  10286. if (ls < 0) {
  10287. // linesearch failed - go back to the previous point and return
  10288. ggml_vec_cpy_f32(nx, x, xp);
  10289. ggml_vec_cpy_f32(nx, g, gp);
  10290. return ls;
  10291. }
  10292. ggml_vec_norm_f32(nx, &xnorm, x);
  10293. ggml_vec_norm_f32(nx, &gnorm, g);
  10294. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  10295. if (xnorm < 1.0f) {
  10296. xnorm = 1.0f;
  10297. }
  10298. if (gnorm/xnorm <= params.lbfgs.eps) {
  10299. // converged
  10300. return GGML_OPT_OK;
  10301. }
  10302. // delta-based convergence test
  10303. if (pf != NULL) {
  10304. // need at least params.past iterations to start checking for convergence
  10305. if (params.past <= k) {
  10306. const float rate = (pf[k%params.past] - fx)/fx;
  10307. if (fabsf(rate) < params.delta) {
  10308. return GGML_OPT_OK;
  10309. }
  10310. }
  10311. pf[k%params.past] = fx;
  10312. }
  10313. // check for improvement
  10314. if (params.max_no_improvement > 0) {
  10315. if (fx < fx_best) {
  10316. fx_best = fx;
  10317. n_no_improvement = 0;
  10318. } else {
  10319. n_no_improvement++;
  10320. if (n_no_improvement >= params.max_no_improvement) {
  10321. return GGML_OPT_OK;
  10322. }
  10323. }
  10324. }
  10325. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  10326. // reached the maximum number of iterations
  10327. return GGML_OPT_DID_NOT_CONVERGE;
  10328. }
  10329. // update vectors s and y:
  10330. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  10331. // y_{k+1} = g_{k+1} - g_{k}.
  10332. //
  10333. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  10334. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  10335. // compute scalars ys and yy:
  10336. // ys = y^t \cdot s -> 1 / \rho.
  10337. // yy = y^t \cdot y.
  10338. //
  10339. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  10340. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  10341. lm[end].ys = ys;
  10342. // find new search direction
  10343. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  10344. bound = (m <= k) ? m : k;
  10345. k++;
  10346. end = (end + 1)%m;
  10347. // initialize search direction with -g
  10348. ggml_vec_neg_f32(nx, d, g);
  10349. j = end;
  10350. for (int i = 0; i < bound; ++i) {
  10351. j = (j + m - 1) % m;
  10352. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  10353. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  10354. lm[j].alpha /= lm[j].ys;
  10355. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  10356. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  10357. }
  10358. ggml_vec_scale_f32(nx, d, ys/yy);
  10359. for (int i = 0; i < bound; ++i) {
  10360. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  10361. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  10362. beta /= lm[j].ys;
  10363. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  10364. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  10365. j = (j + 1)%m;
  10366. }
  10367. step = 1.0;
  10368. }
  10369. return GGML_OPT_DID_NOT_CONVERGE;
  10370. }
  10371. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  10372. struct ggml_opt_params result;
  10373. switch (type) {
  10374. case GGML_OPT_ADAM:
  10375. {
  10376. result = (struct ggml_opt_params) {
  10377. .type = GGML_OPT_ADAM,
  10378. .n_threads = 1,
  10379. .past = 0,
  10380. .delta = 1e-5f,
  10381. .max_no_improvement = 100,
  10382. .print_forward_graph = true,
  10383. .print_backward_graph = true,
  10384. .adam = {
  10385. .n_iter = 10000,
  10386. .alpha = 0.001f,
  10387. .beta1 = 0.9f,
  10388. .beta2 = 0.999f,
  10389. .eps = 1e-8f,
  10390. .eps_f = 1e-5f,
  10391. .eps_g = 1e-3f,
  10392. },
  10393. };
  10394. } break;
  10395. case GGML_OPT_LBFGS:
  10396. {
  10397. result = (struct ggml_opt_params) {
  10398. .type = GGML_OPT_LBFGS,
  10399. .n_threads = 1,
  10400. .past = 0,
  10401. .delta = 1e-5f,
  10402. .max_no_improvement = 0,
  10403. .print_forward_graph = true,
  10404. .print_backward_graph = true,
  10405. .lbfgs = {
  10406. .m = 6,
  10407. .n_iter = 100,
  10408. .max_linesearch = 20,
  10409. .eps = 1e-5f,
  10410. .ftol = 1e-4f,
  10411. .wolfe = 0.9f,
  10412. .min_step = 1e-20f,
  10413. .max_step = 1e+20f,
  10414. .linesearch = GGML_LINESEARCH_DEFAULT,
  10415. },
  10416. };
  10417. } break;
  10418. }
  10419. return result;
  10420. }
  10421. enum ggml_opt_result ggml_opt(
  10422. struct ggml_context * ctx,
  10423. struct ggml_opt_params params,
  10424. struct ggml_tensor * f) {
  10425. bool free_ctx = false;
  10426. if (ctx == NULL) {
  10427. struct ggml_init_params params_ctx = {
  10428. .mem_size = 16*1024*1024,
  10429. .mem_buffer = NULL,
  10430. .no_alloc = false,
  10431. };
  10432. ctx = ggml_init(params_ctx);
  10433. if (ctx == NULL) {
  10434. return GGML_OPT_NO_CONTEXT;
  10435. }
  10436. free_ctx = true;
  10437. }
  10438. enum ggml_opt_result result = GGML_OPT_OK;
  10439. // build forward + backward compute graphs
  10440. struct ggml_cgraph gf = ggml_build_forward (f);
  10441. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  10442. switch (params.type) {
  10443. case GGML_OPT_ADAM:
  10444. {
  10445. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  10446. } break;
  10447. case GGML_OPT_LBFGS:
  10448. {
  10449. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  10450. } break;
  10451. }
  10452. if (params.print_forward_graph) {
  10453. ggml_graph_print (&gf);
  10454. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  10455. }
  10456. if (params.print_backward_graph) {
  10457. ggml_graph_print (&gb);
  10458. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  10459. }
  10460. if (free_ctx) {
  10461. ggml_free(ctx);
  10462. }
  10463. return result;
  10464. }
  10465. ////////////////////////////////////////////////////////////////////////////////
  10466. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10467. assert(k % QK4_0 == 0);
  10468. const int nb = k / QK4_0;
  10469. for (int j = 0; j < n; j += k) {
  10470. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  10471. quantize_row_q4_0_reference(src + j, y, k);
  10472. for (int i = 0; i < nb; i++) {
  10473. for (int l = 0; l < QK4_0; l += 2) {
  10474. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10475. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10476. hist[vi0]++;
  10477. hist[vi1]++;
  10478. }
  10479. }
  10480. }
  10481. return (n/QK4_0*sizeof(block_q4_0));
  10482. }
  10483. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10484. assert(k % QK4_1 == 0);
  10485. const int nb = k / QK4_1;
  10486. for (int j = 0; j < n; j += k) {
  10487. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  10488. quantize_row_q4_1_reference(src + j, y, k);
  10489. for (int i = 0; i < nb; i++) {
  10490. for (int l = 0; l < QK4_1; l += 2) {
  10491. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10492. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10493. hist[vi0]++;
  10494. hist[vi1]++;
  10495. }
  10496. }
  10497. }
  10498. return (n/QK4_1*sizeof(block_q4_1));
  10499. }
  10500. size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist) {
  10501. assert(k % QK4_2 == 0);
  10502. const int nb = k / QK4_2;
  10503. for (int j = 0; j < n; j += k) {
  10504. block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2;
  10505. quantize_row_q4_2_reference(src + j, y, k);
  10506. for (int i = 0; i < nb; i++) {
  10507. for (int l = 0; l < QK4_2; l += 2) {
  10508. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10509. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10510. hist[vi0]++;
  10511. hist[vi1]++;
  10512. }
  10513. }
  10514. }
  10515. return (n/QK4_2*sizeof(block_q4_2));
  10516. }
  10517. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10518. assert(k % QK5_0 == 0);
  10519. const int nb = k / QK5_0;
  10520. for (int j = 0; j < n; j += k) {
  10521. block_q5_0 * restrict y = (block_q5_0 *)dst + j/QK5_0;
  10522. quantize_row_q5_0_reference(src + j, y, k);
  10523. for (int i = 0; i < nb; i++) {
  10524. uint32_t qh;
  10525. memcpy(&qh, &y[i].qh, sizeof(qh));
  10526. for (int l = 0; l < QK5_0; l += 2) {
  10527. const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4;
  10528. const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4;
  10529. // cast to 16 bins
  10530. const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2;
  10531. const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2;
  10532. hist[vi0]++;
  10533. hist[vi1]++;
  10534. }
  10535. }
  10536. }
  10537. return (n/QK5_0*sizeof(block_q5_0));
  10538. }
  10539. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10540. assert(k % QK5_1 == 0);
  10541. const int nb = k / QK5_1;
  10542. for (int j = 0; j < n; j += k) {
  10543. block_q5_1 * restrict y = (block_q5_1 *)dst + j/QK5_1;
  10544. quantize_row_q5_1_reference(src + j, y, k);
  10545. for (int i = 0; i < nb; i++) {
  10546. uint32_t qh;
  10547. memcpy(&qh, &y[i].qh, sizeof(qh));
  10548. for (int l = 0; l < QK5_1; l += 2) {
  10549. const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4;
  10550. const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4;
  10551. // cast to 16 bins
  10552. const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2;
  10553. const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2;
  10554. hist[vi0]++;
  10555. hist[vi1]++;
  10556. }
  10557. }
  10558. }
  10559. return (n/QK5_1*sizeof(block_q5_1));
  10560. }
  10561. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10562. assert(k % QK8_0 == 0);
  10563. const int nb = k / QK8_0;
  10564. for (int j = 0; j < n; j += k) {
  10565. block_q8_0 * restrict y = (block_q8_0 *)dst + j/QK8_0;
  10566. quantize_row_q8_0_reference(src + j, y, k);
  10567. for (int i = 0; i < nb; i++) {
  10568. for (int l = 0; l < QK8_0; ++l) {
  10569. const int8_t vi = y[i].qs[l];
  10570. hist[vi/16 + 8]++;
  10571. }
  10572. }
  10573. }
  10574. return (n/QK8_0*sizeof(block_q8_0));
  10575. }
  10576. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  10577. size_t result = 0;
  10578. switch (type) {
  10579. case GGML_TYPE_Q4_0:
  10580. {
  10581. GGML_ASSERT(start % QK4_0 == 0);
  10582. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  10583. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  10584. } break;
  10585. case GGML_TYPE_Q4_1:
  10586. {
  10587. GGML_ASSERT(start % QK4_1 == 0);
  10588. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  10589. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  10590. } break;
  10591. case GGML_TYPE_Q4_2:
  10592. {
  10593. GGML_ASSERT(start % QK4_2 == 0);
  10594. block_q4_2 * block = (block_q4_2*)dst + start / QK4_2;
  10595. result = ggml_quantize_q4_2(src + start, block, n, n, hist);
  10596. } break;
  10597. case GGML_TYPE_Q5_0:
  10598. {
  10599. GGML_ASSERT(start % QK5_0 == 0);
  10600. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  10601. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  10602. } break;
  10603. case GGML_TYPE_Q5_1:
  10604. {
  10605. GGML_ASSERT(start % QK5_1 == 0);
  10606. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  10607. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  10608. } break;
  10609. case GGML_TYPE_Q8_0:
  10610. {
  10611. GGML_ASSERT(start % QK8_0 == 0);
  10612. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  10613. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  10614. } break;
  10615. default:
  10616. assert(false);
  10617. }
  10618. return result;
  10619. }
  10620. ////////////////////////////////////////////////////////////////////////////////
  10621. int ggml_cpu_has_avx(void) {
  10622. #if defined(__AVX__)
  10623. return 1;
  10624. #else
  10625. return 0;
  10626. #endif
  10627. }
  10628. int ggml_cpu_has_avx2(void) {
  10629. #if defined(__AVX2__)
  10630. return 1;
  10631. #else
  10632. return 0;
  10633. #endif
  10634. }
  10635. int ggml_cpu_has_avx512(void) {
  10636. #if defined(__AVX512F__)
  10637. return 1;
  10638. #else
  10639. return 0;
  10640. #endif
  10641. }
  10642. int ggml_cpu_has_avx512_vbmi(void) {
  10643. #if defined(__AVX512VBMI__)
  10644. return 1;
  10645. #else
  10646. return 0;
  10647. #endif
  10648. }
  10649. int ggml_cpu_has_avx512_vnni(void) {
  10650. #if defined(__AVX512VNNI__)
  10651. return 1;
  10652. #else
  10653. return 0;
  10654. #endif
  10655. }
  10656. int ggml_cpu_has_fma(void) {
  10657. #if defined(__FMA__)
  10658. return 1;
  10659. #else
  10660. return 0;
  10661. #endif
  10662. }
  10663. int ggml_cpu_has_neon(void) {
  10664. #if defined(__ARM_NEON)
  10665. return 1;
  10666. #else
  10667. return 0;
  10668. #endif
  10669. }
  10670. int ggml_cpu_has_arm_fma(void) {
  10671. #if defined(__ARM_FEATURE_FMA)
  10672. return 1;
  10673. #else
  10674. return 0;
  10675. #endif
  10676. }
  10677. int ggml_cpu_has_f16c(void) {
  10678. #if defined(__F16C__)
  10679. return 1;
  10680. #else
  10681. return 0;
  10682. #endif
  10683. }
  10684. int ggml_cpu_has_fp16_va(void) {
  10685. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  10686. return 1;
  10687. #else
  10688. return 0;
  10689. #endif
  10690. }
  10691. int ggml_cpu_has_wasm_simd(void) {
  10692. #if defined(__wasm_simd128__)
  10693. return 1;
  10694. #else
  10695. return 0;
  10696. #endif
  10697. }
  10698. int ggml_cpu_has_blas(void) {
  10699. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  10700. return 1;
  10701. #else
  10702. return 0;
  10703. #endif
  10704. }
  10705. int ggml_cpu_has_cublas(void) {
  10706. #if defined(GGML_USE_CUBLAS)
  10707. return 1;
  10708. #else
  10709. return 0;
  10710. #endif
  10711. }
  10712. int ggml_cpu_has_clblast(void) {
  10713. #if defined(GGML_USE_CLBLAST)
  10714. return 1;
  10715. #else
  10716. return 0;
  10717. #endif
  10718. }
  10719. int ggml_cpu_has_gpublas(void) {
  10720. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  10721. }
  10722. int ggml_cpu_has_sse3(void) {
  10723. #if defined(__SSE3__)
  10724. return 1;
  10725. #else
  10726. return 0;
  10727. #endif
  10728. }
  10729. int ggml_cpu_has_vsx(void) {
  10730. #if defined(__POWER9_VECTOR__)
  10731. return 1;
  10732. #else
  10733. return 0;
  10734. #endif
  10735. }
  10736. ////////////////////////////////////////////////////////////////////////////////