server.cpp 136 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402
  1. #include "utils.hpp"
  2. #include "arg.h"
  3. #include "common.h"
  4. #include "log.h"
  5. #include "sampling.h"
  6. #include "json-schema-to-grammar.h"
  7. #include "llama.h"
  8. // Change JSON_ASSERT from assert() to GGML_ASSERT:
  9. #define JSON_ASSERT GGML_ASSERT
  10. #include "json.hpp"
  11. // mime type for sending response
  12. #define MIMETYPE_JSON "application/json; charset=utf-8"
  13. // auto generated files (update with ./deps.sh)
  14. #include "colorthemes.css.hpp"
  15. #include "style.css.hpp"
  16. #include "theme-beeninorder.css.hpp"
  17. #include "theme-ketivah.css.hpp"
  18. #include "theme-mangotango.css.hpp"
  19. #include "theme-playground.css.hpp"
  20. #include "theme-polarnight.css.hpp"
  21. #include "theme-snowstorm.css.hpp"
  22. #include "index.html.hpp"
  23. #include "index-new.html.hpp"
  24. #include "index.js.hpp"
  25. #include "completion.js.hpp"
  26. #include "system-prompts.js.hpp"
  27. #include "prompt-formats.js.hpp"
  28. #include "json-schema-to-grammar.mjs.hpp"
  29. #include "loading.html.hpp"
  30. #include <atomic>
  31. #include <condition_variable>
  32. #include <cstddef>
  33. #include <cinttypes>
  34. #include <deque>
  35. #include <memory>
  36. #include <mutex>
  37. #include <signal.h>
  38. #include <thread>
  39. #include <unordered_map>
  40. #include <unordered_set>
  41. #define SLT_INF(slot, fmt, ...) LOG_INF("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
  42. #define SLT_WRN(slot, fmt, ...) LOG_WRN("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
  43. #define SLT_ERR(slot, fmt, ...) LOG_ERR("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
  44. #define SLT_DBG(slot, fmt, ...) LOG_DBG("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
  45. #define SRV_INF(fmt, ...) LOG_INF("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  46. #define SRV_WRN(fmt, ...) LOG_WRN("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  47. #define SRV_ERR(fmt, ...) LOG_ERR("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  48. #define SRV_DBG(fmt, ...) LOG_DBG("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  49. #define QUE_INF(fmt, ...) LOG_INF("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  50. #define QUE_WRN(fmt, ...) LOG_WRN("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  51. #define QUE_ERR(fmt, ...) LOG_ERR("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  52. #define QUE_DBG(fmt, ...) LOG_DBG("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
  53. using json = nlohmann::ordered_json;
  54. enum stop_type {
  55. STOP_TYPE_FULL,
  56. STOP_TYPE_PARTIAL,
  57. };
  58. // state diagram: https://github.com/ggerganov/llama.cpp/pull/9283
  59. enum slot_state {
  60. SLOT_STATE_IDLE,
  61. SLOT_STATE_PROCESSING_PROMPT,
  62. SLOT_STATE_DONE_PROMPT,
  63. SLOT_STATE_GENERATING,
  64. };
  65. enum server_state {
  66. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  67. SERVER_STATE_READY, // Server is ready and model is loaded
  68. };
  69. enum server_task_type {
  70. SERVER_TASK_TYPE_COMPLETION,
  71. SERVER_TASK_TYPE_CANCEL,
  72. SERVER_TASK_TYPE_NEXT_RESPONSE,
  73. SERVER_TASK_TYPE_METRICS,
  74. SERVER_TASK_TYPE_SLOT_SAVE,
  75. SERVER_TASK_TYPE_SLOT_RESTORE,
  76. SERVER_TASK_TYPE_SLOT_ERASE,
  77. SERVER_TASK_TYPE_SET_LORA,
  78. };
  79. enum server_task_cmpl_type {
  80. SERVER_TASK_CMPL_TYPE_NORMAL,
  81. SERVER_TASK_CMPL_TYPE_EMBEDDING,
  82. SERVER_TASK_CMPL_TYPE_RERANK,
  83. SERVER_TASK_CMPL_TYPE_INFILL,
  84. };
  85. struct server_task {
  86. int id = -1; // to be filled by server_queue
  87. int id_target = -1; // used by SERVER_TASK_TYPE_CANCEL
  88. server_task_type type;
  89. json data;
  90. server_task_cmpl_type cmpl_type = SERVER_TASK_CMPL_TYPE_NORMAL;
  91. // utility function
  92. static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
  93. std::unordered_set<int> ids(tasks.size());
  94. for (size_t i = 0; i < tasks.size(); i++) {
  95. ids.insert(tasks[i].id);
  96. }
  97. return ids;
  98. }
  99. };
  100. struct server_task_result {
  101. int id = -1;
  102. json data;
  103. bool stop;
  104. bool error;
  105. };
  106. struct slot_params {
  107. bool stream = true;
  108. bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
  109. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  110. int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
  111. int32_t n_predict = -1; // new tokens to predict
  112. std::vector<std::string> antiprompt;
  113. json input_prefix;
  114. json input_suffix;
  115. };
  116. struct server_slot {
  117. int id;
  118. int id_task = -1;
  119. // the index relative to completion multi-task request
  120. size_t index = 0;
  121. struct slot_params params;
  122. slot_state state = SLOT_STATE_IDLE;
  123. // used to determine the slot that has been used the longest
  124. int64_t t_last_used = -1;
  125. // generation props
  126. int32_t n_ctx = 0; // context size per slot
  127. int32_t n_past = 0;
  128. int32_t n_decoded = 0;
  129. int32_t n_remaining = -1;
  130. int32_t i_batch = -1;
  131. int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
  132. int32_t n_prompt_tokens = 0;
  133. int32_t n_prompt_tokens_processed = 0;
  134. json prompt; // can be either a string, array of strings or array of token ids
  135. // when a task is submitted, we first tokenize the prompt and store it here
  136. std::vector<llama_token> prompt_tokens;
  137. std::string generated_text;
  138. std::vector<llama_token> cache_tokens;
  139. std::vector<completion_token_output> generated_token_probs;
  140. server_task_cmpl_type cmpl_type = SERVER_TASK_CMPL_TYPE_NORMAL;
  141. bool has_next_token = true;
  142. bool truncated = false;
  143. bool stopped_eos = false;
  144. bool stopped_word = false;
  145. bool stopped_limit = false;
  146. bool oaicompat = false;
  147. std::string oaicompat_model;
  148. std::string stopping_word;
  149. // sampling
  150. json json_schema;
  151. struct gpt_sampler_params sparams;
  152. struct gpt_sampler * smpl = nullptr;
  153. llama_token sampled;
  154. int32_t ga_i = 0; // group-attention state
  155. int32_t ga_n = 1; // group-attention factor
  156. int32_t ga_w = 512; // group-attention width
  157. int32_t n_past_se = 0; // self-extend
  158. // stats
  159. size_t n_sent_text = 0; // number of sent text character
  160. size_t n_sent_token_probs = 0;
  161. int64_t t_start_process_prompt;
  162. int64_t t_start_generation;
  163. double t_prompt_processing; // ms
  164. double t_token_generation; // ms
  165. std::function<void(int)> callback_on_release;
  166. void reset() {
  167. SLT_DBG(*this, "%s", "\n");
  168. n_prompt_tokens = 0;
  169. generated_text = "";
  170. truncated = false;
  171. stopped_eos = false;
  172. stopped_word = false;
  173. stopped_limit = false;
  174. stopping_word = "";
  175. n_past = 0;
  176. n_sent_text = 0;
  177. n_sent_token_probs = 0;
  178. cmpl_type = SERVER_TASK_CMPL_TYPE_NORMAL;
  179. ga_i = 0;
  180. n_past_se = 0;
  181. generated_token_probs.clear();
  182. }
  183. bool has_budget(gpt_params &global_params) {
  184. if (params.n_predict == -1 && global_params.n_predict == -1) {
  185. return true; // limitless
  186. }
  187. n_remaining = -1;
  188. if (params.n_predict != -1) {
  189. n_remaining = params.n_predict - n_decoded;
  190. } else if (global_params.n_predict != -1) {
  191. n_remaining = global_params.n_predict - n_decoded;
  192. }
  193. return n_remaining > 0; // no budget
  194. }
  195. bool is_processing() const {
  196. return state != SLOT_STATE_IDLE;
  197. }
  198. void add_token(const completion_token_output & token) {
  199. if (!is_processing()) {
  200. SLT_WRN(*this, "%s", "slot is not processing\n");
  201. return;
  202. }
  203. generated_token_probs.push_back(token);
  204. }
  205. void release() {
  206. if (is_processing()) {
  207. SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
  208. t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
  209. state = SLOT_STATE_IDLE;
  210. callback_on_release(id);
  211. }
  212. }
  213. json get_formated_timings() const {
  214. return json {
  215. {"prompt_n", n_prompt_tokens_processed},
  216. {"prompt_ms", t_prompt_processing},
  217. {"prompt_per_token_ms", t_prompt_processing / n_prompt_tokens_processed},
  218. {"prompt_per_second", 1e3 / t_prompt_processing * n_prompt_tokens_processed},
  219. {"predicted_n", n_decoded},
  220. {"predicted_ms", t_token_generation},
  221. {"predicted_per_token_ms", t_token_generation / n_decoded},
  222. {"predicted_per_second", 1e3 / t_token_generation * n_decoded},
  223. };
  224. }
  225. size_t find_stopping_strings(const std::string & text, const size_t last_token_size, const stop_type type) {
  226. size_t stop_pos = std::string::npos;
  227. for (const std::string & word : params.antiprompt) {
  228. size_t pos;
  229. if (type == STOP_TYPE_FULL) {
  230. const size_t tmp = word.size() + last_token_size;
  231. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  232. pos = text.find(word, from_pos);
  233. } else {
  234. pos = find_partial_stop_string(word, text);
  235. }
  236. if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
  237. if (type == STOP_TYPE_FULL) {
  238. stopped_word = true;
  239. stopping_word = word;
  240. has_next_token = false;
  241. }
  242. stop_pos = pos;
  243. }
  244. }
  245. return stop_pos;
  246. }
  247. void print_timings() const {
  248. const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
  249. const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  250. const double t_gen = t_token_generation / n_decoded;
  251. const double n_gen_second = 1e3 / t_token_generation * n_decoded;
  252. SLT_INF(*this,
  253. "\n"
  254. "\rprompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  255. "\r eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  256. "\r total time = %10.2f ms / %5d tokens\n",
  257. t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
  258. t_token_generation, n_decoded, t_gen, n_gen_second,
  259. t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
  260. }
  261. };
  262. struct server_metrics {
  263. int64_t t_start = 0;
  264. uint64_t n_prompt_tokens_processed_total = 0;
  265. uint64_t t_prompt_processing_total = 0;
  266. uint64_t n_tokens_predicted_total = 0;
  267. uint64_t t_tokens_generation_total = 0;
  268. uint64_t n_prompt_tokens_processed = 0;
  269. uint64_t t_prompt_processing = 0;
  270. uint64_t n_tokens_predicted = 0;
  271. uint64_t t_tokens_generation = 0;
  272. uint64_t n_decode_total = 0;
  273. uint64_t n_busy_slots_total = 0;
  274. void init() {
  275. t_start = ggml_time_us();
  276. }
  277. void on_prompt_eval(const server_slot & slot) {
  278. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  279. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  280. t_prompt_processing += slot.t_prompt_processing;
  281. t_prompt_processing_total += slot.t_prompt_processing;
  282. }
  283. void on_prediction(const server_slot & slot) {
  284. n_tokens_predicted_total += slot.n_decoded;
  285. n_tokens_predicted += slot.n_decoded;
  286. t_tokens_generation += slot.t_token_generation;
  287. t_tokens_generation_total += slot.t_token_generation;
  288. }
  289. void on_decoded(const std::vector<server_slot> & slots) {
  290. n_decode_total++;
  291. for (const auto & slot : slots) {
  292. if (slot.is_processing()) {
  293. n_busy_slots_total++;
  294. }
  295. }
  296. }
  297. void reset_bucket() {
  298. n_prompt_tokens_processed = 0;
  299. t_prompt_processing = 0;
  300. n_tokens_predicted = 0;
  301. t_tokens_generation = 0;
  302. }
  303. };
  304. struct server_queue {
  305. int id = 0;
  306. bool running;
  307. // queues
  308. std::deque<server_task> queue_tasks;
  309. std::deque<server_task> queue_tasks_deferred;
  310. std::mutex mutex_tasks;
  311. std::condition_variable condition_tasks;
  312. // callback functions
  313. std::function<void(server_task&)> callback_new_task;
  314. std::function<void(void)> callback_update_slots;
  315. // Add a new task to the end of the queue
  316. int post(server_task task, bool front = false) {
  317. std::unique_lock<std::mutex> lock(mutex_tasks);
  318. if (task.id == -1) {
  319. task.id = id++;
  320. }
  321. QUE_DBG("new task, id = %d, front = %d\n", task.id, front);
  322. if (front) {
  323. queue_tasks.push_front(std::move(task));
  324. } else {
  325. queue_tasks.push_back(std::move(task));
  326. }
  327. condition_tasks.notify_one();
  328. return task.id;
  329. }
  330. // multi-task version of post()
  331. int post(std::vector<server_task> & tasks, bool front = false) {
  332. std::unique_lock<std::mutex> lock(mutex_tasks);
  333. for (auto & task : tasks) {
  334. if (task.id == -1) {
  335. task.id = id++;
  336. }
  337. QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
  338. if (front) {
  339. queue_tasks.push_front(std::move(task));
  340. } else {
  341. queue_tasks.push_back(std::move(task));
  342. }
  343. }
  344. condition_tasks.notify_one();
  345. return 0;
  346. }
  347. // Add a new task, but defer until one slot is available
  348. void defer(server_task task) {
  349. std::unique_lock<std::mutex> lock(mutex_tasks);
  350. QUE_DBG("defer task, id = %d\n", task.id);
  351. queue_tasks_deferred.push_back(std::move(task));
  352. condition_tasks.notify_one();
  353. }
  354. // Get the next id for creating a new task
  355. int get_new_id() {
  356. std::unique_lock<std::mutex> lock(mutex_tasks);
  357. int new_id = id++;
  358. return new_id;
  359. }
  360. // Register function to process a new task
  361. void on_new_task(std::function<void(server_task &)> callback) {
  362. callback_new_task = std::move(callback);
  363. }
  364. // Register the function to be called when all slots data is ready to be processed
  365. void on_update_slots(std::function<void(void)> callback) {
  366. callback_update_slots = std::move(callback);
  367. }
  368. // Call when the state of one slot is changed, it will move one task from deferred to main queue
  369. void pop_deferred_task() {
  370. std::unique_lock<std::mutex> lock(mutex_tasks);
  371. if (!queue_tasks_deferred.empty()) {
  372. queue_tasks.emplace_back(std::move(queue_tasks_deferred.front()));
  373. queue_tasks_deferred.pop_front();
  374. }
  375. condition_tasks.notify_one();
  376. }
  377. // end the start_loop routine
  378. void terminate() {
  379. std::unique_lock<std::mutex> lock(mutex_tasks);
  380. running = false;
  381. condition_tasks.notify_all();
  382. }
  383. /**
  384. * Main loop consists of these steps:
  385. * - Wait until a new task arrives
  386. * - Process the task (i.e. maybe copy data into slot)
  387. * - Check if multitask is finished
  388. * - Update all slots
  389. */
  390. void start_loop() {
  391. running = true;
  392. while (true) {
  393. QUE_DBG("%s", "processing new tasks\n");
  394. while (true) {
  395. std::unique_lock<std::mutex> lock(mutex_tasks);
  396. if (queue_tasks.empty()) {
  397. lock.unlock();
  398. break;
  399. }
  400. server_task task = queue_tasks.front();
  401. queue_tasks.pop_front();
  402. lock.unlock();
  403. QUE_DBG("processing task, id = %d\n", task.id);
  404. callback_new_task(task);
  405. }
  406. // all tasks in the current loop is processed, slots data is now ready
  407. QUE_DBG("%s", "update slots\n");
  408. callback_update_slots();
  409. QUE_DBG("%s", "waiting for new tasks\n");
  410. {
  411. std::unique_lock<std::mutex> lock(mutex_tasks);
  412. if (queue_tasks.empty()) {
  413. if (!running) {
  414. QUE_DBG("%s", "terminate\n");
  415. return;
  416. }
  417. condition_tasks.wait(lock, [&]{
  418. return (!queue_tasks.empty() || !running);
  419. });
  420. }
  421. }
  422. }
  423. }
  424. };
  425. struct server_response {
  426. // for keeping track of all tasks waiting for the result
  427. std::unordered_set<int> waiting_task_ids;
  428. // the main result queue
  429. std::vector<server_task_result> queue_results;
  430. std::mutex mutex_results;
  431. std::condition_variable condition_results;
  432. // add the id_task to the list of tasks waiting for response
  433. void add_waiting_task_id(int id_task) {
  434. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
  435. std::unique_lock<std::mutex> lock(mutex_results);
  436. waiting_task_ids.insert(id_task);
  437. }
  438. void add_waiting_tasks(const std::vector<server_task> & tasks) {
  439. std::unique_lock<std::mutex> lock(mutex_results);
  440. for (const auto & task : tasks) {
  441. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
  442. waiting_task_ids.insert(task.id);
  443. }
  444. }
  445. // when the request is finished, we can remove task associated with it
  446. void remove_waiting_task_id(int id_task) {
  447. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  448. std::unique_lock<std::mutex> lock(mutex_results);
  449. waiting_task_ids.erase(id_task);
  450. }
  451. void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
  452. std::unique_lock<std::mutex> lock(mutex_results);
  453. for (const auto & id_task : id_tasks) {
  454. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  455. waiting_task_ids.erase(id_task);
  456. }
  457. }
  458. // This function blocks the thread until there is a response for one of the id_tasks
  459. server_task_result recv(const std::unordered_set<int> & id_tasks) {
  460. while (true) {
  461. std::unique_lock<std::mutex> lock(mutex_results);
  462. condition_results.wait(lock, [&]{
  463. return !queue_results.empty();
  464. });
  465. for (int i = 0; i < (int) queue_results.size(); i++) {
  466. if (id_tasks.find(queue_results[i].id) != id_tasks.end()) {
  467. server_task_result res = queue_results[i];
  468. queue_results.erase(queue_results.begin() + i);
  469. return res;
  470. }
  471. }
  472. }
  473. // should never reach here
  474. }
  475. // single-task version of recv()
  476. server_task_result recv(int id_task) {
  477. std::unordered_set<int> id_tasks = {id_task};
  478. return recv(id_tasks);
  479. }
  480. // Send a new result to a waiting id_task
  481. void send(server_task_result & result) {
  482. SRV_DBG("sending result for task id = %d\n", result.id);
  483. std::unique_lock<std::mutex> lock(mutex_results);
  484. for (const auto & id_task : waiting_task_ids) {
  485. if (result.id == id_task) {
  486. SRV_DBG("task id = %d moved to result queue\n", result.id);
  487. queue_results.push_back(std::move(result));
  488. condition_results.notify_all();
  489. return;
  490. }
  491. }
  492. }
  493. };
  494. struct server_context {
  495. llama_model * model = nullptr;
  496. llama_context * ctx = nullptr;
  497. std::vector<llama_lora_adapter_container> loras;
  498. gpt_params params;
  499. llama_batch batch = {};
  500. bool clean_kv_cache = true;
  501. bool add_bos_token = true;
  502. bool has_eos_token = false;
  503. int32_t n_ctx; // total context for all clients / slots
  504. // system prompt
  505. bool system_need_update = false;
  506. std::string system_prompt;
  507. std::vector<llama_token> system_tokens;
  508. // slots / clients
  509. std::vector<server_slot> slots;
  510. json default_generation_settings_for_props;
  511. server_queue queue_tasks;
  512. server_response queue_results;
  513. server_metrics metrics;
  514. // Necessary similarity of prompt for slot selection
  515. float slot_prompt_similarity = 0.0f;
  516. ~server_context() {
  517. if (ctx) {
  518. llama_free(ctx);
  519. ctx = nullptr;
  520. }
  521. if (model) {
  522. llama_free_model(model);
  523. model = nullptr;
  524. }
  525. // Clear any sampling context
  526. for (server_slot & slot : slots) {
  527. if (slot.smpl != nullptr) {
  528. gpt_sampler_free(slot.smpl);
  529. }
  530. }
  531. llama_batch_free(batch);
  532. }
  533. bool load_model(const gpt_params & params_) {
  534. params = params_;
  535. // dedicate one sequence to the system prompt
  536. params.n_parallel += 1;
  537. llama_init_result llama_init = llama_init_from_gpt_params(params);
  538. model = llama_init.model;
  539. ctx = llama_init.context;
  540. loras = llama_init.lora_adapters;
  541. params.n_parallel -= 1; // but be sneaky about it
  542. if (model == nullptr) {
  543. SRV_ERR("failed to load model, '%s'\n", params.model.c_str());
  544. return false;
  545. }
  546. n_ctx = llama_n_ctx(ctx);
  547. add_bos_token = llama_add_bos_token(model);
  548. has_eos_token = !llama_add_eos_token(model);
  549. return true;
  550. }
  551. bool validate_model_chat_template() const {
  552. llama_chat_message chat[] = {{"user", "test"}};
  553. const int res = llama_chat_apply_template(model, nullptr, chat, 1, true, nullptr, 0);
  554. return res > 0;
  555. }
  556. void init() {
  557. const int32_t n_ctx_slot = n_ctx / params.n_parallel;
  558. SRV_INF("initializing slots, n_slots = %d\n", params.n_parallel);
  559. for (int i = 0; i < params.n_parallel; i++) {
  560. server_slot slot;
  561. slot.id = i;
  562. slot.n_ctx = n_ctx_slot;
  563. slot.n_predict = params.n_predict;
  564. SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
  565. const int ga_n = params.grp_attn_n;
  566. const int ga_w = params.grp_attn_w;
  567. if (ga_n != 1) {
  568. GGML_ASSERT(ga_n > 0 && "ga_n must be positive"); // NOLINT
  569. GGML_ASSERT(ga_w % ga_n == 0 && "ga_w must be a multiple of ga_n"); // NOLINT
  570. //GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of ga_w"); // NOLINT
  571. //GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * ga_n"); // NOLINT
  572. SLT_INF(slot, "slot self-extend: ga_n = %d, ga_w = %d\n", ga_n, ga_w);
  573. }
  574. slot.ga_i = 0;
  575. slot.ga_n = ga_n;
  576. slot.ga_w = ga_w;
  577. slot.sparams = params.sparams;
  578. slot.callback_on_release = [this](int) {
  579. queue_tasks.pop_deferred_task();
  580. };
  581. slot.reset();
  582. slots.push_back(slot);
  583. }
  584. default_generation_settings_for_props = get_formated_generation(slots.front());
  585. default_generation_settings_for_props["seed"] = -1;
  586. // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
  587. // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
  588. {
  589. const int32_t n_batch = llama_n_batch(ctx);
  590. // only a single seq_id per token is needed
  591. batch = llama_batch_init(std::max(n_batch, params.n_parallel), 0, 1);
  592. }
  593. metrics.init();
  594. }
  595. std::vector<llama_token> tokenize(const json & json_prompt, bool add_special) const {
  596. // TODO: currently, we tokenize using special tokens by default
  597. // this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216)
  598. // but it's better compared to completely ignoring ChatML and other chat templates
  599. const bool TMP_FORCE_SPECIAL = true;
  600. // If `add_bos` is true, we only add BOS, when json_prompt is a string,
  601. // or the first element of the json_prompt array is a string.
  602. std::vector<llama_token> prompt_tokens;
  603. if (json_prompt.is_array()) {
  604. bool first = true;
  605. for (const auto & p : json_prompt) {
  606. if (p.is_string()) {
  607. auto s = p.template get<std::string>();
  608. std::vector<llama_token> p;
  609. if (first) {
  610. p = ::llama_tokenize(ctx, s, add_special, TMP_FORCE_SPECIAL);
  611. first = false;
  612. } else {
  613. p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
  614. }
  615. prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
  616. } else {
  617. if (first) {
  618. first = false;
  619. }
  620. prompt_tokens.push_back(p.template get<llama_token>());
  621. }
  622. }
  623. } else {
  624. auto s = json_prompt.template get<std::string>();
  625. prompt_tokens = ::llama_tokenize(ctx, s, add_special, TMP_FORCE_SPECIAL);
  626. }
  627. return prompt_tokens;
  628. }
  629. server_slot * get_slot_by_id(int id) {
  630. for (server_slot & slot : slots) {
  631. if (slot.id == id) {
  632. return &slot;
  633. }
  634. }
  635. return nullptr;
  636. }
  637. server_slot * get_available_slot(const std::string & prompt) {
  638. server_slot * ret = nullptr;
  639. // find the slot that has at least n% prompt similarity
  640. if (ret == nullptr && slot_prompt_similarity != 0.0f && !prompt.empty()) {
  641. int max_lcp_len = 0;
  642. float similarity = 0;
  643. for (server_slot & slot : slots) {
  644. // skip the slot if it is not available
  645. if (slot.is_processing()) {
  646. continue;
  647. }
  648. // skip the slot if it does not contains prompt
  649. if (!slot.prompt.is_string()) {
  650. continue;
  651. }
  652. // current slot's prompt
  653. std::string slot_prompt = slot.prompt.get<std::string>();
  654. // length of the current slot's prompt
  655. int slot_prompt_len = slot_prompt.size();
  656. // length of the Longest Common Prefix between the current slot's prompt and the input prompt
  657. int lcp_len = common_part(slot_prompt, prompt);
  658. // fraction of the common substring length compared to the current slot's prompt length
  659. similarity = static_cast<float>(lcp_len) / slot_prompt_len;
  660. // select the current slot if the criteria match
  661. if (lcp_len > max_lcp_len && similarity > slot_prompt_similarity) {
  662. max_lcp_len = lcp_len;
  663. ret = &slot;
  664. }
  665. }
  666. if (ret != nullptr) {
  667. SLT_DBG(*ret, "selected slot by lcp similarity, max_lcp_len = %d, similarity = %f\n", max_lcp_len, similarity);
  668. }
  669. }
  670. // find the slot that has been least recently used
  671. if (ret == nullptr) {
  672. int64_t t_last = ggml_time_us();
  673. for (server_slot & slot : slots) {
  674. // skip the slot if it is not available
  675. if (slot.is_processing()) {
  676. continue;
  677. }
  678. // select the current slot if the criteria match
  679. if (slot.t_last_used < t_last) {
  680. t_last = slot.t_last_used;
  681. ret = &slot;
  682. }
  683. }
  684. if (ret != nullptr) {
  685. SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
  686. }
  687. }
  688. return ret;
  689. }
  690. bool launch_slot_with_task(server_slot & slot, const server_task & task) {
  691. slot_params default_params;
  692. // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
  693. auto default_sparams = params.sparams;
  694. const auto & data = task.data;
  695. if (data.count("__oaicompat") != 0) {
  696. slot.oaicompat = true;
  697. slot.oaicompat_model = json_value(data, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
  698. } else {
  699. slot.oaicompat = false;
  700. slot.oaicompat_model = "";
  701. }
  702. slot.params.stream = json_value(data, "stream", false);
  703. slot.params.cache_prompt = json_value(data, "cache_prompt", false);
  704. slot.params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", default_params.n_predict));
  705. slot.sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
  706. slot.sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
  707. slot.sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
  708. slot.sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
  709. slot.sparams.typ_p = json_value(data, "typical_p", default_sparams.typ_p);
  710. slot.sparams.temp = json_value(data, "temperature", default_sparams.temp);
  711. slot.sparams.dynatemp_range = json_value(data, "dynatemp_range", default_sparams.dynatemp_range);
  712. slot.sparams.dynatemp_exponent = json_value(data, "dynatemp_exponent", default_sparams.dynatemp_exponent);
  713. slot.sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
  714. slot.sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat);
  715. slot.sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
  716. slot.sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present);
  717. slot.sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
  718. slot.sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
  719. slot.sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
  720. slot.sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
  721. slot.params.n_keep = json_value(data, "n_keep", slot.params.n_keep);
  722. slot.params.n_discard = json_value(data, "n_discard", default_params.n_discard);
  723. slot.sparams.seed = json_value(data, "seed", default_sparams.seed);
  724. slot.sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
  725. slot.sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
  726. // process "json_schema" and "grammar"
  727. if (data.contains("json_schema") && !data.at("json_schema").is_null() && data.contains("grammar") && !data.at("grammar").is_null()) {
  728. send_error(task, "Either \"json_schema\" or \"grammar\" can be specified, but not both", ERROR_TYPE_INVALID_REQUEST);
  729. return false;
  730. }
  731. if (data.contains("json_schema") && !data.contains("grammar")) {
  732. try {
  733. auto schema = json_value(data, "json_schema", json::object());
  734. slot.sparams.grammar = json_schema_to_grammar(schema);
  735. } catch (const std::exception & e) {
  736. send_error(task, std::string("\"json_schema\": ") + e.what(), ERROR_TYPE_INVALID_REQUEST);
  737. return false;
  738. }
  739. } else {
  740. slot.sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
  741. }
  742. if (slot.params.cache_prompt && slot.ga_n != 1) {
  743. slot.params.cache_prompt = false;
  744. SLT_WRN(slot, "%s", "group-attention is not supported with prompt caching. disabling cache\n");
  745. }
  746. if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
  747. // Might be better to reject the request with a 400 ?
  748. slot.params.n_predict = slot.n_predict;
  749. SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d", slot.n_predict, slot.n_predict);
  750. }
  751. // infill
  752. slot.params.input_prefix = json_value(data, "input_prefix", default_params.input_prefix);
  753. slot.params.input_suffix = json_value(data, "input_suffix", default_params.input_suffix);
  754. // get prompt
  755. if (task.cmpl_type != SERVER_TASK_CMPL_TYPE_INFILL) {
  756. const auto & prompt = data.find("prompt");
  757. if (prompt == data.end()) {
  758. send_error(task, "\"prompt\" must be provided", ERROR_TYPE_INVALID_REQUEST);
  759. return false;
  760. }
  761. if ((prompt->is_string()) ||
  762. (prompt->is_array() && prompt->size() == 1 && prompt->at(0).is_string()) ||
  763. (prompt->is_array() && !prompt->empty() && prompt->at(0).is_number_integer())) {
  764. slot.prompt = *prompt;
  765. } else if (prompt->is_array() && prompt->size() == 1 && prompt->at(0).is_array()) {
  766. slot.prompt = prompt->at(0);
  767. } else if (prompt->is_array() && prompt->size() > 1) {
  768. // array of strings
  769. for (const auto & el : *prompt) {
  770. if (!el.is_string()) {
  771. send_error(task, "\"prompt\" must be a string, an array of strings or an array of integers", ERROR_TYPE_INVALID_REQUEST);
  772. return false;
  773. }
  774. }
  775. slot.prompt = *prompt;
  776. } else {
  777. send_error(task, "\"prompt\" must be a string, an array of strings or an array of integers", ERROR_TYPE_INVALID_REQUEST);
  778. return false;
  779. }
  780. }
  781. {
  782. slot.sparams.logit_bias.clear();
  783. if (json_value(data, "ignore_eos", false) && has_eos_token) {
  784. slot.sparams.logit_bias.push_back({llama_token_eos(model), -INFINITY});
  785. }
  786. const auto & logit_bias = data.find("logit_bias");
  787. if (logit_bias != data.end() && logit_bias->is_array()) {
  788. const int n_vocab = llama_n_vocab(model);
  789. for (const auto & el : *logit_bias) {
  790. // TODO: we may want to throw errors here, in case "el" is incorrect
  791. if (el.is_array() && el.size() == 2) {
  792. float bias;
  793. if (el[1].is_number()) {
  794. bias = el[1].get<float>();
  795. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  796. bias = -INFINITY;
  797. } else {
  798. continue;
  799. }
  800. if (el[0].is_number_integer()) {
  801. llama_token tok = el[0].get<llama_token>();
  802. if (tok >= 0 && tok < n_vocab) {
  803. slot.sparams.logit_bias.push_back({tok, bias});
  804. }
  805. } else if (el[0].is_string()) {
  806. auto toks = llama_tokenize(model, el[0].get<std::string>(), false);
  807. for (auto tok : toks) {
  808. slot.sparams.logit_bias.push_back({tok, bias});
  809. }
  810. }
  811. }
  812. }
  813. }
  814. }
  815. {
  816. slot.params.antiprompt.clear();
  817. const auto & stop = data.find("stop");
  818. if (stop != data.end() && stop->is_array()) {
  819. for (const auto & word : *stop) {
  820. if (!word.empty()) {
  821. slot.params.antiprompt.push_back(word);
  822. }
  823. }
  824. }
  825. }
  826. {
  827. const auto & samplers = data.find("samplers");
  828. if (samplers != data.end() && samplers->is_array()) {
  829. std::vector<std::string> sampler_names;
  830. for (const auto & name : *samplers) {
  831. if (name.is_string()) {
  832. sampler_names.emplace_back(name);
  833. }
  834. }
  835. slot.sparams.samplers = gpt_sampler_types_from_names(sampler_names, false);
  836. } else {
  837. slot.sparams.samplers = default_sparams.samplers;
  838. }
  839. }
  840. {
  841. if (slot.smpl != nullptr) {
  842. gpt_sampler_free(slot.smpl);
  843. }
  844. slot.smpl = gpt_sampler_init(model, slot.sparams);
  845. if (slot.smpl == nullptr) {
  846. // for now, the only error that may happen here is invalid grammar
  847. send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
  848. return false;
  849. }
  850. }
  851. slot.state = SLOT_STATE_PROCESSING_PROMPT;
  852. slot.prompt_tokens.clear();
  853. SLT_INF(slot, "%s", "processing task\n");
  854. return true;
  855. }
  856. void kv_cache_clear() {
  857. SRV_DBG("%s", "clearing KV cache\n");
  858. // clear the entire KV cache
  859. llama_kv_cache_clear(ctx);
  860. clean_kv_cache = false;
  861. }
  862. void system_prompt_update() {
  863. SRV_DBG("updating system prompt: '%s'\n", system_prompt.c_str());
  864. kv_cache_clear();
  865. system_tokens.clear();
  866. if (!system_prompt.empty()) {
  867. system_tokens = ::llama_tokenize(ctx, system_prompt, true);
  868. const int32_t n_batch = llama_n_batch(ctx);
  869. const int32_t n_tokens_prompt = system_tokens.size();
  870. for (int32_t i = 0; i < n_tokens_prompt; i += n_batch) {
  871. const int32_t n_tokens = std::min(n_batch, n_tokens_prompt - i);
  872. llama_batch_clear(batch);
  873. for (int32_t j = 0; j < n_tokens; ++j) {
  874. llama_batch_add(batch, system_tokens[i + j], i + j, { 0 }, false);
  875. }
  876. if (llama_decode(ctx, batch) != 0) {
  877. SRV_ERR("%s", "llama_decode() failed\n");
  878. return;
  879. }
  880. }
  881. // assign the system KV cache to all parallel sequences
  882. for (int32_t i = 1; i <= params.n_parallel; ++i) {
  883. llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
  884. }
  885. }
  886. system_need_update = false;
  887. }
  888. bool system_prompt_set(const std::string & sys_prompt) {
  889. SRV_DBG("system prompt set: '%s'\n", system_prompt.c_str());
  890. system_prompt = sys_prompt;
  891. // release all slots
  892. for (server_slot & slot : slots) {
  893. slot.release();
  894. }
  895. system_need_update = true;
  896. return true;
  897. }
  898. bool process_token(completion_token_output & result, server_slot & slot) {
  899. // remember which tokens were sampled - used for repetition penalties during sampling
  900. const std::string token_str = llama_token_to_piece(ctx, result.tok, params.special);
  901. slot.sampled = result.tok;
  902. // search stop word and delete it
  903. slot.generated_text += token_str;
  904. slot.has_next_token = true;
  905. // check if there is incomplete UTF-8 character at the end
  906. bool incomplete = false;
  907. for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i) {
  908. unsigned char c = slot.generated_text[slot.generated_text.size() - i];
  909. if ((c & 0xC0) == 0x80) {
  910. // continuation byte: 10xxxxxx
  911. continue;
  912. }
  913. if ((c & 0xE0) == 0xC0) {
  914. // 2-byte character: 110xxxxx ...
  915. incomplete = i < 2;
  916. } else if ((c & 0xF0) == 0xE0) {
  917. // 3-byte character: 1110xxxx ...
  918. incomplete = i < 3;
  919. } else if ((c & 0xF8) == 0xF0) {
  920. // 4-byte character: 11110xxx ...
  921. incomplete = i < 4;
  922. }
  923. // else 1-byte character or invalid byte
  924. break;
  925. }
  926. if (!incomplete) {
  927. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  928. const std::string str_test = slot.generated_text.substr(pos);
  929. bool is_stop_full = false;
  930. size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), STOP_TYPE_FULL);
  931. if (stop_pos != std::string::npos) {
  932. is_stop_full = true;
  933. slot.generated_text.erase(
  934. slot.generated_text.begin() + pos + stop_pos,
  935. slot.generated_text.end());
  936. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  937. } else {
  938. is_stop_full = false;
  939. stop_pos = slot.find_stopping_strings(str_test, token_str.size(), STOP_TYPE_PARTIAL);
  940. }
  941. // check if there is any token to predict
  942. if (stop_pos == std::string::npos || (!slot.has_next_token && !is_stop_full && stop_pos > 0)) {
  943. // no send the stop word in the response
  944. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  945. slot.n_sent_text += result.text_to_send.size();
  946. // add the token to slot queue and cache
  947. }
  948. slot.add_token(result);
  949. if (slot.params.stream) {
  950. send_partial_response(slot, result);
  951. }
  952. }
  953. if (incomplete) {
  954. slot.has_next_token = true;
  955. }
  956. // check the limits
  957. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params)) {
  958. slot.stopped_limit = true;
  959. slot.has_next_token = false;
  960. SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
  961. }
  962. // if context shift is disabled, we stop when it reaches the context limit
  963. if (slot.n_decoded >= slot.n_ctx) {
  964. slot.truncated = true;
  965. slot.stopped_limit = true;
  966. slot.has_next_token = false;
  967. SLT_DBG(slot, "stopped due to running out of context capacity, n_decoded = %d, n_ctx = %d\n", slot.n_decoded, slot.n_ctx);
  968. }
  969. if (llama_token_is_eog(model, result.tok)) {
  970. slot.stopped_eos = true;
  971. slot.has_next_token = false;
  972. SLT_DBG(slot, "%s", "stopped by EOS\n");
  973. }
  974. const auto n_ctx_train = llama_n_ctx_train(model);
  975. if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.ga_n == 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
  976. slot.truncated = true;
  977. slot.stopped_limit = true;
  978. slot.has_next_token = false; // stop prediction
  979. SLT_WRN(slot,
  980. "n_predict (%d) is not set and self-context extend is disabled. "
  981. "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
  982. slot.params.n_predict, n_ctx_train);
  983. }
  984. SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: '%s'\n", slot.n_decoded, slot.n_remaining, token_str.c_str());
  985. return slot.has_next_token; // continue
  986. }
  987. json get_formated_generation(const server_slot & slot) const {
  988. std::vector<std::string> samplers;
  989. samplers.reserve(slot.sparams.samplers.size());
  990. for (const auto & sampler : slot.sparams.samplers) {
  991. samplers.emplace_back(gpt_sampler_type_to_str(sampler));
  992. }
  993. return json {
  994. {"n_ctx", slot.n_ctx},
  995. {"n_predict", slot.n_predict}, // Server configured n_predict
  996. {"model", params.model_alias},
  997. {"seed", slot.sparams.seed},
  998. {"seed_cur", slot.smpl ? gpt_sampler_get_seed(slot.smpl) : 0},
  999. {"temperature", slot.sparams.temp},
  1000. {"dynatemp_range", slot.sparams.dynatemp_range},
  1001. {"dynatemp_exponent", slot.sparams.dynatemp_exponent},
  1002. {"top_k", slot.sparams.top_k},
  1003. {"top_p", slot.sparams.top_p},
  1004. {"min_p", slot.sparams.min_p},
  1005. {"tfs_z", slot.sparams.tfs_z},
  1006. {"typical_p", slot.sparams.typ_p},
  1007. {"repeat_last_n", slot.sparams.penalty_last_n},
  1008. {"repeat_penalty", slot.sparams.penalty_repeat},
  1009. {"presence_penalty", slot.sparams.penalty_present},
  1010. {"frequency_penalty", slot.sparams.penalty_freq},
  1011. {"mirostat", slot.sparams.mirostat},
  1012. {"mirostat_tau", slot.sparams.mirostat_tau},
  1013. {"mirostat_eta", slot.sparams.mirostat_eta},
  1014. {"penalize_nl", slot.sparams.penalize_nl},
  1015. {"stop", slot.params.antiprompt},
  1016. {"max_tokens", slot.params.n_predict}, // User configured n_predict
  1017. {"n_keep", slot.params.n_keep},
  1018. {"n_discard", slot.params.n_discard},
  1019. {"ignore_eos", slot.sparams.ignore_eos},
  1020. {"stream", slot.params.stream},
  1021. //{"logit_bias", slot.sparams.logit_bias},
  1022. {"n_probs", slot.sparams.n_probs},
  1023. {"min_keep", slot.sparams.min_keep},
  1024. {"grammar", slot.sparams.grammar},
  1025. {"samplers", samplers},
  1026. };
  1027. }
  1028. void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1029. send_error(task.id, error, type);
  1030. }
  1031. void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1032. send_error(slot.id_task, error, type);
  1033. }
  1034. void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1035. SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
  1036. server_task_result res;
  1037. res.id = id_task;
  1038. res.stop = false;
  1039. res.error = true;
  1040. res.data = format_error_response(error, type);
  1041. queue_results.send(res);
  1042. }
  1043. void send_partial_response(server_slot & slot, completion_token_output tkn) {
  1044. server_task_result res;
  1045. res.id = slot.id_task;
  1046. res.error = false;
  1047. res.stop = false;
  1048. res.data = json {
  1049. {"content", tkn.text_to_send},
  1050. {"stop", false},
  1051. {"id_slot", slot.id},
  1052. {"multimodal", false},
  1053. {"index", slot.index},
  1054. };
  1055. if (slot.sparams.n_probs > 0) {
  1056. const std::vector<llama_token> to_send_toks = llama_tokenize(ctx, tkn.text_to_send, false);
  1057. const size_t probs_pos = std::min(slot.n_sent_token_probs, slot.generated_token_probs.size());
  1058. const size_t probs_stop_pos = std::min(slot.n_sent_token_probs + to_send_toks.size(), slot.generated_token_probs.size());
  1059. std::vector<completion_token_output> probs_output;
  1060. if (probs_pos < probs_stop_pos) {
  1061. probs_output = std::vector<completion_token_output>(
  1062. slot.generated_token_probs.begin() + probs_pos,
  1063. slot.generated_token_probs.begin() + probs_stop_pos);
  1064. }
  1065. slot.n_sent_token_probs = probs_stop_pos;
  1066. res.data["completion_probabilities"] = probs_vector_to_json(ctx, probs_output);
  1067. }
  1068. if (slot.oaicompat) {
  1069. res.data["oaicompat_token_ctr"] = slot.n_decoded;
  1070. res.data["model"] = slot.oaicompat_model;
  1071. }
  1072. queue_results.send(res);
  1073. }
  1074. void send_final_response(const server_slot & slot) {
  1075. server_task_result res;
  1076. res.id = slot.id_task;
  1077. res.error = false;
  1078. res.stop = true;
  1079. res.data = json {
  1080. {"content", !slot.params.stream ? slot.generated_text : ""},
  1081. {"id_slot", slot.id},
  1082. {"stop", true},
  1083. {"model", params.model_alias},
  1084. {"tokens_predicted", slot.n_decoded},
  1085. {"tokens_evaluated", slot.n_prompt_tokens},
  1086. {"generation_settings", get_formated_generation(slot)},
  1087. {"prompt", slot.prompt},
  1088. {"truncated", slot.truncated},
  1089. {"stopped_eos", slot.stopped_eos},
  1090. {"stopped_word", slot.stopped_word},
  1091. {"stopped_limit", slot.stopped_limit},
  1092. {"stopping_word", slot.stopping_word},
  1093. {"tokens_cached", slot.n_past},
  1094. {"timings", slot.get_formated_timings()},
  1095. {"index", slot.index},
  1096. };
  1097. if (slot.sparams.n_probs > 0) {
  1098. std::vector<completion_token_output> probs;
  1099. if (!slot.params.stream && slot.stopped_word) {
  1100. const std::vector<llama_token> stop_word_toks = llama_tokenize(ctx, slot.stopping_word, false);
  1101. size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
  1102. probs = std::vector<completion_token_output>(
  1103. slot.generated_token_probs.begin(),
  1104. slot.generated_token_probs.end() - safe_offset);
  1105. } else {
  1106. probs = std::vector<completion_token_output>(
  1107. slot.generated_token_probs.begin(),
  1108. slot.generated_token_probs.end());
  1109. }
  1110. res.data["completion_probabilities"] = probs_vector_to_json(ctx, probs);
  1111. }
  1112. if (slot.oaicompat) {
  1113. res.data["oaicompat_token_ctr"] = slot.n_decoded;
  1114. res.data["model"] = slot.oaicompat_model;
  1115. }
  1116. queue_results.send(res);
  1117. }
  1118. void send_embedding(const server_slot & slot, const llama_batch & batch) {
  1119. server_task_result res;
  1120. res.id = slot.id_task;
  1121. res.error = false;
  1122. res.stop = true;
  1123. const int n_embd = llama_n_embd(model);
  1124. std::vector<float> embd_res(n_embd, 0.0f);
  1125. for (int i = 0; i < batch.n_tokens; ++i) {
  1126. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id + 1) {
  1127. continue;
  1128. }
  1129. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  1130. if (embd == NULL) {
  1131. embd = llama_get_embeddings_ith(ctx, i);
  1132. }
  1133. if (embd == NULL) {
  1134. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  1135. res.data = json {
  1136. {"embedding", std::vector<float>(n_embd, 0.0f)},
  1137. {"index", slot.index},
  1138. };
  1139. continue;
  1140. }
  1141. llama_embd_normalize(embd, embd_res.data(), n_embd);
  1142. res.data = json {
  1143. {"embedding", embd_res},
  1144. {"index", slot.index},
  1145. };
  1146. }
  1147. SLT_DBG(slot, "%s", "sending embeddings\n");
  1148. queue_results.send(res);
  1149. }
  1150. void send_rerank(const server_slot & slot, const llama_batch & batch) {
  1151. server_task_result res;
  1152. res.id = slot.id_task;
  1153. res.error = false;
  1154. res.stop = true;
  1155. for (int i = 0; i < batch.n_tokens; ++i) {
  1156. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id + 1) {
  1157. continue;
  1158. }
  1159. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  1160. if (embd == NULL) {
  1161. embd = llama_get_embeddings_ith(ctx, i);
  1162. }
  1163. if (embd == NULL) {
  1164. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  1165. res.data = json {
  1166. {"index", slot.index},
  1167. {"score", -1e6},
  1168. };
  1169. continue;
  1170. }
  1171. res.data = json {
  1172. {"index", slot.index},
  1173. {"score", embd[0]},
  1174. };
  1175. }
  1176. SLT_DBG(slot, "sending rerank result, res = '%s'\n", res.data.dump().c_str());
  1177. queue_results.send(res);
  1178. }
  1179. //
  1180. // Functions to create new task(s) and receive result(s)
  1181. //
  1182. std::vector<server_task> create_tasks_cmpl(json data, server_task_cmpl_type cmpl_type) {
  1183. std::vector<server_task> tasks;
  1184. auto create_task = [&](json & task_data, bool replace_prompt, json prompt) {
  1185. server_task task;
  1186. task.id = queue_tasks.get_new_id();
  1187. task.cmpl_type = cmpl_type;
  1188. task.type = SERVER_TASK_TYPE_COMPLETION;
  1189. if (replace_prompt) {
  1190. task.data = task_data;
  1191. task.data["prompt"] = std::move(prompt);
  1192. } else {
  1193. task.data = std::move(task_data);
  1194. }
  1195. tasks.push_back(std::move(task));
  1196. };
  1197. static constexpr const char * error_msg = "\"prompt\" must be a string, an array of token ids or an array of prompts";
  1198. if (!data.contains("prompt")) {
  1199. throw std::runtime_error(error_msg);
  1200. }
  1201. json prompt = data.at("prompt");
  1202. // if the prompt is a singleton (i.e. a string or a list of tokens), we only need to create single task
  1203. if (prompt.is_string() || json_is_array_of_numbers(prompt)) {
  1204. data["index"] = 0;
  1205. create_task(data, false, nullptr);
  1206. }
  1207. // otherwise, it's a multiple-prompt task, we break it into smaller tasks
  1208. else if (prompt.is_array()) {
  1209. std::vector<json> prompts = prompt;
  1210. if (cmpl_type == SERVER_TASK_CMPL_TYPE_RERANK) {
  1211. // prompts[0] is the question
  1212. // the rest are the answers/documents
  1213. SRV_DBG("creating rerank tasks, n_prompts = %d\n", (int) prompts.size() - 1);
  1214. for (size_t i = 1; i < prompts.size(); i++) {
  1215. json qd;
  1216. qd.push_back(prompts[0]);
  1217. qd.push_back(prompts[i]);
  1218. data["index"] = i - 1;
  1219. create_task(data, true, qd);
  1220. }
  1221. } else {
  1222. SRV_DBG("creating multi-prompt tasks, n_prompts = %d\n", (int) prompts.size());
  1223. for (size_t i = 0; i < prompts.size(); i++) {
  1224. const auto & e = prompts[i];
  1225. if (e.is_string() || json_is_array_of_numbers(e)) {
  1226. data["index"] = i;
  1227. create_task(data, true, e);
  1228. } else {
  1229. throw std::runtime_error(error_msg);
  1230. }
  1231. }
  1232. }
  1233. }
  1234. // invalid case
  1235. else {
  1236. throw std::runtime_error(error_msg);
  1237. }
  1238. return tasks;
  1239. }
  1240. void cancel_tasks(const std::unordered_set<int> & id_tasks) {
  1241. std::vector<server_task> cancel_tasks;
  1242. cancel_tasks.reserve(id_tasks.size());
  1243. for (const auto & id_task : id_tasks) {
  1244. SRV_WRN("cancel task, id_task = %d\n", id_task);
  1245. server_task task;
  1246. task.type = SERVER_TASK_TYPE_CANCEL;
  1247. task.id_target = id_task;
  1248. cancel_tasks.push_back(task);
  1249. queue_results.remove_waiting_task_id(id_task);
  1250. }
  1251. // push to beginning of the queue, so it has highest priority
  1252. queue_tasks.post(cancel_tasks, true);
  1253. }
  1254. // receive the results from task(s) created by create_tasks_cmpl
  1255. void receive_cmpl_results(
  1256. const std::unordered_set<int> & id_tasks,
  1257. const std::function<void(std::vector<server_task_result>&)> & result_handler,
  1258. const std::function<void(json)> & error_handler) {
  1259. // TODO: currently, there is no way to detect the client has cancelled the request
  1260. std::vector<server_task_result> results(id_tasks.size());
  1261. for (size_t i = 0; i < id_tasks.size(); i++) {
  1262. server_task_result result = queue_results.recv(id_tasks);
  1263. if (result.error) {
  1264. error_handler(result.data);
  1265. cancel_tasks(id_tasks);
  1266. return;
  1267. }
  1268. const size_t idx = result.data["index"];
  1269. GGML_ASSERT(idx < results.size() && "index out of range");
  1270. results[idx] = result;
  1271. }
  1272. result_handler(results);
  1273. }
  1274. // receive the results from task(s) created by create_tasks_cmpl, in stream mode
  1275. void receive_cmpl_results_stream(
  1276. const std::unordered_set<int> & id_tasks, const
  1277. std::function<bool(server_task_result&)> & result_handler, const
  1278. std::function<void(json)> & error_handler) {
  1279. size_t n_finished = 0;
  1280. while (true) {
  1281. server_task_result result = queue_results.recv(id_tasks);
  1282. if (!result_handler(result)) {
  1283. cancel_tasks(id_tasks);
  1284. break;
  1285. }
  1286. if (result.error) {
  1287. error_handler(result.data);
  1288. cancel_tasks(id_tasks);
  1289. break;
  1290. }
  1291. if (result.stop) {
  1292. if (++n_finished == id_tasks.size()) {
  1293. break;
  1294. }
  1295. }
  1296. }
  1297. }
  1298. //
  1299. // Functions to process the task
  1300. //
  1301. void process_single_task(const server_task & task) {
  1302. switch (task.type) {
  1303. case SERVER_TASK_TYPE_COMPLETION:
  1304. {
  1305. const int id_slot = json_value(task.data, "id_slot", -1);
  1306. server_slot * slot;
  1307. if (id_slot != -1) {
  1308. slot = get_slot_by_id(id_slot);
  1309. } else {
  1310. std::string prompt;
  1311. if (task.data.contains("prompt") && task.data.at("prompt").is_string()) {
  1312. prompt = json_value(task.data, "prompt", std::string());
  1313. }
  1314. slot = get_available_slot(prompt);
  1315. }
  1316. if (slot == nullptr) {
  1317. // if no slot is available, we defer this task for processing later
  1318. SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
  1319. queue_tasks.defer(task);
  1320. break;
  1321. }
  1322. if (slot->is_processing()) {
  1323. // if requested slot is unavailable, we defer this task for processing later
  1324. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1325. queue_tasks.defer(task);
  1326. break;
  1327. }
  1328. if (task.data.contains("system_prompt")) {
  1329. std::string sys_prompt = json_value(task.data, "system_prompt", std::string());
  1330. system_prompt_set(sys_prompt);
  1331. for (server_slot & slot : slots) {
  1332. slot.n_past = 0;
  1333. slot.n_past_se = 0;
  1334. }
  1335. }
  1336. slot->reset();
  1337. slot->id_task = task.id;
  1338. slot->cmpl_type = task.cmpl_type;
  1339. slot->index = json_value(task.data, "index", 0);
  1340. if (!launch_slot_with_task(*slot, task)) {
  1341. SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
  1342. break;
  1343. }
  1344. } break;
  1345. case SERVER_TASK_TYPE_CANCEL:
  1346. {
  1347. // release slot linked with the task id
  1348. for (auto & slot : slots) {
  1349. if (slot.id_task == task.id_target) {
  1350. slot.release();
  1351. break;
  1352. }
  1353. }
  1354. } break;
  1355. case SERVER_TASK_TYPE_NEXT_RESPONSE:
  1356. {
  1357. // do nothing
  1358. } break;
  1359. case SERVER_TASK_TYPE_METRICS:
  1360. {
  1361. json slots_data = json::array();
  1362. int n_idle_slots = 0;
  1363. int n_processing_slots = 0;
  1364. for (server_slot & slot : slots) {
  1365. json slot_data = get_formated_generation(slot);
  1366. slot_data["id"] = slot.id;
  1367. slot_data["id_task"] = slot.id_task;
  1368. slot_data["state"] = slot.state;
  1369. slot_data["prompt"] = slot.prompt;
  1370. slot_data["next_token"] = {
  1371. {"has_next_token", slot.has_next_token},
  1372. {"n_remain", slot.n_remaining},
  1373. {"n_decoded", slot.n_decoded},
  1374. {"stopped_eos", slot.stopped_eos},
  1375. {"stopped_word", slot.stopped_word},
  1376. {"stopped_limit", slot.stopped_limit},
  1377. {"stopping_word", slot.stopping_word},
  1378. };
  1379. if (slot_data["state"] == SLOT_STATE_IDLE) {
  1380. n_idle_slots++;
  1381. } else {
  1382. n_processing_slots++;
  1383. }
  1384. slots_data.push_back(slot_data);
  1385. }
  1386. SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
  1387. server_task_result res;
  1388. res.id = task.id;
  1389. res.stop = true;
  1390. res.error = false;
  1391. res.data = {
  1392. { "idle", n_idle_slots },
  1393. { "processing", n_processing_slots },
  1394. { "deferred", queue_tasks.queue_tasks_deferred.size() },
  1395. { "t_start", metrics.t_start},
  1396. { "n_prompt_tokens_processed_total", metrics.n_prompt_tokens_processed_total},
  1397. { "t_tokens_generation_total", metrics.t_tokens_generation_total},
  1398. { "n_tokens_predicted_total", metrics.n_tokens_predicted_total},
  1399. { "t_prompt_processing_total", metrics.t_prompt_processing_total},
  1400. { "n_prompt_tokens_processed", metrics.n_prompt_tokens_processed},
  1401. { "t_prompt_processing", metrics.t_prompt_processing},
  1402. { "n_tokens_predicted", metrics.n_tokens_predicted},
  1403. { "t_tokens_generation", metrics.t_tokens_generation},
  1404. { "n_decode_total", metrics.n_decode_total},
  1405. { "n_busy_slots_total", metrics.n_busy_slots_total},
  1406. { "kv_cache_tokens_count", llama_get_kv_cache_token_count(ctx)},
  1407. { "kv_cache_used_cells", llama_get_kv_cache_used_cells(ctx)},
  1408. { "slots", slots_data },
  1409. };
  1410. if (json_value(task.data, "reset_bucket", false)) {
  1411. metrics.reset_bucket();
  1412. }
  1413. queue_results.send(res);
  1414. } break;
  1415. case SERVER_TASK_TYPE_SLOT_SAVE:
  1416. {
  1417. int id_slot = task.data.at("id_slot");
  1418. server_slot * slot = get_slot_by_id(id_slot);
  1419. if (slot == nullptr) {
  1420. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  1421. break;
  1422. }
  1423. if (slot->is_processing()) {
  1424. // if requested slot is unavailable, we defer this task for processing later
  1425. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1426. queue_tasks.defer(task);
  1427. break;
  1428. }
  1429. const size_t token_count = slot->cache_tokens.size();
  1430. const int64_t t_start = ggml_time_us();
  1431. std::string filename = task.data.at("filename");
  1432. std::string filepath = task.data.at("filepath");
  1433. const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id + 1, slot->cache_tokens.data(), token_count);
  1434. const int64_t t_end = ggml_time_us();
  1435. const double t_save_ms = (t_end - t_start) / 1000.0;
  1436. server_task_result result;
  1437. result.id = task.id;
  1438. result.stop = true;
  1439. result.error = false;
  1440. result.data = json {
  1441. { "id_slot", id_slot },
  1442. { "filename", filename },
  1443. { "n_saved", token_count }, // tokens saved
  1444. { "n_written", nwrite }, // bytes written
  1445. { "timings", {
  1446. { "save_ms", t_save_ms }
  1447. } }
  1448. };
  1449. queue_results.send(result);
  1450. } break;
  1451. case SERVER_TASK_TYPE_SLOT_RESTORE:
  1452. {
  1453. int id_slot = task.data.at("id_slot");
  1454. server_slot * slot = get_slot_by_id(id_slot);
  1455. if (slot == nullptr) {
  1456. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  1457. break;
  1458. }
  1459. if (slot->is_processing()) {
  1460. // if requested slot is unavailable, we defer this task for processing later
  1461. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1462. queue_tasks.defer(task);
  1463. break;
  1464. }
  1465. const int64_t t_start = ggml_time_us();
  1466. std::string filename = task.data.at("filename");
  1467. std::string filepath = task.data.at("filepath");
  1468. slot->cache_tokens.resize(slot->n_ctx);
  1469. size_t token_count = 0;
  1470. size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id + 1, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count);
  1471. if (nread == 0) {
  1472. slot->cache_tokens.resize(0);
  1473. send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
  1474. break;
  1475. }
  1476. slot->cache_tokens.resize(token_count);
  1477. const int64_t t_end = ggml_time_us();
  1478. const double t_restore_ms = (t_end - t_start) / 1000.0;
  1479. server_task_result result;
  1480. result.id = task.id;
  1481. result.stop = true;
  1482. result.error = false;
  1483. result.data = json {
  1484. { "id_slot", id_slot },
  1485. { "filename", filename },
  1486. { "n_restored", token_count }, // tokens restored
  1487. { "n_read", nread }, // bytes read
  1488. { "timings", {
  1489. { "restore_ms", t_restore_ms }
  1490. } }
  1491. };
  1492. queue_results.send(result);
  1493. } break;
  1494. case SERVER_TASK_TYPE_SLOT_ERASE:
  1495. {
  1496. int id_slot = task.data.at("id_slot");
  1497. server_slot * slot = get_slot_by_id(id_slot);
  1498. if (slot == nullptr) {
  1499. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  1500. break;
  1501. }
  1502. if (slot->is_processing()) {
  1503. // if requested slot is unavailable, we defer this task for processing later
  1504. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1505. queue_tasks.defer(task);
  1506. break;
  1507. }
  1508. // Erase token cache
  1509. const size_t n_erased = slot->cache_tokens.size();
  1510. llama_kv_cache_seq_rm(ctx, slot->id + 1, -1, -1);
  1511. slot->cache_tokens.clear();
  1512. server_task_result result;
  1513. result.id = task.id;
  1514. result.stop = true;
  1515. result.error = false;
  1516. result.data = json {
  1517. { "id_slot", id_slot },
  1518. { "n_erased", n_erased }
  1519. };
  1520. queue_results.send(result);
  1521. } break;
  1522. case SERVER_TASK_TYPE_SET_LORA:
  1523. {
  1524. llama_lora_adapters_apply(ctx, loras);
  1525. server_task_result result;
  1526. result.id = task.id;
  1527. result.stop = true;
  1528. result.error = false;
  1529. result.data = json{{ "success", true }};
  1530. queue_results.send(result);
  1531. } break;
  1532. }
  1533. }
  1534. void update_slots() {
  1535. if (system_need_update) {
  1536. system_prompt_update();
  1537. }
  1538. // check if all slots are idle
  1539. {
  1540. bool all_idle = true;
  1541. for (auto & slot : slots) {
  1542. if (slot.is_processing()) {
  1543. all_idle = false;
  1544. break;
  1545. }
  1546. }
  1547. if (all_idle) {
  1548. SRV_INF("%s", "all slots are idle\n");
  1549. if (system_prompt.empty() && clean_kv_cache) {
  1550. kv_cache_clear();
  1551. }
  1552. return;
  1553. }
  1554. }
  1555. {
  1556. SRV_DBG("%s", "posting NEXT_RESPONSE\n");
  1557. server_task task;
  1558. task.type = SERVER_TASK_TYPE_NEXT_RESPONSE;
  1559. task.id_target = -1;
  1560. queue_tasks.post(task);
  1561. }
  1562. // apply context-shift if needed
  1563. // TODO: simplify and improve
  1564. for (server_slot & slot : slots) {
  1565. if (slot.ga_n == 1) {
  1566. if (slot.is_processing() && (int) system_tokens.size() + slot.n_past >= slot.n_ctx - 1) {
  1567. if (!params.ctx_shift) {
  1568. // this check is redundant (for good)
  1569. // we should never get here, because generation should already stopped in process_token()
  1570. slot.release();
  1571. send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
  1572. continue;
  1573. }
  1574. // Shift context
  1575. const int n_keep = slot.params.n_keep + add_bos_token;
  1576. const int n_left = (int) system_tokens.size() + slot.n_past - n_keep;
  1577. const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
  1578. SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
  1579. llama_kv_cache_seq_rm (ctx, slot.id + 1, n_keep , n_keep + n_discard);
  1580. llama_kv_cache_seq_add(ctx, slot.id + 1, n_keep + n_discard, system_tokens.size() + slot.n_past, -n_discard);
  1581. if (slot.params.cache_prompt) {
  1582. for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
  1583. slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
  1584. }
  1585. slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
  1586. }
  1587. slot.n_past -= n_discard;
  1588. slot.truncated = true;
  1589. }
  1590. }
  1591. }
  1592. // start populating the batch for this iteration
  1593. llama_batch_clear(batch);
  1594. // frist, add sampled tokens from any ongoing sequences
  1595. for (auto & slot : slots) {
  1596. if (slot.state != SLOT_STATE_GENERATING) {
  1597. continue;
  1598. }
  1599. slot.i_batch = batch.n_tokens;
  1600. const int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
  1601. // TODO: we always have to take into account the "system_tokens"
  1602. // this is not great and needs to be improved somehow
  1603. llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id + 1 }, true);
  1604. slot.n_past += 1;
  1605. if (slot.params.cache_prompt) {
  1606. slot.cache_tokens.push_back(slot.sampled);
  1607. }
  1608. SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_system_tokens = %d, n_cache_tokens = %d, truncated = %d\n",
  1609. slot.n_ctx, slot.n_past, (int) system_tokens.size(), (int) slot.cache_tokens.size(), slot.truncated);
  1610. }
  1611. // process in chunks of params.n_batch
  1612. int32_t n_batch = llama_n_batch(ctx);
  1613. int32_t n_ubatch = llama_n_ubatch(ctx);
  1614. // track if this is an embedding or non-embedding batch
  1615. // if we've added sampled tokens above, we are in non-embedding mode
  1616. // -1: none, 0: non-embedding, 1: embedding
  1617. // TODO: make enum
  1618. int32_t batch_type = batch.n_tokens > 0 ? 0 : -1;
  1619. // next, batch any pending prompts without exceeding n_batch
  1620. if (params.cont_batching || batch.n_tokens == 0) {
  1621. for (auto & slot : slots) {
  1622. // this slot still has a prompt to be processed
  1623. if (slot.state == SLOT_STATE_PROCESSING_PROMPT) {
  1624. auto & prompt_tokens = slot.prompt_tokens;
  1625. // we haven't tokenized the prompt yet - do it now:
  1626. if (prompt_tokens.empty()) {
  1627. SLT_INF(slot, "tokenizing prompt, len = %d\n", (int) slot.prompt.size());
  1628. slot.t_start_process_prompt = ggml_time_us();
  1629. slot.t_start_generation = 0;
  1630. if (slot.cmpl_type == SERVER_TASK_CMPL_TYPE_INFILL) {
  1631. const bool add_bos = llama_add_bos_token(model);
  1632. bool suff_rm_leading_spc = true;
  1633. if (params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1) {
  1634. params.input_suffix.erase(0, 1);
  1635. suff_rm_leading_spc = false;
  1636. }
  1637. auto prefix_tokens = tokenize(slot.params.input_prefix, false);
  1638. auto suffix_tokens = tokenize(slot.params.input_suffix, false);
  1639. const int space_token = 29871; // TODO: this should not be hardcoded
  1640. if (suff_rm_leading_spc && !suffix_tokens.empty() && suffix_tokens[0] == space_token) {
  1641. suffix_tokens.erase(suffix_tokens.begin());
  1642. }
  1643. prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(model));
  1644. suffix_tokens.insert(suffix_tokens.begin(), llama_token_suffix(model));
  1645. auto embd_inp = params.spm_infill ? suffix_tokens : prefix_tokens;
  1646. auto embd_end = params.spm_infill ? prefix_tokens : suffix_tokens;
  1647. if (add_bos) {
  1648. embd_inp.insert(embd_inp.begin(), llama_token_bos(model));
  1649. }
  1650. embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
  1651. const llama_token middle_token = llama_token_middle(model);
  1652. if (middle_token >= 0) {
  1653. embd_inp.push_back(middle_token);
  1654. }
  1655. prompt_tokens = embd_inp;
  1656. } else if (slot.cmpl_type == SERVER_TASK_CMPL_TYPE_RERANK) {
  1657. // require slot.prompt to be array of 2 strings
  1658. if (!slot.prompt.is_array() || slot.prompt.size() != 2) {
  1659. SLT_ERR(slot, "%s", "invalid prompt for rerank task\n");
  1660. slot.release();
  1661. send_error(slot, "invalid prompt for rerank task", ERROR_TYPE_INVALID_REQUEST);
  1662. continue;
  1663. }
  1664. // prompt: <s>query</s><s>doc</s>
  1665. prompt_tokens.clear();
  1666. prompt_tokens.push_back(llama_token_bos(model));
  1667. {
  1668. const auto part = tokenize(slot.prompt[0], false);
  1669. prompt_tokens.insert(prompt_tokens.end(), part.begin(), part.end());
  1670. }
  1671. prompt_tokens.push_back(llama_token_eos(model));
  1672. prompt_tokens.push_back(llama_token_bos(model));
  1673. {
  1674. const auto part = tokenize(slot.prompt[1], false);
  1675. prompt_tokens.insert(prompt_tokens.end(), part.begin(), part.end());
  1676. }
  1677. prompt_tokens.push_back(llama_token_eos(model));
  1678. } else {
  1679. prompt_tokens = tokenize(slot.prompt, system_prompt.empty()); // add BOS if there isn't system prompt
  1680. }
  1681. slot.n_past = 0;
  1682. slot.n_prompt_tokens = prompt_tokens.size();
  1683. SLT_INF(slot, "prompt tokenized, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
  1684. // empty prompt passed -> release the slot and send empty response
  1685. if (prompt_tokens.empty()) {
  1686. SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
  1687. slot.release();
  1688. slot.print_timings();
  1689. send_final_response(slot);
  1690. continue;
  1691. }
  1692. if (slot.cmpl_type == SERVER_TASK_CMPL_TYPE_EMBEDDING || slot.cmpl_type == SERVER_TASK_CMPL_TYPE_RERANK) {
  1693. // this prompt is too large to process - discard it
  1694. if (slot.n_prompt_tokens > n_ubatch) {
  1695. slot.release();
  1696. send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
  1697. continue;
  1698. }
  1699. } else {
  1700. if (!params.ctx_shift) {
  1701. // if context shift is disabled, we make sure prompt size is smaller than KV size
  1702. if ((int) system_tokens.size() + slot.n_prompt_tokens >= slot.n_ctx) {
  1703. slot.release();
  1704. send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
  1705. continue;
  1706. }
  1707. }
  1708. if (slot.params.n_keep < 0) {
  1709. slot.params.n_keep = slot.n_prompt_tokens;
  1710. }
  1711. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  1712. // if input prompt is too big, truncate it (if group attention self-extend is disabled)
  1713. if (slot.ga_n == 1 && slot.n_prompt_tokens >= slot.n_ctx) {
  1714. const int n_left = slot.n_ctx - slot.params.n_keep;
  1715. const int n_block_size = n_left / 2;
  1716. const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  1717. std::vector<llama_token> new_tokens(
  1718. prompt_tokens.begin(),
  1719. prompt_tokens.begin() + slot.params.n_keep);
  1720. new_tokens.insert(
  1721. new_tokens.end(),
  1722. prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
  1723. prompt_tokens.end());
  1724. prompt_tokens = std::move(new_tokens);
  1725. slot.truncated = true;
  1726. slot.n_prompt_tokens = prompt_tokens.size();
  1727. SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);
  1728. GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
  1729. }
  1730. gpt_sampler_reset(slot.smpl);
  1731. if (!slot.params.cache_prompt) {
  1732. slot.n_past_se = 0;
  1733. slot.ga_i = 0;
  1734. } else {
  1735. GGML_ASSERT(slot.ga_n == 1);
  1736. // reuse any previously computed tokens that are common with the new prompt
  1737. slot.n_past = common_part(slot.cache_tokens, prompt_tokens);
  1738. // push the prompt into the sampling context (do not apply grammar)
  1739. for (int i = 0; i < slot.n_past; ++i) {
  1740. gpt_sampler_accept(slot.smpl, slot.cache_tokens[i], false);
  1741. }
  1742. }
  1743. }
  1744. if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
  1745. // we have to evaluate at least 1 token to generate logits.
  1746. SLT_WRN(slot, "need to evaluate at least 1 token to generate logits, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
  1747. slot.n_past--;
  1748. if (slot.ga_i > 0) {
  1749. slot.n_past_se--;
  1750. }
  1751. }
  1752. slot.n_prompt_tokens_processed = 0;
  1753. }
  1754. // non-causal tasks require to fit the entire prompt in the physical batch
  1755. if (slot.cmpl_type == SERVER_TASK_CMPL_TYPE_EMBEDDING || slot.cmpl_type == SERVER_TASK_CMPL_TYPE_RERANK) {
  1756. // cannot fit the prompt in the current batch - will try next iter
  1757. if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
  1758. continue;
  1759. }
  1760. }
  1761. // check that we are in the right batch_type, if not defer the slot
  1762. const bool slot_type =
  1763. slot.cmpl_type == SERVER_TASK_CMPL_TYPE_EMBEDDING ||
  1764. slot.cmpl_type == SERVER_TASK_CMPL_TYPE_RERANK ? 1 : 0;
  1765. if (batch_type == -1) {
  1766. batch_type = slot_type;
  1767. } else if (batch_type != slot_type) {
  1768. continue;
  1769. }
  1770. // keep only the common part
  1771. int p0 = (int) system_tokens.size() + slot.n_past;
  1772. if (!llama_kv_cache_seq_rm(ctx, slot.id + 1, p0, -1)) {
  1773. // could not partially delete (likely using a non-Transformer model)
  1774. llama_kv_cache_seq_rm(ctx, slot.id + 1, -1, -1);
  1775. p0 = (int) system_tokens.size();
  1776. if (p0 != 0) {
  1777. // copy over the system prompt when there is one
  1778. llama_kv_cache_seq_cp(ctx, 0, slot.id + 1, -1, -1);
  1779. }
  1780. // there is no common part left (except for the system prompt)
  1781. slot.n_past = 0;
  1782. slot.n_past_se = 0;
  1783. slot.ga_i = 0;
  1784. // TODO: is the system prompt ever in the sampling context?
  1785. gpt_sampler_reset(slot.smpl);
  1786. }
  1787. // remove the non-common part from the cache
  1788. slot.cache_tokens.resize(slot.n_past);
  1789. SLT_INF(slot, "kv cache rm [%d, end)\n", p0);
  1790. int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
  1791. int32_t ga_i = slot.ga_i;
  1792. int32_t ga_n = slot.ga_n;
  1793. int32_t ga_w = slot.ga_w;
  1794. // add prompt tokens for processing in the current batch
  1795. // TODO: the self-extend stuff here is a mess - simplify and/or abstract it somehow
  1796. for (; slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch; ++slot.n_past) {
  1797. if (slot.ga_n != 1) {
  1798. while (slot_npast >= ga_i + ga_w) {
  1799. const int bd = (ga_w/ga_n)*(ga_n - 1);
  1800. slot_npast -= bd;
  1801. ga_i += ga_w/ga_n;
  1802. }
  1803. }
  1804. llama_batch_add(batch, prompt_tokens[slot.n_past], system_tokens.size() + slot_npast, { slot.id + 1 }, false);
  1805. if (slot.params.cache_prompt) {
  1806. slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
  1807. }
  1808. slot.n_prompt_tokens_processed++;
  1809. slot_npast++;
  1810. }
  1811. SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
  1812. // entire prompt has been processed
  1813. if (slot.n_past == slot.n_prompt_tokens) {
  1814. slot.state = SLOT_STATE_DONE_PROMPT;
  1815. GGML_ASSERT(batch.n_tokens > 0);
  1816. // extract the logits only for the last token
  1817. batch.logits[batch.n_tokens - 1] = true;
  1818. slot.n_decoded = 0;
  1819. slot.i_batch = batch.n_tokens - 1;
  1820. SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
  1821. }
  1822. }
  1823. if (batch.n_tokens >= n_batch) {
  1824. break;
  1825. }
  1826. }
  1827. }
  1828. if (batch.n_tokens == 0) {
  1829. SRV_WRN("%s", "no tokens to decode\n");
  1830. return;
  1831. }
  1832. SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
  1833. // make sure we're in the right embedding mode
  1834. llama_set_embeddings(ctx, batch_type == 1);
  1835. // process the created batch of tokens
  1836. for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
  1837. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  1838. for (auto & slot : slots) {
  1839. if (slot.ga_n != 1) {
  1840. // context extension via Self-Extend
  1841. // TODO: simplify and/or abstract this
  1842. while (slot.n_past_se >= slot.ga_i + slot.ga_w) {
  1843. const int ib = (slot.ga_n * slot.ga_i) / slot.ga_w;
  1844. const int bd = (slot.ga_w / slot.ga_n) * (slot.ga_n - 1);
  1845. const int dd = (slot.ga_w / slot.ga_n) - ib * bd - slot.ga_w;
  1846. SLT_DBG(slot, "shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i, slot.n_past_se, ib * bd, slot.ga_i + ib * bd, slot.n_past_se + ib * bd);
  1847. SLT_DBG(slot, "div: [%6d, %6d] / %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n, (slot.ga_i + ib * bd) / slot.ga_n, (slot.ga_i + ib * bd + slot.ga_w) / slot.ga_n);
  1848. SLT_DBG(slot, "shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd, slot.ga_i + ib * bd + slot.ga_w + dd, slot.n_past_se + ib * bd + dd);
  1849. llama_kv_cache_seq_add(ctx, slot.id + 1, slot.ga_i, slot.n_past_se, ib * bd);
  1850. llama_kv_cache_seq_div(ctx, slot.id + 1, slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n);
  1851. llama_kv_cache_seq_add(ctx, slot.id + 1, slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd);
  1852. slot.n_past_se -= bd;
  1853. slot.ga_i += slot.ga_w / slot.ga_n;
  1854. SLT_DBG(slot, "\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", slot.n_past_se + bd, slot.n_past_se, slot.ga_i);
  1855. }
  1856. slot.n_past_se += n_tokens;
  1857. }
  1858. }
  1859. llama_batch batch_view = {
  1860. n_tokens,
  1861. batch.token + i,
  1862. nullptr,
  1863. batch.pos + i,
  1864. batch.n_seq_id + i,
  1865. batch.seq_id + i,
  1866. batch.logits + i,
  1867. 0, 0, 0, // unused
  1868. };
  1869. const int ret = llama_decode(ctx, batch_view);
  1870. metrics.on_decoded(slots);
  1871. if (ret != 0) {
  1872. if (n_batch == 1 || ret < 0) {
  1873. // if you get here, it means the KV cache is full - try increasing it via the context size
  1874. SRV_ERR("failed to decode the batch: KV cache is full - try increasing it via the context size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  1875. for (auto & slot : slots) {
  1876. slot.release();
  1877. send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
  1878. }
  1879. break; // break loop of n_batch
  1880. }
  1881. // retry with half the batch size to try to find a free slot in the KV cache
  1882. n_batch /= 2;
  1883. i -= n_batch;
  1884. SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  1885. continue; // continue loop of n_batch
  1886. }
  1887. for (auto & slot : slots) {
  1888. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
  1889. continue; // continue loop of slots
  1890. }
  1891. if (slot.state == SLOT_STATE_DONE_PROMPT) {
  1892. if (slot.cmpl_type == SERVER_TASK_CMPL_TYPE_EMBEDDING) {
  1893. // prompt evaluated for embedding
  1894. send_embedding(slot, batch_view);
  1895. slot.release();
  1896. slot.i_batch = -1;
  1897. continue; // continue loop of slots
  1898. }
  1899. if (slot.cmpl_type == SERVER_TASK_CMPL_TYPE_RERANK) {
  1900. send_rerank(slot, batch_view);
  1901. slot.release();
  1902. slot.i_batch = -1;
  1903. continue; // continue loop of slots
  1904. }
  1905. // prompt evaluated for next-token prediction
  1906. slot.state = SLOT_STATE_GENERATING;
  1907. } else if (slot.state != SLOT_STATE_GENERATING) {
  1908. continue; // continue loop of slots
  1909. }
  1910. completion_token_output result;
  1911. const llama_token id = gpt_sampler_sample(slot.smpl, ctx, slot.i_batch - i);
  1912. gpt_sampler_accept(slot.smpl, id, true);
  1913. slot.n_decoded += 1;
  1914. if (slot.n_decoded == 1) {
  1915. slot.t_start_generation = ggml_time_us();
  1916. slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
  1917. metrics.on_prompt_eval(slot);
  1918. }
  1919. result.tok = id;
  1920. const auto * cur_p = gpt_sampler_get_candidates(slot.smpl);
  1921. for (size_t i = 0; i < (size_t) slot.sparams.n_probs; ++i) {
  1922. result.probs.push_back({
  1923. cur_p->data[i].id,
  1924. i >= cur_p->size ? 0.0f : cur_p->data[i].p,
  1925. });
  1926. }
  1927. if (!process_token(result, slot)) {
  1928. // release slot because of stop condition
  1929. slot.release();
  1930. slot.print_timings();
  1931. send_final_response(slot);
  1932. metrics.on_prediction(slot);
  1933. }
  1934. slot.i_batch = -1;
  1935. }
  1936. }
  1937. SRV_DBG("%s", "run slots completed\n");
  1938. }
  1939. json model_meta() const {
  1940. return json {
  1941. {"vocab_type", llama_vocab_type (model)},
  1942. {"n_vocab", llama_n_vocab (model)},
  1943. {"n_ctx_train", llama_n_ctx_train (model)},
  1944. {"n_embd", llama_n_embd (model)},
  1945. {"n_params", llama_model_n_params(model)},
  1946. {"size", llama_model_size (model)},
  1947. };
  1948. }
  1949. };
  1950. static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
  1951. // skip GH copilot requests when using default port
  1952. if (req.path == "/v1/health" || req.path == "/v1/completions") {
  1953. return;
  1954. }
  1955. LOG_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
  1956. LOG_DBG("request: %s\n", req.body.c_str());
  1957. LOG_DBG("response: %s\n", res.body.c_str());
  1958. }
  1959. std::function<void(int)> shutdown_handler;
  1960. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  1961. inline void signal_handler(int signal) {
  1962. if (is_terminating.test_and_set()) {
  1963. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  1964. // this is for better developer experience, we can remove when the server is stable enough
  1965. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  1966. exit(1);
  1967. }
  1968. shutdown_handler(signal);
  1969. }
  1970. int main(int argc, char ** argv) {
  1971. // own arguments required by this example
  1972. gpt_params params;
  1973. if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
  1974. return 1;
  1975. }
  1976. gpt_init();
  1977. // enabling this will output extra debug information in the HTTP responses from the server
  1978. // see format_final_response_oaicompat()
  1979. const bool verbose = params.verbosity > 9;
  1980. // struct that contains llama context and inference
  1981. server_context ctx_server;
  1982. if (!params.system_prompt.empty()) {
  1983. ctx_server.system_prompt_set(params.system_prompt);
  1984. }
  1985. if (params.model_alias == "unknown") {
  1986. params.model_alias = params.model;
  1987. }
  1988. llama_backend_init();
  1989. llama_numa_init(params.numa);
  1990. LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
  1991. LOG_INF("\n");
  1992. LOG_INF("%s\n", gpt_params_get_system_info(params).c_str());
  1993. LOG_INF("\n");
  1994. std::unique_ptr<httplib::Server> svr;
  1995. #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
  1996. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  1997. LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
  1998. svr.reset(
  1999. new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
  2000. );
  2001. } else {
  2002. LOG_INF("Running without SSL\n");
  2003. svr.reset(new httplib::Server());
  2004. }
  2005. #else
  2006. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2007. LOG_ERR("Server is built without SSL support\n");
  2008. return 1;
  2009. }
  2010. svr.reset(new httplib::Server());
  2011. #endif
  2012. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  2013. svr->set_default_headers({{"Server", "llama.cpp"}});
  2014. // CORS preflight
  2015. svr->Options(R"(.*)", [](const httplib::Request &, httplib::Response & res) {
  2016. // Access-Control-Allow-Origin is already set by middleware
  2017. res.set_header("Access-Control-Allow-Credentials", "true");
  2018. res.set_header("Access-Control-Allow-Methods", "POST");
  2019. res.set_header("Access-Control-Allow-Headers", "*");
  2020. return res.set_content("", "text/html"); // blank response, no data
  2021. });
  2022. svr->set_logger(log_server_request);
  2023. auto res_error = [](httplib::Response & res, const json & error_data) {
  2024. json final_response {{"error", error_data}};
  2025. res.set_content(final_response.dump(-1, ' ', false, json::error_handler_t::replace), MIMETYPE_JSON);
  2026. res.status = json_value(error_data, "code", 500);
  2027. };
  2028. auto res_ok = [](httplib::Response & res, const json & data) {
  2029. res.set_content(data.dump(-1, ' ', false, json::error_handler_t::replace), MIMETYPE_JSON);
  2030. res.status = 200;
  2031. };
  2032. svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, std::exception_ptr ep) {
  2033. std::string message;
  2034. try {
  2035. std::rethrow_exception(ep);
  2036. } catch (std::exception & e) {
  2037. message = e.what();
  2038. } catch (...) {
  2039. message = "Unknown Exception";
  2040. }
  2041. json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
  2042. LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
  2043. res_error(res, formatted_error);
  2044. });
  2045. svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
  2046. if (res.status == 404) {
  2047. res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
  2048. }
  2049. // for other error codes, we skip processing here because it's already done by res_error()
  2050. });
  2051. // set timeouts and change hostname and port
  2052. svr->set_read_timeout (params.timeout_read);
  2053. svr->set_write_timeout(params.timeout_write);
  2054. std::unordered_map<std::string, std::string> log_data;
  2055. log_data["hostname"] = params.hostname;
  2056. log_data["port"] = std::to_string(params.port);
  2057. if (params.api_keys.size() == 1) {
  2058. auto key = params.api_keys[0];
  2059. log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
  2060. } else if (params.api_keys.size() > 1) {
  2061. log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
  2062. }
  2063. // Necessary similarity of prompt for slot selection
  2064. ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
  2065. //
  2066. // Middlewares
  2067. //
  2068. auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
  2069. // TODO: should we apply API key to all endpoints, including "/health" and "/models"?
  2070. static const std::unordered_set<std::string> protected_endpoints = {
  2071. "/props",
  2072. "/completion",
  2073. "/completions",
  2074. "/v1/completions",
  2075. "/chat/completions",
  2076. "/v1/chat/completions",
  2077. "/infill",
  2078. "/tokenize",
  2079. "/detokenize",
  2080. "/embedding",
  2081. "/embeddings",
  2082. "/v1/embeddings",
  2083. };
  2084. // If API key is not set, skip validation
  2085. if (params.api_keys.empty()) {
  2086. return true;
  2087. }
  2088. // If path is not in protected_endpoints list, skip validation
  2089. if (protected_endpoints.find(req.path) == protected_endpoints.end()) {
  2090. return true;
  2091. }
  2092. // Check for API key in the header
  2093. auto auth_header = req.get_header_value("Authorization");
  2094. std::string prefix = "Bearer ";
  2095. if (auth_header.substr(0, prefix.size()) == prefix) {
  2096. std::string received_api_key = auth_header.substr(prefix.size());
  2097. if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
  2098. return true; // API key is valid
  2099. }
  2100. }
  2101. // API key is invalid or not provided
  2102. res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
  2103. LOG_WRN("Unauthorized: Invalid API Key\n");
  2104. return false;
  2105. };
  2106. auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
  2107. server_state current_state = state.load();
  2108. if (current_state == SERVER_STATE_LOADING_MODEL) {
  2109. auto tmp = string_split(req.path, '.');
  2110. if (req.path == "/" || tmp.back() == "html") {
  2111. res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
  2112. res.status = 503;
  2113. } else {
  2114. res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
  2115. }
  2116. return false;
  2117. }
  2118. return true;
  2119. };
  2120. // register server middlewares
  2121. svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
  2122. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2123. if (!middleware_server_state(req, res)) {
  2124. return httplib::Server::HandlerResponse::Handled;
  2125. }
  2126. if (!middleware_validate_api_key(req, res)) {
  2127. return httplib::Server::HandlerResponse::Handled;
  2128. }
  2129. return httplib::Server::HandlerResponse::Unhandled;
  2130. });
  2131. //
  2132. // Route handlers (or controllers)
  2133. //
  2134. const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
  2135. // error and loading states are handled by middleware
  2136. json health = {{"status", "ok"}};
  2137. res_ok(res, health);
  2138. };
  2139. const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
  2140. if (!params.endpoint_slots) {
  2141. res_error(res, format_error_response("This server does not support slots endpoint. Start it without `--no-slots`", ERROR_TYPE_NOT_SUPPORTED));
  2142. return;
  2143. }
  2144. // request slots data using task queue
  2145. server_task task;
  2146. task.id = ctx_server.queue_tasks.get_new_id();
  2147. task.type = SERVER_TASK_TYPE_METRICS;
  2148. ctx_server.queue_results.add_waiting_task_id(task.id);
  2149. ctx_server.queue_tasks.post(task, true); // high-priority task
  2150. // get the result
  2151. server_task_result result = ctx_server.queue_results.recv(task.id);
  2152. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2153. // optionally return "fail_on_no_slot" error
  2154. const int n_idle_slots = result.data.at("idle");
  2155. if (req.has_param("fail_on_no_slot")) {
  2156. if (n_idle_slots == 0) {
  2157. res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
  2158. return;
  2159. }
  2160. }
  2161. res_ok(res, result.data.at("slots"));
  2162. };
  2163. const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
  2164. if (!params.endpoint_metrics) {
  2165. res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
  2166. return;
  2167. }
  2168. // request slots data using task queue
  2169. server_task task;
  2170. task.id = ctx_server.queue_tasks.get_new_id();
  2171. task.id_target = -1;
  2172. task.type = SERVER_TASK_TYPE_METRICS;
  2173. task.data.push_back({{"reset_bucket", true}});
  2174. ctx_server.queue_results.add_waiting_task_id(task.id);
  2175. ctx_server.queue_tasks.post(task, true); // high-priority task
  2176. // get the result
  2177. server_task_result result = ctx_server.queue_results.recv(task.id);
  2178. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2179. json data = result.data;
  2180. const uint64_t n_prompt_tokens_processed = data.at("n_prompt_tokens_processed");
  2181. const uint64_t t_prompt_processing = data.at("t_prompt_processing");
  2182. const uint64_t n_tokens_predicted = data.at("n_tokens_predicted");
  2183. const uint64_t t_tokens_generation = data.at("t_tokens_generation");
  2184. const uint64_t n_decode_total = data.at("n_decode_total");
  2185. const uint64_t n_busy_slots_total = data.at("n_busy_slots_total");
  2186. const int32_t kv_cache_used_cells = data.at("kv_cache_used_cells");
  2187. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  2188. json all_metrics_def = json {
  2189. {"counter", {{
  2190. {"name", "prompt_tokens_total"},
  2191. {"help", "Number of prompt tokens processed."},
  2192. {"value", (uint64_t) data.at("n_prompt_tokens_processed_total")}
  2193. }, {
  2194. {"name", "prompt_seconds_total"},
  2195. {"help", "Prompt process time"},
  2196. {"value", (uint64_t) data.at("t_prompt_processing_total") / 1.e3}
  2197. }, {
  2198. {"name", "tokens_predicted_total"},
  2199. {"help", "Number of generation tokens processed."},
  2200. {"value", (uint64_t) data.at("n_tokens_predicted_total")}
  2201. }, {
  2202. {"name", "tokens_predicted_seconds_total"},
  2203. {"help", "Predict process time"},
  2204. {"value", (uint64_t) data.at("t_tokens_generation_total") / 1.e3}
  2205. }, {
  2206. {"name", "n_decode_total"},
  2207. {"help", "Total number of llama_decode() calls"},
  2208. {"value", n_decode_total}
  2209. }, {
  2210. {"name", "n_busy_slots_per_decode"},
  2211. {"help", "Average number of busy slots per llama_decode() call"},
  2212. {"value", (float) n_busy_slots_total / (float) n_decode_total}
  2213. }}},
  2214. {"gauge", {{
  2215. {"name", "prompt_tokens_seconds"},
  2216. {"help", "Average prompt throughput in tokens/s."},
  2217. {"value", n_prompt_tokens_processed ? 1.e3 / t_prompt_processing * n_prompt_tokens_processed : 0.}
  2218. },{
  2219. {"name", "predicted_tokens_seconds"},
  2220. {"help", "Average generation throughput in tokens/s."},
  2221. {"value", n_tokens_predicted ? 1.e3 / t_tokens_generation * n_tokens_predicted : 0.}
  2222. },{
  2223. {"name", "kv_cache_usage_ratio"},
  2224. {"help", "KV-cache usage. 1 means 100 percent usage."},
  2225. {"value", 1. * kv_cache_used_cells / params.n_ctx}
  2226. },{
  2227. {"name", "kv_cache_tokens"},
  2228. {"help", "KV-cache tokens."},
  2229. {"value", (uint64_t) data.at("kv_cache_tokens_count")}
  2230. },{
  2231. {"name", "requests_processing"},
  2232. {"help", "Number of request processing."},
  2233. {"value", (uint64_t) data.at("processing")}
  2234. },{
  2235. {"name", "requests_deferred"},
  2236. {"help", "Number of request deferred."},
  2237. {"value", (uint64_t) data.at("deferred")}
  2238. }}}
  2239. };
  2240. std::stringstream prometheus;
  2241. for (const auto & el : all_metrics_def.items()) {
  2242. const auto & type = el.key();
  2243. const auto & metrics_def = el.value();
  2244. for (const auto & metric_def : metrics_def) {
  2245. const std::string name = metric_def.at("name");
  2246. const std::string help = metric_def.at("help");
  2247. auto value = json_value(metric_def, "value", 0.);
  2248. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  2249. << "# TYPE llamacpp:" << name << " " << type << "\n"
  2250. << "llamacpp:" << name << " " << value << "\n";
  2251. }
  2252. }
  2253. const int64_t t_start = data.at("t_start");
  2254. res.set_header("Process-Start-Time-Unix", std::to_string(t_start));
  2255. res.set_content(prometheus.str(), "text/plain; version=0.0.4");
  2256. res.status = 200; // HTTP OK
  2257. };
  2258. const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  2259. json request_data = json::parse(req.body);
  2260. std::string filename = request_data.at("filename");
  2261. if (!fs_validate_filename(filename)) {
  2262. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  2263. return;
  2264. }
  2265. std::string filepath = params.slot_save_path + filename;
  2266. server_task task;
  2267. task.type = SERVER_TASK_TYPE_SLOT_SAVE;
  2268. task.data = {
  2269. { "id_slot", id_slot },
  2270. { "filename", filename },
  2271. { "filepath", filepath },
  2272. };
  2273. const int id_task = ctx_server.queue_tasks.post(task);
  2274. ctx_server.queue_results.add_waiting_task_id(id_task);
  2275. server_task_result result = ctx_server.queue_results.recv(id_task);
  2276. ctx_server.queue_results.remove_waiting_task_id(id_task);
  2277. if (result.error) {
  2278. res_error(res, result.data);
  2279. } else {
  2280. res_ok(res, result.data);
  2281. }
  2282. };
  2283. const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  2284. json request_data = json::parse(req.body);
  2285. std::string filename = request_data.at("filename");
  2286. if (!fs_validate_filename(filename)) {
  2287. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  2288. return;
  2289. }
  2290. std::string filepath = params.slot_save_path + filename;
  2291. server_task task;
  2292. task.type = SERVER_TASK_TYPE_SLOT_RESTORE;
  2293. task.data = {
  2294. { "id_slot", id_slot },
  2295. { "filename", filename },
  2296. { "filepath", filepath },
  2297. };
  2298. const int id_task = ctx_server.queue_tasks.post(task);
  2299. ctx_server.queue_results.add_waiting_task_id(id_task);
  2300. server_task_result result = ctx_server.queue_results.recv(id_task);
  2301. ctx_server.queue_results.remove_waiting_task_id(id_task);
  2302. if (result.error) {
  2303. res_error(res, result.data);
  2304. } else {
  2305. res_ok(res, result.data);
  2306. }
  2307. };
  2308. const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
  2309. server_task task;
  2310. task.type = SERVER_TASK_TYPE_SLOT_ERASE;
  2311. task.data = {
  2312. { "id_slot", id_slot },
  2313. };
  2314. const int id_task = ctx_server.queue_tasks.post(task);
  2315. ctx_server.queue_results.add_waiting_task_id(id_task);
  2316. server_task_result result = ctx_server.queue_results.recv(id_task);
  2317. ctx_server.queue_results.remove_waiting_task_id(id_task);
  2318. if (result.error) {
  2319. res_error(res, result.data);
  2320. } else {
  2321. res_ok(res, result.data);
  2322. }
  2323. };
  2324. const auto handle_slots_action = [&params, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
  2325. if (params.slot_save_path.empty()) {
  2326. res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
  2327. return;
  2328. }
  2329. std::string id_slot_str = req.path_params.at("id_slot");
  2330. int id_slot;
  2331. try {
  2332. id_slot = std::stoi(id_slot_str);
  2333. } catch (const std::exception &) {
  2334. res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
  2335. return;
  2336. }
  2337. std::string action = req.get_param_value("action");
  2338. if (action == "save") {
  2339. handle_slots_save(req, res, id_slot);
  2340. } else if (action == "restore") {
  2341. handle_slots_restore(req, res, id_slot);
  2342. } else if (action == "erase") {
  2343. handle_slots_erase(req, res, id_slot);
  2344. } else {
  2345. res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
  2346. }
  2347. };
  2348. const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  2349. std::string template_key = "tokenizer.chat_template", curr_tmpl;
  2350. int32_t tlen = llama_model_meta_val_str(ctx_server.model, template_key.c_str(), nullptr, 0);
  2351. if (tlen > 0) {
  2352. std::vector<char> curr_tmpl_buf(tlen + 1, 0);
  2353. if (llama_model_meta_val_str(ctx_server.model, template_key.c_str(), curr_tmpl_buf.data(), curr_tmpl_buf.size()) == tlen) {
  2354. curr_tmpl = std::string(curr_tmpl_buf.data(), tlen);
  2355. }
  2356. }
  2357. json data = {
  2358. { "system_prompt", ctx_server.system_prompt.c_str() },
  2359. { "default_generation_settings", ctx_server.default_generation_settings_for_props },
  2360. { "total_slots", ctx_server.params.n_parallel },
  2361. { "chat_template", curr_tmpl.c_str() },
  2362. };
  2363. res_ok(res, data);
  2364. };
  2365. const auto handle_completions_generic = [&ctx_server, &res_error, &res_ok](server_task_cmpl_type cmpl_type, json & data, httplib::Response & res) {
  2366. if (ctx_server.params.embedding || ctx_server.params.reranking) {
  2367. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings` or `--reranking`", ERROR_TYPE_NOT_SUPPORTED));
  2368. return;
  2369. }
  2370. std::vector<server_task> tasks = ctx_server.create_tasks_cmpl(data, cmpl_type);
  2371. ctx_server.queue_results.add_waiting_tasks(tasks);
  2372. ctx_server.queue_tasks.post(tasks);
  2373. bool stream = json_value(data, "stream", false);
  2374. const auto task_ids = server_task::get_list_id(tasks);
  2375. if (!stream) {
  2376. ctx_server.receive_cmpl_results(task_ids, [&](std::vector<server_task_result> & results) {
  2377. if (results.size() == 1) {
  2378. // single result
  2379. res_ok(res, results[0].data);
  2380. } else {
  2381. // multiple results (multitask)
  2382. json arr = json::array();
  2383. for (const auto & res : results) {
  2384. arr.push_back(res.data);
  2385. }
  2386. res_ok(res, arr);
  2387. }
  2388. }, [&](const json & error_data) {
  2389. res_error(res, error_data);
  2390. });
  2391. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  2392. } else {
  2393. const auto chunked_content_provider = [task_ids, &ctx_server](size_t, httplib::DataSink & sink) {
  2394. ctx_server.receive_cmpl_results_stream(task_ids, [&](const server_task_result & result) -> bool {
  2395. return server_sent_event(sink, "data", result.data);
  2396. }, [&](const json & error_data) {
  2397. server_sent_event(sink, "error", error_data);
  2398. });
  2399. sink.done();
  2400. return false;
  2401. };
  2402. auto on_complete = [task_ids, &ctx_server] (bool) {
  2403. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  2404. };
  2405. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  2406. }
  2407. };
  2408. const auto handle_completions = [&handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
  2409. json data = json::parse(req.body);
  2410. return handle_completions_generic(SERVER_TASK_CMPL_TYPE_NORMAL, data, res);
  2411. };
  2412. const auto handle_infill = [&handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
  2413. json data = json::parse(req.body);
  2414. return handle_completions_generic(SERVER_TASK_CMPL_TYPE_INFILL, data, res);
  2415. };
  2416. // TODO: maybe merge this function with "handle_completions_generic"
  2417. const auto handle_chat_completions = [&ctx_server, &params, &res_error, &res_ok, verbose](const httplib::Request & req, httplib::Response & res) {
  2418. if (ctx_server.params.embedding || ctx_server.params.reranking) {
  2419. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings` or `--reranking`", ERROR_TYPE_NOT_SUPPORTED));
  2420. return;
  2421. }
  2422. json data = oaicompat_completion_params_parse(ctx_server.model, json::parse(req.body), params.chat_template);
  2423. std::vector<server_task> tasks = ctx_server.create_tasks_cmpl(data, SERVER_TASK_CMPL_TYPE_NORMAL);
  2424. ctx_server.queue_results.add_waiting_tasks(tasks);
  2425. ctx_server.queue_tasks.post(tasks);
  2426. bool stream = json_value(data, "stream", false);
  2427. const auto task_ids = server_task::get_list_id(tasks);
  2428. const auto completion_id = gen_chatcmplid();
  2429. if (!stream) {
  2430. ctx_server.receive_cmpl_results(task_ids, [&](const std::vector<server_task_result> & results) {
  2431. // multitask is never support in chat completion, there is only one result
  2432. json result_oai = format_final_response_oaicompat(data, results[0].data, completion_id, /*.streaming =*/ false, verbose);
  2433. res_ok(res, result_oai);
  2434. }, [&](const json & error_data) {
  2435. res_error(res, error_data);
  2436. });
  2437. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  2438. } else {
  2439. const auto chunked_content_provider = [task_ids, &ctx_server, completion_id](size_t, httplib::DataSink & sink) {
  2440. ctx_server.receive_cmpl_results_stream(task_ids, [&](const server_task_result & result) -> bool {
  2441. std::vector<json> result_array = format_partial_response_oaicompat(result.data, completion_id);
  2442. for (auto & event_data : result_array) {
  2443. if (event_data.empty()) {
  2444. continue; // skip the stop token
  2445. }
  2446. if (!server_sent_event(sink, "data", event_data)) {
  2447. return false; // connection is closed
  2448. }
  2449. }
  2450. return true; // ok
  2451. }, [&](const json & error_data) {
  2452. server_sent_event(sink, "error", error_data);
  2453. });
  2454. static const std::string ev_done = "data: [DONE]\n\n";
  2455. sink.write(ev_done.data(), ev_done.size());
  2456. sink.done();
  2457. return true;
  2458. };
  2459. auto on_complete = [task_ids, &ctx_server] (bool) {
  2460. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  2461. };
  2462. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  2463. }
  2464. };
  2465. const auto handle_models = [&params, &ctx_server](const httplib::Request &, httplib::Response & res) {
  2466. json models = {
  2467. {"object", "list"},
  2468. {"data", {
  2469. {
  2470. {"id", params.model_alias},
  2471. {"object", "model"},
  2472. {"created", std::time(0)},
  2473. {"owned_by", "llamacpp"},
  2474. {"meta", ctx_server.model_meta()}
  2475. },
  2476. }}
  2477. };
  2478. res.set_content(models.dump(), MIMETYPE_JSON);
  2479. };
  2480. const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  2481. const json body = json::parse(req.body);
  2482. json tokens_response = json::array();
  2483. if (body.count("content") != 0) {
  2484. const bool add_special = json_value(body, "add_special", false);
  2485. const bool with_pieces = json_value(body, "with_pieces", false);
  2486. std::vector<llama_token> tokens = ctx_server.tokenize(body.at("content"), add_special);
  2487. if (with_pieces) {
  2488. for (const auto& token : tokens) {
  2489. std::string piece = llama_token_to_piece(ctx_server.ctx, token);
  2490. json piece_json;
  2491. // Check if the piece is valid UTF-8
  2492. if (is_valid_utf8(piece)) {
  2493. piece_json = piece;
  2494. } else {
  2495. // If not valid UTF-8, store as array of byte values
  2496. piece_json = json::array();
  2497. for (unsigned char c : piece) {
  2498. piece_json.push_back(static_cast<int>(c));
  2499. }
  2500. }
  2501. tokens_response.push_back({
  2502. {"id", token},
  2503. {"piece", piece_json}
  2504. });
  2505. }
  2506. } else {
  2507. tokens_response = tokens;
  2508. }
  2509. }
  2510. const json data = format_tokenizer_response(tokens_response);
  2511. res_ok(res, data);
  2512. };
  2513. const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  2514. const json body = json::parse(req.body);
  2515. std::string content;
  2516. if (body.count("tokens") != 0) {
  2517. const std::vector<llama_token> tokens = body.at("tokens");
  2518. content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
  2519. }
  2520. const json data = format_detokenized_response(content);
  2521. res_ok(res, data);
  2522. };
  2523. const auto handle_embeddings = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  2524. // TODO: somehow clean up this checks in the future
  2525. if (!ctx_server.params.embedding || ctx_server.params.reranking) {
  2526. res_error(res, format_error_response("This server does not support embeddings. Start it with `--embeddings` and without `--reranking`", ERROR_TYPE_NOT_SUPPORTED));
  2527. return;
  2528. }
  2529. const json body = json::parse(req.body);
  2530. bool is_openai = false;
  2531. // an input prompt can be a string or a list of tokens (integer)
  2532. json prompt;
  2533. if (body.count("input") != 0) {
  2534. is_openai = true;
  2535. prompt = body.at("input");
  2536. } else if (body.count("content") != 0) {
  2537. // with "content", we only support single prompt
  2538. prompt = std::vector<std::string>{body.at("content")};
  2539. } else {
  2540. res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  2541. return;
  2542. }
  2543. // create and queue the task
  2544. json responses = json::array();
  2545. bool error = false;
  2546. {
  2547. std::vector<server_task> tasks = ctx_server.create_tasks_cmpl({{"prompt", prompt}}, SERVER_TASK_CMPL_TYPE_EMBEDDING);
  2548. ctx_server.queue_results.add_waiting_tasks(tasks);
  2549. ctx_server.queue_tasks.post(tasks);
  2550. // get the result
  2551. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  2552. ctx_server.receive_cmpl_results(task_ids, [&](std::vector<server_task_result> & results) {
  2553. for (const auto & res : results) {
  2554. responses.push_back(res.data);
  2555. }
  2556. }, [&](const json & error_data) {
  2557. res_error(res, error_data);
  2558. error = true;
  2559. });
  2560. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  2561. }
  2562. if (error) {
  2563. return;
  2564. }
  2565. // write JSON response
  2566. json root = is_openai
  2567. ? format_embeddings_response_oaicompat(body, responses)
  2568. : responses[0];
  2569. res_ok(res, root);
  2570. };
  2571. const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  2572. if (!ctx_server.params.reranking) {
  2573. res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking`", ERROR_TYPE_NOT_SUPPORTED));
  2574. return;
  2575. }
  2576. const json body = json::parse(req.body);
  2577. // TODO: implement
  2578. //int top_n = 1;
  2579. //if (body.count("top_n") != 1) {
  2580. // top_n = body.at("top_n");
  2581. //} else {
  2582. // res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  2583. // return;
  2584. //}
  2585. json query;
  2586. if (body.count("query") == 1) {
  2587. query = body.at("query");
  2588. if (!query.is_string()) {
  2589. res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  2590. return;
  2591. }
  2592. } else {
  2593. res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  2594. return;
  2595. }
  2596. std::vector<std::string> documents = json_value(body, "documents", std::vector<std::string>());
  2597. if (documents.empty()) {
  2598. res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
  2599. return;
  2600. }
  2601. // construct prompt object: array of ["query", "doc0", "doc1", ...]
  2602. json prompt;
  2603. prompt.push_back(query);
  2604. for (const auto & doc : documents) {
  2605. prompt.push_back(doc);
  2606. }
  2607. LOG_DBG("rerank prompt: %s\n", prompt.dump().c_str());
  2608. // create and queue the task
  2609. json responses = json::array();
  2610. bool error = false;
  2611. {
  2612. std::vector<server_task> tasks = ctx_server.create_tasks_cmpl({{"prompt", prompt}}, SERVER_TASK_CMPL_TYPE_RERANK);
  2613. ctx_server.queue_results.add_waiting_tasks(tasks);
  2614. ctx_server.queue_tasks.post(tasks);
  2615. // get the result
  2616. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  2617. ctx_server.receive_cmpl_results(task_ids, [&](std::vector<server_task_result> & results) {
  2618. for (const auto & res : results) {
  2619. responses.push_back(res.data);
  2620. }
  2621. }, [&](const json & error_data) {
  2622. res_error(res, error_data);
  2623. error = true;
  2624. });
  2625. }
  2626. if (error) {
  2627. return;
  2628. }
  2629. // write JSON response
  2630. json root = format_response_rerank(body, responses);
  2631. res_ok(res, root);
  2632. };
  2633. const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
  2634. json result = json::array();
  2635. for (size_t i = 0; i < ctx_server.loras.size(); ++i) {
  2636. auto & lora = ctx_server.loras[i];
  2637. result.push_back({
  2638. {"id", i},
  2639. {"path", lora.path},
  2640. {"scale", lora.scale},
  2641. });
  2642. }
  2643. res_ok(res, result);
  2644. res.status = 200; // HTTP OK
  2645. };
  2646. const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
  2647. const std::vector<json> body = json::parse(req.body);
  2648. int max_idx = ctx_server.loras.size();
  2649. // clear existing value
  2650. for (auto & lora : ctx_server.loras) {
  2651. lora.scale = 0.0f;
  2652. }
  2653. // set value
  2654. for (auto entry : body) {
  2655. int id = entry.at("id");
  2656. float scale = entry.at("scale");
  2657. if (0 <= id && id < max_idx) {
  2658. ctx_server.loras[id].scale = scale;
  2659. } else {
  2660. throw std::runtime_error("invalid adapter id");
  2661. }
  2662. }
  2663. server_task task;
  2664. task.type = SERVER_TASK_TYPE_SET_LORA;
  2665. const int id_task = ctx_server.queue_tasks.post(task);
  2666. ctx_server.queue_results.add_waiting_task_id(id_task);
  2667. server_task_result result = ctx_server.queue_results.recv(id_task);
  2668. ctx_server.queue_results.remove_waiting_task_id(id_task);
  2669. res_ok(res, result.data);
  2670. res.status = 200; // HTTP OK
  2671. };
  2672. auto handle_static_file = [](unsigned char * content, size_t len, const char * mime_type) {
  2673. return [content, len, mime_type](const httplib::Request &, httplib::Response & res) {
  2674. res.set_content(reinterpret_cast<const char*>(content), len, mime_type);
  2675. return false;
  2676. };
  2677. };
  2678. //
  2679. // Router
  2680. //
  2681. // register static assets routes
  2682. if (!params.public_path.empty()) {
  2683. // Set the base directory for serving static files
  2684. svr->set_base_dir(params.public_path);
  2685. }
  2686. // using embedded static files
  2687. svr->Get("/", handle_static_file(index_html, index_html_len, "text/html; charset=utf-8"));
  2688. svr->Get("/index.js", handle_static_file(index_js, index_js_len, "text/javascript; charset=utf-8"));
  2689. svr->Get("/completion.js", handle_static_file(completion_js, completion_js_len, "text/javascript; charset=utf-8"));
  2690. svr->Get("/json-schema-to-grammar.mjs", handle_static_file(json_schema_to_grammar_mjs, json_schema_to_grammar_mjs_len, "text/javascript; charset=utf-8"));
  2691. // add new-ui files
  2692. svr->Get("/colorthemes.css", handle_static_file(colorthemes_css, colorthemes_css_len, "text/css; charset=utf-8"));
  2693. svr->Get("/style.css", handle_static_file(style_css, style_css_len, "text/css; charset=utf-8"));
  2694. svr->Get("/theme-beeninorder.css", handle_static_file(theme_beeninorder_css, theme_beeninorder_css_len, "text/css; charset=utf-8"));
  2695. svr->Get("/theme-ketivah.css", handle_static_file(theme_ketivah_css, theme_ketivah_css_len, "text/css; charset=utf-8"));
  2696. svr->Get("/theme-mangotango.css", handle_static_file(theme_mangotango_css, theme_mangotango_css_len, "text/css; charset=utf-8"));
  2697. svr->Get("/theme-playground.css", handle_static_file(theme_playground_css, theme_playground_css_len, "text/css; charset=utf-8"));
  2698. svr->Get("/theme-polarnight.css", handle_static_file(theme_polarnight_css, theme_polarnight_css_len, "text/css; charset=utf-8"));
  2699. svr->Get("/theme-snowstorm.css", handle_static_file(theme_snowstorm_css, theme_snowstorm_css_len, "text/css; charset=utf-8"));
  2700. svr->Get("/index-new.html", handle_static_file(index_new_html, index_new_html_len, "text/html; charset=utf-8"));
  2701. svr->Get("/system-prompts.js", handle_static_file(system_prompts_js, system_prompts_js_len, "text/javascript; charset=utf-8"));
  2702. svr->Get("/prompt-formats.js", handle_static_file(prompt_formats_js, prompt_formats_js_len, "text/javascript; charset=utf-8"));
  2703. // register API routes
  2704. svr->Get ("/health", handle_health);
  2705. svr->Get ("/metrics", handle_metrics);
  2706. svr->Get ("/props", handle_props);
  2707. svr->Get ("/v1/models", handle_models);
  2708. svr->Post("/completion", handle_completions); // legacy
  2709. svr->Post("/completions", handle_completions);
  2710. svr->Post("/v1/completions", handle_completions);
  2711. svr->Post("/chat/completions", handle_chat_completions);
  2712. svr->Post("/v1/chat/completions", handle_chat_completions);
  2713. svr->Post("/infill", handle_infill);
  2714. svr->Post("/embedding", handle_embeddings); // legacy
  2715. svr->Post("/embeddings", handle_embeddings);
  2716. svr->Post("/v1/embeddings", handle_embeddings);
  2717. svr->Post("/rerank", handle_rerank);
  2718. svr->Post("/reranking", handle_rerank);
  2719. svr->Post("/v1/rerank", handle_rerank);
  2720. svr->Post("/v1/reranking", handle_rerank);
  2721. svr->Post("/tokenize", handle_tokenize);
  2722. svr->Post("/detokenize", handle_detokenize);
  2723. // LoRA adapters hotswap
  2724. svr->Get ("/lora-adapters", handle_lora_adapters_list);
  2725. svr->Post("/lora-adapters", handle_lora_adapters_apply);
  2726. // Save & load slots
  2727. svr->Get ("/slots", handle_slots);
  2728. svr->Post("/slots/:id_slot", handle_slots_action);
  2729. //
  2730. // Start the server
  2731. //
  2732. if (params.n_threads_http < 1) {
  2733. // +2 threads for monitoring endpoints
  2734. params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
  2735. }
  2736. log_data["n_threads_http"] = std::to_string(params.n_threads_http);
  2737. svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
  2738. // clean up function, to be called before exit
  2739. auto clean_up = [&svr]() {
  2740. svr->stop();
  2741. llama_backend_free();
  2742. };
  2743. // bind HTTP listen port, run the HTTP server in a thread
  2744. if (!svr->bind_to_port(params.hostname, params.port)) {
  2745. //LOG_ERROR("couldn't bind HTTP server socket", {
  2746. // {"hostname", params.hostname},
  2747. // {"port", params.port},
  2748. //});
  2749. LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
  2750. clean_up();
  2751. return 1;
  2752. }
  2753. std::thread t([&]() { svr->listen_after_bind(); });
  2754. svr->wait_until_ready();
  2755. LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
  2756. // load the model
  2757. LOG_INF("%s: loading model\n", __func__);
  2758. if (!ctx_server.load_model(params)) {
  2759. clean_up();
  2760. t.join();
  2761. LOG_ERR("%s: exiting due to model loading error\n", __func__);
  2762. return 1;
  2763. }
  2764. ctx_server.init();
  2765. state.store(SERVER_STATE_READY);
  2766. LOG_INF("%s: model loaded\n", __func__);
  2767. // if a custom chat template is not supplied, we will use the one that comes with the model (if any)
  2768. if (params.chat_template.empty()) {
  2769. if (!ctx_server.validate_model_chat_template()) {
  2770. LOG_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
  2771. params.chat_template = "chatml";
  2772. }
  2773. }
  2774. // print sample chat example to make it clear which template is used
  2775. LOG_INF("%s: chat template, built_in: %d, chat_example: '%s'\n", __func__, params.chat_template.empty(), llama_chat_format_example(ctx_server.model, params.chat_template).c_str());
  2776. ctx_server.queue_tasks.on_new_task(std::bind(
  2777. &server_context::process_single_task, &ctx_server, std::placeholders::_1));
  2778. ctx_server.queue_tasks.on_update_slots(std::bind(
  2779. &server_context::update_slots, &ctx_server));
  2780. shutdown_handler = [&](int) {
  2781. ctx_server.queue_tasks.terminate();
  2782. };
  2783. LOG_INF("%s: server is listening on %s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port);
  2784. ctx_server.queue_tasks.start_loop();
  2785. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  2786. struct sigaction sigint_action;
  2787. sigint_action.sa_handler = signal_handler;
  2788. sigemptyset (&sigint_action.sa_mask);
  2789. sigint_action.sa_flags = 0;
  2790. sigaction(SIGINT, &sigint_action, NULL);
  2791. sigaction(SIGTERM, &sigint_action, NULL);
  2792. #elif defined (_WIN32)
  2793. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  2794. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  2795. };
  2796. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  2797. #endif
  2798. clean_up();
  2799. t.join();
  2800. return 0;
  2801. }