| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006 |
- #include "arg.h"
- #include "log.h"
- #include "sampling.h"
- #include <algorithm>
- #include <climits>
- #include <cstdarg>
- #include <fstream>
- #include <regex>
- #include <set>
- #include <string>
- #include <thread>
- #include <vector>
- #include "json-schema-to-grammar.h"
- using json = nlohmann::ordered_json;
- llama_arg & llama_arg::set_examples(std::initializer_list<enum llama_example> examples) {
- this->examples = std::move(examples);
- return *this;
- }
- llama_arg & llama_arg::set_env(const char * env) {
- help = help + "\n(env: " + env + ")";
- this->env = env;
- return *this;
- }
- llama_arg & llama_arg::set_sparam() {
- is_sparam = true;
- return *this;
- }
- bool llama_arg::in_example(enum llama_example ex) {
- return examples.find(ex) != examples.end();
- }
- bool llama_arg::get_value_from_env(std::string & output) {
- if (env == nullptr) return false;
- char * value = std::getenv(env);
- if (value) {
- output = value;
- return true;
- }
- return false;
- }
- bool llama_arg::has_value_from_env() {
- return env != nullptr && std::getenv(env);
- }
- static std::vector<std::string> break_str_into_lines(std::string input, size_t max_char_per_line) {
- std::vector<std::string> result;
- std::istringstream iss(input);
- std::string line;
- auto add_line = [&](const std::string& l) {
- if (l.length() <= max_char_per_line) {
- result.push_back(l);
- } else {
- std::istringstream line_stream(l);
- std::string word, current_line;
- while (line_stream >> word) {
- if (current_line.length() + !current_line.empty() + word.length() > max_char_per_line) {
- if (!current_line.empty()) result.push_back(current_line);
- current_line = word;
- } else {
- current_line += (!current_line.empty() ? " " : "") + word;
- }
- }
- if (!current_line.empty()) result.push_back(current_line);
- }
- };
- while (std::getline(iss, line)) {
- add_line(line);
- }
- return result;
- }
- std::string llama_arg::to_string() {
- // params for printing to console
- const static int n_leading_spaces = 40;
- const static int n_char_per_line_help = 70; // TODO: detect this based on current console
- std::string leading_spaces(n_leading_spaces, ' ');
- std::ostringstream ss;
- for (const auto arg : args) {
- if (arg == args.front()) {
- if (args.size() == 1) {
- ss << arg;
- } else {
- // first arg is usually abbreviation, we need padding to make it more beautiful
- auto tmp = std::string(arg) + ", ";
- auto spaces = std::string(std::max(0, 7 - (int)tmp.size()), ' ');
- ss << tmp << spaces;
- }
- } else {
- ss << arg << (arg != args.back() ? ", " : "");
- }
- }
- if (value_hint) ss << " " << value_hint;
- if (value_hint_2) ss << " " << value_hint_2;
- if (ss.tellp() > n_leading_spaces - 3) {
- // current line is too long, add new line
- ss << "\n" << leading_spaces;
- } else {
- // padding between arg and help, same line
- ss << std::string(leading_spaces.size() - ss.tellp(), ' ');
- }
- const auto help_lines = break_str_into_lines(help, n_char_per_line_help);
- for (const auto & line : help_lines) {
- ss << (&line == &help_lines.front() ? "" : leading_spaces) << line << "\n";
- }
- return ss.str();
- }
- //
- // utils
- //
- #ifdef __GNUC__
- #ifdef __MINGW32__
- #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
- #else
- #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
- #endif
- #else
- #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
- #endif
- LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2)
- static std::string format(const char * fmt, ...) {
- va_list ap;
- va_list ap2;
- va_start(ap, fmt);
- va_copy(ap2, ap);
- int size = vsnprintf(NULL, 0, fmt, ap);
- GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
- std::vector<char> buf(size + 1);
- int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
- GGML_ASSERT(size2 == size);
- va_end(ap2);
- va_end(ap);
- return std::string(buf.data(), size);
- }
- static void gpt_params_handle_model_default(gpt_params & params) {
- if (!params.hf_repo.empty()) {
- // short-hand to avoid specifying --hf-file -> default it to --model
- if (params.hf_file.empty()) {
- if (params.model.empty()) {
- throw std::invalid_argument("error: --hf-repo requires either --hf-file or --model\n");
- }
- params.hf_file = params.model;
- } else if (params.model.empty()) {
- params.model = fs_get_cache_file(string_split(params.hf_file, '/').back());
- }
- } else if (!params.model_url.empty()) {
- if (params.model.empty()) {
- auto f = string_split(params.model_url, '#').front();
- f = string_split(f, '?').front();
- params.model = fs_get_cache_file(string_split(f, '/').back());
- }
- } else if (params.model.empty()) {
- params.model = DEFAULT_MODEL_PATH;
- }
- }
- //
- // CLI argument parsing functions
- //
- static bool gpt_params_parse_ex(int argc, char ** argv, gpt_params_context & ctx_arg) {
- std::string arg;
- const std::string arg_prefix = "--";
- gpt_params & params = ctx_arg.params;
- std::unordered_map<std::string, llama_arg *> arg_to_options;
- for (auto & opt : ctx_arg.options) {
- for (const auto & arg : opt.args) {
- arg_to_options[arg] = &opt;
- }
- }
- // handle environment variables
- for (auto & opt : ctx_arg.options) {
- std::string value;
- if (opt.get_value_from_env(value)) {
- try {
- if (opt.handler_void && (value == "1" || value == "true")) {
- opt.handler_void(params);
- }
- if (opt.handler_int) {
- opt.handler_int(params, std::stoi(value));
- }
- if (opt.handler_string) {
- opt.handler_string(params, value);
- continue;
- }
- } catch (std::exception & e) {
- throw std::invalid_argument(format(
- "error while handling environment variable \"%s\": %s\n\n", opt.env, e.what()));
- }
- }
- }
- // handle command line arguments
- auto check_arg = [&](int i) {
- if (i+1 >= argc) {
- throw std::invalid_argument("expected value for argument");
- }
- };
- for (int i = 1; i < argc; i++) {
- const std::string arg_prefix = "--";
- std::string arg = argv[i];
- if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
- std::replace(arg.begin(), arg.end(), '_', '-');
- }
- if (arg_to_options.find(arg) == arg_to_options.end()) {
- throw std::invalid_argument(format("error: invalid argument: %s", arg.c_str()));
- }
- auto opt = *arg_to_options[arg];
- if (opt.has_value_from_env()) {
- fprintf(stderr, "warn: %s environment variable is set, but will be overwritten by command line argument %s\n", opt.env, arg.c_str());
- }
- try {
- if (opt.handler_void) {
- opt.handler_void(params);
- continue;
- }
- // arg with single value
- check_arg(i);
- std::string val = argv[++i];
- if (opt.handler_int) {
- opt.handler_int(params, std::stoi(val));
- continue;
- }
- if (opt.handler_string) {
- opt.handler_string(params, val);
- continue;
- }
- // arg with 2 values
- check_arg(i);
- std::string val2 = argv[++i];
- if (opt.handler_str_str) {
- opt.handler_str_str(params, val, val2);
- continue;
- }
- } catch (std::exception & e) {
- throw std::invalid_argument(format(
- "error while handling argument \"%s\": %s\n\n"
- "usage:\n%s\n\nto show complete usage, run with -h",
- arg.c_str(), e.what(), arg_to_options[arg]->to_string().c_str()));
- }
- }
- postprocess_cpu_params(params.cpuparams, nullptr);
- postprocess_cpu_params(params.cpuparams_batch, ¶ms.cpuparams);
- postprocess_cpu_params(params.draft_cpuparams, ¶ms.cpuparams);
- postprocess_cpu_params(params.draft_cpuparams_batch, ¶ms.cpuparams_batch);
- if (params.prompt_cache_all && (params.interactive || params.interactive_first)) {
- throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
- }
- gpt_params_handle_model_default(params);
- if (params.escape) {
- string_process_escapes(params.prompt);
- string_process_escapes(params.input_prefix);
- string_process_escapes(params.input_suffix);
- for (auto & antiprompt : params.antiprompt) {
- string_process_escapes(antiprompt);
- }
- }
- if (!params.kv_overrides.empty()) {
- params.kv_overrides.emplace_back();
- params.kv_overrides.back().key[0] = 0;
- }
- if (params.reranking && params.embedding) {
- throw std::invalid_argument("error: either --embedding or --reranking can be specified, but not both");
- }
- return true;
- }
- static void gpt_params_print_usage(gpt_params_context & ctx_arg) {
- auto print_options = [](std::vector<llama_arg *> & options) {
- for (llama_arg * opt : options) {
- printf("%s", opt->to_string().c_str());
- }
- };
- std::vector<llama_arg *> common_options;
- std::vector<llama_arg *> sparam_options;
- std::vector<llama_arg *> specific_options;
- for (auto & opt : ctx_arg.options) {
- // in case multiple LLAMA_EXAMPLE_* are set, we prioritize the LLAMA_EXAMPLE_* matching current example
- if (opt.is_sparam) {
- sparam_options.push_back(&opt);
- } else if (opt.in_example(ctx_arg.ex)) {
- specific_options.push_back(&opt);
- } else {
- common_options.push_back(&opt);
- }
- }
- printf("----- common params -----\n\n");
- print_options(common_options);
- printf("\n\n----- sampling params -----\n\n");
- print_options(sparam_options);
- // TODO: maybe convert enum llama_example to string
- printf("\n\n----- example-specific params -----\n\n");
- print_options(specific_options);
- }
- bool gpt_params_parse(int argc, char ** argv, gpt_params & params, llama_example ex, void(*print_usage)(int, char **)) {
- auto ctx_arg = gpt_params_parser_init(params, ex, print_usage);
- const gpt_params params_org = ctx_arg.params; // the example can modify the default params
- try {
- if (!gpt_params_parse_ex(argc, argv, ctx_arg)) {
- ctx_arg.params = params_org;
- return false;
- }
- if (ctx_arg.params.usage) {
- gpt_params_print_usage(ctx_arg);
- if (ctx_arg.print_usage) {
- ctx_arg.print_usage(argc, argv);
- }
- exit(0);
- }
- } catch (const std::invalid_argument & ex) {
- fprintf(stderr, "%s\n", ex.what());
- ctx_arg.params = params_org;
- return false;
- }
- return true;
- }
- gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex, void(*print_usage)(int, char **)) {
- gpt_params_context ctx_arg(params);
- ctx_arg.print_usage = print_usage;
- ctx_arg.ex = ex;
- std::string sampler_type_chars;
- std::string sampler_type_names;
- for (const auto & sampler : params.sparams.samplers) {
- sampler_type_chars += gpt_sampler_type_to_chr(sampler);
- sampler_type_names += gpt_sampler_type_to_str(sampler) + ";";
- }
- sampler_type_names.pop_back();
- /**
- * filter options by example
- * rules:
- * - all examples inherit options from LLAMA_EXAMPLE_COMMON
- * - if LLAMA_EXAMPLE_* is set (other than COMMON), we only show the option in the corresponding example
- * - if both {LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_*,} are set, we will prioritize the LLAMA_EXAMPLE_* matching current example
- */
- auto add_opt = [&](llama_arg arg) {
- if (arg.in_example(ex) || arg.in_example(LLAMA_EXAMPLE_COMMON)) {
- ctx_arg.options.push_back(std::move(arg));
- }
- };
- add_opt(llama_arg(
- {"-h", "--help", "--usage"},
- "print usage and exit",
- [](gpt_params & params) {
- params.usage = true;
- }
- ));
- add_opt(llama_arg(
- {"--version"},
- "show version and build info",
- [](gpt_params &) {
- fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
- fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
- exit(0);
- }
- ));
- add_opt(llama_arg(
- {"--verbose-prompt"},
- format("print a verbose prompt before generation (default: %s)", params.verbose_prompt ? "true" : "false"),
- [](gpt_params & params) {
- params.verbose_prompt = true;
- }
- ));
- add_opt(llama_arg(
- {"--no-display-prompt"},
- format("don't print prompt at generation (default: %s)", !params.display_prompt ? "true" : "false"),
- [](gpt_params & params) {
- params.display_prompt = false;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(llama_arg(
- {"-co", "--color"},
- format("colorise output to distinguish prompt and user input from generations (default: %s)", params.use_color ? "true" : "false"),
- [](gpt_params & params) {
- params.use_color = true;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
- add_opt(llama_arg(
- {"-t", "--threads"}, "N",
- format("number of threads to use during generation (default: %d)", params.cpuparams.n_threads),
- [](gpt_params & params, int value) {
- params.cpuparams.n_threads = value;
- if (params.cpuparams.n_threads <= 0) {
- params.cpuparams.n_threads = std::thread::hardware_concurrency();
- }
- }
- ).set_env("LLAMA_ARG_THREADS"));
- add_opt(llama_arg(
- {"-tb", "--threads-batch"}, "N",
- "number of threads to use during batch and prompt processing (default: same as --threads)",
- [](gpt_params & params, int value) {
- params.cpuparams_batch.n_threads = value;
- if (params.cpuparams_batch.n_threads <= 0) {
- params.cpuparams_batch.n_threads = std::thread::hardware_concurrency();
- }
- }
- ));
- add_opt(llama_arg(
- {"-td", "--threads-draft"}, "N",
- "number of threads to use during generation (default: same as --threads)",
- [](gpt_params & params, int value) {
- params.draft_cpuparams.n_threads = value;
- if (params.draft_cpuparams.n_threads <= 0) {
- params.draft_cpuparams.n_threads = std::thread::hardware_concurrency();
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(llama_arg(
- {"-tbd", "--threads-batch-draft"}, "N",
- "number of threads to use during batch and prompt processing (default: same as --threads-draft)",
- [](gpt_params & params, int value) {
- params.draft_cpuparams_batch.n_threads = value;
- if (params.draft_cpuparams_batch.n_threads <= 0) {
- params.draft_cpuparams_batch.n_threads = std::thread::hardware_concurrency();
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(llama_arg(
- {"-C", "--cpu-mask"}, "M",
- "CPU affinity mask: arbitrarily long hex. Complements cpu-range (default: \"\")",
- [](gpt_params & params, const std::string & mask) {
- params.cpuparams.mask_valid = true;
- if (!parse_cpu_mask(mask, params.cpuparams.cpumask)) {
- throw std::invalid_argument("invalid cpumask");
- }
- }
- ));
- add_opt(llama_arg(
- {"-Cr", "--cpu-range"}, "lo-hi",
- "range of CPUs for affinity. Complements --cpu-mask",
- [](gpt_params & params, const std::string & range) {
- params.cpuparams.mask_valid = true;
- if (!parse_cpu_range(range, params.cpuparams.cpumask)) {
- throw std::invalid_argument("invalid range");
- }
- }
- ));
- add_opt(llama_arg(
- {"--cpu-strict"}, "<0|1>",
- format("use strict CPU placement (default: %u)\n", (unsigned) params.cpuparams.strict_cpu),
- [](gpt_params & params, const std::string & value) {
- params.cpuparams.strict_cpu = std::stoul(value);
- }
- ));
- add_opt(llama_arg(
- {"--prio"}, "N",
- format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams.priority),
- [](gpt_params & params, int prio) {
- if (prio < 0 || prio > 3) {
- throw std::invalid_argument("invalid value");
- }
- params.cpuparams.priority = (enum ggml_sched_priority) prio;
- }
- ));
- add_opt(llama_arg(
- {"--poll"}, "<0...100>",
- format("use polling level to wait for work (0 - no polling, default: %u)\n", (unsigned) params.cpuparams.poll),
- [](gpt_params & params, const std::string & value) {
- params.cpuparams.poll = std::stoul(value);
- }
- ));
- add_opt(llama_arg(
- {"-Cb", "--cpu-mask-batch"}, "M",
- "CPU affinity mask: arbitrarily long hex. Complements cpu-range-batch (default: same as --cpu-mask)",
- [](gpt_params & params, const std::string & mask) {
- params.cpuparams_batch.mask_valid = true;
- if (!parse_cpu_mask(mask, params.cpuparams_batch.cpumask)) {
- throw std::invalid_argument("invalid cpumask");
- }
- }
- ));
- add_opt(llama_arg(
- {"-Crb", "--cpu-range-batch"}, "lo-hi",
- "ranges of CPUs for affinity. Complements --cpu-mask-batch",
- [](gpt_params & params, const std::string & range) {
- params.cpuparams_batch.mask_valid = true;
- if (!parse_cpu_range(range, params.cpuparams_batch.cpumask)) {
- throw std::invalid_argument("invalid range");
- }
- }
- ));
- add_opt(llama_arg(
- {"--cpu-strict-batch"}, "<0|1>",
- "use strict CPU placement (default: same as --cpu-strict)",
- [](gpt_params & params, int value) {
- params.cpuparams_batch.strict_cpu = value;
- }
- ));
- add_opt(llama_arg(
- {"--prio-batch"}, "N",
- format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams_batch.priority),
- [](gpt_params & params, int prio) {
- if (prio < 0 || prio > 3) {
- throw std::invalid_argument("invalid value");
- }
- params.cpuparams_batch.priority = (enum ggml_sched_priority) prio;
- }
- ));
- add_opt(llama_arg(
- {"--poll-batch"}, "<0|1>",
- "use polling to wait for work (default: same as --poll)",
- [](gpt_params & params, int value) {
- params.cpuparams_batch.poll = value;
- }
- ));
- add_opt(llama_arg(
- {"-Cd", "--cpu-mask-draft"}, "M",
- "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
- [](gpt_params & params, const std::string & mask) {
- params.draft_cpuparams.mask_valid = true;
- if (!parse_cpu_mask(mask, params.draft_cpuparams.cpumask)) {
- throw std::invalid_argument("invalid cpumask");
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(llama_arg(
- {"-Crd", "--cpu-range-draft"}, "lo-hi",
- "Ranges of CPUs for affinity. Complements --cpu-mask-draft",
- [](gpt_params & params, const std::string & range) {
- params.draft_cpuparams.mask_valid = true;
- if (!parse_cpu_range(range, params.draft_cpuparams.cpumask)) {
- throw std::invalid_argument("invalid range");
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(llama_arg(
- {"--cpu-strict-draft"}, "<0|1>",
- "Use strict CPU placement for draft model (default: same as --cpu-strict)",
- [](gpt_params & params, int value) {
- params.draft_cpuparams.strict_cpu = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(llama_arg(
- {"--prio-draft"}, "N",
- format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.draft_cpuparams.priority),
- [](gpt_params & params, int prio) {
- if (prio < 0 || prio > 3) {
- throw std::invalid_argument("invalid value");
- }
- params.draft_cpuparams.priority = (enum ggml_sched_priority) prio;
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(llama_arg(
- {"--poll-draft"}, "<0|1>",
- "Use polling to wait for draft model work (default: same as --poll])",
- [](gpt_params & params, int value) {
- params.draft_cpuparams.poll = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(llama_arg(
- {"-Cbd", "--cpu-mask-batch-draft"}, "M",
- "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
- [](gpt_params & params, const std::string & mask) {
- params.draft_cpuparams_batch.mask_valid = true;
- if (!parse_cpu_mask(mask, params.draft_cpuparams_batch.cpumask)) {
- throw std::invalid_argument("invalid cpumask");
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(llama_arg(
- {"-Crbd", "--cpu-range-batch-draft"}, "lo-hi",
- "Ranges of CPUs for affinity. Complements --cpu-mask-draft-batch)",
- [](gpt_params & params, const std::string & range) {
- params.draft_cpuparams_batch.mask_valid = true;
- if (!parse_cpu_range(range, params.draft_cpuparams_batch.cpumask)) {
- throw std::invalid_argument("invalid cpumask");
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(llama_arg(
- {"--cpu-strict-batch-draft"}, "<0|1>",
- "Use strict CPU placement for draft model (default: --cpu-strict-draft)",
- [](gpt_params & params, int value) {
- params.draft_cpuparams_batch.strict_cpu = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(llama_arg(
- {"--prio-batch-draft"}, "N",
- format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.draft_cpuparams_batch.priority),
- [](gpt_params & params, int prio) {
- if (prio < 0 || prio > 3) {
- throw std::invalid_argument("invalid value");
- }
- params.draft_cpuparams_batch.priority = (enum ggml_sched_priority) prio;
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(llama_arg(
- {"--poll-batch-draft"}, "<0|1>",
- "Use polling to wait for draft model work (default: --poll-draft)",
- [](gpt_params & params, int value) {
- params.draft_cpuparams_batch.poll = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(llama_arg(
- {"--draft"}, "N",
- format("number of tokens to draft for speculative decoding (default: %d)", params.n_draft),
- [](gpt_params & params, int value) {
- params.n_draft = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
- add_opt(llama_arg(
- {"-ps", "--p-split"}, "N",
- format("speculative decoding split probability (default: %.1f)", (double)params.p_split),
- [](gpt_params & params, const std::string & value) {
- params.p_split = std::stof(value);
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(llama_arg(
- {"-lcs", "--lookup-cache-static"}, "FNAME",
- "path to static lookup cache to use for lookup decoding (not updated by generation)",
- [](gpt_params & params, const std::string & value) {
- params.lookup_cache_static = value;
- }
- ).set_examples({LLAMA_EXAMPLE_LOOKUP}));
- add_opt(llama_arg(
- {"-lcd", "--lookup-cache-dynamic"}, "FNAME",
- "path to dynamic lookup cache to use for lookup decoding (updated by generation)",
- [](gpt_params & params, const std::string & value) {
- params.lookup_cache_dynamic = value;
- }
- ).set_examples({LLAMA_EXAMPLE_LOOKUP}));
- add_opt(llama_arg(
- {"-c", "--ctx-size"}, "N",
- format("size of the prompt context (default: %d, 0 = loaded from model)", params.n_ctx),
- [](gpt_params & params, int value) {
- params.n_ctx = value;
- }
- ).set_env("LLAMA_ARG_CTX_SIZE"));
- add_opt(llama_arg(
- {"-n", "--predict", "--n-predict"}, "N",
- format("number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)", params.n_predict),
- [](gpt_params & params, int value) {
- params.n_predict = value;
- }
- ).set_env("LLAMA_ARG_N_PREDICT"));
- add_opt(llama_arg(
- {"-b", "--batch-size"}, "N",
- format("logical maximum batch size (default: %d)", params.n_batch),
- [](gpt_params & params, int value) {
- params.n_batch = value;
- }
- ).set_env("LLAMA_ARG_BATCH"));
- add_opt(llama_arg(
- {"-ub", "--ubatch-size"}, "N",
- format("physical maximum batch size (default: %d)", params.n_ubatch),
- [](gpt_params & params, int value) {
- params.n_ubatch = value;
- }
- ).set_env("LLAMA_ARG_UBATCH"));
- add_opt(llama_arg(
- {"--keep"}, "N",
- format("number of tokens to keep from the initial prompt (default: %d, -1 = all)", params.n_keep),
- [](gpt_params & params, int value) {
- params.n_keep = value;
- }
- ));
- add_opt(llama_arg(
- {"--no-context-shift"},
- format("disables context shift on inifinite text generation (default: %s)", params.ctx_shift ? "disabled" : "enabled"),
- [](gpt_params & params) {
- params.ctx_shift = false;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_CONTEXT_SHIFT"));
- add_opt(llama_arg(
- {"--chunks"}, "N",
- format("max number of chunks to process (default: %d, -1 = all)", params.n_chunks),
- [](gpt_params & params, int value) {
- params.n_chunks = value;
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_RETRIEVAL}));
- add_opt(llama_arg(
- {"-fa", "--flash-attn"},
- format("enable Flash Attention (default: %s)", params.flash_attn ? "enabled" : "disabled"),
- [](gpt_params & params) {
- params.flash_attn = true;
- }
- ).set_env("LLAMA_ARG_FLASH_ATTN"));
- add_opt(llama_arg(
- {"-p", "--prompt"}, "PROMPT",
- ex == LLAMA_EXAMPLE_MAIN
- ? "prompt to start generation with\nif -cnv is set, this will be used as system prompt"
- : "prompt to start generation with",
- [](gpt_params & params, const std::string & value) {
- params.prompt = value;
- }
- ));
- add_opt(llama_arg(
- {"--no-perf"},
- format("disable internal libllama performance timings (default: %s)", params.no_perf ? "true" : "false"),
- [](gpt_params & params) {
- params.no_perf = true;
- params.sparams.no_perf = true;
- }
- ).set_env("LLAMA_ARG_NO_PERF"));
- add_opt(llama_arg(
- {"-f", "--file"}, "FNAME",
- "a file containing the prompt (default: none)",
- [](gpt_params & params, const std::string & value) {
- std::ifstream file(value);
- if (!file) {
- throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str()));
- }
- // store the external file name in params
- params.prompt_file = value;
- std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
- if (!params.prompt.empty() && params.prompt.back() == '\n') {
- params.prompt.pop_back();
- }
- }
- ));
- add_opt(llama_arg(
- {"--in-file"}, "FNAME",
- "an input file (repeat to specify multiple files)",
- [](gpt_params & params, const std::string & value) {
- std::ifstream file(value);
- if (!file) {
- throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str()));
- }
- params.in_files.push_back(value);
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
- add_opt(llama_arg(
- {"-bf", "--binary-file"}, "FNAME",
- "binary file containing the prompt (default: none)",
- [](gpt_params & params, const std::string & value) {
- std::ifstream file(value, std::ios::binary);
- if (!file) {
- throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str()));
- }
- // store the external file name in params
- params.prompt_file = value;
- std::ostringstream ss;
- ss << file.rdbuf();
- params.prompt = ss.str();
- fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), value.c_str());
- }
- ));
- add_opt(llama_arg(
- {"-e", "--escape"},
- format("process escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\) (default: %s)", params.escape ? "true" : "false"),
- [](gpt_params & params) {
- params.escape = true;
- }
- ));
- add_opt(llama_arg(
- {"--no-escape"},
- "do not process escape sequences",
- [](gpt_params & params) {
- params.escape = false;
- }
- ));
- add_opt(llama_arg(
- {"-ptc", "--print-token-count"}, "N",
- format("print token count every N tokens (default: %d)", params.n_print),
- [](gpt_params & params, int value) {
- params.n_print = value;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(llama_arg(
- {"--prompt-cache"}, "FNAME",
- "file to cache prompt state for faster startup (default: none)",
- [](gpt_params & params, const std::string & value) {
- params.path_prompt_cache = value;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(llama_arg(
- {"--prompt-cache-all"},
- "if specified, saves user input and generations to cache as well\n",
- [](gpt_params & params) {
- params.prompt_cache_all = true;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(llama_arg(
- {"--prompt-cache-ro"},
- "if specified, uses the prompt cache but does not update it",
- [](gpt_params & params) {
- params.prompt_cache_ro = true;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(llama_arg(
- {"-r", "--reverse-prompt"}, "PROMPT",
- "halt generation at PROMPT, return control in interactive mode\n",
- [](gpt_params & params, const std::string & value) {
- params.antiprompt.emplace_back(value);
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(llama_arg(
- {"-sp", "--special"},
- format("special tokens output enabled (default: %s)", params.special ? "true" : "false"),
- [](gpt_params & params) {
- params.special = true;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}));
- add_opt(llama_arg(
- {"-cnv", "--conversation"},
- format(
- "run in conversation mode:\n"
- "- does not print special tokens and suffix/prefix\n"
- "- interactive mode is also enabled\n"
- "(default: %s)",
- params.conversation ? "true" : "false"
- ),
- [](gpt_params & params) {
- params.conversation = true;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(llama_arg(
- {"-i", "--interactive"},
- format("run in interactive mode (default: %s)", params.interactive ? "true" : "false"),
- [](gpt_params & params) {
- params.interactive = true;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(llama_arg(
- {"-if", "--interactive-first"},
- format("run in interactive mode and wait for input right away (default: %s)", params.interactive_first ? "true" : "false"),
- [](gpt_params & params) {
- params.interactive_first = true;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(llama_arg(
- {"-mli", "--multiline-input"},
- "allows you to write or paste multiple lines without ending each in '\\'",
- [](gpt_params & params) {
- params.multiline_input = true;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(llama_arg(
- {"--in-prefix-bos"},
- "prefix BOS to user inputs, preceding the `--in-prefix` string",
- [](gpt_params & params) {
- params.input_prefix_bos = true;
- params.enable_chat_template = false;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(llama_arg(
- {"--in-prefix"}, "STRING",
- "string to prefix user inputs with (default: empty)",
- [](gpt_params & params, const std::string & value) {
- params.input_prefix = value;
- params.enable_chat_template = false;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
- add_opt(llama_arg(
- {"--in-suffix"}, "STRING",
- "string to suffix after user inputs with (default: empty)",
- [](gpt_params & params, const std::string & value) {
- params.input_suffix = value;
- params.enable_chat_template = false;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
- add_opt(llama_arg(
- {"--no-warmup"},
- "skip warming up the model with an empty run",
- [](gpt_params & params) {
- params.warmup = false;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(llama_arg(
- {"--spm-infill"},
- format(
- "use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: %s)",
- params.spm_infill ? "enabled" : "disabled"
- ),
- [](gpt_params & params) {
- params.spm_infill = true;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_INFILL}));
- add_opt(llama_arg(
- {"--samplers"}, "SAMPLERS",
- format("samplers that will be used for generation in the order, separated by \';\'\n(default: %s)", sampler_type_names.c_str()),
- [](gpt_params & params, const std::string & value) {
- const auto sampler_names = string_split(value, ';');
- params.sparams.samplers = gpt_sampler_types_from_names(sampler_names, true);
- }
- ).set_sparam());
- add_opt(llama_arg(
- {"-s", "--seed"}, "SEED",
- format("RNG seed (default: %u, use random seed for %u)", params.sparams.seed, LLAMA_DEFAULT_SEED),
- [](gpt_params & params, const std::string & value) {
- params.sparams.seed = std::stoul(value);
- }
- ).set_sparam());
- add_opt(llama_arg(
- {"--sampling-seq"}, "SEQUENCE",
- format("simplified sequence for samplers that will be used (default: %s)", sampler_type_chars.c_str()),
- [](gpt_params & params, const std::string & value) {
- params.sparams.samplers = gpt_sampler_types_from_chars(value);
- }
- ).set_sparam());
- add_opt(llama_arg(
- {"--ignore-eos"},
- "ignore end of stream token and continue generating (implies --logit-bias EOS-inf)",
- [](gpt_params & params) {
- params.sparams.ignore_eos = true;
- }
- ).set_sparam());
- add_opt(llama_arg(
- {"--penalize-nl"},
- format("penalize newline tokens (default: %s)", params.sparams.penalize_nl ? "true" : "false"),
- [](gpt_params & params) {
- params.sparams.penalize_nl = true;
- }
- ).set_sparam());
- add_opt(llama_arg(
- {"--temp"}, "N",
- format("temperature (default: %.1f)", (double)params.sparams.temp),
- [](gpt_params & params, const std::string & value) {
- params.sparams.temp = std::stof(value);
- params.sparams.temp = std::max(params.sparams.temp, 0.0f);
- }
- ).set_sparam());
- add_opt(llama_arg(
- {"--top-k"}, "N",
- format("top-k sampling (default: %d, 0 = disabled)", params.sparams.top_k),
- [](gpt_params & params, int value) {
- params.sparams.top_k = value;
- }
- ).set_sparam());
- add_opt(llama_arg(
- {"--top-p"}, "N",
- format("top-p sampling (default: %.1f, 1.0 = disabled)", (double)params.sparams.top_p),
- [](gpt_params & params, const std::string & value) {
- params.sparams.top_p = std::stof(value);
- }
- ).set_sparam());
- add_opt(llama_arg(
- {"--min-p"}, "N",
- format("min-p sampling (default: %.1f, 0.0 = disabled)", (double)params.sparams.min_p),
- [](gpt_params & params, const std::string & value) {
- params.sparams.min_p = std::stof(value);
- }
- ).set_sparam());
- add_opt(llama_arg(
- {"--tfs"}, "N",
- format("tail free sampling, parameter z (default: %.1f, 1.0 = disabled)", (double)params.sparams.tfs_z),
- [](gpt_params & params, const std::string & value) {
- params.sparams.tfs_z = std::stof(value);
- }
- ).set_sparam());
- add_opt(llama_arg(
- {"--typical"}, "N",
- format("locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)params.sparams.typ_p),
- [](gpt_params & params, const std::string & value) {
- params.sparams.typ_p = std::stof(value);
- }
- ).set_sparam());
- add_opt(llama_arg(
- {"--repeat-last-n"}, "N",
- format("last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", params.sparams.penalty_last_n),
- [](gpt_params & params, int value) {
- params.sparams.penalty_last_n = value;
- params.sparams.n_prev = std::max(params.sparams.n_prev, params.sparams.penalty_last_n);
- }
- ).set_sparam());
- add_opt(llama_arg(
- {"--repeat-penalty"}, "N",
- format("penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)params.sparams.penalty_repeat),
- [](gpt_params & params, const std::string & value) {
- params.sparams.penalty_repeat = std::stof(value);
- }
- ).set_sparam());
- add_opt(llama_arg(
- {"--presence-penalty"}, "N",
- format("repeat alpha presence penalty (default: %.1f, 0.0 = disabled)", (double)params.sparams.penalty_present),
- [](gpt_params & params, const std::string & value) {
- params.sparams.penalty_present = std::stof(value);
- }
- ).set_sparam());
- add_opt(llama_arg(
- {"--frequency-penalty"}, "N",
- format("repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)", (double)params.sparams.penalty_freq),
- [](gpt_params & params, const std::string & value) {
- params.sparams.penalty_freq = std::stof(value);
- }
- ).set_sparam());
- add_opt(llama_arg(
- {"--dynatemp-range"}, "N",
- format("dynamic temperature range (default: %.1f, 0.0 = disabled)", (double)params.sparams.dynatemp_range),
- [](gpt_params & params, const std::string & value) {
- params.sparams.dynatemp_range = std::stof(value);
- }
- ).set_sparam());
- add_opt(llama_arg(
- {"--dynatemp-exp"}, "N",
- format("dynamic temperature exponent (default: %.1f)", (double)params.sparams.dynatemp_exponent),
- [](gpt_params & params, const std::string & value) {
- params.sparams.dynatemp_exponent = std::stof(value);
- }
- ).set_sparam());
- add_opt(llama_arg(
- {"--mirostat"}, "N",
- format("use Mirostat sampling.\nTop K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n"
- "(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", params.sparams.mirostat),
- [](gpt_params & params, int value) {
- params.sparams.mirostat = value;
- }
- ).set_sparam());
- add_opt(llama_arg(
- {"--mirostat-lr"}, "N",
- format("Mirostat learning rate, parameter eta (default: %.1f)", (double)params.sparams.mirostat_eta),
- [](gpt_params & params, const std::string & value) {
- params.sparams.mirostat_eta = std::stof(value);
- }
- ).set_sparam());
- add_opt(llama_arg(
- {"--mirostat-ent"}, "N",
- format("Mirostat target entropy, parameter tau (default: %.1f)", (double)params.sparams.mirostat_tau),
- [](gpt_params & params, const std::string & value) {
- params.sparams.mirostat_tau = std::stof(value);
- }
- ).set_sparam());
- add_opt(llama_arg(
- {"-l", "--logit-bias"}, "TOKEN_ID(+/-)BIAS",
- "modifies the likelihood of token appearing in the completion,\n"
- "i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n"
- "or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'",
- [](gpt_params & params, const std::string & value) {
- std::stringstream ss(value);
- llama_token key;
- char sign;
- std::string value_str;
- try {
- if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
- const float bias = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
- params.sparams.logit_bias.push_back({key, bias});
- } else {
- throw std::invalid_argument("invalid input format");
- }
- } catch (const std::exception&) {
- throw std::invalid_argument("invalid input format");
- }
- }
- ).set_sparam());
- add_opt(llama_arg(
- {"--grammar"}, "GRAMMAR",
- format("BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", params.sparams.grammar.c_str()),
- [](gpt_params & params, const std::string & value) {
- params.sparams.grammar = value;
- }
- ).set_sparam());
- add_opt(llama_arg(
- {"--grammar-file"}, "FNAME",
- "file to read grammar from",
- [](gpt_params & params, const std::string & value) {
- std::ifstream file(value);
- if (!file) {
- throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str()));
- }
- std::copy(
- std::istreambuf_iterator<char>(file),
- std::istreambuf_iterator<char>(),
- std::back_inserter(params.sparams.grammar)
- );
- }
- ).set_sparam());
- add_opt(llama_arg(
- {"-j", "--json-schema"}, "SCHEMA",
- "JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead",
- [](gpt_params & params, const std::string & value) {
- params.sparams.grammar = json_schema_to_grammar(json::parse(value));
- }
- ).set_sparam());
- add_opt(llama_arg(
- {"--pooling"}, "{none,mean,cls,last,rank}",
- "pooling type for embeddings, use model default if unspecified",
- [](gpt_params & params, const std::string & value) {
- /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
- else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
- else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
- else if (value == "last") { params.pooling_type = LLAMA_POOLING_TYPE_LAST; }
- else if (value == "rank") { params.pooling_type = LLAMA_POOLING_TYPE_RANK; }
- else { throw std::invalid_argument("invalid value"); }
- }
- ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_POOLING"));
- add_opt(llama_arg(
- {"--attention"}, "{causal,non,causal}",
- "attention type for embeddings, use model default if unspecified",
- [](gpt_params & params, const std::string & value) {
- /**/ if (value == "causal") { params.attention_type = LLAMA_ATTENTION_TYPE_CAUSAL; }
- else if (value == "non-causal") { params.attention_type = LLAMA_ATTENTION_TYPE_NON_CAUSAL; }
- else { throw std::invalid_argument("invalid value"); }
- }
- ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
- add_opt(llama_arg(
- {"--rope-scaling"}, "{none,linear,yarn}",
- "RoPE frequency scaling method, defaults to linear unless specified by the model",
- [](gpt_params & params, const std::string & value) {
- /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
- else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
- else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
- else { throw std::invalid_argument("invalid value"); }
- }
- ).set_env("LLAMA_ARG_ROPE_SCALING_TYPE"));
- add_opt(llama_arg(
- {"--rope-scale"}, "N",
- "RoPE context scaling factor, expands context by a factor of N",
- [](gpt_params & params, const std::string & value) {
- params.rope_freq_scale = 1.0f / std::stof(value);
- }
- ).set_env("LLAMA_ARG_ROPE_SCALE"));
- add_opt(llama_arg(
- {"--rope-freq-base"}, "N",
- "RoPE base frequency, used by NTK-aware scaling (default: loaded from model)",
- [](gpt_params & params, const std::string & value) {
- params.rope_freq_base = std::stof(value);
- }
- ).set_env("LLAMA_ARG_ROPE_FREQ_BASE"));
- add_opt(llama_arg(
- {"--rope-freq-scale"}, "N",
- "RoPE frequency scaling factor, expands context by a factor of 1/N",
- [](gpt_params & params, const std::string & value) {
- params.rope_freq_scale = std::stof(value);
- }
- ).set_env("LLAMA_ARG_ROPE_FREQ_SCALE"));
- add_opt(llama_arg(
- {"--yarn-orig-ctx"}, "N",
- format("YaRN: original context size of model (default: %d = model training context size)", params.yarn_orig_ctx),
- [](gpt_params & params, int value) {
- params.yarn_orig_ctx = value;
- }
- ).set_env("LLAMA_ARG_YARN_ORIG_CTX"));
- add_opt(llama_arg(
- {"--yarn-ext-factor"}, "N",
- format("YaRN: extrapolation mix factor (default: %.1f, 0.0 = full interpolation)", (double)params.yarn_ext_factor),
- [](gpt_params & params, const std::string & value) {
- params.yarn_ext_factor = std::stof(value);
- }
- ).set_env("LLAMA_ARG_YARN_EXT_FACTOR"));
- add_opt(llama_arg(
- {"--yarn-attn-factor"}, "N",
- format("YaRN: scale sqrt(t) or attention magnitude (default: %.1f)", (double)params.yarn_attn_factor),
- [](gpt_params & params, const std::string & value) {
- params.yarn_attn_factor = std::stof(value);
- }
- ).set_env("LLAMA_ARG_YARN_ATTN_FACTOR"));
- add_opt(llama_arg(
- {"--yarn-beta-slow"}, "N",
- format("YaRN: high correction dim or alpha (default: %.1f)", (double)params.yarn_beta_slow),
- [](gpt_params & params, const std::string & value) {
- params.yarn_beta_slow = std::stof(value);
- }
- ).set_env("LLAMA_ARG_YARN_BETA_SLOW"));
- add_opt(llama_arg(
- {"--yarn-beta-fast"}, "N",
- format("YaRN: low correction dim or beta (default: %.1f)", (double)params.yarn_beta_fast),
- [](gpt_params & params, const std::string & value) {
- params.yarn_beta_fast = std::stof(value);
- }
- ).set_env("LLAMA_ARG_YARN_BETA_FAST"));
- add_opt(llama_arg(
- {"-gan", "--grp-attn-n"}, "N",
- format("group-attention factor (default: %d)", params.grp_attn_n),
- [](gpt_params & params, int value) {
- params.grp_attn_n = value;
- }
- ).set_env("LLAMA_ARG_GRP_ATTN_N"));
- add_opt(llama_arg(
- {"-gaw", "--grp-attn-w"}, "N",
- format("group-attention width (default: %.1f)", (double)params.grp_attn_w),
- [](gpt_params & params, int value) {
- params.grp_attn_w = value;
- }
- ).set_env("LLAMA_ARG_GRP_ATTN_W"));
- add_opt(llama_arg(
- {"-dkvc", "--dump-kv-cache"},
- "verbose print of the KV cache",
- [](gpt_params & params) {
- params.dump_kv_cache = true;
- }
- ));
- add_opt(llama_arg(
- {"-nkvo", "--no-kv-offload"},
- "disable KV offload",
- [](gpt_params & params) {
- params.no_kv_offload = true;
- }
- ).set_env("LLAMA_ARG_NO_KV_OFFLOAD"));
- add_opt(llama_arg(
- {"-ctk", "--cache-type-k"}, "TYPE",
- format("KV cache data type for K (default: %s)", params.cache_type_k.c_str()),
- [](gpt_params & params, const std::string & value) {
- // TODO: get the type right here
- params.cache_type_k = value;
- }
- ).set_env("LLAMA_ARG_CACHE_TYPE_K"));
- add_opt(llama_arg(
- {"-ctv", "--cache-type-v"}, "TYPE",
- format("KV cache data type for V (default: %s)", params.cache_type_v.c_str()),
- [](gpt_params & params, const std::string & value) {
- // TODO: get the type right here
- params.cache_type_v = value;
- }
- ).set_env("LLAMA_ARG_CACHE_TYPE_V"));
- add_opt(llama_arg(
- {"--perplexity", "--all-logits"},
- format("return logits for all tokens in the batch (default: %s)", params.logits_all ? "true" : "false"),
- [](gpt_params & params) {
- params.logits_all = true;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(llama_arg(
- {"--hellaswag"},
- "compute HellaSwag score over random tasks from datafile supplied with -f",
- [](gpt_params & params) {
- params.hellaswag = true;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(llama_arg(
- {"--hellaswag-tasks"}, "N",
- format("number of tasks to use when computing the HellaSwag score (default: %zu)", params.hellaswag_tasks),
- [](gpt_params & params, int value) {
- params.hellaswag_tasks = value;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(llama_arg(
- {"--winogrande"},
- "compute Winogrande score over random tasks from datafile supplied with -f",
- [](gpt_params & params) {
- params.winogrande = true;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(llama_arg(
- {"--winogrande-tasks"}, "N",
- format("number of tasks to use when computing the Winogrande score (default: %zu)", params.winogrande_tasks),
- [](gpt_params & params, int value) {
- params.winogrande_tasks = value;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(llama_arg(
- {"--multiple-choice"},
- "compute multiple choice score over random tasks from datafile supplied with -f",
- [](gpt_params & params) {
- params.multiple_choice = true;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(llama_arg(
- {"--multiple-choice-tasks"}, "N",
- format("number of tasks to use when computing the multiple choice score (default: %zu)", params.multiple_choice_tasks),
- [](gpt_params & params, int value) {
- params.multiple_choice_tasks = value;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(llama_arg(
- {"--kl-divergence"},
- "computes KL-divergence to logits provided via --kl-divergence-base",
- [](gpt_params & params) {
- params.kl_divergence = true;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(llama_arg(
- {"--save-all-logits", "--kl-divergence-base"}, "FNAME",
- "set logits file",
- [](gpt_params & params, const std::string & value) {
- params.logits_file = value;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(llama_arg(
- {"--ppl-stride"}, "N",
- format("stride for perplexity calculation (default: %d)", params.ppl_stride),
- [](gpt_params & params, int value) {
- params.ppl_stride = value;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(llama_arg(
- {"--ppl-output-type"}, "<0|1>",
- format("output type for perplexity calculation (default: %d)", params.ppl_output_type),
- [](gpt_params & params, int value) {
- params.ppl_output_type = value;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(llama_arg(
- {"-dt", "--defrag-thold"}, "N",
- format("KV cache defragmentation threshold (default: %.1f, < 0 - disabled)", (double)params.defrag_thold),
- [](gpt_params & params, const std::string & value) {
- params.defrag_thold = std::stof(value);
- }
- ).set_env("LLAMA_ARG_DEFRAG_THOLD"));
- add_opt(llama_arg(
- {"-np", "--parallel"}, "N",
- format("number of parallel sequences to decode (default: %d)", params.n_parallel),
- [](gpt_params & params, int value) {
- params.n_parallel = value;
- }
- ).set_env("LLAMA_ARG_N_PARALLEL"));
- add_opt(llama_arg(
- {"-ns", "--sequences"}, "N",
- format("number of sequences to decode (default: %d)", params.n_sequences),
- [](gpt_params & params, int value) {
- params.n_sequences = value;
- }
- ).set_examples({LLAMA_EXAMPLE_PARALLEL}));
- add_opt(llama_arg(
- {"-cb", "--cont-batching"},
- format("enable continuous batching (a.k.a dynamic batching) (default: %s)", params.cont_batching ? "enabled" : "disabled"),
- [](gpt_params & params) {
- params.cont_batching = true;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CONT_BATCHING"));
- add_opt(llama_arg(
- {"-nocb", "--no-cont-batching"},
- "disable continuous batching",
- [](gpt_params & params) {
- params.cont_batching = false;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_CONT_BATCHING"));
- add_opt(llama_arg(
- {"--mmproj"}, "FILE",
- "path to a multimodal projector file for LLaVA. see examples/llava/README.md",
- [](gpt_params & params, const std::string & value) {
- params.mmproj = value;
- }
- ).set_examples({LLAMA_EXAMPLE_LLAVA}));
- add_opt(llama_arg(
- {"--image"}, "FILE",
- "path to an image file. use with multimodal models. Specify multiple times for batching",
- [](gpt_params & params, const std::string & value) {
- params.image.emplace_back(value);
- }
- ).set_examples({LLAMA_EXAMPLE_LLAVA}));
- #ifdef GGML_USE_RPC
- add_opt(llama_arg(
- {"--rpc"}, "SERVERS",
- "comma separated list of RPC servers",
- [](gpt_params & params, const std::string & value) {
- params.rpc_servers = value;
- }
- ).set_env("LLAMA_ARG_RPC"));
- #endif
- add_opt(llama_arg(
- {"--mlock"},
- "force system to keep model in RAM rather than swapping or compressing",
- [](gpt_params & params) {
- params.use_mlock = true;
- }
- ).set_env("LLAMA_ARG_MLOCK"));
- add_opt(llama_arg(
- {"--no-mmap"},
- "do not memory-map model (slower load but may reduce pageouts if not using mlock)",
- [](gpt_params & params) {
- params.use_mmap = false;
- }
- ).set_env("LLAMA_ARG_NO_MMAP"));
- add_opt(llama_arg(
- {"--numa"}, "TYPE",
- "attempt optimizations that help on some NUMA systems\n"
- "- distribute: spread execution evenly over all nodes\n"
- "- isolate: only spawn threads on CPUs on the node that execution started on\n"
- "- numactl: use the CPU map provided by numactl\n"
- "if run without this previously, it is recommended to drop the system page cache before using this\n"
- "see https://github.com/ggerganov/llama.cpp/issues/1437",
- [](gpt_params & params, const std::string & value) {
- /**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
- else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
- else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
- else { throw std::invalid_argument("invalid value"); }
- }
- ).set_env("LLAMA_ARG_NUMA"));
- add_opt(llama_arg(
- {"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
- "number of layers to store in VRAM",
- [](gpt_params & params, int value) {
- params.n_gpu_layers = value;
- if (!llama_supports_gpu_offload()) {
- fprintf(stderr, "warning: not compiled with GPU offload support, --gpu-layers option will be ignored\n");
- fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
- }
- }
- ).set_env("LLAMA_ARG_N_GPU_LAYERS"));
- add_opt(llama_arg(
- {"-ngld", "--gpu-layers-draft", "--n-gpu-layers-draft"}, "N",
- "number of layers to store in VRAM for the draft model",
- [](gpt_params & params, int value) {
- params.n_gpu_layers_draft = value;
- if (!llama_supports_gpu_offload()) {
- fprintf(stderr, "warning: not compiled with GPU offload support, --gpu-layers-draft option will be ignored\n");
- fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(llama_arg(
- {"-sm", "--split-mode"}, "{none,layer,row}",
- "how to split the model across multiple GPUs, one of:\n"
- "- none: use one GPU only\n"
- "- layer (default): split layers and KV across GPUs\n"
- "- row: split rows across GPUs",
- [](gpt_params & params, const std::string & value) {
- std::string arg_next = value;
- if (arg_next == "none") {
- params.split_mode = LLAMA_SPLIT_MODE_NONE;
- } else if (arg_next == "layer") {
- params.split_mode = LLAMA_SPLIT_MODE_LAYER;
- } else if (arg_next == "row") {
- #ifdef GGML_USE_SYCL
- fprintf(stderr, "warning: The split mode value:[row] is not supported by llama.cpp with SYCL. It's developing.\nExit!\n");
- exit(1);
- #endif // GGML_USE_SYCL
- params.split_mode = LLAMA_SPLIT_MODE_ROW;
- } else {
- throw std::invalid_argument("invalid value");
- }
- if (!llama_supports_gpu_offload()) {
- fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the split mode has no effect.\n");
- }
- }
- ).set_env("LLAMA_ARG_SPLIT_MODE"));
- add_opt(llama_arg(
- {"-ts", "--tensor-split"}, "N0,N1,N2,...",
- "fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1",
- [](gpt_params & params, const std::string & value) {
- std::string arg_next = value;
- // split string by , and /
- const std::regex regex{ R"([,/]+)" };
- std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
- std::vector<std::string> split_arg{ it, {} };
- if (split_arg.size() >= llama_max_devices()) {
- throw std::invalid_argument(
- format("got %d input configs, but system only has %d devices", (int)split_arg.size(), (int)llama_max_devices())
- );
- }
- for (size_t i = 0; i < llama_max_devices(); ++i) {
- if (i < split_arg.size()) {
- params.tensor_split[i] = std::stof(split_arg[i]);
- } else {
- params.tensor_split[i] = 0.0f;
- }
- }
- if (!llama_supports_gpu_offload()) {
- fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting a tensor split has no effect.\n");
- }
- }
- ).set_env("LLAMA_ARG_TENSOR_SPLIT"));
- add_opt(llama_arg(
- {"-mg", "--main-gpu"}, "INDEX",
- format("the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: %d)", params.main_gpu),
- [](gpt_params & params, int value) {
- params.main_gpu = value;
- if (!llama_supports_gpu_offload()) {
- fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the main GPU has no effect.\n");
- }
- }
- ).set_env("LLAMA_ARG_MAIN_GPU"));
- add_opt(llama_arg(
- {"--check-tensors"},
- format("check model tensor data for invalid values (default: %s)", params.check_tensors ? "true" : "false"),
- [](gpt_params & params) {
- params.check_tensors = true;
- }
- ));
- add_opt(llama_arg(
- {"--override-kv"}, "KEY=TYPE:VALUE",
- "advanced option to override model metadata by key. may be specified multiple times.\n"
- "types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false",
- [](gpt_params & params, const std::string & value) {
- if (!string_parse_kv_override(value.c_str(), params.kv_overrides)) {
- throw std::runtime_error(format("error: Invalid type for KV override: %s\n", value.c_str()));
- }
- }
- ));
- add_opt(llama_arg(
- {"--lora"}, "FNAME",
- "path to LoRA adapter (can be repeated to use multiple adapters)",
- [](gpt_params & params, const std::string & value) {
- params.lora_adapters.push_back({ std::string(value), 1.0 });
- }
- // we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
- ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
- add_opt(llama_arg(
- {"--lora-scaled"}, "FNAME", "SCALE",
- "path to LoRA adapter with user defined scaling (can be repeated to use multiple adapters)",
- [](gpt_params & params, const std::string & fname, const std::string & scale) {
- params.lora_adapters.push_back({ fname, std::stof(scale) });
- }
- // we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
- ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
- add_opt(llama_arg(
- {"--control-vector"}, "FNAME",
- "add a control vector\nnote: this argument can be repeated to add multiple control vectors",
- [](gpt_params & params, const std::string & value) {
- params.control_vectors.push_back({ 1.0f, value, });
- }
- ));
- add_opt(llama_arg(
- {"--control-vector-scaled"}, "FNAME", "SCALE",
- "add a control vector with user defined scaling SCALE\n"
- "note: this argument can be repeated to add multiple scaled control vectors",
- [](gpt_params & params, const std::string & fname, const std::string & scale) {
- params.control_vectors.push_back({ std::stof(scale), fname });
- }
- ));
- add_opt(llama_arg(
- {"--control-vector-layer-range"}, "START", "END",
- "layer range to apply the control vector(s) to, start and end inclusive",
- [](gpt_params & params, const std::string & start, const std::string & end) {
- params.control_vector_layer_start = std::stoi(start);
- params.control_vector_layer_end = std::stoi(end);
- }
- ));
- add_opt(llama_arg(
- {"-a", "--alias"}, "STRING",
- "set alias for model name (to be used by REST API)",
- [](gpt_params & params, const std::string & value) {
- params.model_alias = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ALIAS"));
- add_opt(llama_arg(
- {"-m", "--model"}, "FNAME",
- ex == LLAMA_EXAMPLE_EXPORT_LORA
- ? std::string("model path from which to load base model")
- : format(
- "model path (default: `models/$filename` with filename from `--hf-file` "
- "or `--model-url` if set, otherwise %s)", DEFAULT_MODEL_PATH
- ),
- [](gpt_params & params, const std::string & value) {
- params.model = value;
- }
- ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}).set_env("LLAMA_ARG_MODEL"));
- add_opt(llama_arg(
- {"-md", "--model-draft"}, "FNAME",
- "draft model for speculative decoding (default: unused)",
- [](gpt_params & params, const std::string & value) {
- params.model_draft = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(llama_arg(
- {"-mu", "--model-url"}, "MODEL_URL",
- "model download url (default: unused)",
- [](gpt_params & params, const std::string & value) {
- params.model_url = value;
- }
- ).set_env("LLAMA_ARG_MODEL_URL"));
- add_opt(llama_arg(
- {"-hfr", "--hf-repo"}, "REPO",
- "Hugging Face model repository (default: unused)",
- [](gpt_params & params, const std::string & value) {
- params.hf_repo = value;
- }
- ).set_env("LLAMA_ARG_HF_REPO"));
- add_opt(llama_arg(
- {"-hff", "--hf-file"}, "FILE",
- "Hugging Face model file (default: unused)",
- [](gpt_params & params, const std::string & value) {
- params.hf_file = value;
- }
- ).set_env("LLAMA_ARG_HF_FILE"));
- add_opt(llama_arg(
- {"-hft", "--hf-token"}, "TOKEN",
- "Hugging Face access token (default: value from HF_TOKEN environment variable)",
- [](gpt_params & params, const std::string & value) {
- params.hf_token = value;
- }
- ).set_env("HF_TOKEN"));
- add_opt(llama_arg(
- {"--context-file"}, "FNAME",
- "file to load context from (repeat to specify multiple files)",
- [](gpt_params & params, const std::string & value) {
- std::ifstream file(value, std::ios::binary);
- if (!file) {
- throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str()));
- }
- params.context_files.push_back(value);
- }
- ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
- add_opt(llama_arg(
- {"--chunk-size"}, "N",
- format("minimum length of embedded text chunks (default: %d)", params.chunk_size),
- [](gpt_params & params, int value) {
- params.chunk_size = value;
- }
- ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
- add_opt(llama_arg(
- {"--chunk-separator"}, "STRING",
- format("separator between chunks (default: '%s')", params.chunk_separator.c_str()),
- [](gpt_params & params, const std::string & value) {
- params.chunk_separator = value;
- }
- ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
- add_opt(llama_arg(
- {"--junk"}, "N",
- format("number of times to repeat the junk text (default: %d)", params.n_junk),
- [](gpt_params & params, int value) {
- params.n_junk = value;
- }
- ).set_examples({LLAMA_EXAMPLE_PASSKEY}));
- add_opt(llama_arg(
- {"--pos"}, "N",
- format("position of the passkey in the junk text (default: %d)", params.i_pos),
- [](gpt_params & params, int value) {
- params.i_pos = value;
- }
- ).set_examples({LLAMA_EXAMPLE_PASSKEY}));
- add_opt(llama_arg(
- {"-o", "--output", "--output-file"}, "FNAME",
- format("output file (default: '%s')",
- ex == LLAMA_EXAMPLE_EXPORT_LORA
- ? params.lora_outfile.c_str()
- : ex == LLAMA_EXAMPLE_CVECTOR_GENERATOR
- ? params.cvector_outfile.c_str()
- : params.out_file.c_str()),
- [](gpt_params & params, const std::string & value) {
- params.out_file = value;
- params.cvector_outfile = value;
- params.lora_outfile = value;
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA}));
- add_opt(llama_arg(
- {"-ofreq", "--output-frequency"}, "N",
- format("output the imatrix every N iterations (default: %d)", params.n_out_freq),
- [](gpt_params & params, int value) {
- params.n_out_freq = value;
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
- add_opt(llama_arg(
- {"--save-frequency"}, "N",
- format("save an imatrix copy every N iterations (default: %d)", params.n_save_freq),
- [](gpt_params & params, int value) {
- params.n_save_freq = value;
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
- add_opt(llama_arg(
- {"--process-output"},
- format("collect data for the output tensor (default: %s)", params.process_output ? "true" : "false"),
- [](gpt_params & params) {
- params.process_output = true;
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
- add_opt(llama_arg(
- {"--no-ppl"},
- format("do not compute perplexity (default: %s)", params.compute_ppl ? "true" : "false"),
- [](gpt_params & params) {
- params.compute_ppl = false;
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
- add_opt(llama_arg(
- {"--chunk", "--from-chunk"}, "N",
- format("start processing the input from chunk N (default: %d)", params.i_chunk),
- [](gpt_params & params, int value) {
- params.i_chunk = value;
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
- add_opt(llama_arg(
- {"-pps"},
- format("is the prompt shared across parallel sequences (default: %s)", params.is_pp_shared ? "true" : "false"),
- [](gpt_params & params) {
- params.is_pp_shared = true;
- }
- ).set_examples({LLAMA_EXAMPLE_BENCH}));
- add_opt(llama_arg(
- {"-npp"}, "n0,n1,...",
- "number of prompt tokens",
- [](gpt_params & params, const std::string & value) {
- auto p = string_split<int>(value, ',');
- params.n_pp.insert(params.n_pp.end(), p.begin(), p.end());
- }
- ).set_examples({LLAMA_EXAMPLE_BENCH}));
- add_opt(llama_arg(
- {"-ntg"}, "n0,n1,...",
- "number of text generation tokens",
- [](gpt_params & params, const std::string & value) {
- auto p = string_split<int>(value, ',');
- params.n_tg.insert(params.n_tg.end(), p.begin(), p.end());
- }
- ).set_examples({LLAMA_EXAMPLE_BENCH}));
- add_opt(llama_arg(
- {"-npl"}, "n0,n1,...",
- "number of parallel prompts",
- [](gpt_params & params, const std::string & value) {
- auto p = string_split<int>(value, ',');
- params.n_pl.insert(params.n_pl.end(), p.begin(), p.end());
- }
- ).set_examples({LLAMA_EXAMPLE_BENCH}));
- add_opt(llama_arg(
- {"--embd-normalize"}, "N",
- format("normalisation for embendings (default: %d) (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)", params.embd_normalize),
- [](gpt_params & params, int value) {
- params.embd_normalize = value;
- }
- ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
- add_opt(llama_arg(
- {"--embd-output-format"}, "FORMAT",
- "empty = default, \"array\" = [[],[]...], \"json\" = openai style, \"json+\" = same \"json\" + cosine similarity matrix",
- [](gpt_params & params, const std::string & value) {
- params.embd_out = value;
- }
- ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
- add_opt(llama_arg(
- {"--embd-separator"}, "STRING",
- "separator of embendings (default \\n) for example \"<#sep#>\"",
- [](gpt_params & params, const std::string & value) {
- params.embd_sep = value;
- }
- ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
- add_opt(llama_arg(
- {"--host"}, "HOST",
- format("ip address to listen (default: %s)", params.hostname.c_str()),
- [](gpt_params & params, const std::string & value) {
- params.hostname = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_HOST"));
- add_opt(llama_arg(
- {"--port"}, "PORT",
- format("port to listen (default: %d)", params.port),
- [](gpt_params & params, int value) {
- params.port = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_PORT"));
- add_opt(llama_arg(
- {"--path"}, "PATH",
- format("path to serve static files from (default: %s)", params.public_path.c_str()),
- [](gpt_params & params, const std::string & value) {
- params.public_path = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_STATIC_PATH"));
- add_opt(llama_arg(
- {"--embedding", "--embeddings"},
- format("restrict to only support embedding use case; use only with dedicated embedding models (default: %s)", params.embedding ? "enabled" : "disabled"),
- [](gpt_params & params) {
- params.embedding = true;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_EMBEDDINGS"));
- add_opt(llama_arg(
- {"--reranking", "--rerank"},
- format("enable reranking endpoint on server (default: %s)", params.reranking ? "enabled" : "disabled"),
- [](gpt_params & params) {
- params.reranking = true;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_RERANKING"));
- add_opt(llama_arg(
- {"--api-key"}, "KEY",
- "API key to use for authentication (default: none)",
- [](gpt_params & params, const std::string & value) {
- params.api_keys.push_back(value);
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_API_KEY"));
- add_opt(llama_arg(
- {"--api-key-file"}, "FNAME",
- "path to file containing API keys (default: none)",
- [](gpt_params & params, const std::string & value) {
- std::ifstream key_file(value);
- if (!key_file) {
- throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str()));
- }
- std::string key;
- while (std::getline(key_file, key)) {
- if (!key.empty()) {
- params.api_keys.push_back(key);
- }
- }
- key_file.close();
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(llama_arg(
- {"--ssl-key-file"}, "FNAME",
- "path to file a PEM-encoded SSL private key",
- [](gpt_params & params, const std::string & value) {
- params.ssl_file_key = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_KEY_FILE"));
- add_opt(llama_arg(
- {"--ssl-cert-file"}, "FNAME",
- "path to file a PEM-encoded SSL certificate",
- [](gpt_params & params, const std::string & value) {
- params.ssl_file_cert = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_CERT_FILE"));
- add_opt(llama_arg(
- {"-to", "--timeout"}, "N",
- format("server read/write timeout in seconds (default: %d)", params.timeout_read),
- [](gpt_params & params, int value) {
- params.timeout_read = value;
- params.timeout_write = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_TIMEOUT"));
- add_opt(llama_arg(
- {"--threads-http"}, "N",
- format("number of threads used to process HTTP requests (default: %d)", params.n_threads_http),
- [](gpt_params & params, int value) {
- params.n_threads_http = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_THREADS_HTTP"));
- add_opt(llama_arg(
- {"-spf", "--system-prompt-file"}, "FNAME",
- "set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications",
- [](gpt_params & params, const std::string & value) {
- std::ifstream file(value);
- if (!file) {
- throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str()));
- }
- std::string system_prompt;
- std::copy(
- std::istreambuf_iterator<char>(file),
- std::istreambuf_iterator<char>(),
- std::back_inserter(system_prompt)
- );
- params.system_prompt = system_prompt;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(llama_arg(
- {"--metrics"},
- format("enable prometheus compatible metrics endpoint (default: %s)", params.endpoint_metrics ? "enabled" : "disabled"),
- [](gpt_params & params) {
- params.endpoint_metrics = true;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_METRICS"));
- add_opt(llama_arg(
- {"--no-slots"},
- format("disables slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled"),
- [](gpt_params & params) {
- params.endpoint_slots = false;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_ENDPOINT_SLOTS"));
- add_opt(llama_arg(
- {"--slot-save-path"}, "PATH",
- "path to save slot kv cache (default: disabled)",
- [](gpt_params & params, const std::string & value) {
- params.slot_save_path = value;
- // if doesn't end with DIRECTORY_SEPARATOR, add it
- if (!params.slot_save_path.empty() && params.slot_save_path[params.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) {
- params.slot_save_path += DIRECTORY_SEPARATOR;
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(llama_arg(
- {"--chat-template"}, "JINJA_TEMPLATE",
- "set custom jinja chat template (default: template taken from model's metadata)\n"
- "if suffix/prefix are specified, template will be disabled\n"
- "only commonly used templates are accepted:\nhttps://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template",
- [](gpt_params & params, const std::string & value) {
- if (!llama_chat_verify_template(value)) {
- throw std::runtime_error(format(
- "error: the supplied chat template is not supported: %s\n"
- "note: llama.cpp does not use jinja parser, we only support commonly used templates\n",
- value.c_str()
- ));
- }
- params.chat_template = value;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CHAT_TEMPLATE"));
- add_opt(llama_arg(
- {"-sps", "--slot-prompt-similarity"}, "SIMILARITY",
- format("how much the prompt of a request must match the prompt of a slot in order to use that slot (default: %.2f, 0.0 = disabled)\n", params.slot_prompt_similarity),
- [](gpt_params & params, const std::string & value) {
- params.slot_prompt_similarity = std::stof(value);
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(llama_arg(
- {"--lora-init-without-apply"},
- format("load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: %s)", params.lora_init_without_apply ? "enabled" : "disabled"),
- [](gpt_params & params) {
- params.lora_init_without_apply = true;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(llama_arg(
- {"--simple-io"},
- "use basic IO for better compatibility in subprocesses and limited consoles",
- [](gpt_params & params) {
- params.simple_io = true;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
- add_opt(llama_arg(
- {"-ld", "--logdir"}, "LOGDIR",
- "path under which to save YAML logs (no logging if unset)",
- [](gpt_params & params, const std::string & value) {
- params.logdir = value;
- if (params.logdir.back() != DIRECTORY_SEPARATOR) {
- params.logdir += DIRECTORY_SEPARATOR;
- }
- }
- ));
- add_opt(llama_arg(
- {"--positive-file"}, "FNAME",
- format("positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str()),
- [](gpt_params & params, const std::string & value) {
- params.cvector_positive_file = value;
- }
- ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
- add_opt(llama_arg(
- {"--negative-file"}, "FNAME",
- format("negative prompts file, one prompt per line (default: '%s')", params.cvector_negative_file.c_str()),
- [](gpt_params & params, const std::string & value) {
- params.cvector_negative_file = value;
- }
- ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
- add_opt(llama_arg(
- {"--pca-batch"}, "N",
- format("batch size used for PCA. Larger batch runs faster, but uses more memory (default: %d)", params.n_pca_batch),
- [](gpt_params & params, int value) {
- params.n_pca_batch = value;
- }
- ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
- add_opt(llama_arg(
- {"--pca-iter"}, "N",
- format("number of iterations used for PCA (default: %d)", params.n_pca_iterations),
- [](gpt_params & params, int value) {
- params.n_pca_iterations = value;
- }
- ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
- add_opt(llama_arg(
- {"--method"}, "{pca, mean}",
- "dimensionality reduction method to be used (default: pca)",
- [](gpt_params & params, const std::string & value) {
- /**/ if (value == "pca") { params.cvector_dimre_method = DIMRE_METHOD_PCA; }
- else if (value == "mean") { params.cvector_dimre_method = DIMRE_METHOD_MEAN; }
- else { throw std::invalid_argument("invalid value"); }
- }
- ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
- add_opt(llama_arg(
- {"--output-format"}, "{md,jsonl}",
- "output format for batched-bench results (default: md)",
- [](gpt_params & params, const std::string & value) {
- /**/ if (value == "jsonl") { params.batched_bench_output_jsonl = true; }
- else if (value == "md") { params.batched_bench_output_jsonl = false; }
- else { std::invalid_argument("invalid value"); }
- }
- ).set_examples({LLAMA_EXAMPLE_BENCH}));
- add_opt(llama_arg(
- {"--log-disable"},
- "Log disable",
- [](gpt_params &) {
- gpt_log_pause(gpt_log_main());
- }
- ));
- add_opt(llama_arg(
- {"--log-file"}, "FNAME",
- "Log to file",
- [](gpt_params &, const std::string & value) {
- gpt_log_set_file(gpt_log_main(), value.c_str());
- }
- ));
- add_opt(llama_arg(
- {"--log-colors"},
- "Enable colored logging",
- [](gpt_params &) {
- gpt_log_set_colors(gpt_log_main(), true);
- }
- ).set_env("LLAMA_LOG_COLORS"));
- add_opt(llama_arg(
- {"-v", "--verbose", "--log-verbose"},
- "Set verbosity level to infinity (i.e. log all messages, useful for debugging)",
- [](gpt_params & params) {
- params.verbosity = INT_MAX;
- gpt_log_set_verbosity_thold(INT_MAX);
- }
- ));
- add_opt(llama_arg(
- {"-lv", "--verbosity", "--log-verbosity"}, "N",
- "Set the verbosity threshold. Messages with a higher verbosity will be ignored.",
- [](gpt_params & params, int value) {
- params.verbosity = value;
- gpt_log_set_verbosity_thold(value);
- }
- ).set_env("LLAMA_LOG_VERBOSITY"));
- add_opt(llama_arg(
- {"--log-prefix"},
- "Enable prefx in log messages",
- [](gpt_params &) {
- gpt_log_set_prefix(gpt_log_main(), true);
- }
- ).set_env("LLAMA_LOG_PREFIX"));
- add_opt(llama_arg(
- {"--log-timestamps"},
- "Enable timestamps in log messages",
- [](gpt_params &) {
- gpt_log_set_timestamps(gpt_log_main(), true);
- }
- ).set_env("LLAMA_LOG_TIMESTAMPS"));
- return ctx_arg;
- }
|